

Table of Contents

Working with Pod... 1
The Pod Format... 1
Translating Pod... 2
Testing Pod.. 9
Summary.. 12
Further Reading... 13

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 15

Working with Pod

Perl has a default documentation format called Plain Old Documentation, or Pod for
short. I can use it directly in my programs, and even between segments of code. Other
programs can easily pick out the Pod and translate it into more familiar formats, such
as HTML, text, or even PDF. I’ll discuss some of the most used features of Pod, how
to test your Pod, and how to create your own Pod translator.

The Pod Format
Sean Burke, the same person responsible for most of what I’ll cover in this chapter,
completely specified the Pod format in the perlpodspec documentation page. This is the
gory-details version of the specification and how to parse it, which we’ll do in this
chapter. The stuff we showed you in Learning Perl and Intermediate Perl are just the
basics covered in the higher-level perlpod documentation page.

Directives
Pod directives start at the beginning of a line at any point where Perl is expecting a new
statement. Each directive starts with an equal sign, =, at the beginning of a line when
Perl is expecting a new statement (so not in the middle of statements). When Perl is
trying to parse a new statement but sees that =, it switches to parsing Pod. Perl continues
to parse the Pod until it reaches the =cut directive or the end of the file:

#!/usr/bin/perl

=head1 First level heading

Here's a line of code that won't execute:

 print "How'd you see this!?\n";

=over 4

=item First item

237

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

=item Second item

=back

=cut

print "This line executes\n";

Body Elements
Inside the text of the Pod, interior sequences specify nonstructural markup that should
be displayed as particular typefaces or special characters. Each of these start with a
letter, which specifies the type of sequence and has the content in brackets. For instance,
in Pod I use the < to specify a literal <. If I want italic text (if the formatter supports that)
I use I<>:

=head1

Alberto Simões helped review I<Mastering Perl>.

In HTML, I would write <i>Mastering Perl</i> to
get italics.

=cut

Multiline Comments
Since Perl can deal with Pod in the middle of code, I can use it to comment multiple
lines of code. I just wrap Pod directives around them. I only have to be careful that
there isn’t another =cut in the middle:

=pod

....

....

....

=cut

Translating Pod
I have two ways to turn Pod into some other format: a ready-made translator or write
my own. I might even do both at once by modifying something that already exists. If I
need to add something extra to the basic Pod format, I’ll have to create something to
parse it.

Fortunately, Sean Burke has already done most of the work by creating Pod::Parser,
which, as long as I follow the basic ideas, can parse normal Pod as well as my personal
extensions to it as long as I extend Pod::Parser with a subclass.

238 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

Pod Translators
Perl comes with several Pod translators already. You’ve probably used one without even
knowing it; the perldoc command is really a tool to extract the Pod from a document
and format it for you. Typically it formats it for your terminal settings, perhaps using
color or other character features:

$ perldoc Some::Module

That’s not all that perldoc can do, though. Since it’s formatting its output for the ter-
minal window, when I redirect the output to a file it doesn’t look right. The headings,
for one thing, come out weird:

$ perldoc CGI > cgi.txt
$ more cgi.txt
CGI(3) User Contributed Perl Documentation CGI(3)

NNAAMMEE
 CGI - Simple Common Gateway Interface Class

Using the -t switch, I can tell perldoc to output plaintext instead of formatting it for
the screen:

% perldoc -t CGI > cgi.txt
% more cgi.txt

NAME
 CGI - Simple Common Gateway Interface Class

Stepping back even further, perldoc can decide not to format anything. The -m switch
simply outputs the source file (which can be handy if I want to see the source but don’t
want to find the file myself). perldoc searches through @INC looking for it. perldoc can
do all of this because it’s really just an interface to other Pod translators. The perldoc
program is really simple because it’s just a wrapper around Pod::Perldoc, which I can
see by using perldoc to look at its own source:

$ perldoc -m perldoc
#!/usr/bin/perl
 eval 'exec /usr/local/bin/perl -S $0 ${1+"$@"}'
 if 0;

This "perldoc" file was generated by "perldoc.PL"

require 5;
BEGIN { $^W = 1 if $ENV{'PERLDOCDEBUG'} }
use Pod::Perldoc;
exit(Pod::Perldoc->run());

The Pod::Perldoc module is just code to parse the command-line options and dispatch
to the right subclass, such as Pod::Perldoc::ToText. What else is there? To find the
directory for these translators, I use the -l switch:

$ perldoc -l Pod::Perldoc::ToText
/usr/local/lib/perl5/5.8.4/Pod/Perldoc/ToText.pm

Translating Pod | 239

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ ls /usr/local/lib/perl5/5.8.4/Pod/Perldoc
BaseTo.pm ToChecker.pm ToNroff.pm ToRtf.pm ToTk.pm
GetOptsOO.pm ToMan.pm ToPod.pm ToText.pm ToXml.pm

Want all that as a Perl one-liner?

$ perldoc -l Pod::Perldoc::ToText | perl -MFile::Basename=dirname \
 -e 'print dirname(<>)' | xargs ls

I could make that a bit shorter on my Unix machines since they have a dirname utility
already (but it’s not a Perl program):

$ perldoc -l Pod::Perldoc::ToText | xargs dirname | xargs ls

If you don’t have a dirname utility, here’s a quick Perl program that does the same thing,
and it looks quite similar to the dirname program in the Perl Power Tools.* It’s some-
thing I use often when moving around the Perl library directories:

#!/usr/bin/perl
use File::Basename qw(dirname);
print dirname($ARGV[0]);

Just from that, I can see that I can translate Pod to nroff (that’s the stuff going to my
terminal), text, RTF, XML, and a bunch of other formats. In a moment I’ll create an-
other one.

perldoc doesn’t have switches to go to all of those formats, but its -o switch can specify
a format. Here I want it in XML format, so I use -oxml and add the -T switch, which
just tells perldoc to dump everything to standard output. I could have also used -d to
send it to a file:

$ perldoc -T -oxml CGI

I don’t have to stick to those formatters, though. I can make my own. I could use my
own formatting module with the -M switch to pull in Pod::Perldoc::ToRtf, for instance:

$ perldoc -MPod::Perldoc::ToRtf CGI

Pod::Perldoc::ToToc
Now I have everything in place to create my own Pod formatter. For this example, I
want a table of contents from the Pod input. I can discard everything else, but I want
the text from the =head directives, and I want the text to be indented in outline style.
I’ll follow the naming sequence of the existing translators and name mine Pod::Perl
doc::ToToc. I’ve even put it on CPAN. I actually used this module to help me write this
book.

* You can find Perl Power Tools here: http://sourceforge.net/projects/ppt/.

240 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

The start of my own translator is really simple. I look at one of the other translators
and do what they do until I need to do something differently. This turns out to be really
easy because most of the hard work happens somewhere else:

package Pod::Perldoc::ToToc;
use strict;

use base qw(Pod::Perldoc::BaseTo);

use subs qw();
use vars qw();

use Pod::TOC;

$VERSION = '0.10_01';

sub is_pageable { 1 }
sub write_with_binmode { 0 }
sub output_extension { 'toc' }

sub parse_from_file
 {
 my($self, $file, $output_fh) = @_; # Pod::Perldoc object

 my $parser = Pod::TOC->new();

 $parser->output_fh($output_fh);

 $parser->parse_file($file);
 }

For my translator I inherit from Pod::Perldoc::BaseTo. This handles almost everything
that is important. It connects what I do in parse_from_file to perldoc’s user interface.
When perldoc tries to load my module, it checks for parse_from_file because it will
try to call it once it finds the file it will parse. If I don’t have that subroutine, perldoc
will move onto the next formatter in its list. That -M switch I used earlier doesn’t tell
perldoc which formatter to use; it just adds it to the front of the list of formatters that
perldoc will try to use.

In parse_from_file, the first argument is a Pod::Perldoc object. I don’t use that for
anything. Instead I create a new parser object from my Pod::TOC module, which I’ll
show in the next section. That module inherits from Pod::Simple, and most of its in-
terface comes directly from Pod::Simple.

The second argument is the filename I’m parsing, and the third argument is the file-
handle, which should get my output. After I create the parser, I set the output
destination with $parser->output_fh(). The Pod::Perldoc::BaseTo module expects
output on that filehandle and will be looking for it. I shouldn’t simply print to
STDOUT, which would bypass the Pod::Perldoc output mechanism, and cause the mod-
ule to complain that I didn’t send it any output. Again, I get the benefit of all of the
inner workings of the Pod::Perldoc infrastructure. If the user wanted to save the output

Translating Pod | 241

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

in a file, that’s where $output_fh points. Once I have that set up, I call
$parser->parse_file(), and all the magic happens.

Pod::Simple
I didn’t have to actually parse the Pod in my TOC creator because I use Pod::Simple
behind the scenes. It gives me a simple interface that allows me to do things when
certain events occur. All of the other details about breaking apart the Pod and deter-
mining what those pieces represent happen somewhere else, where I don’t have to deal
with them. Here’s the complete source for my Pod::TOC module to extract the table of
contents from a Pod file:

package Pod::TOC;
use strict;

use base qw(Pod::Simple);

$VERSION = '0.10_01';

sub _handle_element
 {
 my($self, $element, $args) = @_;

 my $caller_sub = (caller(1))[3];
 return unless $caller_sub =~ s/.*_(start|end)$/${1}_$element/;

 my $sub = $self->can($caller_sub);

 $sub->($self, $args) if $sub;
 }

sub _handle_element_start
 {
 my $self = shift;
 $self->_handle_element(@_);
 }

sub _handle_element_end
 {
 my $self = shift;
 $self->_handle_element(@_);
 }

sub _handle_text
 {
 my $self = shift;

 return unless $self->get_flag;

 print { $self->output_fh }
 "\t" x ($self->_get_flag - 1), $_[1], "\n";
 }

242 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

{ # scope to hide lexicals that only these subs need
my @Head_levels = 0 .. 4;

my %flags = map { ("head$_", $_) } @Head_levels;

foreach my $directive (keys %flags)
 {
 no strict 'refs';
 foreach my $prepend (qw(start end))
 {
 my $name = "${prepend}_$directive";
 *{$name} = sub { $_[0]->_set_flag($name) };
 }
 }

sub _is_valid_tag { exists $flags{ $_[1] } }
sub _get_tag { $flags{ $_[1] } }
}

{
my $Flag;

sub _get_flag { $Flag }

sub _set_flag
 {
 my($self, $caller) = shift;

 my $on = $caller =~ m/^start_/ ? 1 : 0;
 my $off = $caller =~ m/^end_/ ? 1 : 0;

 unless($on or $off) { return };

 my($tag) = $caller =~ m/_(.*)/g;

 return unless $self->_is_valid_tag($tag);

 $Flag = do {
 if($on) { $self->_get_tag($tag) } # set the flag if we're on
 elsif($off) { undef } # clear if we're off
 };

 }
}

The Pod::TOC module inherits from Pod::Simple. Most of the action happens when
Pod::Simple parses the module. I don’t have a parse_file subroutine that I need for
Pod::Perldoc::ToToc because Pod::Simple already has it, and I don’t need it to do any-
thing different.

What I need to change, however, is what Pod::Simple will do when it runs into the
various bits of Pod. Allison Randal wrote Pod::Simple::Subclassing to show the various
ways to subclass the module, and I’m only going to use the easiest one. When

Translating Pod | 243

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Pod::Simple runs into a Pod element, it calls a subroutine named _handle_ele
ment_start with the name of the element, and when it finishes processing that element,
it calls _handle_element_end in the same way. When it encounters text within an ele-
ment, it calls _handle_text. Behind the scenes, Pod::Simple figures out how to join all
the text so I can handle it as logical units (e.g., a whole paragraph) instead of layout
units (e.g., a single line with possibly more lines to come later).

My _handle_element_start and _handle_element_end are just wrappers around _han
dle_element. I’ll figure out which one it is by looking at caller. In _handle_element, I
take the calling subroutine stored in $caller_sub and pick out either start or end. I put
that together with the element name, which is in $element. I end up with things such
as start_head1 and end_head3 in $caller_sub. I need to show a little more code to see
how I handle those subroutines.

When I get the begin or end event, I don’t get the text inside that element, so I have to
remember what I’m processing so _handle_text knows what to do. Every time
Pod::Simple runs into text, no matter if it’s a =headN directive, a paragraph in the body,
or something in an item list, it calls _handle_text. For my table of contents, I only want
to output text when it’s from a =head directive. That’s why I have a bit of indirection
in _handle_text.

In the foreach loop, I go through the different levels of the =head directive.† Inside the
outer foreach loop, I want to make two subroutines for every one of those levels:
start_head0, end_head0, start_head1, end_head1, and so on. I use a symbolic reference
(see Chapter 8) to create the subroutine names dynamically, and assign an anonymous
subroutine to the typeglob for that name (see Chapter 9).

Each of those subroutines is simply going to set a flag. When a start_headN subroutine
runs, it turns on the flag, and when the end_headN subroutine runs, it turns off the same
flag. That all happens in _set_flag, which sets $Flag.

My _handle_text routine looks at $flag to decide what to do. If it’s a true value, it
outputs the text, and if it’s false, it doesn’t. This is what I can use to turn off output for
all of the text that doesn’t belong to a heading. Additionally, I’ll use $flag to determine
the indentation level of my table of contents by putting the =head level in it.

So, in order of execution: when I run into =head1, Pod::Simple calls _handle_ele
ment_start. From that, I immediately dispatch to _handle_element, which figures out
that it’s the start, and knows it just encountered a =head1. From that, _handle_ele
ment figures out it needs to call start_head1, which I dynamically created.
start_head1 calls _set_flag('start_head1'), which figures out based on the argument
to turn on $Flag. Next, Pod::Simple runs into a bit of text, so it calls _handle_text,
which checks _get_flag and gets a true value. It keeps going and prints to the output
filehandle. After that, Pod::Simple is done with =head1, so it calls _handle_ele

† I’m using the values 0 to 4 because PseudoPod, the format O’Reilly uses and that I used to write this book,
adds =head0 to the Pod format.

244 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

ment_end, which dispatches to _handle_element, which then calls end_head1. When
end_head1 runs, it calls _set_flag, which turns off $Flag. This sequence happens every
time Pod::Simple encounters =head directives.

Subclassing Pod::Simple
I wrote this book using the Pod format, but one that O’Reilly Media has extended to
meet its publishing needs. For instance, O’Reilly added an N directive for footnotes.‡

Pod::Parser can still handle those, but it needs to know what to do when it finds them.

Allison Randal created Pod::PseudoPod as an extension of Pod::Simple. It handles those
extra things O’Reilly added and serves as a much longer example of a subclass. I sub-
classed her module to create Pod::PseudoPod::MyHTML, which I used to create the HTML
for the Mastering Perl web site. You can get that source from there, too.§

Pod in Your Web Server
Andy Lester wrote the Apache::Pod module (based on Apache::Perldoc by Rich Bowen)
so he could serve the Perl documentation from his Apache web server and read it with
his favorite browser. I certainly like this more than paging to a terminal, and I get the
benefits of everything the browser gives me, including display styling, search, and links
to the modules or URLs the documentation references.

Sean Burke’s Pod::Webserver makes its own web server to translate Pod for the Web.
It uses Pod::Simple to do its work and should run anywhere that Perl will run. If I don’t
want to install Apache, I can still have my documentation server.

Testing Pod
Once I’ve written my Pod, I can check it to ensure that I’ve done everything correctly.
When other people read my documentation, they shouldn’t get any warnings about
formatting, and a Pod error shouldn’t keep them from reading it because the parser
gets confused. What good is the documentation if the user can’t even read it?

Checking Pod
Pod::Checker is another sort of Pod translator, although instead of spitting out the Pod
text in another format, it watches the Pod and text go by. When it finds something
suspicious, it emits warnings. Perl already comes with podchecker, a ready-to-use pro-
gram similar to perl -c, but for Pod. The program is really just a program version of
Pod::Checker, which is just another subclass of Pod::Parser:

‡ You may have noticed that we liked footnotes in Learning Perl and Intermediate Perl.

§ Mastering Perl web site: http://www.pair.com/comdog/mastering_perl/.

Testing Pod | 245

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

% podchecker Module.pm

The podchecker program is good for manual use, and I guess that somebody might want
to use it in a shell script, but I can also check errors directly through Pod::Simple. While
parsing the input, Pod::Simple keeps track of the errors it encounters. I can look at these
errors later:

*** WARNING: preceding non-item paragraph(s) at line 47 in file test.pod
*** WARNING: No argument for =item at line 153 in file test.pod
*** WARNING: previous =item has no contents at line 255 in file test.pod
*** ERROR: =over on line 23 without closing =back (at head2) at line 255 in file test.pod
*** ERROR: empty =head2 at line 283 in file test.pod
Module.pm has 2 pod syntax errors.

A long time ago, I wanted to do this automatically for all of my modules, so I created
Test::Pod. It’s been almost completely redone by Andy Lester, who now maintains the
module. I can drop a t/pod.t file into my test directory:

use Test::More;
eval "use Test::Pod 1.00";
plan skip_all => "Test::Pod 1.00 required for testing POD" if $@;
all_pod_files_ok();

Pod Coverage
After I’ve checked the format of my documentation, I also want to ensure that I’ve
actually documented everything. The Pod::Coverage module finds all of the functions
in a package and tries to match those to the Pod it finds. After skipping any special
function names and excluding the function names that start with an underscore, Perl
convention for indicating private methods, it complains about anything left
undocumented.

The easiest invocation is directly from the command line. For instance, I use the -M
switch to load the CGI module. I also use the -M switch to load Pod::Coverage, but I tack
on the =CGI to tell it which package to check. Finally, since I don’t really want to run
any program, I use -e 1 to give perl a dummy program:

% perl -MCGI -MPod::Coverage=CGI -e 1

The output gives the CGI module a rating, then lists all of the functions for which it
didn’t see any documentation:

CGI has a Pod::Coverage rating of 0.04
The following are uncovered: add_parameter, all_parameters, binmode, can,
cgi_error, compile, element_id, element_tab, end_form, endform, expand_tags,
init, initialize_globals, new, param, parse_params, print, put, r,
save_request, self_or_CGI, self_or_default, to_filehandle, upload_hook

I can write my own program, which I’ll call podcoverage, to go through all of the pack-
ages I specify on the command line. The rating comes from the coverage method, which
either returns a number between 0 or 1, or undef if it couldn’t rate the module:

246 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

#!/usr/bin/perl

use Pod::Coverage;

foreach my $package (@ARGV)
 {
 my $checker = Pod::Coverage->new(
 package => $package
);

 my $rating = $checker->coverage;

 if($rating == 1)
 {
 print "$package gets a perfect score!\n\n";
 }
 elsif(defined $rating)
 {
 print "$package gets a rating of ", $checker->coverage, "\n",
 "Uncovered functions:\n\t",
 join("\n\t", sort $checker->uncovered),
 "\n\n";
 }
 else
 {
 print "$package can't be rated: ", $checker->why_unrated, "\n";
 }

 }

When I use this to test Module::NotThere and HTML::Parser, my program tells me that
it can’t rate the first because it can’t find any Pod, and it finds a couple of undocumented
functions in HTML::Parser:

$ podcoverage Module::NotThere HTML::Parser
Module::NotThere can't be rated: couldn't find pod
HTML::Parser gets a rating of 0.925925925925926
Uncovered functions:
 init
 netscape_buggy_comment

My podcoverage program really isn’t all that useful, though. It might help me find hid-
den functions in modules, but I don’t really want to depend on those since they might
disappear in later versions. I can use podcoverage to check my own modules to ensure
I’ve explained all of my functions, but that would be tedious.

Fortunately, Andy Lester automated the process with Test::Pod::Coverage, which is
based on Pod::Checker. By creating a test file that I drop into the t directory of my
module distribution, I automatically test the Pod coverage each time I run make test. I
lift this snippet right out of the documentation. It first tests for the presence of
Test::Pod::Coverage before it tries anything, making the whole thing optional for the
user who doesn’t have that module installed, just like the Test::Pod module:

Testing Pod | 247

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

use Test::More;
eval "use Test::Pod::Coverage 1.00";
plan skip_all => "Test::Pod::Coverage 1.00 required for testing POD coverage" if $@;
all_pod_coverage_ok();

Hiding and Ignoring Functions
I mentioned earlier that I could hide functions from these Pod checks. Perl doesn’t have
a way to distinguish between public functions that I should document and other people
should use, and private functions that I don’t intend users to see. The Pod coverage
tests just see functions.

That’s not the whole story, though. Inside Pod::Coverage is the wisdom of which func-
tions it should ignore. For instance, all of the special Tie:: functions (see Chapter 17)
are really private functions. By convention, all functions starting with an underscore
(e.g., _init) are private functions for internal use only, so Pod::Checker ignores them.
If I want to create private functions, I put an underscore in front of their names.

I can’t always hide functions, though. Consider my earlier Pod::Perldoc::ToToc sub-
class. I had to override the parse_from_file method so it would call my own parser. I
don’t really want to document that function because it does the same thing as the
method in the parent class but with a different formatting module. Most of the time
the user doesn’t call it directly, and it really just does the same thing as documentation
for parse_from_file in the Pod::Simple superclass. I can tell Pod::Checker to ignore
certain names or names that match a regular expression:

my $checker = Pod::Coverage->new(
 package => $package,
 private => [qr/^_/],
 also_private => [qw(init import DESTROY AUTOLOAD)],
 trustme => [qr/^get_/],
);

The private key takes a list of regular expressions. It’s intended for the truly private
functions. also_private is just a list of strings for the same thing so I don’t have to write
a regular expression when I already know the names. The trustme key is a bit different.
I use it to tell Pod::Checker that even though I apparently didn’t document those public
functions, I’m not going to. In my example, I used the regular expression qr/^get_/.
Perhaps I documented a series of functions in a single shot instead of giving them all
individual entries. Those might even be something that AUTOLOAD creates. The
Test::Pod::Coverage module uses the same interface to ignore functions.

Summary
Pod is the standard Perl documentation format, and I can easily translate it to other
formats with the tools that come with Perl. When that’s not enough, I can write my
own Pod translator to go to a new format or provide new features for an existing format.

248 | Chapter 15: Working with Pod

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

When I use Pod to document my software, I also have several tools to check its format
and ensure I’ve documented everything.

Further Reading
The perlpod documentation outlines the basic Pod format, and the perlpodspec docu-
mentation gets into the gory implementation details.

Allison Randal’s Pod::Simple::Subclassing demonstrates other ways to subclass
Pod::Simple.

Pod::Webserver shows up as Hack #3 in Perl Hacks by chromatic, Damian Conway,
and Curtis “Ovid” Poe (O’Reilly).

I wrote about subclassing Pod::Simple to output HTML in “Playing with Pod” for The
Perl Journal, December 2005: http://www.ddj.com/dept/lightlang/184416231.

I wrote about Test::Pod in “Better Documentation Through Testing” for The Perl
Journal, November 2002.

Further Reading | 249

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Working with Pod. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Working with Pod
	The Pod Format
	Translating Pod
	Testing Pod
	Summary
	Further Reading

