

Table of Contents

Configuring Perl Programs... 1
Things Not to Do.. 1
Better Ways.. 4
Command-Line Switches... 7
Configuration Files... 13
Scripts with a Different Name... 17
Interactive and Noninteractive Programs... 18
perl’s Config... 19
Summary.. 21
Further Reading... 21

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

CHAPTER 11

Configuring Perl Programs

Once someone figures out that you know Perl, they’ll probably ask you to write a
program for them or even change one of the programs that you have. Someone else
finds out about your nifty little program and they want to use it too, but in a slightly
different way.

Don’t get trapped into creating or maintaining multiple versions of your program. Make
them configurable, and do it so your users don’t have to touch the code. When users
touch the code, all sorts of things go wrong. Their little change breaks the program,
perhaps because they forget a semicolon. Who do they come to for a fix? That’s right
—they come to you. A little work making your program configurable saves you head-
aches later.

Things Not to Do
The easiest, and worst, way to configure my Perl program is simply to put a bunch of
variables in it and tell the user to change them if they need something different. The
user then has to open my program and change the values to change the behavior of my
program. This gives the user the confidence to change other things, too, despite my
warning to not change anything past the configuration section. Even if the user stays
within the section where I intend her to edit code, she might make a syntax error. Not
only that—if she has to install this program on several machines, she’ll end up with a
different version for each machine. Any change or update in the program requires her
to edit every version:

#!/usr/bin/perl
use strict;
use warnings;

my $Debug = 0;
my $Verbose = 1;
my $Email = 'alice@example.com';
my $DB = 'DBI:mysql';

DON'T EDIT BEYOND THIS LINE !!!

171

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

I really don’t want my users to think about what the program is; they just need to know
what it does and how they can interact with it. I don’t really care if they know which
language I used, how it works, and so on. I want them to get work done, which really
means I don’t want them to have to ask me for help. I also don’t want them to look
inside code because I don’t expect them even to know Perl. They can still look at the
code (we do like open source, after all), but they don’t need to if I’ve done my job well.

Now that I’ve said all that, sometimes hardcoding values really isn’t all that bad, al-
though I wouldn’t really call this next method “configuration.” When I want to give a
datum a name that I can reuse, I pull out the constant pragma, which creates a sub-
routine that simply returns the value. I define PI as a constant and then use it as a
bareword where I need it:

use constant PI => 3.14159;

my $radius = 1;
my $circumference = 2 * PI * $radius;

This is a more readable way of defining my own subroutine to do it because it shows
my intent to make a constant. I use an empty prototype so Perl doesn’t try to grab
anything after the subroutine name as an argument. I can use this subroutine anywhere
in the program, just as I can use any other subroutine. I can export them from modules
or access them by their full package specification:

sub PI () { 3.14159 }

This can be handy to figure out some value and provide easy access to it. Although I
don’t do much in this next example, I could have accessed a database, downloaded
something over the network, or anything else I might need to do to compute the value:

{
my $days_per_year = $ENV{DAYS_PER_YEAR} || 365.24;
my $secs_per_year = 60 * 60 * 24 * $days_per_year;

sub SECS_PER_YEAR { $secs_per_year }
}

Curiously, the two numbers PI and SECS_PER_YEAR are almost the same, aside from a
factor of 10 million. The seconds per year (ignoring partial days) is about 3.15e7, which
is pretty close to Pi times 10 million if I’m doing calculations on the back of a pub
napkin.

Similarly, I can use the Readonly module if I feel more comfortable with Perl variables.
If I attempt to modify any of these variables, Perl gives me a warning. This module
allows me to create lexical variables, too:

use Readonly;

Readonly::Scalar my $Pi => 3.14159;

172 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

621961

Readonly::Array my @Fibonacci => qw(1 1 2 3 5 8 13 21);

Readonly::Hash my %Natural => (e => 2.72, Pi => 3.14, Phi => 1.618);

With Perl 5.8 or later, I can leave off the second-level package name and let Perl figure
it out based on the values that I give it:

use 5.8;
use Readonly;

Readonly my $Pi => 3.14159;

Readonly my @Fibonacci => qw(1 1 2 3 5 8 13 21);

Readonly my %Natural => (e => 2.72, Pi => 3.14, Phi => 1.618);

Code in a Separate File
A bit more sophisticated although still not good, that same configuration can be placed
in a separate file and pulled into the main program. In config.pl I put the code I previ-
ously had at the top of my program. I can’t use lexical variables because those are scoped
to their file. Nothing outside config.pl can see them, which isn’t what I want for a
configuration file:

config.pl
use vars qw($Debug $Verbose $Email $DB);

$Debug = 0;
$Verbose = 1;
$Email = 'alice@example.com';
$DB = 'DBI:mysql';

I pull in the configuration information with require, but I have to do it inside a BEGIN
block so Perl sees the use vars declaration before it compiles the rest of my program.
We covered this in more detail in Intermediate Perl, Chapter 3, when we started to talk
about modules:

#!/usr/bin/perl
use strict;
use warnings;

BEGIN { require "config.pl"; }

Of course, I don’t have to go through these shenanigans if I don’t mind getting rid of
use strict, but I don’t want to do that. That doesn’t stop other people from doing that
though, and Google* finds plenty of examples of config.pl.

* Google has a service to search open source code. Try http://codesearch.google.com to find references to
config.pl.

Things Not to Do | 173

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Better Ways
Configuration is about separating from the rest of the code the information that I want
the user to be able to change. These data can come from several sources, although it’s
up to me to figure out which source makes sense for my application. Not every situation
necessarily needs the same approach.

Environment Variables
Environment variables set values that every process within a shell can access and use.
Subprocesses can see these same values, but they can’t change them for other processes
above them. Most shells set some environment variables automatically, such as HOME
for my home directory and PWD for the directory I’m working in. In Perl, these show up
in the %ENV hash. On most machines, I write a testenv program to see how things are
set up:

#!/usr/bin/perl

print "Content-type: text/plain\n\n" if $ENV{REQUEST_METHOD};

foreach my $key (sort keys %ENV)
 {
 printf "%-20s %s\n", $key, $ENV{$key};
 }

Notice the line that uses $ENV{REQUEST_METHOD}. If I use my program as a CGI program,
the web server sets several environment variables including one called
REQUEST_METHOD. If my program sees that it’s a CGI program, it prints a CGI response
header. Otherwise, it figures I must be at a terminal and skips that part.

I particularly like using environment variables in CGI programs because I can set the
environment in an .htaccess file. This example is Apache-specific and requires
mod_env, but other servers may have similar facilities:

Apache .htaccess
SetEnv DB_NAME mousedb
SetEnv DB_USER buster
SetEnv DB_PASS pitrpat

Any variables that I set in .htaccess show up in my program and are available to all
programs affected by that file. If I change the password, I only have to change it in one
place. Beware, though, since the web server user can read this file, other users may be
able to get this information. Almost any way you slice it, though, eventually the web
server has to know these values, so I can’t keep them hidden forever.

Special Environment Variables
Perl uses several environment variables to do its work. The PERL5OPT environment var-
iable simulates me using those switches on the command line, and the PERL5LIB

174 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

environment variable adds directories to the module search path. That way, I can
change how Perl acts without changing the program.

To add more options just as if I had specified them on the command line of the shebang
line, I add them to PERL5OPT. This can be especially handy if I always want to run with
warnings, for instance:

% export PERL5OPT=w

The PERL5LIB value stands in place of the use lib directives in the code. I often have to
use this when I want to run the same programs on different computers. As much as I’d
like all of the world to have the same filesystem layout and to store modules, home
directories, and other files in the same place, I haven’t had much luck convincing any-
one to do it. Instead of editing the program to change the path to the local modules, I
set it externally. Once set in a login program or Makefile, it’s there and I don’t have to
think about it. I don’t have to edit all of my programs to have them find my new Perl
library directory:

% export PERL5LIB=/Users/brian/lib/perl5

Turning on Extra Output
While developing, I usually add a lot of extra print statements so I can inspect the state
of the program as I’m tracking down some bug. As I get closer to a working program,
I leave these statements in there, but I don’t need them to execute every time I run the
program; I just want them to run when I have a problem.

Similarly, in some instances I want my programs to show me normal output as it goes
about its work when I’m at the terminal but be quiet when run from cron, a shell
program, and so on.

In either case, I could define an environment variable to switch on, or switch off, the
behavior. With an environment variable, I don’t have to edit the use of the program in
other programs. My changes can last for as little as a single use by setting the environ-
ment variable when I run the program:

$ DEBUG=1 ./program.pl

or for the rest of the session when I set the environment variable for the entire session:

$ export DEBUG=1
$./program.pl

Now I can use these variables to configure my program. Instead of coding the value
directly in the program, I get it from the environment variables:

#!/usr/bin/perl
use strict;
use warnings;

my $Debug = $ENV{DEBUG};
my $Verbose = $ENV{VERBOSE};

Better Ways | 175

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

...

print "Starting processing\n" if $Verbose;

...

warn "Stopping program unexpectedly" if $Debug;

I can set environment variables directly on the command line and that variable applies
only to that process. I can use my testenv program to verify the value. Sometimes I make
odd shell mistakes with quoting and special character interpolation so testenv comes
in handy when I need to figure out why the value isn’t what I think it is:

% DEBUG=1 testenv

I can also set environment variables for all processes in a session. Each shell has slightly
different syntax for this:

% export DEBUG=2 # bash
$ setenv DEBUG=2 # csh
C:> set DEBUG=2 # Windows

If I don’t set some of the environment variables I use in the program Perl complains
about an uninitialized value since I have warnings on. When I try to check the values
in the if statement modifiers in the last program, I get those warnings because I’m
using undefined values. To get around that, I set some defaults. The || short circuit
operator is handy here:

my $Debug = $ENV{DEBUG} || 0;
my $Verbose = $ENV{VERBOSE} || 1;

Sometimes 0 is a valid value even though it’s false so I don’t want to continue with the
short circuit if the value is defined. In these cases, the ternary operator along with
defined comes in handy:

my $Debug = defined $ENV{DEBUG} ? $ENV{DEBUG} : 0;
my $Verbose = defined $ENV{VERBOSE} ? $ENV{VERBOSE} : 1;

Perl 5.10 has the defined-or (//) operator. It evaluates that argument on its left and
returns it if it is defined, even if it is false. Otherwise, it continues onto the next value:

my $Verbose = $ENV{VERBOSE} // 1; # new in Perl 5.10?

The // started out as new syntax for Perl 6 but is so cool that it made it into Perl 5.10.
As with other new features, I need to weigh its benefit with the loss of backward-
compatibility.

Some values may even affect others. I might want a true value for $DEBUG to imply a true
value for $VERBOSE, which would otherwise be false:

my $Debug = $ENV{DEBUG} || 0;
my $Verbose = $ENV{VERBOSE} || $ENV{DEBUG} || 0;

176 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Before I consider heavy reliance on environment variables, I should consider my target
audience and which platform it uses. If those platforms don’t support environment
variables, I should come up with an alternative way to configure my program.

Command-Line Switches
Command-line switches are arguments to my program that usually affect the way the
program behaves, although in the odd case they do nothing but add compatibility for
foreign interfaces. In Advanced Perl Programming, Simon Cozens talked about the dif-
ferent things that Perl programmers consistently reinvent (which is different from
reinventing consistently). Command-line switches is one of them. Indeed, when I look
on CPAN to see just how many there are, I find Getopt::Std, Getopt::Long, and 87 other
modules with Getopt in the name.

I can deal with command-line switches in several ways; it’s completely up to me how
to handle them. They are just arguments to my Perl program, and the modules to handle
them simply remove them from @ARGV and do the necessary processing to make them
available to me without getting in the way of other, non-switch arguments. When I
consider the many different ways people have used command-line switches in their
own creations, it’s no wonder there are so many modules to handle them. Even non-
Perl programs show little consistency in their use.

This list isn’t definitive, and I’ve tried to include at least two Perl modules that handle
each situation. I’m not a fan of tricky argument processing, and I certainly haven’t used
most of these modules beyond simple programs. Although CPAN had 89 modules
matching “Getopt,” I only looked at the ones I was able to install without a problem,
and even then, looked further at the ones whose documentation didn’t require too
much work for me to figure out.

1. Single-character switches each proceeded by their own hyphen; I need to treat these
individually (Getopt::Easy, Getopt::Std, Perl’s -s switch):

% foo -i -t -r

2. Single-character switches proceeded by their own hyphen and with possible values
(mandatory or optional), with possible separator characters between the switch
and the value (Getopt::Easy, Getopt::Std, Getopt::Mixed, Perl’s -s switch):

% foo -i -t -d/usr/local
% foo -i -t -d=/usr/local
% foo -i -t -d /usr/local

3. Single-character switches grouped together, also known as bundled or clustered
switches, but still meaning separate things (Getopt::Easy, Getopt::Mixed,
Getopt::Std):

% foo -itr

4. Multiple-character switches with a single hyphen, possibly with values. (Perl’s -s
switch):

Command-Line Switches | 177

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

% foo -debug -verbose=1

5. Multiple-character switches with a double hyphen, along with single-character
switches and a single hyphen, possibly grouped (Getopt::Attribute,
Getopt::Long, Getopts::Mixed):

% foo --debug=1 -i -t
% foo --debug=1 -it

6. The double hyphen, meaning the end of switch parsing; sometimes valid argu-
ments begin with a hyphen, so the shell provides a way to signal the end of the
switches (Getopt::Long, Getopts::Mixed, and -s if I don’t care about invalid variable
names such as ${-debug}):

% foo -i -t --debug -- --this_is_an_argument

7. Switches might have different forms or aliases that mean the same thing
(Getopt::Lucid, Getopts::Mixed):

% foo -d
% foo --debug

8. Completely odd things with various sigils or none at all (Getopt::Declare):

% foo input=bar.txt --line 10-20

The -s Switch
I don’t need a module to process switches. Perl’s -s switch can do it as long as I don’t
get too fancy. With this Perl switch, Perl turns the program switches into package
variables. It can handle either single hyphen or double hyphens (which is just a single
hyphen with a name starting with a hyphen). The switches can have values, or not. I
can specify -s either on the command line or on the shebang line:

#!/usr/bin/perl -sw
perl-s-abc.pl
use strict;

use vars qw($a $abc);

print "The value of the -a switch is [$a]\n";
print "The value of the -abc switch is [$abc]\n";

Without values, Perl sets to 1 the variable for that switch. With a value that I attach to
the switch name with an equal sign (and that’s the only way in this case), Perl sets the
variable to that value:

% perl -s ./perl-s-abc.pl -abc=fred -a
The value of the -a switch is [1]
The value of the -abc switch is [fred]

I can use double hyphens for switches that -s will process:

% perl -s ./perl-s-debug.pl --debug=11

178 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

This causes Perl to create an illegal variable named ${'-debug'} even though that’s not
strict safe. This uses a symbolic reference to get around Perl’s variable naming rules so
I have to put the variable name as a string in curly braces. This also gets around the
normal strict rules for declaring variables so I have to turn off the 'refs' check from
strict to use the variables:

#!/usr/bin/perl -s
perl-s-debug.pl
use strict;

{
no strict 'refs';
print "The value of the --debug switch is [${'-debug'}]\n";
print "The value of the --help switch is [${'-help'}]\n";
}

The previous command line produces this output:

The value of the --debug switch is [11]
The value of the --help switch is []

I don’t really need the double dashes. The -s switch doesn’t cluster switches so I don’t
need the double dash to denote the long switch name. Creating variable names that
start with an illegal character is a convenient way to segregate all of the configuration
data; however, I still don’t endorse that practice.

Getopt Modules
I can’t go over all of the modules I might use or that I mentioned earlier, so I’ll stick to
the two that come with Perl, Getopt::Std and Getopt::Long (both available since the
beginning of Perl 5). You might want to consider if you really need more than these
modules can handle. You’re pretty sure to have these available with the standard Perl
distribution, and they don’t handle odd formats that could confuse your users.

Getopt::Std

The Getopt::Std handles single-character switches that I can cluster and give values to.
The module exports two functions, one without an “s,” getopt, and one with an “s,”
getopts, but they behave slightly differently (and I’ve never figured out a way to keep
them straight).

The getopt function expects each switch to have a value (i.e., -n=1) and won’t set any
values if the switch doesn’t have an argument (i.e., -n). Its first argument is a string that
denotes which switches it expects. Its second argument is a reference to a hash in which
it will set the keys and values. I call getopt at the top of my program:

#!/usr/bin/perl
getopt-std.pl
use strict;

use Getopt::Std;

Command-Line Switches | 179

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

getopt('dog', \ my %opts);

print <<"HERE";
The value of
 d $opts{d}
 o $opts{o}
 g $opts{g}
HERE

When I call this program with a switch and a value, I see that getopt sets the switch to
that value:

$ perl getopt-std.pl -d 1
The value of
 d 1
 o
 g

When I call the same program with the same switch but without a value, getopt does
not set a value:

$ perl getopt-std.pl -d
The value of
 d
 o
 g

There is a one argument form of getopt that I’m ignoring because it creates global
variables, which I generally try to avoid.

The getopts (the one with the s) works a bit differently. It can deal with switches that
don’t take arguments and sets the value for those switches to 1. To distinguish between
switches with and without arguments, I put a colon after the switches that need argu-
ments.

In this example, the d and o switches are binary, and the g switch takes an argument:

#!/usr/bin/perl
getopts-std.pl

use Getopt::Std;

getopts('dog:', \ my %opts);

print <<"HERE";
The value of
 d $opts{d}
 o $opts{o}
 g $opts{g}
HERE

When I give this program the g switch with the value foo and the -d switch, getopts
sets the values for those switches:

180 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ perl getopts-std.pl -g foo -d
The value of
 d 1
 o
 g foo

If a switch takes an argument, it grabs whatever comes after it no matter what it is. If I
forget to provide the value for -g, for instance, it unintentionally grabs the next switch:

% ./getopts.pl -g -d -o
The value of
 d
 o
 g -d

On the other hand, if I give a value to a switch that doesn’t take a value, nothing seems
to work correctly. Giving -d a value stops getopts argument processing:

$ perl getopts-std.pl -d foo -g bar -o
The value of
 d 1
 o
 g

Getopt::Long

The Getopt::Long module can handle the single-character switches, bundled single-
character switches, and switches that start with a double hyphen. I give its GetOp
tions function a list of key-value pairs where the key gives the switch name and the
value is a reference to a variable where GetOptions puts the value:

#!/usr/bin/perl
getoptions-v.pl

use Getopt::Long;

my $result = GetOptions(
 'debug|d' => \ my $debug,
 'verbose|v' => \ my $verbose,
);

print <<"HERE";
The value of
 debug $debug
 verbose $verbose
HERE

In this example I’ve also created aliases for some switches by specifying their alternative
names with the vertical bar, |. I have to quote those keys since | is a Perl operator (and
I cover it in Chapter 16). I can turn on extra output for that program with either
-verbose or -v because they both set the variable $verbose:

Command-Line Switches | 181

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ perl getoptions-v.pl -verbose
The value of
 debug
 verbose 1

$ perl getoptions-v.pl -v
The value of
 debug
 verbose 1

$ perl getoptions-v.pl -v -d
The value of
 debug 1
 verbose 1

$ perl getoptions-v.pl -v -debug
The value of
 debug 1
 verbose 1

$ perl getoptions-v.pl -v --debug
The value of
 debug 1
 verbose 1

By just specifying the key names, the switches are boolean so I get just true or false. I
can tell GetOptions a bit more about the switches to let Perl know what sort of value to
expect. In GetOptions, I set options on the switches with an equal sign after the switch
name. An =i indicates an integer value, an =s means a string, and nothing means it’s
simply a flag, which is what I had before. There are other types, too. If I give the switch
the wrong sort of value, for instance, a string where I wanted a number, GetOptions
doesn’t set a value (so it doesn’t turn a string into the number 0, for instance):

#!/usr/bin/perl
getopt-long-args.pl

use Getopt::Long;

my $result = GetOptions(
 "file=s" => \ my $file,
 "line=i" => \ my $line,
);

print <<"HERE";
The value of
 file $file
 line $line
HERE

If I give the switch the wrong sort of value, for instance, a string where I wanted a
number, GetOptions doesn’t set a value. My -line switch expects an integer and works
fine when I give it one. I get a warning when I try to give it a real number:

182 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$ perl getopt-long-args.pl -line=-9
The value of
 file
 line -9
$ perl getopt-long-args.pl -line=9.9
Value "9.9" invalid for option line (number expected)
The value of
 file
 line

I can use an @ to tell GetOptions that the switch’s type will allow it to take multiple
values. To get multiple values for -file, I put the @ after the =s. I also assign the values
to the array @files instead of a scalar:

#!/usr/bin/perl
getopt-long-mult.pl

use Getopt::Long;

my $result = GetOptions(
 "file=s@" => \ my @files,
);

{
local $" = ", ";

print <<"HERE";
The value of
 file @files
HERE
}

To use this feature, I have to specify the switch multiple times on the command line:

$ perl getopt-long-mult.pl --file foo --file bar
The value of
 file foo, bar

Configuration Files
If I’m going to use the same values most of the time or I want to specify several values,
I can put them into a file that my program can read. And, just as I can use one of many
command-line option parsers, I have several configuration file parsers from which to
choose.

I recommend choosing the right configuration format for your situation, then choose
an appropriate module to deal with the right format.

Configuration Files | 183

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

ConfigReader::Simple
I’m a bit partial to ConfigReader::Simple because I maintain it (although I did not
originally write it). It can handle multiple files (for instance, including a user configu-
ration file that can override a global one) and has a simple line-oriented syntax:

configreader-simple.txt
file=foo.dat
line=453
field value
field2 = value2
long_continued_field This is a long \
 line spanning two lines

The module handles all of those formats:

#!/usr/bin/perl
configreader-simple.pl

use ConfigReader::Simple;

my $config = ConfigReader::Simple->new(
 "configreader-simple.txt");
die "Could not read config! $ConfigReader::Simple::ERROR\n"
 unless ref $config;

print "The line number is ", $config->get("line"), "\n";

Config::IniFiles
Windows folks are used to INI files and there are modules to handle those, too. The
basic format breaks the configuration into groups with a heading inside square brack-
ets. Parameters under the headings apply to that heading only, and the key and value
have an equals sign between them (or in some formats, a colon). Comment lines start
with a semicolon. The INI format even has a line continuation feature. The Config::Ini
Files module, as well as some others, can handle these. Here’s a little INI file I might
use to work on this book:

[Debugging]
;ComplainNeedlessly=1
ShowPodErrors=1

[Network]
email=brian.d.foy@gmail.com

[Book]
title=Mastering Perl
publisher=O'Reilly Media
author=brian d foy

I can parse this file and get the values from the different sections:

#!/usr/bin/perl
config-ini.pl

184 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

use Config::IniFiles;

my $file = "mastering_perl.ini";

my $ini = Config::IniFiles->new(
 -file => $file
) or die "Could not open $file!";

my $email = $ini->val('Network', 'email');
my $author = $ini->val('Book', 'author');

print "Kindly send complaints to $author ($email)\n";

Besides just reading the file, I can use Config::IniFiles to change values, add or delete
values, and rewrite the INI file.

Config::Scoped
Config::Scoped is similar to INI in that it can limit parameters to a certain section but
it’s more sophisticated. It allows nested section, Perl code evaluation (remember what
I said about that earlier, though), and multivalued keys:

book {
 author = {
 name="brian d foy";
 email="brian.d.foy@gmail.com";
 };
 title="Mastering Perl";
 publisher="O'Reilly Media";
}

The module parses the configuration and gives it back to me as a Perl data structure:

#!/usr/bin/perl
config-scoped.pl

use Config::Scoped;

my $config = Config::Scoped->new(file => 'config-scoped.txt')->parse;
die "Could not read config!\n" unless ref $config;

print "The author is ", $config->{book}{author}{name}, "\n";

AppConfig
Andy Wardley’s AppConfig is perhaps the most high-powered of all configuration han-
dlers and provides a unified interface to command-line options, configuration files,
environment variables, CGI parameters, and many other things. It can handle the line-
oriented format of ConfigReader::Simple, the INI format of Config::INI, and many
other formats. Andy uses AppConfig for his Template Toolkit, the popular templating
system.

Configuration Files | 185

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Here’s the AppConfig version of my earlier INI reader, using the same INI file that I used
earlier:

#!/usr/bin/perl
appconfig-ini.pl

use AppConfig;

my $config = AppConfig->new;

$config->define('network_email=s');
$config->define('book_author=s');
$config->define('book_title=s');
$config->define('book_publisher=s');

$config->file('config.ini');

my $email = $config->get('network_email');
my $author = $config->get('book_author');

print "Kindly send complaints to $author ($email)\n";

This program is a bit more complicated. Since AppConfig does so many different things,
I have to give it some hints about what it is going to do. Once I create my $config object,
I have to tell it what fields to expect and what sorts of values they’ll have. AppConfig
uses the format syntax from Getopt::Long. With the INI format, AppConfig flattens the
structure by taking the section names and using them as prefixes for the values. My
program complains about the fields I didn’t define, and AppConfig gets a bit confused
on the INI commented line ;complainneedlessly:

debugging_;complainneedlessly: no such variable at config.ini line 2
debugging_showpoderrors: no such variable at config.ini line 3
Kindly send complaints to brian d foy (brian.d.foy@gmail.com)

Now that I have that my AppConfig program, I can change the configuration format
without changing the program. The module will figure out my new format automati-
cally. My previous program still works as long as I update the filename I use for the
configuration file. Here’s my new configuration format:

network_email=brian.d.foy@gmail.com
book_author=brian d foy

With a small change I can let my program handle the command-line arguments, too.
When I call $config->args() without an argument, AppConfig processes @ARGV using
Getopt::Long:

#!/usr/bin/perl
appconfig-args.pl

use AppConfig;

my $config = AppConfig->new;

$config->define('network_email=s');

186 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

$config->define('book_author=s');
$config->define('book_title=s');
$config->define('book_publisher=s');

$config->file('config.ini');

$config->args();

my $email = $config->get('network_email');
my $author = $config->get('book_author');

print "Kindly send complaints to $author ($email)\n";

Now when I run my program and supply another value for network_email on the com-
mand line, its value overrides the one from the file because I use $config->args after
$config->file:

$ perl appconfig-args.pl
Kindly send complaints to brian d foy (brian.d.foy@gmail.com)

$ perl appconfig-args.pl -network_email bdfoy@cpan.org
Kindly send complaints to brian d foy (bdfoy@cpan.org)

AppConfig is much more sophisticated than I’ve shown and can do quite a bit more.
I’ve listed some articles on AppConfig in “Further Reading,” at the end of the chapter.

Other Configuration Formats
There are many other configuration formats and each of them probably already has a
Perl module to go with it. Win32::Registry gives me access to the Windows Registry,
Mac::PropertyList deals with Mac OS X’s plist format, and Config::ApacheFile par-
ses the Apache configuration format. Go through the list of Config:: modules on CPAN
to find the one that you need.

Scripts with a Different Name
My program can also figure out what to do based on the name I use for it. The name
of the program shows up in the Perl special variable $0, which you might also recognize
from shell programing. Normally, I only have one name for the program. However, I
can create links (symbolic or hard) to the file. When I call the program using one of
those names, I can set different configuration values:

if($0 eq ...) { ... do this init ... }
elsif($0 eq ...) { ... do this init ... }
...
else { ... default init ... }

Instead of renaming the program, I can embed the program in a another program that
sets the environment variables and calls the program with the right command-line
switches and values. In this way, I save myself a lot of typing to set values:

Scripts with a Different Name | 187

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

#!/bin/sh

DEBUG=0
VERBOSE=0
DBI_PROFILE=2

./program -n some_value -m some_other_value

Interactive and Noninteractive Programs
Sometimes I want the program to figure out on its own if it should give me output or
ask me for input. When I run the program from the command line, I want to see some
output so I know what it’s doing. If I run it from cron (or some other job scheduler), I
don’t want to see the output.

The real question isn’t necessarily whether the program is interactive but most likely if
I can send output to the terminal or get input from it.

I can check STDOUT to see if the output will go to a terminal. Using the -t file test tells
me if the filehandle is connected to a terminal. Normally, command-line invocations
are so connected:

$ perl -le 'print "Interactive!" if -t STDOUT'
Interactive!

If I redirect STDOUT, perhaps by redirecting output.txt, it’s not connected to the terminal
anymore and my test program prints no message:

$ perl -le 'print "Interactive!" if -t STDOUT' > output.txt

I might not intend that, though. Since I’m running the program from the command
line I still might want the same output I would normally expect.

If I want to know if I should prompt the user, I can check to see if STDIN is connected
to the terminal although I should also check whether my prompt will show up some-
where a user will see that:

$ perl -le 'print "Interactive!" if(-t STDIN and -t STDOUT)'
Interactive!

I have to watch what I mean and ensure I test the right thing. Damian Conway’s
IO::Interactive might help since it handles various special situations to determine if
a program is interactive:

use IO::Interactive qw(is_interactive);

my $can_talk = is_interactive();
print "Hello World!\n" if $can_talk;

Damian includes an especially useful feature, his interactive function, so I don’t have
to use conditionals with all of my print statements. His interactive function returns
the STDOUT filehandle if my program is interactive and a special null filehandle otherwise.
That way I write a normal print statement:

188 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

use IO::Interactive qw(interactive);

print { interactive() } "Hello World!\n";

I have to use the curly braces around my call to interactive() because it’s not a simple
reference. I still don’t include a comma after the braces. I get output when the program
is interactive and no output when it isn’t.

There are several other ways that I could use this. I could capture the return value of
interactive by assigning it to a scalar and then using that scalar for the filehandle in
my print statement:

use IO::Interactive qw(interactive);

my $STDOUT = interactive();

print $STDOUT "Hello World!\n";

perl’s Config
The Config module exposes a hash containing the compilation options for my perl
binary. Most of these values reflect either the capabilities that the Configure program
discovered or the answers I gave to the questions it asked.

For instance, if I want to complain about the perl binary, I could check the value for
cf_email. That’s supposed to be the person (or role) you contact for problems with the
perl binary, but good luck getting an answer!

#!/usr/bin/perl

use Config;

print "Send complaints to $Config{cf_email}\n";

If I want to guess the hostname of the perl binary (that is, if Config correctly identified
it and I compiled perl on the same machine), I can look at the myhostname and mydo
main (although I can also get those in other ways):

#!/usr/bin/perl

use Config;

print "I was compiled on $Config{myhostname}.$Config{mydomain}\n";

To see if I’m a threaded perl, I just check the compilation option for that:

#!/usr/bin/perl

use Config;

print "has thread support\n" if $Config{usethreads};

perl’s Config | 189

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Different Operating Systems
I may need my program to do different things based on which platform I invoke it. On
a Unix platform, I may load one module, whereas on Windows I load another. Perl
knows where it’s running and puts a distinctive string in $^O (mnemonic: O for Oper-
ating system), and I can use that string to decide what I need to do. Perl determines
that value when it’s built and installed. The value of $^O is the same as $Config{'os
name'}. If I need something more specific, I can use the $Config{archname}.

I have to be careful, though, to specify exactly which operating system I want. Ta-
ble 11-1 shows the value of $^O for popular systems, and the perlport documentation
lists several more. Notice that I can’t just look for the pattern m/win/i to check for
Windows since Mac OS X identifies itself as darwin.

Table 11-1. Values for $^O for selected platforms

Platform $^O

Mac OS X darwin

Mac Classic Mac

Windows Win32

OS2 OS2

VMS VMS

Cygwin Cygwin

I can conditionally load modules based on the operating system. For instance, the
File::Spec module comes with Perl and is really a facade for several operating system
specific modules behind the scenes. Here’s the entire code for the module. It defines
the %module hash to map the values of $^O to the module it should load. It then
requires the right module. Since each submodule has the same interface, the program-
mer is none the wiser:

package File::Spec;

use strict;
use vars qw(@ISA $VERSION);

$VERSION = '0.87';

my %module = (MacOS => 'Mac',
 MSWin32 => 'Win32',
 os2 => 'OS2',
 VMS => 'VMS',
 epoc => 'Epoc',
 NetWare => 'Win32', # Yes, File::Spec::Win32 works on↲
 NetWare.
 dos => 'OS2', # Yes, File::Spec::OS2 works on↲
 DJGPP.
 cygwin => 'Cygwin');

190 | Chapter 11: Configuring Perl Programs

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

my $module = $module{$^O} || 'Unix';

require "File/Spec/$module.pm";
@ISA = ("File::Spec::$module");

1;

Summary
I don’t have to hardcode user-defined data inside my program. I have a variety of ways
to allow a user to specify configuration and runtime options without her ever looking
at the source. Perl comes with modules to handle command-line switches, and there
are even more on CPAN. Almost any configuration file format has a corresponding
module on CPAN, and some formats have several module options. Although no par-
ticular technique is right for every situation, my users won’t have to fiddle with and
potentially break the source code.

Further Reading
The perlport documentation discusses differences in platforms and how to distinguish
them inside a program.

Teodor Zlatanov wrote a series of articles on AppConfig for IBM developerWorks, “Ap-
plication Configuration with Perl” (http://www-128.ibm.com/developerworks/linux/li
brary/l-perl3/index.html), “Application Configuration with Perl, Part 2” (http://
www-128.ibm.com/developerworks/linux/library/l-appcon2.html), and “Complex Lay-
ered Configurations with AppConfig” (http://www-128.ibm.com/developerworks/open
source/library/l-cpappconf.html).

Randal Schwartz talks about Config::Scoped in his Unix Review column for July 2005:
http://www.stonehenge.com/merlyn/UnixReview/col59.html.

Summary | 191

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Configuring Perl Programs. Mastering Perl, ISBN: 9780596527242
Prepared for ronald.fischer@fusshuhn.de, Ronald Fischer
Copyright © 2007 O'Reilly Media, Inc.. This download file is made available for personal use only and is subject to the Terms of Service. Any other use requires prior written consent from
the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

	Configuring Perl Programs
	Things Not to Do
	Better Ways
	Command-Line Switches
	Configuration Files
	Scripts with a Different Name
	Interactive and Noninteractive Programs
	perl’s Config
	Summary
	Further Reading

