

Table of Contents

Benchmarking Perl... 1
Benchmarking Theory.. 1
Benchmarking Time.. 3
Comparing Code.. 6
Don’t Turn Off Your Thinking Cap.. 7
Memory Use... 12
The perlbench Tool.. 17
Summary.. 19
Further Reading.. 20

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 6

Benchmarking Perl

Tony Hoare’s famous quote—“Premature optimization is the root of all evil”—usually
doesn’t come with its setup: “We should forget about small efficiencies, say about 97%
of the time.” That is, don’t sweat the small stuff until you need to. In this chapter, I
show how I can look into my Perl programs to see where the slow parts are. Before I
start working to improve the performance of my program, I should check to see what
the program is actually doing. Once I know where the slow parts are, I concentrate on
those.

Benchmarking Theory
The term benchmark comes from surveyors. They create a physical mark in something
to denote a known elevation and use that mark to determine other elevations. Those
computed elevations can only be right if the original mark is right. Even if the original
mark started off right, maybe it changed because it sunk into the ground, the ground
moved because of an earthquake, or global warming redefined the ultimate benchmark
we call sea level.* Benchmarks are comparisons, not absolutes.

For computers, a benchmark compares the performance of one system against another.
They measure in many dimensions, including time to completion, resource use, net-
work activity, or memory use. Several tools already exist for measuring the parts outside
of Perl so I won’t cover those here. I want to look inside Perl to see what I can find. I
want to know if one bit of code is faster or uses less memory.

Measuring things and extracting numbers is easy, and it’s often easy for us to believe
the numbers that computers give us. This makes benchmarking dangerous. Unlike
those surveyors, we can’t stand on a hill and know if we are higher or lower than the
next hill by just looking. We have to carefully consider not only the numbers that we
get from benchmarks, but the method we use to generate the numbers.

* Sea level isn’t a good benchmark either, because there is really no such thing. Not only do tides affect the
height of water, but the oceans tend to tilt against the earth’s rotation. Sea level is actually different around
the world because the level of the sea is different.

91

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Benchmarking isn’t as popular as it used to be. The speed and storage of computers
and the bandwidth of networks are not as limiting as they used to be, so we don’t feel
like we have to work hard to conserve them. We also don’t have to pay (as in money,
literally) for CPU cycles (in most cases), so we don’t care how many we actually use.
At least, we don’t care as much as programmers used to care. After all, you’re using
Perl, aren’t you?

Any measurement comes with risk. If I don’t understand what I’m measuring, what
affects the measurement, or what the numbers actually mean, I can easily misinterpret
the results. If I’m not careful about how I measure things, my numbers may be mean-
ingless. I can let the computer do the benchmarking work for me, but I shouldn’t let it
do the thinking for me.

A Perl program doesn’t run on its own. It depends on a perl interpreter, an operating
system, and hardware. Each of those things depends on other things. Even if I use the
same machine, different perl interpreters, even of the same version of Perl, may give
different results. I could have compiled them with different C compilers that have dif-
ferent levels of optimization, I could have included different features in one interpreter,
and so on. I’ll talk about this more toward the end of the chapter when I discuss
perlbench.

You probably don’t have to imagine a situation where you develop on one platform
but deploy on another. I get to visit many companies in my travels as a consultant with
Stonehenge, so I’ve been able to see a lot of different setups. Often, teams develop on
one system that only they use, and then deploy the result to a busy server that has a
different version of Perl, a different version of the operating system, and a completely
different load profile. What was quite speedy on a lightly used machine becomes un-
bearably slow when people start to use it. A good example of this is CGI programs,
which become quite slow with increased load, versus speedy mod_perl programs,
which scale quite nicely.

Any benchmark only applies to its situation. Extrapolating my results might not get me
in trouble, but they aren’t really valid either. The only way for me to really know what
will happen in a particular situation is to test that situation. Along with my numbers,
I have to report the details. It’s not enough to say, for instance, that I’m writing this on
a Powerbook G4 running Mac OS 10.4.4. I have to tell you the details of my perl
interpreter, how I compiled it (that’s just perl -V), and how I’ve tuned my operating
system.

Also, I can’t measure something without interacting with it, and that interaction
changes the situation. If I want to watch the details of Perl’s memory management, for
instance, I can compile Perl with -DDEBUGGING_MSTATS, but then it’s not the same Perl
interpreter. Although I can now watch the memory, I’ve probably slowed the entire
program down (and I verify that at the end of this chapter when I show perlbench). If
I add code to time the program, I have to execute that code, which means my program

92 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

takes longer. In any case, I might have to use additional modules, which means that
Perl has to find, load, and compile more code.

Benchmarking Time
To measure the time it takes my program to run, I could just look at the clock on the
wall when I start the program and look again when the program finishes. That’s the
simplest way, and the most naive, too. This method might work in extreme circum-
stances. If I can reduce the run time of my program from an entire workday to a couple
of minutes, then I don’t care that the wallclock method might be a bit inaccurate.

I don’t have to really look at my watch, though. I can time my program directly in my
program if I like:

#!/usr/bin/perl

my $start = time;

#... the meat of my program

my $end = time;

print "The total time is ", $end - $start;

For a short-running program, this method only tests a portion of the runtime. What
about all that time Perl spent compiling the code? If I used a lot of modules, a significant
part of the time the whole process takes might be in the parts before Perl even starts
running the program. Jean-Louis Leroy wrote an article for Perl.com† about slow start-
up times in a Perl FTP program because Perl had to look through 23 different directories
to find everything Net::FTP needed to load. The runtime portion is still pretty speedy,
but the startup time was relatively long. Remember that Perl has to compile the program
every time I run it (forgetting about things like mod_perl for the moment). If I use many
modules, I make a lot of work for Perl to find them and compile them every time I run
my program.

If I want to time the whole process, compile time and runtime, I can create a wrapper
around the program to do the wallclock timing. I could take this number and compare
it to the runtime numbers to estimate the compilation times:

#!/usr/bin/perl

my $start = time;

system("@ARGV");

my $end = time;

printf "The whole time was %d seconds", $end - $start;

† “A Timely Start” (http://www.perl.com/lpt/a/2005/12/21/a_timely_start.html).

Benchmarking Time | 93

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The wallclock method breaks down, though, because the operating system can switch
between tasks, or even run different tasks at the same time. I can’t tell how much time
the computer worked on my program by only looking at my watch. The situation is
even worse when my program has to wait for resources that might be busy or for net-
work latency. I can’t really blame my program in those cases.

The time program (not the Perl built-in) that comes with most unix-like systems solves
this by reporting only the time that the operating system thinks about my program.
Your particular shell may even have a built-in command for it.‡

From the command line, I tell the time command what it should measure. It runs the
command and reports its results. It breaks down the runtime down by the real time,
the user time, and the system time. The real time is the wallclock time. The other two
deal with how the operating system divides tasks between the system and the my proc-
ess. Mostly I don’t care about that distinction and only their sum matters to me.

When I time the sleep program (not the Perl built-in), the real time is the time I told it
to sleep, but since that’s all that program does, the user and system times are minuscule.
The output for your particular version of time may be different:

$ time sleep 5

real 0m5.094s
user 0m0.002s
sys 0m0.011s

Behind the scenes, the time program just uses the times function from the standard C
library, and that carries along accounting information (although we’re fortunate that
we don’t have to pay for clock cycles anymore). The times Perl built-in does the same
thing. In list context, it returns four times: the total user and system time, and the user
and system time for the children of the process. I take the end times and subtract the
starting times to get the real times:

#!/usr/bin/perl

use Benchmark;

my @start = times;

#... the meat of my program

my @end = times;

my @diffs = map { $end[$_] - $start[$_] } 0 .. $#end;

print "The total time is @diffs";

‡ If you don’t have this tool, the Perl Power Tools Project (http://search.cpan.org/dist/ppt/) has a Perl
implementation of it, and in a moment I’ll implement my own.

94 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

I don’t have to do those calculations myself, though, because the Benchmark module,
which comes with Perl, already does it for me. Again, this approach only measures the
runtime:

#!/usr/bin/perl

use Benchmark;

my $start = Benchmark->new;

#... the meat of my program

my $end = Benchmark->new;

my $diff = timediff($t1, $t0);

 print "My program took: " . timestr($diff) . "\n";

($real, $child_user, $child_system) = @$diff[0,3,4];

I'm pretty sure this is POSIX format
printf STDERR "\nreal\t%.3f\nuser\t%.3f\nsys\t%.3f\n",
 $real, $child_user, $child_system;

The output looks like the times output I showed previously, but now it comes com-
pletely from within my Perl program and just for the parts of the program inside of the
calls to Benchmark->new. Instead of timing the entire program, I can focus on the part I
want to examine.

This is almost the same thing David Kulp did to create the Perl Power Tools version of
time. Take a benchmark, run the command of interest using system (so those are the
children times), and then take another benchmark once system returns. Since this ver-
sion of time is pure Perl, it runs anywhere that Perl runs:

#!/usr/bin/perl

use Benchmark;

$t0 = Benchmark->new;

$rc = system(@ARGV);

$t1 = Benchmark->new;

$diffs = timediff($t1, $t0);

printf STDERR "\nreal %.2f\nuser %.2f\nsys %.2f\n", @$diffs[0,3,4];

$rc &= 0xffff;
if ($rc == 0xff00) { exit 127; } else { exit ($rc >> 8); }

There’s a big problem with measuring CPU times and comparing them to program
perfomance: they only measure the time my program used the CPU. It doesn’t include

Benchmarking Time | 95

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

the time that my program waits to get input, to send output, or to get control of some
other resource. Those times might be much more important that the CPU time.

Comparing Code
Benchmarks by themselves aren’t very useful. I file them under the heading of “decision
support.” I might be able to use them to decide that I need to change a program to
improve a number, but the number itself doesn’t tell me what to do. Sure, I know how
long it takes to run my program, but it doesn’t tell me if I can make it any faster. I need
to compare one implementation to another.

I could compare entire programs to each other, but that’s not very useful. If I’m trying
to speed up a program, for instance, I’m going to change the parts that I think are slow.
Most of the other parts will be the same, and the time to run all of those same parts
end up in the total time. I really just want to compare the bits that are different. The
times for the rest of the code skews the results, so I need to isolate the parts that I want
to compare.

If I extract the different parts, I can create small programs with just those. Most of the
time the sample program takes to run then only applies to the interesting bits. I’ll talk
more about that later, but as I go through this next section, remember that anything I
do has some overhead and every measurement changes the situation a bit, so I should
think about the numbers before I accept them. For now, I’ll go back to the Benchmark
module.

If I want to compare two small bits of code instead of entire programs, I can use some
of the functions from Benchmark. I can compare either by running a certain number of
iterations and comparing the total time, or the inverse of that, a total time and com-
paring the total number of iterations.

In the timethese function from Benchmark, I give it a number of iterations as the first
argument. The second argument is an anonymous hash where the keys are labels I give
the snippets and the hash values represent the code I want to compare, in this case as
string values that Perl will eval. In this sample program, I want to compare the speed
of opendir and glob for getting a list of files:

#!/usr/bin/perl

use Benchmark;

my $iterations = 10_000;

timethese($iterations, {
 'Opendir' => 'opendir my($dh), "."; my @f = readdir($dh)',
 'Glob' => 'my @f = glob("*")',
 }
);

96 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The timethese function prints a nice report that shows me the three times I discussed
earlier:

$ perl dir-benchmark.pl
Benchmark: timing 10000 iterations of Glob, Opendir...
 Glob: 6 wallclock secs (2.12 usr + 3.47 sys = 5.59 CPU) @ 1788.91/s (n=10000)
 Opendir: 3 wallclock secs (0.85 usr + 1.70 sys = 2.55 CPU) @ 3921.57/s (n=10000)

These aren’t “The Numbers,” though. People try to get away with running the meas-
urement once. Try it again. Then again. The results vary a little bit every time you run
it; certainly some of this is merely round-off error:

$ perl dir-benchmark.pl
Benchmark: timing 10000 iterations of Glob, Opendir...
 Glob: 6 wallclock secs (2.10 usr + 3.47 sys = 5.57 CPU) @ 1795.33/s (n=10000)
 Opendir: 3 wallclock secs (0.86 usr + 1.70 sys = 2.56 CPU) @ 3906.25/s (n=10000)

$ perl dir-benchmark.pl
Benchmark: timing 10000 iterations of Glob, Opendir...
 Glob: 7 wallclock secs (2.11 usr + 3.51 sys = 5.62 CPU) @ 1779.36/s (n=10000)
 Opendir: 3 wallclock secs (0.87 usr + 1.71 sys = 2.58 CPU) @ 3875.97/s (n=10000)

$ perl dir-benchmark.pl
Benchmark: timing 10000 iterations of Glob, Opendir...
 Glob: 7 wallclock secs (2.11 usr + 3.47 sys = 5.58 CPU) @ 1792.11/s (n=10000)
 Opendir: 3 wallclock secs (0.85 usr + 1.69 sys = 2.54 CPU) @ 3937.01/s (n=10000)

Don’t Turn Off Your Thinking Cap
Benchmarking can be deceptive if I let the computer do the thinking for me. The
Benchmark module can spit out numbers all day long, but if I don’t think about what
I’m doing and what those numbers actually mean, they aren’t useful. They may even
lead me to believe something that isn’t true, and I have a nice example from my personal
experience of mistrusting a benchmark.

Part of Stonehenge’s Intermediate Perl course covers the Schwartzian Transform, which
uses a cached sort-key to avoid duplicating work during a sort. The Schwartzian Trans-
form should be faster, especially for more elements and more complicated sort-key
computations. We covered this in Chapter 9 of Intermediate Perl.

In one of the course exercises, to prove to our students that the transform actually
boosts performance, we ask them to sort a bunch of filenames in order of their modi-
fication date. Looking up the modification time is an expensive operation, especially
when I have to do it N*log(N) times. Since we got the answer we wanted, we didn’t
investigate as fully as we should have.

The answer we used to give in the course materials was not the best answer. It is short
so it fits on one slide, but it makes things seem worse than they really are. The Schwart-
zian Transform comes out ahead, as it should, but I always thought it should be faster.

Don’t Turn Off Your Thinking Cap | 97

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Our example used Benchmark’s timethese to compare two methods to sort filenames by
their modification age. The “Ordinary” sort computes the file modification age, -M
$a, every time it needs to make a comparison. The “Schwartzian” method uses the
Schwartzian Transform to compute the modification age once per file and store it with
the filename. It’s a cached-key sort:

use Benchmark qw{ timethese };
timethese(-2, {
 Ordinary =>
 q{ my @results = sort { -M $a <=> -M $b } glob "/bin/*"; },
 Schwartzian =>
 q{ map $_->[0], sort { $a->[1] <=> $b->[1] } map [$_, -M], glob "/bin/*"; },
 });

This code has a number of problems. If I am going to compare two things, they need
to be as alike as I can make them. Notice that in the “Ordinary” case I assign to
@results and in the “Schwartzian” case I use map() in a void context. They do different
things: one sorts and stores, and one just sorts. To compare them, they need to produce
the same thing. In this case, they both need to store their result.

Also, I need to isolate the parts that are different and abstract the parts that are the
same. In each code string, I do a glob(), which I already know is an expensive operation.
The glob() taints the results because it adds to the time for the two sorts of, um, sorts.

During one class, while the students were doing their lab exercises, I did my own
homework by rewriting our benchmark following the same process I should in any
benchmark.

I broke up the task into parts and timed the different bits to see how they impact the
overall task. I identified three major parts to benchmark: creating a list of files, sorting
the files, and assigning the sorted list. I want to time each of those individually, and I
also want to time the bigger task. This seems like such a simple task, comparing two
bits of code, but I can mess up in several ways if I’m not careful.

I also want to see how much the numbers improve from the example we have in the
course slides, so I use the original code strings, too. I try a bunch of different snippets
to see how each part of the task contributes to the final numbers. How much of it comes
from the list assignment, or from the filename generation through glob()? I build up a
bunch of code strings from the various common parts.

First, I create some package variables. Benchmark turns my code strings into subroutines,
and I want those subroutines to find these variables. They have to be global (package)
variables. Although I know Benchmark puts these subroutines in the main:: package,
I use L::*, which is short for Local. It’s not important that I do it in this particular way
so much as that I abstract the common parts so they have as little effect as possible on
the results.

The $L::glob variable is just the pattern I want glob to use, and I get that from @ARGV
so I can run this program over different directories to see how the times change with

98 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

different numbers of files. I specify it once and use it everywhere I use glob(). That way,
every code string gets the same list of files. I expect the Schwartzian Transform to get
better and better as the number of files increases.

I also want to run some code strings that don’t use glob(), so I pre-glob the directory
and store the list in @L::files. I think glob() is going to significantly affect the times,
so I want to see the results with and without it.

The $code anonymous hash has the code strings. I want to test the pieces as well as the
whole thing, so I start off with control strings to assign the list of files to a variable and
to run a glob(). Benchmark also runs an empty subroutine behind the scenes so it can
adjust its time for that overhead too. I expect the “assign” times to be insignificant and
the glob() times to be a big deal. At the outset, I suspect the glob() may be as much as
a third of the time of the benchmarks, but that’s just a guess.

The next set of code strings measure the sort. The sort_names string tries it in void
context, and the sort_names_assign does the same thing but assigns its result to an
array. I expect a measurable difference, and the difference to be the same as the time
for the assign string.

Then I try the original code strings from our exercise example, and call that ordi
nary_orig. That one uses a glob(), which I think inflates the time significantly. The
ordinary_mod string uses the list of files in @L::files, which is the same thing as the
glob() without the glob(). I expect these two to differ by the time of the glob code
string.

The last set of strings compare three things. The schwartz_orig string is the one I started
with. In schwartz_orig_assign, I fix that to assign to an array, just like I did with the
other original code string. If I want to compare them, they have to do the same thing.
The final code string, schwartz_mod, gets rid of the glob():

#!/usr/bin/perl
schwartzian-benchmark.pl
use strict;
use Benchmark;

$L::glob = $ARGV[0];
@L::files = glob $L::glob;

print "Testing with " . @L::files . " files\n";

my $transform = q|map $_->[0], sort { $a->[1] <=> $b->[1] } map [$_, -M]|;
my $sort = q|sort { -M $a <=> -M $b }|;

my $code = {
 assign => q| my @r = @L::files |,
 'glob' => q| my @files = glob $L::glob |,
 sort_names => q| sort { $a cmp $b } @L::files |,
 sort_names_assign => q| my @r = sort { $a cmp $b } @L::files |,
 sort_times_assign => qq| my \@r = $sort \@L::files |,

Don’t Turn Off Your Thinking Cap | 99

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 ordinary_orig => qq| my \@r = $sort glob \$L::glob |,
 ordinary_mod => qq| my \@r = $sort \@L::files |,
 schwartz_orig => qq| $transform, glob \$L::glob |,
 schwartz_orig_assign => qq| my \@r = $transform, glob \$L::glob |,
 schwartz_mod => qq| my \@r = $transform, \@L::files |,
};

#
print "Timing for 2 CPU seconds...\n";
timethese(-2, $code);

#
my $iterations = 1_000;
print "\n", "-" x 73, "\n\n";
print "Timing for $iterations iterations\n";

timethese($iterations, $code);

The Benchmark module provides the report, which I reformatted to make it a bit easier
to read (so some of the output is missing and some lines are shorter). The results are
not surprising, although I like to show the students that they didn’t waste an hour
listening to me talk about how wonderful the transform is:

$ perl benchmark

Testing with 380 files Timing for 2 CPU seconds...
Benchmark: running assign, glob, ordinary_mod, ordinary_orig,
 schwartz_mod, schwartz_orig, schwartz_orig_assign, sort_names,
 sort_names_assign for at least 2 + CPU seconds...
assign: (2.03 usr + 0.00 sys = 2.03 CPU) (n= 6063)
glob: (0.81 usr + 1.27 sys = 2.08 CPU) (n= 372)
ordinary_mod: (0.46 usr + 1.70 sys = 2.16 CPU) (n= 80)
ordinary_orig: (0.51 usr + 1.64 sys = 2.15 CPU) (n= 66)
schwartz_mod: (1.54 usr + 0.51 sys = 2.05 CPU) (n= 271)
schwartz_orig: (1.06 usr + 1.03 sys = 2.09 CPU) (n= 174)
schwartz_orig_assign: (1.20 usr + 0.87 sys = 2.07 CPU) (n= 156)
sort_names: (2.09 usr + 0.01 sys = 2.10 CPU) (n=3595626)
sort_names_assign: (2.16 usr + 0.00 sys = 2.16 CPU) (n= 5698)

Timing for 1000 iterations Benchmark: timing 1000 iterations of assign,
 glob, ordinary_mod, ordinary_orig, schwartz_mod, schwartz_orig,
 schwartz_orig_assign, sort_names, sort_names_assign ...
assign: 1 secs (0.33 usr + 0.00 sys = 0.33 CPU)
glob: 6 secs (2.31 usr + 3.30 sys = 5.61 CPU)
ordinary_mod: 28 secs (5.57 usr + 21.49 sys = 27.06 CPU)
ordinary_orig: 34 secs (7.86 usr + 24.74 sys = 32.60 CPU)
schwartz_mod: 8 secs (5.12 usr + 2.47 sys = 7.59 CPU)
schwartz_orig: 12 secs (6.63 usr + 5.52 sys = 12.15 CPU)
schwartz_orig_assign: 14 secs (7.76 usr + 5.41 sys = 13.17 CPU)
sort_names: 0 secs (0.00 usr + 0.00 sys = 0.00 CPU)
sort_names_assign: 0 secs (0.39 usr + 0.00 sys = 0.39 CPU)

100 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The sort_names result stands out. It ran almost two million times a second. It also
doesn’t do anything since it’s in a void context. It runs really fast, and it runs just as
fast no matter what I put in the sort() block. A sort() in void context will always be
the fastest. The difference between the sort() and the map() in void context is not as
pronounced in schwartz_orig and schwartz_orig_assign because only the last map is
in void context. Both still have the rightmost map() and the sort() to compute before
it can optimize for void context. There is an approximately 10 percent difference in the
number of extra iterations the schwartz_orig can go through, so the missing assignment
gave it an apparent but unwarranted boost in our original example.

I like to look at the second set of results for the comparisons, and use the wallclock
seconds even though they are not as exact as the CPU seconds. Remember that the
CPU times are only measuring time spent in the CPU, and that I’m really doing a lot
of filesystem stuff here. The CPU times aren’t any more accurate than the wallclock
times.

The glob code string took about 6 seconds, and the schwartz_orig_assign code string
took 14 seconds. If I subtract those extra 6 seconds from the 14, I get the wallclock
time for schwartz_mod, just like I expected. That’s over a third of the time! The
ordinary_* times drop 6 seconds, too, but from 34 to 28 seconds, so the percent dif-
ference is not as alarming.

I try the same benchmark with more and more files, and I should see the Schwartzian
Transform doing even better as the number of files grow. For the rest of the compari-
sons, I’ll use the actual CPU time since the round-off error is a lot higher now.

873 files
I’ll try 873 files because I have a directory with that many files in it. Notice that the
glob() still has a significant effect on the times and that the original transform that
was in the void context is still shaving off about 10 percent of the real time. The
quotient between ordinary_mod and schwartz_mod is 73 / 20 = 3.7, which is a little
bit higher than before. That’s much better than the 2.9 I get for ordinary_orig and
schwartz_orig:

Benchmark: timing 1000 iterations of glob, ordinary_mod, schwartz_mod...
glob: 14 secs (6.28 usr + 8.00 sys = 14.28 CPU)
ordinary_mod: 73 secs (14.25 usr + 57.05 sys = 71.30 CPU)
ordinary_orig: 93 secs (20.83 usr + 66.14 sys = 86.97 CPU)
schwartz_mod: 20 secs (14.06 usr + 5.52 sys = 19.58 CPU)
schwartz_orig: 32 secs (17.38 usr + 13.59 sys = 30.97 CPU)
schwartz_orig_assign: 34 secs (19.95 usr + 13.60 sys = 33.55 CPU)

3162 files
Idle CPUs are wasted CPUs, but I think I’d rather have an idle CPU instead of one
doing this benchmark again. My disk was spinning quite a bit as I ran it. The
quotient between ordinary_mod and schwartz_mod is 675 / 151 = 4.5, so the Schwar-
zian Transform is doing even better, but ordinary_orig and schwartz_orig give me

Don’t Turn Off Your Thinking Cap | 101

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

the ratio 2.8, less than before, so the incorrect benchmark has the gap closing.
That’s not what should be happening!

Look at the huge penalty from the glob()! Now the glob() takes almost as much
time as the transform itself. If I stuck with the original solution, students might
think that the transform wasn’t so hot:

Benchmark: timing 1000 iterations of glob, ordinary_mod, schwartz_mod...
glob: 148 secs (31.26 usr + 102.59 sys = 133.85 CPU)
ordinary_mod: 675 secs (86.64 usr + 517.19 sys = 603.83 CPU)
ordinary_orig: 825 secs (116.55 usr + 617.62 sys = 734.17 CPU)
schwartz_mod: 151 secs (68.88 usr + 67.32 sys = 136.20 CPU)
schwartz_orig: 297 secs (89.33 usr + 174.51 sys = 263.84 CPU)
schwartz_orig_assign: 294 secs (96.68 usr + 168.76 sys = 265.44 CPU)

Memory Use
When a programmer talks about benchmarking, she’s probably talking about speed.
After all, that’s what the Benchmark Perl module measure and what most articles on the
subject discuss. Time is an easy thing to measure, so it’s understandable, though not
necessarily right, that people measure what they can. Sometimes time is not the major
constraint, but something else, such as memory use, is causing the problem.

The perldebguts documentation says:
There is a saying that to estimate memory usage of Perl, assume a reasonable algorithm
for memory allocation, multiply that estimate by 10, and while you still may miss the
mark, at least you won't be quite so astonished.

Perl trades memory for processing speed. Instead of doing a lot of computation, Perl
does a lot of lookup. Higher level languages handle memory management so the de-
veloper can think more about the task at hand than about getting more memory,
releasing memory, or creating memory management bugs.§

This ease of use comes at an expense, though. Since I don’t control the memory and
Perl doesn’t know what I plan to do ahead of time, Perl has to guess. When Perl needs
more memory, it grabs a big chunk of it. If I need memory now, I’ll probably need more
later too, so Perl gets more than I need immediately. If I watch the memory use of my
program carefully, I’ll see it jump in big amounts, stay that way for a bit, then jump
again. Perl doesn’t give memory back to the operating system, either. It needed the
memory before, so it might need it again. It tries to reuse the space it doesn’t need
anymore, but it’s going to keep what it’s got.

Also, Perl is built on top of C, but it doesn’t have C’s data types. Perl has scalars, arrays,
hashes, and a couple of others. Perl doesn’t expose the actual storage to me, so I don’t
have to think about it. Not only that, but Perl has to deal with context. Are those data

§ The gory details of Perl’s memory management could take up a whole book. I’ll cover the general idea here
and leave it to you to go through perldebguts.

102 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

strings, or numbers, or both? Where, in memory, are all of the elements of the array?
What other variables does this thing reference?

That’s the long way to say that a number in Perl is more than a number. It’s really a
movie star with a big entourage. It may be a 32-bit integer, but it’s really 12 bytes.
The Devel::Peek module lets me see what’s going on by letting me inspect the variable’s
data structure to see how Perl stores it:

#!/usr/bin/perl

use Devel::Peek;

my $a;

print_message("Before I do anything");
Dump($a);

print_message("After I assign a string");
$a = '123456789';
Dump($a),

print_message("After I use it as a number");
$b = $a + 1;
Dump($a);

sub print_message
 {
 print STDERR "\n", "-" x 50,
 "\n$_[0]\n", "-" x 50, "\n"
 }

The output shows me what Perl is tracking for that scalar at each point in the program.
When I first create the variable, it doesn’t have a value. I can see that Perl created the
scalar (in internals parlance, the SV, or “scalar value”), it has a reference count of 1,
and that it has some flags set. The SV doesn’t have anything in it (that’s the NULL
(0x0)), but it has an address, 0x1808248, because the scalar infrastructure is set up and
ready to go when I’m ready to give it a value.

When I assign a string to $a, it has more flags set and now has a PV, a “pointer value,”
which really means it’s just a string (or char * for you C people). Now the scalar value
points to the string data.

When I use this scalar as a number for the first time, Perl has to convert the string to a
number. Once it does that, it stores the number value too, turning my scalar into a
PVIV, meaning that it has a pointer value and an integer value. Perl sets more flags to
indicate that it’s done the conversion and it has both values. Next time it can access
the number directly:

--
Before I do anything
--
SV = NULL(0x0) at 0x1808248
 REFCNT = 1

Memory Use | 103

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 FLAGS = (PADBUSY,PADMY)

--
After I assign a string
--
SV = PV(0x1800908) at 0x1808248
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY,POK,pPOK)
 PV = 0x301c10 "123456789"\0
 CUR = 9
 LEN = 10

--
After I use it as a number
--
SV = PVIV(0x1800c20) at 0x1808248
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY,IOK,POK,pIOK,pPOK)
 IV = 123456789
 PV = 0x301c10 "123456789"\0
 CUR = 9
 LEN = 10

Just from that I can see that Perl is doing a lot of work. Each Perl variable has some
overhead even if it doesn’t have a defined value. That’s okay because Perl’s are more
useful for it.

The Devel::Size module can tell me how much memory my variable takes up. I have
to remember, though, that the actual memory is probably a little bit more since Perl
has to align the low-level values at the appropriate byte boundaries. It can’t just store
a value starting anywhere it likes:

#!/usr/bin/perl

use Devel::Size qw(size);

my $n;

print_message("Before I do anything");
print "Size is ", size(\$n);

print_message("After I assign a string");
$n = '1';
print "Size is ", size(\$n);

print_message("After I use it as a number");

my $m = $n + 1;
print "Size is ", size(\$n);

sub print_message { print "\n", "-" x 50, "\n$_[0]\n", "-" x 50, "\n" }

I see that even before I do anything, my scalar $n takes up 12 bytes, at least. When I
assign it a string, the size of the scalar is larger, and by more than just the number of

104 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

characters in the string. Perl tacks on a null byte to terminate the string and might have
some extra space allocated in case the string gets bigger. When I use the string as a
number, Perl stores the numeric version too, so the scalar gets even larger. Every one
of these things can use a bit more memory than I expect:

--
Before I do anything
--
Size is 12

--
After I assign a string
--
Size is 26

--
After I use it as a number
--
Size is 31

What about references, which are also scalars? They only need to know where to find
the value, but they don’t store values themselves. They stay the same size even when
the values change. The size of a reference doesn’t change. I have to be careful with
Devel::Size, though. If I give it a reference, it finds the size of the thing at which the
reference points. That’s a good thing, as I’ll show when I try it with arrays or hashes.
However, if I have a reference pointing at a reference, the size of that second reference
is the size of the thing at which it points, which is just a reference:

#!/usr/bin/perl

use LWP::Simple;
use Devel::Size qw(size);

watch out! This is 50+ MB big!
my $data = get("http://www.cpan.org/src/stable.tar.gz");

print "The size of the data is " , size($data), "\n";

my $ref = \$data;

print "The size of the reference is " , size($ref), "\n";

my $ref2 = \$ref;

print "The size of the second reference is " , size($ref2), "\n";

The output shows that the second reference is just 16 bytes. It doesn’t include all of
the data stored in the ultimate scalar. I’ll show in a moment why I need to know that,
but I have to look at Perl’s containers first:

The size of the data is 12829217
The size of the reference is 12829217
The size of the second reference is 16

Memory Use | 105

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The situation for Perl’s containers is different. Arrays are collections of scalars, and
hashes have scalar keys and scalar values. Those scalars can be the normal variety that
hold values or they can be references. The size function from Devel::Size tells us the
size of the data structure. Remember, references may point to big values, but they don’t
take up that much space themselves:

#!/usr/bin/perl

use Devel::Size qw(size);

my @array = (1) x 500;

print "The size of the array is ", size(\@array), "\n";

I can see how much space the array takes up. The Devel::Size documentation is careful
to note that this doesn’t count the size of the things in the array, just the size of the
array. Notice that the size of my 500-element array is much larger than 500 times the
16 bytes my individual scalars used:

The size of the array is 2052

That number isn’t counting the contents though. The array takes up the same size no
matter what the scalars hold:

#!/usr/bin/perl

use Devel::Size qw(size);

my $data = '-' x 500;
print "The size of the scalar is ", size($data), "\n";

my @array = ($data) x 500;
print "The size of the array is ", size(\@array), "\n";

I created a scalar with 500 characters, and the entire scalar including the overhead takes
up 525 bytes. The array takes up the same space as it did previously:

The size of the scalar is 525
The size of the array is 2052

Devel::Size has a fix for this. To get around this, I need to look at each of the scalars
in the container and find their sizes. The reference values may point to other containers,
which may have more references. My array might look like it’s really small until I try
to make a deep copy, store it, or anything else where I have to get all the data in one
place, reference or not:

#!/usr/bin/perl

use Devel::Size qw(size total_size);

my $data = '-' x 500;
print "The size of the scalar is ", size($data), "\n";
print "The total size of the scalar is ", total_size($data), "\n";

106 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

print "\n";

my @array = ($data) x 500;
print "The size of the array is ", size(\@array), "\n";
print "The total size of the array is ", total_size(\@array), "\n";

Using total_size, the scalar size stays the same, and the array size now includes all the
scalar sizes. The number, 264,552, is 500 times 525, the aggregate size of the scalars
added to 2,052, the array size:

The size of the scalar is 525
The total size of the scalar is 525

The size of the array is 2052
The total size of the array is 264552

I have to remember what this number actually is, though. It’s just the aggregate size of
all the data to which the array eventually points. If I did this for all of my data structures,
I do not get the program memory size because those structures might contain references
to the same data.

The perlbench Tool
The same code can perform differently on different perl binaries, which might differ
in their compilation options, compilers used, features included, and so on. For instance,
threaded versions of Perl are slightly slower, as are shared library versions. It’s not
necessarily bad to be slower if you want the other benefits, but you don’t always get to
choose beforehand. For instance, the stock Perl on some Linux distributions is com-
piled for threads. If you think you might get a speedup with a nonthreaded interpreter,
find out before you reconfigure your system!

To compare different perl interpreters, Gisle Aas wrote perlbench. I give it the paths
of the interpreters I want to test, and it runs several tests on them, producing a report.
The perlbench distribution comes with perlbench-run which, given the locations of the
perl interpreters I want to test, runs a series of benchmarks on each of them. The
program normalizes the numbers to the time for the first interpreter I specify:

perlbench-run /usr/local/bin/perl5*

The output first shows the details for each interpreter I’m testing and assigns them
letters that correspond to a column in the table that it’s about to output. Especially
interesting are the ccflags information. In this run, I’m using a perl-5.8.7 I compiled
with -DDEBUGGING_MSTATS, for instance. Also interesting is the compiler information. It
looks like I’ve got a pretty old version of gcc. That might be a good or bad thing.
Different versions, or even different compilers, do better or worse jobs optimizing the
code. These numbers only have relative meaning on the same machine:

A) perl-5.6.1
 version = 5.006001
 path = /usr/local/bin/perl5.6.1

The perlbench Tool | 107

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 ccflags = -fno-strict-aliasing -I/usr/local/include
 gccversion = 2.95.2 19991024 (release)
 optimize = -O
 usemymalloc = n

B) perl-5.8.0
 version = 5.008
 path = /usr/local/bin/perl5.8.0
 ccflags = -DHAS_FPSETMASK -DHAS_FLOATINGPOINT_H -fno-strict-aliasing
 gccversion = 2.95.2 19991024 (release)
 optimize = -O
 usemymalloc = n

C) perl-5.8.7
 version = 5.008007
 path = /usr/local/bin/perl5.8.7
 ccflags = -DDEBUGGING_MSTATS
 gccversion = 2.95.4 20020320 [FreeBSD]
 optimize = -g
 usemymalloc = y

D) perl-5.8.8
 version = 5.008008
 path = /usr/local/bin/perl5.8.8
 ccflags = -DHAS_FPSETMASK -DHAS_FLOATINGPOINT_H -fno-strict-aliasing
 gccversion = 2.95.4 20020320 [FreeBSD]
 optimize = -O
 usemymalloc = n

After perlbench-run reports the details of the interpreter, it runs a series of Perl programs
with each of the interpreters. It measures the time to execute, much like Benchmark’s
timethese. Once it tries the program with all of the interpreters, it normalizes the results
so that the first interpreter (that’s the one labeled with “A”) is 100. Lower numbers in
the other column mean that interpreter is slower for that test. Higher numbers (they
can be above 100) mean that interpreter is faster for that test. The number only has
meaning for that test, and I can’t compare them to a different test, even in the same
run.

I’ve cut out some of the output from these results, but this chart gives you the flavor of
the comparisons. Interpreter C, the one compiled with -DDEBUGGING_MSTATS, is consis-
tently slower than all of the other interpreters. For the other tests, sometimes Perl 5.6.1
is faster and sometimes Perl 5.8.8 is faster. That’s not a general observation since it only
applies to the ones I’ve compiled. Overall, it looks as if my Perl 5.6.1 is the fastest. That
still doesn’t mean I should choose it, though, because for a slight penalty I get all the
nice features of Perl 5.8:

 A B C D
 --- --- --- ---
 arith/mixed 100 85 73 79
 arith/trig 100 87 82 81
 array/copy 100 99 81 92
 array/foreach 100 93 87 99
 array/shift 100 100 94 91

108 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 array/sort-num 100 89 92 151
 array/sort 100 95 80 94
 call/0arg 100 107 79 91
 call/1arg 100 92 69 78
 call/wantarray 100 95 76 80
 hash/copy 100 130 94 124
 hash/each 100 119 90 110
 hash/foreach-sort 100 103 78 102
 loop/for-c 100 102 88 104
 loop/for-range-const 100 101 94 106
 loop/for-range 100 100 94 104
 re/const 100 92 81 88
 string/base64 100 86 67 72
 string/htmlparser 100 91 75 74
 string/tr 100 105 51 111

 AVERAGE 100 97 80 91

 Results saved in file:///home/brian/perlbench-0.93/benchres-002/index.html

If I have something special to test, I can add my own test files. Most of the infrastructure
is already in place. The README from the perlbench distribution gives the basic format
of a test file. I create my test and put it in perlbench’s benchmark directory. The distri-
bution gives an example file:

Name: My name goes here
Require: 4

require 'benchlib.pl';

YOUR SETUP CODE HERE
$a = 0;

&runtest(100, <<'ENDTEST');
 # YOUR TESTING CODE HERE
ENDTEST

Summary
Benchmarking is a tricky subject. It involves a lot of numbers and requires a good
understanding of what’s actually going on. Not only do I have to look at my Perl pro-
gram, but I should consider other factors, such as my choice in operating system, the
Perl interpreter I’m using and how I compiled it, and anything else that interacts with
my program. It’s not all about speed, either. I might want to compare the memory use
of two approaches, or see which one takes up less bandwidth. Different situations have
different constraints. No matter what I’m doing, I need to do my best to find out what’s
really going on before I make any conclusions about how to make it better.

Summary | 109

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Further Reading
The Benchmark module provides all of the details of its use. The module comes with Perl
so you should already have it.

In “A Timely Start,” Jean-Louis Leroy finds that his Perl program was slow because of
the time it took to find the modules it needed to load: http://www.perl.com/lpt/a/
2005/12/21/a_timely_start.html.

In “When Perl Isn’t Quite Fast Enough,” Perl developer Nick Clark talks about why
programs, in general, are slow, and which Perl design decisions can make Perl slow.
The best part of his talk, which he originally gave at YAPC::EU 2002, is his solutions
to speed up his programs. I heard his talk on PerlWhirl 2005, and he related most of
his discussion to his work to make Perl’s Unicode handling faster. If you get a chance
to see his talk, take it! I think you’ll be entertained as well as educated.

I originally wrote the parts about benchmarking the Schwartzian Transform for Perl-
monks in a node titled “Wasting Time Thinking about Wasted Time.” I nicked it almost
verbatim from my original post: http://www.perlmonks.org/index.pl?node=393128. I
still use that post in Stonehenge’s Perl classes to show that even “experts” can mess up
benchmarks.

The second Perl article I ever wrote was “Benchmarking Perl” for The Perl Journal
number 11, in which I show some of the other functions in Benchmark: http://
www.pair.com/comdog/Articles/benchmark.1_4.txt.

The perlbench distribution isn’t indexed in CPAN when I wrote this, but you can still
find it through CPAN Search: http://search.cpan.org. Check the README file for its
documentation.

110 | Chapter 6: Benchmarking Perl

Benchmarking Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Benchmarking Perl
	Benchmarking Theory
	Benchmarking Time
	Comparing Code
	Don’t Turn Off Your Thinking Cap
	Memory Use
	The perlbench Tool
	Summary
	Further Reading

