

Table of Contents

Debugging Perl.. 1
Before You Waste Too Much Time.. 1
The Best Debugger in the World... 2
perl5db.pl... 13
Alternative Debuggers... 14
Other Debuggers.. 18
Summary... 20
Further Reading.. 20

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 4

Debugging Perl

The standard Perl distribution comes with a debugger, although it’s really just another
Perl program, perl5db.pl. Since it is just a program, I can use it as the basis for writing
my own debuggers to suit my needs, or I can use the interface perl5db.pl provides to
configure its actions. That’s just the beginning, though. I can write my own debugger
or use one of the many debuggers created by other Perl masters.

Before You Waste Too Much Time
Before I get started, I’m almost required to remind you that Perl offers two huge de-
bugging aids: strict and warnings. I have the most trouble with smaller programs for
which I don’t think I need strict and then I make the stupid mistakes it would have
caught. I spend much more time than I should have tracking down something Perl
would have shown me instantly. Common mistakes seem to be the hardest for me to
debug. Learn from the master: don’t discount strict or warnings for even small
programs.

Now that I’ve said that, you’re going to look for it in the examples in this chapter. Just
pretend those lines are there, and the book costs a bit less for the extra half a page that
I saved by omitting those lines. Or if you don’t like that, just imagine that I’m running
every program with both strict and warnings turned on from the command line:

$ perl -Mstrict -Mwarnings program

Along with that, I have another problem that bites me much more than I should be
willing to admit. Am I editing the file on the same machine I’m running it on? I have
login accounts on several machines, and my favorite terminal program has tabs so I can
have many sessions in one window. It’s easy to checkout source from a repository and
work just about anywhere. All of these nifty features conspire to get me into a situation
where I’m editing a file in one window and trying to run it in another, thinking I’m on
the same machine. If I’m making changes but nothing is changing in the output or
behavior, it takes me longer than you’d think to figure out that the file I’m running is
not the same one I’m editing. It’s stupid, but it happens. Discount nothing while
debugging!

47

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

That’s a bit of a funny story, but I included it to illustrate a point: when it comes to
debugging, Humility is one of the principal virtues of a maintenance programmer.* My
best bet in debugging is to think that I’m the problem. That way, I don’t rule out
anything or try to blame the problem on something else, like I often see in various Perl
forums under titles such as “Possible bug in Perl.” When I suspect myself first, I’m
usually right. Appendix B is my guide to solving any problem, which people have found
useful for at least figuring out what might be wrong even if they can’t fix it.

The Best Debugger in the World
No matter how many different debugger applications or integrated development envi-
ronments I use, I still find that plain ol’ print is my best debugger. I could load source
into a debugger, set some inputs and breakpoints, and watch what happens, but often
I can insert a couple of print statements and simply run the program normally.† I put
braces around the variable so I can see any leading or trailing whitespace:

print "The value of var before is [$var]\n";

#... operations affecting $var;

print "The value of var after is [$var]\n";

I don’t really have to use print because I can do the same thing with warn, which sends
its output to standard error:

warn "The value of var before is [$var]";

#... operations affecting $var;

warn "The value of var after is [$var]";

Since I’ve left off the newline at the end of my warn message, it gives me the filename
and line number of the warn:

The value of var before is [$var] at program.pl line 123.

If I have a complex data structure, I use Data::Dumper to show it. It handles hash and
array references just fine, so I use a different character, the angle brackets in this case,
to offset the output that comes from Data::Dumper:

use Data::Dumper qw(Dumper);
warn "The value of the hash is <\n" . Dumper(\%hash) . "\n>\n";

* Larry Wall says that Laziness, Impatience, and Hubris are the principal virtues of a programmer, but those
only work if the programmer is creating the code. Everyone else in the software development life cycle needs
Tact, Humility, and Low Blood Pressure.

† In Chapter 10, I show how I do this with third-party modules, too: copy the source to a private directory I
add to the front of @INC. I can edit that copy without worrying about breaking the original.

48 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

Those warn statements showed the line number of the warn statement. That’s not very
useful; I already know where the warn is since I put it there! I really want to know where
I called that bit of code when it became a problem. Consider a divide subroutine that
returns the quotient of two numbers. For some reason, something in the code calls it
in such a way that it tries to divide by zero:‡

sub divide
 {
 my($numerator, $denominator) = @_;

 return $numerator / $denominator;
 }

I know exactly where in the code it blows up because Perl tells me:

Illegal division by zero at program.pl line 123.

I might put some debugging code in my subroutine. With warn, I can inspect the
arguments:

sub divide
 {
 my($numerator, $denominator) = @_;
 warn "N: [$numerator] D: [$denominator]";

 return $numerator / $denominator;
 }

I might divide in many, many places in the code, so what I really need to know is which
call is the problem. That warn doesn’t do anything more useful than show me the
arguments.

Although I’ve called print the best debugger in the world, I actually use a disguised
form in the carp function from the Carp module, part of the standard Perl distribution.
It’s like warn, but it reports the filename and line number from the bit of code that called
the subroutine:

#!/usr/bin/perl
use Carp qw(carp);

printf "%.2f\n", divide(3, 4);
printf "%.2f\n", divide(1, 0);
printf "%.2f\n", divide(5, 4);

sub divide
 {
 my($numerator, $denominator) = @_;
 carp "N: [$numerator] D: [$denominator]";

 return $numerator / $denominator;
 }

‡ I know I should wrap an eval around this, but I need an example where things go wrong. Even if I did wrap
it in an eval, I still need to find the culprit passing the unexpected input.

The Best Debugger in the World | 49

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The output changes to something much more useful. Not only do I get my error mes-
sage, but carp adds some information about the line of code that called it, and it shows
me the argument list for the subroutine. I see that the call from line 4 is fine, but the
call on line 5 is the last one before Perl kills the program:

$ perl show-args.pl
N: [3] D: [4] at show-args.pl line 11
 main::divide(3, 4) called at show-args.pl line 4
0.75
N: [1] D: [0] at show-args.pl line 11
 main::divide(1, 0) called at show-args.pl line 5
Illegal division by zero at show-args.pl line 13.

The carp function is the better-informed version of warn. If I want to do the same thing
with die, I use the croak function. It gives the same message as carp, but just like die,
croak stops the program.

Doing Whatever I Want
I can change the warn and die functions myself by messing with %SIG. I like to use these
to peer into code I’m trying to figure out, but I don’t use these to add features to code.
It’s just part of my debugging toolbox.

The pseudokeys __WARN__ and __DIE__ hold the functions that perform those actions
when I use the warn or die functions. I can use a reference to a named subroutine or an
anonymous subroutine:

$SIG{__DIE__} = \&my_die_handler;
$SIG{__DIE__} = sub { print "I'm about to die!")

Without going through the entire code base, I can change all of the die calls into the
more informative croak calls.§ In this example, I preface the subroutine call with an &
and no parentheses to trigger Perl’s feature to pass on the current argument list to the
next subroutine call so croak gets all of the arguments I pass:

use Carp;
$SIG{__DIE__} = sub { &Carp::croak };

die "I'm going now!"; # really calls croak now

If I only want to do this for part of the code, I can use local (since %SIG is a special
variable always in main::). My redefinition stays in effect until the end of the scope:

local $SIG{__DIE__} = sub { &Carp::croak };

§ It changes all of the calls, so if I’m using mod_perl I’ll end up changing it for every program since they share
the same global variables. Oops.

50 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

After either of my customized routines runs, the functions do what they would other-
wise do; warn lets the program continue, and die continues its exception processing
and eventually stops the program.‖

Since croak reports each level of the call stack and I called it from an anonymous sub-
routine, I get an artifact in my output:

use Carp;

print "Starting program...\n";

$SIG{__DIE__} = sub {
 local $Carp::CarpLevel = 0;

 &Carp::croak;
 };

foo(); # program dies here

sub foo { bar() }

sub bar { die "Dying from bar!\n"; }

In the stack trace, I see a subroutine call from __ANON__ followed by the subroutine calls
I expect to bar() and foo():

Starting program...
Dying from bar!
 at die.pl line 12
 main::__ANON__('Dying from bar!\x{a}') called at die.pl line 20
 main::bar() called at die.pl line 18
 main::foo() called at die.pl line 16

I change my anonymous subroutine to adjust the position in the stack where croak
starts its report. I set the value of $Carp::CarpLevel to the number of levels I want to
skip, in this case just 1:

$SIG{__DIE__} = sub {
 local $Carp::CarpLevel = 1;

 &Carp::croak;
 };

Now I don’t see the unwanted output:

Starting program...
Dying from bar!
 at die.pl line 12
 main::bar() called at die.pl line 18
 main::foo() called at die.pl line 16

‖ My __DIE__ handler can escape die’s further exception processing by using exit or another die, which won’t
be special inside my handler. See perlvar’s discussion on %SIG for details.

The Best Debugger in the World | 51

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

For a real-life example of this in action, check out the CGI::Carp module. Lincoln Stein
uses the %SIG tricks to redefine warn and die in a web-friendly way. Instead of an an-
noying “Server Error 500” message, I can get useful error output by simply loading the
module. While loading, CGI::Carp sets $SIG{__WARN__} and $SIG{__DIE__}:

use CGI::Carp qw(fatalsToBrowser);

The fatalsToBrowser function takes over the resulting page to show me the error, but
the module has other interesting functions such as set_message, which can catch com-
pile-time errors and warningsToBrowser, which makes the warnings in HTML com-
ments embedded in the output.

Of course, I don’t recommend that you use this in production code. I don’t want users
to see the program’s errors. They can be handy when I have to debug a program on a
remote server, but once I figure out the problem, I don’t need it anymore. By leaving it
in there I let the public figure out how I’m doing things, and that’s bad for security.

Program Tracing
The Carp module also provides the cluck and confess subroutines to dump stack traces.
cluck is akin to warn (or carp) in that it prints its message but lets the program continue.
confess does the same thing, but like die, stops the program once it prints its mess.#

Both cluck and confess print stack traces, which show the list of subroutine calls and
their arguments. Each subroutine call puts a frame with all of its information onto the
stack. When the subroutine finishes, Perl removes the frame for that subroutine, and
then Perl looks on the stack for the next frame to process. Alternately, if a subroutine
calls another subroutine, that puts another frame on the stack.

Here’s a short program that has a chain of subroutine calls. I call the do_it function,
which calls multiply_and_divide, which in turn calls the divide. Now, in this situation,
I’m not getting the right answer for dividing 4 by 5. In this short example, you can
probably spot the error right away, but imagine this is a huge mess of arguments, sub-
routine calls, and other madness:

#!/usr/bin/perl
use warnings;
use Carp qw(cluck);

print join " ", do_it(4, 5), "\n";

sub do_it
 {
 my($n, $m) = @_;

 my $sum = $n + $m;
 my($product, $quotient) =
 multiply_and_divide([$n, $m], 6, { cat => 'buster' });

And I really mean mess. These functions both call Carp::longmess, and once you see the output, you’ll agree.

52 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 return ($sum, $product, $quotient);
 }

sub multiply_and_divide
 {
 my($n, $m) = @{$_[0]};

 my $product = $n * $m;
 my $quotient = divide($n, $n);

 return ($product, $quotient);
 }

sub divide
 {
 my($n, $m) = @_;
 my $quotient = $n / $m;
 }

I suspect that something is not right in the divide subroutine, but I also know that it’s
at the end of a chain of subroutine calls. I want to examine the path that got me to
divide, so I want a stack trace. I modify divide to use cluck, the warn version of Carp’s
stack tracing, and I put a line of hyphens before and after the cluck() to set apart its
output to make it easier to read:

sub divide
 {
 print "-" x 73, "\n";
 cluck();
 print "-" x 73, "\n";

 my($n, $m) = @_;

 my $quotient = $n / $m;

 }

The output shows me the list of subroutine calls, with the most recent subroutine call
first (so, the list shows the stack order). The stack trace shows me the package name,
subroutine name, and the arguments. Looking at the arguments to divide, I see a re-
peated 4. One of those arguments should be 5. It’s not divide’s fault after all:

 at confess.pl line 68

 main::divide(4, 4) called at confess.pl line 60
 main::multiply_and_divide('ARRAY(0x180064c)') called at confess.pl line 49
 main::do_it(4, 5) called at confess.pl line 41
9 20 1

It’s not a problem with divide, but with the information I sent to it. That’s from
multiply_and_divide, and looking at its call to divide I see that I passed the same ar-

The Best Debugger in the World | 53

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

gument twice. If I’d been wearing my glasses, I might have been able to notice that $n
might look like $m, but really isn’t:

my $quotient = divide($n, $n); # WRONG

my $quotient = divide($n, $m); # SHOULD BE LIKE THIS

This was a simple example, and still Carp had some problems with it. In the argument
list for multiply_and_divide, I just get 'ARRAY(0x180064c)'. That’s not very helpful.
Luckily for me, I know how to customize modules (Chapters 9 and 10), and by looking
at Carp, I find that the argument formatter is in Carp::Heavy. The relevant part of the
subroutine has a branch for dealing with references:

package Carp;
This is in Carp/Heavy.pm

sub format_arg {
 my $arg = shift;

 ...

 elsif (ref($arg)) {
 $arg = defined($overload::VERSION) ? overload::StrVal($arg) : "$arg";
 }
 ...

 return $arg;
}

If format_arg sees a reference, it checks for the overload module, which lets me define
my own actions for Perl operations, including stringification. If Carp sees that I’ve
somehow loaded overload, it tries to use the overload::StrVal subroutine to turn the
reference into something I can read. If I haven’t loaded overload, it simply interpolates
the reference in double quotes, yielding something like the ARRAY(0x180064c) I saw
before.

The format_arg function is a bit simple-minded, though. I might have used the over
load module in one package, but that doesn’t mean I used it in another. Simply checking
that I’ve used it once somewhere in the program doesn’t mean it applies to every ref-
erence. Additionally, I might not have even used it to stringify references. Lastly, I can’t
really retroactively use overload for all the objects and references in a long stack trace,
especially when I didn’t create most of those modules. I need a better way.

I can override Carp’s format_arg to do what I need. I copy the existing code into a
BEGIN block so I can bend it to my will. First, I load its original source file,
Carp::Heavy, so I get the original definition loaded first. I replace the subroutine defi-
nition by assigning to its typeglob. If the subroutine argument is a reference, I pull in
Data::Dumper, set some Dumper parameters to fiddle with the output format, then get its
stringified version of the argument:

BEGIN {
use Carp::Heavy;

54 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

no warnings 'redefine';
*Carp::format_arg = sub {
 package Carp;
 my $arg = shift;

 if(not defined $arg)
 { $arg = 'undef' }
 elsif(ref $arg)
 {
 use Data::Dumper;
 local $Data::Dumper::Indent = 0; # salt to taste
 local $Data::Dumper::Terse = 0;
 $arg = Dumper($arg);
 $arg =~ s/^\$VAR\d+\s*=\s*//;
 $arg =~ s/;\s*$//;
 }
 else
 {
 $arg =~ s/'/\\'/g;
 $arg = str_len_trim($arg, $MaxArgLen);
 $arg = "'$arg'" unless $arg =~ /^-?[\d.]+\z/;
 }

 $arg =~ s/([[:cntrl:]]|[[:^ascii:]])/sprintf("\\x{%x}",ord($1))/eg;
 return $arg;
 };
}

I do a little bit of extra work on the Dumper output. It normally gives me something I
can use in eval, so it’s a Perl expression with an assignment to a scalar and a trailing
semicolon. I use a couple of substitutions to get rid of these extras. I want to get rid of
the Data::Dumper artifacts on the ends:

$VAR = ... ; # leave just the ...

Now, when I run the same program I had earlier, I get better output. I can see in elements
of the anonymous array that I passed to multiply_and_divide:

 at confess.pl line 65
 main::divide(4, 4) called at confess.pl line 57
 main::multiply_and_divide([4,5]) called at confess.pl line 46
 main::do_it(4, 5) called at confess.pl line 38
9 20 1

The best part of all of this, of course, is that I only had to add cluck in one subroutine
to get all of this information. I’ve used this for very complex situations with lots of
arguments and complex data structures, giving me a Perl-style stack dump. It may be
tricky to go through, but it’s almost painless to get (and to disable, too).

The Best Debugger in the World | 55

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Safely Changing Modules
In the previous section I changed &Carp::format_arg to do something different. The
general idea is very useful for debugging since I’m not only going to find bugs in the
code that I write, but most often in the modules I use or in code that someone else
wrote.

When I need to debug these things in other files, I want to add some debugging state-
ments or change the code somehow to see what happens. However, I don’t want to
change the original source files; whenever I do that I tend to make things worse no
matter how careful I am to restore them to their original state. Whatever I do, I want
to erase any damage I do and I don’t want it to affect anyone else.

I do something simple: copy the questionable module file to a new location. I set up a
special directory for the debugging section just to ensure that my mangled versions of
the modules won’t infect anything else. Once I do that, I set the PERL5LIB environ-
ment variable so Perl finds my mangled version first. When I’m done debugging, I can
clear PERL5LIB to use the original versions again.

For instance, I recently needed to check the inner workings of Net::SMTP because I didn’t
think it was handling the socket code correctly. I choose a directory to hold my copies,
in this case ~/my_debug_lib, and set PERL5LIB to that path. I then create the directories
I need to store the modified versions, then copy the module into it:

$ export PERL5LIB=~/my_debug_lib
$ mkdir -p ~/my_debug_lib/Net/
$ cp `perldoc -l Net::SMTP` ~/my_debug_lib/Net/.

Now, I can edit ~/my_debug_lib/Net/SMTP.pm, run my code to see what happens, and
work toward a solution. None of this has affected anyone else. I can do all the things
I’ve already showed in this chapter, including inserting confess statements at the right
places to get a quick dump of the call stack. Every time I wanted to investigate a new
module, I copied it into my temporary debugging library directory.

Wrapping Subroutines
I don’t have to copy a module file to change its behavior. I can override parts of it
directly in my code. Damian Conway wrote a wonderful module called Hook::Lex
Wrap to wrap a subroutine around another subroutine. That means that my wrapper
subroutine can see the arguments coming in and the return values going out. I can
inspect the values, or even change them if I like.

I’ll start with my simple example program that adds a couple of numbers. As before, it
has some problems because I’m passing it the wrong arguments since I can’t tell the
difference between $n and $m, and have used $n twice in my call to add. Just running
the program gives me the wrong answer, but I don’t know where the problem is:

#!/usr/bin/perl

56 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

@ARGV = qw(5 6);

my $n = shift @ARGV;
my $m = $ARGV[0];

print "The sum of $n and $m is " . add($n, $n) . "\n";

sub add
 {
 my($n, $m) = @_;

 my $sum = $n + $m;

 return $sum;
 }

I don’t want to change anything in the code, or, I should say, I want to look at what’s
happening without affecting the statements that are already there. As before, I want
everything back to normal when I’m finished debugging. Not editing the subroutine
makes that easier.

The Hook::LexWrap gives me a chance to do something right after I make a subroutine
call and right before the subroutine returns. As the name suggests, it wraps the sub-
routine with another one to provide the magic. The Hook::LexWrap::wrap function takes
the name of the subroutine it will wrap, add in this case, and then anonymous subrou-
tines as pre- and posthandlers:

#!/usr/bin/perl

use Hook::LexWrap qw(wrap);

my $n = shift @ARGV;
my $m = $ARGV[0];

wrap add,
 pre => sub { print "I got the arguments: [@_]\n" },
 post => sub { print "The return value is going to be $_[-1]\n" }
 ;

this line has the error
print "The sum of $n and $m is " . add($n, $n) . "\n";

sub add
 {
 my($n, $m) = @_;

 my $sum = $n + $m;

 return $sum;
 }

The prehandler sees the same argument list as my call to add. In this case I just output
the list so I can see what it is. The posthandler gets the same arguments, but Hook::Lex
Wrap adds another element, the return value, on the end of @_. In the posthandler,

The Best Debugger in the World | 57

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$_[-1] is always the return value. My program now outputs some useful debugging
output, and I see that I’m passing the same argument twice:

$ perl add_numbers.pl 5 6
I got the arguments: [5 5]
The return value is going to be 10
The sum of 5 and 6 is 10

In that output, notice the space after the last 5. Since wrap added an element to @_, even
though it’s undef, I get a space between it and the preceding 5 when I interpolate the
array in the double-quoted string.

Hook::LexWrap has the magic to handle all the calling contexts too. It’s smart enough
to handle scalar, list, and void contexts. In list context, that last element of @_ in the
posthandler will be an array reference. In void context, it won’t be anything.

It gets even better than that, though. Hook::LexWrap actually adds that extra element to
@_ before it does anything. Look at the last output carefully. After the second argument,
there’s a space between the second 5 and the closing square bracket. That’s the space
between 5 and the undef value of the extra element in @_.

In the prehandler, I can assign to that element, signaling to Hook::LexWrap that it should
assume that it already has the return value, so it doesn’t need to actually run the original
subroutine. If the subroutine isn’t doing what I need, I can force it to return the right
value:

#!/usr/bin/perl

use Hook::LexWrap;

my $n = shift @ARGV;
my $m = $ARGV[0];

{

wrap add,
 pre => sub {
 print "I got the arguments: [@_]\n";
 $_[-1] = "11";
 },
 post => sub { print "The return value is going to be $_[-1]\n" }
 ;
print "The sum of $n and $m is " . add($n, $m) . "\n";
}

sub add
 {
 my($n, $m) = @_;

 my $sum = $n + $m;

 return $sum;
 }

58 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Now that I’ve assigned to $_[-1] in my prehandler, the output is different. It doesn’t
run the subroutine or the posthandler, and I get back 11:

$ perl add_numbers.pl 5 6
I got the arguments: [5 6]
The sum of 5 and 6 is 11

With my fake return value, I can give myself the right answer and get on with the right
program, and do it without changing the subroutine I want to investigate. This can be
especially handy if I’m working on a big problem where other things are broken, too.
I know what I need to return from the subroutine so I make it do that until I fix the
other parts, or at least investigate the rest of the program while the subroutine returns
what it should. Sometimes eliminating a source of error, even temporarily, makes it
easier to fix other things.

perl5db.pl
We introduced the standard Perl debugger in Intermediate Perl so we could examine
complex data structures. It’s well documented in the perldebug, and Richard Foley
devoted an entire book, Pro Perl Debugging (Apress), to it, so I will only cover enough
of the basics here so I can move on to the fancier debuggers.

I invoke the Perl debugger with Perl’s -d switch:

perl -d add_number.pl 5 6

Perl compiles the program, but stops before running the statements, giving me a
prompt. The debugger shows me the program name, line number, and the next state-
ment it will execute:

Loading DB routines from perl5db.pl version 1.25
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(Scripts/debugging/add_numbers.pl:3):
3: my $n = shift @ARGV;
 D<1>

From there I can do the usual debugging things, such as single-stepping through code,
setting breakpoints, and examining the program state.

I can also run the debugger on a program I specify on the command line with the -e. I
still get the debugger prompt, but it’s not very useful for debugging a program. Instead,
I have access to the debugger prompt where I can try Perl statements:

$ perl -d -e 0

Loading DB routines from perl5db.pl version 1.25
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

perl5db.pl | 59

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

main::(-e:1): 0
 D<1> $n = 1 + 2;

 D<2> x $n
0 3
 D<3>

We showed this debugger in Intermediate Perl, and it’s well documented in perldebug
and many other tutorials, so I won’t spend time on it here. Check the references in the
last section in this chapter, “Further Reading,” for sources of more information.

Alternative Debuggers
Besides the standard perl5db.pl, there are several other sorts of debuggers that I can
use, and there are several code analysis tools which use the debugging infrastructure.
There’s a long list of Devel:: modules on CPAN, and one of them probably suits your
needs.

Using a Different Debugger with -D
I can use an alternative debugger by giving the -d switch an argument. In this case, I
want to run my program under the Devel::DProf module. The -d switch implies the
Devel::, so I leave that off. I’ll cover profilers in depth in Chapter 5.

$ perl -d:DProf program.pl

If I write my own debugging module, I can pass arguments to the module just like I can
with the -M switch. I add the arguments as a comma-separated list after the module
name and an equal sign. In this example, I load the Devel::MyDebugger with the argu-
ments foo and bar:

$ perl -d:MyDebugger=foo,bar

As normal Perl code, this is the same as loading Devel::MyDebugger with use.

use Devel::MyDebugger qw(foo bar);

Devel::ptkdb
I can use a Tk-based debugger that provides a graphical interface to the same features
I have from perl5db.pl. The Devel::ptkdb module does not come with Perl, so I have to
install it myself.* I start ptkdb by specifying it as the debugger I want to use with the
-d switch:

$ perl -d:ptkdb program.pl

* This might mean that I have to install the Tk module too. Once installed, I also have to be able to display it
in some sort of window manager. On my Powerbook, I use Apple’s X11 program (which is really XFree86
to the rest of the world). Windows users might want to use something such as ReflectionX.

60 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

It starts by creating an application window. In the left pane, I see the program lines
around the current line, along with their line numbers (Figure 4-1). Buttons along the
code pane allow me to search through the code. In the right pane, I have tabs to examine
expressions, subroutines, and the list of current breakpoints.

The “Subs” tab gives me a hierarchal list of package names and the subroutines defined
in them (Figure 4-2). These are all of the loaded modules, and I can immediately display
the code for any of those functions by selecting the one I want to see. I can select one
either by double-clicking or navigating with the arrow keys and hitting <RETURN> when
I get to the one I want. It doesn’t change the state of my program, and I can use the
“Subs” tab to decide to step into a subroutine to watch its execution, or step over it
and continue with the execution of the program.

The “Exprs” tab is especially useful. It has two text entries at the top. “Quick Expr”
allows me to enter a Perl expression, which it then replaces with its result, and affects
the state of the program if my quick expression sets or changes variables. This is the
equivalent of trying a one-off expression in the terminal debugger. That’s nice, but the
“Enter Expr” is even better. I enter a Perl expression and it adds it to the list of expres-
sions in the pane below the tabs (Figure 4-3). As I run my code, these expressions update
their results based on the current state of the program. I can add the variables I want
to track, for instance, and watch their values update.

I start with a simple program where I want to add two numbers. It’s not something that
I need to debug (I hope), but I can use it to show the expressions tab doing its thing.
At the start of the program, I’m at the start of the program and nothing has run yet. I
single-step over the first line of code and can see the values for $m and $n, which I had
previously entered as expressions. I could enter much more complex expressions, too,
and ptkdb will update them as I move through the code.

Figure 4-1. The Devel::ptkdb provides a graphical debugger using Tk

Alternative Debuggers | 61

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Devel::ebug
The Devel::ebug module by Léon Brocard provides an object-oriented interface to Perl’s
debugger facility. It’s a work in progress, so what I say here might be different by the
time you read this. The main features should still be there, though.

It comes with its own terminal-based debugger named ebug. It’s a bit of an odd name
until you realize how you call it. The missing d in the name comes from Perl’s -d switch.

$ perl -d:ebug program.pl

Figure 4-2. In the Subs tab, I can see the subroutine in any loaded package

Figure 4-3. I can track variable values in the Exprs tab

62 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

I don’t need to use the -d switch, though, since I can call it directly with the ebug
program, but I have to call it by quoting the entire command line:†

$ ebug "add_numbers.pl 5 6"
* Welcome to Devel::ebug 0.46
main(add_numbers.pl#3):
my $n = shift @ARGV;
ebug: x @ARGV
--- 5
--- 6

main(add_numbers.pl#3):
my $n = shift @ARGV;
ebug: s
main(add_numbers.pl#4):
my $m = $ARGV[0];
ebug: x $n
--- 5

The ebug program is really just a wrapper around Devel::ebug::Console, and I can call
Devel::ebug in many different ways. At the core of its design is a detached process. The
backend runs the program under the debugger, and the frontend communicates with
it over TCP. This means, for instance, I can debug the program on a different machine
than on the one it’s running.

The Devel::ebug::HTTP module uses the same Devel::ebug backend, but sets up a mini
web server.‡ I start the ebug_http the same way I did with the console version, but
instead of giving me a prompt, it tells me the URL I need to access to see the
debugger:§

$ ebug_http "add_numbers.pl 4 5"
You can connect to your server at http://albook.local:8321

The web page shows me a bare bones debugger interface (Figure 4-4). Remember, this
is basically a proof of concept, but even as that it’s very impressive and can serve as the
basis for your own tailor-made programs.

† The run method to Devel::ebug::Console concatenates with an empty string everything in @ARGV, so calling
this example without the quotes tries to run the program named add_numbers.pl56 with no arguments.

‡ Once you get everything installed, but sure that you copy the root/ directory from the Devel::ebug::HTTP
distribution to the same directory as the Devel::ebug::HTTP modules. Find that directory with perldoc -l
Devel::ebug::HTTP. The root/ directory has the files that Catalyst needs to make the web pages.

§ I can also guess the URL, since I know the name of the machine and can figure out which port it will use.

Alternative Debuggers | 63

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Other Debuggers

EPIC
Eclipse‖ is an open source development environment that runs on a variety of plat-
forms. It’s a Java application, but don’t let that scare you off. It has a modular design
so people can extend it to meet their needs. EPIC# is the Perl plug-in for Eclipse.

Eclipse is not just a debugger though, and that’s probably not even its most interesting
features. From the source code of my Perl program I can inspect classes, call up parts
of the Perl documentation, and do quite a bit more.

Komodo
ActiveState’s Komodo (Figure 4-5) started off as an integrated development environ-
ment for Perl on Microsoft Windows, although it’s now available on Solaris, Linux,
and Mac OS X. It handles Perl as well as several other languages, including Tcl, Ruby,
PHP, and Python.

Figure 4-4. The Devel::ebug::HTTP module lets me debug a program on a remote server through my
browser

‖ The Eclipse Foundation (http://www.eclipse.org).

Eclipse Perl Integration (http://e-p-i-c.sourceforge.net).

64 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Affrus
Affrus is a Perl-only debugger from Late Night Software* for Mac OS X. Since I work
almost exclusively on Mac, I really appreciate a debugger that’s quite Mac-like. Late
Night Software started with Script Debugger for AppleScript, so they’re tuned into
Macs. Besides that, Affrus has the usual debugging features.

One of the features I find especially useful is Affrus’s Arguments pane. I can add invo-
cations of my program, and then select which one I want to run. In Figure 4-6, I’ve
added two different command lines and selected the first one, which has the solid
diamond next to it. When I run the program, @ARGV gets the elements 5 and 6. If I save
this as an Affrus file, the next time I open the program with Affrus I still have access to
those command lines.

Figure 4-5. ActiveState’s Komodo is a complete development environment and even comes with a
tutorial on its use

* Late Night Software (http://www.latenightsw.com).

Other Debuggers | 65

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Like other debuggers, Affrus has a window where I can track the values of expressions.
Affrus uses a separate window to display those. I can also look in the Debugging pane
to see a list of all of the variables at any time (Figure 4-7).

Summary
I can debug my Perl program at almost any level I want, from inserting debugging code
around that part I want to inspect, or tweaking it from the outside with an integrated
development environment. I can even debug the program on a machine other than the
one I run it on. I don’t have to stick with one approach, and might use many of them
at the same time. If I’m not satisfied with the existing debuggers, I can even create my
own and tailor it for my particular task.

Further Reading
Perl Debugged by Peter Scott and Ed Wright (Addison-Wesley) is one of the best books
about actually programming with Perl. Not only do they show you how to effectively
debug a Perl program, but they also show you how to not get yourself into some of the
common traps that force you to debug a program. Sadly, this book appears to be out

Figure 4-6. Affrus allows me to configure several different command lines to use with my program;
it updates expressions as my program runs

66 | Chapter 4: Debugging Perl

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

of print, but don’t let the $1.99 price for a used version on Amazon.com color your
notion of its usefulness.

Pro Perl Debugging (Apress) by Richard Foley tells you everything you need to know
about the perl5db.pl debugger, which comes with Perl. If you like Perl’s default de-
bugger, this book will tell you everything you want to know about it.

My first ever piece of Perl writing was a little piece for The Perl Journal number 9 called
“Die-ing on the Web.” It’s available at my personal web site: http://www.pair.com/
comdog/Articles/Die_and_the_Web.txt.

I talk more about Hook::LexWrap in “Wrapping Subroutines” in the July 2005 issue of
The Perl Journal. The article originally appeared in The Perl Journal and now appears
in the “Lightweight Languages” section on Dr. Dobb’s Journal Online: http://
www.ddj.com/dept/lightlang/184416218.

The Practice of Programming by Brian W. Kernighan and Rob Pike (Addison-Wesley)
discusses their approach to debugging. Although this isn’t a Perl book, it really doesn’t
need to be about any language. It’s practical advice for any sort of programming.

Figure 4-7. Affrus shows me the values of package variables in the Debugging pane

Further Reading | 67

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Debugging Perl. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Debugging Perl
	Before You Waste Too Much Time
	The Best Debugger in the World
	perl5db.pl
	Alternative Debuggers
	Other Debuggers
	Summary
	Further Reading

