Creeting professional programs with Perl

Mastering

& v brigar d foy
D, REILLY!. Forewword by Randal L. Schiwartz

Table of Contents

Detecting and Reporting ErroOrsS....ccccciciececececececesssrcseccecececssssssssssscsssesesessssssssssssssesesssssssssssssss 1

Per]l Error BasiCs.....coceerveireruerieinienieeeieteenecseeeeiesee e see e saeees .1
Reporting Module Errors.. w7
EXCEPTIONIS. ...ttt ettt et ettt b et b et b et s e bbb e b et R a et b bR et e R st R s R R e e a et a e Rt s a et e a et a e e et s b e e e e e e ae s 10
SUITIITIATY ..ttt ettt ettt ettt e et s bt e e bt e e e ab e e s ab e e e s b e e s aa e e e st e e eas b e s sa e e e st e e aas e e s saeeeasaeeams e e s st e e eas e e e sb e e eaateeemb e e e sb e e eas e e e mb e e e seeeensteeaabeeeastesenbeeesbeeenstesenbaeensaens 17
FUITNET REAGING. c..c.veevieiieieienieriete ettt ettt st st ettt et e st st e sa e et et e b e s st e st e st e st esb e bessas st e st ensess e seese e st e st et e basseeseeatensesseseeste st e st e st esassesaeentensensensessaestentensansanse 17

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 12
Detecting and Reporting Errors

Several things may go wrong in any program, including problems in programming, bad
or missing input, unreachable external resources, and many other things. Perl doesn’t
have any built-in error handling. It knows when it couldn’t do something, and it can
tell me about errors, butit’s up to me as the Perl programmer to ensure that my program
does the right thing, and when it can’t, try to do something useful about it.

Perl Error Basics

Perl has four special variables it uses to report errors: $!, $?, $@, and $"E. Each reports
different sorts of errors. Table 12-1 shows the four variables and their descriptions,
which are also in perlvar.

Table 12-1. Perl’s special error-reporting variables

Variable English Description

$! $ERRNO and$0S_ERROR Error from an operating system or library call

$2? $CHILD ERROR Statusfrom the lastwait () call

40) $EVAL_ERROR Errorfrom the last eval()

$E $EXTENDED_OS_ERROR Error informationspecific to the operating system

Operating System Errors

The simplest errors occur when Perl asks the system to do something, but the system
can’t or doesn’t do it for some reason. In most cases the Perl built-in returns false and
sets $! with the error message. If I try to read a file that isn’t there, open returns false
and puts the reason it failed in $!:

open my($th), '<', 'does not exist.txt'
or die "Couldn't open file! $!";

The Perl interpreter is a C program, and it does its work through the library of C func-
tions it’s built upon. The value of $! represents the result of the call to the underlying

193

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

C function, which comes from the errno.h header file. That’s the one from the standard
C library. Other applications might have a file of the same name. The errno.h file as-
sociates symbolic constants with each error value and gives a text description for them.
Here’s an excerpt from the errno.h from Mac OS X:

#define EPERM 1 /* Operation not permitted */

#tdefine ENOENT 2 /* No such file or directory */
#tdefine ESRCH 3 /* No such process */

In my open example, I interpolated $! in a string and got a human-readable error mes-
sage out of it. The variable, however, has a dual life. Scalars that have different string
and numeric values are known as dualvars.” The numeric value is the errno value from
the C function, and the string value is a human-readable message. By setting $! myself
[can see both values. I use printf’s format specifiers to force both the numeric and
string versions of the same scalar:

for ($! = 0; $! <= 102; $!++)

{
printf("%d: %s\n", $!, $!);
}

The output shows the numeric value as well as the string value:

1: Operation not permitted
2: No such file or directory
3: No such process

The value of $! is only reliable immediately after the library call. I should only use $!
immediately after the expression I want to check. My next Perl statement might make
another library call, which could again change its value, but with a different message.
Also, a failed library call sets the value, but a successful one doesn’t do anything to it
and won’t reset $!. If don’t check the value of $! right away, I might associate it with
the wrong statement.

That’s not the whole story, though. The %! hash has some magic to go along with $!.
The keys to %! are the symbolic constants, such as ENOENT, from errno.h. This is a magic
hash so only the key that corresponds to the current $! has a value. For instance, when
Perl can’t open my does_not_exist.txt, it sets $! with the value represented by ENOENT.
At the same time Perl sets the value of $!{ENOENT}. No other keys in %! will have a value.
This means I can check what happened when I try to recover from the failed open by
taking appropriate action based on the type of error.

If Perl sees %! anywhere in the program, it automatically loads the Errno module, which
provides functions with the same name as the errno.h symbolic constants so I can get
the number for any error. I don’t have to use %! to get this, though. I can load it myself,
and even import the symbols I want to use:

" I can create them myself with the dualvar function in Scalar::Util.

194 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

use Errno qw(ENOENT);
print "ENOENT has the number " . ENOENT . "\n";

In this example program, I want to write some information to disk. It’s very important
information, so [want to take extra care to ensure [save it. I can’t simply die and hope
somebody notices. Indeed, if I can’t write to the file because the disk is full, my warning
may never even make it to a logfile:

#!/usr/bin/perl
use File::Spec;

my $file = 'does not exist.txt';
my $dir = 'some dir';
my $fh;

my $try = 0;

OPEN: {

last if $try++ >= 2;

my $path = File::Spec->catfile($dir, $file);
last if open $fth, '>', $path;

warn "Could not open file: $!...\n";

if($!{ENOENT}) # File doesn't exist
Ensure the directory is there
warn "\tTrying to make directory $dir...\n";
mkdir $dir, 0755;

}
elsif($!{ENOSPC}) # Full disk
{ # Try a different disk or mount point
warn "\tDisk full, try another partition...\n";
$dir = File::Spec->catfile(
File::Spec->rootdir,
"some_other disk’,
'some_other dir'

);
elsif($!{EACCES}) # Permission denied
{

warn "\tNo permission! Trying to reset permissions...\n";
system('/usr/local/bin/reset perms');

}
else
{
give up and email it directly...
last;
}
redo;
}

print $fh "Something very important\n";

Perl Error Basics | 195

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Though this is a bit of a toy example, I can see that T have a lot of power to try to recover
from a system error. I try to recover in one of four ways, and I'll keeping running the
naked block I've labeled with OPEN until it works or I've tried enough things (at some
point it’s hopeless, so give up). If I can open the filehandle, I break out of the naked
block with last. Otherwise, I look in %! to see which key has a true value. Only one
key will hold a true value, and that one corresponds to the value in $!. If T get back an
error saying the file doesn’t exist, I'll try to create the directory it’s going to so I know
it’s there. If there’s no space left on the disk, I'll try another disk. If I don’t have the
right permissions, I'll try to reset the permissions on the file. This used to be a big
problem at one of my jobs. A lot of people had admin privileges and would do things
that inadvertently changed permissions on important files. I wrote a setuid program
that pulled the right permissions from a database and reset them. I could run that from
any program and try the open again. That sure beats a phone call in the middle of the
night. Since then, I’ve realized the lack of wisdom in letting just anyone be root.

Child Process Errors

To tell me what went wrong with subprocesses that my programs start, Perl uses $? to
let me see the child process exit status. Perl can communicate with external programs
through a variety of mechanisms, including:

system(...);

open my($pipe), "| some_command";
exec('some command');
my $pid = fork(); ...; wait($pid);

If something goes wrong, I don’t see the error right away. To run an external program,
Perl first forks, or makes a copy of the current process, then uses exec to turn itself into
the command I wanted. Since I'm already running the Perl process, it’s almost assured
that I'll be able to run another copy of it unless I've hit a process limit or run out of
memory. The first part, the fork, will work. There won’t be any error in $! because
there is no C library error. However, once that other process is up and running, it
doesn’t show its errors through the $! in the parent process. It passes its exit value back
to the parent when it stops running, and Perl puts that in the $?. I won’t see that error
until I try to clean up after myself when I use close or wait:

close($pipe) or die "Child error: $?";
wait($pid) or die "Child error: $?";

The value of $? is a bit more complicated than the other error variables. It’s actually a
word (two bytes). The high byte is the exit status of the child process. I can shift all the
bits to the right eight places to get that number. This number is specific to the program
I run so I need to check its documentation to assign the proper meaning:

my $exit value = $2? >> 8;

196 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The lower seven bits of $? hold the signal number from which the process died if it died
from a signal:

my $signal = $? & 127; # or use 0b0111 1111

If the child process dumped core, the eighth bit in the low word is set:

my $core dumped = $? & 128; # or use 0b1000_000;

When I use Perl’s exit, the number I give as an argument is the return value of the
process. That becomes the high word in $? if some other Perl program is the parent
process. My exit-with-value.pl program exits with different values:

#!/usr/bin/perl
exit-with-value.pl

exit with a random value
exit time % 256;

I can call exit-with-value.pl with another program, exit-with-value-call.pl. 1 call the first
program with system, after which I get the exit value by shifting $? down eight
positions:

#!/usr/bin/perl
exit-with-value-call.pl

system("perl exit-with-value.pl");
my $rc = $? >> 8;
print "exit value was $rc\n";

When I run my program, I see the different exit values:

$ perl exit-with-value-call.pl
exit value was 102
$ perl exit-with-value-call.pl
exit value was 103
$ perl exit-with-value-call.pl
exit value was 104

If T use die instead of exit, Perl uses the value 255 as the exit value. I can change that
by using an END block and assigning to $? just before Perl is going to end the program.
When Perl enters the END block right after a die, $? has the value Perl intends to use as
the exit value. If I see that is 255, I know I came from a die and can set the exit value
to something more meaningful:

END { $? = 37 if $? == 255 }

Errors Specific to the Operating System

On some systems, Perl might even be able to give me more information about the error
by using the $~E variable. These errors typically come from outside Perl, so even though

Perl Error Basics | 197

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Perl might not detect a problem using external libraries, the operating system can set
its own error variable.

As far as standard Perl is concerned, the value for $7E is usually the same as $!. For the
things that the Perl language does, I'm not going to get extra information in $*E. On
VMS, OS/2, Windows, or MacPerl, I might get extra information, though.

That doesn’t mean that platform-specific modules can’t use $"E to pass back informa-
tion. When they talk to other libraries or resources, Perl isn’t necessarily going to pick
up on errors in those operations. If a library call returns a result indicating failure, Perl
might treat it as nothing special. The calling module, however, might be able to interpret
the return value, determine it’s an error, and then set $°E on its own.

TheMac: :Carbon module passes back error information from the Mac interface through
$~E, and I can use Mac: :Errors to translate that information into the number, symbolic
constant, or description for the error. The Mac: :Glue program I use to run RealPlayer
on another machine I have hooked up to my home stereo system looks at $”E to figure
out what went wrong:

#!/usr/bin/perl
mac-realplayer.pl

use Mac::Errors qw($MacError);
use Mac::Glue;

print "Trying machine $ENV{REALPLAYER MACHINE}...\n";

my $realplayer = Mac::Glue->new(
'Realplayer’,
eppc => 'RealPlayer’,
$ENV{REALPLAYER_MACHINE},
undef, undef,
map { $ENV{"REALPLAYER MACHICE $ "} } qw(USER PASS)

$realplayer->open_clip(with_url => $ARGV[0]);

if($°E)
{
my $number = $°E + 0;
die "$number: $MacError\n";

}
Several things might go wrong in this program. I require several environment variables
and a command-line argument. If I forget to set $ENV{REALPLAYER_MACHINE} or specify a
URL on the command line, I get an error telling me something is missing:

$ perl mac-realplayer.pl
Trying machine ...
-1715: a required parameter was not accessed

If T forget to set $ENV{REALPLAYER MACHINE_USER} or $ENV{REALPLAYER MACHINE_PASS},
Mac OS X prompts me for a username and password to access the remote machine. If

198 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

I cancel that dialog, I get a different error showing that I didn’t go through the
authentication:
$ perl mac-realplayer.pl

Trying machine realplayer.local...
-128: userCanceledErr

For Windows, $"E has whatever Win32::GetLastError() returns. The Win32 family of
modules uses $"E to pass back error information. I can use Win32: : FormatMessage() to
turn the number into a descriptive string. The Text::Template::Simple module, for
instance, tries to use the Win32 module to get a Windows path, and if it can’t do that,
it uses GetLastError:

package Text::Template::Simple;

if(IS_WINDOWS) {
require Win32;
$wdir = Win32::GetFullPathName($self->{cache dir});
if(Win32::GetlastError()) {
warn "[FAIL] Win32::GetFullPathName\n" if DEBUG;
$wdir = ''; # croak "Win32::GetFullPathName: $~E";
}

else {
$wdir = "' unless -e $wdir && -d _;
}

}

On VMS, if $!{VMSERR} is true, I'll find more information in $*E. Other operating sys-
tems may use this, too.

Reporting Module Errors

So far I've shown how Perl tells me about errors, but what if I want to tell the pro-
grammer about something that went wrong in one of my modules? I have a few ways
to do this. I'm going to use Andy Wardley’s Template toolkit to show this since it has
all of the examples I need. Other modules might do it their own way.

The simplest thing to do, and probably the one that annoys me the most when I see it,
is to set a package variable and let the user check it. I might even set $! myself. I mean,
[can do that, but don’t mistake that for an endorsement. The Template module sets the
$Template: :ERROR variable when something goes wrong;:

my $tt = Template->new() || carp $Template::ERROR, "\n";
Package variables aren’t very nice, though. They are bad karma, and programmers
should avoid them when possible. In addition to, and much better than, the package

variable is the error class method. Even if I don’t get an object when I try to create one,
[can still ask the Template class to give me the error:

my $tt = Template->new() || carp Template->error, "\n";

Reporting Module Exrors | 199

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

If I already have an object, I can use error to find out what went wrong with the last
operation with that object. The error method returns an error object from Tem
plate::Exception. I can inspect the type and description of the error:

$tt->process('index.html');

if(my $error = $tt->error)

{

croak $error->type .

}

In this case, I don’t need to build the error message myself since the as_string method
does it for me:

: " . $error->info;

$tt->process('index.html');
if(my $error = $tt->error)

{

croak $error->as_string;

}

[don’t even need to call as_string since the object will automatically stringify itself:

$tt->process('index.html');
if(my $error = $tt->error)

croak $error;

}

Separation of Concerns

The main design at play in error handling in Template is that the return value of a
function or method does not report the error. The return value shouldn’t do more than
the function is supposed to do. I shouldn’t overload the return value to be an error
communicator too. Sure, [might return nothing when something goes wrong, but even
a false value has problems, since 0, the empty string, or the empty list might be perfectly
valid values from a successful execution of the subroutine. That’s something I have to
consider in the design of my own systems.

Suppose I have a function named foo that returns a string. If it doesn’t work, it returns
nothing. By not giving return a value, the caller gets no value in scalar or list context
(which Perl will translate to undef or the empty list):

sub foo {
return unless $it worked;

return $string;

}
That’s simple to document and understand. I certainly don’t want to get into a mess
of return values. Down that road lies madness and code bloat as even the seemingly
simple functions are overrun by code to handle every possible error path. If foo starts

200 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

to return a different value for everything that goes wrong, I dilute the interesting parts
of foo:

sub foo {

return -1 if $this_error;
return -2 if $that_error;

return $string;
}
Instead, I can store the error information so the programmer can access it after she
notices the call doesn’t work. I might just add an error slot to the instance or class data.
In Template’s process method, if anything goes wrong, another part of the system han-
dles and stores it. The process method just returns the error:
From Template.pm

sub process {
my ($self, $template, $vars, $outstream, @opts) = @ ;

if (defined $output) {
return 1;

}

else {

return $self->error($self->{ SERVICE }->error);
}

}

The error method actually lives in Template: :Base, and it does double duty as a method
to set and later access the error message. This function lives in the base class because
it services all of the modules in the Template family. It’s actually quite slick in its sim-
plicity and utility:
From Template/Base.pm
sub error {
my $self = shift;
my $errvar,;

{

no strict qu(refs);
$errvar = ref $self ? \$self->{ ERROR } : \${"$self\::ERROR"};

}

if (@) {

$$errvar = ref($_[0]) ? shift : join('', @);
return undef;

else {
return $$errvar;

}

Reporting Module Errors | 201

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

After getting the first argument, it sets up $errvar. If $self is a reference (i.e., called as
$tt->error), it must be an instance, so it looks in $self->{ ERROR}. If $self isn’t a
reference, it must be a class name (i.e., called as Template->error), so it looks in the
package variable to get a reference to the error object. Notice that Andy has to turn off
symbolic reference checking there so he can construct the full package specification for
whichever class name is in $self, which can be any of the Template modules.

If there are additional arguments left in @_, I must have asked error to set the message
so it does that and returns undef.T Back in process, the return value is just what the
error method returns. On the other hand if @ is empty, it must mean that I'm trying
to get the error message, so it dereferences $errvar and returns it. That’s what I get
back in $error in my program.

That’s it. Although I may not want to do it exactly the way that Andy did, it’s the same
basicidea: put the data somewhere else and give the programmer a way to find it. Return
an undefined value to signal failure.

Exceptions

Perl doesn’t have exceptions. Let’s just get that clear right now. Like some other things
Perl doesn’t really have, people have figured out how to fake them. If you’re used to
languages, such as Java or Python, set the bar much lower so you aren’t too disap-
pointed. In those other languages, exceptions are part of the fundamental design, and
that’s how I’'m supposed to deal with all errors. Exceptions aren’t part of Perl’s design,
and it’s not how Perl programmers tend to deal with errors.

Although I'm not particularly fond of exceptions in Perl, there’s a decent argument in
favor of them: the programmer has to handle the error, or the program stops.

eval

Having said all that, though, I can fake rudimentary exceptions. The easiest method
uses a combination of die and eval. The die throws the exception (meaning I have to
do it on my own), and the eval catches it so I can handle it. When eval catches an error,
it stops the block of code, and it puts the error message into $@. After the eval, I check
that variable to see if something went wrong:

eval {
open my($fh), ">", $file
or die "Could not open file! $!";
};
if(se)
{

T That’s not normally a good idea, since in list context I end up with (undef), a list of one item.

202 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

...; # catch die message and handle it

}
The eval might even catch a die several levels away. This “action at a distance” can be
quite troubling, especially since there’s no way to handle the error, then pick up where

the code left off. That means I should try to handle any exceptions as close to their
origin as possible.

Multiple Levels of die

If T use die as an exception mechanism, I can propagate its message through several
layers of eval. If I don’t give die a message, it uses the current value of $@:

#!/usr/bin/perl
chained-die.pl

eval{
eval {
eval {
start here
open my($fh), ">", "/etc/passwd" or die "$!";
};
if(se)
{
die; # first catch
}
b
if($0)
{
die; # second catch
}
};
if(e)
{
print "I got $@"; # finally
}

When I get the error message I see the chain of propagations. The original message
Permission denied comes from the first die, and each succeeding die tacks on
a ...propagated message until I finally get to something that handles the error:

I got Permission denied at chained-die.pl line 8.

...propagated at chained-die.pl line 12.
...propagated at chained-die.pl line 17.

I might use this to try to handle errors, and failing that, pass the error up to the next
level. I modify my first error catch to append some additional information to $@, al-
though I still use die without an argument:

#!/usr/bin/perl
chained-die-more-info.pl

eval{
eval {

Exceptions | 203

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

my $file = "/etc/passwd";

eval {
start here
open my($fh), ">", $file or die "$!";
if(se)
{
my $user = getpwuid($<);
my $mode = (stat $file)[2];
$@ .= sprintf "\t%s mode is %o\n", $file, $mode;
$@ .= sprintf("\t%s is not writable by %s\n", $file, $user)
unless -w $file;
die; # first catch
}
b
if($0)
{
die; # second catch
}
};
if($0)
{

print "I got $@"; # finally
}
[get the same output as I did before, but with my additions. The subsequent dies just
take on their ...propagated message:
I got Permission denied at chained-die-more-info.pl line 10.
/etc/passwd mode is 100644
/etc/passwd is not writable by brian

...propagated at chained-die-more-info.pl line 19.
...propagated at chained-die-more-info.pl line 24.

die with a Reference

Exceptions need to provide at least three things to be useful: the type of error, where
it came from, and the state of the program when the error occurred. Since the eval may
be far removed from the point where I threw an exception, I need plenty of information
to track down the problem. A string isn’t really good enough for that.

[can give die a reference instead of a string. It doesn’t matter what sort or reference it
is. If T catch that die within an eval, the reference shows up in $@. That means, then,
that I can create an exception class and pass around exception objects. When I inspect
$@, it has all the object goodness I need to pass around the error information.

In this short program I simply give die an anonymous array. [use the Perl compiler
directives LINE_ and _ PACKAGE _ to insert the current line number and current
package as the values, and I make sure that _ LINE__ shows up on the line that I want
to report (the one with die on it). My hash includes entries for the type of error and a
text message, too. When I look in $@, I dereference it just like a hash:

204 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

#!/usr/bin/perl
die-with-reference.pl

eval {
die { 'line’ => LINE_,
'package’ => _ PACKAGE__,
"type' => 'Demonstration’,
'message’ => 'See, it works!',
};
};
if(se)
{

print "Error type: $@->{type}\n" .
"\t$@->{message}\n",
"\tat $@->{package} at line $@->{1ine}\n";
}

This works with objects, too, since they are just blessed references, but I have to make
an important change. Once [have the object in $@, I need to save it to another variable
so I don’tlose it. I can call one method on $@ before Perl has a chance to reset its value.
[t was fine as a simple reference because I didn’t do anything that would change $@. As
an object, I'm not sure what’s going on in the methods that might change it:

#!/usr/bin/perl
die-with-blessed-reference.pl

use Hash::AsObject;
use Data::Dumper;

eval {
my $error = Hash::AsObject->new(
{ 'line’ => LINE_ -1,
'package' => _ PACKAGE__,
"type' => 'Demonstration’,
'message’ => 'See, it works!',
})s
die $error;
};
if(3@)

my $error = $@; # save it! $@ might be reset later

print "Error type: " . $error->type . "\n" .
"\t" . $error->message . "\n",

"\tat " . $error->package . " at line

. $error->line . "\n";

Propagating Objects with die

Since die without an argument propagates whatever is in $@, it will do that if $@ holds
a reference. This next program is similar to my previous chained-die example, except

Exceptions | 205

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

that I’'m storing the information in an anonymous hash. This makes the error message
easier to use later because I can pull out just the parts I need when I want to fix the
problem. When I want to change $@, [first get a deep copy of it (see Chapter 14) since
anything [might call could reset $@. I put my copy in $error and use it in my die. Once
[have my reference, I don’t have to parse a string to get the information I need:

#!/usr/bin/perl
chanined-die-reference.pl

eval{
eval {
my $file = "/etc/passwd";
eval {

start here

open my($fh), ">", $file or die { errno => $! }

if($@)

{

use Storable gw(dclone);

my $error = dclone($@);

@{ $error }{ qw(user file mode time) } = (
scalar getpwuid($<),
$file,

(stat $file)[2],
time,
)5
die $error; # first catch
}
b
if(s@)
{
die; # second catch
}
};
if(se)
{

use Data: :Dumper;

print "I got " . Dumper($@) . "\n"; # finally

}
This gets even better if my reference is an object because I can handle the propagation
myself. The special method named PROPAGATE, if it exists, gets a chance to affect $@, and
its return value replaces the current value of $@. I modify my previous program to use
my own very simple Local: :Error package to handle the errors. In Local: :Error I skip
the usual good module programming practices to illustrate the process. In new I simply
bless the first argument into the package and return it. In my first die I use as the
argument my Local: :Error object. After that each die without an argument uses the
value of $@. Since $@ is an object, Perl calls its PROPAGATE method, in which I add a new
element to $self->{chain} to show the file and line that passed on the error:

206 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

#!/usr/bin/perl

chained-die-propagate.pl
use strict;

use warnings;

package Local::Error;
sub new { bless $ [1], $ _[0] }
sub PROPACGATE
;y($self, $file, $line) = @ ;

$self->{chain} = [] unless ref $self->{chain};
push @{ $self->{chain} }, [$file, $line];

$self;
}
package main;
eval{
eval {
my $file = "/etc/passwd";
eval {
start here
unless(open my($fh), ">", $file)
{
die Local::Error->new({ errno => $! });
}
};
if(3@)
{
die; # first catch
}
b
if(%@)
{
die; # second catch
}
else
{
print "Here I am!\n";
}
};
if(e)
{

use Data::Dumper;
print "I got " . Dumper($@) . "\n"; # finally
}

[just dump the output to show that I now have all of the information easily accessible
within my object:

Exceptions | 207

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

I got $VARL = bless({
"chain' => [

'chained-die-propagate.pl’,
37

'chained-die-propagate.pl’,
42
]
1,

'errno' => 'Permission denied’
}, 'Local::Error');

My example has been very simple, but I can easily modify it to use a much more useful
object to represent exceptions and specific sorts of errors.

Fatal

The Fatal module makes exceptions out of errors from Perl built-ins that normally
return false on failure. It uses some of the subroutine wrapping magic I showed in
Chapter 10. I don’t have to check return values anymore because I'll catch them as
exceptions. I have to specify in the Fatal import list exactly which functions should do
this:

use Fatal qw(open);
open my($th), '>', $file;

Instead of silently failing, Fatal causes the program to automatically die when the
open fails. The message it produces is a string, although not a particularly good-looking
one:

Can't open(GLOB(0x1800664), <, does not exist): No such file or directory at (eval 1) line 3
main:: ANON_ ('GLOB(0x1800664)', '<', 'does not exist') called at
/Users/brian/Dev/mastering perl/trunk/Scripts/Errors/Fatals.pl line 5
To catch that, I wrap an eval around my open to catch the die that Fatal installs:
use Fatal qw(open);

eval {
open my($th), '>', $file;

if(g@)
{

print "Could not open $file: $@";
}

I can also do it the more conventional way by specifying :void in the import list. When
[do that, Fatal only does its magic when I don’t use the return value of the function.
In the next snippet I use the return value in the short-circuit or so Fatal stays out of my
way:

208 | Chapter12: Detecting and Reporting Errors

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

use Fatal qw(:void open);
open my($fh), ">", $file or die "..."; # no exception

eval {
open my($th), '>', $file;
}

if(s@)
{

print "Could not open $file: $@";
}

[can use Fatal with any of the Perl built-ins except for system and exec, but I have to
list all of the functions that I want to affect in the import list. Even if I don’t like ex-
ceptions, this is a handy module to find the places where I have unchecked calls to
open or any other functions that should have a bit of supervision.

Summary

Perl has many ways to report something that goes wrong, and I have to know which
one is appropriate for what am I doing. Besides the things that Perl can detect are errors
from operating system libraries and other modules.

Further Reading

The perlfunc entries for die and eval explain more of the details.

Arun Udaya Shankar covers “Object Oriented Exception Handling in Perl” for
Perl.com: http://'www.perl.com/pub/a/2002/11/14/exception.html. He shows the Error
module, which provides an exception syntax that looks more like Java than Perl with
its try-catch-finally blocks.

Summary | 209

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Detecting and Reporting Errors. Mastering Perl, ISBN: 9780596527242

Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer

Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Detecting and Reporting Errors
	Perl Error Basics
	Reporting Module Errors
	Exceptions
	Summary
	Further Reading

