

Table of Contents

Modifying and Jury-Rigging Modules.. 1
Choosing the Right Solution.. 1
Replacing Module Parts.. 4
Subclassing.. 6
Wrapping Subroutines... 11
Summary.. 13
Further Reading... 14

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 10

Modifying and Jury-Rigging Modules

Although there are over 10,000 distributions in CPAN, sometimes it doesn’t have ex-
actly what I need. Sometimes a module has a bug or needs a new feature. I have several
options for fixing things, whether or not the module’s author accepts my changes. The
trick is to leave the module source the same but still fix the problem.

Choosing the Right Solution
I can do several things to fix a module, and no solution is the right answer for every
situation. I like to go with the solutions that mean the least amount of work for me and
the most benefit for the Perl community, although those aren’t always compatible. For
the rest of this section, I won’t give you a straight answer. All I can do is point out some
of the issues involved so you can figure out what’s best for your situation.

Sending Patches to the Author
The least amount of work in most cases is to fix anything I need and send a patch to
the author so that he can incorporate them in the next release of the module. There’s
even a bug tracker for every CPAN module* and the module author automatically gets
an email notifying him about the issue.

When I’ve made my fix I get the diffs, which is just the parts of the file that have changed.
The diff command creates the patch:

$ diff -u original_file updated_file > original_file.diff

The patch shows which changes someone needs to make to the original version to get
my new version:

% diff -u -d ISBN.pm.dist ISBN.pm
--- ISBN.pm.dist 2007-02-05 00:26:27.000000000 -0500
+++ ISBN.pm 2007-02-05 00:27:57.000000000 -0500
@@ -59,8 +59,8 @@

* Best Practical provides its RT service for no charge to the Perl community (http://rt.cpan.org).

157

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 $self->{'isbn'} = $common_data;
 if($isbn13)
 {
- $self->{'positions'} = [12];
- ${$self->{'positions'}}[3] = 3;
+ $self->{'positions'} = [12];
+ $self->{'positions'}[3] = 3;
 }
 else
 { $self->{'positions'} = [9]; }

The author can take the diff and apply it to his source using the patch† program, which
can read the diff to figure out the file and what it needs to do to update it:

$ patch < original_file.diff

Sometimes the author is available, has time to work on the module, and releases a new
distribution. In that case, I’m done. On the other hand, CPAN is mostly the result of
a lot of volunteer work, so the author may not have enough free time to commit to
something that won’t pay his rent or put food in his mouth. Even the most conscientious
module maintainer gets busy sometimes.

To be fair, even the seemingly simplest fixes aren’t trivial matters to all module main-
tainers. Patches hardly ever come with corresponding updates to the tests or docu-
mentation, and the patches might have consequences to other parts of the modules or
to portability. Furthermore, patch submitters tend to change the interface in ways that
work for them but somehow make the rest of the interface inconsistent. Things that
seem like five minutes to the submitter might seem like a couple of hours to the main-
tainer, so make it onto the “To-Do” list rather than the “Done” list.

Local Patches
If I can’t get the attention of the module maintainer, I might just make changes to the
sources myself. Doing it this way usually seems like it works for a while, but when I
update modules from CPAN, my changes might disappear as a new version of the
module overwrites my changes. I can partially solve that by making the module version
very high, hoping an authentic version isn’t greater than the one I choose:

our $VERSION = 99999;

This has the disadvantage of making my job tough if I want to install an official version
of the distribution that the maintainer has fixed. That version will most likely have a
smaller number so tools such as CPAN.pm and CPANPLUS will think my patched version is
up-to-date and won’t install the seemingly older, but actually newer, version over it.

† Larry Wall, the creator of Perl, is also the original author of patch. It’s now maintained by the Free Software
Foundation. Most Unix-like systems should already have patch, and Windows users can get it from several
sources, including GNU utilities for Win32 (http://unxutils.sourceforge.net/) and the Perl Power Tools (http://
ppt.perl.org).

158 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

Other people who want to use my software might have the same problems, but they
won’t realize what’s going on when things break after they update seemingly unrelated
modules. Some software vendors get around this by creating a module directory about
which only their application knows and putting all the approved versions of modules,
including their patched versions, in that directory. That’s more work than I want, per-
sonally, but it does work.

Taking over a Module
If the module is important to you (or your business) and the author has disappeared,
you might consider officially taking over its maintenance. Although every module on
CPAN has an owner, the admins of the Perl Authors Upload Server (PAUSE)‡ can make
you a comaintainer or even transfer complete ownership of the module to you.

The process is simple, although not automated. First, send a message to mod
ules@perl.org inquiring about the module status. Often, an administrator can reach
the author when you cannot because the author recognizes the name. Second, the ad-
mins will tell you to publicly announce your intent to take over the module, which
really means to announce it where most of the community will see it. Next, just wait.
This sort of thing doesn’t happen quickly because the administrators give the author
plenty of time to respond. They don’t want to transfer a module while an author’s on
holiday!

Once you take over the module, though, you’ve taken over the module. You’ll probably
find that the grass isn’t greener on the other side and at least empathize with the plight
of the maintainers of free software, starting the cycle once again.

Forking
The last resort is forking, or creating a parallel distribution next to the official one. This
is a danger of any popular open source projects, but it’s been only on very rare occasions
that this has happened with a Perl module. PAUSE will allow me to upload a module
with a name registered to another author. The module will show up on CPAN but
PAUSE will not index it. Since it’s not in the index, the tools that work with CPAN
won’t see it even though CPAN stores it.

I don’t have to use the same module name as the original. If I choose a different name,
I can upload my fixed module, PAUSE will index it under its new name, and the CPAN
tools can install it automatically. Nobody knows about my module because everybody
uses the original version with the name they already know about and the interface they
already use. It might help if my new interface is compatible with the original module
or at least provides some sort of compatibility layer.

‡ See http://pause.perl.org. As I write this, I’m one of the many PAUSE administrators, so you’ll probably see
me on modules@perl.org. Don’t be shy about asking for help on that list.

Choosing the Right Solution | 159

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Start Over on My Own
I might just decide to not use a third-party module at all. If I write the module myself
I can always find the maintainer. Of course, now that I’m the creator and the maintainer,
I’ll probably be the person about whom everyone else complains. Doing it myself means
I have to do it myself. That doesn’t quite fit my goal of doing the least amount of work.
Only in very rare cases do these replacement modules catch on, and I should consider
that before I do a lot of work.

Replacing Module Parts
I had to debug a problem with a program that used Email::Stuff to send email through
Gmail. Just like other mail servers, the program was supposed to connect to the mail
server and send its mail, but it was hanging on the local side. It’s a long chain of calls,
starting at Email::Stuff and then going through Email::Simple, Email::Send::SMTP,
Net::SMTP::SSL, Net::SMTP, and ending up in IO::Socket::INET. Somewhere in there
something wasn’t happening right. This problem, by the way, prompted my Carp mod-
ifications in Chapter 4, so I could see a full dump of the arguments at each level.

I finally tracked it down to something going on in Net::SMTP. For some reason, the local
port and address, which should have been selected automatically, weren’t. Here’s an
extract of the real new method from Net::SMTP:

package Net::SMTP;

sub new
{
 my $self = shift;
 my $type = ref($self) || $self;

 ...
 my $h;
 foreach $h (@{ref($hosts) ? $hosts : [$hosts]})
 {
 $obj = $type->SUPER::new(PeerAddr => ($host = $h),
 PeerPort => $arg{Port} || 'smtp(25)',
 LocalAddr => $arg{LocalAddr},
 LocalPort => $arg{LocalPort},
 Proto => 'tcp',
 Timeout => defined $arg{Timeout}
 ? $arg{Timeout}
 : 120
) and last;
 }

...
 $obj;
}

160 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The typical call to new passes the remote hostname as the first argument and then a
series of pairs after that. Since I don’t want the standard SMTP port for Google’s service
I specify it myself:

my $mailer = Net::SMTP->new(
'smtp.gmail.com',
 Port => 465,
 ...
);

The problem comes in when I don’t specify a LocalAddr or LocalPort argument. I
shouldn’t have to do that, and the lower levels should find an available port for the
default local address. For some reason, these lines were causing problems when they
didn’t get a number. They don’t work if they are undef, which should convert to 0 when
used as a number, and should tell the lower levels to choose appropriate values on their
own:

LocalAddr => $arg{LocalAddr},
LocalPort => $arg{LocalPort},

To investigate the problem, I want to change Net::SMTP, but I don’t want to edit Net/
SMTP.pm directly. I get nervous when editing standard modules. Instead of editing it,
I’ll surgically replace part of the module. I want to handle the case of the implicit
LocalAddr and LocalPort values but also retain the ability to explicitly choose them.
I’ve excerpted the full solution to show the relevant parts:

BEGIN {
use Net::SMTP;

no warnings 'redefine';

*Net::SMTP::new = sub
{
print "In my Net::SMTP::new...\n";

package Net::SMTP;

... snip

my $hosts = defined $host ? $host : $NetConfig{smtp_hosts};
 my $obj;

 my $h;
 foreach $h (@{ref($hosts) ? $hosts : [$hosts]})
 {
 $obj = $type->SUPER::new(PeerAddr => ($host = $h),
 PeerPort => $arg{Port} || 'smtp(25)',
 $arg{LocalAddr} ? (LocalAddr => $arg{LocalAddr}) : (),
 $arg{LocalPort} ? (LocalPort => $arg{LocalPort}) : (),
 Proto => 'tcp',
 Timeout => defined $arg{Timeout}
 ? $arg{Timeout}
 : 120
);

Replacing Module Parts | 161

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 last if $obj;
 }

... snip

 $obj;
}

To make everything work out, I have to do a few things. First I wrap the entire thing
in a BEGIN block so this code runs before anyone really has a chance to use anything
from Net::SMTP. Inside the BEGIN, I immediately load Net::SMTP so anything it defines
is already in place; I wouldn’t want Perl to replace all of my hard work by loading the
original code on top of it.§ Immediately after I load Net::SMTP, I tell Perl not to warn
me about what I’m going to do next. That’s a little clue that I shouldn’t do this lightly,
but not enough to stop me.

Once I have everything in place, I redefine Net::SMTP::new() by assigning to the type-
glob for that name. The big change is inside the foreach loop. If the argument list didn’t
have true values for LocalAddr and LocalPort, I don’t include them in the argument list
to the SUPER class:

$arg{LocalAddr} ? (LocalAddr => $arg{LocalAddr}) : (),
$arg{LocalPort} ? (LocalPort => $arg{LocalPort}) : (),

That’s a nifty trick. If $arg{LocalAddr} has a true value, it selects the first option in the
ternary operator, so I include LocalAddr => $arg{LocalAddr} in the argument list. If
$arg{LocalAddr} doesn’t have a true value, I get the second option of the ternary op-
erator, which is just the empty list. In that case, the lower levels choose appropriate
values on their own.

Now I have my fix to my Net::SMTP problem, but I haven’t changed the original file.
Even if I don’t want to use my trick in production, it’s extremely effective for figuring
out what’s going on. I can change the offending module and instantly discard my
changes to get back to the original. It also serves as an example I can send to the module
author when I report my problem.

Subclassing
The best solution, if possible, is a subclass that inherits from the module I need to alter.
My changes live in their own source files, and I don’t have to touch the source of the
original module. We mostly covered this in our barnyard example in Intermediate
Perl, so I won’t go over it again here.‖

§ I assume that nobody else in this program is performing any black magic, such as unsetting values in %INC
and reloading modules.

‖ If you don’t have the Alpaca book handy that’s okay. Randal added it to the standard Perl distribution as the
perlboot documentation.

162 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Before I do too much work, I create an empty subclass. I’m not going to do a lot of
work if I can’t even get it working when I haven’t changed anything yet. For this ex-
ample, I want to subclass the Foo module so I can add a new feature. I can use the
Local namespace, which should never conflict with a real module name. My
Local::Foo module inherits from the module I want to fix, Foo, using the base pragma:

package Local::Foo

use base qw(Foo);

1;

If I’m going to be able to subclass this module, I should be able to simply change the
class name I use and everything should still work. In my program, I use the same meth-
ods from the original class, and since I didn’t actually override anything, I should get
the exact same behavior as the original module. This is sometimes called the “empty”
or “null subclass test”:

#!/usr/bin/perl

use Foo
use Local::Foo;

#my $object = Foo->new();
my $object = Local::Foo->new(...);

The next part depends on what I want to do. Am I going to completely replace a feature
or method, or do I just want to add a little bit to it? I add a method to my subclass. I
probably want to call the super method first to let the original method do its work:

package Local::Foo

use base qw(Foo);

sub new
 {
 my($class, @args) = @_;

 ... munge arguments here

 my $self = $class->SUPER::new(@_);

 ... do my new stuff here.
 }

1;

Sometimes this won’t work, though, because the original module can’t be subclassed,
either by design or accident. For instance, the unsuspecting module author might have
used the one-argument form of bless. Without the second argument, bless uses the
current package for the object type. No matter what I do in the subclass, the one-
argument bless will return an object that ignores the subclass:

Subclassing | 163

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

sub new
 {
 my($class, @args) = @_;

 my $self = { ... };

 bless $self;
 }

To make this subclassable, I need to use the first argument to new, which I stored in
$class, as the second argument to bless:

sub new
 {
 my($class, @args) = @_;

 my $self = { ... };

 bless $self, $class;
 }

The value in $class is the original class name that I used, not the current package.
Unless I have a good reason to ignore the original class name, I should always use it
with bless.

In testing this, there are two things I want to check. First, I need to ensure that inher-
itance works. That means that somewhere in the inheritance tree I find the parent class,
Foo, as well as the class I used to create the object, Local::Foo:

some file in t/
use Test::More;

my $object = Local::Foo->new();

foreach my $isa_class (qw(Foo Local::Foo))
 {
 isa_ok($object, $isa_class, "Inherits from $isa_class");
 }

Normally, that should be enough. If I need the object to belong in a particular class
rather than merely inherit from it, I can check the exact class using ref:

is(ref $object, 'Local::Foo', 'Object is type Local::Foo');

The ref built-in isn’t as good as the blessed function from the Scalar::Util module
that comes with Perl since 5.8. It does the same thing but returns undef if its argument
isn’t blessed. That avoids the case of ref returning true for an unblessed reference:

use Scalar::Util qw(blessed);
is(blessed $object, 'Local::Foo', 'Object is type Local::Foo');

Once I’m satisfied that I can make the subclass, I start to override methods in the
subclass to get my desired behavior.

164 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

An ExtUtils::MakeMaker Example
Sometimes module authors know that their module won’t meet everyone’s needs and
they provide a way to get around the default behavior.

ExtUtils::MakeMaker works for most module installers but if it doesn’t do something
that I need I can easily change it through subclassing. To do this ExtUtils::Make
Maker uses the special subclass name My. Before it calls its hardcoded methods, it looks
for the same method names in the package My and will use those preferentially.

As MakeMaker performs its magic, it writes to the file Makefile according to what its
methods tell it to do. What it decides to write comes from ExtUtils::MM_Any, the base
class for the magic and then perhaps a subclass, such as ExtUtils::MM_Unix or ExtU
tils::MM_Win32, that might override methods for platform-specific issues.

In my Test::Manifest module I want to change how testing works. I want the make
test step to execute the test files in the order I specify rather than the order in which
glob returns the filenames from the t directory. The function test_via_harness writes
out a section of the Makefile. I know this because I look in the Makefile to find which
bits do the part I want to change and then look for that text in the module to find the
right function:

package ExtUtils::MakeMaker;

sub test_via_harness {
 my($self, $perl, $tests) = @_;

 return qq{\t$perl "-MExtUtils::Command::MM" }.
 qq{"-e" "test_harness(\$(TEST_VERBOSE),
 '\$(INST_LIB)', '\$(INST_ARCHLIB)')" $tests\n};
}

After interpolations and replacements the output in the Makefile shows up as some-
thing like this (although results may differ by platform):

test_dynamic :: pure_all
 PERL_DL_NONLAZY=1 $(FULLPERLRUN) "-MExtUtils::Command::MM" "-e"
 "test_harness($(TEST_VERBOSE), '$(INST_LIB)', '$(INST_ARCHLIB)')"
 $(TEST_FILES)

After boiling everything down, a make test essentially runs a command that globs all
of the files in the t directory and executes them in that order. This leads module authors
to name their modules odd things like 00.load.t or 99.pod.t to make the order come out
how they like:

perl -MExtUtils::Command::MM -e 'test_harness(...)' t/*.t

It doesn’t matter much what test_harness actually does as long as my replacement does
the same thing. In this case, I don’t want the test files to come from @ARGV because I
want to control their order.

Subclassing | 165

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

To change how that works, I need to get my function in the place of test_harness. By
defining my own test_via_harness subroutine in the package MY, I can put any text I
like in place of the normal test_via_harness. I want to use my function from Test::Man
ifest. I use the full package specification as the subroutine name to put it into the right
namespace:

package Test::Manifest;

sub MY::test_via_harness
 {
 my($self, $perl, $tests) = @_;

 return qq|\t$perl "-MTest::Manifest" | .
 qq|"-e" "run_t_manifest(\$(TEST_VERBOSE), '\$(INST_LIB)', | .
 qq|'\$(INST_ARCHLIB)', \$(TEST_LEVEL))"\n|;
 };

Instead of taking the list of files as arguments, in my run_t_manifest subroutine I call
get_t_files(), which looks in the file t/test_manifest. Once run_t_manifest() has the
list of files it passes it to Test::Harness::runtests(), the same thing that the original
test_harness() ultimately calls:

use File::Spec::Functions;

my $Manifest = catfile("t", "test_manifest");

sub run_t_manifest
 {
 ...;

 my @files = get_t_files($level);

 ...;
 Test::Harness::runtests(@files);
 }

sub get_t_files
 {
 return unless open my($fh), $Manifest;

 my @tests = ();

 while(<$fh>)
 {
 ...;

 push @tests, catfile("t", $test) if -e catfile("t", $test);
 }
 close $fh;

 return wantarray ? @tests : join " ", @tests;
 }

166 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

In t/test_manifest I list the test files to run, optionally commenting lines I want to skip.
I list them in any order I like and that’s the order I’ll run them:

load.t
pod.t
pod_coverage.t
#prereq.t
new.t
feature.t
other_feature.t

By subclassing the module, I don’t have to fool with ExtUtils::MakeMaker, which is
certainly something I don’t want to do. I get the feature I want and I don’t break the
module for anyone else. I still have the same ExtUtils::MakeMaker source that everyone
else has. I go through the same process if I need to change any other behavior in
ExtUtils::MakeMaker.

Other Examples
For another example of subclassing, see Chapter 15, where I subclass Pod::Simple. Sean
Burke wrote the module specifically for others to subclass. Most of this book started
as pseudopod, a special O’Reilly Media variant of plain ol’ documentation, and I cre-
ated my own Pod::PseudoPod subclasses to convert the source to HTML pages for the
web site# and for the final sources for the production team.

Wrapping Subroutines
Instead of replacing a subroutine or method, I might just want to wrap it in another
subroutine. That way I can inspect and validate the input before I run the subroutine
and I can intercept and clean up the return value before I pass it back to the original
caller. The basic idea looks like this:

sub wrapped_foo
 {
 my @args = @_;

 ...; # prepare @args for next step;

 my $result = foo(@args);

 ...; # clean up $result

 return $result;
 }

The Mastering Perl web site, with book text and source code, is at http://www.pair.com/comdog/
mastering_perl.

Wrapping Subroutines | 167

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

To do this right, however, I need to handle the different contexts. If I call wrap
ped_foo in list context, I need to call foo in list context, too. It’s not unusual for Perl
subroutines to have contextual behavior and for Perl programmers to expect it. My
basic template changes to handle scalar, list, and void contexts:

sub wrapped_foo
 {
 my @args = @_;

 ...; # prepare @args for next step;

 if(wantarray) # list context
 {
 my @result = foo(@args);

 return @result;
 }
 elsif(defined wantarray) # scalar context
 {
 my $result = foo(@args);
 ...; # clean up $result
 return $result;
 }
 else # void context
 {
 foo(@args);
 }
 }

It gets a bit more complicated than this, but Damian Conway makes it easy with
Hook::LexWrap. He lets me add pre- and posthandlers that run before and after the
wrapped subroutine, and he takes care of all of the details in the middle. His interface
is simple; I use the wrap subroutine and provide the handlers as anonymous subroutines.
The wrapped version is sub_to_watch() and I call it as a normal subroutine:

#!/usr/bin/perl

use Hook::LexWrap;

wrap 'sub_to_watch',
 pre => sub { print "The arguments are [@_]\n" },
 post => sub { print "Result was [$_[-1]]\n" };

sub_to_watch(@args);

Hook::LexWrap adds another element to @_ to hold the return value, so in my posthandler
I look in $_[-1] to see the result.

I can use this to rewrite my divide example from Chapter 4. In that example, I had a
subroutine to return the quotient of two numbers. In my made-up situation, I was
passing it the wrong arguments, hence getting the wrong answer. Here’s my subroutine
again:

168 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

sub divide
 {
 my($n, $m) = @_;
 my $quotient = $n / $m;
 }

Now I want to inspect the arguments before they go in and see the return value before
it comes back. If the actual arguments going in and the quotient match, then the sub-
routine is doing the right thing, but someone is using the wrong arguments. If the
arguments are right but the quotient is wrong, then the subroutine is wrong:

#!/usr/bin/perl

use Hook::LexWrap;

sub divide
 {
 my($n, $m) = @_;
 my $quotient = $n / $m;
 }

wrap 'divide',
 pre => sub { print "The arguments are [@_]\n" },
 post => sub { print "Result was [$_[-1]]\n" };

my $result = divide(4, 4);

After I wrap the subroutine, I call divide as I normally would. More importantly, though,
is that I’m not changing my program for calls to divide because Hook::LexWrap does
some magic behind the scenes to replace the subroutine definition so my entire program
sees the wrapped version. I’ve changed the subroutine without editing the original
source. Without (apparently) changing the subroutine, whenever I call it I get a chance
to see extra output:

The arguments are [4 4]
Result was [1]

When I remove the wrap, I leave everything just as I found it and don’t have to worry
about reverting my changes.

Summary
I don’t have to change module code to change how a module works. For an object-
oriented module, I can create a subclass to change the parts I don’t like. If I can’t
subclass it for some reason, I can replace parts of it just like I can for any other module.
No matter what I do, however, I usually want to leave the original code alone (unless
it’s my module and I need to fix it) so I don’t make the problem worse.

Summary | 169

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Further Reading
The perlboot documentation has an extended subclassing example. It’s also in Inter-
mediate Perl.

I talk about Hook::Lex::Wrap in “Wrapping Subroutines to Trace Code Execution,”
The Perl Journal, July 2005: http://www.ddj.com/dept/lightlang/184416218.

The documentation of diff and patch discusses their use. The patch manpage is par-
ticularly instructive because it contains a section near the end that talks about the
pragmatic considerations of using the tools and dealing with other programmers.

170 | Chapter 10: Modifying and Jury-Rigging Modules

Modifying and Jury-Rigging Modules. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Modifying and Jury-Rigging Modules
	Choosing the Right Solution
	Replacing Module Parts
	Subclassing
	Wrapping Subroutines
	Summary
	Further Reading

