
Table of Contents

java.util and Subpackages.. 1
Package java.util.. 2
AbstractCollection<E>.. 4
AbstractList<E>.. 5
AbstractMap<K,V>... 7
AbstractQueue<E>... 8
AbstractSequentialList<E>.. 8
AbstractSet<E>... 9
ArrayList<E>... 10
Arrays... 11
BitSet.. 14
Calendar... 16
Collection<E>.. 19
Collections... 21
Comparator<T>.. 24
ConcurrentModificationException... 25
Currency.. 26
Date.. 27
Dictionary<K,V>... 28
DuplicateFormatFlagsException.. 28
EmptyStackException... 29
Enumeration<E>.. 29
EnumMap<K extends Enum<K>,V>... 30
EnumSet<E extends Enum<E>>.. 31
EventListener.. 32
EventListenerProxy... 33
EventObject... 33
FormatFlagsConversionMismatchException... 34
Formattable... 34
FormattableFlags.. 36
Formatter.. 36
Formatter.BigDecimalLayoutForm.. 43
FormatterClosedException... 43
GregorianCalendar.. 43
HashMap<K,V>.. 45
HashSet<E>.. 46
Hashtable<K,V>.. 47
IdentityHashMap<K,V>... 48
IllegalFormatCodePointException... 49
IllegalFormatConversionException.. 49
IllegalFormatException.. 50
IllegalFormatFlagsException.. 51
IllegalFormatPrecisionException.. 51
IllegalFormatWidthException... 51
InputMismatchException... 52
InvalidPropertiesFormatException.. 52
Iterator<E>... 53
LinkedHashMap<K,V>... 54
LinkedHashSet<E>... 55
LinkedList<E>.. 56
List<E>.. 58
ListIterator<E>... 60
ListResourceBundle.. 61
Locale.. 62
Map<K,V>... 64
Map.Entry<K,V>... 65
MissingFormatArgumentException... 66

Chapter 16. java.util and Subpackages

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

MissingFormatWidthException... 66
MissingResourceException... 67
NoSuchElementException.. 67
Observable... 68
Observer.. 69
PriorityQueue<E>... 69
Properties.. 70
PropertyPermission... 72
PropertyResourceBundle.. 73
Queue<E>.. 73
Random... 75
RandomAccess.. 76
ResourceBundle.. 76
Scanner.. 77
Set<E>... 79
SimpleTimeZone... 81
SortedMap<K,V>.. 82
SortedSet<E>.. 83
Stack<E>... 84
StringTokenizer... 85
Timer... 85
TimerTask... 87
TimeZone.. 88
TooManyListenersException.. 89
TreeMap<K,V>... 90
TreeSet<E>.. 91
UnknownFormatConversionException.. 92
UnknownFormatFlagsException.. 93
UUID... 93
Vector<E>... 94
WeakHashMap<K,V>... 96
Package java.util.concurrent... 97
AbstractExecutorService... 98
ArrayBlockingQueue<E>.. 99
BlockingQueue<E>... 100
BrokenBarrierException... 102
Callable<V>... 102
CancellationException.. 103
CompletionService<V>... 103
ConcurrentHashMap<K,V>.. 104
ConcurrentLinkedQueue<E>... 105
ConcurrentMap<K,V>.. 106
CopyOnWriteArrayList<E>.. 107
CopyOnWriteArraySet<E>... 108
CountDownLatch.. 109
CyclicBarrier.. 110
Delayed... 111
DelayQueue<E extends Delayed>.. 111
Exchanger<V>... 112
ExecutionException... 113
Executor... 113
ExecutorCompletionService<V>... 114
Executors.. 115
ExecutorService... 116
Future<V>.. 118
FutureTask<V>.. 119
LinkedBlockingQueue<E>.. 120
PriorityBlockingQueue<E>... 121
RejectedExecutionException.. 122
RejectedExecutionHandler... 122
ScheduledExecutorService.. 123

Chapter 16. java.util and Subpackages

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ScheduledFuture<V>.. 124
ScheduledThreadPoolExecutor... 125
Semaphore... 126
SynchronousQueue<E>... 127
ThreadFactory... 128
ThreadPoolExecutor.. 129
ThreadPoolExecutor.AbortPolicy.. 131
ThreadPoolExecutor.CallerRunsPolicy... 132
ThreadPoolExecutor.DiscardOldestPolicy.. 132
ThreadPoolExecutor.DiscardPolicy.. 132
TimeoutException... 133
TimeUnit.. 133
Package java.util.concurrent.atomic... 134
AtomicBoolean... 135
AtomicInteger.. 135
AtomicIntegerArray... 136
AtomicIntegerFieldUpdater<T>... 137
AtomicLong... 138
AtomicLongArray.. 138
AtomicLongFieldUpdater<T>... 139
AtomicMarkableReference<V>.. 140
AtomicReference<V>.. 140
AtomicReferenceArray<E>... 141
AtomicReferenceFieldUpdater<T,V>... 142
AtomicStampedReference<V>.. 142
Package java.util.concurrent.locks.. 143
AbstractQueuedSynchronizer... 143
AbstractQueuedSynchronizer.ConditionObject... 144
Condition... 145
Lock.. 146
LockSupport... 147
ReadWriteLock.. 148
ReentrantLock... 148
ReentrantReadWriteLock... 150
ReentrantReadWriteLock.ReadLock... 151
ReentrantReadWriteLock.WriteLock.. 151
Package java.util.jar... 152
Attributes... 153
Attributes.Name.. 154
JarEntry... 154
JarException.. 155
JarFile.. 156
JarInputStream.. 157
JarOutputStream... 158
Manifest... 158
Pack200... 159
Pack200.Packer... 160
Pack200.Unpacker... 161
Package java.util.logging... 162
ConsoleHandler... 163
ErrorManager.. 163
FileHandler.. 164
Filter.. 166
Formatter... 166
Handler.. 167
Level... 168
Logger.. 169
LoggingMXBean... 171
LoggingPermission.. 172
LogManager... 172
LogRecord.. 175

Chapter 16. java.util and Subpackages

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

MemoryHandler.. 176
SimpleFormatter.. 177
SocketHandler... 178
StreamHandler.. 178
XMLFormatter... 179
Package java.util.prefs.. 180
AbstractPreferences... 181
BackingStoreException... 182
InvalidPreferencesFormatException.. 183
NodeChangeEvent... 183
NodeChangeListener... 184
PreferenceChangeEvent.. 184
PreferenceChangeListener.. 185
Preferences.. 186
PreferencesFactory.. 189
Package java.util.regex.. 190
Matcher.. 190
MatchResult... 194
Pattern... 195
PatternSyntaxException.. 199
Package java.util.zip... 200
Adler32.. 201
CheckedInputStream.. 201
CheckedOutputStream... 202
Checksum.. 202
CRC32... 203
DataFormatException.. 204
Deflater.. 204
DeflaterOutputStream.. 205
GZIPInputStream... 206
GZIPOutputStream... 207
Inflater... 207
InflaterInputStream... 208
ZipEntry.. 209
ZipException... 210
ZipFile.. 211
ZipInputStream... 212
ZipOutputStream... 213

Chapter 16. java.util and Subpackages

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 16. java.util and Subpackages
This chapter documents the java.util package, and each of its subpackages. Those
packages are:

java.util

This package defines many important and commonly used utility classes, the most
important of which are the various Collection, Set, List, and Map
implementations. In Java 5.0 the collection classes and interfaces have been
converted into generic types.

java.util.concurrent

This package includes utilities for concurrent programming, including threadsafe
collection classes, threadpool implementations, and synchronizer utilities.

java.util.concurrent.atomic

This package includes classes that define atomic operations on primitive values or
object references.

java.util.concurrent.locks

This package contains low-level lock and condition utilities.

java.util.jar

This package defines classes for reading and writing JAR (Java ARchive) files. They
are based on the classes of the java.util.zip package.

java.util.logging

This package defines a powerful and flexible logging API for Java applications.

java.util.prefs

This package allows applications to set and query persistent values for user-specific
preferences or system-wide configuration parameters.

Chapter 16. java.util and Subpackages Page 1 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

java.util.regex

This package defines an API for textual pattern matching using regular expressions.

java.util.zip

This package defines classes for reading and writing ZIP files and for compressing
and uncompressing data using the "gzip" format.

Package java.util

Java 1.0

The java.util package defines a number of useful classes, primarily collections classes
that are useful for working with groups of objects. This package should not be considered
merely a utility package that is separate from the rest of the language; it is an integral and
frequently used part of the Java platform.

The most important classes in java.util are the collections classes. Prior to Java 1.2,
these were Vector, a growable list of objects, and Hashtable, a mapping between
arbitrary key and value objects. Java 1.2 adds an entire collections framework consisting
of the Collection, Map, Set, List, SortedMap, and SortedSet interfaces and the
classes that implement them. Other important classes and interfaces of the collections
framework are Comparator, Collections, Arrays, Iterator, and ListIterator.
Java 1.4 extends the Collections framework with the addition of new Map and Set
implementations, and a new RandomAccess marker interface used by List
implementations. Java 5.0 adds a Queue collection interface and implementations. It
also adds EnumSet and EnumMap which efficiently implement the Set and Map interfaces
for use with enumerated types. Most importantly, Java 5.0 modifies all collection
interfaces and classes to be generic types, which enable type-safe collections such as
List<String>. BitSet is a related class that is not actually part of the Collections
framework (and is not even a set). It provides a very compact representation of an
arbitrary-size array or list of boolean values or bits. Its API was substantially enhanced
in Java 1.4.

The other classes of the package are also quite useful. Date, Calendar, and TimeZone
work with dates and times. Currency represents a national currency. Locale represents
the language and related text formatting conventions of a country, region, or culture.
ResourceBundle and its subclasses represent a bundle of localized resources that are

Chapter 16. java.util and Subpackages Page 2 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

read in by an internationalized program at runtime. Random generates and returns
pseudorandom numbers in a variety of forms. StringTokenizer is a simple parser that
breaks a string into tokens. In Java 1.3 and later, Timer and TimerTask provide a
powerful API for scheduling code to be run by a background thread, once or repetitively,
at a specified time in the future. In Java 5.0, the Formatter class enables poweful
formatted text output in the style of the C programming language's printf() function.
The Java 5.0 Scanner class is a text tokenizer or scanner that can also parse numbers and
match tokens based on regular expressions.

Interfaces

public interface Collection<E> extends Iterable<E>;
public interface Comparator<T>;
public interface Enumeration<E>;
public interface EventListener;
public interface Formattable;
public interface Iterator<E>;
public interface List<E> extends Collection<E>;
public interface ListIterator<E> extends Iterator<E>;
public interface Map<K, V>;
public interface Map.Entry<K, V>;
public interface Observer;
public interface Queue<E> extends Collection<E>;
public interface RandomAccess;
public interface Set<E> extends Collection<E>;
public interface SortedMap<K, V> extends Map<K, V>;
public interface SortedSet<E> extends Set<E>;

Enumerated Types

public enum Formatter.BigDecimalLayoutForm;

Collections

public abstract class AbstractCollection<E> implements Collection<E>;
 public abstract class AbstractList<E> extends AbstractCollection<E>
 implements List<E>;
 public abstract class AbstractSequentialList<E> extends AbstractList<E>;
 public class LinkedList<E> extends AbstractSequentialList<E>
 implements List<E>, Queue<E>, Cloneable, Serializable;
 public class ArrayList<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable;
 public class Vector<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable;
 public class Stack<E> extends Vector<E>;
 public abstract class AbstractQueue<E> extends AbstractCollection<E>
 implements Queue<E>;
 public class PriorityQueue<E> extends AbstractQueue<E>
 implements Serializable;
 public abstract class AbstractSet<E> extends AbstractCollection<E>
 implements Set<E>;
 public abstract class EnumSet<E extends Enum<E>> extends AbstractSet<E>
 implements Cloneable, Serializable;
 public class HashSet<E> extends AbstractSet<E> implements Set<E>,
 Cloneable, Serializable;
 public class LinkedHashSet<E> extends HashSet<E> implements Set<E>,
 Cloneable, Serializable;
 public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>,
 Cloneable, Serializable;
public abstract class AbstractMap<K, V> implements Map<K, V>;
 public class EnumMap<K extends Enum<K>, V> extends AbstractMap<K, V>
 implements Serializable, Cloneable;
 public class HashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>,
 Cloneable, Serializable;

Chapter 16. java.util and Subpackages Page 3 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public class LinkedHashMap<K, V> extends HashMap<K, V>
 implements Map<K, V>;
 public class IdentityHashMap<K, V> extends AbstractMap<K, V>
 implements Map<K, V>, Serializable, Cloneable;
 public class TreeMap<K, V> extends AbstractMap<K, V>
 implements SortedMap<K, V>, Cloneable, Serializable;
 public class WeakHashMap<K, V> extends AbstractMap<K, V> implements Map<K, V>;
public class Hashtable<K, V> extends Dictionary<K, V> implements Map<K, V>,
 Cloneable, Serializable;
 public class Properties extends Hashtable<Object, Object>;

Events

public class EventObject implements Serializable;

Other Classes

public class Arrays;
public class BitSet implements Cloneable, Serializable;
public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar>;
 public class GregorianCalendar extends Calendar;
public class Collections;
public final class Currency implements Serializable;
public class Date implements Serializable, Cloneable, Comparable<Date>;
public abstract class Dictionary<K, V>;
public abstract class EventListenerProxy implements EventListener;
public class FormattableFlags;
public final class Formatter implements java.io.Closeable, java.io.Flushable;
public final class Locale implements Cloneable, Serializable;
public class Observable;
public final class PropertyPermission extends java.security.BasicPermission;
public class Random implements Serializable;
public abstract class ResourceBundle;
 public abstract class ListResourceBundle extends ResourceBundle;
 public class PropertyResourceBundle extends ResourceBundle;
public final class Scanner implements Iterator<String>;
public class StringTokenizer implements Enumeration<Object>;
public class Timer;
public abstract class TimerTask implements Runnable;
public abstract class TimeZone implements Cloneable, Serializable;
 public class SimpleTimeZone extends TimeZone;
public final class UUID implements Serializable, Comparable<UUID>;

Exceptions

public class ConcurrentModificationException extends RuntimeException;
public class EmptyStackException extends RuntimeException;
public class FormatterClosedException extends IllegalStateException;
public class IllegalFormatException extends IllegalArgumentException;
 public class DuplicateFormatFlagsException extends IllegalFormatException;
 public class FormatFlagsConversionMismatchException extends IllegalFormatException;
 public class IllegalFormatCodePointException extends IllegalFormatException;
 public class IllegalFormatConversionException extends IllegalFormatException;
 public class IllegalFormatFlagsException extends IllegalFormatException;
 public class IllegalFormatPrecisionException extends IllegalFormatException;
 public class IllegalFormatWidthException extends IllegalFormatException;
 public class MissingFormatArgumentException extends IllegalFormatException;
 public class MissingFormatWidthException extends IllegalFormatException;
 public class UnknownFormatConversionException extends IllegalFormatException;
 public class UnknownFormatFlagsException extends IllegalFormatException;
public class InvalidPropertiesFormatException extends java.io.IOException;
public class MissingResourceException extends RuntimeException;
public class NoSuchElementException extends RuntimeException;
 public class InputMismatchException extends NoSuchElementException;
public class TooManyListenersException extends Exception;

AbstractCollection<E> java.util

Chapter 16. java.util and Subpackages Page 4 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.2 collection

This abstract class is a partial implementation of Collection that makes it easy to define
custom Collection implementations. To create an unmodifiable collection, simply
override size() and iterator(). The Iterator object returned by
iterator() has to support only the hasNext() and next() methods. To define a
modifiable collection, you must additionally override the add() method of
AbstractCollection and make sure the Iterator returned by iterator()
supports the remove() method. Some subclasses may choose to override other methods
to tune performance. In addition, it is conventional that all subclasses provide two
constructors: one that takes no arguments and one that accepts a Collection argument
that specifies the initial contents of the collection.

Note that if you subclass AbstractCollection directly, you are implementing a bag—
an unordered collection that allows duplicate elements. If your add() method rejects
duplicate elements, you should subclass AbstractSet instead. See also
AbstractList.

Figure 16-1. java.util.AbstractCollection<E>

public abstract class AbstractCollection<E> implements Collection<E> {
// Protected Constructors
 protected AbstractCollection();
// Methods Implementing Collection
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean containsAll(Collection<?> c);
 public boolean isEmpty();
 public abstract Iterator<E> iterator();
 public boolean remove(Object o);
 public boolean removeAll(Collection<?> c);
 public boolean retainAll(Collection<?> c);
 public abstract int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding Object
 public String toString();
}

Subclasses

AbstractList, AbstractQueue, AbstractSet

Chapter 16. java.util and Subpackages Page 5 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AbstractList<E> java.util

Java 1.2 collection

This abstract class is a partial implementation of the List interface that makes it easy to
define custom List implementations based on random-access list elements (such as
objects stored in an array). If you want to base a List implementation on a sequential-
access data model (such as a linked list), subclass AbstractSequentialList instead.

To create an unmodifiable List, simply subclass AbstractList and override the
(inherited) size() and get() methods. To create a modifiable list, you must also
override set() and, optionally, add() and remove(). These three methods are
optional, so unless you override them, they simply throw an
UnsupportedOperationException. All other methods of the List interface are
implemented in terms of size(), get(), set(), add(), and remove(). In some
cases, you may want to override these other methods to improve performance. By
convention, all List implementations should define two constructors: one that accepts
no arguments and another that accepts a Collection of initial elements for the list.

Figure 16-2. java.util.AbstractList<E>

public abstract class AbstractList<E> extends AbstractCollection<E> implements List<E> {
// Protected Constructors
 protected AbstractList();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean equals(Object o);
 public abstract E get(int index);
 public int hashCode();
 public int indexOf(Object o);
 public Iterator<E> iterator();
 public int lastIndexOf(Object o);
 public ListIterator<E> listIterator();
 public ListIterator<E> listIterator(int index);
 public E remove(int index);
 public E set(int index, E element);
 public List<E> subList(int fromIndex, int toIndex);
// Protected Instance Methods
 protected void removeRange(int fromIndex, int toIndex);
// Protected Instance Fields
 protected transient int modCount;
}

Chapter 16. java.util and Subpackages Page 6 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

AbstractSequentialList, ArrayList, Vector

AbstractMap<K,V> java.util

Java 1.2 collection

This abstract class is a partial implementation of the Map interface that makes it easy to
define simple custom Map implementations. To define an unmodifiable map, subclass
AbstractMap and override the entrySet() method so that it returns a set of
Map.Entry objects. (Note that you must also implement Map.Entry, of course.) The
returned set should not support add() or remove(), and its iterator should not support
remove(). In order to define a modifiable Map, you must additionally override the
put() method and provide support for the remove() method of the iterator returned
by entrySet().iterator(). In addition, it is conventional that all Map
implementations define two constructors: one that accepts no arguments and another that
accepts a Map of initial mappings.

AbstractMap defines all Map methods in terms of its entrySet() and put()
methods and the remove() method of the entry set iterator. Note, however, that the
implementation is based on a linear search of the Set returned by entrySet() and is
not efficient when the Map contains more than a handful of entries. Some subclasses may
want to override additional AbstractMap methods to improve performance. HashMap
and TreeMap use different algorithms are are substantially more efficient.

Figure 16-3. java.util.AbstractMap<K,V>

public abstract class AbstractMap<K,V> implements Map<K,V> {
// Protected Constructors
 protected AbstractMap();
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public abstract Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public int hashCode();
 public boolean isEmpty();
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding Object
 public String toString();

Chapter 16. java.util and Subpackages Page 7 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Protected Methods Overriding Object
1.4 protected Object clone() throws CloneNotSupportedException;
}

Subclasses

EnumMap, HashMap, IdentityHashMap, TreeMap, WeakHashMap,
java.util.concurrent.ConcurrentHashMap

AbstractQueue<E> java.util

Java 5.0 collection

This abstract class provides a framework for simple Queue implementations. A concrete
subclass must implement offer(), peek(), and poll() and must also implement
the inherited size() and iterator() methods of the Collection interface. The
Iterator returned by iterator() must support the remove() operation.

Figure 16-4. java.util.AbstractQueue<E>

public abstract class AbstractQueue<E> extends AbstractCollection<E> implements Queue<E> {
// Protected Constructors
 protected AbstractQueue();
// Methods Implementing Collection
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
// Methods Implementing Queue
 public E element();
 public E remove();
}

Subclasses

PriorityQueue, java.util.concurrent.ArrayBlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue,
java.util.concurrent.DelayQueue,
java.util.concurrent.LinkedBlockingQueue,
java.util.concurrent.PriorityBlockingQueue,
java.util.concurrent.SynchronousQueue

AbstractSequentialList<E> java.util

Chapter 16. java.util and Subpackages Page 8 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.2 collection

This abstract class is a partial implementation of the List interface that makes it easy to
define List implementations based on a sequential-access data model, as is the case with
the LinkedList subclass. To implement a List based on an array or other random-
access model, subclass AbstractList instead.

To implement an unmodifiable list, subclass this class and override the size() and
listIterator() methods. listIterator() must return a ListIterator that
defines the hasNext(), hasPrevious(), next(), previous(), and
index() methods. If you want to allow the list to be modified, the ListIterator
should also support the set() method and, optionally, the add() and remove()
methods. AbstractSequentialList implements all other List methods in terms of
these methods. Some subclasses may want to override additional methods to improve
performance. In addition, it is conventional that all List implementations define two
constructors: one that accepts no arguments and another that accepts a Collection of
initial elements for the list.

Figure 16-5. java.util.AbstractSequentialList<E>

public abstract class AbstractSequentialList<E> extends AbstractList<E> {
// Protected Constructors
 protected AbstractSequentialList();
// Public Methods Overriding AbstractList
 public void add(int index, E element);
 public boolean addAll(int index, Collection<? extends E> c);
 public E get(int index);
 public Iterator<E> iterator();
 public abstract ListIterator<E> listIterator(int index);
 public E remove(int index);
 public E set(int index, E element);
}

Subclasses

LinkedList

AbstractSet<E> java.util

Java 1.2 collection

Chapter 16. java.util and Subpackages Page 9 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This abstract class is a partial implementation of the Set interface that makes it easy to
create custom Set implementations. Since Set defines the same methods as
Collection, you can subclass AbstractSet exactly as you would subclass
AbstractCollection. See AbstractCollection for details. Note, however, that
when subclassing AbstractSet, you should be sure that your add() method and your
constructors do not allow duplicate elements to be added to the set. See also
AbstractList.

Figure 16-6. java.util.AbstractSet<E>

public abstract class AbstractSet<E> extends AbstractCollection<E> implements Set<E> {
// Protected Constructors
 protected AbstractSet();
// Methods Implementing Set
 public boolean equals(Object o);
 public int hashCode();
1.3 public boolean removeAll(Collection<?> c);
}

Subclasses

EnumSet, HashSet, TreeSet, java.util.concurrent.CopyOnWriteArraySet

ArrayList<E> java.util

Java 1.2 cloneable serializable collection

This class is a List implementation based on an array (that is recreated as necessary as
the list grows or shrinks). ArrayList implements all optional List and Collection
methods and allows list elements of any type (including null). Because ArrayList is
based on an array, the get() and set() methods are very efficient. (This is not the
case for the LinkedList implementation, for example.) ArrayList is a general-purpose
implementation of List and is quite commonly used. ArrayList is very much like the
Vector class, except that its methods are not synchronized. If you are using an
ArrayList in a multithreaded environment, you should explicitly synchronize any
modifications to the list, or wrap the list with Collections.synchronizedList().
See List and Collection for details on the methods of ArrayList. See also
LinkedList.

An ArrayList has a capacity, which is the number of elements in the internal array that
contains the elements of the list. When the number of elements exceeds the capacity, a

Chapter 16. java.util and Subpackages Page 10 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

new array, with a larger capacity, must be created. In addition to the List and
Collection methods, ArrayList defines a couple of methods that help you manage
this capacity. If you know in advance how many elements an ArrayList will contain, you
can call ensureCapacity(), which can increase efficiency by avoiding incremental
reallocation of the internal array. You can also pass an initial capacity value to the
ArrayList() constructor. Finally, if an ArrayList has reached its final size and will
not change in the future, you can call trimToSize() to reallocate the internal array
with a capacity that matches the list size exactly. When the ArrayList will have a long
lifetime, this can be a useful technique to reduce memory usage.

Figure 16-7. java.util.ArrayList<E>

public class ArrayList<E> extends AbstractList<E> implements List<E>,
 RandomAccess, Cloneable, Serializable {
// Public Constructors
 public ArrayList();
 public ArrayList(int initialCapacity);
 public ArrayList(Collection<? extends E> c);
// Public Instance Methods
 public void ensureCapacity(int minCapacity);
 public void trimToSize();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(Collection<? extends E> c);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean contains(Object elem);
 public E get(int index);
 public int indexOf(Object elem);
 public boolean isEmpty(); default:true
 public int lastIndexOf(Object elem);
5.0 public boolean remove(Object o);
 public E remove(int index);
 public E set(int index, E element);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Protected Methods Overriding AbstractList
 protected void removeRange(int fromIndex, int toIndex);
// Public Methods Overriding Object
 public Object clone();
}

Returned By

Collections.list()

Arrays java.util

Chapter 16. java.util and Subpackages Page 11 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.2

This class defines static methods for sorting, searching, and performing other useful
operations on arrays. It also defines the asList() method, which returns a List
wrapper around a specified array of objects. Any changes made to the List are also made
to the underlying array. This is a powerful method that allows any array of objects to be
manipulated in any of the ways a List can be manipulated. It provides a link between
arrays and the Java collections framework.

The various sort() methods sort an array (or a specified portion of an array) in place.
Variants of the method are defined for arrays of each primitive type and for arrays of
Object. For arrays of primitive types, the sorting is done according to the natural ordering
of the type. For arrays of objects, the sorting is done according to the specified
Comparator, or, if the array contains only java.lang.Comparable objects, according
to the ordering defined by that interface. When sorting an array of objects, a stable sorting
algorithm is used so that the relative ordering of equal objects is not disturbed. (This allows
repeated sorts to order objects by key and subkey, for example.)

The binarySearch() methods perform an efficient search (in logarithmic time) of a
sorted array for a specified value. If a match is found in the array, binarySearch()
returns the index of the match. If no match is found, the method returns a negative number.
For a negative return value r, the index -(r+1) specifies the array index at which the
specified value can be inserted to maintain the sorted order of the array. When the array
to be searched is an array of objects, the elements of the array must all implement
java.lang.Comparable, or you must provide a Comparator object to compare them.

The equals() methods test whether two arrays are equal. Two arrays of primitive type
are equal if they contain the same number of elements and if corresponding pairs of
elements are equal according to the == operator. Two arrays of objects are equal if they
contain the same number of elements and if corresponding pairs of elements are equal
according to the equals() method defined by those objects. The fill() methods fill
an array or a specified range of an array with the specified value.

Java 5.0 adds hashCode() methods that compute a hashcode for the contents of the
array. These methods are compatible with the equals() methods: equal() arrays
will always have the same hashCode(). Java 5.0 also adds deepEquals() and
deepHashCode() methods that handle multi-dimensional arrays. Finally, the Java 5.0
toString() and deepToString() methods convert arrays to strings. The returned
strings are a comma-separated list of elements enclosed in square brackets.

public class Arrays {
// No Constructor

Chapter 16. java.util and Subpackages Page 12 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Class Methods
 public static <T> List<T> asList(T ... a);
 public static int binarySearch(char[] a, char key);
 public static int binarySearch(short[] a, short key);
 public static int binarySearch(long[] a, long key);
 public static int binarySearch(int[] a, int key);
 public static int binarySearch(float[] a, float key);
 public static int binarySearch(Object[] a, Object key);
 public static int binarySearch(byte[] a, byte key);
 public static int binarySearch(double[] a, double key);
 public static <T> int binarySearch(T[] a, T key, Comparator<? super T> c);
5.0 public static boolean deepEquals(Object[] a1, Object[] a2);
5.0 public static int deepHashCode(Object[] a);
5.0 public static String deepToString(Object[] a);
 public static boolean equals(boolean[] a, boolean[] a2);
 public static boolean equals(long[] a, long[] a2);
 public static boolean equals(float[] a, float[] a2);
 public static boolean equals(double[] a, double[] a2);
 public static boolean equals(char[] a, char[] a2);
 public static boolean equals(byte[] a, byte[] a2);
 public static boolean equals(int[] a, int[] a2);
 public static boolean equals(short[] a, short[] a2);
 public static boolean equals(Object[] a, Object[] a2);
 public static void fill(char[] a, char val);
 public static void fill(short[] a, short val);
 public static void fill(byte[] a, byte val);
 public static void fill(int[] a, int val);
 public static void fill(double[] a, double val);
 public static void fill(boolean[] a, boolean val);
 public static void fill(Object[] a, Object val);
 public static void fill(float[] a, float val);
 public static void fill(long[] a, long val);
 public static void fill(int[] a, int fromIndex, int toIndex, int val);
 public static void fill(double[] a, int fromIndex, int toIndex, double val);
 public static void fill(short[] a, int fromIndex, int toIndex, short val);
 public static void fill(char[] a, int fromIndex, int toIndex, char val);
 public static void fill(float[] a, int fromIndex, int toIndex, float val);
 public static void fill(byte[] a, int fromIndex, int toIndex, byte val);
 public static void fill(boolean[] a, int fromIndex, int toIndex, boolean val);
 public static void fill(Object[] a, int fromIndex, int toIndex, Object val);
 public static void fill(long[] a, int fromIndex, int toIndex, long val);
5.0 public static int hashCode(short[] a);
5.0 public static int hashCode(char[] a);
5.0 public static int hashCode(long[] a);
5.0 public static int hashCode(int[] a);
5.0 public static int hashCode(byte[] a);
5.0 public static int hashCode(double[] a);
5.0 public static int hashCode(Object[] a);
5.0 public static int hashCode(boolean[] a);
5.0 public static int hashCode(float[] a);
 public static void sort(Object[] a);
 public static void sort(short[] a);
 public static void sort(float[] a);
 public static void sort(double[] a);
 public static void sort(long[] a);
 public static void sort(byte[] a);
 public static void sort(char[] a);
 public static void sort(int[] a);
 public static <T> void sort(T[] a, Comparator<? super T> c);
 public static void sort(short[] a, int fromIndex, int toIndex);
 public static void sort(int[] a, int fromIndex, int toIndex);
 public static void sort(char[] a, int fromIndex, int toIndex);
 public static void sort(long[] a, int fromIndex, int toIndex);
 public static void sort(float[] a, int fromIndex, int toIndex);
 public static void sort(double[] a, int fromIndex, int toIndex);
 public static void sort(byte[] a, int fromIndex, int toIndex);
 public static void sort(Object[] a, int fromIndex, int toIndex);
 public static <T> void sort(T[] a, int fromIndex, int toIndex, Comparator<? super T> c);
5.0 public static String toString(float[] a);
5.0 public static String toString(boolean[] a);
5.0 public static String toString(Object[] a);
5.0 public static String toString(double[] a);

Chapter 16. java.util and Subpackages Page 13 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.0 public static String toString(int[] a);
5.0 public static String toString(long[] a);
5.0 public static String toString(short[] a);
5.0 public static String toString(byte[] a);
5.0 public static String toString(char[] a);
}

BitSet java.util

Java 1.0 cloneable serializable

This class implements an array or list of boolean values storing them using a very compact
representation that requires only about one bit per value stored. It implements methods
for setting, querying, and flipping the values stored at any given position within the list,
for counting the number of true values stored in the list, and for finding the next true
or false value in the list. It also defines a number of methods that perform bitwise boolean
operations on two BitSet objects. Despite its name, BitSet does not implement the
Set interface, and does not even have the behavior associated with a set; it is a list or vector
for boolean values, but is not related to the List interface or Vector class. This class
was introduced in Java 1.0, but was substantially enhanced in Java 1.4; note that many of
the methods described below are only available in Java 1.4 and later.

Create a BitSet with the BitSet() constructor. You may optionally specify a size (the
number of bits) for the BitSet, but this merely provides an optimization since a
BitSet will grow as needed to accomodate any number of boolean values. BitSet does
not define a precise notion of the size of a "set." The size() method returns the number
of boolean values that can be stored before more internal storage needs to be allocated.
The length() method returns one more than the highest index of a set bit (i.e., a
true value). This means that a BitSet that contains all false values will have a
length() of zero. If your code needs to remember the index of the highest value stored
in a BitSet, regardless of whether that value was true or false, then you should
maintain that length information separately from the BitSet.

Set values in a BitSet with the set() method. There are four versions of this method.
Two set the value at a specific index, and two set values for a range of indexes. Two of the
set() methods do not take a value argument to set: they "set" the specified bit or range
of bites, which means they store the value true. The other two methods take a
boolean argument, allowing you to set the specified value or range of values to true (a
set bit) or false (a clear bit). There are also two clear() methods that "clear" (or set
to false) the value at the specified index or range of indexes. The flip() methods flip,

Chapter 16. java.util and Subpackages Page 14 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

or toggle (change true to false and false to true), the value or values at the specified
index or range. The set(), clear(), and flip() methods, as well as all other
BitSet methods that operate on a range of values specify the range with two index values.
They define the range as the values starting from, and including, the value stored at the
first specified index up to, but not including, the value stored at the second specified index.
(A number of methods of String and related classes follow the same convention for
specifying a range of characters.)

To test the value stored at a specified location, use get(), which returns true if the
specified bit is set, or false if it is not set. There is also a get() method that specifies
a range of bits, and returns their state in the form of a BitSet: this get() method is
analogous to the substring() method of a String. Because a BitSet does not define
a maximum index, it is legal to pass any non-negative value to get(). If the index you
specify is greater than or equal to the value returned by length(), then the returned
value will always be false.

cardinality() returns the number of true values (or of set bits) stored in a
BitSet. isEmpty() returns true if a BitSet has no true values stored in it (in this
case, both length() and cardinality() return 0). nextSetBit() returns the
first index at or after the specified index at which a true value is stored (or at which the
bit is set). You can use this method in a loop to iterate through the indexes of true values.
nextClearBit() is similar, but searches the BitSet for false values (clear bits)
intead. The intersects() method returns true if the target BitSet and the argument
BitSet intersect: that is if there is at least one index at which both BitSet objects have
a true value.

BitSet defines several methods that perform bitwise Boolean operations. These methods
combine the BitSet on which they are invoked (called the "target" BitSet below) with
the BitSet passed as an argument, and store the result in the target BitSet. If you want
to perform a Boolean operation without altering the original BitSet, you should first
make a copy of the original with the clone() method and invoke the method on the
copy. The and() method preforms a bitwise Boolean AND operation, much like the &
does when applied to integer arguments. A value in the target BitSet will be true only
if it was originally true and the value at the same index of argument BitSet is also
true. For all false values in the argument BitSet, and() sets the corresponding value
in the target BitSet to false, leaving other values unchanged. The andNot() method
combines a Boolean AND operation with a Boolean NOT operation on the argument
BitSet (it does not alter the contents of that argument BitSet, hoever). The result is
that for all true values in the argument BitSet, the corresponding values in the target
BitSet are set to false.

Chapter 16. java.util and Subpackages Page 15 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The or() method performs a bitwise Boolean OR operation like the | operator: a value
in the BitSet will be set to true if its original value was true or the corresponding value
in the argument BitSet was true. For all true values in the argument BitSet, the
or() method sets the corresponding value in the target BitSet to true, leaving the
other values unchanged. The xor() method performs an "exclusive OR" operation: sets
a value in the target BitSet to true if it was originally true or if the corresponding value
in the argument BitSet was true. If both values were false, or if both values were
true, however, it sets the value to false.

Finally, the toString() method returns a String representation of a BitSet that
consists of a list within curly braces of the indexes at which true values are stored.

The BitSet class is not threadsafe.

Figure 16-8. java.util.BitSet

public class BitSet implements Cloneable, Serializable {
// Public Constructors
 public BitSet();
 public BitSet(int nbits);
// Public Instance Methods
 public void and(BitSet set);
1.2 public void andNot(BitSet set);
1.4 public int cardinality();
1.4 public void clear();
 public void clear(int bitIndex);
1.4 public void clear(int fromIndex, int toIndex);
1.4 public void flip(int bitIndex);
1.4 public void flip(int fromIndex, int toIndex);
 public boolean get(int bitIndex);
1.4 public BitSet get(int fromIndex, int toIndex);
1.4 public boolean intersects(BitSet set);
1.4 public boolean isEmpty(); default:true
1.2 public int length();
1.4 public int nextClearBit(int fromIndex);
1.4 public int nextSetBit(int fromIndex);
 public void or(BitSet set);
 public void set(int bitIndex);
1.4 public void set(int bitIndex, boolean value);
1.4 public void set(int fromIndex, int toIndex);
1.4 public void set(int fromIndex, int toIndex, boolean value);
 public int size();
 public void xor(BitSet set);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Chapter 16. java.util and Subpackages Page 16 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Calendar java.util

Java 1.1 cloneable serializable comparable

This abstract class defines methods that perform date and time arithmetic. It also includes
methods that convert dates and times to and from the machine-usable millisecond format
used by the Date class and units such as minutes, hours, days, weeks, months, and years
that are more useful to humans. As an abstract class, Calendar cannot be directly
instantiated. Instead, it provides static getInstance() methods that return instances
of a Calendar subclass suitable for use in a specified or default locale with a specified or
default time zone. See also Date, DateFormat, and TimeZone.

Calendar defines a number of useful constants. Some of these are values that represent
days of the week and months of the year. Other constants, such as HOUR and
DAY_OF_WEEK, represent various fields of date and time information. These field
constants are passed to a number of Calendar methods, such as get() and set(),
in order to indicate what particular date or time field is desired.

setTime() and the various set() methods set the date represented by a Calendar
object. The add() method adds (or subtracts) values to a calendar field, incrementing
the next larger field when the field being set rolls over. roll() does the same, without
modifying anything but the specified field. before() and after() compare two
Calendar objects. Many of the methods of the Calendar class are replacements for
methods of Date that have been deprecated as of Java 1.1. While the Calendar class
converts a time value to its various hour, day, month, and other fields, it is not intended
to present those fields in a form suitable for display to the end user. That function is
performed by the java.text.DateFormat class, which handles internationalization
issues.

Calendar implements Comparable in Java 5.0, but not in earlier releases.

Figure 16-9. java.util.Calendar

public abstract class Calendar implements Serializable, Cloneable, Comparable<Calendar> {
// Protected Constructors
 protected Calendar();
 protected Calendar(TimeZone zone, Locale aLocale);
// Public Constants
 public static final int AM; =0
 public static final int AM_PM; =9

Chapter 16. java.util and Subpackages Page 17 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static final int APRIL; =3
 public static final int AUGUST; =7
 public static final int DATE; =5
 public static final int DAY_OF_MONTH; =5
 public static final int DAY_OF_WEEK; =7
 public static final int DAY_OF_WEEK_IN_MONTH; =8
 public static final int DAY_OF_YEAR; =6
 public static final int DECEMBER; =11
 public static final int DST_OFFSET; =16
 public static final int ERA; =0
 public static final int FEBRUARY; =1
 public static final int FIELD_COUNT; =17
 public static final int FRIDAY; =6
 public static final int HOUR; =10
 public static final int HOUR_OF_DAY; =11
 public static final int JANUARY; =0
 public static final int JULY; =6
 public static final int JUNE; =5
 public static final int MARCH; =2
 public static final int MAY; =4
 public static final int MILLISECOND; =14
 public static final int MINUTE; =12
 public static final int MONDAY; =2
 public static final int MONTH; =2
 public static final int NOVEMBER; =10
 public static final int OCTOBER; =9
 public static final int PM; =1
 public static final int SATURDAY; =7
 public static final int SECOND; =13
 public static final int SEPTEMBER; =8
 public static final int SUNDAY; =1
 public static final int THURSDAY; =5
 public static final int TUESDAY; =3
 public static final int UNDECIMBER; =12
 public static final int WEDNESDAY; =4
 public static final int WEEK_OF_MONTH; =4
 public static final int WEEK_OF_YEAR; =3
 public static final int YEAR; =1
 public static final int ZONE_OFFSET; =15
// Public Class Methods
 public static Locale[] getAvailableLocales(); synchronized
 public static Calendar getInstance();
 public static Calendar getInstance(Locale aLocale);
 public static Calendar getInstance(TimeZone zone);
 public static Calendar getInstance(TimeZone zone, Locale aLocale);
// Public Instance Methods
 public abstract void add(int field, int amount);
 public boolean after(Object when);
 public boolean before(Object when);
 public final void clear();
 public final void clear(int field);
 public int get(int field);
1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);
 public int getFirstDayOfWeek();
 public abstract int getGreatestMinimum(int field);
 public abstract int getLeastMaximum(int field);
 public abstract int getMaximum(int field);
 public int getMinimalDaysInFirstWeek();
 public abstract int getMinimum(int field);
 public final Date getTime();
 public long getTimeInMillis();
 public TimeZone getTimeZone();
 public boolean isLenient();
 public final boolean isSet(int field);
1.2 public void roll(int field, int amount);
 public abstract void roll(int field, boolean up);
 public void set(int field, int value);
 public final void set(int year, int month, int date);
 public final void set(int year, int month, int date, int hourOfDay, int minute);
 public final void set(int year, int month, int date, int hourOfDay, int minute,
 int second);

Chapter 16. java.util and Subpackages Page 18 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public void setFirstDayOfWeek(int value);
 public void setLenient(boolean lenient);
 public void setMinimalDaysInFirstWeek(int value);
 public final void setTime(Date date);
 public void setTimeInMillis(long millis);
 public void setTimeZone(TimeZone value);
// Methods Implementing Comparable
5.0 public int compareTo(Calendar anotherCalendar);
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
1.2 public int hashCode();
 public String toString();
// Protected Instance Methods
 protected void complete();
 protected abstract void computeFields();
 protected abstract void computeTime();
 protected final int internalGet(int field);
// Protected Instance Fields
 protected boolean areFieldsSet;
 protected int[] fields;
 protected boolean[] isSet;
 protected boolean isTimeSet;
 protected long time;
}

Subclasses

GregorianCalendar
Passed To

java.text.DateFormat.setCalendar(), javax.xml.datatype.Duration.
{addTo(), getTimeInMillis(), normalizeWith()}
Returned By

java.text.DateFormat.getCalendar()
Type Of

java.text.DateFormat.calendar

Collection<E> java.util

Java 1.2 collection

This interface represents a group, or collection, of objects. In Java 5.0 this is a generic
interface and the type variable E represents the type of the objects in the collection. The
objects may or may not be ordered, and the collection may or may not contain duplicate
objects. Collection is not often implemented directly. Instead, most collection classes
implement one of the more specific subinterfaces: Set, an unordered collection that does
not allow duplicates, or List, an ordered collection that does allow duplicates.

The Collection type provides a general way to refer to any set, list, or other collection
of objects; it defines generic methods that work with any collection. contains() and
containsAll() test whether the Collection contains a specified object or all the

Chapter 16. java.util and Subpackages Page 19 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

objects in a given collection. isEmpty() returns true if the Collection has no
elements, or false otherwise. size() returns the number of elements in the
Collection. iterator() returns an Iterator object that allows you to iterate
through the objects in the collection. toArray() returns the objects in the
Collection in a new array of type Object. Another version of toArray() takes an
array as an argument and stores all elements of the Collection (which must all be
compatible with the array) into that array. If the array is not big enough, the method
allocates a new, larger array of the same type. If the array is too big, the method stores
null into the first empty element of the array. This version of toArray() returns the
array that was passed in or the new array, if one was allocated.

The previous methods all query or extract the contents of a collection. The Collection
interface also defines methods for modifying the contents of the collection. add() and
addAll() add an object or a collection of objects to a Collection. remove() and
removeAll() remove an object or collection. retainAll() is a variant that removes
all objects except those in a specified Collection. clear() removes all objects from
the collection. All these modification methods except clear() return true if the
collection was modified as a result of the call. An interface cannot specify constructors, but
it is conventional that all implementations of Collection provide at least two standard
constructors: one that takes no arguments and creates an empty collection, and a copy
constructor that accepts a Collection object that specifies the initial contents of the new
Collection.

Implementations of Collection and its subinterfaces are not required to support all
operations defined by the Collection interface. All modification methods listed above
are optional; an implementation (such as an immutable Set implementation) that does
not support them simply throws java.lang.UnsupportedOperationException for
these methods. Furthermore, implementations are free to impose restrictions on the types
of objects that can be members of a collection. Some implementations might require
elements to be of a particular type, for example, and others might not allow null as an
element.

See also Set, List, Map, and Collections.

Figure 16-10. java.util.Collection<E>

public interface Collection<E> extends Iterable<E> {
// Public Instance Methods
 boolean add(E o);
 boolean addAll(Collection<? extends E> c);
 void clear();
 boolean contains(Object o);

Chapter 16. java.util and Subpackages Page 20 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 int hashCode();
 boolean isEmpty();
 Iterator<E> iterator();
 boolean remove(Object o);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 int size();
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

AbstractCollection, List, Queue, Set
Passed To

Too many methods to list.
Returned By

Too many methods to list.

Collections java.util

Java 1.2

This class defines static methods and constants that are useful for working with collections
and maps. One of the most commonly used methods is sort(), which sorts a List in
place (the list cannot be immutable, of course). The sorting algorithm is stable, which
means that equal elements retain the same relative order. One version of sort() uses a
specified Comparator to perform the sort; the other relies on the natural ordering of the
list elements and requires all the elements to implement java.lang.Comparable.
reverseOrder() returns a Comparator object that reverses the order of another
Comparator or that reverse the natural ordering of Comparable objects.

A related method is binarySearch(). It efficiently (in logarithmic time) searches a
sorted List for a specified object and returns the index at which a matching object is
found. If no match is found, it returns a negative number. For a negative return value r,
the value -(r+1) specifies the index at which the specified object can be inserted into the
list to maintain the sorted order of the list. As with sort(), binarySearch() can be
passed a Comparator that defines the order of the sorted list. If no Comparator is
specified, the list elements must all implement Comparable, and the list is assumed to
be sorted according to the natural ordering defined by this interface.

See Arrays for methods that perform sorting and searching operations on arrays instead
of collections.

Chapter 16. java.util and Subpackages Page 21 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The various methods whose names begin with synchronized return a threadsafe
collection object wrapped around the specified collection. Vector and Hashtable are
the only two collection objects threadsafe by default. Use these methods to obtain a
synchronized wrapper object if you are using any other type of Collection or Map in
a multithreaded environment where more than one thread can modify it.

The various methods whose names begin with unmodifiable function like
synchronized methods. They return a Collection or Map object wrapped around the
specified collection. The returned object is unmodifiable, however, so its add(),
remove(), set(), put(), etc. methods all throw
java.lang.UnsupportedOperationException. In Java 5.0, the "checked" methods
return wrapped collections that enforce a specified element type for the collection, so that
it is not possible to add an element of the wrong type.

In addition to the "synchronized", "unmodifiable", and "checked" methods,
Collections defines a number of other methods that return special-purpose collections
or maps: singleton() returns an unmodifiable set that contains only the specified
object. singletonList() and singletonMap() return an immutable list and an
immutable map, respectively, each of which contains only a single entry. The
Collections class also defines related constants, EMPTY_LIST, EMPTY_SET, and
EMPTY_MAP, which are immutable List, Set, and Map objects that contain no elements
or mappings. In Java 5.0, the emptySet(), emptyList(), and emptyMap()
methods are preferred alternatives to these constants, because they are generic methods
and return correctly parameterized empty collections. nCopies() creates a new
immutable List that contains a specified number of copies of a specified object.
list() returns a List object that represents the elements of the specified
Enumeration object. enumeration() does the reverse: it returns an Enumeration
for a Collection, which is useful when working with code that uses the old
Enumeration interface instead of the newer Iterator interface.

The Collections class also defines methods that mutate a collection. These methods
throw an UnsupportedOperationException if the target collection is does not allow
mutation. copy() copies elements of a source list into a destination list. fill()
replaces all elements of the specified list with the specified object. swap() swaps the
elements at two specified indexes of a List. replaceAll() replaces all elements in a
List that are equal to (using the equals() method) with another object, and returns
true if any replacements were done. reverse() reverses the order of the elements in
a list. rotate() "rotates" a list, adding the specified number to the index of each element,
and wrapping elements from the end of the list back to the front of the list. (Specifying a
negative rotation rotates the list in the other direction.) shuffle() randomizes the order

Chapter 16. java.util and Subpackages Page 22 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of elements in a list, using either an internal source of randomness or the Random
pseudorandom number generator you provide. In Java 5.0, the addAll() method adds
the specified elements to the specified collection. This method is a varargs method and
allows elements to be specified in an array or listed individually in the argument list.

Finally, Collections defines methods (in addition to the binarySearch() methods
described above) that search the elements of a collection: min() and max() methods
search an unordered Collection for the minimum and maximum elements, according
either to a specified Comparator or to the natural order defined by the Comparable
elements themselves. indexOfSubList() and lastIndexOfSubList() search a
specified list forward or backward for a subsequence of elements that match (using
equals()) the elements the a second specified list. They return the start index of any
such matching sublist, or return -1 if no match was found. These methods are like the
indexOf() and lastIndexOf() methods of String, and do not require the List
to be sorted, as the binarySearch() methods do. In Java 5.0, frequency() returns
the number of occurences of a specified element in a specified collection, and
disjoint() determines whether two collections are entirely disjoint—whether they
have no elements in common.

public class Collections {
// No Constructor
// Public Constants
 public static final List EMPTY_LIST;
1.3 public static final Map EMPTY_MAP;
 public static final Set EMPTY_SET;
// Public Class Methods
5.0 public static <T> boolean addAll(Collection<? super T> c, T ... a);
 public static <T> int binarySearch(List<? extends Comparable<? super T>> list, T key);
 public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c);
5.0 public static <E> Collection<E> checkedCollection(Collection<E> c, Class<E> type);
5.0 public static <E> List<E> checkedList(List<E> list, Class<E> type);
5.0 public static <K,V> Map<K,V> checkedMap(Map<K,V> m, Class<K> keyType, Class<V> valueType);
5.0 public static <E> Set<E> checkedSet(Set<E> s, Class<E> type);
5.0 public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K,V> m, Class<K> keyType,
Class<V> valueType);
5.0 public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s, Class<E> type);
 public static <T> void copy(List<? super T> dest, List<? extends T> src);
5.0 public static boolean disjoint(Collection<?> c1, Collection<?> c2);
5.0 public static final <T> List<T> emptyList();
5.0 public static final <K,V> Map<K,V> emptyMap();
5.0 public static final <T> Set<T> emptySet();
 public static <T> Enumeration<T> enumeration(Collection<T> c);
 public static <T> void fill(List<? super T> list, T obj);
5.0 public static int frequency(Collection<?> c, Object o);
1.4 public static int indexOfSubList(List<?> source, List<?> target);
1.4 public static int lastIndexOfSubList(List<?> source, List<?> target);
1.4 public static <T> ArrayList<T> list(Enumeration<T> e);
 public static <T extends Object&Comparable<? super T>> T max(Collection<? extends T> coll);
 public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp);
 public static <T extends Object&Comparable<? super T>> T min(Collection<? extends T> coll);
 public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp);
 public static <T> List<T> nCopies(int n, T o);
1.4 public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal);
 public static void reverse(List<?> list);
 public static <T> Comparator<T> reverseOrder();
5.0 public static <T> Comparator<T> reverseOrder(Comparator<T> cmp);
1.4 public static void rotate(List<?> list, int distance);
 public static void shuffle(List<?> list);
 public static void shuffle(List<?> list, Random rnd);

Chapter 16. java.util and Subpackages Page 23 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static <T> Set<T> singleton(T o);
1.3 public static <T> List<T> singletonList(T o);
1.3 public static <K,V> Map<K,V> singletonMap(K key, V value);
 public static <T extends Comparable<? super T>> void sort(List<T> list);
 public static <T> void sort(List<T> list, Comparator<? super T> c);
1.4 public static void swap(List<?> list, int i, int j);
 public static <T> Collection<T> synchronizedCollection(Collection<T> c);
 public static <T> List<T> synchronizedList(List<T> list);
 public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m);
 public static <T> Set<T> synchronizedSet(Set<T> s);
 public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m);
 public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s);
 public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c);
 public static <T> List<T> unmodifiableList(List<? extends T> list);
 public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K,? extends V> m);
 public static <T> Set<T> unmodifiableSet(Set<? extends T> s);
 public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K,? extends V> m);
 public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s);
}

Comparator<T> java.util

Java 1.2

This interface defines a compare() method that specifies a total ordering for a set of
objects, allowing those objects to be sorted. The Comparator is used when the objects to
be ordered do not have a natural ordering defined by the Comparable interface, or when
you want to order them using something other than their natural ordering.
Comparator has been made generic in Java 5.0 and the type variable T represents the
type of objects being compared.

The compare() method is passed two objects. If the first argument is less than the second
argument or should be placed before the second argument in a sorted list, compare()
should return a negative integer. If the first argument is greater than the second argument
or should be placed after the second argument in a sorted list, compare() should return
a positive integer. If the two objects are equivalent or if their relative position in a sorted
list does not matter, compare() should return 0. Comparator implementations may
assume that both Object arguments are of appropriate types and cast them as desired. If
either argument is not of the expected type, the compare() method throws a
ClassCastException.

Note that the magnitude of the numbers returned by compare() does not matter, only
whether they are less than, equal to, or greater than zero. In most cases, you should
implement a Comparator so that compare(o1,o2) returns 0 if and only if
o1.equals(o2) returns true. This is particularly important when using a
Comparator to impose an ordering on a TreeSet or a TreeMap.

Chapter 16. java.util and Subpackages Page 24 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Collections and Arrays for various methods that use Comparator objects for
sorting and searching. See also the related java.lang.Comparable interface.

public interface Comparator<T> {
// Public Instance Methods
 int compare(T o1, T o2);
 boolean equals(Object obj);
}

Implementations

java.text.Collator
Passed To

Arrays.{binarySearch(), sort()}, Collections.{binarySearch(),
max(), min(), reverseOrder(), sort()},
PriorityQueue.PriorityQueue(), TreeMap.TreeMap(),
TreeSet.TreeSet(),
java.util.concurrent.PriorityBlockingQueue.PriorityBlockingQueue
()
Returned By

Collections.reverseOrder(), PriorityQueue.comparator(),
SortedMap.comparator(), SortedSet.comparator(),
TreeMap.comparator(), TreeSet.comparator(),
java.util.concurrent.PriorityBlockingQueue.comparator()
Type Of

String.CASE_INSENSITIVE_ORDER

ConcurrentModificationException java.util

Java 1.2 serializable unchecked

Signals that a modification has been made to a data structure at the same time some other
operation is in progress and that, as a result, the correctness of the ongoing operation
cannot be guaranteed. It is typically thrown by an Iterator or ListIterator object to
stop an iteration if it detects that the underlying collection has been modified while the
iteration is in progress.

Figure 16-11. java.util.ConcurrentModificationException

public class ConcurrentModificationException extends RuntimeException {
// Public Constructors
 public ConcurrentModificationException();

Chapter 16. java.util and Subpackages Page 25 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public ConcurrentModificationException(String message);
}

Currency java.util

Java 1.4 serializable

Instances of this class represent a currency. Obtain a Currency object by passing a
"currency code" such as "USD" for U.S. Dollars or "EUR" for Euros to
getInstance(). Once you have a Currency object, use getSymbol() to obtain the
currency symbol (which is often different from the currency code) for the default locale or
for a specified Locale. The symbol for a USD would be "$" in a U.S locale, but might be
"US$" in other locales, for example. If no symbol is known, this method returns the
currency code.

Use getDefaultFractionDigits() to determine how many fractional digits are
conventionally used with the currency. This method returns 2 for the U.S. Dollar and other
currencies that are divided into hundredths, but returns 3 for the Jordanian Dinar (JOD)
and other currencies which are traditionally divided into thousandths, and returns 0 for
the Japanese Yen (JPY) and other currencies that have a small unit value and are not
usually divided into fractional parts at all. Currency codes are standardized by the ISO
4217 standard. For a complete list of currencies and currency codes see the website of the
"maintenance agency" for this standard: http://www.iso.org/iso/en/prods-services/
popstds/currencycodeslist.html.

Figure 16-12. java.util.Currency

public final class Currency implements Serializable {
// No Constructor
// Public Class Methods
 public static Currency getInstance(String currencyCode);
 public static Currency getInstance(Locale locale);
// Public Instance Methods
 public String getCurrencyCode();
 public int getDefaultFractionDigits();
 public String getSymbol();
 public String getSymbol(Locale locale);
// Public Methods Overriding Object
 public String toString();
}

Chapter 16. java.util and Subpackages Page 26 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html
http://www.iso.org/iso/en/prods-services/popstds/currencycodeslist.html

Passed To

java.text.DecimalFormat.setCurrency(),
java.text.DecimalFormatSymbols.setCurrency(),
java.text.NumberFormat.setCurrency()
Returned By

java.text.DecimalFormat.getCurrency(),
java.text.DecimalFormatSymbols.getCurrency(),
java.text.NumberFormat.getCurrency()

Date java.util

Java 1.0 cloneable serializable comparable

This class represents dates and times and lets you work with them in a system-independent
way. You can create a Date by specifying the number of milliseconds from the epoch
(midnight GMT, January 1st, 1970) or the year, month, date, and, optionally, the hour,
minute, and second. Years are specified as the number of years since 1900. If you call the
Date constructor with no arguments, the Date is initialized to the current time and date.
The instance methods of the class allow you to get and set the various date and time fields,
to compare dates and times, and to convert dates to and from string representations. As
of Java 1.1, many of the date methods have been deprecated in favor of the methods of the
Calendar class.

Figure 16-13. java.util.Date

public class Date implements Serializable, Cloneable, Comparable<Date> {
// Public Constructors
 public Date();
 public Date(long date);
public Date(String s);
public Date(int year, int month, int date);
public Date(int year, int month, int date, int hrs, int min);
public Date(int year, int month, int date, int hrs, int min, int sec);
// Public Instance Methods
 public boolean after(Date when);
 public boolean before(Date when);
 public long getTime(); default:1101702237486
 public void setTime(long time);
// Methods Implementing Comparable
1.2 public int compareTo(Date anotherDate);
// Public Methods Overriding Object
1.2 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
// Deprecated Public Methods
public int getDate(); default:28

Chapter 16. java.util and Subpackages Page 27 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public int getDay(); default:0
public int getHours(); default:20
public int getMinutes(); default:23
public int getMonth(); default:10
public int getSeconds(); default:57
public int getTimezoneOffset(); default:480
public int getYear(); default:104
public static long parse(String s);
public void setDate(int date);
public void setHours(int hours);
public void setMinutes(int minutes);
public void setMonth(int month);
public void setSeconds(int seconds);
public void setYear(int year);
public String toGMTString();
public String toLocaleString();
public static long UTC(int year, int month, int date, int hrs, int min, int sec);
}

Passed To

Too many methods to list.
Returned By

Too many methods to list.

Dictionary<K,V> java.util

Java 1.0

This abstract class is the superclass of Hashtable. Other hashtable-like data structures
might also extend this class. See Hashtable for more information. As of Java 1.2, the
Map interface replaces the functionality of this class.

public abstract class Dictionary<K,V> {
// Public Constructors
 public Dictionary();
// Public Instance Methods
 public abstract Enumeration<V> elements();
 public abstract V get(Object key);
 public abstract boolean isEmpty();
 public abstract Enumeration<K> keys();
 public abstract V put(K key, V value);
 public abstract V remove(Object key);
 public abstract int size();
}

Subclasses

Hashtable

DuplicateFormatFlagsException java.util

Java 5.0 serializable unchecked

Chapter 16. java.util and Subpackages Page 28 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An IllegalFormatException of this type is thrown by a Formatter when the format
string contains duplicate format flags for the same conversion specifier.

Figure 16-14. java.util.DuplicateFormatFlagsException

public class DuplicateFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public DuplicateFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

EmptyStackException java.util

Java 1.0 serializable unchecked

Signals that a Stack object is empty.

Figure 16-15. java.util.EmptyStackException

public class EmptyStackException extends RuntimeException {
// Public Constructors
 public EmptyStackException();
}

Enumeration<E> java.util

Java 1.0

This interface defines the methods necessary to enumerate, or iterate, through a set of
values, such as the set of values contained in a hashtable. This interface is superseded in
Java 1.2 by the Iterator inteface. In Java 5.0 this interface has been made generic and
defines the type variable E to represent the type of the objects being enumerated.

Chapter 16. java.util and Subpackages Page 29 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An Enumeration is usually not instantiated directly, but instead is created by the object
that is to have its values enumerated. A number of classes, such as Vector and
Hashtable, have methods that return Enumeration objects.

To use an Enumeration object, you use its two methods in a loop.
hasMoreElements() returns true if there are more values to be enumerated and can
determine whether a loop should continue. Within a loop, a call to nextElement()
returns a value from the enumeration. An Enumeration makes no guarantees about the
order in which the values are returned. The values in an Enumeration can be iterated
through only once; there is no way to reset it to the beginning.

public interface Enumeration<E> {
// Public Instance Methods
 boolean hasMoreElements();
 E nextElement();
}

Implementations

StringTokenizer
Passed To

java.io.SequenceInputStream.SequenceInputStream(),
Collections.list()
Returned By

Too many methods to list.

EnumMap<K extends Enum<K>,V> java.util

Java 5.0 cloneable serializable collection

This class is a Map implementation for use with enumerated types. The key type K must be
an enumerated type, and all keys must be enumerated constants defined by that type.
null keys are not permitted. The value type V is unrestricted and null values are
permitted.

The EnumMap implementation is based on an array of elements of type V. The length of
this array is the same as the number of constants defined by the enumerated type K. All
Map operations execute in constant time. The iterators of the keySet(),
entrySet(), and values() collections iterate their elements in the ordinal order of
the enumerated constants. EnumMap is not threadsafe, but its iterators are based on a
snapshot of the underlying array and never throw
ConcurrentModificationException.

Chapter 16. java.util and Subpackages Page 30 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-16. java.util.EnumMap<K extends Enum<K>,V>

public class EnumMap<K extends Enum<K>,V>
 extends AbstractMap<K,V> implements Serializable, Cloneable {
// Public Constructors
 public EnumMap(EnumMap<K,? extends V> m);
 public EnumMap(Class<K> keyType);
 public EnumMap(Map<K,? extends V> m);
// Public Instance Methods
 public EnumMap<K,V> clone();
 public V put(K key, V value);
// Public Methods Overriding AbstractMap
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public Set<K> keySet();
 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
}

EnumSet<E extends Enum<E>> java.util

Java 5.0 cloneable serializable collection

This Set implementation is specialized for use with enumerated constants. The element
type E must be an enumerated type, and null is not allowed as a member of the set.

EnumSet does not define a constructor. Instead, it defines various static factory methods
for creating sets. Use one of the of() methods for creating an EnumSet and initializing
its elements. For efficiency, versions of this method that accept one through five arguments
are defined. If you pass more than five arguments, the varargs version will be invoked. The
allOf() and noneOf() methods define full and empty sets but require the Class of
the enumerated type since they do not have any other arguments to define the element
type. complementOf() returns an EnumSet that contains all enumerated constants not
contained by the specified EnumSet. The range() factory creates a set that includes the
two specified values and any enumerated constants that fall between them in the
enumerated type declaration. (Note that this definition of a range includes both endpoints
and differs from most Java methods, in which the second argument specifies the first value
past the end of the range.)

Chapter 16. java.util and Subpackages Page 31 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The EnumSet implementation is based on a bit vector that includes one bit for each
constant defined by the enumerated type E. Because of this compact and efficient
representation, basic Set operations occur in constant time, and the Iterator returns
enumerated constants in the order in which they are declared in the type E. EnumSet is
not threadsafe, but the Iterator uses a copy of the internal bit vector and never throws
ConcurrentModificationException.

Figure 16-17. java.util.EnumSet<E extends Enum<E>>

public abstract class EnumSet<E extends Enum<E>>
 extends AbstractSet<E> implements Cloneable, Serializable {
// No Constructor
// Public Class Methods
 public static <E extends Enum<E>> EnumSet<E> allOf(Class<E> elementType);
 public static <E extends Enum<E>> EnumSet<E> complementOf(EnumSet<E> s);
 public static <E extends Enum<E>> EnumSet<E> copyOf(EnumSet<E> s);
 public static <E extends Enum<E>> EnumSet<E> copyOf(Collection<E> c);
 public static <E extends Enum<E>> EnumSet<E> noneOf(Class<E> elementType);
 public static <E extends Enum<E>> EnumSet<E> of(E e);
 public static <E extends Enum<E>> EnumSet<E> of(E first, E ... rest);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4);
 public static <E extends Enum<E>> EnumSet<E> of(E e1, E e2, E e3, E e4, E e5);
 public static <E extends Enum<E>> EnumSet<E> range(E from, E to);
// Public Instance Methods
 public EnumSet<E> clone();
}

EventListener java.util

Java 1.1 event listener

EventListener is a base interface for the event model that is used by AWT and Swing
in Java 1.1 and later. This interface defines no methods or constants; it serves simply as a
tag that identifies objects that act as event listeners. The event listener interfaces in the
java.awt.event, java.beans, and javax.swing.event packages extend this
interface.

public interface EventListener {
}

Chapter 16. java.util and Subpackages Page 32 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

EventListenerProxy, java.util.prefs.NodeChangeListener,
java.util.prefs.PreferenceChangeListener,
javax.net.ssl.HandshakeCompletedListener,
javax.net.ssl.SSLSessionBindingListener
Passed To

EventListenerProxy.EventListenerProxy()
Returned By

EventListenerProxy.getListener()

EventListenerProxy java.util

Java 1.4

This abstract class serves as the superclass for event listener proxy objects. Subclasses of
this class implement an event listener interface and serve as a wrapper around an event
listener of that type, defining methods that provide additional information about the
listener. See java.beans.PropertyChangeListenerProxy for an explanation of
how event listener proxy objects are used.

Figure 16-18. java.util.EventListenerProxy

public abstract class EventListenerProxy implements EventListener {
// Public Constructors
 public EventListenerProxy(EventListener listener);
// Public Instance Methods
 public EventListener getListener();
}

EventObject java.util

Java 1.1 serializable event

EventObject serves as the superclass for all event objects used by the event model
introduced in Java 1.1 for AWT and JavaBeans and also used by Swing in Java 1.2. This
class defines a generic type of event; it is extended by the more specific event classes in the
java.awt, java.awt.event, java.beans, and javax.swing.event packages. The
only common feature shared by all events is a source object, which is the object that, in

Chapter 16. java.util and Subpackages Page 33 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

some way, generated the event. The source object is passed to the EventObject()
constructor and is returned by the getSource() method.

Figure 16-19. java.util.EventObject

public class EventObject implements Serializable {
// Public Constructors
 public EventObject(Object source);
// Public Instance Methods
 public Object getSource();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected transient Object source;
}

Subclasses

java.util.prefs.NodeChangeEvent,
java.util.prefs.PreferenceChangeEvent,
javax.net.ssl.HandshakeCompletedEvent,
javax.net.ssl.SSLSessionBindingEvent

FormatFlagsConversionMismatchException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a
conversion specifier and a format flag specified with it are incompatible.

Figure 16-20. java.util.FormatFlagsConversionMismatchException

public class FormatFlagsConversionMismatchException extends IllegalFormatException {
// Public Constructors
 public FormatFlagsConversionMismatchException(String f, char c);
// Public Instance Methods
 public char getConversion();
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

Chapter 16. java.util and Subpackages Page 34 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Formattable java.util

Java 5.0

This interface should be implemented by classes that want to interact with the
Formatter class more intimately than is possible with the toString method. When a
Formattable object is the argument for a %s or %S conversion, its formatTo() method
is invoked rather than its toString() method. formatTo() is responsible for
formatting a textual representation of the object to the specified formatter, subject to
the constraints imposed by the flags, width, and precision arguments.

The flags argument is a bitmask of zero or more FormattableFlags constants. Each
flag provides information about the format specification that resulted in the invocation of
formatTo(). FormattableFlags.ALTERNATE indicates that the # flag was used and
that the Formattable should format itself using some alternate form. The interpretation
of the alternate form is entirely up to the Formattable implementation.
LEFT_JUSTIFY means that the - flag was used and that the Formattable should pad
its output on the right, instead of on the left. UPPERCASE indicates that the %S conversion
was used instead of %s and the Formattable should output uppercase characters instead
of lowercase.

The width and precision arguments specify the width and precision specified along
with the %s format specifier, or -1 if no width and precision are specified. The
Formattable object should treat these values the same way that Formatter does. The
text to be output should first be truncated to fit within precision characters and then
padded on the left (or right if the LEFT_JUSTIFY flag is set) with spaces for a total length
of width characters. Note that a Formattable implementation may fulfill the obligations
imposed by the LEFT_JUSTIFY and UPPERCASE flags and the width and precision
arguments by constructing a suitable format string to pass back to the specified
Formatter.

If a Formattable implementation wants to perform locale-specific formatting, it can
query the Locale of the Formatter with the locale() method. Note, however, that
the returned value is the locale specified when the Formatter was created, not the
Locale, if any, passed to the format() method. There is no way for a Formattable
object to access that Locale.

public interface Formattable {
// Public Instance Methods
 void formatTo(java.util.Formatter formatter, int flags, int width, int precision);
}

Chapter 16. java.util and Subpackages Page 35 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FormattableFlags java.util

Java 5.0

This class defines three constants representing flags that may be passed as a bitmask to
the Formattable.formatTo() method. See Formattable for the interpretation of
these flags.

public class FormattableFlags {
// No Constructor
// Public Constants
 public static final int ALTERNATE; =4
 public static final int LEFT_JUSTIFY; =1
 public static final int UPPERCASE; =2
}

Formatter java.util

Java 5.0 closeable flushable

The Formatter class is a utility for formatting text in the style of the printf() method
of the C programming language. Every Formatter has an associated
java.lang.Appendable object (such as a StringBuilder or PrintWriter) that is
specified when the Formatter is created. format() is a varargs method that expects a
"format string" argument followed by some number of Object arguments. The format
string uses a grammar, described in detail later in the entry, to specify how the arguments
that follow are to be converted to strings. After the arguments are converted, they are
substituted into the format string, and the resulting text is appended to the
Appendable. A variant of the format() method accepts a Locale object that can affect
the argument conversions.

For ease of use, a Formatter never throws a java.io.IOException, even when the
underlying Appendable throws one. When using a Formatter with a stream-based
Appendable object that may throw an IOException, you can use the
ioException() method to obtain the most recently thrown exception, or null if no
exception has been thrown by the Appendable.

Chapter 16. java.util and Subpackages Page 36 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Formatter implements the Closeable and Flushable interfaces of the java.io
package, and its close() and flush() methods call the corresponding methods on
its Appendable object, if that object itself implements Closeable or Flushable. When
a Formatter sends its output to a stream or similar Appendable, remember to call
close() when you are done with it. It is always safe to call close() even if the
underlying Appendable is not Closeable. Note that once a Formatter has been closed,
no other method except ioException() may be called.

locale() returns the Locale passed to the Formatter() constructor or null.
out() returns the Appendable that this Formatter sends its output to.
toString() returns the result of calling toString() on that Appendable. This is
useful when the Appendable is a StringBuilder, for example, as it is when the no-
argument version of the Formatter() constructor is used. If the Appendable is a
stream class, however, the toString() method is not typically useful.

Note that the Java 5.0 API provides a number of convenience methods that use the
Formatter class, and in many cases it is unnecessary to create a Formatter object
explicitly. See the static String.format() method and the format() and
printf() methods of java.io.PrintWriter and java.io.PrintStream.

If you do need to create a Formatter object explicitly, you can choose from a number of
constructors. The most general case is to pass the desired Appendable or the desired
Locale and Appendable objects to the constructor. The no-argument constructor is a
convenience that creates a StringBuilder to append to. Obtain this StringBuilder
with out() or obtain its contents as a String with toString(). If you specify a single
Locale argument, the resulting Formatter uses the specified locale with a
StringBuilder.

You can use a Formatter to write formatted output to a file by specifying either the
File object or filename as a String. Variants of these constructors allow you to specify
the name of the charset to use for character-to-byte conversion and also a Locale. Note
that these methods overwrite existing files rather than appending to them. Other
constructors create an Appendable object for you based on the
java.io.OutputStream or java.io.PrintStream you specify. In the
OutputStream case, you may optionally specify the charset to use or the charset and a
Locale.

The Format String and Format Specifiers

The API for Formatter and Formatter-based convenience methods is relatively simple.
The power of these formatting methods lies in the format string that is the first argument

Chapter 16. java.util and Subpackages Page 37 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(or second argument if a Locale is specified) to the various format() and
printf() methods. The format string may contain any amount of regular text, which
is printed or appended literally to the destination Appendable object. This plain text may
be interspersed with format specifiers which specify how a subsequent argument is to be
formatted as a string. In contrast to the simple API, the grammar for these format specifiers
is surprisingly complex. Experienced C programmers will find that the grammar is largely
compatible with the printf() format string grammar of the standard C library.

Each format specifier begins with a percent sign and ends with a one- or two-character
conversion type that specifies most of the details of the conversion and formatting. In
between these two are optional flags that provide additional details about how the
formatting should be done. The general syntax of a format specifier is as follows. Square
brackets indicate optional items:

%[argument][flags][width][.precision]type

Note that the percent sign and the type are the only two required portions of a format
specifier. We begin, therefore, with a listing of conversion types (see Table 16-1). A
discussion of argument, flags, width, and precision follows. In the table of
conversion types below, if uppercase and lowercase variants of the type specifier are listed
together, the uppercase variant produces the same output as the lowercase variant except
that all lowercase letters are converted to uppercase. Note that format() never throws
NullPointerException because of null arguments following the format string. A
null argument is formatted as "null" or "NULL" for all conversion characters except %b
and %B, which produce "false" or "FALSE".

Table 16-1. Formatter conversion types

Conversion Description

Simple conversions

%% Outputs a single percent sign.This is simply an escape sequence used to embed percent signs literally in the output
string. This conversion does not use an argument.

%n Outputs the platform-specific line separator. This conversion represents the value returned by
System.getProperty("line.separator"). This conversion does not use an argument.

%s, %S
Formats and outputs the argument as a string, optionally converting it to uppercase for the %S conversion. The
argument may be of any type. If the argument implements Formattable, its formatTo() method is called to
perform the formatting. Otherwise, its toString() method is called to convert it to a string. If the argument is
null, the output string is "null" or "NULL".

%c, %C Outputs the argument as a single character. The argument type must be Byte, Short, Character, or Integer.
The argument value must represent a valid Unicode code point. (See Character.isValidCodePoint().)

%b, %B
Outputs the argument value as the string "true" or "false" (or "TRUE" or "FALSE"). The argument may be of any
type and any value. If it is a Boolean argument, the output reflects the argument value. Otherwise, if the argument
is null, the output is "false" or "FALSE". For any other value, the output is "true" or "TRUE". Note that this differs
from normal Java conversions in which boolean values are not convertible to or from any other type.

%h, %H Outputs the hexadecimal representation of the hashcode for the argument. Arguments of any type and value are
allowed. This conversion type is useful mainly for debugging.

Chapter 16. java.util and Subpackages Page 38 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Conversion Description

Numeric Conversions

%d Formats the argument as a base-10 integer. The argument must be a Byte, Short, Integer, Long, or
BigInteger.

%o Formats the argument as a base-8 octal integer. The allowed argument types are the same as for %d. For any
argument type other than BigInteger, the value is treated as unsigned.

%x, %X Formats the argument as a base-16 hexadecimal integer. The allowed argument types and values are the same as
for %d. For any argument type other than BigInteger, the value is treated as unsigned.

%e, %E

Formats the argument as a base-10 floating-point number, using exponential notation. The output consists of a
single digit, a locale-specific decimal point, and the number of fractional digits specified by the precision of the
format specifier, or six fractional digits if no precision is specified. These digits are followed by the letter e or
E and the exponent of the number. The argument must be a Float, Double, or BigDecimal. The values NaN and
Infinity are formatted as "NaN" and "Infinity" or their uppercase equivalents.

%f
Formats the argument as a floating-point number in base-10, without using exponential notation. If the number
is large, this may produce quite a few digits. Because exponential notation is never used, the output will never
include a letter, and there is no uppercase variant of this conversion. Legal argument types and special-case values
are as for %e.

%g, %G

Formats the argument as a base-10 floating-point number, displaying no more than the number of significant digits
specified by the precision of the format specifier, or no more than 6 significant digits if no precision is
specified. If the value has more than the allowed number of significant digits, it is printed using exponential notation
(see %e) to limit the display to the specified number of digits. Otherwise, all digits of the value are printed explicitly
as they would be with the %f conversion type. Legal argument types and special case values are as for %e.

%a, %A Formats the argument in hexadecimal floating-point format. Legal argument types and special case values are as
for %e.

Dates and Times

%t, %T

All date and time format types are two-letter codes beginning with %t or %T. The specific format types are listed
below, in alphabetical order, using %t as the prefix. For uppercase, use %T instead. Upper- and lowercase variants
of the second letter of a time or date format type are sometimes completely unrelated. Other times, the lowercase
conversion produces an abbreviation of the value produced by the uppercase conversion. The argument for a date
or time conversion must be a Date, Calendar, or Long. In the case of Long, the value is interpreted as milliseconds
since the epoch, as in System currentTimeMillis().

%tA The locale-specific full name of the day of the week.
%ta The locale-specific abbreviation of the day of the week.

%tB The locale-specific name of the month. See %tm.

%tb The locale-specific abbreviation for the month.
%tC The century: the year divided by 100, with leading zeros if necessary to produce a value from 00 to 99
%tc The complete date and time. Equivalent to "%ta %tb %td %tT %tZ %tY".
%tD The date in a short numeric form used in the US locale. Equivalent to "%tm/%td/%ty".

%td The day of the month, as a two-digit number between 01 and 31. See %te.

%tE The date expressed as milliseconds since Midnight UTC on January 1st, 1970.

%te The day of the month as a one- or two-digit number without leading zeros between 1 and 31. See %td.

%tF The numeric date in ISO8601 format: %tY-%tm-%td.

%tH Hour of the day using a 24-hour clock, formatted as two digits between 00 and 23. See %tI.

%th The abbreviated month name. Same as %tb.

%tI Hour of the day using a 12-hour clock, formatted as two digits between 01 and 12. See %tH and %tP.

%tj The day of the year as three digits with leading zeros if necessary: 001-366

%tk Hour of the day on a 24-hour clock using one or two digits without a leading zero: 0-23. See %tl.

%tL Milliseconds within the second, expressed as three digits with leading zeros: 000-999.
%tl Hour of the day on a 12-hour clock using one or two digits without a leading zero: 1-12.
%tM Minute within the hour as two digits with a leading zero if necessary: 00-59.

Chapter 16. java.util and Subpackages Page 39 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Conversion Description

%tm The month of the year as a two-digit number between 01 and 12, or between 01 and 13 for lunar calendars. See
%tB and %tb.

%tN Nanosecond within the second, expressed as nine digits with leading zeros if necessary. Note that platforms are
not required to able to resolve times with nanosecond precision.

%tP The locale-specific morning or afternoon indicator (such as "am" or "pm") used with 12-hour clocks. %tP uses
lowercase and %TP uses uppercase.

%tp Like %tP but uses uppercase for both %tp and %Tp variants.

%tR The hour and minute on a 24-hour clock. Equivalent to "%tH:%tM".

%tr The hour, minute, and second on a 12-hour clock. Equivalent to "%tI:%tM:%tS %tP" except that the am/pm
indicator %tP may be in a different locale-dependent position.

%tS Seconds within the minute, as two digits with a leading zero if necessary. The range is normally 00-59, but a value
of 60 is allowed for leap seconds.

%ts Seconds since the beginning of the epoch. See %tE.

%tT The time in hours, minutes, and seconds using 24-hour format. Equivalent to "%tH:%tM:%tS".
%tY The year, using at least four digits, formatted with leading zeros, if necessary.
%ty The last two digits of the year, 00-99
%tZ An abbreviation for the time zone.
%tz The time zone as numeric offset from GMT.

Argument Specifier

Every format specifier in a format string except for %% and %n requires an argument that
contains the value to format. These arguments follow the format string in the call to
format() or printf(). By default, a format specifier uses the next unused argument.
In the following printf() call, the first and second %s format specifiers format the
second and third arguments, respectively:

out.printf("Name: %s %s%n", first, last);

If a format specifier includes the character < after the %, it specifies that the argument of
the previous format specifier should be reused. This allows the same object (such as a date)
to be formatted more than once (yielding a formatted date and time, for example):

out.printf("Date: %tD%nTime: %<tr%n", System.currentTimeMillis());

It is an error to use < in the first format specifier of a format string.

Argument numbers may also be specified absolutely. If the % sign is followed by one or
more digits and a $ sign, those digits specify an argument number. For example %1$d
specifies that the first argument following the format string should be formatted as an
integer. Absolute argument numbers are particularly useful for localization since the
different translations of a message may need to interpolate the arguments in a different
order. The following example includes a format string that might be used in a locale where
a person's family name is typically printed (in uppercase) before the given name. Note that
the arguments are not passed in the same order that they are formatted.

String name = String.format("%2$S, %1$s", firstname, lastname);

Chapter 16. java.util and Subpackages Page 40 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Neither absolute argument indexing with a number and $ character or relative argument
indexing with < affect the order in which arguments are interpolated for format specifiers
that use neither $ or <. The first format specifier that has neither an absolute or relative
argument specification uses the first argument following the format string, regardless of
what has come before. The code above could be rewritten like this, for example:

String name = String.format("%2$S, %s", firstname, lastname);

Flags

Following the optional argument specifier, a format specifier may include one or more flag
characters. The defined flags, their effects, and the format types for which they are legal
are specified in Table 16-2:

Table 16-2. Formatter flags

Flag Description

-
A hyphen specifies that the formatted value should be left-justified within the specified width. This flag can be used with
any conversion type except %n as long as the conversion specifier also includes a width (see below). When a width is specified
without this flag, the formatted string is padded on the left to produce right-justified output.

#

The # flag specifies that output should appear in an "alternate form" that depends on the type being formatted. For %o
conversions, this flag specifies that the output should include a leading 0. For %x and %X conversions, it specifies that output
should include a leading 0x or 0X. For the %s and %S conversions, the # flag may be used if the argument implements
Formattable. In this case, the flag is passed on to the formatTo() method of the argument, and it is up to that
formatTo() method to produce its output in some alternate form.

+
This flag specifies that numeric output should always include a sign: a value that is nonnegative will have "+" added in front
of it. This flag may be used with any numeric conversion that may yield a signed result. This includes %d, %e, %f, %g, %a,
and their uppercase variants. It also includes %o, %x, and %X conversions applied to BigInteger arguments.

The space character is a (hard-to-read) flag that specifies that non-negative values should be prefixed with a space. This
flag may be used with the same conversion and argument types as the + flag, and is useful when aligning positive and
negative numbers in a column

(
This flag specifies that negative numbers should be enclosed in parentheses, as is commonly done in financial statements,
for example. This flag may be used with the same format and argument types as the + flag, except that it may not be used
with %a conversions.

0 The digit zero, used as a flag, specifies that numeric values should be padded on the left (after the sign character, if any)
with zeros. This flag may be used only if a width is specified, and may not be used in conjunction with the - flag.

,
This flag specifies that numbers should be formatted using the locale-specific grouping separator. In the US locale, for
example, a comma would appear every three digits to separate the number into thousands, millions, and so on. This flag
may be used with %d, %e, %E, %f, %g, and %G conversions only.

Width

The width portion of a format specifier is one or more digits that specify the minimum
number of characters to be produced. If the formatted value is narrower than the specified
width, (by default) it is padded on the left with spaces, producing a right-justified value.
The - and 0 flags can be used to specify left-justification or padding with zeros instead.

A width may be specified with any format type except %n.
Precision

The precision portion of a format specifier is one or more digits following a decimal
point. The meaning of this number depends on which format type it is used with:

Chapter 16. java.util and Subpackages Page 41 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• For %e, %E, and %f, the precision specifies the number of digits to appear after the
decimal point. Zeros are appended on the right, if necessary. The default precision is
6.

• For %g and %G format types, the precision specifies the total number of significant
digits to be displayed. As a corollary, it specifies the largest and smallest values that
can be displayed without resorting to exponential notation. The default precision is
6. If a precision of 0 is specified, it is treated as a precision of 1.

• For %s, %h and %b format types, and their uppercase variants, the precision specifies
the maximum number of characters to be output. If no precision is specified, there is
no maximum. If the formatted output would exceed the precision of characters, it
is truncated. If precision is smaller than width, the formatted value is first
truncated as necessary and then padded within the specified width.

• Specifying a precision for any other conversion type causes an exception at runtime.

Synopsis

Figure 16-21. java.util.Formatter

public final class Formatter implements java.io.Closeable, java.io.Flushable {
// Public Constructors
 public Formatter();
 public Formatter(java.io.PrintStream ps);
 public Formatter(java.io.OutputStream os);
 public Formatter(java.io.File file) throws java.io.FileNotFoundException;
 public Formatter(String fileName) throws java.io.FileNotFoundException;
 public Formatter(Locale l);
 public Formatter(Appendable a);
 public Formatter(java.io.OutputStream os, String csn)
 throws java.io.UnsupportedEncodingException;
 public Formatter(java.io.File file, String csn)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(Appendable a, Locale l);
 public Formatter(String fileName, String csn)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(String fileName, String csn, Locale l)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(java.io.File file, String csn, Locale l)
 throws java.io.FileNotFoundException, java.io.UnsupportedEncodingException;
 public Formatter(java.io.OutputStream os, String csn, Locale l)
 throws java.io.UnsupportedEncodingException;
// Nested Types
 public enum BigDecimalLayoutForm;
// Public Instance Methods
 public java.util.Formatter format(String format, Object... args);
 public java.util.Formatter format(Locale l, String format, Object... args);
 public java.io.IOException ioException();
 public Locale locale();
 public Appendable out();
// Methods Implementing Closeable
 public void close();
// Methods Implementing Flushable
 public void flush();
// Public Methods Overriding Object

Chapter 16. java.util and Subpackages Page 42 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public String toString();
}

Passed To

Formattable.formatTo()

Formatter.BigDecimalLayoutForm java.util

Java 5.0 serializable comparable enum

This enumerated type is intended for internal use by the Formatter class, but was
inadvertently declared public. This type serves no useful purpose and should not be used.
It will likely be removed in a future release.

public enum Formatter.BigDecimalLayoutForm {
// Enumerated Constants
 SCIENTIFIC,
 DECIMAL_FLOAT;
// Public Class Methods
 public static Formatter.BigDecimalLayoutForm valueOf(String name);
 public static final Formatter.BigDecimalLayoutForm[] values();
}

FormatterClosedException java.util

Java 5.0 serializable unchecked

An exception of this type is thrown when an attempt is made to use a Formatter whose
close() method has been called.

Figure 16-22. java.util.FormatterClosedException

public class FormatterClosedException extends IllegalStateException {
// Public Constructors
 public FormatterClosedException();
}

GregorianCalendar java.util

Chapter 16. java.util and Subpackages Page 43 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1 cloneable serializable comparable

This concrete subclass of Calendar implements the standard solar calendar with years
numbered from the birth of Christ that is used is most locales throughout the world. You
do not typically use this class directly, but instead obtain a Calendar object suitable for
the default locale by calling Calendar.getInstance(). See Calendar for details on
working with Calendar objects. There is a discontinuity in the Gregorian calendar that
represents the historical switch from the Julian calendar to the Gregorian calendar. By
default, GregorianCalendar assumes that this switch occurs on October 15, 1582. Most
programs need not be concerned with the switch.

Figure 16-23. java.util.GregorianCalendar

public class GregorianCalendar extends Calendar {
// Public Constructors
 public GregorianCalendar();
 public GregorianCalendar(Locale aLocale);
 public GregorianCalendar(TimeZone zone);
 public GregorianCalendar(TimeZone zone, Locale aLocale);
 public GregorianCalendar(int year, int month, int dayOfMonth);
 public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay,
 int minute);
 public GregorianCalendar(int year, int month, int dayOfMonth, int hourOfDay, int minute,
 int second);
// Public Constants
 public static final int AD; =1
 public static final int BC; =0
// Public Instance Methods
 public final Date getGregorianChange();
 public boolean isLeapYear(int year);
 public void setGregorianChange(Date date);
// Public Methods Overriding Calendar
 public void add(int field, int amount);
5.0 public Object clone();
 public boolean equals(Object obj);
1.2 public int getActualMaximum(int field);
1.2 public int getActualMinimum(int field);
 public int getGreatestMinimum(int field);
 public int getLeastMaximum(int field);
 public int getMaximum(int field);
 public int getMinimum(int field);
5.0 public TimeZone getTimeZone();
 public int hashCode();
 public void roll(int field, boolean up);
1.2 public void roll(int field, int amount);
5.0 public void setTimeZone(TimeZone zone);
// Protected Methods Overriding Calendar
 protected void computeFields();
 protected void computeTime();
}

Passed To

javax.xml.datatype.DatatypeFactory.newXMLGregorianCalendar()

Chapter 16. java.util and Subpackages Page 44 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar()

HashMap<K,V> java.util

Java 1.2 cloneable serializable collection

This class implements the Map interface using an internal hashtable. It supports all
optional Map methods, allows key and value objects of any types, and allows null to be
used as a key or a value. Because HashMap is based on a hashtable data structure, the
get() and put() methods are very efficient. HashMap is much like the Hashtable
class, except that the HashMap methods are not synchronized (and are therefore faster),
and HashMap allows null to be used as a key or a value. If you are working in a
multithreaded environment, or if compatibility with previous versions of Java is a concern,
use Hashtable. Otherwise, use HashMap.

If you know in advance approximately how many mappings a HashMap will contain, you
can improve efficiency by specifying initialCapacity when you call the
HashMap() constructor. The initialCapacity argument times the loadFactor
argument should be greater than the number of mappings the HashMap will contain. A
good value for loadFactor is 0.75; this is also the default value. See Map for details on
the methods of HashMap. See also TreeMap and HashSet.

Figure 16-24. java.util.HashMap<K,V>

public class HashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>, Cloneable, Serializable {
// Public Constructors
 public HashMap();
 public HashMap(int initialCapacity);
 public HashMap(Map<? extends K,? extends V> m);
 public HashMap(int initialCapacity, float loadFactor);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding AbstractMap
 public Object clone();
}

Chapter 16. java.util and Subpackages Page 45 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

LinkedHashMap

HashSet<E> java.util

Java 1.2 cloneable serializable collection

This class implements Set using an internal hashtable. It supports all optional Set and
Collection methods and allows any type of object or null to be a member of the set.
Because HashSet is based on a hashtable, the basic add(), remove(), and
contains() methods are all quite efficient. HashSet makes no guarantee about the
order in which the set elements are enumerated by the Iterator returned by
iterator(). The methods of HashSet are not synchronized. If you are using it in a
multithreaded environment, you must explicitly synchronize all code that modifies the set
or obtain a synchronized wrapper for it by calling
Collections.synchronizedSet().

If you know in advance approximately how many mappings a HashSet will contain, you
can improve efficiency by specifying initialCapacity when you call the
HashSet() constructor. The initialCapacity argument times the loadFactor
argument should be greater than the number of mappings the HashSet will contain. A
good value for loadFactor is 0.75; this is also the default value. See Set and
Collection for details on the methods of HashSet. See also TreeSet and HashMap.

Figure 16-25. java.util.HashSet<E>

public class HashSet<E> extends AbstractSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors
 public HashSet();
 public HashSet(Collection<? extends E> c);
 public HashSet(int initialCapacity);
 public HashSet(int initialCapacity, float loadFactor);
// Methods Implementing Set
 public boolean add(E o);
 public void clear();
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();

Chapter 16. java.util and Subpackages Page 46 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Methods Overriding Object
 public Object clone();
}

Subclasses

LinkedHashSet

Hashtable<K,V> java.util

Java 1.0 cloneable serializable collection

This class implements a hashtable data structure, which maps key objects to value objects
and allows the efficient lookup of the value associated with a given key. In Java 1.2 and
later Hashtable has been modified to impement the Map interface. The HashMap class
is typically preferred over this one, although the synchronized methods of this class are
useful in multi-threaded applications. (But see
java.util.concurrent.ConcurrentHashMap.) In Java 5.0 this class has been made
generic along with the Map interface. The type variable K represents the type of the
hashtable keys and the type variable V represents the type of the hashtable values.

put() associates a value with a key in a Hashtable. get() retrieves a value for a
specified key. remove() deletes a key/value association. keys() and elements()
return Enumeration objects that allow you to iterate through the complete set of keys
and values stored in the table. Objects used as keys in a Hashtable must have valid
equals() and hashCode() methods (the versions inherited from Object are okay).
null is not legal as a key or value in a Hashtable.

Figure 16-26. java.util.Hashtable<K,V>

public class Hashtable<K,V> extends Dictionary<K,V> implements Map<K,V>,
 Cloneable, Serializable {
// Public Constructors
 public Hashtable();
1.2 public Hashtable(Map<? extends K,? extends V> t);
 public Hashtable(int initialCapacity);
 public Hashtable(int initialCapacity, float loadFactor);
// Public Instance Methods
 public void clear(); Implements:Map synchronized
 public boolean contains(Object value); synchronized
 public boolean containsKey(Object key); Implements:Map synchronized
 public V get(Object key); Implements:Map synchronized
 public boolean isEmpty(); Implements:Map synchronized default:true
 public V put(K key, V value); Implements:Map synchronized
 public V remove(Object key); Implements:Map synchronized
 public int size(); Implements:Map synchronized

Chapter 16. java.util and Subpackages Page 47 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Methods Implementing Map
 public void clear(); synchronized
 public boolean containsKey(Object key); synchronized
1.2 public boolean containsValue(Object value);
1.2 public Set<Map.Entry<K,V>> entrySet();
1.2 public boolean equals(Object o); synchronized
 public V get(Object key); synchronized
1.2 public int hashCode(); synchronized
 public boolean isEmpty(); synchronized default:true
1.2 public Set<K> keySet();
 public V put(K key, V value); synchronized
1.2 public void putAll(Map<? extends K,? extends V> t); synchronized
 public V remove(Object key); synchronized
 public int size(); synchronized
1.2 public Collection<V> values();
// Public Methods Overriding Dictionary
 public Enumeration<V> elements(); synchronized
 public Enumeration<K> keys(); synchronized
// Public Methods Overriding Object
 public Object clone(); synchronized
 public String toString(); synchronized
// Protected Instance Methods
 protected void rehash();
}

Subclasses

Properties

IdentityHashMap<K,V> java.util

Java 1.4 cloneable serializable collection

This Map implementation has a API that is very similar to HashMap, and uses an internal
hashtable, like HashMap does. However, it behaves differently from HashMap in one very
important way. When testing two keys to see if they are equal, HashMap,
LinkedHashMap and TreeMap use the equals() method to determine whether the
two objects are indistinguishable in terms of their content or state. IdentityHashMap is
different: it uses the == operator to determine whether the two key objects are identical—
whether they are exactly the same object. This one difference in how key equality is tested
has profound ramifications for the behavior of the Map. In most cases, the equality testing
of a HashMap, LinkedHashMap or TreeMap is the appropriate behavior, and you should
use one of those classes. For certain purposes, however, the identity testing of
IdentityHashMap is what is required.

Figure 16-27. java.util.IdentityHashMap<K,V>

public class IdentityHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V>,
 Serializable, Cloneable {

Chapter 16. java.util and Subpackages Page 48 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Constructors
 public IdentityHashMap();
 public IdentityHashMap(int expectedMaxSize);
 public IdentityHashMap(Map<? extends K,? extends V> m);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public boolean equals(Object o);
 public V get(Object key);
 public int hashCode();
 public boolean isEmpty(); default:true
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Public Methods Overriding AbstractMap
 public Object clone();
}

IllegalFormatCodePointException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when an int
used to represent a Unicode character is out of range.

Figure 16-28. java.util.IllegalFormatCodePointException

public class IllegalFormatCodePointException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatCodePointException(int c);
// Public Instance Methods
 public int getCodePoint();
// Public Methods Overriding Throwable
 public String getMessage();
}

IllegalFormatConversionException java.util

Java 5.0 serializable unchecked

Chapter 16. java.util and Subpackages Page 49 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An IllegalFormatException of this type is thrown by a Formatter when the type
of the format() or printf() argument does not match the type required by the
corresponding conversion specifier in the format string.

Figure 16-29. java.util.IllegalFormatConversionException

public class IllegalFormatConversionException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatConversionException(char c, Class<?> arg);
// Public Instance Methods
 public Class<?> getArgumentClass();
 public char getConversion();
// Public Methods Overriding Throwable
 public String getMessage();
}

IllegalFormatException java.util

Java 5.0 serializable unchecked

An exception of this type is thrown by a Formatter when there is problem with the format
string. This package defines many subclasses of this exception type to describe particular
format string problems.

Figure 16-30. java.util.IllegalFormatException

public class IllegalFormatException extends IllegalArgumentException {
// No Constructor
}

Subclasses

DuplicateFormatFlagsException,
FormatFlagsConversionMismatchException,
IllegalFormatCodePointException, IllegalFormatConversionException,
IllegalFormatFlagsException, IllegalFormatPrecisionException,
IllegalFormatWidthException, MissingFormatArgumentException,
MissingFormatWidthException, UnknownFormatConversionException,
UnknownFormatFlagsException

Chapter 16. java.util and Subpackages Page 50 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

IllegalFormatFlagsException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a format
string contains an illegal combination of flags.

Figure 16-31. java.util.IllegalFormatFlagsException

public class IllegalFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

IllegalFormatPrecisionException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the
precision of a format string is illegal.

Figure 16-32. java.util.IllegalFormatPrecisionException

public class IllegalFormatPrecisionException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatPrecisionException(int p);
// Public Instance Methods
 public int getPrecision();
// Public Methods Overriding Throwable
 public String getMessage();
}

Chapter 16. java.util and Subpackages Page 51 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

IllegalFormatWidthException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when the width
of a format string is illegal.

Figure 16-33. java.util.IllegalFormatWidthException

public class IllegalFormatWidthException extends IllegalFormatException {
// Public Constructors
 public IllegalFormatWidthException(int w);
// Public Instance Methods
 public int getWidth();
// Public Methods Overriding Throwable
 public String getMessage();
}

InputMismatchException java.util

Java 5.0 serializable unchecked

An exception of this type is thrown by a Scanner that is not of the expected type or is
out of range. Note that the Scanner implements the Iterator interface, and this
exception is a subclass of NoSuchElementException, which is thrown by
Iterator.next() when no more elements are available.

Figure 16-34. java.util.InputMismatchException

public class InputMismatchException extends NoSuchElementException {
// Public Constructors
 public InputMismatchException();
 public InputMismatchException(String s);
}

Chapter 16. java.util and Subpackages Page 52 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

InvalidPropertiesFormatException java.util

Java 5.0 serializable checked

An exception of this type is thrown by Properties.loadFromXML() if the specified
input stream does not contain appropriate XML.

Figure 16-35. java.util.InvalidPropertiesFormatException

public class InvalidPropertiesFormatException extends java.io.IOException {
// Public Constructors
 public InvalidPropertiesFormatException(String message);
 public InvalidPropertiesFormatException(Throwable cause);
}

Thrown By

Properties.loadFromXML()

Iterator<E> java.util

Java 1.2

This interface defines methods for iterating, or enumerating, the elements of a collection.
It has been made generic in Java 5.0 and the type variable E represents the type of the
elements in the collection. The hasNext() method returns true if there are more
elements to be enumerated or false if all elements have already been returned. The
next() method returns the next element. These two methods make it easy to loop
through an iterator with code such as the following:

for(Iterator i = c.iterator(); i.hasNext();)
 processObject(i.next());

In Java 5.0, collections and other classes that can return an Iterator implement the
java.lang.Iterable interface, which allows them to be iterated much more simply
with the for/in looping statement.

The Iterator interface is much like the Enumeration interface. In Java 1.2,
Iterator is preferred over Enumeration because it provides a well-defined way to safely

Chapter 16. java.util and Subpackages Page 53 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

remove elements from a collection while the iteration is in progress. The remove()
method removes the object most recently returned by next() from the collection that
is being iterated through. Note, however, that support for remove() is optional; if an
Iterator does not support remove(), it throws a
java.lang.UnsupportedOperationException when you call it. While you are
iterating through a collection, you are allowed to modify the collection only by calling the
remove() method of the Iterator. If the collection is modified in any other way while
an iteration is ongoing, the Iterator may fail to operate correctly, or it may throw a
ConcurrentModificationException.

public interface Iterator<E> {
// Public Instance Methods
 boolean hasNext();
 E next();
 void remove();
}

Implementations

ListIterator, Scanner
Returned By

Too many methods to list.

LinkedHashMap<K,V> java.util

Java 1.4 cloneable serializable collection

This class is a Map implementation based on a hashtable, just like its superclass
HashMap. It defines no new public methods, and can be used exactly as HashMap is used.
What is unique about this Map is that in addition to the hashtable data structure, it also
uses a doubly-linked list to connect the keys of the Map into an internal list which defines
a predictable iteration order.

You can iterate through the keys or values of a LinkedHashMap by calling
entrySet(), keySet(), or values() and then obtaining an Iterator for the
returned collection, just as you would for a HashMap. When you do this, however, the keys
and/or values are returned in a well-defined order rather than the essentially random order
provided by a HashMap. The default ordering for LinkedHashMap is the insertion order
of the key: the first key inserted into the Map is enumerated first (as is the value associated
with it), and the last entry inserted is enumerated last. Note that this order is not affect by
re-insertions. That is, if a LinkedHashMap contains a mapping from a key k to a value
v1, and you call the put() method to map from k to a new value v2, this does not change

Chapter 16. java.util and Subpackages Page 54 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the insertion order, or the iteration order of the key k. The iteration order of a value in the
map is the iteration order of the key with which it is associated.

Insertion order is the default iteration order for this class, but if you instantiate a
LinkedHashMap with the three-argument constructor, and pass true for the third
argument, then the iteration order will be based on access order: the first key returned by
an iterator is the one that was least-recently used in a get() or put() operation. The
last key returned is the one that has been most-recently used. As with insertion order, the
values() collection is iterated in the order defined by the keys with which those values
are associated.

"Access ordering" is particularly useful for implementing "LRU" caches from which the
Least-Recently Used elements are periodically purged. To facilitate this use,
LinkedHashMap defines the protected removeEldestEntry() method. Each time the
put() method is called (or for each mapping added by putAll()) the
LinkedHashMap calls removeEldestEntry() and passes the least-recently used (or
first inserted if insertion order is being used) Map.Entry object. If the method returns
true, then that entry will be removed from the map. In LinkedHashMap,
removeEldestEntry() always returns false, and old entries are never automatically
removed, but you can override this behavior in a subclass. The decision to remove an old
entry might be based on the content of the entry itself, or might more simply be based on
the size() of the LinkedHashMap. Note that removeEldestEntry() need simply
return true or false; it should not remove the entry itself.

Figure 16-36. java.util.LinkedHashMap<K,V>

public class LinkedHashMap<K,V> extends HashMap<K,V> implements Map<K,V> {
// Public Constructors
 public LinkedHashMap();
 public LinkedHashMap(int initialCapacity);
 public LinkedHashMap(Map<? extends K,? extends V> m);
 public LinkedHashMap(int initialCapacity, float loadFactor);
 public LinkedHashMap(int initialCapacity, float loadFactor, boolean accessOrder);
// Methods Implementing Map
 public void clear();
 public boolean containsValue(Object value);
 public V get(Object key);
// Protected Instance Methods
 protected boolean removeEldestEntry(Map.Entry<K,V> eldest); constant
}

LinkedHashSet<E> java.util

Chapter 16. java.util and Subpackages Page 55 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 cloneable serializable collection

This subclass of HashSet is a Set implementation based on a hashtable. It defines no new
methods and is used just like a HashSet is used. What is unique about a
LinkedHashSet is that in addition to the hashtable data structure, it also uses a doubly-
linked list to connect the elements of the set into an internal list in the order in which they
were inserted. This means that the Iterator returned by the inherited iterator()
method always enumerates the elements of the set in the order which they were inserted.
By contrast, the elements of a HashSet are enumerated in an order that is essentially
random. Note that the iteration order is not affected by reinsertion of set elements. That
is, if you attempt to add an element that already exists in the set, the iteration order of the
set is not modified. If you delete an element and then reinsert it, the insertion order, and
therefore the iteration order, does change.

Figure 16-37. java.util.LinkedHashSet<E>

public class LinkedHashSet<E> extends HashSet<E> implements Set<E>, Cloneable, Serializable {
// Public Constructors
 public LinkedHashSet();
 public LinkedHashSet(Collection<? extends E> c);
 public LinkedHashSet(int initialCapacity);
 public LinkedHashSet(int initialCapacity, float loadFactor);
}

LinkedList<E> java.util

Java 1.2 cloneable serializable collection

This class implements the List interface in terms of a doubly linked list. In Java 5.0, it
also implements the Queue interface and uses its list as a first-in, first-out (FIFO) queue.
LinkedList is a generic type, and the type variable E represents the type of the elements
of the list. LinkedList supports all optional methods of List, Queue and
Collection and allows list elements of any type, including null (in this it differs from
most Queue implementations, which prohibit null elements).

Chapter 16. java.util and Subpackages Page 56 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because LinkedList is implemented with a linked list data structure, the get() and
set() methods are substantially less efficient than the same methods for an
ArrayList. However, a LinkedList may be more efficient when the add() and
remove() methods are used frequently. The methods of LinkedList are not
synchronized. If you are using a LinkedList in a multithreaded environment, you
must explicitly synchronize any code that modifies the list or obtain a synchronized
wrapper object with Collections.synchronizedList().

In addition to the methods defined by the List interface, LinkedList defines methods
to get the first and last elements of the list, to add an element to the beginning or end of
the list, and to remove the first or last element of the list. These convenient and efficient
methods make LinkedList well-suited for use as a stack or queue. See List and
Collection for details on the methods of LinkedList. See also ArrayList.

Figure 16-38. java.util.LinkedList<E>

public class LinkedList<E> extends AbstractSequentialList<E>
 implements List<E>, Queue<E>, Cloneable, Serializable {
// Public Constructors
 public LinkedList();
 public LinkedList(Collection<? extends E> c);
// Public Instance Methods
 public void addFirst(E o);
 public void addLast(E o);
 public E getFirst();
 public E getLast();
 public E removeFirst();
 public E removeLast();
// Methods Implementing List
 public boolean add(E o);
 public void add(int index, E element);
 public boolean addAll(Collection<? extends E> c);
 public boolean addAll(int index, Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public E get(int index);
 public int indexOf(Object o);
 public int lastIndexOf(Object o);
 public ListIterator<E> listIterator(int index);
 public boolean remove(Object o);
 public E remove(int index);
 public E set(int index, E element);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
5.0 public E element();
5.0 public boolean offer(E o);
5.0 public E peek();
5.0 public E poll();
5.0 public E remove();
// Public Methods Overriding Object

Chapter 16. java.util and Subpackages Page 57 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public Object clone();
}

List<E> java.util

Java 1.2 collection

This interface represents an ordered collection of objects. In Java 5.0 List is a generic
interface and the type variable E represents the type of the objects in the list. Each element
in a List has an index, or position, in the list, and elements can be inserted, queried, and
removed by index. The first element of a List has an index of 0. The last element in a list
has index size()-1.

In addition to the methods defined by the superinterface, Collection, List defines a
number of methods for working with its indexed elements. get() and set() query
and set the object at a particular index, respectively. Versions of add() and
addAll() that take an index argument insert an object or Collection of objects at
a specified index. The versions of add() and addAll() that do not take an index
argument insert an object or collection of objects at the end of the list. List defines a
version of remove() that removes the object at a specified index.

The iterator() method is just like the iterator() method of Collection, except
that the Iterator it returns is guaranteed to enumerate the elements of the List in
order. listIterator() returns a ListIterator object, which is more powerful than
a regular Iterator and allows the list to be modified while iteration proceeds.
listIterator() can take an index argument to specify where in the list iteration
should begin.

indexOf() and lastIndexOf() perform linear searches from the beginning and end,
respectively, of the list, searching for a specified object. Each method returns the index of
the first matching object it finds, or -1 if it does not find a match. Finally, subList()
returns a List that contains only a specified contiguous range of list elements. The
returned list is simply a view into the original list, so changes in the original List are
visible in the returned List. This subList() method is particularly useful if you want
to sort, search, clear(), or otherwise manipulate only a partial range of a larger list.

An interface cannot specify constructors, but it is conventional that all implementations
of List provide at least two standard constructors: one that takes no arguments and

Chapter 16. java.util and Subpackages Page 58 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

creates an empty list, and a copy constructor that accepts an arbitrary Collection object
that specifies the initial contents of the new List.

As with Collection, List methods that change the contents of the list are optional, and
implementations that do not support them simply throw
java.lang.UnsupportedOperationException. Different implementations of
List may have significantly different efficiency characteristics. For example, the
get() and set() methods of an ArrayList are much more efficient than those of a
LinkedList. On the other hand, the add() and remove() methods of a
LinkedList can be more efficient than those of an ArrayList. See also Collection,
Set, Map, ArrayList, and LinkedList.

Figure 16-39. java.util.List<E>

public interface List<E> extends Collection<E> {
// Public Instance Methods
 boolean add(E o);
 void add(int index, E element);
 boolean addAll(Collection<? extends E> c);
 boolean addAll(int index, Collection<? extends E> c);
 void clear();
 boolean contains(Object o);
 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 E get(int index);
 int hashCode();
 int indexOf(Object o);
 boolean isEmpty();
 Iterator<E> iterator();
 int lastIndexOf(Object o);
 ListIterator<E> listIterator();
 ListIterator<E> listIterator(int index);
 boolean remove(Object o);
 E remove(int index);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 E set(int index, E element);
 int size();
 List<E> subList(int fromIndex, int toIndex);
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

AbstractList, ArrayList, LinkedList, Vector,
java.util.concurrent.CopyOnWriteArrayList
Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

Collections.EMPTY_LIST

Chapter 16. java.util and Subpackages Page 59 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ListIterator<E> java.util

Java 1.2

This interface is an extension of Iterator for use with ordered collections, or lists. It
defines methods to iterate forward and backward through a list, to determine the list index
of the elements being iterated, and, for mutable lists, to safely insert, delete, and edit
elements in the list while the iteration is in progress. For some lists, notably
LinkedList, using an iterator to enumerate the list's elements may be substantially more
efficient than looping through the list by index and calling get() repeatedly.

Like the Iterator interface, ListIterator has been made generic in Java 5.0. The
type variable E represents the type of the elements on the list.

hasNext() and next() are the most commonly used methods of ListIterator;
they iterate forward through the list. See Iterator for details. In addition to these two
methods, however, ListIterator also defines hasPrevious() and previous()
that allow you to iterate backward through the list. previous() returns the previous
element on the list or throws a NoSuchElementException if there is no previous
element. hasPrevious() returns true if a subsequent call to previous() returns
an object. nextIndex() and previousIndex() return the index of the object that
would be returned by a subsequent call to next() or previous(). If next() or
previous() throw a NoSuchElementException, nextIndex() returns the size of
the list, and previousIndex() returns -1.

ListIterator defines three optionally supported methods that provide a safe way to
modify the contents of the underlying list while the iteration is in progress. add() inserts
a new object into the list, immediately before the object that would be returned by a
subsequent call to next(). Calling add() does not affect the value that is returned by
next(), however. If you call previous() immediately after calling add(), the
method returns the object you just added. remove() deletes from the list the object most
recently returned by next() or previous(). You can only call remove() once per
call to next() or previous(). If you have called add(), you must call next() or
previous() again before calling remove(). set() replaces the object most recently
returned by next() or previous() with the specified object. If you have called
add() or remove(), you must call next() or previous() again before calling
set(). Remember that support for the add(), remove(), and set() methods is
optional. Iterators for immutable lists never support them, of course. An unsupported

Chapter 16. java.util and Subpackages Page 60 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method throws a java.lang.UnsupportedOperationException when called. Also,
when an iterator is in use, all modifications should be made through the iterator rather
than to the list itself. If the underlying list is modified while an iteration is ongoing, the
ListIterator may fail to operate correctly or may throw a
ConcurrentModificationException.

Figure 16-40. java.util.ListIterator<E>

public interface ListIterator<E> extends Iterator<E> {
// Public Instance Methods
 void add(E o);
 boolean hasNext();
 boolean hasPrevious();
 E next();
 int nextIndex();
 E previous();
 int previousIndex();
 void remove();
 void set(E o);
}

Returned By

AbstractList.listIterator(),
AbstractSequentialList.listIterator(), LinkedList.listIterator(),
List.listIterator(),
java.util.concurrent.CopyOnWriteArrayList.listIterator()

ListResourceBundle java.util

Java 1.1

This abstract class provides a simple way to define a ResourceBundle. You may find it
easier to subclass ListResourceBundle than to subclass ResourceBundle directly.
ListResourceBundle provides implementations for the abstract
handleGetObject() and getKeys() methods defined by ResourceBundle and
adds its own abstract getContents() method a subclass must override.
getContents() returns an Object[][]—an array of arrays of objects. This array
can have any number of elements. Each element of this array must itself be an array with
two elements: the first element of each subarray should be a String that specifies the
name of a resource, and the corresponding second element should be the value of that
resource; this value can be an Object of any desired type. See also ResourceBundle
and PropertyResourceBundle.

Chapter 16. java.util and Subpackages Page 61 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-41. java.util.ListResourceBundle

public abstract class ListResourceBundle extends ResourceBundle {
// Public Constructors
 public ListResourceBundle();
// Public Methods Overriding ResourceBundle
 public Enumeration<String> getKeys();
 public final Object handleGetObject(String key);
// Protected Instance Methods
 protected abstract Object[][] getContents();
}

Locale java.util

Java 1.1 cloneable serializable

The Locale class represents a locale: a political, geographical, or cultural region that
typically has a distinct language and distinct customs and conventions for such things as
formatting dates, times, and numbers. The Locale class defines a number of constants
that represent commonly used locales. Locale also defines a static getDefault()
method that returns the default Locale object, which represents a locale value inherited
from the host system. getAvailableLocales() returns the list of all locales supported
by the underlying system. If none of these methods for obtaining a Locale object are
suitable, you can explicitly create your own Locale object. To do this, you must specify a
language code and optionally a country code and variant string. getISOCountries()
and getISOLanguages() return the list of supported country codes and language
codes.

The Locale class does not implement any internationalization behavior itself; it merely
serves as a locale identifier for those classes that can localize their behavior. Given a
Locale object, you can invoke the various getDisplay methods to obtain a description
of the locale suitable for display to a user. These methods may themselves take a
Locale argument, so the names of languages and countries can be localized as
appropriate.

Figure 16-42. java.util.Locale

public final class Locale implements Cloneable, Serializable {
// Public Constructors
1.4 public Locale(String language);

Chapter 16. java.util and Subpackages Page 62 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public Locale(String language, String country);
 public Locale(String language, String country, String variant);
// Public Constants
 public static final Locale CANADA;
 public static final Locale CANADA_FRENCH;
 public static final Locale CHINA;
 public static final Locale CHINESE;
 public static final Locale ENGLISH;
 public static final Locale FRANCE;
 public static final Locale FRENCH;
 public static final Locale GERMAN;
 public static final Locale GERMANY;
 public static final Locale ITALIAN;
 public static final Locale ITALY;
 public static final Locale JAPAN;
 public static final Locale JAPANESE;
 public static final Locale KOREA;
 public static final Locale KOREAN;
 public static final Locale PRC;
 public static final Locale SIMPLIFIED_CHINESE;
 public static final Locale TAIWAN;
 public static final Locale TRADITIONAL_CHINESE;
 public static final Locale UK;
 public static final Locale US;
// Public Class Methods
1.2 public static Locale[] getAvailableLocales();
 public static Locale getDefault();
1.2 public static String[] getISOCountries();
1.2 public static String[] getISOLanguages();
 public static void setDefault(Locale newLocale); synchronized
// Public Instance Methods
 public String getCountry();
 public final String getDisplayCountry();
 public String getDisplayCountry(Locale inLocale);
 public final String getDisplayLanguage();
 public String getDisplayLanguage(Locale inLocale);
 public final String getDisplayName();
 public String getDisplayName(Locale inLocale);
 public final String getDisplayVariant();
 public String getDisplayVariant(Locale inLocale);
 public String getISO3Country() throws MissingResourceException;
 public String getISO3Language() throws MissingResourceException;
 public String getLanguage();
 public String getVariant();
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object obj);
 public int hashCode();
 public final String toString();
}

Passed To

Too many methods to list.
Returned By

java.text.BreakIterator.getAvailableLocales(),
java.text.Collator.getAvailableLocales(),
java.text.DateFormat.getAvailableLocales(),
java.text.MessageFormat.getLocale(),
java.text.NumberFormat.getAvailableLocales(),
Calendar.getAvailableLocales(), java.util.Formatter.locale(),
ResourceBundle.getLocale(), Scanner.locale(),
javax.security.auth.callback.LanguageCallback.getLocale()

Chapter 16. java.util and Subpackages Page 63 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Map<K,V> java.util

Java 1.2 collection

This interface represents a collection of mappings, or associations, between key objects
and value objects. Hashtables and associative arrays are examples of maps. In Java 5.0
this interface has been made generic. The type variable K represents the type of the keys
held by the map and the type variable V represents the type of the values associated with
those keys.

The set of key objects in a Map must not have any duplicates; the collection of value objects
is under no such constraint. The key objects should usually be immutable objects, or, if
they are not, care should be taken that they do not change while in use in a Map. As of Java
1.2, the Map interface replaces the abstract Dictionary class. Although a Map is not a
Collection, the Map interface is still considered an integral part, along with Set,
List, and others, of the Java collections framework.

You can add a key/value association to a Map with the put() method. Use putAll()
to copy all mappings from one Map to another. Call get() to look up the value object
associated with a specified key object. Use remove() to delete the mapping between a
specified key and its value, or use clear() to delete all mappings from a Map.
size() returns the number of mappings in a Map, and isEmpty() tests whether the
Map contains no mappings. containsKey() tests whether a Map contains the specified
key object, and containsValue() tests whether it contains the specified value. (For
most implementations, containsValue() is a much more expensive operation than
containsKey(), however.) keySet() returns a Set of all key objects in the Map.
values() returns a Collection (not a Set, since it may contain duplicates) of all value
objects in the map. entrySet() returns a Set of all mappings in a Map. The elements
of this returned Set are Map.Entry objects. The collections returned by values(),
keySet(), and entrySet() are based on the Map itself, so changes to the Map are
reflected in the collections.

An interface cannot specify constructors, but it is conventional that all implementations
of Map provide at least two standard constructors: one that takes no arguments and creates
an empty map, and a copy constructor that accepts a Map object that specifies the initial
contents of the new Map.

Implementations are required to support all methods that query the contents of a Map, but
support for methods that modify the contents of a Map is optional. If an implementation

Chapter 16. java.util and Subpackages Page 64 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

does not support a particular method, the implementation of that method simply throws
a java.lang.UnsupportedOperationException. See also Collection, Set,
List, HashMap, Hashtable, WeakHashMap, SortedMap, and TreeMap.

public interface Map<K,V> {
// Nested Types
 public interface Entry<K,V>;
// Public Instance Methods
 void clear();
 boolean containsKey(Object key);
 boolean containsValue(Object value);
 Set<Map.Entry<K,V>> entrySet();
 boolean equals(Object o);
 V get(Object key);
 int hashCode();
 boolean isEmpty();
 Set<K> keySet();
 V put(K key, V value);
 void putAll(Map<? extends K,? extends V> t);
 V remove(Object key);
 int size();
 Collection<V> values();
}

Implementations

AbstractMap, HashMap, Hashtable, IdentityHashMap, LinkedHashMap,
SortedMap, WeakHashMap, java.util.concurrent.ConcurrentMap,
java.util.jar.Attributes
Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

Collections.EMPTY_MAP, java.util.jar.Attributes.map

Map.Entry<K,V> java.util

Java 1.2

This interface represents a single mapping, or association, between a key object and a value
object in a Map. Like Map itself, Map.Entry has been made generic in Java 5.0 and defines
the same type variables that Map does.

The entrySet() method of a Map returns a Set of Map.Entry objects that represent
the set of mappings in the map. Use the iterator() method of that Set to enumerate
these Map.Entry objects. Use getKey() and getValue() to obtain the key and value
objects for the entry. Use the optionally supported setValue() method to change the
value of an entry. This method throws a

Chapter 16. java.util and Subpackages Page 65 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

java.lang.UnsupportedOperationException if it is not supported by the
implementation.

public interface Map.Entry<K,V> {
// Public Instance Methods
 boolean equals(Object o);
 K getKey();
 V getValue();
 int hashCode();
 V setValue(V value);
}

Passed To

LinkedHashMap.removeEldestEntry()

MissingFormatArgumentException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a
format() or printf() method does not have enough arguments to match the number
conversion specifiers in the format string.

Figure 16-43. java.util.MissingFormatArgumentException

public class MissingFormatArgumentException extends IllegalFormatException {
// Public Constructors
 public MissingFormatArgumentException(String s);
// Public Instance Methods
 public String getFormatSpecifier();
// Public Methods Overriding Throwable
 public String getMessage();
}

MissingFormatWidthException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when a format
conversion requires a field width, but the width is omitted.

Chapter 16. java.util and Subpackages Page 66 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-44. java.util.MissingFormatWidthException

public class MissingFormatWidthException extends IllegalFormatException {
// Public Constructors
 public MissingFormatWidthException(String s);
// Public Instance Methods
 public String getFormatSpecifier();
// Public Methods Overriding Throwable
 public String getMessage();
}

MissingResourceException java.util

Java 1.1 serializable unchecked

Signals that no ResourceBundle can be located for the desired locale or that a named
resource cannot be found within a given ResourceBundle. getClassName() returns
the name of the ResourceBundle class in question, and getKey() returns the name
of the resource that cannot be located.

Figure 16-45. java.util.MissingResourceException

public class MissingResourceException extends RuntimeException {
// Public Constructors
 public MissingResourceException(String s, String className, String key);
// Public Instance Methods
 public String getClassName();
 public String getKey();
}

Thrown By

Locale.{getISO3Country(), getISO3Language()}

NoSuchElementException java.util

Java 1.0 serializable unchecked

Chapter 16. java.util and Subpackages Page 67 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Signals that there are no elements in an object (such as a Vector) or that there are no
more elements in an object (such as an Enumeration).

Figure 16-46. java.util.NoSuchElementException

public class NoSuchElementException extends RuntimeException {
// Public Constructors
 public NoSuchElementException();
 public NoSuchElementException(String s);
}

Subclasses

InputMismatchException

Observable java.util

Java 1.0

This class is the superclass for classes that want to provide notifications of state changes
to interested Observer objects. Register an Observer to be notified by passing it to the
addObserver() method of an Observable, and de-register it by passing it to the
deleteObserver() method. You can delete all observers registered for an
Observable with deleteObservers(), and can find out how many observers have
been added with countObservers(). Note that there is not a method to enumerate the
particular Observer objects that have been added.

An Observable subclass should call the protected method setChanged() when its
state has changed in some way. This sets a "state changed" flag. After an operation or series
of operations that may have caused the state to change, the Observable subclass should
call notifyObservers(), optionally passing an arbitrary Object argument. If the
state changed flag is set, this notifyObservers() calls the update() method of each
registered Observer (in some arbitrary order), passing the Observable object, and the
optional argument, if any. Once the update() method of each Observable has been
called, notifyObservers() calls clearChanged() to clear the state changed flag.
If notifyObservers() is called when the state changed flag is not set, it does not do
anything. You can use hasChanged() to query the current state of the changed flag.

The Observable class and Observer interface are not commonly used. Most
applications prefer the event-based notification model defined by the JavaBeans

Chapter 16. java.util and Subpackages Page 68 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

component framework and by the EventObject class and EventListener interface of
this package.

public class Observable {
// Public Constructors
 public Observable();
// Public Instance Methods
 public void addObserver(Observer o); synchronized
 public int countObservers(); synchronized
 public void deleteObserver(Observer o); synchronized
 public void deleteObservers(); synchronized
 public boolean hasChanged(); synchronized
 public void notifyObservers();
 public void notifyObservers(Object arg);
// Protected Instance Methods
 protected void clearChanged(); synchronized
 protected void setChanged(); synchronized
}

Passed To

Observer.update()

Observer java.util

Java 1.0

This interface defines the update() method required for an object to observe subclasses
of Observable. An Observer registers interest in an Observable object by calling the
addObserver() method of Observable. Observer objects that have been registered
in this way have their update() methods invoked by the Observable when that object
has changed.

This interface is conceptually similar to, but less commonly used than, the
EventListener interface and its various event-specific subinterfaces.

public interface Observer {
// Public Instance Methods
 void update(Observable o, Object arg);
}

Passed To

Observable.{addObserver(), deleteObserver()}

PriorityQueue<E> java.util

Java 5.0 serializable collection

Chapter 16. java.util and Subpackages Page 69 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class is a Queue implementation that orders its elements according to a specified
Comparator or orders Comparable elements according to their compareTo()
methods. The head of the queue (the element removed by remove() and poll()) is
the smallest element on the queue according to this ordering. The Iterator return by
the iterator() method is not guaranteed to iterate the elements in their sorted order.

PriorityQueue is unbounded and prohibits null elements. It is not threadsafe.

Figure 16-47. java.util.PriorityQueue<E>

public class PriorityQueue<E> extends AbstractQueue<E> implements Serializable {
// Public Constructors
 public PriorityQueue();
 public PriorityQueue(int initialCapacity);
 public PriorityQueue(SortedSet<? extends E> c);
 public PriorityQueue(PriorityQueue<? extends E> c);
 public PriorityQueue(Collection<? extends E> c);
 public PriorityQueue(int initialCapacity, Comparator<? super E> comparator);
// Public Instance Methods
 public Comparator<? super E> comparator();
// Methods Implementing Collection
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
// Methods Implementing Queue
 public boolean offer(E o);
 public E peek();
 public E poll();
// Public Methods Overriding AbstractQueue
 public boolean add(E o);
 public void clear();
}

Properties java.util

Java 1.0 cloneable serializable collection

This class is an extension of Hashtable that allows key/value pairs to be read from and
written to a stream. The Properties class implements the system properties list, which
supports user customization by allowing programs to look up the values of named
resources. Because the load() and store() methods provide an easy way to read and
write properties from and to a text stream, this class provides a convenient way to
implement an application configuration file.

Chapter 16. java.util and Subpackages Page 70 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When you create a Properties object, you may specify another Properties object that
contains default values. Keys (property names) and values are associated in a
Properties object with the Hashtable method put(). Values are looked up with
getProperty(); if this method does not find the key in the current Properties object,
it looks in the default Properties object that was passed to the constructor method. A
default value can also be specified, in case the key is not found at all. Use
setProperty() to add a property name/value pair to the Properties object. This
Java 1.2 method is preferred over the inherited put() method because it enforces the
constraint that property names and values be strings.

propertyNames() returns an enumeration of all property names (keys) stored in the
Properties object and (recursively) all property names stored in the default
Properties object associated with it. list() prints the properties stored in a
Properties object, which can be useful for debugging. store() writes a
Properties object to a stream, writing one property per line, in name=value format. As
of Java 1.2, store() is preferred over the deprecated save() method, which writes
properties in the same way but suppresses any I/O exceptions that may be thrown in the
process. The second argument to both store() and save() is a comment that is
written out at the beginning of the property file. Finally, load() reads key/value pairs
from a stream and stores them in a Properties object. It is suitable for reading both
properties written with store() and hand-edited properties files. In Java 5.0,
storeToXML() and loadFromXML() are alternatives that write and read properties
files using a simple XML grammar.

Figure 16-48. java.util.Properties

public class Properties extends Hashtable<Object,Object> {
// Public Constructors
 public Properties();
 public Properties(Properties defaults);
// Public Instance Methods
 public String getProperty(String key);
 public String getProperty(String key, String defaultValue);
1.1 public void list(java.io.PrintWriter out);
 public void list(java.io.PrintStream out);
 public void load(java.io.InputStream inStream)
 throws java.io.IOException; synchronized
5.0 public void loadFromXML(java.io.InputStream in)
 throws java.io.IOException, InvalidPropertiesFormatException; synchronized
 public Enumeration<?> propertyNames();
1.2 public Object setProperty(String key, String value); synchronized
1.2 public void store(java.io.OutputStream out, String comments)
 throws java.io.IOException; synchronized
5.0 public void storeToXML(java.io.OutputStream os, String comment)
 throws java.io.IOException; synchronized
5.0 public void storeToXML(java.io.OutputStream os, String comment, String encoding)
throws java.io.IOException; synchronized
// Protected Instance Fields

Chapter 16. java.util and Subpackages Page 71 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected Properties defaults;
// Deprecated Public Methods
public void save(java.io.OutputStream out, String comments); synchronized
}

Subclasses

java.security.Provider
Passed To

System.setProperties(),
javax.xml.transform.Transformer.setOutputProperties()
Returned By

System.getProperties(),
javax.xml.transform.Templates.getOutputProperties(),
javax.xml.transform.Transformer.getOutputProperties()

PropertyPermission java.util

Java 1.2 serializable permission

This class is a java.security.Permission that governs read and write access to
system properties with System.getProperty() and System.setProperty(). A
PropertyPermission object has a name, or target, and a comma-separated list of
actions. The name of the permission is the name of the property of interest. The action
string can be "read" for getProperty() access, "write" for setProperty() access,
or "read,write" for both types of access. PropertyPermission extends
java.security.BasicPermission, so the name of the property supports simple
wildcards. The name "*" represents any property name. If a name ends with ".*", it
represents any property names that share the specified prefix. For example, the name
"java.*" represents "java.version", "java.vendor", "java.vendor.url", and all other
properties that begin with "java".

Granting access to system properties is not overtly dangerous, but caution is still necessary.
Some properties, such as "user.home", reveal details about the host system that malicious
code can use to mount an attack. Programmers writing system-level code and system
administrators configuring security policies may need to use this class, but applications
never need to use it.

Figure 16-49. java.util.PropertyPermission

Chapter 16. java.util and Subpackages Page 72 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public final class PropertyPermission extends java.security.BasicPermission {
// Public Constructors
 public PropertyPermission(String name, String actions);
// Public Methods Overriding BasicPermission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

PropertyResourceBundle java.util

Java 1.1

This class is a concrete subclass of ResourceBundle. It reads a Properties file from a
specified InputStream and implements the ResourceBundle API for looking up
named resources from the resulting Properties object. A Properties file contains
lines of the form:

name=value

Each such line defines a named property with the specified String value. Although you
can instantiate a PropertyResourceBundle yourself, it is more common to simply
define a Properties file and then allow ResourceBundle.getBundle() to look up
that file and return the necessary PropertyResourceBundle object. See also
Properties and ResourceBundle.

Figure 16-50. java.util.PropertyResourceBundle

public class PropertyResourceBundle extends ResourceBundle {
// Public Constructors
 public PropertyResourceBundle(java.io.InputStream stream) throws java.io.IOException;
// Public Methods Overriding ResourceBundle
 public Enumeration<String> getKeys();
 public Object handleGetObject(String key);
}

Queue<E> java.util

Java 5.0 collection

Chapter 16. java.util and Subpackages Page 73 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A Queue<E> is an ordered Collection of elements of type E. Unlike List, the Queue
interface does not permit indexed access to its elements: elements may be inserted at the
tail of the queue and may be removed from the head of the queue, but the elements in
between may not be accessed by their position. Unlike Set, Queue implementations do
not prohibit duplicate elements.

Queues may be manipulated through the methods of the Collection interface, including
iteration via the iterator() method and the Iterator object it returns. It is more
common to manipulate queues through the more specialized methods defined by the
Queue interface, however. Place an element at the tail of the queue with offer(). If the
queue is already full, offer() returns false. Remove an element from the head of the
queue with remove() or poll(). These methods differ only in the case of an empty
queue: remove() throws an unchecked NoSuchElementException and poll()
returns null. (Most queue implementations prohibit null elements for this reason, but
LinkedList is an exception.) Query the element at the head of a queue without removing
it with element() or peek(). If the queue is empty, element() throws
NoSuchElementException and peek() returns null.

Most Queue implementations order their elements in first-in, first-out (FIFO) order.
Other implementations may provide other orderings. A queue Iterator is not required
to traverse the queue's elements in order. A Queue implementation with a fixed size is a
bounded queue. When a bounded queue is full, it is not possible to insert a new element
until an element is first removed. Unlike the List and Set interfaces, the Queue interface
does not require implementations to override the equals() method, and Queue
implementations typically do not override it.

In Java 5.0, the LinkedList class has been retrofitted to implement Queue as well as
List. PriorityQueue is a Queue implementation that orders elements based on the
Comparable or Comparator interfaces. AbstractQueue is an abstract implementation
that offers partial support for simple Queue implementations. The
java.util.concurrent package defines a BlockingQueue interface that extends this
implementation and includes Queue and BlockingQueue implementations that are
useful in multithreaded programming.

Figure 16-51. java.util.Queue<E>

public interface Queue<E> extends Collection<E> {
// Public Instance Methods
 E element();
 boolean offer(E o);
 E peek();
 E poll();

Chapter 16. java.util and Subpackages Page 74 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 E remove();
}

Implementations

AbstractQueue, LinkedList, java.util.concurrent.BlockingQueue,
java.util.concurrent.ConcurrentLinkedQueue

Random java.util

Java 1.0 serializable

This class implements a pseudorandom number generator suitable for games and similar
applications. If you need a cryptographic-strength source of pseudorandomness, see
java.security.SecureRandom. nextDouble() and nextFloat() return a value
between 0.0 and 1.0. nextLong() and the no-argument version of nextInt() return
long and int values distributed across the range of those data types. As of Java 1.2, if you
pass an argument to nextInt(), it returns a value between zero (inclusive) and the
specified number (exclusive). nextGaussian() returns pseudorandom floating-point
values with a Gaussian distribution; the mean of the values is 0.0 and the standard
deviation is 1.0. nextBoolean() returns a pseudorandom boolean value, and
nextBytes() fills in the specified byte array with pseudorandom bytes. You can use
the setSeed() method or the optional constructor argument to initialize the
pseudorandom number generator with some variable seed value other than the current
time (the default) or with a constant to ensure a repeatable sequence of
pseudorandomness.

Figure 16-52. java.util.Random

public class Random implements Serializable {
// Public Constructors
 public Random();
 public Random(long seed);
// Public Instance Methods
1.2 public boolean nextBoolean();
1.1 public void nextBytes(byte[] bytes);
 public double nextDouble();
 public float nextFloat();
 public double nextGaussian(); synchronized
 public int nextInt();
1.2 public int nextInt(int n);
 public long nextLong();
 public void setSeed(long seed); synchronized
// Protected Instance Methods
1.1 protected int next(int bits);
}

Chapter 16. java.util and Subpackages Page 75 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

java.security.SecureRandom
Passed To

java.math.BigInteger.{BigInteger(), probablePrime()},
Collections.shuffle()

RandomAccess java.util

Java 1.4

This marker interface is implemented by List implementations to advertise that they
provide efficient (usually constant time) random access to all list elements. ArrayList
and Vector implement this interface, but LinkedList does not. Classes that manipulate
generic List objects may want to test for this interface with instanceof and use
different algorithms for lists that provide efficient random access than they use for lists
that are most efficiently accessed sequentially.

public interface RandomAccess {
}

Implementations

ArrayList, Vector, java.util.concurrent.CopyOnWriteArrayList

ResourceBundle java.util

Java 1.1

This abstract class allows subclasses to define sets of localized resources that can then be
dynamically loaded as needed by internationalized programs. Such resources may include
user-visible text and images that appear in an application, as well as more complex things
such as Menu objects. Use getBundle() to load a ResourceBundle subclass that is
appropriate for the default or specified locale. Use getObject(), getString(), and
getStringArray() to look up a named resource in a bundle. To define a bundle,
provide implementations of handleGetObject() and getKeys(). It is often easier,
however, to subclass ListResourceBundle or provide a Properties file that is used
by PropertyResourceBundle. The name of any localized ResourceBundle class you
define should include the locale language code, and, optionally, the locale country code.

public abstract class ResourceBundle {
// Public Constructors

Chapter 16. java.util and Subpackages Page 76 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public ResourceBundle();
// Public Class Methods
 public static final ResourceBundle getBundle(String baseName);
 public static final ResourceBundle getBundle(String baseName, Locale locale);
1.2 public static ResourceBundle getBundle(String baseName, Locale locale, ClassLoader loader);
// Public Instance Methods
 public abstract Enumeration<String> getKeys();
1.2 public Locale getLocale();
 public final Object getObject(String key);
 public final String getString(String key);
 public final String[] getStringArray(String key);
// Protected Instance Methods
 protected abstract Object handleGetObject(String key);
 protected void setParent(ResourceBundle parent);
// Protected Instance Fields
 protected ResourceBundle parent;
}

Subclasses

ListResourceBundle, PropertyResourceBundle
Passed To

java.util.logging.LogRecord.setResourceBundle()
Returned By

java.util.logging.Logger.getResourceBundle(),
java.util.logging.LogRecord.getResourceBundle()

Scanner java.util

Java 5.0

This class is a text scanner or tokenizer. It can read input from any Readable object, and
convenience constructors can read text from a specified string, file, byte stream, or byte
channel. The constructors for files, byte streams, and byte channels optionally allow you
to specify the name of the charset to use for byte-to-character conversions.

After creating a Scanner, you can configure it. useDelimiter() specifies a regular
expression (as a java.util.regex.Pattern or a String) that represents the token
delimiter. The default delimiter is any run of whitespace. useLocale() specifies the
Locale to use for scanning numbers: this may affect things like the character expected
for decimal points and the thousands separator. useRadix() specifies the radix, or base,
in which numbers should be parsed. Any value between 2 and 36 is allowed. These
configuration methods may be called at any time and are not required to be called before
scanning begins.

Scanner implements the Iterable<String> interface, and you can use the
hasNext() and next() methods of this interface to break the input into a series of
String tokens separated by whitespace or by the delimiter specified with

Chapter 16. java.util and Subpackages Page 77 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

useDelimiter(). In addition to these Iterable methods, however, Scanner defines
a number of nextX and hasNextX methods for various numeric types X.
nextLine() returns the next line of input. Two variants of the next() method accept
a regular expression as an argument and return the next chunk of text matching a specified
regular expression. The corresponding hasNext() methods accept a regular expression
and return true if the input matches it.

The skip() method ignores delimiters and skips text matching the specified regular
expression. findInLine() looks ahead for text matching the specified regular
expression in the current line. If a match is found, the Scanner advances past that text
and returns it. Otherwise, the Scanner returns null without advancing.
findWithinHorizon() is similar but looks for a match within the specified number
of characters (a horizon of 0 specifies an unlimited number).

The next() methods and its nextX variants throw a NoSuchElementException if
there is no more input text. They throw an InputMismatchException (a subclass of
NoSuchElementException) if the next token cannot be parsed as the specified type or
does not match the specified pattern. The Readable object that the Scanner reads text
from may throw a java.io.IOException, but, for ease of use, the Scanner never
propagates this exception. If an IOException occurs, the Scanner assumes that no more
input is available from the Readable. Call ioException() to obtain the most recent
IOException, if any, thrown by the Readable.

The close() method checks whether the Readable object implements the
Closeable interface and, if so, calls the close() method on that object. Once
close() has been called, any attempt to read tokens from the Scanner results in an
IllegalStateException.

See also StringTokenizer and java.io.StreamTokenizer.

Figure 16-53. java.util.Scanner

public final class Scanner implements Iterator<String> {
// Public Constructors
 public Scanner(Readable source);
 public Scanner(java.nio.channels.ReadableByteChannel source);
 public Scanner(java.io.InputStream source);
 public Scanner(java.io.File source) throws java.io.FileNotFoundException;
 public Scanner(String source);
 public Scanner(java.nio.channels.ReadableByteChannel source, String charsetName);
 public Scanner(java.io.InputStream source, String charsetName);
 public Scanner(java.io.File source, String charsetName)
 throws java.io.FileNotFoundException;
// Public Instance Methods
 public void close();

Chapter 16. java.util and Subpackages Page 78 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public java.util.regex.Pattern delimiter();
 public String findInLine(String pattern);
 public String findInLine(java.util.regex.Pattern pattern);
 public String findWithinHorizon(java.util.regex.Pattern pattern, int horizon);
 public String findWithinHorizon(String pattern, int horizon);
 public boolean hasNext(java.util.regex.Pattern pattern);
 public boolean hasNext(String pattern);
 public boolean hasNextBigDecimal();
 public boolean hasNextBigInteger();
 public boolean hasNextBigInteger(int radix);
 public boolean hasNextBoolean();
 public boolean hasNextByte();
 public boolean hasNextByte(int radix);
 public boolean hasNextDouble();
 public boolean hasNextFloat();
 public boolean hasNextInt();
 public boolean hasNextInt(int radix);
 public boolean hasNextLine();
 public boolean hasNextLong();
 public boolean hasNextLong(int radix);
 public boolean hasNextShort();
 public boolean hasNextShort(int radix);
 public java.io.IOException ioException();
 public Locale locale();
 public java.util.regex.MatchResult match();
 public String next(String pattern);
 public String next(java.util.regex.Pattern pattern);
 public java.math.BigDecimal nextBigDecimal();
 public java.math.BigInteger nextBigInteger();
 public java.math.BigInteger nextBigInteger(int radix);
 public boolean nextBoolean();
 public byte nextByte();
 public byte nextByte(int radix);
 public double nextDouble();
 public float nextFloat();
 public int nextInt();
 public int nextInt(int radix);
 public String nextLine();
 public long nextLong();
 public long nextLong(int radix);
 public short nextShort();
 public short nextShort(int radix);
 public int radix();
 public Scanner skip(java.util.regex.Pattern pattern);
 public Scanner skip(String pattern);
 public Scanner useDelimiter(java.util.regex.Pattern pattern);
 public Scanner useDelimiter(String pattern);
 public Scanner useLocale(Locale locale);
 public Scanner useRadix(int radix);
// Methods Implementing Iterator
 public boolean hasNext();
 public String next();
 public void remove();
// Public Methods Overriding Object
 public String toString();
}

Set<E> java.util

Java 1.2 collection

Chapter 16. java.util and Subpackages Page 79 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This interface represents an unordered Collection of objects that contains no duplicate
elements. That is, a Set cannot contain two elements e1 and e2 where
e1.equals(e2), and it can contain at most one null element. The Set interface defines
the same methods as its superinterface, Collection. It constrains the add() and
addAll() methods from adding duplicate elements to the Set. In Java 5.0 Set is a
generic interface and the type variable E represents the type of the objects in the set.

An interface cannot specify constructors, but it is conventional that all implementations
of Set provide at least two standard constructors: one that takes no arguments and creates
an empty set, and a copy constructor that accepts a Collection object that specifies the
initial contents of the new Set. This copy constructor must ensure that duplicate elements
are not added to the Set, of course.

As with Collection, the Set methods that modify the contents of the set are optional,
and implementations that do not support the methods throw
java.lang.UnsupportedOperationException. See also Collection, List, Map,
SortedSet, HashSet, and TreeSet.

Figure 16-54. java.util.Set<E>

public interface Set<E> extends Collection<E> {
// Public Instance Methods
 boolean add(E o);
 boolean addAll(Collection<? extends E> c);
 void clear();
 boolean contains(Object o);
 boolean containsAll(Collection<?> c);
 boolean equals(Object o);
 int hashCode();
 boolean isEmpty();
 Iterator<E> iterator();
 boolean remove(Object o);
 boolean removeAll(Collection<?> c);
 boolean retainAll(Collection<?> c);
 int size();
 Object[] toArray();
 <T> T[] toArray(T[] a);
}

Implementations

AbstractSet, HashSet, LinkedHashSet, SortedSet
Passed To

java.security.cert.PKIXBuilderParameters.PKIXBuilderParameters(
), java.security.cert.PKIXParameters.{PKIXParameters(),
setInitialPolicies(), setTrustAnchors()},
java.security.cert.X509CertSelector.{setExtendedKeyUsage(),
setPolicy()}, java.text.AttributedCharacterIterator.

Chapter 16. java.util and Subpackages Page 80 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

{getRunLimit(), getRunStart()}, Collections.{checkedSet(),
synchronizedSet(), unmodifiableSet()},
javax.security.auth.Subject.Subject()
Returned By

Too many methods to list.
Type Of

Collections.EMPTY_SET

SimpleTimeZone java.util

Java 1.1 cloneable serializable

This concrete subclass of TimeZone is a simple implementation of that abstract class that
is suitable for use in locales that use the Gregorian calendar. Programs do not normally
need to instantiate this class directly; instead, they use one of the static factory methods
of TimeZone to obtain a suitable TimeZone subclass. The only reason to instantiate this
class directly is if you need to support a time zone with nonstandard daylight-savings-time
rules. In that case, you can call setStartRule() and setEndRule() to specify the
starting and ending dates of daylight-savings time for the time zone.

Figure 16-55. java.util.SimpleTimeZone

public class SimpleTimeZone extends TimeZone {
// Public Constructors
 public SimpleTimeZone(int rawOffset, String ID);
 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int endMonth, int endDay,
 int endDayOfWeek, int endTime);
1.2 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int endMonth, int endDay, int endDayOfWeek,
 int endTime, int dstSavings);
1.4 public SimpleTimeZone(int rawOffset, String ID, int startMonth, int startDay,
 int startDayOfWeek, int startTime,
 int startTimeMode, int endMonth,
 int endDay, int endDayOfWeek, int endTime,
 int endTimeMode, int dstSavings);
// Public Constants
1.4 public static final int STANDARD_TIME; =1
1.4 public static final int UTC_TIME; =2
1.4 public static final int WALL_TIME; =0
// Public Instance Methods
1.2 public void setDSTSavings(int millisSavedDuringDST);
1.2 public void setEndRule(int endMonth, int endDay, int endTime);
 public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime);
1.2 public void setEndRule(int endMonth, int endDay, int endDayOfWeek, int endTime,
 boolean after);
1.2 public void setStartRule(int startMonth, int startDay, int startTime);
 public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime);

Chapter 16. java.util and Subpackages Page 81 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1.2 public void setStartRule(int startMonth, int startDay, int startDayOfWeek, int startTime,
 boolean after);
 public void setStartYear(int year);
// Public Methods Overriding TimeZone
 public Object clone();
1.2 public int getDSTSavings();
1.4 public int getOffset(long date);
 public int getOffset(int era, int year, int month, int day, int dayOfWeek, int millis);
 public int getRawOffset();
1.2 public boolean hasSameRules(TimeZone other);
 public boolean inDaylightTime(Date date);
 public void setRawOffset(int offsetMillis);
 public boolean useDaylightTime();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode(); synchronized
 public String toString();
}

SortedMap<K,V> java.util

Java 1.2 collection

This interface represents a Map object that keeps its set of key objects in sorted order. As
with Map, it is conventional that all implementations of this interface define a no-argument
constructor to create an empty map and a copy constructor that accepts a Map object that
specifies the initial contents of the SortedMap. Furthermore, when creating a
SortedMap, there should be a way to specify a Comparator object to sort the key objects
of the map. If no Comparator is specified, all key objects must implement the
java.lang.Comparable interface so they can be sorted in their natural order. See also
Map, TreeMap, and SortedSet.

The inherited keySet(), values(), and entrySet() methods return collections
that can be iterated in the sorted order. firstKey() and lastKey() return the lowest
and highest key values in the SortedMap. subMap() returns a SortedMap that contains
only mappings for keys from (and including) the first specified key up to (but not including)
the second specified key. headMap() returns a SortedMap that contains mappings
whose keys are less than (but not equal to) the specified key. tailMap() returns a
SortedMap that contains mappings whose keys are greater than or equal to the specified
key. subMap(), headMap(), and tailMap() return SortedMap objects that are
simply views of the original SortedMap; any changes in the original map are reflected in
the returned map and vice versa.

Figure 16-56. java.util.SortedMap<K,V>

Chapter 16. java.util and Subpackages Page 82 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface SortedMap<K,V> extends Map<K,V> {
// Public Instance Methods
 Comparator<? super K> comparator();
 K firstKey();
 SortedMap<K,V> headMap(K toKey);
 K lastKey();
 SortedMap<K,V> subMap(K fromKey, K toKey);
 SortedMap<K,V> tailMap(K fromKey);
}

Implementations

TreeMap
Passed To

Collections.{checkedSortedMap(), synchronizedSortedMap(),
unmodifiableSortedMap()}, TreeMap.TreeMap()
Returned By

java.nio.charset.Charset.availableCharsets(), Collections.
{checkedSortedMap(), synchronizedSortedMap(),
unmodifiableSortedMap()}, TreeMap.{headMap(), subMap(),
tailMap()}, java.util.jar.Pack200.Packer.properties(),
java.util.jar.Pack200.Unpacker.properties()

SortedSet<E> java.util

Java 1.2 collection

This interface is a Set that sorts its elements and guarantees that its iterator()
method returns an Iterator that enumerates the elements of the set in sorted order. As
with the Set interface, it is conventional for all implementations of SortedSet to provide
a no-argument constructor that creates an empty set and a copy constructor that expects
a Collection object specifying the initial (unsorted) contents of the set. Furthermore,
when creating a SortedSet, there should be a way to specify a Comparator object that
compares and sorts the elements of the set. If no Comparator is specified, the elements
of the set must all implement java.lang.Comparable so they can be sorted in their
natural order. See also Set, TreeSet, and SortedMap.

SortedSet defines a few methods in addition to those it inherits from the Set interface.
first() and last() return the lowest and highest objects in the set. headSet()
returns all elements from the beginning of the set up to (but not including) the specified
element. tailSet() returns all elements between (and including) the specified element
and the end of the set. subSet() returns all elements of the set from (and including) the
first specified element up to (but excluding) the second specified element. Note that all

Chapter 16. java.util and Subpackages Page 83 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

three methods return a SortedSet that is implemented as a view onto the original
SortedSet. Changes in the original set are visible through the returned set and vice versa.

Figure 16-57. java.util.SortedSet<E>

public interface SortedSet<E> extends Set<E> {
// Public Instance Methods
 Comparator<? super E> comparator();
 E first();
 SortedSet<E> headSet(E toElement);
 E last();
 SortedSet<E> subSet(E fromElement, E toElement);
 SortedSet<E> tailSet(E fromElement);
}

Implementations

TreeSet
Passed To

Collections.{checkedSortedSet(), synchronizedSortedSet(),
unmodifiableSortedSet()}, PriorityQueue.PriorityQueue(),
TreeSet.TreeSet()
Returned By

Collections.{checkedSortedSet(), synchronizedSortedSet(),
unmodifiableSortedSet()}, TreeSet.{headSet(), subSet(),
tailSet()}

Stack<E> java.util

Java 1.0 cloneable serializable collection

This class implements a last-in-first-out (LIFO) stack of objects. push() puts an object
on the top of the stack. pop() removes and returns the top object from the stack.
peek() returns the top object without removing it. In Java 1.2, you can instead use a
LinkedList as a stack.

Figure 16-58. java.util.Stack<E>

Chapter 16. java.util and Subpackages Page 84 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class Stack<E> extends Vector<E> {
// Public Constructors
 public Stack();
// Public Instance Methods
 public boolean empty();
 public E peek(); synchronized
 public E pop(); synchronized
 public E push(E item);
 public int search(Object o); synchronized
}

StringTokenizer java.util

Java 1.0

When a StringTokenizer is instantiated with a String, it breaks the string up into
tokens separated by any of the characters in the specified string of delimiters. (For
example, words separated by space and tab characters are tokens.) The
hasMoreTokens() and nextToken() methods obtain the tokens in order.
countTokens() returns the number of tokens in the string. StringTokenizer
implements the Enumeration interface, so you may also access the tokens with the
familiar hasMoreElements() and nextElement() methods. When you create a
StringTokenizer, you can specify a string of delimiter characters to use for the entire
string, or you can rely on the default whitespace delimiters. You can also specify whether
the delimiters themselves should be returned as tokens. Finally, you can optionally specify
a new string of delimiter characters when you call nextToken().

Figure 16-59. java.util.StringTokenizer

public class StringTokenizer implements Enumeration<Object> {
// Public Constructors
 public StringTokenizer(String str);
 public StringTokenizer(String str, String delim);
 public StringTokenizer(String str, String delim, boolean returnDelims);
// Public Instance Methods
 public int countTokens();
 public boolean hasMoreTokens();
 public String nextToken();
 public String nextToken(String delim);
// Methods Implementing Enumeration
 public boolean hasMoreElements();
 public Object nextElement();
}

Chapter 16. java.util and Subpackages Page 85 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Timer java.util

Java 1.3

This class implements a timer: its methods allow you to schedule one or more runnable
TimerTask objects to be executed (once or repetitively) by a background thread at a
specified time in the future. You can create a timer with the Timer() constructor. The
no-argument version of this constructor creates a regular non-daemon background thread,
which means that the Java VM will not terminate while the timer thread is running. Pass
true to the constructor if you want the background thread to be a daemon thread. In Java
5.0 you can also specify the name of the background thread when creating a Timer.

Once you have created a Timer, you can schedule TimerTask objects to be run in the
future with the various schedule() and scheduleAtFixedRate() methods. To
schedule a task for a single execution, use one of the two-argument schedule() methods
and specify the desired execution time either as a number of milliseconds in the future or
as an absolute Date. If the number of milliseconds is 0, or if the Date object represents a
time already passed, the task is scheduled for immediate execution.

To schedule a repeating task, use one of the three-argument versions of schedule() or
scheduleAtFixedRate(). These methods are passed an argument that specifies the
time (either as a number of milliseconds or as a Date object) of the first execution of the
task and another argument, period, that specifies the number of milliseconds between
repeated executions of the task. The schedule() methods schedule the task for fixed-
interval execution. That is, each execution is scheduled for period milliseconds after the
previous execution ends. Use schedule() for tasks such as animation, where it is
important to have a relatively constant interval between executions. The
scheduleAtFixedRate() methods, on the other hand, schedule tasks for fixed-rate
execution. That is, each repetition of the task is scheduled for period milliseconds after
the previous execution begins. Use scheduleAtFixedRate() for tasks, such as
updating a clock display, that must occur at specific absolute times rather than at fixed
intervals.

A single Timer object can comfortably schedule many TimerTask objects. Note, however,
that all tasks scheduled by a single Timer share a single thread. If you are scheduling many
rapidly repeating tasks, or if some tasks take a long time to execute, other tasks may have
their scheduled executions delayed.

When you are done with a Timer, call cancel() to stop its associated thread from
running. This is particularly important when you are using a timer whose associated thread

Chapter 16. java.util and Subpackages Page 86 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

is not a daemon thread, because otherwise the timer thread can prevent the Java VM from
exiting. To cancel the execution of a particular task, use the cancel() method of
TimerTask.

public class Timer {
// Public Constructors
 public Timer();
 public Timer(boolean isDaemon);
5.0 public Timer(String name);
5.0 public Timer(String name, boolean isDaemon);
// Public Instance Methods
 public void cancel();
5.0 public int purge();
 public void schedule(TimerTask task, long delay);
 public void schedule(TimerTask task, Date time);
 public void schedule(TimerTask task, long delay, long period);
 public void schedule(TimerTask task, Date firstTime, long period);
 public void scheduleAtFixedRate(TimerTask task, long delay, long period);
 public void scheduleAtFixedRate(TimerTask task, Date firstTime, long period);
}

TimerTask java.util

Java 1.3 runnable

This abstract Runnable class represents a task that is scheduled with a Timer object for
one-time or repeated execution in the future. You can define a task by subclassing
TimerTask and implementing the abstract run() method. Schedule the task for future
execution by passing an instance of your subclass to one of the schedule() or
scheduleAtFixedRate() methods of Timer. The Timer object will then invoke the
run() method at the scheduled time or times.

Call cancel() to cancel the one-time or repeated execution of a TimerTask(). This
method returns true if a pending execution was actually canceled. It returns false if the
task has already been canceled, was never scheduled, or was scheduled for one-time
execution and has already been executed. scheduledExecutionTime() returns the
time in milliseconds at which the most recent execution of the TimerTask was scheduled
to occur. When the host system is heavily loaded, the run() method may not be invoked
exactly when scheduled. Some tasks may choose to do nothing if they are not invoked on
time. The run() method can compare the return values of
scheduledExecutionTime() and System.currentTimeMillis() to determine
whether the current invocation is sufficiently timely.

Chapter 16. java.util and Subpackages Page 87 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-60. java.util.TimerTask

public abstract class TimerTask implements Runnable {
// Protected Constructors
 protected TimerTask();
// Public Instance Methods
 public boolean cancel();
 public long scheduledExecutionTime();
// Methods Implementing Runnable
 public abstract void run();
}

Passed To

Timer.{schedule(), scheduleAtFixedRate()}

TimeZone java.util

Java 1.1 cloneable serializable

The TimeZone class represents a time zone; it is used with the Calendar and
DateFormat classes. As an abstract class, TimeZone cannot be directly instantiated.
Instead, you should call the static getDefault() method to obtain a TimeZone object
that represents the time zone inherited from the host operating system. Or you can call
the static getTimeZone() method with the name of the desired zone. You can obtain a
list of the supported time-zone names by calling the static getAvailableIDs()
method.

Once you have a TimeZone object, you can call inDaylightTime() to determine
whether, for a given Date, daylight-savings time is in effect for that time zone. Call
getID() to obtain the name of the time zone. Call getOffset() for a given date to
determine the number of milliseconds to add to GMT to convert to the time zone.

Figure 16-61. java.util.TimeZone

public abstract class TimeZone implements Cloneable, Serializable {
// Public Constructors
 public TimeZone();
// Public Constants
1.2 public static final int LONG; =1
1.2 public static final int SHORT; =0
// Public Class Methods
 public static String[] getAvailableIDs(); synchronized
 public static String[] getAvailableIDs(int rawOffset); synchronized
 public static TimeZone getDefault(); synchronized

Chapter 16. java.util and Subpackages Page 88 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static TimeZone getTimeZone(String ID); synchronized
 public static void setDefault(TimeZone zone); synchronized
// Public Instance Methods
1.2 public final String getDisplayName();
1.2 public final String getDisplayName(Locale locale);
1.2 public final String getDisplayName(boolean daylight, int style);
1.2 public String getDisplayName(boolean daylight, int style, Locale locale);
1.4 public int getDSTSavings();
 public String getID();
1.4 public int getOffset(long date);
 public abstract int getOffset(int era, int year, int month, int day,
 int dayOfWeek, int milliseconds);
 public abstract int getRawOffset();
1.2 public boolean hasSameRules(TimeZone other);
 public abstract boolean inDaylightTime(Date date);
 public void setID(String ID);
 public abstract void setRawOffset(int offsetMillis);
 public abstract boolean useDaylightTime();
// Public Methods Overriding Object
 public Object clone();
}

Subclasses

SimpleTimeZone
Passed To

java.text.DateFormat.setTimeZone(), Calendar.{Calendar(),
getInstance(), setTimeZone()}, GregorianCalendar.
{GregorianCalendar(), setTimeZone()},
SimpleTimeZone.hasSameRules(),
javax.xml.datatype.XMLGregorianCalendar.toGregorianCalendar()
Returned By

java.text.DateFormat.getTimeZone(), Calendar.getTimeZone(),
GregorianCalendar.getTimeZone(),
javax.xml.datatype.XMLGregorianCalendar.getTimeZone()

TooManyListenersException java.util

Java 1.1 serializable checked

Signals that an AWT component, JavaBeans component, or Swing component can have
only one EventListener object registered for some specific type of event. That is, it
signals that a particular event is a unicast event rather than a multicast event. This
exception type serves a formal purpose in the Java event model; its presence in the
throws clause of an EventListener registration method (even if the method never
actually throws the exception) signals that an event is a unicast event.

Chapter 16. java.util and Subpackages Page 89 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-62. java.util.TooManyListenersException

public class TooManyListenersException extends Exception {
// Public Constructors
 public TooManyListenersException();
 public TooManyListenersException(String s);
}

TreeMap<K,V> java.util

Java 1.2 cloneable serializable collection

This class implements the SortedMap interface using an internal Red-Black tree data
structure and guarantees that the keys and values of the mapping can be enumerated in
ascending order of keys. TreeMap supports all optional Map methods. The objects used as
keys in a TreeMap must all be mutually Comparable, or an appropriate Comparator
must be provided when the TreeMap is created. Because TreeMap is based on a binary
tree data structure, the get(), put(), remove(), and containsKey() methods
operate in relatively efficient logarithmic time. If you do not need the sorting capability of
TreeMap, however, use HashMap instead, as it is even more efficient. See Map and
SortedMap for details on the methods of TreeMap. See also the related TreeSet class.

In order for a TreeMap to work correctly, the comparison method from the
Comparable or Comparator interface must be consistent with the equals() method.
That is, the equals() method must compare two objects as equal if and only if the
comparison method also indicates those two objects are equal.

The methods of TreeMap are not synchronized. If you are working in a multithreaded
environment, you must explicitly synchronize all code that modifies the TreeMap, or
obtain a synchronized wrapper with Collections.synchronizedMap().

Figure 16-63. java.util.TreeMap<K,V>

public class TreeMap<K,V> extends AbstractMap<K,V> implements SortedMap<K,V>,
 Cloneable, Serializable {
// Public Constructors
 public TreeMap();
 public TreeMap(Comparator<? super K> c);

Chapter 16. java.util and Subpackages Page 90 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public TreeMap(SortedMap<K,? extends V> m);
 public TreeMap(Map<? extends K,? extends V> m);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public Set<K> keySet();
 public V put(K key, V value);
 public void putAll(Map<? extends K,? extends V> map);
 public V remove(Object key);
 public int size();
 public Collection<V> values();
// Methods Implementing SortedMap
 public Comparator<? super K> comparator();
 public K firstKey();
 public SortedMap<K,V> headMap(K toKey);
 public K lastKey();
 public SortedMap<K,V> subMap(K fromKey, K toKey);
 public SortedMap<K,V> tailMap(K fromKey);
// Public Methods Overriding AbstractMap
 public Object clone();
}

TreeSet<E> java.util

Java 1.2 cloneable serializable collection

This class implements SortedSet, provides support for all optional methods, and
guarantees that the elements of the set can be enumerated in ascending order. In order to
be sorted, the elements of the set must all be mutually Comparable objects, or they must
all be compatible with a Comparator object that is specified when the TreeSet is created.
TreeSet is implemented on top of a TreeMap, so its add(), remove(), and
contains() methods all operate in relatively efficient logarithmic time. If you do not
need the sorting capability of TreeSet, however, use HashSet instead, as it is
significantly more efficient. See Set, SortedSet, and Collection for details on the
methods of TreeSet.

In order for a TreeSet to operate correctly, the Comparable or Comparator
comparison method must be consistent with the equals() method. That is, the
equals() method must compare two objects as equal if and only if the comparison
method also indicates those two objects are equal.

The methods of TreeSet are not synchronized. If you are working in a multithreaded
environment, you must explicitly synchronize code that modifies the contents of the set,
or obtain a synchronized wrapper with Collections.synchronizedSet().

Chapter 16. java.util and Subpackages Page 91 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-64. java.util.TreeSet<E>

public class TreeSet<E> extends AbstractSet<E> implements SortedSet<E>, Cloneable,
 Serializable {
// Public Constructors
 public TreeSet();
 public TreeSet(Comparator<? super E> c);
 public TreeSet(SortedSet<E> s);
 public TreeSet(Collection<? extends E> c);
// Methods Implementing Set
 public boolean add(E o);
 public boolean addAll(Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
// Methods Implementing SortedSet
 public Comparator<? super E> comparator();
 public E first();
 public SortedSet<E> headSet(E toElement);
 public E last();
 public SortedSet<E> subSet(E fromElement, E toElement);
 public SortedSet<E> tailSet(E fromElement);
// Public Methods Overriding Object
 public Object clone();
}

UnknownFormatConversionException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when an
unknown conversion specifier is included in a format string.

Figure 16-65. java.util.UnknownFormatConversionException

public class UnknownFormatConversionException extends IllegalFormatException {
// Public Constructors
 public UnknownFormatConversionException(String s);
// Public Instance Methods
 public String getConversion();
// Public Methods Overriding Throwable

Chapter 16. java.util and Subpackages Page 92 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public String getMessage();
}

UnknownFormatFlagsException java.util

Java 5.0 serializable unchecked

An IllegalFormatException of this type is thrown by a Formatter when unknown
flags are specified in a format string.

Figure 16-66. java.util.UnknownFormatFlagsException

public class UnknownFormatFlagsException extends IllegalFormatException {
// Public Constructors
 public UnknownFormatFlagsException(String f);
// Public Instance Methods
 public String getFlags();
// Public Methods Overriding Throwable
 public String getMessage();
}

UUID java.util

Java 5.0 serializable comparable

This class is an immutable representation of 128-bit Universal Unique Identifier, or
UUID, which serves as an identifier that is (with very high probability) globally unique.
Create a UUID based on random bits with the randomUUID() factory method. Create a
UUID based on the MD5 hash code of an array of bytes with the
nameUUIDFromBytes() factory method. Or create a UUID by parsing a string with the
fromString() factory method. The standard string format of a UUID is 32 hexadecimal
digits, broken into five hyphen-separated groups of 8, 4, 4, 4, and 12 digits. For example:

7cbf3e1a-d521-40ac-87f1-e28b17530f60

Both lowercase and uppercase hex digits are allowed. The toString() method converts
a UUID object to a string using this standard format. You can also create a UUID object
by explicitly passing the 128 bits in the form of two long values to the UUID()

Chapter 16. java.util and Subpackages Page 93 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

constructor, but this option should be used only if you are intimately familiar with the
relevant UUID standards.

The toString() and equals() methods define the most common operations on a
UUID. The UUID class implements the Comparable interface and defines an ordering for
UUID objects. Note, however, that the ordering does not represent any meaningful
property, such as generation order, of the underlying bits.

Various accessor methods provide details about the bits of a UUID, but these details are
rarely useful. getLeastSignificantBits() and getMostSignificantBits()
return the bits of a UUID as two long values. version() and variant() return the
version and variant of the UUID, which specify the type (random, name-based, time-
based) and bit layout of the UUID. timestamp(), clockSequence(), and
node() return values only for time-based UUIDs that have a version() of 1. Note
that the UUID class does not provide a factory method for creating a time-based UUID.

Figure 16-67. java.util.UUID

public final class UUID implements Serializable, Comparable<UUID> {
// Public Constructors
 public UUID(long mostSigBits, long leastSigBits);
// Public Class Methods
 public static UUID fromString(String name);
 public static UUID nameUUIDFromBytes(byte[] name);
 public static UUID randomUUID();
// Public Instance Methods
 public int clockSequence();
 public long getLeastSignificantBits();
 public long getMostSignificantBits();
 public long node();
 public long timestamp();
 public int variant();
 public int version();
// Methods Implementing Comparable
 public int compareTo(UUID val);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Vector<E> java.util

Java 1.0 cloneable serializable collection

Chapter 16. java.util and Subpackages Page 94 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class implements an ordered collection—essentially an array—of objects that can grow
or shrink as necessary. In Java 1.2, Vector has been modified to implement the List
interface. Unless the synchronized methods of the Vector class are actually needed,
ArrayList is preferred in Java 1.2 and later. In Java 5.0 this class has been made generic.
The type variable E represents the type of the elements of the vector.

Vector is useful when you need to keep track of a number of objects, but do not know in
advance how many there will be. Use setElementAt() to set the object at a given index
of a Vector. Use elementAt() to retrieve the object stored at a specified index. Call
add() to append an object to the end of the Vector or to insert an object at any specified
position. Use removeElementAt() to delete the element at a specified index or
removeElement() to remove a specified object from the vector. size() returns the
number of objects currently in the Vector. elements() returns an Enumeration that
allows you to iterate through those objects. capacity() is not the same as size(); it
returns the maximum number of objects a Vector can hold before its internal storage
must be resized. Vector automatically resizes its internal storage for you, but if you know
in advance how many objects a Vector will contain, you can increase its efficiency by pre-
allocating this many elements with ensureCapacity().

Figure 16-68. java.util.Vector<E>

public class Vector<E> extends AbstractList<E> implements List<E>,
RandomAccess, Cloneable, Serializable {
// Public Constructors
 public Vector();
1.2 public Vector(Collection<? extends E> c);
 public Vector(int initialCapacity);
 public Vector(int initialCapacity, int capacityIncrement);
// Public Instance Methods
 public void addElement(E obj); synchronized
 public int capacity(); synchronized
 public boolean contains(Object elem); Implements:List
 public void copyInto(Object[] anArray); synchronized
 public E elementAt(int index); synchronized
 public Enumeration<E> elements();
 public void ensureCapacity(int minCapacity); synchronized
 public E firstElement(); synchronized
 public int indexOf(Object elem); Implements:List
 public int indexOf(Object elem, int index); synchronized
 public void insertElementAt(E obj, int index); synchronized
 public boolean isEmpty(); Implements:List synchronized default:true
 public E lastElement(); synchronized
 public int lastIndexOf(Object elem); Implements:List synchronized
 public int lastIndexOf(Object elem, int index); synchronized
 public void removeAllElements(); synchronized
 public boolean removeElement(Object obj); synchronized
 public void removeElementAt(int index); synchronized

Chapter 16. java.util and Subpackages Page 95 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public void setElementAt(E obj, int index); synchronized
 public void setSize(int newSize); synchronized
 public int size(); Implements:List synchronized
 public void trimToSize(); synchronized
// Methods Implementing List
1.2 public boolean add(E o); synchronized
1.2 public void add(int index, E element);
1.2 public boolean addAll(Collection<? extends E> c); synchronized
1.2 public boolean addAll(int index, Collection<? extends E> c); synchronized
1.2 public void clear();
 public boolean contains(Object elem);
1.2 public boolean containsAll(Collection<?> c); synchronized
1.2 public boolean equals(Object o); synchronized
1.2 public E get(int index); synchronized
1.2 public int hashCode(); synchronized
 public int indexOf(Object elem);
 public boolean isEmpty(); synchronized default:true
 public int lastIndexOf(Object elem); synchronized
1.2 public boolean remove(Object o);
1.2 public E remove(int index); synchronized
1.2 public boolean removeAll(Collection<?> c); synchronized
1.2 public boolean retainAll(Collection<?> c); synchronized
1.2 public E set(int index, E element); synchronized
 public int size(); synchronized
1.2 public List<E> subList(int fromIndex, int toIndex); synchronized
1.2 public Object[] toArray(); synchronized
1.2 public <T> T[] toArray(T[] a); synchronized
// Protected Methods Overriding AbstractList
1.2 protected void removeRange(int fromIndex, int toIndex); synchronized
// Public Methods Overriding AbstractCollection
 public String toString(); synchronized
// Public Methods Overriding Object
 public Object clone(); synchronized
// Protected Instance Fields
 protected int capacityIncrement;
 protected int elementCount;
 protected Object[] elementData;
}

Subclasses

Stack

WeakHashMap<K,V> java.util

Java 1.2 collection

This class implements Map using an internal hashtable. It is similar in features and
performance to HashMap, except that it uses the capabilities of the java.lang.ref
package, so that the key-to-value mappings it maintains do not prevent the key objects
from being reclaimed by the garbage collector. When there are no more references to a key
object except for the weak reference maintained by the WeakHashMap, the garbage
collector reclaims the object, and the WeakHashMap deletes the mapping between the
reclaimed key and its associated value. If there are no references to the value object except
for the one maintained by the WeakHashMap, the value object also becomes available for
garbage collection. Thus, you can use a WeakHashMap to associate an auxiliary value with
an object without preventing either the object (the key) or the auxiliary value from being

Chapter 16. java.util and Subpackages Page 96 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

reclaimed. See HashMap for a discussion of the implementation features of this class. See
Map for a description of the methods it defines.

WeakHashMap is primarily useful with objects whose equals() methods use the ==
operator for comparison. It is less useful with key objects of type String, for example,
because there can be multiple String objects that are equal to one another and, even if
the original key value has been reclaimed by the garbage collector, it is always possible to
pass a String with the same value to the get() method.

Figure 16-69. java.util.WeakHashMap<K,V>

public class WeakHashMap<K,V> extends AbstractMap<K,V> implements Map<K,V> {
// Public Constructors
 public WeakHashMap();
 public WeakHashMap(int initialCapacity);
1.3 public WeakHashMap(Map<? extends K,? extends V> t);
 public WeakHashMap(int initialCapacity, float loadFactor);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
1.4 public boolean containsValue(Object value);
 public Set<Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
1.4 public Set<K> keySet();
 public V put(K key, V value);
1.4 public void putAll(Map<? extends K,? extends V> m);
 public V remove(Object key);
 public int size();
1.4 public Collection<V> values();
}

Package java.util.concurrent

Java 5.0

This package includes a number of powerful utilities for multithreaded programming.
Most of these utilities fall into three main categories:

In addition to these Map, List, Set, and Queue implementations, this package also
defines the BlockingQueue interface. Blocking queues are important in many
concurrent algorithms, and this package provides a variety of useful implementations:
ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue,
PriorityBlockingQueue, and SynchronousQueue.

Chapter 16. java.util and Subpackages Page 97 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Interfaces

public interface BlockingQueue<E> extends java.util.Queue<E>;
public interface Callable<V>;
public interface CompletionService<V>;
public interface ConcurrentMap<K, V> extends java.util.Map<K, V>;
public interface Delayed extends Comparable<Delayed>;
public interface Executor;
public interface ExecutorService extends Executor;
public interface Future<V>;
public interface RejectedExecutionHandler;
public interface ScheduledExecutorService extends ExecutorService;
public interface ScheduledFuture<V> extends Delayed, Future<V>;
public interface ThreadFactory;

Enumerated Types

public enum TimeUnit;

Collections

public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class ConcurrentHashMap<K, V> extends java.util.AbstractMap<K, V>
 implements ConcurrentMap<K, V> Serializable;
public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E>
 implements java.util.Queue<E>, Serializable;
public class CopyOnWriteArrayList<E> implements java.util.List<E>, java.util.RandomAccess, Cloneable, Serializable;
public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E>
 implements Serializable;
public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>;
public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;
public class SynchronousQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable;

Other Classes

public abstract class AbstractExecutorService implements ExecutorService;
 public class ThreadPoolExecutor extends AbstractExecutorService;
 public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
 implements ScheduledExecutorService;
public class CountDownLatch;
public class CyclicBarrier;
public class Exchanger<V>;
public class ExecutorCompletionService<V> implements CompletionService<V>;
public class Executors;
public class FutureTask<V> implements Future<V>, Runnable;
public class Semaphore implements Serializable;
public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler;
public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler;

Exceptions

public class BrokenBarrierException extends Exception;
public class CancellationException extends IllegalStateException;
public class ExecutionException extends Exception;
public class RejectedExecutionException extends RuntimeException;
public class TimeoutException extends Exception;

AbstractExecutorService java.util.concurrent

Chapter 16. java.util and Subpackages Page 98 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0

This abstract class implements the submit(), invokeAll(), and invokeAny()
methods of the ExecutorService interface. It does not implement the
ExecutorService shutdown methods or the crucial execute() method for
asynchronous execution of Runnable tasks.

The methods implemented by AbstractExecutorService wrap the submitted
Callable or Runnable task in a FutureTask object. FutureTask implements
Runnable and Future, which are first passed to the abstract execute() method to be
run asynchronously and then returned to the caller.

See ThreadPoolExecutor for a concrete implementation, and see Executors for
convenient ExecutorService factory methods.

Figure 16-70. java.util.concurrent.AbstractExecutorService

public abstract class AbstractExecutorService implements ExecutorService {
// Public Constructors
 public AbstractExecutorService();
// Methods Implementing ExecutorService
 public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException;
 public <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks,
 long timeout, TimeUnit unit) throws InterruptedException;
 public <T> T invokeAny(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 public <T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
 public Future<?> submit(Runnable task);
 public <T> Future<T> submit(Callable<T> task);
 public <T> Future<T> submit(Runnable task, T result);
}

Subclasses

ThreadPoolExecutor

ArrayBlockingQueue<E> java.util.concurrent

Java 5.0 serializable collection

This BlockingQueue implementation uses an array to store queue elements. The
internal array has a fixed size that is specified when the queue is created, which means that

Chapter 16. java.util and Subpackages Page 99 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

this is a bounded queue and the put() method blocks when the queue has no more room.
ArrayBlockingQueue orders its elements on a first-in, first-out (FIFO) basis. As with
all BlockingQueue implementations, null elements are prohibited.

If you pass true as the second argument to the ArrayBlockingQueue constructor, the
queue enforces a fairness policy for blocked threads: threads blocked in put() or
take() are themselves queued in FIFO order, and the thread that has been waiting the
longest is served first. This prevents thread starvation but may decrease overall throughput
for the ArrayBlockingQueue.

Figure 16-71. java.util.concurrent.ArrayBlockingQueue<E>

public class ArrayBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public ArrayBlockingQueue(int capacity);
 public ArrayBlockingQueue(int capacity, boolean fair);
 public ArrayBlockingQueue(int capacity, boolean fair, java.util.Collection<? extends E> c);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public boolean contains(Object o);
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

BlockingQueue<E> java.util.concurrent

Chapter 16. java.util and Subpackages Page 100 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 collection

This interface extends the java.util.Queue interface of the Java Collections
Framework and adds blocking put() and take() methods. Blocking queues are useful
in many concurrent algorithms in which a producer thread puts objects onto a queue and
a consumer thread removes them for some kind of processing. The producer thread must
block if a bounded queue fills up, and the consumer thread must block if no objects are
available on the queue.

In addition to put() and take() methods that block indefinitely, BlockingQueue
also defines timed versions of the Queue methods offer() and poll() that wait up
to the specified time. The timeout is specified as both a long and a TimeUnit constant.

drainTo() removes all available elements from a BlockingQueue, adds them to the
specified collection, and returns the number of elements removed from the queue.
drainTo() does not block. A variant on this method puts an upper bound on the number
of elements removed from the queue.

remainingCapacity() returns the number of elements that can be added to the queue
before it becomes full or returns Integer.MAX_VALUE if the BlockingQueue is not a
bounded queue. For bounded queues, this method provides a hint as to whether a call to
put() will block.

BlockingQueue implementations are not allowed to accept null elements. The
BlockingQueue interface refines the Collection.add() and Queue.offer()
contracts to indicate that these methods throw NullPointerException if passed a
null value.

Figure 16-72. java.util.concurrent.BlockingQueue<E>

public interface BlockingQueue<E> extends java.util.Queue<E> {
// Public Instance Methods
 boolean add(E o);
 int drainTo(java.util.Collection<? super E> c);
 int drainTo(java.util.Collection<? super E> c, int maxElements);
 boolean offer(E o);
 boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 E poll(long timeout, TimeUnit unit) throws InterruptedException;
 void put(E o) throws InterruptedException;
 int remainingCapacity();
 E take() throws InterruptedException;
}

Chapter 16. java.util and Subpackages Page 101 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

ArrayBlockingQueue, DelayQueue, LinkedBlockingQueue,
PriorityBlockingQueue, SynchronousQueue
Passed To

ExecutorCompletionService.ExecutorCompletionService(),
ThreadPoolExecutor.ThreadPoolExecutor()
Returned By

ScheduledThreadPoolExecutor.getQueue(),
ThreadPoolExecutor.getQueue()

BrokenBarrierException java.util.concurrent

Java 5.0 serializable checked

An exception of this type is thrown when a thread calls CyclicBarrier.await() on
a broken barrier, or when the barrier is broken while a thread is waiting. A
CyclicBarrier enters a broken state when one of the waiting threads is interrupted or
times out.

Figure 16-73. java.util.concurrent.BrokenBarrierException

public class BrokenBarrierException extends Exception {
// Public Constructors
 public BrokenBarrierException();
 public BrokenBarrierException(String message);
}

Thrown By

CyclicBarrier.await()

Callable<V> java.util.concurrent

Java 5.0

This interface is a generalized form of the java.lang.Runnable interface. Unlike the
run() method of Runnable, the call() method of Callable can return a value and
throw an Exception. Callable is a generic type, and the type variable V represents the
return type of the call() method.

Chapter 16. java.util and Subpackages Page 102 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An ExecutorService accepts Callable objects for asynchronous execution and
returns a Future object representing the future result of the call() method.

public interface Callable<V> {
// Public Instance Methods
 V call() throws Exception;
}

Passed To

AbstractExecutorService.submit(), CompletionService.submit(),
ExecutorCompletionService.submit(), Executors.
{privilegedCallable(),
privilegedCallableUsingCurrentClassLoader()},
ExecutorService.submit(), FutureTask.FutureTask(),
ScheduledExecutorService.schedule(), ScheduledThreadPoolExecutor.
{schedule(), submit()}
Returned By

Executors.{callable(), privilegedCallable(),
privilegedCallableUsingCurrentClassLoader()}

CancellationException java.util.concurrent

Java 5.0 serializable unchecked

An exception of this type is thrown to indicate that the result of a computation cannot be
retrieved because the computation was canceled. The get() method of the Future
interface may throw a CancellationException, for example.

Figure 16-74. java.util.concurrent.CancellationException

public class CancellationException extends IllegalStateException {
// Public Constructors
 public CancellationException();
 public CancellationException(String message);
}

CompletionService<V> java.util.concurrent

Chapter 16. java.util and Subpackages Page 103 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0

This interface combines the features of an ExecutorService with the features of a
BlockingQueue. A producer thread may submit Callable or Runnable tasks for
asynchronous execution. As each submitted task completes, its result, in the form of a
Future object, becomes available to be removed from the queue by a consumer thread
that calls poll() or take().

This generic type declares a type variable V, which represents the result type of all tasks
on the queue.

public interface CompletionService<V> {
// Public Instance Methods
 Future<V> poll();
 Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
 Future<V> submit(Callable<V> task);
 Future<V> submit(Runnable task, V result);
 Future<V> take() throws InterruptedException;
}

Implementations

ExecutorCompletionService

ConcurrentHashMap<K,V> java.util.concurrent

Java 5.0 serializable collection

This class is a threadsafe implementation of the java.util.Map interface, and of the
atomic operations added by the ConcurrentMap interface. This class is intended as a
drop-in replacement for java.util.Hashtable. It is more efficient than that class,
however, because it provides threadsafety without using synchronized methods that
lock the entire data structure. ConcurrentHashMap allows any number of concurrent
read operations without locking. Locking is required for updates to a
ConcurrentHashMap, but the internal data structure is segmented so that only the
segment being updated is locked, and reads and writes can proceed concurrently in other
segments. You can specify the number of internal segments with the
concurrencyLevel argument to the constructor. The default is 16. Set this to the
approximate number of updater threads you expect to access the data structure. Like
Hashtable, ConcurrentHashMap does not allow null keys or values. (Note that this
differs from the behavior of java.util.HashMap.)

Chapter 16. java.util and Subpackages Page 104 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-75. java.util.concurrent.ConcurrentHashMap<K,V>

public class ConcurrentHashMap<K,V> extends java.util.AbstractMap<K,V>
 implements ConcurrentMap<K,V>, Serializable {
// Public Constructors
 public ConcurrentHashMap();
 public ConcurrentHashMap(java.util.Map<? extends K,? extends V> t);
 public ConcurrentHashMap(int initialCapacity);
 public ConcurrentHashMap(int initialCapacity, float loadFactor, int concurrencyLevel);
// Public Instance Methods
 public boolean contains(Object value);
 public java.util.Enumeration<V> elements();
 public java.util.Enumeration<K> keys();
// Methods Implementing ConcurrentMap
 public V putIfAbsent(K key, V value);
 public boolean remove(Object key, Object value);
 public V replace(K key, V value);
 public boolean replace(K key, V oldValue, V newValue);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object key);
 public boolean containsValue(Object value);
 public java.util.Set<java.util.Map.Entry<K,V>> entrySet();
 public V get(Object key);
 public boolean isEmpty(); default:true
 public java.util.Set<K> keySet();
 public V put(K key, V value);
 public void putAll(java.util.Map<? extends K,? extends V> t);
 public V remove(Object key);
 public int size();
 public java.util.Collection<V> values();
}

ConcurrentLinkedQueue<E> java.util.concurrent

Java 5.0 serializable collection

This class is a threadsafe implementation of the java.util.Queue interface (but not of
the BlockingQueue interface). It provides threadsafety without using synchronized
methods that would lock the entire data structure. ConcurrentLinkedQueue is
unbounded and orders its elements on a first-in, first-out (FIFO) basis. null elements are
not allowed. This implementation uses a linked-list data structure internally. Note that the
size() method must traverse the internal data structure and is therefore a relatively
expensive operation for this class.

Chapter 16. java.util and Subpackages Page 105 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-76. java.util.concurrent.ConcurrentLinkedQueue<E>

public class ConcurrentLinkedQueue<E> extends java.util.AbstractQueue<E>
 implements java.util.Queue<E>, Serializable {
// Public Constructors
 public ConcurrentLinkedQueue();
 public ConcurrentLinkedQueue(java.util.Collection<? extends E> c);
// Methods Implementing Collection
 public boolean add(E o);
 public boolean contains(Object o);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public boolean offer(E o);
 public E peek();
 public E poll();
}

ConcurrentMap<K,V> java.util.concurrent

Java 5.0 collection

This interface extends the java.util.Map interface to add four important atomic
methods. As with the Map interface, the type variables K and V represent the types of the
mapped keys and values.

putIfAbsent() atomically tests whether a key is already defined in the map, and if not,
maps it to the specified value. remove() atomically removes the specified key from the
map, but only if it is mapped to the specified value. It returns true if it modified the map.
There are two versions of the atomic replace() method. The first checks whether the
specified value is already mapped to a value. If so, it replaces the existing mapping with
the specified value and returns true. Otherwise, it returns false. The three-argument
version of replace() maps the specified key to the specified new value, but only if the
key is currently mapped to the specified old value. It returns true if the replacement was
made and false otherwise.

Chapter 16. java.util and Subpackages Page 106 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-77. java.util.concurrent.ConcurrentMap<K,V>

public interface ConcurrentMap<K,V> extends java.util.Map<K,V> {
// Public Instance Methods
 V putIfAbsent(K key, V value);
 boolean remove(Object key, Object value);
 V replace(K key, V value);
 boolean replace(K key, V oldValue, V newValue);
}

Implementations

ConcurrentHashMap

CopyOnWriteArrayList<E> java.util.concurrent

Java 5.0 cloneable serializable collection

This class is a threadsafe java.util.List implementation based on an array. Any
number of read operations may proceed concurrently. All update methods are
synchronized and make a completely new copy of the internal array, so this class is best
suited to applications in which reads greatly outnumber updates. The Iterator of a
CopyOnWriteArrayList operates on the copy of the array that was current when the
iterator() method was called: it does not see any updates that occur after the call to
iterator() and is guaranteed never to throw
ConcurrentModificationException. Update methods of the Iterator and
ListIterator interfaces are not supported and throw
UnsupportedOperationException.

CopyOnWriteArrayList defines a few useful methods beyond those specified by the
List interface. addIfAbsent() atomically adds an element to the list, but only if the
list does not already contain that element. addAllAbsent() adds all elements of a
collection that are not already in the list. Two new indexOf() and
lastIndexOf() methods are defined that specify a starting index for the search. These
provide a convenient alternative to using a subList() view when searching for repeated
matches in a list.

Figure 16-78. java.util.concurrent.CopyOnWriteArrayList<E>

Chapter 16. java.util and Subpackages Page 107 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class CopyOnWriteArrayList<E> implements java.util.List<E>,
 java.util.RandomAccess, Cloneable, Serializable {
// Public Constructors
 public CopyOnWriteArrayList();
 public CopyOnWriteArrayList(java.util.Collection<? extends E> c);
 public CopyOnWriteArrayList(E[] toCopyIn);
// Public Instance Methods
 public int addAllAbsent(java.util.Collection<? extends E> c); synchronized
 public boolean addIfAbsent(E element); synchronized
 public int indexOf(E elem, int index);
 public int lastIndexOf(E elem, int index);
// Methods Implementing List
 public boolean add(E element); synchronized
 public void add(int index, E element); synchronized
 public boolean addAll(java.util.Collection<? extends E> c); synchronized
 public boolean addAll(int index, java.util.Collection<? extends E> c); synchronized
 public void clear(); synchronized
 public boolean contains(Object elem);
 public boolean containsAll(java.util.Collection<?> c);
 public boolean equals(Object o);
 public E get(int index);
 public int hashCode();
 public int indexOf(Object elem);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public int lastIndexOf(Object elem);
 public java.util.ListIterator<E> listIterator();
 public java.util.ListIterator<E> listIterator(int index);
 public boolean remove(Object o); synchronized
 public E remove(int index); synchronized
 public boolean removeAll(java.util.Collection<?> c); synchronized
 public boolean retainAll(java.util.Collection<?> c); synchronized
 public E set(int index, E element); synchronized
 public int size();
 public java.util.List<E> subList(int fromIndex, int toIndex); synchronized
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding Object
 public Object clone();
 public String toString();
}

CopyOnWriteArraySet<E> java.util.concurrent

Java 5.0 serializable collection

This class is a threadsafe java.util.Set implementation based on the
CopyOnWriteArrayList class. Because the data structure is array-based, the
contains() method is O(n); this means that this class is suitable only for relatively
small sets. Because the data structure uses copy-on-write, the class is best suited to cases
where read operations and traversals greatly outnumber update operations. Iteration over
the members of the set is efficient, and the Iterator returned by iterator() never
throws ConcurrentModificationException. The remove() method of the iterator
throws UnsupportedOperationException. See also CopyOnWriteArrayList.

Chapter 16. java.util and Subpackages Page 108 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-79. java.util.concurrent.CopyOnWriteArraySet<E>

public class CopyOnWriteArraySet<E> extends java.util.AbstractSet<E> implements Serializable {
// Public Constructors
 public CopyOnWriteArraySet();
 public CopyOnWriteArraySet(java.util.Collection<? extends E> c);
// Methods Implementing Set
 public boolean add(E o);
 public boolean addAll(java.util.Collection<? extends E> c);
 public void clear();
 public boolean contains(Object o);
 public boolean containsAll(java.util.Collection<?> c);
 public boolean isEmpty(); default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public boolean retainAll(java.util.Collection<?> c);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Public Methods Overriding AbstractSet
 public boolean removeAll(java.util.Collection<?> c);
}

CountDownLatch java.util.concurrent

Java 5.0

This class synchronizes threads. All threads that call await() block until the
countDown() method is invoked a specified number of times. The required number of
calls is specified when the CountDownLatch is created. Once countDown() has been
called the required number of times, all threads blocked in await() are allowed to
resume, and any subsequent calls to await() do not block. getCount() returns the
number of calls to countDown() that must still be made before the threads blocked in
await() can resume. Note that there is no way to reset the count. Once a
CountDownLatch has "latched," it remains in that state forever. Create a new
CountDownLatch if you need to synchronize another group of threads. Contrast this class
with CyclicBarrier.

public class CountDownLatch {
// Public Constructors
 public CountDownLatch(int count);
// Public Instance Methods
 public void await() throws InterruptedException;
 public boolean await(long timeout, TimeUnit unit) throws InterruptedException;
 public void countDown();
 public long getCount();
// Public Methods Overriding Object
 public String toString();
}

Chapter 16. java.util and Subpackages Page 109 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

CyclicBarrier java.util.concurrent

Java 5.0

This class synchronizes a group of n threads, where n is specified to the
CyclicBarrier() constructor. Threads call the await() method, which blocks until
n threads are waiting. In the simple case, all n threads are then allowed to proceed, and
the CyclicBarrier resets itself until it has another n threads blocked in await().

More complex behavior is possible if you pass a Runnable object to the
CyclicBarrier constructor. This Runnable is a "barrier action" and when the last of
the n threads invokes await(), that method uses the thread to invoke the run()
method of the Runnable. This Runnable is typically used to perform some sort of
coordinating action on the blocked threads. When the run() method returns, the
CyclicBarrier allows all blocked threads to resume.

When threads resume from await(), the return value of await() is an integer that
represents the order in which they called await(). This is useful if you want to be able
to distinguish between otherwise identical worker threads. For example, you might have
the thread that arrived first perform some special action while the remaining threads
resume.

If any thread times out or is interrupted while blocked in await(), the
CyclicBarrier is said to be "broken," and all waiting threads (and any threads that
subsequently call await()) wake up with a BrokenBarrierException. Waiting
threads also receive a BrokenBarrierException if the CyclicBarrier is
reset(). The reset() method is the only way to restore a broken barrier to its initial
state. This is difficult to coordinate properly, however, unless one controller thread is coded
differently from the other threads at the barrier.

public class CyclicBarrier {
// Public Constructors
 public CyclicBarrier(int parties);
 public CyclicBarrier(int parties, Runnable barrierAction);
// Public Instance Methods
 public int await() throws InterruptedException, BrokenBarrierException;
 public int await(long timeout, TimeUnit unit)
 throws InterruptedException, BrokenBarrierException, TimeoutException;
 public int getNumberWaiting();
 public int getParties();
 public boolean isBroken();
 public void reset();
}

Chapter 16. java.util and Subpackages Page 110 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Delayed java.util.concurrent

Java 5.0 comparable

An object that implements this interface has an associated delay. Typically, it is some kind
of task, such as a Callable, that has been scheduled to execute at some future time.
getDelay() returns the remaining time, measured in the specified TimeUnit. If no
time remains, getDelay() should return zero or a negative value. See
ScheduledFuture and DelayQueue.

Figure 16-80. java.util.concurrent.Delayed

public interface Delayed extends Comparable<Delayed> {
// Public Instance Methods
 long getDelay(TimeUnit unit);
}

Implementations

ScheduledFuture
Passed To

DelayQueue.{add(), offer(), put()}
Returned By

DelayQueue.{peek(), poll(), take()}

DelayQueue<E extends Delayed> java.util.concurrent

Java 5.0 collection

This BlockingQueue implementation restricts its elements to instances of some class
E that implements the Delay interface. null elements are not allowed. Elements on the
queue are ordered by the amount of delay remaining. The element whose getDelay()
method returns the smallest value is the first to be removed from the queue. No element
may be removed, however, until its getDelay() method returns zero or a negative
number.

Chapter 16. java.util and Subpackages Page 111 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-81. java.util.concurrent.DelayQueue<E extends Delayed>

public class DelayQueue<E extends Delayed> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E> {
// Public Constructors
 public DelayQueue();
 public DelayQueue(java.util.Collection<? extends E> c);
// Public Instance Methods
 public E peek();
 public E poll();
// Methods Implementing BlockingQueue
 public boolean add(E o);
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit);
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o);
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] array);
}

Exchanger<V> java.util.concurrent

Java 5.0

This class allows two threads to rendezvous and exchange data. This is a generic type, and
the type variable V represents the type of data to be exchanged. Each thread should call
exchange() and pass the value of type V that it wants to exchange. The first thread to
call exchange() blocks until the second thread calls it. At that point, both threads
resume. Both threads receive as their return value the object of type V passed by the other
thread. Note that this class also defines a timed version of exchange() that throws a
TimeoutException if no exchange occurs within the specified timeout interval. Unlike
a CountDownLatch, which is a one-shot latch, and CyclicBarrier which can be
"broken," an Exchanger may be reused for any number of exchanges.

public class Exchanger<V> {
// Public Constructors
 public Exchanger();

Chapter 16. java.util and Subpackages Page 112 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Instance Methods
 public V exchange(V x) throws InterruptedException;
 public V exchange(V x, long timeout, TimeUnit unit)
 throws InterruptedException, TimeoutException;
}

ExecutionException java.util.concurrent

Java 5.0 serializable checked

An exception of this type is like a checked wrapper around an arbitrary exception thrown
while executing a task. The get() method of a Future object, for example, throws an
ExecutionException if the call() method of a Callable throws an exception.
ExecutionException may also be thrown by ExecutorService.invokeAny().
Use the Throwable.getCause() method to obtain the exception object that the
ExecutionException wraps.

Figure 16-82. java.util.concurrent.ExecutionException

public class ExecutionException extends Exception {
// Public Constructors
 public ExecutionException(Throwable cause);
 public ExecutionException(String message, Throwable cause);
// Protected Constructors
 protected ExecutionException();
 protected ExecutionException(String message);
}

Thrown By

AbstractExecutorService.invokeAny(), ExecutorService.invokeAny(),
Future.get(), FutureTask.get()

Executor java.util.concurrent

Java 5.0

This interface defines a mechanism for executing Runnable tasks. A variety of
implementations are possible for the execute() method. An implementation might
simply synchronously invoke the run() method of the specified Runnable. Another

Chapter 16. java.util and Subpackages Page 113 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

implementation might create and start a new thread for each Runnable object it is passed.
Another might select an existing thread from a thread pool to run the Runnable or queue
the Runnable for future execution when a thread becomes available.

ExecutorService extends this interface with methods to execute Callable tasks and
methods for canceling tasks. ThreadPoolExecutor is an ExecutorService
implementation that creates a configurable thread pool. Finally, the Executors class
defines a number of factory methods for easily obtaining ExecutorService instances.

public interface Executor {
// Public Instance Methods
 void execute(Runnable command);
}

Implementations

ExecutorService
Passed To

ExecutorCompletionService.ExecutorCompletionService()

ExecutorCompletionService<V> java.util.concurrent

Java 5.0

This class implements the CompletionService interface, which uses an Executor
object passed to its constructor for executing the tasks passed to its submit() method.
As these tasks complete, their result (or exception) is placed, in the form of a Future
object, on an internal queue and becomes available for removal with the blocking
take() method or the nonblocking or timed poll() methods.

This class is useful when you want to execute a number of tasks concurrently and want to
process their results in whatever order they complete. See Executors for a source of
Executor objects to use with this class.

Figure 16-83. java.util.concurrent.ExecutorCompletionService<V>

public class ExecutorCompletionService<V> implements CompletionService<V> {
// Public Constructors
 public ExecutorCompletionService(Executor executor);
 public ExecutorCompletionService(Executor executor, BlockingQueue<Future<V>>
 completionQueue);
// Methods Implementing CompletionService
 public Future<V> poll();
 public Future<V> poll(long timeout, TimeUnit unit) throws InterruptedException;
 public Future<V> submit(Callable<V> task);
 public Future<V> submit(Runnable task, V result);

Chapter 16. java.util and Subpackages Page 114 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public Future<V> take() throws InterruptedException;
}

Executors java.util.concurrent

Java 5.0

This utility class defines static factory methods for creating ExecutorService and
ScheduledExecutorService objects. Each of the factory methods has a variant that
allows you to explicitly specify a ThreadFactory. newSingleThreadExecutor()
returns an ExecutorService that uses a single thread and an unbounded queue of
waiting tasks. newFixedThreadPool() returns an ExecutorService that uses a
thread pool with the specified number of threads and an unbounded queue.
newCachedThreadPool() returns an ExecutorService that does not queue tasks
but instead creates as many threads as are needed. When a task terminates, its thread is
cached for reuse. Cached threads are allowed to terminate if they remain unused for 60
seconds.

newSingleThreadScheduledExecutor() returns a
ScheduledExecutorService that uses a single thread for running tasks.
newScheduledThreadPool() returns a ScheduledExecutorService that uses a
thread pool of the specified size.

The factory methods of this class typically return instances of ThreadPoolExecutor and
ScheduledThreadPoolExecutor. If the returned objects are cast to these
implementing types, they can be configured (to change the thread pool size, for example).
If you want to prevent this from happening, use the
unconfigurableExecutorService() and
unconfigurableScheduledExecutorService() methods to obtain wrapper
objects that implement only the ExecutorService and
ScheduledExecutorService methods and do not permit configuration.

Other methods of this class include callable(), which returns a Callable object
wrapped around a Runnable and an optional result, and
defaultThreadFactory(), which returns a basic ThreadFactory object. Executors
also define methods related to access control and the Java security system. A variant of
the callable() method wraps a Callable around a
java.security.PrivilegedAction. privilegedCallable() is intended to be
invoked from within a PrivilegedAction being run with

Chapter 16. java.util and Subpackages Page 115 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AccessController.doPrivileged(). When passed a Callable in this way, it
returns a new Callable that can be used later to invoke the original callable in a privileged
access control context, granting it permissions that it would not otherwise have.

public class Executors {
// No Constructor
// Public Class Methods
 public static Callable<Object> callable(java.security.PrivilegedAction action);
 public static Callable<Object> callable(Runnable task);
 public static Callable<Object> callable(java.security.PrivilegedExceptionAction action);
 public static <T> Callable<T> callable(Runnable task, T result);
 public static ThreadFactory defaultThreadFactory();
 public static ExecutorService newCachedThreadPool();
 public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory);
 public static ExecutorService newFixedThreadPool(int nThreads);
 public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory);
 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize);
 public static ScheduledExecutorService newScheduledThreadPool(int corePoolSize,
 ThreadFactory threadFactory);
 public static ExecutorService newSingleThreadExecutor();
 public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory);
 public static ScheduledExecutorService newSingleThreadScheduledExecutor();
 public static ScheduledExecutorService newSingleThreadScheduledExecutor(ThreadFactory
 threadFactory);
 public static <T> Callable<T> privilegedCallable(Callable<T> callable);
 public static <T> Callable<T> privilegedCallableUsingCurrentClassLoader
 (Callable<T> callable);
 public static ThreadFactory privilegedThreadFactory();
 public static ExecutorService unconfigurableExecutorService(ExecutorService executor);
 public static ScheduledExecutorService unconfigurableScheduledExecutorService
 (ScheduledExecutorService executor);
}

ExecutorService java.util.concurrent

Java 5.0

This interface extends Executor to add methods to obtain a Future result of the
asynchronous execution of a Callable task. It also adds methods for graceful termination
or shutdown of an ExecutorService. ThreadPoolExecutor is a useful and highly
configurable implementation of this interface. An easy way to obtain instances of this class
is through the factory methods of the Executors utility class. Note that
ExecutorService is not a generic type; it does not declare any type variables. It does
have a number of generic methods, however, that use the type variable T to represent the
result type of Callable and Future objects.

The submit() method allows you to submit a Callable<T> object to an
ExecutorService for execution. Typical ExecutorService implementations invoke
the call() method of the Callable on another thread, and the return value (of type
T) of the method is therefore not available when the call to submit() returns.

Chapter 16. java.util and Subpackages Page 116 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

submit() therefore returns a Future<T> object: the promise of a return value of type
T at some point in the future. See the Future interface for further details.

Two variants on the submit() method accept a java.lang.Runnable task instead of
a Callable task. The run() method of a Runnable has no return value, so the two-
argument version of submit() accepts a dummy return value of type T and returns a
Future<T> that makes this dummy value available when the Runnable has completed
running. The other Runnable variant of the submit() method takes no return value
and returns a Future<?> value. The get() method of this Future object returns
null when the Runnable is done.

Other ExecutorService methods execute Callable objects synchronously.
invokeAll() is passed a java.util.Collection of Callable<T> tasks. It
executes them and blocks until all have completed, or until an optionally specified timeout
has elapsed. invokeAll() returns the results of the tasks as a List of Future<T>
objects. Note that a Callable<T> task can complete either by returning a result of type
T or by throwing an exception.

invokeAny() is also passed a Collection of Callable<T> objects. It blocks until
any one of these Callable tasks has returned a value of type T and returns that value.
Tasks that terminate by throwing an exception are ignored. If all tasks throw an exception,
invokeAny() throws an ExecutionException. Before invokeAny() returns, it
cancels the execution of any still-running Callable tasks. Like invokeAll(),
invokeAny() has a variant with a timeout value.

ExecutorService defines several methods for gracefully shutting down the service.
shutdown() puts the ExecutorService into a special state in which no new tasks
may be submitted for execution, but all currently running tasks continue running.
isShutdown() returns true if the ExecutorService has entered this state.
awaitTermination() blocks until all executing tasks in an ExecutorService that
was shut down are completed (or until a specified timeout elapses). Once this has occurred,
the isTerminated() method returns true. The shutdownNow() method shuts
down an ExecutorService more abruptly: it attempts to abort all currently executing
tasks (typically via Thread.interrupt()) and returns a List of the tasks that have
not yet started executing.

Figure 16-84. java.util.concurrent.ExecutorService

public interface ExecutorService extends Executor {
// Public Instance Methods
 boolean awaitTermination(long timeout, TimeUnit unit) throws InterruptedException;

Chapter 16. java.util and Subpackages Page 117 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException;
 <T> java.util.List<Future<T>> invokeAll(java.util.Collection<Callable<T>> tasks,
 long timeout, TimeUnit unit) throws InterruptedException;
 <T> T invokeAny(java.util.Collection<Callable<T>> tasks)
 throws InterruptedException, ExecutionException;
 <T> T invokeAny(java.util.Collection<Callable<T>> tasks, long timeout, TimeUnit unit)
 throws InterruptedException, ExecutionException, TimeoutException;
 boolean isShutdown();
 boolean isTerminated();
 void shutdown();
 java.util.List<Runnable> shutdownNow();
 <T> Future<T> submit(Callable<T> task);
 Future<?> submit(Runnable task);
 <T> Future<T> submit(Runnable task, T result);
}

Implementations

AbstractExecutorService, ScheduledExecutorService
Passed To

Executors.unconfigurableExecutorService()
Returned By

Executors.{newCachedThreadPool(), newFixedThreadPool(),
newSingleThreadExecutor(), unconfigurableExecutorService()}

Future<V> java.util.concurrent

Java 5.0

This interface represents the result of a computation that may not be available until some
time in the future. Future is a generic type, with a type variable V. V represents the type
of the future value to be returned by the get() method. A Future<V> value is typically
obtained by submitting a Callable<V> to an ExecutorService for asynchronous
execution.

The key method of the Future interface is get(). It returns the result (of type V) of the
computation, blocking, if necessary, until that result is ready. get() throws a
CancellationException if the computation is canceled with the cancel() method
before it completes. If the computation throws an exception of its own (as the
Callable.call() method can), get() throws an ExecutionException wrapped
around that exception. Additionally, the timed version of the get() method throws a
TimeoutException if the timeout elapses before the computation completes.

As noted above, the computation represented by a Future object can be canceled by
calling its cancel() method. This method returns true if the computation was canceled
successfully, and false otherwise. If you pass false to cancel(), any computation

Chapter 16. java.util and Subpackages Page 118 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

that has started running is allowed to complete. In this case, only computations that have
not yet started can be canceled. If you pass true to the cancel() method, running
computations are interrupted with Thread.interrupt(). Note, however, that
interrupting a thread does not guarantee that it will stop running.

isCancelled() returns true if a Future was canceled before it completed (either by
returning a value or throwing an exception). isDone() returns true if the computation
represented by a Future is finished running. This may be because it returned a value,
threw an exception, or was canceled. If isDone() returns true, the get() method
does not block.

public interface Future<V> {
// Public Instance Methods
 boolean cancel(boolean mayInterruptIfRunning);
 V get() throws InterruptedException, ExecutionException;
 V get(long timeout, TimeUnit unit) throws InterruptedException,
 ExecutionException, TimeoutException;
 boolean isCancelled();
 boolean isDone();
}

Implementations

FutureTask, ScheduledFuture
Returned By

Too many methods to list.

FutureTask<V> java.util.concurrent

Java 5.0 runnable

This class is a Runnable wrapper around a Callable object (or around another
Runnable). FutureTask is a generic type and the type variable V represents the return
type of the wrapped Callable object. AbstractExecutorService uses
FutureTask to convert Callable objects passed to the submit() method into
Runnable objects it can pass to the execute() method.

FutureTask also implements the Future interface, which means that the get()
method waits for the run() method to complete and provides access to the result (or
exception) of the Callable's execution.

The protected methods set() and setException() are invoked when the
Callable returns a value or throws an exception. done() is invoked when the
Callable completes or is canceled. Subclasses can override any of these methods to insert
hooks for notification, logging, and so on.

Chapter 16. java.util and Subpackages Page 119 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-85. java.util.concurrent.FutureTask<V>

public class FutureTask<V> implements Future<V>, Runnable {
// Public Constructors
 public FutureTask(Callable<V> callable);
 public FutureTask(Runnable runnable, V result);
// Methods Implementing Future
 public boolean cancel(boolean mayInterruptIfRunning);
 public V get() throws InterruptedException, ExecutionException;
 public V get(long timeout, TimeUnit unit) throws InterruptedException,
 ExecutionException, TimeoutException;
 public boolean isCancelled();
 public boolean isDone();
// Methods Implementing Runnable
 public void run();
// Protected Instance Methods
 protected void done(); empty
 protected boolean runAndReset();
 protected void set(V v);
 protected void setException(Throwable t);
}

LinkedBlockingQueue<E> java.util.concurrent

Java 5.0 serializable collection

This threadsafe class implements the BlockingQueue interface based on a linked-list
data structure. It orders elements on a first-in, first-out (FIFO) basis. You may specify a
maximum queue capacity, creating a bounded queue. The default capacity is
Integer.MAX_VALUE, which is effectively unbounded. null elements are not permitted.

Figure 16-86. java.util.concurrent.LinkedBlockingQueue<E>

public class LinkedBlockingQueue<E> extends java.util.AbstractQueue<E>
implements BlockingQueue<E>, Serializable {
// Public Constructors
 public LinkedBlockingQueue();
 public LinkedBlockingQueue(int capacity);
 public LinkedBlockingQueue(java.util.Collection<? extends E> c);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);

Chapter 16. java.util and Subpackages Page 120 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

PriorityBlockingQueue<E> java.util.concurrent

Java 5.0 serializable collection

This threadsafe class implements the BlockingQueue interface. It is an unbounded
queue that orders its elements according to a Comparator, or, for Comparable elements,
according to their compareTo() method. The head of the queue (the next element to be
removed) is always the smallest element. Note that the Iterator returned by the
iterator() method is not guaranteed to return elements in this order. See also
java.util.PriorityQueue.

Figure 16-87. java.util.concurrent.PriorityBlockingQueue<E>

public class PriorityBlockingQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public PriorityBlockingQueue();
 public PriorityBlockingQueue(int initialCapacity);
 public PriorityBlockingQueue(java.util.Collection<? extends E> c);
 public PriorityBlockingQueue(int initialCapacity, java.util.Comparator<? super E>
 comparator);
// Public Instance Methods
 public java.util.Comparator<? super E> comparator();
// Methods Implementing BlockingQueue
 public boolean add(E o);

Chapter 16. java.util and Subpackages Page 121 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit);
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o);
 public int remainingCapacity();
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear();
 public boolean contains(Object o);
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o);
 public int size();
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek();
 public E poll();
// Public Methods Overriding AbstractCollection
 public String toString();
}

RejectedExecutionException java.util.concurrent

Java 5.0 serializable unchecked

An exception of this type is thrown by an Executor when it cannot accept a task for
execution. When a ThreadPoolExecutor cannot accept a task, it attempts to invoke a
RejectedExecutionHandler. ThreadPoolExecutor defines several nested
implementations of that handler interface that can handle the rejected task without
throwing an exception of this type.

Figure 16-88. java.util.concurrent.RejectedExecutionException

public class RejectedExecutionException extends RuntimeException {
// Public Constructors
 public RejectedExecutionException();
 public RejectedExecutionException(Throwable cause);
 public RejectedExecutionException(String message);
 public RejectedExecutionException(String message, Throwable cause);
}

RejectedExecutionHandler java.util.concurrent

Chapter 16. java.util and Subpackages Page 122 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0

This interface defines an API for a handler method invoked by a
ThreadPoolExecutor when its execute() method cannot accept any more
Runnable objects. This can occur when both the thread pool and the queue of waiting
tasks is full, or when the ThreadPoolExecutor has been shut down. Register an instance
of this class with the setRejectedExecutionHandler() method of
ThreadPoolExecutor. ThreadPoolExecutor includes several predefined
implementations of this interface as static member classes. If the
rejectedExecution() method cannot arrange for the Runnable to be run and does
not wish to simply discard that task, it should throw a
RejectedExecutionException which propagates up to the caller that submitted the
task for execution.

public interface RejectedExecutionHandler {
// Public Instance Methods
 void rejectedExecution(Runnable r, ThreadPoolExecutor executor);
}

Implementations

ThreadPoolExecutor.AbortPolicy,
ThreadPoolExecutor.CallerRunsPolicy,
ThreadPoolExecutor.DiscardOldestPolicy,
ThreadPoolExecutor.DiscardPolicy
Passed To

ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(),
ThreadPoolExecutor.{setRejectedExecutionHandler(),
ThreadPoolExecutor()}
Returned By

ThreadPoolExecutor.getRejectedExecutionHandler()

ScheduledExecutorService java.util.concurrent

Java 5.0

This interface extends Executor and ExecutorService to add methods for scheduling
Callable or Runnable tasks for future execution on a one-time basis or a repeating
basis. The schedule() methods schedule a Callable or a Runnable task for one-
time execution after a specified delay. The delay is specified by a long plus a TimeUnit.
When a Callable<V> is scheduled, the result is a ScheduledFuture<V>. This is like a

Chapter 16. java.util and Subpackages Page 123 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Future<V> object but also implements the Delay interface so you can call
getDelay() to find out how much time remains before execution begins. If you
schedule() a Runnable object, the result is a ScheduledFuture<?>. Since a
Runnable has no return value, the get() method of this ScheduledFuture returns
null, but the cancel(), getDelay(), and isDone() methods remain useful.

ScheduledExecutorService provides two alternatives for scheduling Runnable
tasks for repeated execution. (See also java.util.Timer, which has similar methods.)
scheduleAtFixedRate() begins the first execution of the Runnable after
initialDelay time units, and begins subsequent executions at multiples of period
time units after that. This means that the Runnable runs at a fixed rate, regardless of how
long each execution takes. scheduleWithFixedDelay() also begins the first
execution after initialDelay time units. But it waits for this first execution (and all
subsequent executions) to complete before scheduling the next execution for delay time
units in the future. Both methods return a ScheduledFuture object that you can use to
cancel() the repeated execution of tasks. If the task is not canceled, the
ScheduledExecutorService runs it repeatedly until the service is shut down (see
ExecutorService) or the Runnable throws an exception.

Figure 16-89. java.util.concurrent.ScheduledExecutorService

public interface ScheduledExecutorService extends ExecutorService {
// Public Instance Methods
 <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
 ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
 ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,
 long period, TimeUnit unit);
 ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,
 long delay, TimeUnit unit);
}

Implementations

ScheduledThreadPoolExecutor
Passed To

Executors.unconfigurableScheduledExecutorService()
Returned By

Executors.{newScheduledThreadPool(),
newSingleThreadScheduledExecutor(),
unconfigurableScheduledExecutorService()}

ScheduledFuture<V> java.util.concurrent

Chapter 16. java.util and Subpackages Page 124 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 comparable

This interface extends Future and Delayed and adds no methods of its own. A
ScheduledFuture represents a computation and the future result of that computation
just as Future does, but it adds a getDelay() method that returns the amount of time
until the computation begins. See ScheduledExecutorService.

Figure 16-90. java.util.concurrent.ScheduledFuture<V>

public interface ScheduledFuture<V> extends DelayedFuture<V> {
}

Returned By

ScheduledExecutorService.{schedule(), scheduleAtFixedRate(),
scheduleWithFixedDelay()}, ScheduledThreadPoolExecutor.
{schedule(), scheduleAtFixedRate(), scheduleWithFixedDelay()}

ScheduledThreadPoolExecutor java.util.concurrent

Java 5.0

This class extends ThreadPoolExecutor to implement the methods of the
ScheduledExecutorService interface to allow tasks to be submitted for execution
once or repeatedly at some scheduled time in the future. Instances of this class are usually
obtained through the static factory methods of the Executors utility class. You can also
explicitly create one with the ScheduledThreadPoolExecutors() constructor.
ScheduledThreadPoolExecutor always creates its own unbounded work queue,
which means that you cannot pass a queue to the constructor. Also, there is no need to
specify a maximumPoolSize since this configuration parameter is irrelevant with
unbounded queues.

Note that tasks submitted to a ScheduledThreadPoolExecutor are not guaranteed to
run at the scheduled time. That is the time at which they first become eligible to run. If all
threads are busy with other tasks, however, eligible tasks may get queued up to run later.

This class provides functionality similar to java.util.Timer but adds multithreaded
capability and the ability to work with Callable and Future objects.

Chapter 16. java.util and Subpackages Page 125 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-91. java.util.concurrent.ScheduledThreadPoolExecutor

public class ScheduledThreadPoolExecutor extends ThreadPoolExecutor
 implements ScheduledExecutorService {
// Public Constructors
 public ScheduledThreadPoolExecutor(int corePoolSize);
 public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory);
 public ScheduledThreadPoolExecutor(int corePoolSize, RejectedExecutionHandler handler);
 public ScheduledThreadPoolExecutor(int corePoolSize, ThreadFactory threadFactory,
 RejectedExecutionHandler handler);
// Public Instance Methods
 public boolean getContinueExistingPeriodicTasksAfterShutdownPolicy();
 public boolean getExecuteExistingDelayedTasksAfterShutdownPolicy();
 public void setContinueExistingPeriodicTasksAfterShutdownPolicy(boolean value);
 public void setExecuteExistingDelayedTasksAfterShutdownPolicy(boolean value);
// Methods Implementing Executor
 public void execute(Runnable command);
// Methods Implementing ExecutorService
 public void shutdown();
 public java.util.List<Runnable> shutdownNow();
 public Future<?> submit(Runnable task);
 public <T> Future<T> submit(Callable<T> task);
 public <T> Future<T> submit(Runnable task, T result);
// Methods Implementing ScheduledExecutorService
 public <V> ScheduledFuture<V> schedule(Callable<V> callable, long delay, TimeUnit unit);
 public ScheduledFuture<?> schedule(Runnable command, long delay, TimeUnit unit);
 public ScheduledFuture<?> scheduleAtFixedRate(Runnable command, long initialDelay,
 long period, TimeUnit unit);
 public ScheduledFuture<?> scheduleWithFixedDelay(Runnable command, long initialDelay,
 long delay, TimeUnit unit);
// Public Methods Overriding ThreadPoolExecutor
 public BlockingQueue<Runnable> getQueue();
 public boolean remove(Runnable task);
}

Semaphore java.util.concurrent

Java 5.0 serializable

This class implements semaphores, a classic thread synchronization primitive that can be
used to implement mutual exclusion and wait/notify-style thread synchronization. A
Semaphore maintains some fixed number (specified when the Semaphore()
constructor is called) of permits. The acquire() method blocks until a permit is
available, then decrements the number of available permits and returns. The
release() method does the reverse: it increments the number of permits, possibly
unblocking a thread waiting in acquire().

If you pass true as the second argument to the Semaphore() constructor, the
semaphore treats waiting threads fairly by placing them on a FIFO queue in the order they

Chapter 16. java.util and Subpackages Page 126 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

called acquire() and granting permits to the threads in this order. This prevents thread
starvation.

Figure 16-92. java.util.concurrent.Semaphore

public class Semaphore implements Serializable {
// Public Constructors
 public Semaphore(int permits);
 public Semaphore(int permits, boolean fair);
// Public Instance Methods
 public void acquire() throws InterruptedException;
 public void acquire(int permits) throws InterruptedException;
 public void acquireUninterruptibly();
 public void acquireUninterruptibly(int permits);
 public int availablePermits();
 public int drainPermits();
 public final int getQueueLength();
 public final boolean hasQueuedThreads();
 public boolean isFair();
 public void release();
 public void release(int permits);
 public boolean tryAcquire();
 public boolean tryAcquire(int permits);
 public boolean tryAcquire(long timeout, TimeUnit unit)
 throws InterruptedException;
 public boolean tryAcquire(int permits, long timeout, TimeUnit unit)
 throws InterruptedException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected java.util.Collection<Thread> getQueuedThreads();
 protected void reducePermits(int reduction);
}

SynchronousQueue<E> java.util.concurrent

Java 5.0 serializable collection

This BlockingQueue implementation is the degenerate case of a bounded queue with a
capacity of zero. Every call to put() blocks until a corresponding call to take(), and
vice versa. You can think of this as an Exchanger that does only a one-way exchange.

The size() and remainingCapacity() methods always return 0. The peek()
method always returns null. The iterator() method returns an Iterator for which
the hasNext() method returns false.

Chapter 16. java.util and Subpackages Page 127 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-93. java.util.concurrent.SynchronousQueue<E>

public class SynchronousQueue<E> extends java.util.AbstractQueue<E>
 implements BlockingQueue<E>, Serializable {
// Public Constructors
 public SynchronousQueue();
 public SynchronousQueue(boolean fair);
// Methods Implementing BlockingQueue
 public int drainTo(java.util.Collection<? super E> c);
 public int drainTo(java.util.Collection<? super E> c, int maxElements);
 public boolean offer(E o);
 public boolean offer(E o, long timeout, TimeUnit unit) throws InterruptedException;
 public E poll(long timeout, TimeUnit unit) throws InterruptedException;
 public void put(E o) throws InterruptedException;
 public int remainingCapacity(); constant
 public E take() throws InterruptedException;
// Methods Implementing Collection
 public void clear(); empty
 public boolean contains(Object o); constant
 public boolean containsAll(java.util.Collection<?> c);
 public boolean isEmpty(); constant default:true
 public java.util.Iterator<E> iterator();
 public boolean remove(Object o); constant
 public boolean removeAll(java.util.Collection<?> c); constant
 public boolean retainAll(java.util.Collection<?> c); constant
 public int size(); constant
 public Object[] toArray();
 public <T> T[] toArray(T[] a);
// Methods Implementing Queue
 public E peek(); constant
 public E poll();
}

ThreadFactory java.util.concurrent

Java 5.0

An instance of this interface is an object that creates Thread objects to run Runnable
objects. You might define a ThreadFactory if you want to set the priority, name, or
ThreadGroup of the threads used by a ThreadPoolExecutor, for example. A number
of the factory methods of the Executors utility class rely on ThreadPoolExecutor and
accept a ThreadFactory argument.

public interface ThreadFactory {
// Public Instance Methods
 Thread newThread(Runnable r);
}

Chapter 16. java.util and Subpackages Page 128 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

Executors.{newCachedThreadPool(), newFixedThreadPool(),
newScheduledThreadPool(), newSingleThreadExecutor(),
newSingleThreadScheduledExecutor()},
ScheduledThreadPoolExecutor.ScheduledThreadPoolExecutor(),
ThreadPoolExecutor.{setThreadFactory(), ThreadPoolExecutor()}
Returned By

Executors.{defaultThreadFactory(), privilegedThreadFactory()},
ThreadPoolExecutor.getThreadFactory()

ThreadPoolExecutor java.util.concurrent

Java 5.0

This class implements the ExecutorService interface to execute tasks using a highly
configurable thread pool. The easiest way to instantiate this class is through the static
factory methods of the Executors class. If you want a more highly configured thread
pool, you can instantiate it directly.

Four configuration parameters must be passed to every ThreadPoolExecutor()
constructor; two others are optional. Many of these parameters may also be queried and
adjusted after the executor has been created through various ThreadPoolExecutor
accessor methods. The most important configuration parameters specify the size of the
thread pool, and the queue that the executor uses to hold tasks that it cannot currently
run. corePoolSize is the number of threads that the pool should hold under normal
usage. As tasks are submitted to the ThreadPoolExecutor, a new thread is created for
each task until the total number of threads reaches this size.

If corePoolSize threads have already been created, newly submitted tasks are placed
on the work queue. As these core threads finish the tasks they are executing, they
take() a new task from the work queue. You must specify the workQueue when you
call the ThreadPoolExecutor() constructor. It may be any BlockingQueue object
and the behavior of the thread pool depends strongly on the behavior of the queue you
specify. Options include an unbounded LinkedBlockingQueue, a bounded
ArrayBlockingQueue with a capacity of your choosing, or even a
SynchronousQueue which has a capacity of zero and cannot actually accept a task unless
a thread is already waiting to execute it.

Chapter 16. java.util and Subpackages Page 129 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the work queue becomes empty, it is inefficient to leave all the core threads sitting idly
waiting for work. Threads are terminated if they are idle for more than the "keep alive"
time. You specify this time with the keepAliveTime parameter and a TimeUnit
constant.

If the work queue fills up, the maximumPoolSize parameter comes into play.
ThreadPoolExecutor prefers to maintain corePoolSize threads but allows this
number to grow up to maximumPoolSize. A new thread is created only when the
workQueue is full. If you specify an unbounded work queue, maximumPoolSize is
irrelevant because the queue never fills up. If on the other hand you specify a
SynchronousQueue (which is always full), if none of the existing threads are waiting for
a new task, a new thread is always created (up to the maximumPoolSize limit).

If a ThreadPoolExecutor has already created the maximum number of threads and its
work queue is full, it must reject any newly submitted tasks. The default behavior is to
throw a RejectedExecutionException. You can alter this behavior by specifying a
RejectedExecutionHandler object to the ThreadPoolExecutor() constructor or
with the setRejectedExecutionHandler() method. The four inner classes of this
class are implementations of four handlers that address this case. See their individual
entries for details.

The final way that you can customize a ThreadPoolExecutor is to pass
ThreadFactory to the constructor or to the setThreadFactory() method. If you do
not specify a factory, the ThreadPoolExecutor obtains one with
Executors.defaultThreadFactory().

Figure 16-94. java.util.concurrent.ThreadPoolExecutor

public class ThreadPoolExecutor extends AbstractExecutorService {
// Public Constructors
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 RejectedExecutionHandler handler);
 public ThreadPoolExecutor(int corePoolSize, int maximumPoolSize,
 long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue,
 ThreadFactory threadFactory,
RejectedExecutionHandler handler);
// Nested Types
 public static class AbortPolicy implements RejectedExecutionHandler;
 public static class CallerRunsPolicy implements RejectedExecutionHandler;
 public static class DiscardOldestPolicy implements RejectedExecutionHandler;
 public static class DiscardPolicy implements RejectedExecutionHandler;

Chapter 16. java.util and Subpackages Page 130 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Instance Methods
 public int getActiveCount();
 public long getCompletedTaskCount();
 public int getCorePoolSize();
 public long getKeepAliveTime(TimeUnit unit);
 public int getLargestPoolSize();
 public int getMaximumPoolSize();
 public int getPoolSize();
 public BlockingQueue<Runnable> getQueue();
 public RejectedExecutionHandler getRejectedExecutionHandler();
 public long getTaskCount();
 public ThreadFactory getThreadFactory();
 public boolean isTerminating();
 public int prestartAllCoreThreads();
 public boolean prestartCoreThread();
 public void purge();
 public boolean remove(Runnable task);
 public void setCorePoolSize(int corePoolSize);
 public void setKeepAliveTime(long time, TimeUnit unit);
 public void setMaximumPoolSize(int maximumPoolSize);
 public void setRejectedExecutionHandler(RejectedExecutionHandler handler);
 public void setThreadFactory(ThreadFactory threadFactory);
// Methods Implementing Executor
 public void execute(Runnable command);
// Methods Implementing ExecutorService
 public boolean awaitTermination(long timeout, TimeUnit unit)
 throws InterruptedException;
 public boolean isShutdown();
 public boolean isTerminated();
 public void shutdown();
 public java.util.List<Runnable> shutdownNow();
// Protected Methods Overriding Object
 protected void finalize();
// Protected Instance Methods
 protected void afterExecute(Runnable r, Throwable t); empty
 protected void beforeExecute(Thread t, Runnable r); empty
 protected void terminated(); empty
}

Subclasses

ScheduledThreadPoolExecutor
Passed To

RejectedExecutionHandler.rejectedExecution(),
ThreadPoolExecutor.AbortPolicy.rejectedExecution(),
ThreadPoolExecutor.CallerRunsPolicy.rejectedExecution(),
ThreadPoolExecutor.DiscardOldestPolicy.rejectedExecution(),
ThreadPoolExecutor.DiscardPolicy.rejectedExecution()

ThreadPoolExecutor.AbortPolicy java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation simply throws a
RejectedExecutionException.

public static class ThreadPoolExecutor.AbortPolicy implements RejectedExecutionHandler {
// Public Constructors

Chapter 16. java.util and Subpackages Page 131 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public AbortPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

ThreadPoolExecutor.CallerRunsPolicy java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation runs the rejected Runnable object
directly in the calling thread, causing that thread to block until the Runnable completes.
If the ThreadPoolExecutor has been shut down, the Runnable is simply discarded
instead of being run.

public static class ThreadPoolExecutor.CallerRunsPolicy implements RejectedExecutionHandler {
// Public Constructors
 public CallerRunsPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

ThreadPoolExecutor.DiscardOldestPolicy java.util.concurrent

Java 5.0

This RejectedExecutionHandler implementation discards the rejected Runnable if
the ThreadPoolExecutor has been shut down. Otherwise, it discards the oldest pending
task that has not run and tries again to execute() the rejected task.

public static class ThreadPoolExecutor.DiscardOldestPolicy implements RejectedExecutionHandler {
// Public Constructors
 public DiscardOldestPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e);
}

ThreadPoolExecutor.DiscardPolicy java.util.concurrent

Java 5.0

Chapter 16. java.util and Subpackages Page 132 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This RejectedExecutionHandler implementation silently discards the rejected
Runnable.

public static class ThreadPoolExecutor.DiscardPolicy implements RejectedExecutionHandler {
// Public Constructors
 public DiscardPolicy();
// Methods Implementing RejectedExecutionHandler
 public void rejectedExecution(Runnable r, ThreadPoolExecutor e); empty
}

TimeoutException java.util.concurrent

Java 5.0 serializable checked

An exception of this type is thrown by timed methods to indicate that the specified timeout
has elapsed. Other timed methods are able to indicate their timeout status in a boolean
or other return value.

Figure 16-95. java.util.concurrent.TimeoutException

public class TimeoutException extends Exception {
// Public Constructors
 public TimeoutException();
 public TimeoutException(String message);
}

Thrown By

AbstractExecutorService.invokeAny(), CyclicBarrier.await(),
Exchanger.exchange(), ExecutorService.invokeAny(), Future.get(),
FutureTask.get()

TimeUnit java.util.concurrent

Java 5.0 serializable comparable enum

The constants defined by this enumerated type represent granularities of time. Timeout
and delay specifications throughout the java.util.concurrent package are specified
by a long value and TimeUnit constant that specifies the interpretation of that value.

Chapter 16. java.util and Subpackages Page 133 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

TimeUnit defines conversion methods that convert values expressed in one unit to values
in another unit. More interestingly, it defines convenient alternatives to
Thread.sleep(), Thread.join(), and Object.wait().

Figure 16-96. java.util.concurrent.TimeUnit

public enum TimeUnit {
// Enumerated Constants
 NANOSECONDS,
 MICROSECONDS,
 MILLISECONDS,
 SECONDS;
// Public Class Methods
 public static TimeUnit valueOf(String name);
 public static final TimeUnit[] values();
// Public Instance Methods
 public long convert(long duration, TimeUnit unit);
 public void sleep(long timeout) throws InterruptedException;
 public void timedJoin(Thread thread, long timeout) throws InterruptedException;
 public void timedWait(Object obj, long timeout) throws InterruptedException;
 public long toMicros(long duration);
 public long toMillis(long duration);
 public long toNanos(long duration);
 public long toSeconds(long duration);
}

Passed To

Too many methods to list.

Package java.util.concurrent.atomic

Java 5.0

This package includes classes that provide atomic operations on boolean, integer, and
reference values. Instances of the classes defined here have the properties of volatile
fields but also add atomic operations like the canonical compareAndSet(), which
verifies that the field holds an expected value, and, if it does, sets it to a new value. The
classes also define a weakCompareAndSet() method that may be more efficient than
compareAndSet() but may also fail to set the value even when the field holds the
expected value.

The "Array" classes provide atomic access to arrays of values and provide volatile access
semantics for array elements, which is not possible with the volatile modifier itself. The
"FieldUpdater" classes use reflection to provide atomic operations on a named
volatile field of an existing class. The AtomicMarkableReference class and

Chapter 16. java.util and Subpackages Page 134 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AtomicStampedReference class maintain a reference value and an associated
boolean or int value and allow the two values to be atomically manipulated together.
These classes can be useful in concurrent algorithms that detect concurrent updates with
version numbering, for example.

Most implementations of this package rely on low-level atomic instructions in the
underlying CPU and perform atomic operations without the overhead of locking.

Classes

public class AtomicBoolean implements Serializable;
public class AtomicInteger extends Number implements Serializable;
public class AtomicIntegerArray implements Serializable;
public abstract class AtomicIntegerFieldUpdater<T>;
public class AtomicLong extends Number implements Serializable;
public class AtomicLongArray implements Serializable;
public abstract class AtomicLongFieldUpdater<T>;
public class AtomicMarkableReference<V>;
public class AtomicReference<V> implements Serializable;
public class AtomicReferenceArray<E> implements Serializable;
public abstract class AtomicReferenceFieldUpdater<T, V>;
public class AtomicStampedReference<V>;

AtomicBoolean java.util.concurrent.atomic

Java 5.0 serializable

This threadsafe class holds a boolean value. In addition to the get() and set()
iterators, it provides atomic compareAndSet(), weakCompareAndSet(), and
getAndSet() operations.

Figure 16-97. java.util.concurrent.atomic.AtomicBoolean

public class AtomicBoolean implements Serializable {
// Public Constructors
 public AtomicBoolean();
 public AtomicBoolean(boolean initialValue);
// Public Instance Methods
 public final boolean compareAndSet(boolean expect, boolean update);
 public final boolean get();
 public final boolean getAndSet(boolean newValue);
 public final void set(boolean newValue);
 public boolean weakCompareAndSet(boolean expect, boolean update);
// Public Methods Overriding Object
 public String toString();
}

Chapter 16. java.util and Subpackages Page 135 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AtomicInteger java.util.concurrent.atomic

Java 5.0 serializable

This threadsafe class holds an int value. It extends java.lang.Number, but unlike the
Integer class, it is mutable. Access the int value with the get() method and the
various methods inherited from Number. You can set the value with the set() method
or through various atomic methods. In addition to the basic compareAndSet() and
weakCompareAndSet() methods, this class defines methods for atomic pre-increment,
post-increment, pre-decrement and post-decrement operations as well as generalized
addAndGet() and getAndAdd() methods. addAndGet() atomically adds the
specified amount to the stored value and returns the new value. getAndAdd() atomically
returns the current value and then adds the specified amount to it.

Figure 16-98. java.util.concurrent.atomic.AtomicInteger

public class AtomicInteger extends Number implements Serializable {
// Public Constructors
 public AtomicInteger();
 public AtomicInteger(int initialValue);
// Public Instance Methods
 public final int addAndGet(int delta);
 public final boolean compareAndSet(int expect, int update);
 public final int decrementAndGet();
 public final int get();
 public final int getAndAdd(int delta);
 public final int getAndDecrement(); default:0
 public final int getAndIncrement(); default:-1
 public final int getAndSet(int newValue);
 public final int incrementAndGet();
 public final void set(int newValue);
 public final boolean weakCompareAndSet(int expect, int update);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public String toString();
}

AtomicIntegerArray java.util.concurrent.atomic

Java 5.0 serializable

Chapter 16. java.util and Subpackages Page 136 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class holds an array of int values. It provides threadsafe access to the array elements,
treating each as if it was a volatile field, and defines atomic operations on them. The
methods of this class are like those of AtomicInteger, except that each has an additional
parameter that specifies the array index. Create an AtomicIntegerArray by specifying
the desired array length or an actual int[] from which initial values can be copied.

Figure 16-99. java.util.concurrent.atomic.AtomicIntegerArray

public class AtomicIntegerArray implements Serializable {
// Public Constructors
 public AtomicIntegerArray(int[] array);
 public AtomicIntegerArray(int length);
// Public Instance Methods
 public final int addAndGet(int i, int delta);
 public final boolean compareAndSet(int i, int expect, int update);
 public final int decrementAndGet(int i);
 public final int get(int i);
 public final int getAndAdd(int i, int delta);
 public final int getAndDecrement(int i);
 public final int getAndIncrement(int i);
 public final int getAndSet(int i, int newValue);
 public final int incrementAndGet(int i);
 public final int length();
 public final void set(int i, int newValue);
 public final boolean weakCompareAndSet(int i, int expect, int update);
// Public Methods Overriding Object
 public String toString();
}

AtomicIntegerFieldUpdater<T> java.util.concurrent.atomic

Java 5.0

This class uses java.lang.reflect to provide atomic operations for named volatile
int fields within existing types. Obtain an instance of this class with the
newUpdater() factory method. Pass the name of the field (which must have been
declared volatile int) to be updated and the class that it is defined within to this
factory method. The instance methods of the resulting
AtomicIntegerFieldUpdater object are like those of the AtomicInteger class but
require you to specify the object whose field is to be manipulated. This is a generic type,
and the type variable T represents the type whose volatile int field is being updated.

public abstract class AtomicIntegerFieldUpdater<T> {
// Protected Constructors
 protected AtomicIntegerFieldUpdater();
// Public Class Methods
 public static <U> AtomicIntegerFieldUpdater<U> newUpdater(Class<U> tclass,
 String fieldName);
// Public Instance Methods

Chapter 16. java.util and Subpackages Page 137 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public int addAndGet(T obj, int delta);
 public abstract boolean compareAndSet(T obj, int expect, int update);
 public int decrementAndGet(T obj);
 public abstract int get(T obj);
 public int getAndAdd(T obj, int delta);
 public int getAndDecrement(T obj);
 public int getAndIncrement(T obj);
 public int getAndSet(T obj, int newValue);
 public int incrementAndGet(T obj);
 public abstract void set(T obj, int newValue);
 public abstract boolean weakCompareAndSet(T obj, int expect, int update);
}

AtomicLong java.util.concurrent.atomic

Java 5.0 serializable

This threadsafe class holds a mutable long value and defines atomic operations on that
value. It behaves just like AtomicInteger, with the substitution of long for int.

Figure 16-100. java.util.concurrent.atomic.AtomicLong

public class AtomicLong extends Number implements Serializable {
// Public Constructors
 public AtomicLong();
 public AtomicLong(long initialValue);
// Public Instance Methods
 public final long addAndGet(long delta);
 public final boolean compareAndSet(long expect, long update);
 public final long decrementAndGet();
 public final long get();
 public final long getAndAdd(long delta);
 public final long getAndDecrement(); default:0
 public final long getAndIncrement(); default:-1
 public final long getAndSet(long newValue);
 public final long incrementAndGet();
 public final void set(long newValue);
 public final boolean weakCompareAndSet(long expect, long update);
// Public Methods Overriding Number
 public double doubleValue();
 public float floatValue();
 public int intValue();
 public long longValue();
// Public Methods Overriding Object
 public String toString();
}

AtomicLongArray java.util.concurrent.atomic

Chapter 16. java.util and Subpackages Page 138 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 serializable

This threadsafe class provides atomic operations for an array of long values. See
AtomicIntegerArray, which offers the equivalent operations for int arrays.

Figure 16-101. java.util.concurrent.atomic.AtomicLongArray

public class AtomicLongArray implements Serializable {
// Public Constructors
 public AtomicLongArray(long[] array);
 public AtomicLongArray(int length);
// Public Instance Methods
 public long addAndGet(int i, long delta);
 public final boolean compareAndSet(int i, long expect, long update);
 public final long decrementAndGet(int i);
 public final long get(int i);
 public final long getAndAdd(int i, long delta);
 public final long getAndDecrement(int i);
 public final long getAndIncrement(int i);
 public final long getAndSet(int i, long newValue);
 public final long incrementAndGet(int i);
 public final int length();
 public final void set(int i, long newValue);
 public final boolean weakCompareAndSet(int i, long expect, long update);
// Public Methods Overriding Object
 public String toString();
}

AtomicLongFieldUpdater<T> java.util.concurrent.atomic

Java 5.0

This class uses java.lang.reflect to define atomic operations for named volatile
long fields of a specified class. See AtomicIntegerFieldUpdater, which is very
similar.

public abstract class AtomicLongFieldUpdater<T> {
// Protected Constructors
 protected AtomicLongFieldUpdater();
// Public Class Methods
 public static <U> AtomicLongFieldUpdater<U> newUpdater(Class<U> tclass, String fieldName);
// Public Instance Methods
 public long addAndGet(T obj, long delta);
 public abstract boolean compareAndSet(T obj, long expect, long update);
 public long decrementAndGet(T obj);
 public abstract long get(T obj);
 public long getAndAdd(T obj, long delta);
 public long getAndDecrement(T obj);
 public long getAndIncrement(T obj);
 public long getAndSet(T obj, long newValue);
 public long incrementAndGet(T obj);
 public abstract void set(T obj, long newValue);

Chapter 16. java.util and Subpackages Page 139 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract boolean weakCompareAndSet(T obj, long expect, long update);
}

AtomicMarkableReference<V> java.util.concurrent.atomic

Java 5.0

This threadsafe class holds a mutable reference to an object of type V and also holds a
mutable boolean value or "mark." It defines atomic operations and volatile access
semantics for the reference and the mark. The set() method unconditionally sets the
reference and mark value. The get() method queries both, returning the reference as
its return value, and storing the current value of the mark in element 0 of the specified
boolean array. The reference and mark can also be queried individually (and
nonatomically) with getReference() and isMarked().

The atomic compareAndSet() and weakCompareAndSet() methods take expected
and new values for both the reference and the mark, and neither is set to its new value
unless both match their expected values. attemptMark() atomically sets the value of
the mark but only if the reference is equal to the expected value. Like
weakCompareAndSet(), this method may fail spuriously, even if the reference does
equal the expected value. Repeated invocation eventually succeeds, however, as long as
the expected value is correct, and other threads are not continuously changing the
reference value.

public class AtomicMarkableReference<V> {
// Public Constructors
 public AtomicMarkableReference(V initialRef, boolean initialMark);
// Public Instance Methods
 public boolean attemptMark(V expectedReference, boolean newMark);
 public boolean compareAndSet(V expectedReference, V newReference,
 boolean expectedMark, boolean newMark);
 public V get(boolean[] markHolder);
 public V getReference();
 public boolean isMarked();
 public void set(V newReference, boolean newMark);
 public boolean weakCompareAndSet(V expectedReference, V newReference,
 boolean expectedMark, boolean newMark);
}

AtomicReference<V> java.util.concurrent.atomic

Java 5.0 serializable

Chapter 16. java.util and Subpackages Page 140 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This threadsafe class holds a mutable reference to an object of type V, provides
volatile access semantics, and defines atomic operations for manipulating that value.
get() and set() are ordinary accessor methods for the reference.
compareAndSet(), weakCompareAndSet(), and getAndSet() perform the two
named operations atomically. compareAndSet() is the canonical atomic operation: the
reference is compared to an expected value, and, if it matches, is set to a new value.
compareAndSet() returns true if it set the value or false otherwise.
weakCompareAndSet() is similar but may fail to set the reference even if it does match
the expected value (it is guaranteed to succeed eventually if the operation is repeatedly
retried, however).

Figure 16-102. java.util.concurrent.atomic.AtomicReference<V>

public class AtomicReference<V> implements Serializable {
// Public Constructors
 public AtomicReference();
 public AtomicReference(V initialValue);
// Public Instance Methods
 public final boolean compareAndSet(V expect, V update);
 public final V get();
 public final V getAndSet(V newValue);
 public final void set(V newValue);
 public final boolean weakCompareAndSet(V expect, V update);
// Public Methods Overriding Object
 public String toString();
}

AtomicReferenceArray<E> java.util.concurrent.atomic

Java 5.0 serializable

This threadsafe class holds an array of elements of type E. It provides volatile access
semantics for these array elements and defines atomic operations for manipulating them.
Its methods are like those of AtomicReference with the addition of a parameter that
specifies the array index of the desired element.

Figure 16-103. java.util.concurrent.atomic.AtomicReferenceArray<E>

public class AtomicReferenceArray<E> implements Serializable {
// Public Constructors
 public AtomicReferenceArray(E[] array);
 public AtomicReferenceArray(int length);
// Public Instance Methods

Chapter 16. java.util and Subpackages Page 141 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public final boolean compareAndSet(int i, E expect, E update);
 public final E get(int i);
 public final E getAndSet(int i, E newValue);
 public final int length();
 public final void set(int i, E newValue);
 public final boolean weakCompareAndSet(int i, E expect, E update);
// Public Methods Overriding Object
 public String toString();
}

AtomicReferenceFieldUpdater<T,V> java.util.concurrent.atomic

Java 5.0

This threadsafe class uses java.lang.reflect to provide atomic operations for a
named volatile field of type V within an object of type T. Its instance methods are like those
of AtomicReference and the static newUpdater() factory method is like that of
AtomicIntegerFieldUpdater.

public abstract class AtomicReferenceFieldUpdater<T,V> {
// Protected Constructors
 protected AtomicReferenceFieldUpdater();
// Public Class Methods
 public static <U,W> AtomicReferenceFieldUpdater<U,W> newUpdater(Class<U> tclass,
 Class<W> vclass, String fieldName);
// Public Instance Methods
 public abstract boolean compareAndSet(T obj, V expect, V update);
 public abstract V get(T obj);
 public V getAndSet(T obj, V newValue);
 public abstract void set(T obj, V newValue);
 public abstract boolean weakCompareAndSet(T obj, V expect, V update);
}

AtomicStampedReference<V> java.util.concurrent.atomic

Java 5.0

This threadsafe class holds a mutable reference to an object of type V and also holds a
mutable int value or "stamp." It defines atomic operations and volatile access semantics
for the reference and the stamp. This class works just like
AtomicMarkableReference except that an int "stamp" replaces the boolean "mark."
See AtomicMarkableReference for further details.

public class AtomicStampedReference<V> {
// Public Constructors
 public AtomicStampedReference(V initialRef, int initialStamp);
// Public Instance Methods
 public boolean attemptStamp(V expectedReference, int newStamp);

Chapter 16. java.util and Subpackages Page 142 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public boolean compareAndSet(V expectedReference, V newReference,
 int expectedStamp, int newStamp);
 public V get(int[] stampHolder);
 public V getReference();
 public int getStamp();
 public void set(V newReference, int newStamp);
 public boolean weakCompareAndSet(V expectedReference, V newReference,
 int expectedStamp, int newStamp);
}

Package java.util.concurrent.locks

Java 5.0

This package defines Lock and associated Condition interfaces as well as concrete
implementations (such as ReentrantLock) that provide an alternative to locking with
synchronized blocks and methods and to waiting with the wait(), notify(), and
notifyAll() methods of Object.

Although Lock and Condition are somewhat more complex to use than the built-in
locking, waiting, and notification mechanisms of Object, they are also more flexible.
Lock, for example, does not require that locks be block-structured and enables algorithms
such as "hand-over-hand locking" for traversing linked data structures. A thread waiting
to acquire a Lock can time out or be interrupted, which is not possible with
synchronized locking. Also, more than one Condition can be associated with a given
Lock, which is simply not possible with Object-based locking and waiting.

The ReadWriteLock interface and its ReentrantReadWriteLock implementation
allow multiple concurrent readers but only a single writer thread to hold the lock.

Interfaces

public interface Condition;
public interface Lock;
public interface ReadWriteLock;

Classes

public abstract class AbstractQueuedSynchronizer implements Serializable;
public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable;
public class LockSupport;
public class ReentrantLock implements Lock, Serializable;
public class ReentrantReadWriteLock implements ReadWriteLock, Serializable;
public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable;
public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable;

AbstractQueuedSynchronizer java.util.concurrent.locks

Chapter 16. java.util and Subpackages Page 143 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 serializable

This abstract class is a low-level utility. A concrete subclass can be used as a helper class
for implementing the Lock interface or for implementing synchronizer utilities like the
CountDownLatch class of java.util.concurrent. Subclasses must define
tryAcquire(), tryRelease(), tryAcquireShared(),
tryReleaseShared(), and isHeldExclusively.

Figure 16-104. java.util.concurrent.locks.AbstractQueuedSynchronizer

public abstract class AbstractQueuedSynchronizer implements Serializable {
// Protected Constructors
 protected AbstractQueuedSynchronizer();
// Nested Types
 public class ConditionObject implements Condition, Serializable;
// Public Instance Methods
 public final void acquire(int arg);
 public final void acquireInterruptibly(int arg) throws InterruptedException;
 public final void acquireShared(int arg);
 public final void acquireSharedInterruptibly(int arg) throws InterruptedException;
 public final java.util.Collection<Thread> getExclusiveQueuedThreads();
 public final Thread getFirstQueuedThread();
 public final java.util.Collection<Thread> getQueuedThreads();
 public final int getQueueLength();
 public final java.util.Collection<Thread> getSharedQueuedThreads();
 public final java.util.Collection<Thread> getWaitingThreads(AbstractQueuedSynchronizer.
 ConditionObject condition);
 public final int getWaitQueueLength(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean hasContended();
 public final boolean hasQueuedThreads();
 public final boolean hasWaiters(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean isQueued(Thread thread);
 public final boolean owns(AbstractQueuedSynchronizer.ConditionObject condition);
 public final boolean release(int arg);
 public final boolean releaseShared(int arg);
 public final boolean tryAcquireNanos(int arg, long nanosTimeout)
 throws InterruptedException;
 public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
 throws InterruptedException;
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected final boolean compareAndSetState(int expect, int update);
 protected final int getState();
 protected boolean isHeldExclusively();
 protected final void setState(int newState);
 protected boolean tryAcquire(int arg);
 protected int tryAcquireShared(int arg);
 protected boolean tryRelease(int arg);
 protected boolean tryReleaseShared(int arg);
}

AbstractQueuedSynchronizer.ConditionObject java.util.concurrent.locks

Chapter 16. java.util and Subpackages Page 144 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 serializable

This class implements the Condition interface and is suitable for use with an
AbstractQueuedSynchronizer.

public class AbstractQueuedSynchronizer.ConditionObject implements Condition, Serializable {
// Public Constructors
 public ConditionObject();
// Methods Implementing Condition
 public final void await() throws InterruptedException;
 public final boolean await(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public final long awaitNanos(long nanosTimeout) throws InterruptedException;
 public final void awaitUninterruptibly();
 public final boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
 public final void signal();
 public final void signalAll();
// Protected Instance Methods
 protected final java.util.Collection<Thread> getWaitingThreads();
 protected final int getWaitQueueLength();
 protected final boolean hasWaiters();
}

Passed To

AbstractQueuedSynchronizer.{getWaitingThreads(),
getWaitQueueLength(), hasWaiters(), owns()}

Condition java.util.concurrent.locks

Java 5.0

This interface defines an alternative to the wait(), notify(), and notifyAll()
methods of java.lang.Object. Condition objects are always associated with a
corresponding Lock. Obtain a Condition with the newCondition() method of
Lock.

There are five choices for waiting. The no-argument version of await() is the simplest:
it blocks until the thread is signaled or interrupted. awaitUninterruptibly() blocks
until the thread is signaled and ignores interrupts. The other three waiting methods are
timed waits: they all wait until signaled, interrupted, or until the specified time elapses.
await() and awaitUntil() return true if they are signaled and false if a timeout
occurs. awaitNanos() specifies the timeout in nanoseconds. It returns zero or a
negative number if the timeout elapses. If it wakes up because of a signal (or because of a
spurious wakeup), it returns an estimate of the time remaining in the timeout. If it turns
out that the thread needs to continue waiting, this return value can be used as the new
timeout value.

Chapter 16. java.util and Subpackages Page 145 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The signal() and signalAll() methods are just like the notify() and
notifyAll() methods of Object. signal() wakes up one waiting thread, and
signalAll() wakes up all waiting threads.

Locking considerations apply to the use of a Condition object just as they apply to the
use of the wait() and notify() methods of Object. Before a thread can call any of
the waiting or signaling methods of a Condition, it must hold the Lock associated with
the condition. When the thread begins waiting, it automatically relinquishes the Lock,
and when it awakes because of a signal, timeout, or interrupt, it must reacquire the lock
before it can proceed. A thread is guaranteed to hold the lock when it returns from one of
the waiting methods.

Threads waiting on a Condition may wake up spuriously, just as they may when waiting
on an Object. Therefore, calls to wait on a Condition are typically written in the form
of a loop so that the desired condition is retested when the thread wakes up.

public interface Condition {
// Public Instance Methods
 void await() throws InterruptedException;
 boolean await(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 long awaitNanos(long nanosTimeout) throws InterruptedException;
 void awaitUninterruptibly();
 boolean awaitUntil(java.util.Date deadline) throws InterruptedException;
 void signal();
 void signalAll();
}

Implementations

AbstractQueuedSynchronizer.ConditionObject
Passed To

ReentrantLock.{getWaitingThreads(), getWaitQueueLength(),
hasWaiters()}, ReentrantReadWriteLock.{getWaitingThreads(),
getWaitQueueLength(), hasWaiters()}
Returned By

Lock.newCondition(), ReentrantLock.newCondition(),
ReentrantReadWriteLock.ReadLock.newCondition(),
ReentrantReadWriteLock.WriteLock.newCondition()

Lock java.util.concurrent.locks

Java 5.0

This interface represents a flexible API for preventing thread concurrency with locking.
Lock defines four methods for acquiring a lock. The simplest method is lock() which

Chapter 16. java.util and Subpackages Page 146 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

blocks indefinitely and uninterruptibly until the lock is acquired. This method is similar
to entering a synchronized block. lockInterruptibly() blocks until the lock is
acquired or until the thread is interrupted. The no-argument version of tryLock()
acquires the lock and returns true if the lock is currently available or returns false
without blocking if the lock is unavailable. The two-argument version of tryLock() is
a timed method: it blocks until it acquires the lock (in which case it returns true), or until
the specified timeout elapses (in which case it returns false), or until the thread is
interrupted (in which case it throws InterruptedException).

Once a Lock has been acquired, no other thread can acquire it until it is released with the
unlock() method. In order to ensure that locks are always released, even in the presence
of unanticipated exceptions, it is typical to begin a try block immediately after acquiring
the lock and to call unlock() from the associated finally clause.

Obtain a Condition object associated with a Lock by calling newCondition(). See
Condition for details. See ReentrantLock for a concrete implementation of the
Lock interface.

public interface Lock {
// Public Instance Methods
 void lock();
 void lockInterruptibly() throws InterruptedException;
 Condition newCondition();
 boolean tryLock();
 boolean tryLock(long time, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 void unlock();
}

Implementations

ReentrantLock, ReentrantReadWriteLock.ReadLock,
ReentrantReadWriteLock.WriteLock
Returned By

ReadWriteLock.{readLock(), writeLock()}, ReentrantReadWriteLock.
{readLock(), writeLock()}

LockSupport java.util.concurrent.locks

Java 5.0

This class provides a low-level alternative to the deprecated methods
Thread.suspend() and Thread.resume(). The park(), parkNanos(), and
parkUntil() methods suspend, or park, the thread until it is unparked by another
thread with unpark(), or until it is interrupted by another thread, or until the specified

Chapter 16. java.util and Subpackages Page 147 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

time elapses. parkNanos() parks the thread for the specified number of nanoseconds.
parkUntil() parks the thread until the specified time, using the millisecond
representation of System.currentTimeMillis(). Any call to these parking methods
may return spuriously, so it is important to call park() in a loop that can repark the
thread if it should not have resumed.

Unpark a thread with the unpark() method. Note that while the parking methods affect
the current thread, the unpark() method affects the thread you specify. If the specified
thread is not parked, the next time that thread calls one of the park() methods, it returns
immediately instead of blocking.

public class LockSupport {
// No Constructor
// Public Class Methods
 public static void park();
 public static void parkNanos(long nanos);
 public static void parkUntil(long deadline);
 public static void unpark(Thread thread);
}

ReadWriteLock java.util.concurrent.locks

Java 5.0

This interface represents a pair of Lock objects with special locking behavior that is useful
for concurrent algorithms in which reader threads frequently access a data structure and
writer threads only infrequently modify the structure. The Lock returned by
readLock() may be locked by multiple threads at the same time as long as no thread
has the writeLock() locked. See ReentrantReadWriteLock for a concrete
implementation with implementation-specific locking details.

public interface ReadWriteLock {
// Public Instance Methods
 Lock readLock();
 Lock writeLock();
}

Implementations

ReentrantReadWriteLock

ReentrantLock java.util.concurrent.locks

Chapter 16. java.util and Subpackages Page 148 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0 serializable

This class implements the Lock interface and adds instrumentation methods to determine
what thread currently holds the lock, to return the number of threads waiting to acquire
the lock or waiting on an associated Condition, and to test whether a specified thread is
waiting to acquire the lock.

The name of this class includes the term "reentrant" because the thread that holds the lock
can call any of the locking methods again, and they return immediately without blocking.
isHeldByCurrentThread() tests whether the current thread already holds the lock.
getHoldCount() returns the number of times that the current thread has acquired this
lock. unlock() must be called this number of times before the lock is actually
relinquished.

A "fair" lock may be created by passing true to the ReentrantLock() constructor. If
you do this, the lock will always be granted to the thread that has been waiting for it the
longest.

Figure 16-105. java.util.concurrent.locks.ReentrantLock

public class ReentrantLock implements Lock, Serializable {
// Public Constructors
 public ReentrantLock();
 public ReentrantLock(boolean fair);
// Public Instance Methods
 public int getHoldCount(); default:0
 public final int getQueueLength(); default:0
 public int getWaitQueueLength(Condition condition);
 public final boolean hasQueuedThread(Thread thread);
 public final boolean hasQueuedThreads();
 public boolean hasWaiters(Condition condition);
 public final boolean isFair(); default:false
 public boolean isHeldByCurrentThread(); default:false
 public boolean isLocked(); default:false
// Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();
 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected Thread getOwner();
 protected java.util.Collection<Thread> getQueuedThreads();
 protected java.util.Collection<Thread> getWaitingThreads(Condition condition);
}

Chapter 16. java.util and Subpackages Page 149 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ReentrantReadWriteLock java.util.concurrent.locks

Java 5.0 serializable

This class implements the ReadWriteLock interface. The locks returned by the
readLock() and writeLock() methods are instances of the inner classes
ReadLock and WriteLock. ReentrantReadWriteLock defines a "fair mode" and
includes instrumentation methods like ReentrantLock does.

Any number of threads can acquire the read lock as long as no thread holds or is attempting
to acquire the write lock. When a thread attempts to acquire the write lock, no new read
locks are granted. When all existing readers have relinquished the lock, the writer acquires
the lock, and no reads are allowed until the writer has relinquished it. A thread that holds
the write lock may downgrade to a read lock by acquiring the read lock and then
relinquishing the write lock.

Because the read lock is not exclusive, it cannot have a Condition associated with it. The
ReadLock.newCondition() method throws
UnsupportedOperationException.

Figure 16-106. java.util.concurrent.locks.ReentrantReadWriteLock

public class ReentrantReadWriteLock implements ReadWriteLock, Serializable {
// Public Constructors
 public ReentrantReadWriteLock();
 public ReentrantReadWriteLock(boolean fair);
// Nested Types
 public static class ReadLock implements Lock, Serializable;
 public static class WriteLock implements Lock, Serializable;
// Public Instance Methods
 public final int getQueueLength(); default:0
 public int getReadLockCount(); default:0
 public int getWaitQueueLength(Condition condition);
 public int getWriteHoldCount(); default:0
 public final boolean hasQueuedThread(Thread thread);
 public final boolean hasQueuedThreads();
 public boolean hasWaiters(Condition condition);
 public final boolean isFair(); default:false
 public boolean isWriteLocked(); default:false
 public boolean isWriteLockedByCurrentThread(); default:false
 public ReentrantReadWriteLock.ReadLock readLock();
 public ReentrantReadWriteLock.WriteLock writeLock();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected Thread getOwner();
 protected java.util.Collection<Thread> getQueuedReaderThreads();
 protected java.util.Collection<Thread> getQueuedThreads();

Chapter 16. java.util and Subpackages Page 150 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected java.util.Collection<Thread> getQueuedWriterThreads();
 protected java.util.Collection<Thread> getWaitingThreads(Condition condition);
}

Passed To

ReentrantReadWriteLock.ReadLock.ReadLock(),
ReentrantReadWriteLock.WriteLock.WriteLock()

ReentrantReadWriteLock.ReadLock java.util.concurrent.locks

Java 5.0 serializable

A Lock implementation for reader threads. Any number of threads can acquire the lock
as long as the corresponding WriteLock is not held. newCondition() throws
UnsupportedOperationException.

public static class ReentrantReadWriteLock.ReadLock implements Lock, Serializable {
// Protected Constructors
 protected ReadLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();
 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
}

Returned By

ReentrantReadWriteLock.readLock()

ReentrantReadWriteLock.WriteLock java.util.concurrent.locks

Java 5.0 serializable

A Lock implementation for writer threads. This lock can be acquired only when all holders
of the corresponding ReadLock have relinquished the locks. While this lock is held, no
other thread may acquire either this lock or the corresponding ReadLock.

public static class ReentrantReadWriteLock.WriteLock implements Lock, Serializable {
// Protected Constructors
 protected WriteLock(ReentrantReadWriteLock lock);
// Methods Implementing Lock
 public void lock();
 public void lockInterruptibly() throws InterruptedException;
 public Condition newCondition();

Chapter 16. java.util and Subpackages Page 151 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public boolean tryLock();
 public boolean tryLock(long timeout, java.util.concurrent.TimeUnit unit)
 throws InterruptedException;
 public void unlock();
// Public Methods Overriding Object
 public String toString();
}

Returned By

ReentrantReadWriteLock.writeLock()

Package java.util.jar

Java 1.2

The java.util.jar package contains classes for reading and writing Java archive, or
JAR, files. A JAR file is nothing more than a ZIP file whose first entry is a specially named
manifest file that contains attributes and digital signatures for the ZIP file entries that
follow it. Many of the classes in this package are relatively simple extensions of classes
from the java.util.zip package.

The easiest way to read a JAR file is with the random-access JarFile class. This class
allows you to obtain the JarEntry that describes any named file within the JAR archive.
It also allows you to obtain an enumeration of all entries in the archive and an
InputStream for reading the bytes of a specific JarEntry. Each JarEntry describes a
single entry in the archive and allows access to the Attributes and the digital signatures
associated with the entry. The JarFile also provides access to the Manifest object for
the JAR archive; this object contains Attributes for all entries in the JAR file.
Attributes is a mapping of attribute name/value pairs, of course, and the inner class
Attributes.Name defines constants for various standard attribute names.

You can also read a JAR file with JarInputStream. This class requires to you read each
entry of the file sequentially, however. JarOutputStream allows you to write out a JAR
file sequentially. Finally, you can also read an entry within a JAR file and manifest
attributes for that entry with a java.net.JarURLConnection object.

Interfaces

public interface Pack200.Packer;
public interface Pack200.Unpacker;

Collections

public class Attributes implements java.util.Map<Object, Object>, Cloneable;

Chapter 16. java.util and Subpackages Page 152 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Other Classes

public static class Attributes.Name;
public class JarEntry extends java.util.zip.ZipEntry;
public class JarFile extends java.util.zip.ZipFile;
public class JarInputStream extends java.util.zip.ZipInputStream;
public class JarOutputStream extends java.util.zip.ZipOutputStream;
public class Manifest implements Cloneable;
public abstract class Pack200;

Exceptions

public class JarException extends java.util.zip.ZipException;

Attributes java.util.jar

Java 1.2 cloneable collection

This class is a java.util.Map that maps the attribute names of a JAR file manifest to
arbitrary string values. The JAR manifest format specifies that attribute names can contain
only the ASCII characters A to Z (uppercase and lowercase), the digits 0 through 9, and
the hyphen and underscore characters. Thus, this class uses Attributes.Name as the
type of attribute names, in addition to the more general String class. Although you can
create your own Attributes objects, you more commonly obtain Attributes objects
from a Manifest.

Figure 16-107. java.util.jar.Attributes

public class Attributes implements java.util.Map<Object,Object>, Cloneable {
// Public Constructors
 public Attributes();
 public Attributes(java.util.jar.Attributes attr);
 public Attributes(int size);
// Nested Types
 public static class Name;
// Public Instance Methods
 public String getValue(String name);
 public String getValue(Attributes.Name name);
 public String putValue(String name, String value);
// Methods Implementing Map
 public void clear();
 public boolean containsKey(Object name);
 public boolean containsValue(Object value);
 public java.util.Set<java.util.Map.Entry<Object,Object>> entrySet();
 public boolean equals(Object o);
 public Object get(Object name);
 public int hashCode();
 public boolean isEmpty(); default:true
 public java.util.Set<Object> keySet();
 public Object put(Object name, Object value);
 public void putAll(java.util.Map<?,?> attr);
 public Object remove(Object name);
 public int size();

Chapter 16. java.util and Subpackages Page 153 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public java.util.Collection<Object> values();
// Public Methods Overriding Object
 public Object clone();
// Protected Instance Fields
 protected java.util.Map<Object,Object> map;
}

Returned By

java.net.JarURLConnection.{getAttributes(), getMainAttributes()},
JarEntry.getAttributes(), Manifest.{getAttributes(),
getMainAttributes()}

Attributes.Name java.util.jar

Java 1.2

This class represents the name of an attribute in an Attributes object. It defines
constants for the various standard attribute names used in JAR file manifests. Attribute
names can contain only ASCII letters, digits, and the hyphen and underscore characters.
Any other Unicode characters are illegal.

public static class Attributes.Name {
// Public Constructors
 public Name(String name);
// Public Constants
 public static final Attributes.Name CLASS_PATH;
 public static final Attributes.Name CONTENT_TYPE;
1.3 public static final Attributes.Name EXTENSION_INSTALLATION;
1.3 public static final Attributes.Name EXTENSION_LIST;
1.3 public static final Attributes.Name EXTENSION_NAME;
 public static final Attributes.Name IMPLEMENTATION_TITLE;
1.3 public static final Attributes.Name IMPLEMENTATION_URL;
 public static final Attributes.Name IMPLEMENTATION_VENDOR;
1.3 public static final Attributes.Name IMPLEMENTATION_VENDOR_ID;
 public static final Attributes.Name IMPLEMENTATION_VERSION;
 public static final Attributes.Name MAIN_CLASS;
 public static final Attributes.Name MANIFEST_VERSION;
 public static final Attributes.Name SEALED;
 public static final Attributes.Name SIGNATURE_VERSION;
 public static final Attributes.Name SPECIFICATION_TITLE;
 public static final Attributes.Name SPECIFICATION_VENDOR;
 public static final Attributes.Name SPECIFICATION_VERSION;
// Public Methods Overriding Object
 public boolean equals(Object o);
 public int hashCode();
 public String toString();
}

Passed To

java.util.jar.Attributes.getValue()

JarEntry java.util.jar

Chapter 16. java.util and Subpackages Page 154 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.2 cloneable

This class extends java.util.zip.ZipEntry; it represents a single file in a JAR archive
and the manifest attributes and digital signatures associated with that file. JarEntry
objects can be read from a JAR file with JarFile or JarInputStream, and they can be
written to a JAR file with JarOutputStream. Use getAttributes() to obtain the
Attributes for the entry. Use getCertificates() to obtain a
java.security.cert.Certificate array that contains the certificate chains for all
digital signatures associated with the file. In Java 5.0, this digital signature information
may be more conveniently retrieved as an array of CodeSigner objects.

Figure 16-108. java.util.jar.JarEntry

public class JarEntry extends java.util.zip.ZipEntry {
// Public Constructors
 public JarEntry(String name);
 public JarEntry(java.util.zip.ZipEntry ze);
 public JarEntry(JarEntry je);
// Public Instance Methods
 public java.util.jar.Attributes getAttributes() throws java.io.IOException;
 public java.security.cert.Certificate[] getCertificates();
5.0 public java.security.CodeSigner[] getCodeSigners();
}

Returned By

java.net.JarURLConnection.getJarEntry(), JarFile.getJarEntry(),
JarInputStream.getNextJarEntry()

JarException java.util.jar

Java 1.2 serializable checked

Signals an error while reading or writing a JAR file.

Figure 16-109. java.util.jar.JarException

public class JarException extends java.util.zip.ZipException {
// Public Constructors
 public JarException();

Chapter 16. java.util and Subpackages Page 155 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public JarException(String s);
}

JarFile java.util.jar

Java 1.2

This class represents a JAR file and allows the manifest, file list, and individual files to be
read from the JAR file. It extends java.util.zip.ZipFile, and its use is similar to
that of its superclass. Create a JarFile by specifying a filename or File object. If you do
not want JarFile to attempt to verify any digital signatures contained in the JarFile,
pass an optional boolean argument of false to the JarFile() constructor. As of Java
1.3, temporary JAR files can be automatically deleted when they are closed. To take
advantage of this feature, pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the
mode argument to the JarFile() constructor.

Once you have created a JarFile object, obtain the JAR Manifest with
getManifest(). Obtain an enumeration of the java.util.zip.ZipEntry objects
in the file with entries(). Get the JarEntry for a specified file in the JAR file with
getJarEntry(). To read the contents of a specific entry in the JAR file, obtain the
JarEntry or ZipEntry object that represents that entry, pass it to
getInputStream(), and then read until the end of that stream. JarFile does not
support the creation of new JAR files or the modification of existing files.

Figure 16-110. java.util.jar.JarFile

public class JarFile extends java.util.zip.ZipFile {
// Public Constructors
 public JarFile(String name) throws java.io.IOException;
 public JarFile(java.io.File file) throws java.io.IOException;
 public JarFile(String name, boolean verify) throws java.io.IOException;
 public JarFile(java.io.File file, boolean verify) throws java.io.IOException;
1.3 public JarFile(java.io.File file, boolean verify, int mode) throws java.io.IOException;
// Public Constants
 public static final String MANIFEST_NAME; ="META-INF/MANIFEST.MF"
// Public Instance Methods
 public JarEntry getJarEntry(String name);
 public Manifest getManifest() throws java.io.IOException;
// Public Methods Overriding ZipFile
 public java.util.Enumeration<JarEntry> entries();
 public java.util.zip.ZipEntry getEntry(String name);
 public java.io.InputStream getInputStream(java.util.zip.ZipEntry ze)
 throws java.io.IOException; synchronized
}

Chapter 16. java.util and Subpackages Page 156 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

Pack200.Packer.pack()
Returned By

java.net.JarURLConnection.getJarFile()

JarInputStream java.util.jar

Java 1.2 closeable

This class allows a JAR file to be read from an input stream. It extends
java.util.ZipInputStream and is used much like that class is used. To create a
JarInputStream, simply specify the InputStream from which to read. If you do not
want the JarInputStream to attempt to verify any digital signatures contained in the
JAR file, pass false as the second argument to the JarInputStream() constructor.
The JarInputStream() constructor first reads the JAR manifest entry, if one exists.
The manifest must be the first entry in the JAR file. getManifest() returns the
Manifest object for the JAR file.

Once you have created a JarInputStream, call getNextJarEntry() or
getNextEntry() to obtain the JarEntry or java.util.zip.ZipEntry object that
describes the next entry in the JAR file. Then, call a read() method (including the
inherited versions) to read the contents of that entry. When the stream reaches the end of
file, call getNextJarEntry() again to start reading the next entry in the file. When all
entries have been read from the JAR file, getNextJarEntry() and
getNextEntry() return null.

Figure 16-111. java.util.jar.JarInputStream

public class JarInputStream extends java.util.zip.ZipInputStream {
// Public Constructors
 public JarInputStream(java.io.InputStream in) throws java.io.IOException;
 public JarInputStream(java.io.InputStream in, boolean verify) throws java.io.IOException;
// Public Instance Methods
 public Manifest getManifest();
 public JarEntry getNextJarEntry() throws java.io.IOException;
// Public Methods Overriding ZipInputStream
 public java.util.zip.ZipEntry getNextEntry() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
// Protected Methods Overriding ZipInputStream
 protected java.util.zip.ZipEntry createZipEntry(String name);
}

Chapter 16. java.util and Subpackages Page 157 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

Pack200.Packer.pack()

JarOutputStream java.util.jar

Java 1.2 closeable flushable

This class can write a JAR file to an arbitrary OutputStream. JarOutputStream
extends java.util.zip.ZipOutputStream and is used much like that class is used.
Create a JarOutputStream by specifying the stream to write to and, optionally, the
Manifest object for the JAR file. The JarOutputStream() constructor starts by
writing the contents of the Manifest object into an appropriate JAR file entry. It is the
programmer's responsibility to ensure that the contents of the JAR entries written
subsequently match those specified in the Manifest object. This class provides no explicit
support for attaching digital signatures to entries in the JAR file.

After creating a JarOutputStream, call putNextEntry() to specify the JarEntry
or java.util.zip.ZipEntry to be written to the stream. Then, call any of the inherited
write() methods to write the contents of the entry to the stream. When that entry is
finished, call putNextEntry() again to begin writing the next entry. When you have
written all JAR file entries in this way, call close(). Before writing any entry, you may
call the inherited setMethod() and setLevel() methods to specify how the entry
should be compressed. See java.util.zip.ZipOutputStream.

Figure 16-112. java.util.jar.JarOutputStream

public class JarOutputStream extends java.util.zip.ZipOutputStream {
// Public Constructors
 public JarOutputStream(java.io.OutputStream out) throws java.io.IOException;
 public JarOutputStream(java.io.OutputStream out, Manifest man) throws java.io.IOException;
// Public Methods Overriding ZipOutputStream
 public void putNextEntry(java.util.zip.ZipEntry ze) throws java.io.IOException;
}

Passed To

Pack200.Unpacker.unpack()

Chapter 16. java.util and Subpackages Page 158 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Manifest java.util.jar

Java 1.2 cloneable

This class represents the manifest entry of a JAR file. getMainAttributes() returns
an Attributes object that represents the manifest attributes that apply to the entire JAR
file. getAttributes() returns an Attributes object that represents the manifest
attributes specified for a single file in the JAR file. getEntries() returns a
java.util.Map that maps the names of entries in the JAR file to the Attributes
objects associated with those entries. getEntries() returns the Map object used
internally by the Manifest. You can edit the contents of the Manifest by adding,
deleting, or editing entries in the Map. read() reads manifest entries from an input
stream, merging them into the current set of entries. write() writes the Manifest out
to the specified output stream.

Figure 16-113. java.util.jar.Manifest

public class Manifest implements Cloneable {
// Public Constructors
 public Manifest();
 public Manifest(Manifest man);
 public Manifest(java.io.InputStream is) throws java.io.IOException;
// Public Instance Methods
 public void clear();
 public java.util.jar.Attributes getAttributes(String name);
 public java.util.Map<String,java.util.jar.Attributes> getEntries(); default:HashMap
 public java.util.jar.Attributes getMainAttributes();
 public void read(java.io.InputStream is) throws java.io.IOException;
 public void write(java.io.OutputStream out) throws java.io.IOException;
// Public Methods Overriding Object
 public Object clone();
 public boolean equals(Object o);
 public int hashCode();
}

Passed To

java.net.URLClassLoader.definePackage(),
JarOutputStream.JarOutputStream()
Returned By

java.net.JarURLConnection.getManifest(), JarFile.getManifest(),
JarInputStream.getManifest()

Pack200 java.util.jar

Chapter 16. java.util and Subpackages Page 159 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 5.0

This class is a factory for creating Pack200.Packer and Pack200.Unpacker objects
for compressing JAR files to Pack200 archives and for uncompresssing those archives back
into JAR files.

public abstract class Pack200 {
// No Constructor
// Nested Types
 public interface Packer;
 public interface Unpacker;
// Public Class Methods
 public static Pack200.Packer newPacker(); synchronized
 public static Pack200.Unpacker newUnpacker();
}

Pack200.Packer java.util.jar

Java 5.0

This interface defines the API for an object that can convert a JAR file to an output stream
in Pack200 (or gzipped Pack200) format. Obtain a Packer object with the
Pack200.newPacker() factory method. Configure the packer before using it by setting
properties in the Map returned by the properties() method. The constants defined by
this class represent the names (and in some cases values) of properties that can be set.
Pack a JAR file by passing JarFile or JarInputStream to a pack() method along
with the byte output stream to which the packed representation should be written. You
can monitor the progress of the packer engine by querying the PROGRESS property in the
properties() map. The value is the completion percentage as an integer between 0
and 100 (or -1 to indicate a stall or error.) If you want to be notified of changes to the
PROGRESS property, register a java.beans.PropertyChangeListener with
addPropertyChangeListener(). See also the pack200 command in Chapter 8.

public interface Pack200.Packer {
// Public Constants
 public static final String CLASS_ATTRIBUTE_PFX; ="pack.class.attribute."
 public static final String CODE_ATTRIBUTE_PFX; ="pack.code.attribute."
 public static final String DEFLATE_HINT; ="pack.deflate.hint"
 public static final String EFFORT; ="pack.effort"
 public static final String ERROR; ="error"
 public static final String FALSE; ="false"
 public static final String FIELD_ATTRIBUTE_PFX; ="pack.field.attribute."
 public static final String KEEP; ="keep"
 public static final String KEEP_FILE_ORDER; ="pack.keep.file.order"
 public static final String LATEST; ="latest"
 public static final String METHOD_ATTRIBUTE_PFX; ="pack.method.attribute."
 public static final String MODIFICATION_TIME; ="pack.modification.time"
 public static final String PASS; ="pass"
 public static final String PASS_FILE_PFX; ="pack.pass.file."

Chapter 16. java.util and Subpackages Page 160 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

 public static final String PROGRESS; ="pack.progress"
 public static final String SEGMENT_LIMIT; ="pack.segment.limit"
 public static final String STRIP; ="strip"
 public static final String TRUE; ="true"
 public static final String UNKNOWN_ATTRIBUTE; ="pack.unknown.attribute"
// Event Registration Methods (by event name)
 void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
 void removePropertyChangeListener(java.beans.PropertyChangeListener listener);
// Public Instance Methods
 void pack(JarInputStream in, java.io.OutputStream out) throws java.io.IOException;
 void pack(JarFile in, java.io.OutputStream out) throws java.io.IOException;
 java.util.SortedMap<String,String> properties();
}

Returned By

Pack200.newPacker()

Pack200.Unpacker java.util.jar

Java 5.0

This interface defines an API for converting a file or stream in Pack200 (or gzipped
Pack200) format into a JAR file in the form of a JarOutputStream. Obtain an
Unpacker object with the Pack200.newUnpacker() method. Before using an
unpacker, you may configure it by setting properties in the Map returned by the
properties() method. Unpack a JAR file with the unpack() method, specifying a
File or stream of packed bytes. Monitor the progress of the unpacker by querying the
PROGRESS key in the Map returned by properties(). The value should be an
Integer representing a completion percentage between 0 and 100. If you want to be
notified of changes to the PROGRESS property, register a
java.beans.PropertyChangeListener with
addPropertyChangeListener(). See also the unpack200 command in Chapter 8.

public interface Pack200.Unpacker {
// Public Constants
 public static final String DEFLATE_HINT; ="unpack.deflate.hint"
 public static final String FALSE; ="false"
 public static final String KEEP; ="keep"
 public static final String PROGRESS; ="unpack.progress"
 public static final String TRUE; ="true"
// Event Registration Methods (by event name)
 void addPropertyChangeListener(java.beans.PropertyChangeListener listener);
 void removePropertyChangeListener(java.beans.PropertyChangeListener listener);
// Public Instance Methods
 java.util.SortedMap<String,String> properties();
 void unpack(java.io.InputStream in, JarOutputStream out) throws java.io.IOException;
 void unpack(java.io.File in, JarOutputStream out) throws java.io.IOException;
}

Returned By

Pack200.newUnpacker()

Chapter 16. java.util and Subpackages Page 161 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

Package java.util.logging

Java 1.4

The java.util.logging package defines a sophisticated and highly-configurable
logging facility that Java applications can use to emit, filter, format, and output warning,
diagnostic, tracing and debugging messages. An application generates log messages by
calling various methods of a Logger object. The content of a log message (with other
pertinant details such as the time and sequence number) is encapsulated in a
LogRecord object generated by the Logger. A Handler object represents a destination
for LogRecord objects. Concrete subclasses of Handler support destinations such as files
and sockets. Most Handler objects have an associated Formatter that converts a
LogRecord object into the actual text that is logged. The subclasses
SimpleFormatter and XMLFormatter produce simple plain-text log messages and
detailed XML logs respectively.

Each log message has an associated severity level. The Level class defines a type-safe
enumeration of defined levels. Logger and Handler objects both have an associated
Level, and discard any log messages whose severity is less than that specified level. In
addition to this level-based filtering, Logger and Handler objects may also have an
associated Filter object which may be implemented to filter log messages based on any
desired criteria.

Applications that desire complete control over the logs they generate can create a
Logger object, along with Handler, Formatter and Filter objects that control the
destination, content, and appearance of the log. Simpler applications need only to create
a Logger for themselves, and can leave the rest to the LogManager class. LogManager
reads a system-wide configuration file (or a configuration class) and automatically directs
log messages to a standard destination (or destinations) for the system. In Java 5.0,
LoggingMXBean defines an interface for monitoring and management of the logging
facility through the javax.management packages (which are beyond the scope of this
book).

Interfaces

public interface Filter;
public interface LoggingMXBean;

Classes

public class ErrorManager;
public abstract class Formatter;
 public class SimpleFormatter extends Formatter;

Chapter 16. java.util and Subpackages Page 162 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public class XMLFormatter extends Formatter;
public abstract class Handler;
 public class MemoryHandler extends Handler;
 public class StreamHandler extends Handler;
 public class ConsoleHandler extends StreamHandler;
 public class FileHandler extends StreamHandler;
 public class SocketHandler extends StreamHandler;
public class Level implements Serializable;
public class Logger;
public final class LoggingPermission extends java.security.BasicPermission;
public class LogManager;
public class LogRecord implements Serializable;

ConsoleHandler java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting string to
the System.err output stream. When a ConsoleHandler is created, the various
properties inherited from Handler are initialized using system-wide defaults obtained by
querying named values with LogManager.getProperty(). The table below lists these
properties, the value passed to getProperty(), and the default value used if
getProperty() returns null. See Handler for further details.

Handler property LogManager property name Default

level java.util.logging.ConsoleHandler.level Level.INFO

filter java.util.logging.ConsoleHandler.filter null

formatter java.util.logging.ConsoleHandler.formatter SimpleFormatter

encoding java.util.logging.ConsoleHandler.encoding platform default

Figure 16-114. java.util.logging.ConsoleHandler

public class ConsoleHandler extends StreamHandler {
// Public Constructors
 public ConsoleHandler();
// Public Methods Overriding StreamHandler
 public void close();
 public void publish(LogRecord record);
}

ErrorManager java.util.logging

Chapter 16. java.util and Subpackages Page 163 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

An important feature of the Logging API is that the logging methods called by applications
never throw exceptions: it is not reasonable to expect programmers to nest all their logging
calls within try/catch blocks, and even if they did, there is no useful way for an
application to recover from an exception in the logging subsystem. Since handler classes
such as FileHandler are inherently subject to I/O exceptions, the ErrorManager
provides a way for a handler to report an exception instead of simply discarding it.

All Handler objects have an instance of ErrorManager associated with them. If an
exception occurs in the handler, it passes the exception, along with a message and one of
the error code constants defined by ErrorManager to the error() method.
error() writes a message describing the exception to System.err, but does so only
the first time it is called: the expectation is that a Handler that throws an exception once
will continue to throw the same exception with each subsequent log message, and it is not
useful to flood System.err with repeated error messages. You can of course define
subclasses of ErrorManager that override error() to provide some other reporting
mechanism. If you do this, register an instance of your custom ErrorManager by calling
the setErrorManager() method of your Handler.

public class ErrorManager {
// Public Constructors
 public ErrorManager();
// Public Constants
 public static final int CLOSE_FAILURE; =3
 public static final int FLUSH_FAILURE; =2
 public static final int FORMAT_FAILURE; =5
 public static final int GENERIC_FAILURE; =0
 public static final int OPEN_FAILURE; =4
 public static final int WRITE_FAILURE; =1
// Public Instance Methods
 public void error(String msg, Exception ex, int code); synchronized
}

Passed To

Handler.setErrorManager()
Returned By

Handler.getErrorManager()

FileHandler java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting strings to
a file or to a rotating set of files. Arguments passed to the FileHandler() constructor

Chapter 16. java.util and Subpackages Page 164 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

specify which file or files are used, and how they are used. The arguments are optional,
and if they are not specified, defaults are obtained through
LogManager.getProperty() as described below. The constructor arguments are:

The pattern argument is the most important of these: it specifies which file or files the
FileHandler will write to. FileHandler performs the following substitutions on the
specified pattern to convert it to a filename:

For Substitute

/ The directory separator character for the platform. This means that you can always use a forward slash in your patterns,
even on Windows filesystems that use backward slashes.

%% A single literal percent sign.
%h The user's home directory: the value of the system property "user.home".
%t The temporary directory for the system.

%u A unique number to be used to distinguish this log file from other log files with the same pattern (this may be necessary
when multiple Java programs are creating logs at the same time).

%g

The "generation number" of old log files when the limit argument is nonzero and the count argument is greater than one.
FileHandler always writes log records into a file in which %g is replaced by 0. But when that file fills up, it is closed and
renamed with the 0 replaced by a 1. Older files are similarly renamed, with their generation number being incremented.
When the number of log files reaches the number specifed by count, then the oldest file is deleted to make room for the
new one.

When a FileHandler is created, the LogManager.getProperty() method is used
to obtain defaults for any unspecified constructor arguments, and also to obtian initial
values for the various properties inherited from Handler. The table below lists these
arguments and properties, the value passed to getProperty(), and the default value
used if getProperty() returns null. See Handler for further details.

Property or argument LogManager property name Default
level java.util.logging.FileHandler.level Level.ALL
filter java.util.logging.FileHandler.filter null
formatter java.util.logging.FileHandler.formatter XMLFormatter
encoding java.util.logging.FileHandler.encoding platform default
pattern java.util.logging.FileHandler.pattern %h/java%u.log
limit java.util.logging.FileHandler.limit 0 (no limit)
count java.util.logging.FileHandler.count 1
append java.util.logging.FileHandler.append false

Figure 16-115. java.util.logging.FileHandler

public class FileHandler extends StreamHandler {
// Public Constructors
 public FileHandler() throws java.io.IOException, SecurityException;
 public FileHandler(String pattern) throws java.io.IOException, SecurityException;

Chapter 16. java.util and Subpackages Page 165 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public FileHandler(String pattern, boolean append)
 throws java.io.IOException, SecurityException;
 public FileHandler(String pattern, int limit, int count)
 throws java.io.IOException, SecurityException;
 public FileHandler(String pattern, int limit, int count,
 boolean append) throws java.io.IOException, SecurityException;
// Public Methods Overriding StreamHandler
 public void close() throws SecurityException; synchronized
 public void publish(LogRecord record); synchronized
}

Filter java.util.logging

Java 1.4

This interface defines the method that a class must implement if it wants to filter log
messages for a Logger or Handler class. isLoggable() should return true if the
specified LogRecord contains information that should be logged. It should return
false if the LogRecord should be filtered out not appear in any destination log. Note
that both Logger and Handler provide built-in filtering based on the severity level of the
LogRecord. This Filter interface exists to provide a customized filtering capability.

public interface Filter {
// Public Instance Methods
 boolean isLoggable(LogRecord record);
}

Passed To

Handler.setFilter(), Logger.setFilter()
Returned By

Handler.getFilter(), Logger.getFilter()

Formatter java.util.logging

Java 1.4

A Formatter object is used by a Handler to convert a LogRecord to a String prior to
logging it. Most applications can simply use one one of the pre-defined concrete subclasses:
SimpleFormatter or XMLFormatter. Applications requiring custom formatting of log
messages will need to subclass this class and define the format() method to perform
the desired conversion. Such subclasses may find the formatMessage() method useful:
it performs localization using java.util.ResourceBundle and formatting using the

Chapter 16. java.util and Subpackages Page 166 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

facilities of the java.text package. getHead() and getTail() return a prefix and
suffix (such as opening and closing XML tags) for a log file.

public abstract class Formatter {
// Protected Constructors
 protected Formatter();
// Public Instance Methods
 public abstract String format(LogRecord record);
 public String formatMessage(LogRecord record); synchronized
 public String getHead(Handler h);
 public String getTail(Handler h);
}

Subclasses

SimpleFormatter, XMLFormatter
Passed To

Handler.setFormatter(), StreamHandler.StreamHandler()
Returned By

Handler.getFormatter()

Handler java.util.logging

Java 1.4

A Handler takes LogRecord objects from a Logger and, if their severity level is high
enough, formats and publishes them to some destination (a file or socket, for example).
The subclasses of this abstract class support various destinations, and implement
destination-specific publish(), flush() and close() methods.

In addition to the destination-specific abstract methods, this class also defines concrete
methods used by most Handler subclasses. These are property getter and setter methods
to specify the severity Level of logging messages to be handled, an optional Filter, a
Formatter to convert log messages from LogRecord objects to text, a text encoding for
the output text, and an ErrorManager to handle any exceptions that arise during log
output. Subclass-specific defaults for each of these properties are typically defined as
properties of LogManager and are read from a system-wide logging configuration file.

In the simplest uses of the Logging API, a Logger sends it log messages to one or more
handlers defined by the LogManager class for its "root logger". In this case there is no
need for the application to ever instantiate or use a Handler directly. Applications that
want custom control over the destination of their logs create and configure an instance of
a Handler subclass, but never need to call its publish(), flush() or close()
methods directly: that is done by the Logger.

Chapter 16. java.util and Subpackages Page 167 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public abstract class Handler {
// Protected Constructors
 protected Handler();
// Public Instance Methods
 public abstract void close() throws SecurityException;
 public abstract void flush();
 public String getEncoding();
 public ErrorManager getErrorManager();
 public Filter getFilter();
 public java.util.logging.Formatter getFormatter();
 public Level getLevel(); synchronized
 public boolean isLoggable(LogRecord record);
 public abstract void publish(LogRecord record);
 public void setEncoding(String encoding) throws SecurityException,
 java.io.UnsupportedEncodingException;
 public void setErrorManager(ErrorManager em);
 public void setFilter(Filter newFilter) throws SecurityException;
 public void setFormatter(java.util.logging.Formatter newFormatter)
 throws SecurityException;
 public void setLevel(Level newLevel) throws SecurityException; synchronized
// Protected Instance Methods
 protected void reportError(String msg, Exception ex, int code);
}

Subclasses

MemoryHandler, StreamHandler
Passed To

java.util.logging.Formatter.{getHead(), getTail()}, Logger.
{addHandler(), removeHandler()}, MemoryHandler.MemoryHandler(),
XMLFormatter.{getHead(), getTail()}
Returned By

Logger.getHandlers()

Level java.util.logging

Java 1.4 serializable

This class defines constants that represent the seven standard severity levels for log
messages plus constants that turn logging off and enable logging at any level. When logging
is enabled at one severity level, it is also enabled at all higher levels. The seven level
constants, in order from most severe to least severe are: SEVERE, WARNING, INFO,
CONFIG, FINE, FINER, and FINEST. The constant ALL enable logging of any message,
regardless of its level. The constant OFF disables logging entirely. Note that these constants
are all Level objects, rather than integers. This provides type safety.

Application code should rarely, if ever, need to use any of the methods of this class: instead
they can simply use the constants it defines.

Chapter 16. java.util and Subpackages Page 168 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-116. java.util.logging.Level

public class Level implements Serializable {
// Protected Constructors
 protected Level(String name, int value);
 protected Level(String name, int value, String resourceBundleName);
// Public Constants
 public static final Level ALL;
 public static final Level CONFIG;
 public static final Level FINE;
 public static final Level FINER;
 public static final Level FINEST;
 public static final Level INFO;
 public static final Level OFF;
 public static final Level SEVERE;
 public static final Level WARNING;
// Public Class Methods
 public static Level parse(String name) throws IllegalArgumentException; synchronized
// Public Instance Methods
 public String getLocalizedName();
 public String getName();
 public String getResourceBundleName();
 public final int intValue();
// Public Methods Overriding Object
 public boolean equals(Object ox);
 public int hashCode();
 public final String toString();
}

Passed To

Too many methods to list.
Returned By

Handler.getLevel(), Logger.getLevel(), LogRecord.getLevel(),
MemoryHandler.getPushLevel()

Logger java.util.logging

Java 1.4

A Logger object is used to emit log messages. Logger does not have a public constructor,
but there are several ways to obtain a Logger object to use in your code:

Once a suitable Logger has been obtained, there are a variety of methods that can be used
to create a log message:

A Logger has an associated logging Level, and discards any log messages with a severity
lower than this. The severity level is initialized from the system configuration file, which
is usually the desired behavior. You can explicitly override this setting with
setLevel(). You might want to do this if you created the Logger with
getAnonymousLogger() and have read the desired logging level from a configuration

Chapter 16. java.util and Subpackages Page 169 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

file of your own. If level-based filtering of log messages is not sufficient, you can associate
a Filter with your Logger by calling setFilter. If you do this, any log messages
rejected by the Filter will be discarded.

A Logger sends its log messages to any Handler objects that have been registered with
addHandler(). Call getHandlers() to obtain an array of all registered handlers,
and call removeHandler() to de-register a handler. By default, all log messages are
also sent to the handlers of the parent logger and any other ancestor loggers. Since all
named and anonymous loggers have the LogManager root logger as a parent or ancestor,
all loggers by default send their log messages to the handlers defined in the system logging
configuration file. See LogManager for details. If you do not want a Logger to use the
handlers of its ancestors, pass false to setUseParentHandlers().

getLogger() and getAnonymousLogger() allow you to specify the name of a
java.util.ResourceBundle for use in localizing log messages, and logrb() allows
you to specify the name of a resource bundle to use to localize a specific log message. If a
resource bundle is specified for the Logger or for a specific log message, then the message
argument to the various logging methods is treated not as a literal message but instead as
a localization key for which a localized version is to be looked up in the resource bundle.
As part of the localization, any parameters, such as those specified by the param1 and
params arguments to the log() method are substituted into the localized message string
as per java.text.MessageFormat. (Note, however that this localization and
formatting is not performed by the Logger itself: instead, it simply stores the
ResourceBundle and parameters in the LogRecord. It is the Formatter associated
with the output Handler object that actually performs the localization.)

All the methods of this class are threadsafe and do not require external synchronization.
public class Logger {
// Protected Constructors
 protected Logger(String name, String resourceBundleName);
// Public Constants
 public static final Logger global;
// Public Class Methods
 public static Logger getAnonymousLogger(); synchronized
 public static Logger getAnonymousLogger(String resourceBundleName); synchronized
 public static Logger getLogger(String name); synchronized
 public static Logger getLogger(String name, String resourceBundleName); synchronized
// Public Instance Methods
 public void addHandler(Handler handler) throws SecurityException; synchronized
 public void config(String msg);
 public void entering(String sourceClass, String sourceMethod);
 public void entering(String sourceClass, String sourceMethod, Object param1);
 public void entering(String sourceClass, String sourceMethod, Object[] params);
 public void exiting(String sourceClass, String sourceMethod);
 public void exiting(String sourceClass, String sourceMethod, Object result);
 public void fine(String msg);
 public void finer(String msg);
 public void finest(String msg);
 public Filter getFilter();
 public Handler[] getHandlers(); synchronized
 public Level getLevel();

Chapter 16. java.util and Subpackages Page 170 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public String getName();
 public Logger getParent();
 public java.util.ResourceBundle getResourceBundle();
 public String getResourceBundleName();
 public boolean getUseParentHandlers(); synchronized
 public void info(String msg);
 public boolean isLoggable(Level level);
 public void log(LogRecord record);
 public void log(Level level, String msg);
 public void log(Level level, String msg, Throwable thrown);
 public void log(Level level, String msg, Object param1);
 public void log(Level level, String msg, Object[] params);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Object param1);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Object[] params);
 public void logp(Level level, String sourceClass, String sourceMethod,
 String msg, Throwable thrown);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Object param1);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Throwable thrown);
 public void logrb(Level level, String sourceClass, String sourceMethod,
 String bundleName, String msg, Object[] params);
 public void removeHandler(Handler handler) throws SecurityException; synchronized
 public void setFilter(Filter newFilter) throws SecurityException;
 public void setLevel(Level newLevel) throws SecurityException;
 public void setParent(Logger parent);
 public void setUseParentHandlers(boolean useParentHandlers); synchronized
 public void severe(String msg);
 public void throwing(String sourceClass, String sourceMethod, Throwable thrown);
 public void warning(String msg);
}

Passed To

LogManager.addLogger()
Returned By

LogManager.getLogger()

LoggingMXBean java.util.logging

Java 5.0

This interface defines the API for the javax.management "management bean" for the
logging system. Obtain an instance with the static method
LogManager.getLoggingMXBean(). The methods of this class allow the monitoring
of all registered loggers and their logging level and allow management to change the
logging level of any named logger.

public interface LoggingMXBean {
// Public Instance Methods
 String getLoggerLevel(String loggerName);
 java.util.List<String> getLoggerNames();
 String getParentLoggerName(String loggerName);

Chapter 16. java.util and Subpackages Page 171 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 void setLoggerLevel(String loggerName, String levelName);
}

Returned By

LogManager.getLoggingMXBean()

LoggingPermission java.util.logging

Java 1.4 serializable permission

This class is a java.security.Permission that governs the use of security-sensitive
logging methods. The single defined name (or target) for LoggingPermission is
"control" which represents permission to invoke various logging control methods such as
Logger.setLevel() and LogManager.readConfiguration(). The methods in
this package that throw SecurityException all require a LoggingPermission
named "control" in order to run. Application programmers never need to use this class.
System adminstrators configuring security policies may need to be familiar with it.

Figure 16-117. java.util.logging.LoggingPermission

public final class LoggingPermission extends java.security.BasicPermission {
// Public Constructors
 public LoggingPermission(String name, String actions) throws IllegalArgumentException;
}

LogManager java.util.logging

Java 1.4

As its name implies, this class is the manager for the java.util.logging API. It has
three specific purposes: (1) to read a logging configuration file and create the default
Handler objects specified in that file; (2) to manage a set of Logger objects, arranging
them into a tree based on their heirarchical names; and (3) to create and manage the
unnamed Logger object that serves as the parent or ancestor of every other Logger. This
class handles the important behind-the-scenes details that makes the Logging API work.
Typical applications can make use of logging without ever having to use this class explicitly.

Chapter 16. java.util and Subpackages Page 172 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Although its API is not commonly used by application programmers, it is still useful to
understand the LogManager class, so it is described in detail here.

There is a single global instance of LogManager, which is obtained with the static
getLogManager() method. By default, this global log manager object is an instance of
the LogManager class itself. You may instead instantiate an instance of a subclass of
LogManager by specifing the full class name of the subclass as the value of the system
property java.util.logging.manager.

One of the primary purposes of the LogManager class is to read a
java.util.Properties file that specifies the default logging configuration for the
system. By default, this file is named logging.properties and is stored in the jre/lib
directory of the Java installation. If you want to run a Java application using a different
logging configuration, you can edit the default configuration file, but it is typically easier
to create a new configuation file and tell the JVM about it by setting the system property
java.util.logging.config.file to the name of your customized configuration file.

The most important purpose of the configuration file is to specify a set of Handler objects
to which all log messages are sent. This is done by setting the handlers property in the
file to a space-separated list of Handler class names. The LogManager will load the
specified classes, and instantiate each one (using the default no-arg constructor), and then
register those Handler objects on the root Logger, where they are inherited by all other
loggers. (We'll see more about the root logger below.) Each of these Handler objects
further configures itself by reading additional properties from the configuration file, as
described in the documentation for each handler class.

The configuration file may also contain property name that are formed by appending
".level" to the name of a logger. The value of any such property is taken as the name of a
logging Level for the named Logger. When the named logger is created and registered
with the LogManager (described below) its logging level is automatically set to the
specified level.

An application or any custom Handler or Formatter subclass or Filter
implementation can read its own properties from the logging configuration file with the
getProperty() method of LogManager. This is a useful way to provide customizability
for logging-related classes.

In addition to managing the configuration file properties, a second purpose of
LogManager is to maintain a tree of Logger objects organized into a hierarchy based on
their dot-separated hierarchical names. The addLogger() method registers a new
Logger object with the LogManager and inserts it into the tree. This method is called

Chapter 16. java.util and Subpackages Page 173 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

automatically by the Logger.getLogger() factory method, however, so you never
need to call it yourself. The getLogger() method of LogManager finds and returns a
named Logger object within the tree. Use getLoggerNames() to obtain an
Enumeration of the names of all registered loggers.

At the root of the tree is a root logger, created by the LogManager, and initialized with
default Handler objects specified in the logging configuration file as described above. This
root logger has no name, and you can obtain a reference to it by passing the empty string
to the getLogger() method. Except for this root logger and anonymous loggers (see
Logger.getAnonymousLogger()), all loggers have names, and they are typically
named after the package or class for which they provide logging. When a named logger is
registered with the LogManager, the LogManager examines its name and inserts it into
the tree of loggers at the appropriate place: a logger named "java.util.logging" would be
inserted as the child of a logger named "java.util", if any such logger existed, or as a child
of a logger named "java", or, if no logger with that name existed either, it would be inserted
as a child of the root logger named "". When the LogManager determines the position of
a logger within the tree of loggers, it calls the setParent() method of the newly-
registered Logger to tell it who its parent is. This is important because, by default, loggers
inherit their logging level and handlers from their parent. Although the
Logger.setParent() method is public, it is intended for use only by the
LogManager class.

Anonymous loggers created with Logger.getAnonymousLogger() do not have
names, and are not part of the logger tree. When they are created, however, their parent
is set to the root logger of the LogManager. For this reason, anonymous loggers inherit the
default handlers specified in the logging configuration file.

The readConfiguration() methods are used to force the LogManager to re-read the
system configuration file, or to read a new configuration file from the specified stream.
Both versions of the method generate a java.beans.PropertyChangeEvent and use
it to notify any listeners that have been registered with
addPropertyChangeListener. Both methods also first invoke the reset() method
which discards the properties of the current configuration file, removes and closes all
handlers for all loggers, and sets the logging level of all loggers to null, except for the root
logger's logging level, which it sets to Level.INFO. It is unlikely that you would ever want
to invoke reset() yourself. A number of LogManager methods throw a
SecurityException if the caller does not have appropriate permissions. You can use
checkAccess() to test whether the current calling context has the required
LoggingPermission named "control".

All LogManager methods can be safely used by multiple threads.

Chapter 16. java.util and Subpackages Page 174 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class LogManager {
// Protected Constructors
 protected LogManager();
// Public Constants
5.0 public static final String LOGGING_MXBEAN_NAME; ="java.util.logging:type=Logging"
// Public Class Methods
5.0 public static LoggingMXBean getLoggingMXBean(); synchronized
 public static LogManager getLogManager();
// Event Registration Methods (by event name)
 public void addPropertyChangeListener(java.beans.PropertyChangeListener l)
 throws SecurityException;
 public void removePropertyChangeListener(java.beans.PropertyChangeListener l)
 throws SecurityException;
// Public Instance Methods
 public boolean addLogger(Logger logger); synchronized
 public void checkAccess() throws SecurityException;
 public Logger getLogger(String name); synchronized
 public java.util.Enumeration<String> getLoggerNames(); synchronized
 public String getProperty(String name);
 public void readConfiguration() throws java.io.IOException, SecurityException;
 public void readConfiguration(java.io.InputStream ins)
 throws java.io.IOException, SecurityException;
 public void reset() throws SecurityException;
}

LogRecord java.util.logging

Java 1.4 serializable

Instances of this class are used to represent log messages as they are passed between
Logger, Handler, Filter and Formatter objects. LogRecord defines a number of
JavaBeans-type property getter and setter methods. The values of the various properties
encapsulate all details of the log message. The LogRecord() constructor takes
arguments for the two most important properties: the log level and the log message (or
localization key). The constructor also initializes the millis property to the current time,
the sequenceNumber property to a unique (within the VM) value that can be used to
compare the order of two log messages, and the threadID property to a unique identifier
for the current thread. All other properties of the LogRecord are left uninitialized with
their default null values.

Figure 16-118. java.util.logging.LogRecord

public class LogRecord implements Serializable {
// Public Constructors
 public LogRecord(Level level, String msg);
// Public Instance Methods
 public Level getLevel();
 public String getLoggerName();
 public String getMessage();
 public long getMillis();
 public Object[] getParameters();

Chapter 16. java.util and Subpackages Page 175 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public java.util.ResourceBundle getResourceBundle();
 public String getResourceBundleName();
 public long getSequenceNumber();
 public String getSourceClassName();
 public String getSourceMethodName();
 public int getThreadID();
 public Throwable getThrown();
 public void setLevel(Level level);
 public void setLoggerName(String name);
 public void setMessage(String message);
 public void setMillis(long millis);
 public void setParameters(Object[] parameters);
 public void setResourceBundle(java.util.ResourceBundle bundle);
 public void setResourceBundleName(String name);
 public void setSequenceNumber(long seq);
 public void setSourceClassName(String sourceClassName);
 public void setSourceMethodName(String sourceMethodName);
 public void setThreadID(int threadID);
 public void setThrown(Throwable thrown);
}

Passed To

ConsoleHandler.publish(), FileHandler.publish(),
Filter.isLoggable(), java.util.logging.Formatter.{format(),
formatMessage()}, Handler.{isLoggable(), publish()},
Logger.log(), MemoryHandler.{isLoggable(), publish()},
SimpleFormatter.format(), SocketHandler.publish(), StreamHandler.
{isLoggable(), publish()}, XMLFormatter.format()

MemoryHandler java.util.logging

Java 1.4

A MemoryHandler stores LogRecord objects in a fixed-sized buffer in memory. When
the buffer fills up, it discards the oldest record one each time a new record arrives. It
maintains a reference to another Handler object, and whenever the push() method is
called, or whenver a LogRecord arrives with a level at or higher than the pushLevel
threshold, it "pushes" all of buffered LogRecord objects to that other Handler object,
which typically formats and outputs them to some appropriate destination. Because
MemoryHandler never outputs log records itself, it does not use the formatter or
encoding properties inherited from its superclass.

When you create a MemoryHandler, you can specify the target Handler object, the size
of the in-memory buffer, and the value of the pushLevel property, or you can omit these
constructor arguments and rely on system-wide defaults obtained with
LogManager.getProperty(). MemoryHandler also uses
LogManager.getProperty() to obtain initial values for the level and filter

Chapter 16. java.util and Subpackages Page 176 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

properties inherited from Handler. The table below lists these properties, as well as the
target, size, and pushLevel constructor arguments, the value passed to
getProperty(), and the default value used if getProperty() returns null. See
Handler for further details.

Property or argument LogManager property name Default
level java.util.logging.MemoryHandler.level Level.ALL
filter java.util.logging.MemoryHandler.filter null
target java.util.logging.MemoryHandler.target no default
size java.util.logging.MemoryHandler.size 1000 log records
pushLevel java.util.logging.MemoryHandler.push Level.SEVERE

Figure 16-119. java.util.logging.MemoryHandler

public class MemoryHandler extends Handler {
// Public Constructors
 public MemoryHandler();
 public MemoryHandler(Handler target, int size, Level pushLevel);
// Public Instance Methods
 public Level getPushLevel(); synchronized
 public void push(); synchronized
 public void setPushLevel(Level newLevel) throws SecurityException;
// Public Methods Overriding Handler
 public void close() throws SecurityException;
 public void flush();
 public boolean isLoggable(LogRecord record);
 public void publish(LogRecord record); synchronized
}

SimpleFormatter java.util.logging

Java 1.4

This Formatter subclass converts a LogRecord object to a human-readable log message
that is typically one or two lines long. See also XMLFormatter.

Figure 16-120. java.util.logging.SimpleFormatter

public class SimpleFormatter extends java.util.logging.Formatter {
// Public Constructors
 public SimpleFormatter();
// Public Methods Overriding Formatter
 public String format(LogRecord record); synchronized
}

Chapter 16. java.util and Subpackages Page 177 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SocketHandler java.util.logging

Java 1.4

This Handler subclass formats LogRecord objects and outputs the resulting strings to
a network socket. When you create a SocketHandler, you can pass the hostname and
port of the socket to the constructor or you can rely on system-wide defaults obtained with
LogManager.getProperty(). SocketHandler also uses
LogManager.getProperty() to obtain initial values for the properties inherited from
Handler. The table below lists these properties, as well as the host and port arguments,
the value passed to getProperty(), and the default value used if getProperty()
returns null. See Handler for further details.

Handler property LogManager property name Default

level java.util.logging.SocketHandler.level Level.ALL

filter java.util.logging.SocketHandler.filter null

formatter java.util.logging.SocketHandler.formatter XMLFormatter

encoding java.util.logging.SocketHandler.encoding platform default

hostname java.util.logging.SocketHandler.host no default

port java.util.logging.SocketHandler.port no default

Figure 16-121. java.util.logging.SocketHandler

public class SocketHandler extends StreamHandler {
// Public Constructors
 public SocketHandler() throws java.io.IOException;
 public SocketHandler(String host, int port) throws java.io.IOException;
// Public Methods Overriding StreamHandler
 public void close() throws SecurityException; synchronized
 public void publish(LogRecord record); synchronized
}

StreamHandler java.util.logging

Java 1.4

Chapter 16. java.util and Subpackages Page 178 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This Handler subclass sends log messages to an arbitrary java.io.OutputStream. It
exists primarily to serve as the common superclass of ConsoleHandler,
FileHandler, and SocketHandler.

Figure 16-122. java.util.logging.StreamHandler

public class StreamHandler extends Handler {
// Public Constructors
 public StreamHandler();
 public StreamHandler(java.io.OutputStream out, java.util.logging.Formatter formatter);
// Public Methods Overriding Handler
 public void close() throws SecurityException; synchronized
 public void flush(); synchronized
 public boolean isLoggable(LogRecord record);
 public void publish(LogRecord record); synchronized
 public void setEncoding(String encoding) throws SecurityException,
 java.io.UnsupportedEncodingException;
// Protected Instance Methods
 protected void setOutputStream(java.io.OutputStream out)
 throws SecurityException; synchronized
}

Subclasses

ConsoleHandler, FileHandler, SocketHandler

XMLFormatter java.util.logging

Java 1.4

This Formatter subclass converts a LogRecord to an XML-formatted string. The
format() method returns a <record> element, which always contains <date>,
<millis>, <sequence>, <level> and <message> tags, and may also contain
<logger>, <class>, <method>, <thread>, <key>, <catalog>, <param>, and
<exception> tags. See http://java.sun.com/dtd/logger.dtd for the DTD of the output
document.

The getHead() and getTail() methods are overridden to return opening and closing
<log> and </log> tags to surround all output <record> tags. Note however, that if an
application terminates abnormally, the logging facility may be unable to terminate the log
file with the closing <log> tag.

Figure 16-123. java.util.logging.XMLFormatter

Chapter 16. java.util and Subpackages Page 179 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/dtd/logger.dtd

public class XMLFormatter extends java.util.logging.Formatter {
// Public Constructors
 public XMLFormatter();
// Public Methods Overriding Formatter
 public String format(LogRecord record);
 public String getHead(Handler h);
 public String getTail(Handler h);
}

Package java.util.prefs

Java 1.4

The java.util.prefs package contains classes and interfaces for managing persistant
user and system-wide preferences for Java applications and classes. Most applications will
use only the Preferences class itself. Some will also use the event objects and listener
interfaces defined by this package, and some may need to explicitly catch the types of
exceptions defined by this package. Application programmers never need to use the
PreferencesFactory interface or the AbstractPreferences class, which are
intended for Preferences implementors only.

To use the Preferences class, first use a static method to obtain an appropriate
Preferences object or objects, and then use a get() method to query a preference
value or a put() method to set a preference value. The code below shows a typical usage.
See the Preferences class for details.

import java.util.prefs.Preferences;
public class TextEditor {
 // some constants that define default values for preferences
 public static final int WIDTH_DEFAULT = 80;
 public static final String DICTIONARY_DEFAULT = "";
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell-checking
 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);
 // Look up preference values. Note that we always pass a default value
 width = userprefs.getInt("width", WIDTH_DEFAULT);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 DICTIONARY_DEFAULT));
 }
}

Interfaces

public interface NodeChangeListener extends java.util.EventListener;
public interface PreferenceChangeListener extends java.util.EventListener;
public interface PreferencesFactory;

Chapter 16. java.util and Subpackages Page 180 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Events

public class NodeChangeEvent extends java.util.EventObject;
public class PreferenceChangeEvent extends java.util.EventObject;

Other Classes

public abstract class Preferences;
 public abstract class AbstractPreferences extends Preferences;

Exceptions

public class BackingStoreException extends Exception;
public class InvalidPreferencesFormatException extends Exception;

AbstractPreferences java.util.prefs

Java 1.4

This class implements all the abstract methods of Preferences on top of a smaller set
of abstract methods. Programmers creating a Preferences implementation (or "service
provider") can subclass this class and need define only the nine methods whose names end
in "Spi". Application programmers never need to use this class.

Figure 16-124. java.util.prefs.AbstractPreferences

public abstract class AbstractPreferences extends Preferences {
// Protected Constructors
 protected AbstractPreferences(AbstractPreferences parent, String name);
// Event Registration Methods (by event name)
 public void addNodeChangeListener(NodeChangeListener ncl);
 Overrides:Preferences
 public void removeNodeChangeListener(NodeChangeListener ncl);
 Overrides:Preferences
 public void addPreferenceChangeListener(PreferenceChangeListener pcl);
 Overrides:Preferences
 public void removePreferenceChangeListener(PreferenceChangeListener pcl);
 Overrides:Preferences
// Public Methods Overriding Preferences
 public String absolutePath();
 public String[] childrenNames() throws BackingStoreException;
 public void clear() throws BackingStoreException;
 public void exportNode(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public void exportSubtree(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public void flush() throws BackingStoreException;
 public String get(String key, String def);
 public boolean getBoolean(String key, boolean def);
 public byte[] getByteArray(String key, byte[] def);
 public double getDouble(String key, double def);
 public float getFloat(String key, float def);
 public int getInt(String key, int def);
 public long getLong(String key, long def);
 public boolean isUserNode();
 public String[] keys() throws BackingStoreException;
 public String name();
 public Preferences node(String path);

Chapter 16. java.util and Subpackages Page 181 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public boolean nodeExists(String path) throws BackingStoreException;
 public Preferences parent();
 public void put(String key, String value);
 public void putBoolean(String key, boolean value);
 public void putByteArray(String key, byte[] value);
 public void putDouble(String key, double value);
 public void putFloat(String key, float value);
 public void putInt(String key, int value);
 public void putLong(String key, long value);
 public void remove(String key);
 public void removeNode() throws BackingStoreException;
 public void sync() throws BackingStoreException;
 public String toString();
// Protected Instance Methods
 protected final AbstractPreferences[] cachedChildren();
 protected abstract String[] childrenNamesSpi() throws BackingStoreException;
 protected abstract AbstractPreferences childSpi(String name);
 protected abstract void flushSpi() throws BackingStoreException;
 protected AbstractPreferences getChild(String nodeName) throws BackingStoreException;
 protected abstract String getSpi(String key);
 protected boolean isRemoved();
 protected abstract String[] keysSpi() throws BackingStoreException;
 protected abstract void putSpi(String key, String value);
 protected abstract void removeNodeSpi() throws BackingStoreException;
 protected abstract void removeSpi(String key);
 protected abstract void syncSpi() throws BackingStoreException;
// Protected Instance Fields
 protected final Object lock;
 protected boolean newNode;
}

BackingStoreException java.util.prefs

Java 1.4 serializable checked

Signals that a Preferences method could not complete because of an implementation-
specific problem with the preferences database. The most commonly used methods of the
Preferences class do not throw this exception, and are guaranteed to succeed even if the
implementation's preferences data is not available. Note that although this class inherits
the Serializable interface, implementations are not actually required to be serializable.

Figure 16-125. java.util.prefs.BackingStoreException

public class BackingStoreException extends Exception {
// Public Constructors
 public BackingStoreException(Throwable cause);
 public BackingStoreException(String s);
}

Chapter 16. java.util and Subpackages Page 182 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thrown By

Too many methods to list.

InvalidPreferencesFormatException java.util.prefs

Java 1.4 serializable checked

Signals a syntax error in XML preference data. Note that although this class inherits the
Serializable interface, implementations are not actually required to be serializable.

Figure 16-126. java.util.prefs.InvalidPreferencesFormatException

public class InvalidPreferencesFormatException extends Exception {
// Public Constructors
 public InvalidPreferencesFormatException(String message);
 public InvalidPreferencesFormatException(Throwable cause);
 public InvalidPreferencesFormatException(String message, Throwable cause);
}

Thrown By

Preferences.importPreferences()

NodeChangeEvent java.util.prefs

Java 1.4 serializable event

A NodeChangeEvent object is passed to the methods of any NodeChangeListener
objects registered on a Preferences object when a child Preferences node is added
or removed. getChild() returns the Preferences object that was added or removed.
getParent() returns the parent Preferences node from which the child was added
or removed. This parent Preferences object is the one on which the
NodeChangeListener was registered.

Although this class inherits the Serializable interface, it is not actually serializable.

Chapter 16. java.util and Subpackages Page 183 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-127. java.util.prefs.NodeChangeEvent

public class NodeChangeEvent extends java.util.EventObject {
// Public Constructors
 public NodeChangeEvent(Preferences parent, Preferences child);
// Public Instance Methods
 public Preferences getChild();
 public Preferences getParent();
}

Passed To

NodeChangeListener.{childAdded(), childRemoved()}

NodeChangeListener java.util.prefs

Java 1.4 event listener

This interface defines the methods that an object must implement if it wants to be notified
when a child preferences node is added to or removed from a Preferences object. When
such an addition or removal occurs, the parent Preferences object passes a
NodeChangeEvent object to the appropriate method of any NodeChangeListener
objects that have been registered through the
Preferences.addNodeChangeListener() method.

Figure 16-128. java.util.prefs.NodeChangeListener

public interface NodeChangeListener extends java.util.EventListener {
// Public Instance Methods
 void childAdded(NodeChangeEvent evt);
 void childRemoved(NodeChangeEvent evt);
}

Passed To

AbstractPreferences.{addNodeChangeListener(),
removeNodeChangeListener()}, Preferences.
{addNodeChangeListener(), removeNodeChangeListener()}

PreferenceChangeEvent java.util.prefs

Chapter 16. java.util and Subpackages Page 184 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable event

A PreferenceChangeEvent object is passed to the preferenceChange() method
of any PreferenceChangeListener objects registered on a Preferences object
whenever a preferences value is added to, removed from, or modified in that
Preferences node. getNode() returns the affected Preferences object.
getKey() returns name of the modified preference. If the preference value was added
or modified, getNewValue() returns that value. If a preference was deleted,
getNewValue() returns null.

Although this class inherits the Serializable interface, it is not actually serializable.

Figure 16-129. java.util.prefs.PreferenceChangeEvent

public class PreferenceChangeEvent extends java.util.EventObject {
// Public Constructors
 public PreferenceChangeEvent(Preferences node, String key, String newValue);
// Public Instance Methods
 public String getKey();
 public String getNewValue();
 public Preferences getNode();
}

Passed To

PreferenceChangeListener.preferenceChange()

PreferenceChangeListener java.util.prefs

Java 1.4 event listener

This interface defines the method that an object must implement if it wants to be notified
when a preference key/value pair is added to, removed from, or changed in a
Preferences object. After any such change, the Preferences object passes a
PreferenceChangeEvent object describing the change to the
preferenceChange() method of any PreferenceChangeListener objects that
have been registered through the
Preferences.addPreferenceChangeListener() method.

Chapter 16. java.util and Subpackages Page 185 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-130. java.util.prefs.PreferenceChangeListener

public interface PreferenceChangeListener extends java.util.EventListener {
// Public Instance Methods
 void preferenceChange(PreferenceChangeEvent evt);
}

Passed To

AbstractPreferences.{addPreferenceChangeListener(),
removePreferenceChangeListener()}, Preferences.
{addPreferenceChangeListener(),
removePreferenceChangeListener()}

Preferences java.util.prefs

Java 1.4

A Preferences object represents a mapping between preference names, which are case-
sensitive strings, and corresponding preference values. get() allows you to query the
string value of a named preference, and put() allows you to set a string value for a named
preference. Although all preference values are stored as strings, various convenience
methods whose names begin with "get" and "put" exist to convert preference values of type
boolean byte[], double, float, int, and long to and from strings.

The remove() method allows you to delete a named preference altogether, and
clear() deletes all preference values stored in a Preferences object. The keys()
method returns an array of strings that specify the names of all preferences in the
Preferences object.

Preference values are stored in some implementation-dependent back-end which may be
a file, a LDAP directory server, the Windows Registry, or any other persistant "backing
store". Note that all the get() methods of this class require a default value to be specified.
They return this default if no value has been stored for the named preference, or if the
backing store is unavailable for any reason. The Preferences class is completely
independent of the underlying implementation, except that it enforces an 80-character
limit for preference names and Preference node names (see below), and a 8192-
character limit on preference value strings.

Preferences does not have a public construtor. To obtain a Preferences object for
use in your application, you must must use one of the static methods described below.

Chapter 16. java.util and Subpackages Page 186 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Each Preferences object is a node in a hierarchy of Preferences nodes. There are two
distinct hierarchies: one stores user-specific preferences, and one stores system-wide
preferences. All Preferences nodes (in either hierarchy) have a unique name and use the
same naming convention that Unix filesystems use. Applications (and classes) may store
their preferences in a Preferences node with any name, but the convention is to use a
node name that corresponds to the package name of the application or class, with all "."
characters in the package name converted to "/" characters. For example, the preferences
node used by java.lang.System would be "/java/lang".

Preferences defines static methods that you can use to obtain the Preferences objects
your application requires. Pass a Class object to systemNodeForPackage() and
userNodeForPackage() to obtain the system and user Preferences objects that are
specific to the package of that class. If you want a Preferences node specific to a single
class rather than to the package, you can pass the class name to the node() method of
the package-specific node returned by systemNodeForPackage() or
userNodeForPackage(). If you want to navigate the entire tree of preferences nodes
(which most applications never need to do) call systemRoot() and userRoot() to
obtain the root node of the two hierarchies, and then use the node() method to look up
child nodes of those roots.

Various Preferences methods allow you to traverse the preferences hierarchies.
parent() returns the parent Preferences node. childrenNames() returns an
array of the relative names of all children of a Preferences node. node() returns a
named Preferences object from the hierarchy. If the specified node name begins with
a slash, it is an absolute name and is interpreted relative to the root of the hierarchy.
Otherwise, it is a relative name and is interpreted relative to the Preferences object on
which node() was called. nodeExists() allows you to test whether a named node
exists. removeNode() allows you to delete an entire Preferences node from the
hierarchy (useful when uninstalling an application). name() returns the simple name of
a Preferences node, relative to its parent. absoutePath() returns the full, absolute
name of the node, relative to the root of the hierarchy. Finally, isUserNode() allows
you to determine whether a Preferences object is part of the user or system hierarchies.

Many applications will simply read their preference values once at startup. Long-lived
applications or applications that want to respond dynamically to modifications to
preferences (such as applications that are tightly integrated with a graphical desktop) may
use addPreferenceChangeListener() to register a
PreferenceChangeListener to recieve notifications of preference changes (in the
form of PreferenceChangeEvent objects). Applications that are interested in changes
to the Preferences hierarchy itself can register a NodeChangeListener.

Chapter 16. java.util and Subpackages Page 187 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

put() and the various type-specific put...() convenience methods may return
asynchonously, before the new preference value is stored persistantly within the backing
store. Call flush() to force any preference changes to this Preferences node (and
any of its descendants in the hierarchy) to be stored persistantly. (Note that it is not
necessary to call flush() before an application terminates: all preferences will
eventually be made persistant.) More than one application (within more than one Java
virtual machine) may set preference values in the same Preferences node at the same
time. Call sync() to ensure that future calls to get() and its related convenience
methods retrieve current preference values set by this or other virtual machines. Note that
the flush() and sync() operations are typically much more expensive than
get() and put() operations, and applications do not often need to use them.

Preferences implementations ensure that all the methods of this class are thread safe.
If multiple threads or multiple VMs write store the same preferences concurrently, their
values may overwrite one another, but the preference data will not be corrupted. Note that,
for simplicity, Preferences does not define any way to set multiple preferences in a
single atomic transaction. If you need to ensure atomicity for multiple preference values,
define a data format that allows you to store all the requisite values in a single string, and
set and query those values with a single call to put() or get().

The contents of a Preferences node, or of a node and all of its descendants may be
exported as an XML file with exportNode() and exportSubtree(). The static
importPreferences() method reads an exported XML file back into the preferences
hierarchy. These methods allow backups to be made of preference data, and allow
preferences to be transferred between systems or between users.

Prior to Java 1.4, application preferences were sometimes managed with the
java.util.Properties object.

public abstract class Preferences {
// Protected Constructors
 protected Preferences();
// Public Constants
 public static final int MAX_KEY_LENGTH; =80
 public static final int MAX_NAME_LENGTH; =80
 public static final int MAX_VALUE_LENGTH; =8192
// Public Class Methods
 public static void importPreferences(java.io.InputStream is)
throws java.io.IOException, InvalidPreferencesFormatException;
 public static Preferences systemNodeForPackage(Class<?> c);
 public static Preferences systemRoot();
 public static Preferences userNodeForPackage(Class<?> c);
 public static Preferences userRoot();
// Event Registration Methods (by event name)
 public abstract void addNodeChangeListener(NodeChangeListener ncl);
 public abstract void removeNodeChangeListener(NodeChangeListener ncl);
 public abstract void addPreferenceChangeListener(PreferenceChangeListener pcl);
 public abstract void removePreferenceChangeListener(PreferenceChangeListener pcl);
// Public Instance Methods
 public abstract String absolutePath();
 public abstract String[] childrenNames() throws BackingStoreException;
 public abstract void clear() throws BackingStoreException;

Chapter 16. java.util and Subpackages Page 188 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract void exportNode(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public abstract void exportSubtree(java.io.OutputStream os) throws java.io.IOException,
 BackingStoreException;
 public abstract void flush() throws BackingStoreException;
 public abstract String get(String key, String def);
 public abstract boolean getBoolean(String key, boolean def);
 public abstract byte[] getByteArray(String key, byte[] def);
 public abstract double getDouble(String key, double def);
 public abstract float getFloat(String key, float def);
 public abstract int getInt(String key, int def);
 public abstract long getLong(String key, long def);
 public abstract boolean isUserNode();
 public abstract String[] keys() throws BackingStoreException;
 public abstract String name();
 public abstract Preferences node(String pathName);
 public abstract boolean nodeExists(String pathName) throws BackingStoreException;
 public abstract Preferences parent();
 public abstract void put(String key, String value);
 public abstract void putBoolean(String key, boolean value);
 public abstract void putByteArray(String key, byte[] value);
 public abstract void putDouble(String key, double value);
 public abstract void putFloat(String key, float value);
 public abstract void putInt(String key, int value);
 public abstract void putLong(String key, long value);
 public abstract void remove(String key);
 public abstract void removeNode() throws BackingStoreException;
 public abstract void sync() throws BackingStoreException;
// Public Methods Overriding Object
 public abstract String toString();
}

Subclasses

AbstractPreferences
Passed To

NodeChangeEvent.NodeChangeEvent(),
PreferenceChangeEvent.PreferenceChangeEvent()
Returned By

AbstractPreferences.{node(), parent()}, NodeChangeEvent.
{getChild(), getParent()}, PreferenceChangeEvent.getNode(),
PreferencesFactory.{systemRoot(), userRoot()}

PreferencesFactory java.util.prefs

Java 1.4

The PreferencesFactory interface defines the factory methods used by the static
methods of the Preferences class to obtain the root Preferences nodes for user-
specific and system-wide preferences hierarchies. Application programmers never need
to use this interface.

An implementation of the preferences API for a specific back-end data store must include
an implementation of this interface that works with that data store. Sun's implementation

Chapter 16. java.util and Subpackages Page 189 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of Java includes a default filesystem-based implementation, which you can override by
specifying the name of a PreferencesFactory implementation as the value of the
"java.util.prefs.PreferencesFactory" system property.

public interface PreferencesFactory {
// Public Instance Methods
 Preferences systemRoot();
 Preferences userRoot();
}

Package java.util.regex

Java 1.4

This small package provides a facility for textual pattern matching with regular
expressions. Pattern objects represent regular expressions, which are specified using a
syntax very close to the one used by the Perl programming language. The Matcher class
encapsulates a Pattern and a java.lang.CharSequence of text, and defines various
methods for matching the pattern to the text. In Java 5.0, the MatchResult interface
represents the result of a match. Matcher implements this interface and can be queried
directly.

In addition to the pattern matching methods defined in this package, the
java.lang.String class has been augmented in Java 1.4 with a number of convenience
methods for matching strings against regular expressions that are specified in their text
form as strings, rather than in their compiled form as Pattern objects. Applications with
simple pattern matching needs can use these convenience methods and may never have
to directly use the Pattern or Matcher classes.

Interfaces

public interface MatchResult;

Classes

public final class Matcher implements MatchResult;
public final class Pattern implements Serializable;

Exceptions

public class PatternSyntaxException extends IllegalArgumentException;

Matcher java.util.regex

Chapter 16. java.util and Subpackages Page 190 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

A Matcher objects encapsulate a regular expression and a string of text (a Pattern and
a java.lang.CharSequence) and defines methods for matching the pattern to the text
in several different ways, for obtaining details about pattern matches, and for doing search-
and-replace operations on the text. Matcher has no public constructor. Obtain a
Matcher by passing the character sequence to be matched to the matcher() method
of the desired Pattern object. You can also reuse an existing Matcher object with a new
character sequence (but the same Pattern) by passing a new CharSequence to the
matcher's reset() method. In Java 5.0, you can use a new Pattern object on the
current character sequence with the usePattern() method.

Once you have created or reset a Matcher, there are three types of comparisons you can
perform between the regular expression and the character sequence. All three comparisons
operate on the current region of the character sequence. By default, this region is the entire
sequence. In Java 5.0, however, you can set the bound of the region with region(). The
simplest type of comparison is the matches() method. It returns true if the pattern
matches the complete region of the character sequence, and returns false otherwise. The
lookingAt() method is similar: it returns true if the pattern matches the complete
region, or if it matches some subsequence at the beginning of the region. If the pattern
does not match the start of the region, lookingAt() returns false. matches()
requires the pattern to match both the beginning and ending of the region, and
lookingAt() requires the pattern to match the beginning. The find() method, on
the other hand, has neither of these requirements: it returns true if the pattern matches
any part of the region. As will be described below, find() has some special behavior
that allows it to be used in a loop to find all matches in the text.

If matches(), lookingAt(), or find() return true, then several other
Matcher methods can be used to obtain details about the matched text. The
MatchResult interface defines the start(), end() and group() methods that
return the starting position, the ending position and the text of the match, and of any
matching subexpressions within the Pattern. See MatchResult for details. The
MatchResult interface is new in Java 5.0, but Matcher implements all of its methods
in Java 1.4 as well. Calling MatchResult methods on a Matcher returns results from the
most recent match. If you want to store these results, call toMatchResult() to obtain
an indepedent, immutable MatchResult object whose methods can be queried later.

The no-argument version of find() has special behavior that makes it suitable for use
in a loop to find all matches of a pattern within a region. The first time find() is called
after a Matcher is created or after the reset() method is called, it starts it search at

Chapter 16. java.util and Subpackages Page 191 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the beginning of the string. If it finds a match, it stores the start and end position of the
matched text. If reset() is not called in the meantime, then the next call to find()
searches again but starts the search at the first character after the match: at the position
returned by end(). (If the previous call to find() matched the empty string, then the
next call begins at end()+1 instead.) In this way, it is possible to find all matches of a
pattern within a string simply by calling find() repeatedly until it returns false
indicating that no match was found. After each repeated call to find() you can use the
MatchResult methods to obtain more information about the text that matched the
pattern and any of its subpatterns.

Matcher also defines methods that perform search-and-replace operations.
replaceFirst() searches the character sequence for the first subsequence that
matches the pattern. It then returns a string that is the character sequence with the
matched text replaced with the specified replacement string. replaceAll() is similar,
but replaces all matching subsequences within the character sequence instead of just
replacing the first. The replacement string passed to replaceFirst() and
replaceAll() is not always replaced literally. If the replacement contains a dollar sign
followed by an integer that is a valid group number, then the dollar sign and the number
are replaced by the text that matched the numbered group. If you want to include a literal
dollar sign in the replacement string, preceed it with a backslash. In Java 5.0, you can use
the static quoteReplacement() method to properly quote any special characters in a
replacement string so that the string will be interpreted literally.

replaceFirst() and replaceAll() are convenience methods that cover the most
common search-and-replace cases. However, Matcher also defines lower-level methods
that you can use to do a custom search-and-replace operation in conjunction with calls to
find(), and build up a modified string in a StringBuffer. In order to understand this
search-and-replace procedure, you must know that a Matcher maintains a "append
position", which starts at zero when the Matcher is created, and is restored to zero by the
reset() method. The appendReplacement() method is designed to be used after
a successful call to find(). It copies all the text between the append position and the
character before the start() position for the last match into the specified string buffer.
Then it appends the specified replacement text to that string buffer (performing the same
substitutions that replaceAll() does). Finally, it sets the append position to the
end() of the last match, so that a subsequent call to appendReplacement() starts
at a new character. appendReplacement() is intended for use after a call to
find() that returns true. When find() cannot find another match and returns
false, you should complete the replacement operation by calling appendTail(): this
method copies all text between the end() position of the last match and the end of the
character sequence into the specified StringBuffer.

Chapter 16. java.util and Subpackages Page 192 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The reset() method has been mentioned several times. It erases any saved information
about the last match, and restores the Matcher to its initial state so that subsequent calls
to find() and appendReplacement() start at the begining of the character sequence.
The one-argument version of reset() also allows you to specify an entirely new
character sequence to match against. It is important to understand that several other
Matcher methods call reset() themselves before they perform their operation. They
are: matches(), lookingAt(), the one-argument version of find(),
replaceAll(), and replaceFirst().

Prior to Java 5.0, the region of the input text that a Matcher operates on is the entire
character sequence. In Java 5.0, you can define a different region with the region()
method, which specifies the position of the first character in the region and the position
of the first character after the end of the region. regionStart() and regionEnd()
return the current value of these region bounds. By default, regions are "anchoring" which
means that the start and end of the region match the ^ and $ anchors. (See Pattern for
regular expression grammar details.) Call useAnchoringBounds() to turn anchoring
bounds on or off in Java 5.0. The bounds of a region are "opaque" by default, which means
that the Matcher will not look through the bounds in an attempt to match look-ahead or
look-behind assertions (see Pattern). In Java 5.0, you can make the bounds transparent
with useTransparentBounds(true).

Matcher is not threadsafe, and should not be used by more than one thread concurrently.

Figure 16-131. java.util.regex.Matcher

public final class Matcher implements MatchResult {
// No Constructor
// Public Class Methods
5.0 public static String quoteReplacement(String s);
// Public Instance Methods
 public Matcher appendReplacement(StringBuffer sb, String replacement);
 public StringBuffer appendTail(StringBuffer sb);
 public int end(); Implements:MatchResult
 public int end(int group); Implements:MatchResult
 public boolean find();
 public boolean find(int start);
 public String group(); Implements:MatchResult
 public String group(int group); Implements:MatchResult
 public int groupCount(); Implements:MatchResult
5.0 public boolean hasAnchoringBounds();
5.0 public boolean hasTransparentBounds();
5.0 public boolean hitEnd();
 public boolean lookingAt();
 public boolean matches();
 public Pattern pattern();
5.0 public Matcher region(int start, int end);
5.0 public int regionEnd();
5.0 public int regionStart();
 public String replaceAll(String replacement);
 public String replaceFirst(String replacement);
5.0 public boolean requireEnd();

Chapter 16. java.util and Subpackages Page 193 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public Matcher reset();
 public Matcher reset(CharSequence input);
 public int start(); Implements:MatchResult
 public int start(int group); Implements:MatchResult
5.0 public MatchResult toMatchResult();
5.0 public Matcher useAnchoringBounds(boolean b);
5.0 public Matcher usePattern(Pattern newPattern);
5.0 public Matcher useTransparentBounds(boolean b);
// Methods Implementing MatchResult
 public int end();
 public int end(int group);
 public String group();
 public String group(int group);
 public int groupCount();
 public int start();
 public int start(int group);
// Public Methods Overriding Object
5.0 public String toString();
}

Returned By

Pattern.matcher()

MatchResult java.util.regex

Java 5.0

This interface represents the results of a regular expression matching operation performed
by a Matcher. Matcher implements this interface directly, and you can use the methods
defined here to obtain the results of the most recent match performed by a Matcher. You
can also save those most recent match results in a separate immutable MatchResult
object by calling the toMatchResult() method of the Matcher.

The no-argument versions of the start() and end() method return the index of the
first character that matched the pattern and the index of the last character that matched
plus one (the index of the first character following the matched text), respectively. Some
regular expressions can match the empty string. If this occurs, end() returns the same
value as start(). The no-argument version of group() returns the text that matched
the pattern.

If the matched Pattern includes capturing subexpressions within parentheses, the other
methods of this interface provide details about the text that matched each of those
subexpressions. Pass a group number to start(), end(), or group() to obtain the
start, end, or text that matched the specified group. groupCount() returns the number
of subexpressions. Groups are numbered from 1, however, so legal group numbers run
from 1 to the value returned by groupCount(). Groups are ordered from left-to-right
within the regular expression. When there are nested groups, their ordering is based on
the position of the opening left parenthesis that begins the group. Group 0 represents the

Chapter 16. java.util and Subpackages Page 194 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

entire regular expression, so passing 0 to start(), end(), or group() is the same
as calling the no-argument version of the method.

public interface MatchResult {
// Public Instance Methods
 int end();
 int end(int group);
 String group();
 String group(int group);
 int groupCount();
 int start();
 int start(int group);
}

Implementations

Matcher
Returned By

java.util.Scanner.match(), Matcher.toMatchResult()

Pattern java.util.regex

Java 1.4 serializable

This class represents a regular expression. It has no public constructor: obtain a
Pattern by calling one of the static compile() methods, passing the string
representation of the regular expression, and an optional bitmask of flags that modify the
behavior of the regex. pattern() and flags() return the string form of the regular
expression and the bitmask that were passed to compile().

If you want to perform only a single match operation with a regular expression, and don't
need to use any of the flags, you don't have to create a Pattern object: simply pass the
string representation of the pattern and the CharSequence to be matched to the static
matches() method: the method returns true if the specified pattern matches the
complete specified text, or returns false otherwise.

Pattern represents a regular expression, but does not actually define any primitive
methods for matching regular expressions to text. To do that, you must create a
Matcher object that encapsulates a pattern and the text it is to be compared with. Do this
by calling the matcher() method and specifying the CharSequence you want to match
against. See Matcher for a description of what you can do with it.

The split() methods are the exception to the rule that you must obtain a Matcher in
order to be able to do anything with a Pattern (although they create and use a
Matcher internally). They take a CharSequence as input, and split it into substrings,

Chapter 16. java.util and Subpackages Page 195 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

using text that matches the regular expression as the delimiter, returning the substrings
as a String[]. The two-argument version of split() takes an integer argument that
specifies the maximum number of substrings to break the input into.

Pattern defines the following flags that control various aspects of how regular expression
matching is performed. The flags are the following:

Although the API for the Pattern class is quite simple, the syntax for the text
representation of regular expressions is fairly complex. A complete tutorial on regular
expressions is beyond the scope of this book. The table below, is a quick-reference for
regular expression syntax. It is very similar to the syntax used in Perl. Note that many of
the syntax elements of a regular expression include a backslash character, such as \d to
match one of the digits 0-9. Because Java strings also use the backslash character as an
escape, you must double the backslashes when expressing a regular expression as a string
literal: "\\d". In Java 5.0, the static quote() method quotes all special characters in a
string so that you can match arbitrary text literally without worrying that punctuation in
that text will be interpreted specially. For complete details on regular expressions see a
book like Programming Perl by Larry Wall et. al., or Mastering Regular Expressions by
Jeffrey E. F. Friedl.

Table 16-3. Java regular expression quick reference

Syntax Matches

Single characters

x The character x, as long as x is not a punctuation character with special meaning in the regular
expression syntax.

\p The punctuation character p.

\\ The backslash character

\n Newline character \u000A.

\t Tab character \u0009.

\r Carriage return character \u000D.

\f Form feed character \u000C.

\e Escape character \u001B.

\a Bell (alert) character \u0007.

\uxxxx Unicode character with hexadecimal code xxxx.

\xxx Character with hexadecimal code xx.

\0n Character with octal code n.

\0nn Character with octal code nn.

\0nnn Character with octal code nnn, where nnn <= 377.

\cx The control character ^x.

Character classes

[...]
One of the characters between the brackets. Characters may be specified literally, and the syntax also
allows the specification of character ranges, with intersection, union, and subtraction operators. See
specific examples below.

[^...] Any one character not between the brackets.

Chapter 16. java.util and Subpackages Page 196 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Matches

[a-z0-9] Character range: a character between (inclusive) a and z or 0 and 9.

[0-9[a-fA-F]] Union of classes: same as [0-9a-fA-F]
[a-z&&[aeiou]] Intersection of classes: same as [aeiou].

[a-z&&[^aeiou]] Subtraction: the characters a through z except for the vowels.

.
Any character except a line terminator. If the DOTALL flag is set, then it matches any character including
line terminators.

\d ASCII digit: [0-9].

\D Anything but an ASCII digit: [^\d].

\s ASCII whitespace: [\t\n\f\r\x0B]
\S Anything but ASCII whitespace: [^\s].

\w ASCII word character: [a-zA-Z0-9_].

\W Anything but ASCII word characters: [^\w].

\p{group} Any character in the named group. See group names below. Many of the group names are from POSIX,
which is why p is used for this character class.

\P{group} Any character not in the named group.

\p{Lower} ASCII lowercase letter: [a-z].

\p{Upper} ASCII uppercase: [A-Z].

\p{ASCII} Any ASCII character: [\x00-\x7f].

\p{Alpha} ASCII letter: [a-zA-Z].

\p{Digit} ASCII digit: [0-9].

\p{XDigit} Hexadecimal digit: [0-9a-fA-F].

\p{Alnum} ASCII letter or digit: [\p{Alpha}\p{Digit}].

\p{Punct} ASCII punctuation: one of !"#$%& ()*+,-./:;<=>?@[\]^_ {|}~].

\p{Graph} visible ASCII character: [\p{Alnum}\p{Punct}].

\p{Print} visible ASCII character: same as \p{Graph}.

\p{Blank} ASCII space or tab: [\t].

\p{Space} ASCII whitespace: [\t\n\f\r\x0b].

\p{Cntrl} ASCII control character: [\x00-\x1f\x7f].

\p{category}

Any character in the named Unicode category. Category names are one or two letter codes defined by
the Unicode standard. One letter codes include L for letter, N for number, S for symbol, Z for separator,
and P for punctuation. Two letter codes represent subcategories, such as Lu for uppercase letter, Nd for
decimal digit, Sc for currency symbol, Sm for math symbol, and Zs for space separator. See
java.lang.Character for a set of constants that correspond to these subcategories; however, note
that the full set of one- and two-letter codes is not documented in this book.

\p{block}
Any character in the named Unicode block. In Java regular expressions, block names begin with "In",
followed by mixed-case capitalization of the Unicode block name, without spaces or underscores. For
example: \p{InOgham} or \p{InMathematicalOperators}. See
java.lang.Character.UnicodeBlock for a list of Unicode block names.

Sequences, alternatives,
groups, and references

xy Match x followed by y.

x|y Match x or y.

(...) Grouping. Group subexpression within parentheses into a single unit that can be used with *, +, ?, |,
and so on. Also "capture" the characters that match this group for use later.

(?:...) Grouping only. Group subexpression as with (), but do not capture the text that matched.

\n Match the same characters that were matched when capturing group number n was first matched. Be
careful when n is followed by another digit: the largest number that is a valid group number will be used.

Repetition[1]

Chapter 16. java.util and Subpackages Page 197 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Syntax Matches

x? zero or one occurrence of x; i.e., x is optional.

x* zero or more occurrences of x.

x+ one or more occurrences of x.

x{n} exactly n occurrences of x.

x{n,} n or more occurrences of x.

x{n,m} at least n, and at most m occurrences of x.

Anchors[2]

^ The beginning of the input string, or if the MULTILINE flag is specified, the beginning of the string or
of any new line.

$ The end of the input string, or if the MULTILINE flag is specified, the end of the string or of line within
the string.

\b A word boundary: a position in the string between a word and a nonword character.
\B A position in the string that is not a word boundary.

\A The beginning of the input string. Like ^, but never matches the beginning of a new line, regardless of
what flags are set.

\Z The end of the input string, ignoring any trailing line terminator.
\z The end of the input string, including any line terminator.
\G The end of the previous match.

(?=x) A positive look-ahead assertion. Require that the following characters match x, but do not include those
characters in the match.

(?!x) A negative look-ahead assertion. Require that the following characters do not match the pattern x.

(?<=x) A positive look-behind assertion. Require that the characters immediately before the position match
x, but do not include those characters in the match. x must be a pattern with a fixed number of characters.

(?<!x) A negative look-behind assertion. Require that the characters immediately before the position do not
match x. x must be a pattern with a fixed number of characters.

Miscellaneous

(?>x)
Match x independently of the rest of the expression, without considering whether the match causes the
rest of the expression to fail to match. Useful to optimize certain complex regular expressions. A group
of this form does not capture the matched text.

(?onflags-
offflags)

Don t match anything, but turn on the flags specified by onflags, and turn off the flags specified by
offflags. These two strings are combinations in any order of the following letters and correspond to
the following Pattern constants: i (CASE_INSENSITIVE), d (UNIX_LINES), m (MULTILINE), s
(DOTALL), u (UNICODE_CASE), and x (COMMENTS). Flag settings specified in this way take effect at the
point that they appear in the expression and persist until the end of the expression, or until the end of
the parenthesized group of which they are a part, or until overridden by another flag setting expression.

(?onflags-
offflags:x)

Match x, applying the specified flags to this subexpression only. This is a noncapturing group, like
(?:...), with the addition of flags.

\Q Don't match anything, but quote all subsequent pattern text until \E. All characters within such a quoted
section are interpreted as literal characters to match, and none (except \E) have special meanings.

\E Don't match anything; terminate a quote started with \Q.

#comment If the COMMENT flag is set, pattern text between a # and the end of the line is considered a comment and
is ignored.

[1] These repetition characters are known as "greedy quantifiers," because they match as many occurrences of x as possible while still allowing the rest of the regular
expression to match. If you want a "reluctant quantifier" which matches as few occurrences as possible while still allowing the rest of the regular expression to match,
follow the quantifiers above with a question mark. For example, use *? instead of *, and use {2,}? instead of {2,}. Or, if you follow a quantifier with a plus sign instead
of a question mark, then you specify a "possessive quantifier" which matches as many occurrences as possible, even if it means that the rest of the regular expression
will not match. Possessive quantifiers can be useful when you are sure that they will not adversely affect the rest of the match, because they can be implemented more
efficiently than regular "greedy quantifiers."

[2] Anchors do not match characters but instead match the zero-width positions between characters, "anchoring" the match to a position at which a specific condition
holds.

Chapter 16. java.util and Subpackages Page 198 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-132. java.util.regex.Pattern

public final class Pattern implements Serializable {
// No Constructor
// Public Constants
 public static final int CANON_EQ; =128
 public static final int CASE_INSENSITIVE; =2
 public static final int COMMENTS; =4
 public static final int DOTALL; =32
5.0 public static final int LITERAL; =16
 public static final int MULTILINE; =8
 public static final int UNICODE_CASE; =64
 public static final int UNIX_LINES; =1
// Public Class Methods
 public static Pattern compile(String regex);
 public static Pattern compile(String regex, int flags);
 public static boolean matches(String regex, CharSequence input);
5.0 public static String quote(String s);
// Public Instance Methods
 public int flags();
 public Matcher matcher(CharSequence input);
 public String pattern();
 public String[] split(CharSequence input);
 public String[] split(CharSequence input, int limit);
// Public Methods Overriding Object
5.0 public String toString();
}

Passed To

java.util.Scanner.{findInLine(), findWithinHorizon(), hasNext(),
next(), skip(), useDelimiter()}, Matcher.usePattern()
Returned By

java.util.Scanner.delimiter(), Matcher.pattern()

PatternSyntaxException java.util.regex

Java 1.4 serializable unchecked

Signals a syntax error in the text representation of a regular expression. An exception of
this type may be thrown by the Pattern.compile() and Pattern.matches()
methods, and also by the String matches(), replaceFirst(), replaceAll()
and split() methods which call those Pattern methods.

getPattern() returns the text that contained the syntax error, and getIndex()
returns the approximate location of the error within that text, or -1, if the location is not
known. getDescription() returns an error message that provides further detail about
the error. The inherited getMessage() method combines the information provided by
these other three methods into a single multiline message.

Chapter 16. java.util and Subpackages Page 199 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-133. java.util.regex.PatternSyntaxException

public class PatternSyntaxException extends IllegalArgumentException {
// Public Constructors
 public PatternSyntaxException(String desc, String regex, int index);
// Public Instance Methods
 public String getDescription();
 public int getIndex();
 public String getPattern();
// Public Methods Overriding Throwable
 public String getMessage();
}

Package java.util.zip

Java 1.1

The java.util.zip package contains classes for data compression and decompression.
The Deflater and Inflater classes perform data compression and decompression.
DeflaterOutputStream and InflaterInputStream apply that functionality to byte
streams; the subclasses of these streams implement both the GZIP and ZIP compression
formats. The Adler32 and CRC32 classes implement the Checksum interface and
compute the checksums required for data compression.

Interfaces

public interface Checksum;

Classes

public class Adler32 implements Checksum;
public class CheckedInputStream extends java.io.FilterInputStream;
public class CheckedOutputStream extends java.io.FilterOutputStream;
public class CRC32 implements Checksum;
public class Deflater;
public class DeflaterOutputStream extends java.io.FilterOutputStream;
 public class GZIPOutputStream extends DeflaterOutputStream;
 public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants;
public class Inflater;
public class InflaterInputStream extends java.io.FilterInputStream;
 public class GZIPInputStream extends InflaterInputStream;
 public class ZipInputStream extends InflaterInputStream implements ZipConstants;
public class ZipEntry implements Cloneable, ZipConstants;
public class ZipFile implements ZipConstants;

Exceptions

public class DataFormatException extends Exception;
public class ZipException extends java.io.IOException;

Chapter 16. java.util and Subpackages Page 200 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Adler32 java.util.zip

Java 1.1

This class implements the Checksum interface and computes a checksum on a stream of
data using the Adler-32 algorithm. This algorithm is significantly faster than the CRC-32
algorithm and is almost as reliable. The CheckedInputStream and
CheckedOutputStream classes provide a higher-level interface to computing
checksums on streams of data.

Figure 16-134. java.util.zip.Adler32

public class Adler32 implements Checksum {
// Public Constructors
 public Adler32();
// Public Instance Methods
 public void update(byte[] b);
// Methods Implementing Checksum
 public long getValue(); default:1
 public void reset();
 public void update(int b);
 public void update(byte[] b, int off, int len);
}

CheckedInputStream java.util.zip

Java 1.1 closeable

This class is a subclass of java.io.FilterInputStream; it allows a stream to be read
and a checksum computed on its contents at the same time. This is useful when you want
to check the integrity of a stream of data against a published checksum value. To create a
CheckedInputStream, you must specify both the stream it should read and a
Checksum object, such as CRC32, that implements the particular checksum algorithm you
desire. The read() and skip() methods are the same as those of other input streams.
As bytes are read, they are incorporated into the checksum that is being computed. The
getChecksum() method does not return the checksum value itself, but rather the
Checksum object. You must call the getValue() method of this object to obtain the
checksum value.

Chapter 16. java.util and Subpackages Page 201 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-135. java.util.zip.CheckedInputStream

public class CheckedInputStream extends java.io.FilterInputStream {
// Public Constructors
 public CheckedInputStream(java.io.InputStream in, Checksum cksum);
// Public Instance Methods
 public Checksum getChecksum();
// Public Methods Overriding FilterInputStream
 public int read() throws java.io.IOException;
 public int read(byte[] buf, int off, int len) throws java.io.IOException;
 public long skip(long n) throws java.io.IOException;
}

CheckedOutputStream java.util.zip

Java 1.1 closeable flushable

This class is a subclass of java.io.FilterOutputStream that allows data to be written
to a stream and a checksum computed on that data at the same time. To create a
CheckedOutputStream, you must specify both the output stream to write its data to and
a Checksum object, such as an instance of Adler32, that implements the particular
checksum algorithm you desire. The write() methods are similar to those of other
OutputStream classes. The getChecksum() method returns the Checksum object.
You must call getValue() on this object in order to obtain the actual checksum value.

Figure 16-136. java.util.zip.CheckedOutputStream

public class CheckedOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public CheckedOutputStream(java.io.OutputStream out, Checksum cksum);
// Public Instance Methods
 public Checksum getChecksum();
// Public Methods Overriding FilterOutputStream
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
}

Checksum java.util.zip

Chapter 16. java.util and Subpackages Page 202 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1

This interface defines the methods required to compute a checksum on a stream of data.
The checksum is computed based on the bytes of data supplied by the update()
methods; the current value of the checksum can be obtained at any time with the
getValue() method. reset() resets the checksum to its default value; use this
method before beginning a new stream of data. The checksum value computed by a
Checksum object and returned through the getValue() method must fit into a long
value. Therefore, this interface is not suitable for the cryptographic checksum algorithms
used in cryptography and security. The classes CheckedInputStream and
CheckedOutputStream provide a higher-level API for computing a checksum on a
stream of data. See also java.security.MessageDigest.

public interface Checksum {
// Public Instance Methods
 long getValue();
 void reset();
 void update(int b);
 void update(byte[] b, int off, int len);
}

Implementations

Adler32, CRC32
Passed To

CheckedInputStream.CheckedInputStream(),
CheckedOutputStream.CheckedOutputStream()
Returned By

CheckedInputStream.getChecksum(),
CheckedOutputStream.getChecksum()

CRC32 java.util.zip

Java 1.1

This class implements the Checksum interface and computes a checksum on a stream of
data using the CRC-32 algorithm. The CheckedInputStream and
CheckedOutputStream classes provide a higher-level interface to computing
checksums on streams of data.

Figure 16-137. java.util.zip.CRC32

Chapter 16. java.util and Subpackages Page 203 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class CRC32 implements Checksum {
// Public Constructors
 public CRC32();
// Public Instance Methods
 public void update(byte[] b);
// Methods Implementing Checksum
 public long getValue(); default:0
 public void reset();
 public void update(int b);
 public void update(byte[] b, int off, int len);
}

Type Of

GZIPInputStream.crc, GZIPOutputStream.crc

DataFormatException java.util.zip

Java 1.1 serializable checked

Signals that invalid or corrupt data has been encountered while uncompressing data.

Figure 16-138. java.util.zip.DataFormatException

public class DataFormatException extends Exception {
// Public Constructors
 public DataFormatException();
 public DataFormatException(String s);
}

Thrown By

Inflater.inflate()

Deflater java.util.zip

Java 1.1

This class implements the general ZLIB data-compression algorithm used by the gzip and
PKZip compression programs. The constants defined by this class are used to specify the
compression strategy and the compression speed/strength tradeoff level to be used. If you
set the nowrap argument to the constructor to true, the ZLIB header and checksum data
are omitted from the compressed output, which is the format both gzip and PKZip use.

Chapter 16. java.util and Subpackages Page 204 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The important methods of this class are setInput(), which specifies input data to be
compressed, and deflate(), which compresses the data and returns the compressed
output. The remaining methods exist so that Deflater can be used for stream-based
compression, as it is in higher-level classes, such as GZIPOutputStream and
ZipOutputStream. These stream classes are sufficient in most cases. Most applications
do not need to use Deflater directly. The Inflater class uncompresses data
compressed with a Deflater object.

public class Deflater {
// Public Constructors
 public Deflater();
 public Deflater(int level);
 public Deflater(int level, boolean nowrap);
// Public Constants
 public static final int BEST_COMPRESSION; =9
 public static final int BEST_SPEED; =1
 public static final int DEFAULT_COMPRESSION; =-1
 public static final int DEFAULT_STRATEGY; =0
 public static final int DEFLATED; =8
 public static final int FILTERED; =1
 public static final int HUFFMAN_ONLY; =2
 public static final int NO_COMPRESSION; =0
// Public Instance Methods
 public int deflate(byte[] b);
 public int deflate(byte[] b, int off, int len); synchronized
 public void end(); synchronized
 public void finish(); synchronized
 public boolean finished(); synchronized
 public int getAdler(); synchronized default:1
5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0
 public int getTotalIn(); default:0
 public int getTotalOut(); default:0
 public boolean needsInput();
 public void reset(); synchronized
 public void setDictionary(byte[] b);
 public void setDictionary(byte[] b, int off, int len); synchronized
 public void setInput(byte[] b);
 public void setInput(byte[] b, int off, int len); synchronized
 public void setLevel(int level); synchronized
 public void setStrategy(int strategy); synchronized
// Protected Methods Overriding Object
 protected void finalize();
}

Passed To

DeflaterOutputStream.DeflaterOutputStream()
Type Of

DeflaterOutputStream.def

DeflaterOutputStream java.util.zip

Java 1.1 closeable flushable

Chapter 16. java.util and Subpackages Page 205 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class is a subclass of java.io.FilterOutputStream; it filters a stream of data by
compressing (deflating) it and then writing the compressed data to another output stream.
To create a DeflaterOutputStream, you must specify both the stream it is to write to
and a Deflater object to perform the compression. You can set various options on the
Deflater object to specify just what type of compression is to be performed. Once a
DeflaterOutputStream is created, its write() and close() methods are the same
as those of other output streams. The InflaterInputStream class can read data written
with a DeflaterOutputStream. A DeflaterOutputStream writes raw compressed
data; applications often prefer one of its subclasses, GZIPOutputStream or
ZipOutputStream, that wraps the raw compressed data within a standard file format.

Figure 16-139. java.util.zip.DeflaterOutputStream

public class DeflaterOutputStream extends java.io.FilterOutputStream {
// Public Constructors
 public DeflaterOutputStream(java.io.OutputStream out);
 public DeflaterOutputStream(java.io.OutputStream out, Deflater def);
 public DeflaterOutputStream(java.io.OutputStream out, Deflater def, int size);
// Public Instance Methods
 public void finish() throws java.io.IOException;
// Public Methods Overriding FilterOutputStream
 public void close() throws java.io.IOException;
 public void write(int b) throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException;
// Protected Instance Methods
 protected void deflate() throws java.io.IOException;
// Protected Instance Fields
 protected byte[] buf;
 protected Deflater def;
}

Subclasses

GZIPOutputStream, ZipOutputStream

GZIPInputStream java.util.zip

Java 1.1 closeable

This class is a subclass of InflaterInputStream that reads and uncompresses data
compressed in gzip format. To create a GZIPInputStream, simply specify the
InputStream to read compressed data from and, optionally, a buffer size for the internal
decompression buffer. Once a GZIPInputStream is created, you can use the read()
and close() methods as you would with any input stream.

Chapter 16. java.util and Subpackages Page 206 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-140. java.util.zip.GZIPInputStream

public class GZIPInputStream extends InflaterInputStream {
// Public Constructors
 public GZIPInputStream(java.io.InputStream in) throws java.io.IOException;
 public GZIPInputStream(java.io.InputStream in, int size) throws java.io.IOException;
// Public Constants
 public static final int GZIP_MAGIC; =35615
// Public Methods Overriding InflaterInputStream
 public void close() throws java.io.IOException;
 public int read(byte[] buf, int off, int len) throws java.io.IOException;
// Protected Instance Fields
 protected CRC32 crc;
 protected boolean eos;
}

GZIPOutputStream java.util.zip

Java 1.1 closeable flushable

This class is a subclass of DeflaterOutputStream that compresses and writes data
using the gzip file format. To create a GZIPOutputStream, specify the OutputStream
to write to and, optionally, a size for the internal compression buffer. Once the
GZIPOutputStream is created, you can use the write() and close() methods as
you would any output stream.

Figure 16-141. java.util.zip.GZIPOutputStream

public class GZIPOutputStream extends DeflaterOutputStream {
// Public Constructors
 public GZIPOutputStream(java.io.OutputStream out) throws java.io.IOException;
 public GZIPOutputStream(java.io.OutputStream out, int size) throws java.io.IOException;
// Public Methods Overriding DeflaterOutputStream
 public void finish() throws java.io.IOException;
 public void write(byte[] buf, int off, int len) throws java.io.IOException; synchronized
// Protected Instance Fields
 protected CRC32 crc;
}

Inflater java.util.zip

Chapter 16. java.util and Subpackages Page 207 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1

This class implements the general ZLIB data-decompression algorithm used by gzip,
PKZip, and other data-compression applications. It decompresses or inflates data
compressed through the Deflater class. The important methods of this class are
setInput(), which specifies input data to be decompressed, and inflate(), which
decompresses the input data into an output buffer. A number of other methods exist so
that this class can be used for stream-based decompression, as it is in the higher-level
classes, such as GZIPInputStream and ZipInputStream. These stream-based classes
are sufficient in most cases. Most applications do not need to use Inflater directly.

public class Inflater {
// Public Constructors
 public Inflater();
 public Inflater(boolean nowrap);
// Public Instance Methods
 public void end(); synchronized
 public boolean finished(); synchronized
 public int getAdler(); synchronized default:1
5.0 public long getBytesRead(); synchronized default:0
5.0 public long getBytesWritten(); synchronized default:0
 public int getRemaining(); synchronized default:0
 public int getTotalIn(); default:0
 public int getTotalOut(); default:0
 public int inflate(byte[] b) throws DataFormatException;
 public int inflate(byte[] b, int off, int len) throws DataFormatException; synchronized
 public boolean needsDictionary(); synchronized
 public boolean needsInput(); synchronized
 public void reset(); synchronized
 public void setDictionary(byte[] b);
 public void setDictionary(byte[] b, int off, int len); synchronized
 public void setInput(byte[] b);
 public void setInput(byte[] b, int off, int len); synchronized
// Protected Methods Overriding Object
 protected void finalize();
}

Passed To

InflaterInputStream.InflaterInputStream()
Type Of

InflaterInputStream.inf

InflaterInputStream java.util.zip

Java 1.1 closeable

This class is a subclass of java.io.FilterInputStream; it reads a specified stream of
compressed input data (typically one that was written with DeflaterOutputStream or
a subclass) and filters that data by uncompressing (inflating) it. To create an
InflaterInputStream, specify both the input stream to read from and an Inflater

Chapter 16. java.util and Subpackages Page 208 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

object to perform the decompression. Once an InflaterInputStream is created, the
read() and skip() methods are the same as those of other input streams. The
InflaterInputStream uncompresses raw data. Applications often prefer one of its
subclasses, GZIPInputStream or ZipInputStream, that work with compressed data
written in the standard gzip and PKZip file formats.

Figure 16-142. java.util.zip.InflaterInputStream

public class InflaterInputStream extends java.io.FilterInputStream {
// Public Constructors
 public InflaterInputStream(java.io.InputStream in);
 public InflaterInputStream(java.io.InputStream in, Inflater inf);
 public InflaterInputStream(java.io.InputStream in, Inflater inf, int size);
// Public Methods Overriding FilterInputStream
1.2 public int available() throws java.io.IOException;
1.2 public void close() throws java.io.IOException;
5.0 public void mark(int readlimit); synchronized empty
5.0 public boolean markSupported(); constant
 public int read() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
5.0 public void reset() throws java.io.IOException; synchronized
 public long skip(long n) throws java.io.IOException;
// Protected Instance Methods
 protected void fill() throws java.io.IOException;
// Protected Instance Fields
 protected byte[] buf;
 protected Inflater inf;
 protected int len;
}

Subclasses

GZIPInputStream, ZipInputStream

ZipEntry java.util.zip

Java 1.1 cloneable

This class describes a single entry (typically a compressed file) stored within a ZIP file. The
various methods get and set various pieces of information about the entry. The
ZipEntry class is used by ZipFile and ZipInputStream, which read ZIP files, and by
ZipOutputStream, which writes ZIP files.

When you are reading a ZIP file, a ZipEntry object returned by ZipFile or
ZipInputStream contains the name, size, modification time, and other information
about an entry in the file. When writing a ZIP file, on the other hand, you must create your

Chapter 16. java.util and Subpackages Page 209 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

own ZipEntry objects and initialize them to contain the entry name and other
appropriate information before writing the contents of the entry.

Figure 16-143. java.util.zip.ZipEntry

public class ZipEntry implements Cloneable, ZipConstants {
// Public Constructors
 public ZipEntry(String name);
1.2 public ZipEntry(ZipEntry e);
// Public Constants
 public static final int DEFLATED; =8
 public static final int STORED; =0
// Public Instance Methods
 public String getComment();
 public long getCompressedSize();
 public long getCrc();
 public byte[] getExtra();
 public int getMethod();
 public String getName();
 public long getSize();
 public long getTime();
 public boolean isDirectory();
 public void setComment(String comment);
1.2 public void setCompressedSize(long csize);
 public void setCrc(long crc);
 public void setExtra(byte[] extra);
 public void setMethod(int method);
 public void setSize(long size);
 public void setTime(long time);
// Public Methods Overriding Object
1.2 public Object clone();
1.2 public int hashCode();
 public String toString();
}

Subclasses

java.util.jar.JarEntry
Passed To

java.util.jar.JarEntry.JarEntry(),
java.util.jar.JarFile.getInputStream(),
java.util.jar.JarOutputStream.putNextEntry(),
ZipFile.getInputStream(), ZipOutputStream.putNextEntry()
Returned By

java.util.jar.JarFile.getEntry(), java.util.jar.JarInputStream.
{createZipEntry(), getNextEntry()}, ZipFile.getEntry(),
ZipInputStream.{createZipEntry(), getNextEntry()}

ZipException java.util.zip

Chapter 16. java.util and Subpackages Page 210 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1 serializable checked

Signals that an error has occurred in reading or writing a ZIP file.

Figure 16-144. java.util.zip.ZipException

public class ZipException extends java.io.IOException {
// Public Constructors
 public ZipException();
 public ZipException(String s);
}

Subclasses

java.util.jar.JarException
Thrown By

ZipFile.ZipFile()

ZipFile java.util.zip

Java 1.1

This class reads the contents of ZIP files. It uses a random-access file internally so that the
entries of the ZIP file do not have to be read sequentially, as they do with the
ZipInputStream class. A ZipFile object can be created by specifying the ZIP file to be
read either as a String filename or as a File object. In Java 1.3, temporary ZIP files can
be marked for automatic deletion when they are closed. To take advantage of this feature,
pass ZipFile.OPEN_READ|ZipFile.OPEN_DELETE as the mode argument to the
ZipFile() constructor.

Once a ZipFile is created, the getEntry() method returns a ZipEntry object for a
named entry, and the entries() method returns an Enumeration object that allows
you to loop through all the ZipEntry objects for the file. To read the contents of a specific
ZipEntry within the ZIP file, pass the ZipEntry to getInputStream(); this returns
an InputStream object from which you can read the entry's contents.

Figure 16-145. java.util.zip.ZipFile

Chapter 16. java.util and Subpackages Page 211 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class ZipFile implements ZipConstants {
// Public Constructors
 public ZipFile(String name) throws java.io.IOException;
 public ZipFile(java.io.File file) throws ZipException, java.io.IOException;
1.3 public ZipFile(java.io.File file, int mode) throws java.io.IOException;
// Public Constants
1.3 public static final int OPEN_DELETE; =4
1.3 public static final int OPEN_READ; =1
// Public Instance Methods
 public void close() throws java.io.IOException;
 public java.util.Enumeration<? extends ZipEntry> entries();
 public ZipEntry getEntry(String name);
 public java.io.InputStream getInputStream(ZipEntry entry) throws java.io.IOException;
 public String getName();
1.2 public int size();
// Protected Methods Overriding Object
1.3 protected void finalize() throws java.io.IOException;
}

Subclasses

java.util.jar.JarFile

ZipInputStream java.util.zip

Java 1.1 closeable

This class is a subclass of InflaterInputStream that reads the entries of a ZIP file in
sequential order. Create a ZipInputStream by specifying the InputStream from which
it is to read the contents of the ZIP file. Once the ZipInputStream is created, you can
use getNextEntry() to begin reading data from the next entry in the ZIP file. This
method must be called before read() is called to begin reading the first entry.
getNextEntry() returns a ZipEntry object that describes the entry being read, or
null when there are no more entries to be read from the ZIP file.

The read() methods of ZipInputStream read until the end of the current entry and
then return -1, indicating that there is no more data to read. To continue with the next
entry in the ZIP file, you must call getNextEntry() again. Similarly, the skip()
method only skips bytes within the current entry. closeEntry() can be called to skip
the remaining data in the current entry, but it is usually easier simply to call
getNextEntry() to begin the next entry.

Figure 16-146. java.util.zip.ZipInputStream

public class ZipInputStream extends InflaterInputStream implements ZipConstants {
// Public Constructors
 public ZipInputStream(java.io.InputStream in);

Chapter 16. java.util and Subpackages Page 212 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Instance Methods
 public void closeEntry() throws java.io.IOException;
 public ZipEntry getNextEntry() throws java.io.IOException;
// Public Methods Overriding InflaterInputStream
1.2 public int available() throws java.io.IOException;
 public void close() throws java.io.IOException;
 public int read(byte[] b, int off, int len) throws java.io.IOException;
 public long skip(long n) throws java.io.IOException;
// Protected Instance Methods
1.2 protected ZipEntry createZipEntry(String name);
}

Subclasses

java.util.jar.JarInputStream

ZipOutputStream java.util.zip

Java 1.1 closeable flushable

This class is a subclass of DeflaterOutputStream that writes data in ZIP file format to
an output stream. Before writing any data to the ZipOutputStream, you must begin an
entry within the ZIP file with putNextEntry(). The ZipEntry object passed to this
method should specify at least a name for the entry. Once you have begun an entry with
putNextEntry(), you can write the contents of that entry with the write() methods.
When you reach the end of an entry, you can begin a new one by calling
putNextEntry() again, you can close the current entry with closeEntry(), or you
can close the stream itself with close().

Before beginning an entry with putNextEntry(), you can set the compression method
and level with setMethod() and setLevel(). The constants DEFLATED and
STORED are the two legal values for setMethod(). If you use STORED, the entry is stored
in the ZIP file without any compression. If you use DEFLATED, you can also specify the
compression speed/strength tradeoff by passing a number from 1 to 9 to setLevel(),
where 9 gives the strongest and slowest level of compression. You can also use the constants
Deflater.BEST_SPEED, Deflater.BEST_COMPRESSION, and
Deflater.DEFAULT_COMPRESSION with the setLevel() method.

If you are storing an entry without compression, the ZIP file format requires that you
specify, in advance, the entry size and CRC-32 checksum in the ZipEntry object for the
entry. An exception is thrown if these values are not specified or specified incorrectly.

Chapter 16. java.util and Subpackages Page 213 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 16-147. java.util.zip.ZipOutputStream

public class ZipOutputStream extends DeflaterOutputStream implements ZipConstants {
// Public Constructors
 public ZipOutputStream(java.io.OutputStream out);
// Public Constants
 public static final int DEFLATED; =8
 public static final int STORED; =0
// Public Instance Methods
 public void closeEntry() throws java.io.IOException;
 public void putNextEntry(ZipEntry e) throws java.io.IOException;
 public void setComment(String comment);
 public void setLevel(int level);
 public void setMethod(int method);
// Public Methods Overriding DeflaterOutputStream
 public void close() throws java.io.IOException;
 public void finish() throws java.io.IOException;
 public void write(byte[] b, int off, int len) throws java.io.IOException; synchronized
}

Subclasses

java.util.jar.JarOutput Stream

Chapter 16. java.util and Subpackages Page 214 Return to Table of Contents

Chapter 16. java.util and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	java.util and Subpackages
	Package java.util
	AbstractCollection<E>
	AbstractList<E>
	AbstractMap<K,V>
	AbstractQueue<E>
	AbstractSequentialList<E>
	AbstractSet<E>
	ArrayList<E>
	Arrays
	BitSet
	Calendar
	Collection<E>
	Collections
	Comparator<T>
	ConcurrentModificationException
	Currency
	Date
	Dictionary<K,V>
	DuplicateFormatFlagsException
	EmptyStackException
	Enumeration<E>
	EnumMap<K extends Enum<K>,V>
	EnumSet<E extends Enum<E>>
	EventListener
	EventListenerProxy
	EventObject
	FormatFlagsConversionMismatchException
	Formattable
	FormattableFlags
	Formatter
	Formatter.BigDecimalLayoutForm
	FormatterClosedException
	GregorianCalendar
	HashMap<K,V>
	HashSet<E>
	Hashtable<K,V>
	IdentityHashMap<K,V>
	IllegalFormatCodePointException
	IllegalFormatConversionException
	IllegalFormatException
	IllegalFormatFlagsException
	IllegalFormatPrecisionException
	IllegalFormatWidthException
	InputMismatchException
	InvalidPropertiesFormatException
	Iterator<E>
	LinkedHashMap<K,V>
	LinkedHashSet<E>
	LinkedList<E>
	List<E>
	ListIterator<E>
	ListResourceBundle
	Locale
	Map<K,V>
	Map.Entry<K,V>
	MissingFormatArgumentException
	MissingFormatWidthException
	MissingResourceException
	NoSuchElementException
	Observable
	Observer
	PriorityQueue<E>
	Properties
	PropertyPermission
	PropertyResourceBundle
	Queue<E>
	Random
	RandomAccess
	ResourceBundle
	Scanner
	Set<E>
	SimpleTimeZone
	SortedMap<K,V>
	SortedSet<E>
	Stack<E>
	StringTokenizer
	Timer
	TimerTask
	TimeZone
	TooManyListenersException
	TreeMap<K,V>
	TreeSet<E>
	UnknownFormatConversionException
	UnknownFormatFlagsException
	UUID
	Vector<E>
	WeakHashMap<K,V>
	Package java.util.concurrent
	AbstractExecutorService
	ArrayBlockingQueue<E>
	BlockingQueue<E>
	BrokenBarrierException
	Callable<V>
	CancellationException
	CompletionService<V>
	ConcurrentHashMap<K,V>
	ConcurrentLinkedQueue<E>
	ConcurrentMap<K,V>
	CopyOnWriteArrayList<E>
	CopyOnWriteArraySet<E>
	CountDownLatch
	CyclicBarrier
	Delayed
	DelayQueue<E extends Delayed>
	Exchanger<V>
	ExecutionException
	Executor
	ExecutorCompletionService<V>
	Executors
	ExecutorService
	Future<V>
	FutureTask<V>
	LinkedBlockingQueue<E>
	PriorityBlockingQueue<E>
	RejectedExecutionException
	RejectedExecutionHandler
	ScheduledExecutorService
	ScheduledFuture<V>
	ScheduledThreadPoolExecutor
	Semaphore
	SynchronousQueue<E>
	ThreadFactory
	ThreadPoolExecutor
	ThreadPoolExecutor.AbortPolicy
	ThreadPoolExecutor.CallerRunsPolicy
	ThreadPoolExecutor.DiscardOldestPolicy
	ThreadPoolExecutor.DiscardPolicy
	TimeoutException
	TimeUnit
	Package java.util.concurrent.atomic
	AtomicBoolean
	AtomicInteger
	AtomicIntegerArray
	AtomicIntegerFieldUpdater<T>
	AtomicLong
	AtomicLongArray
	AtomicLongFieldUpdater<T>
	AtomicMarkableReference<V>
	AtomicReference<V>
	AtomicReferenceArray<E>
	AtomicReferenceFieldUpdater<T,V>
	AtomicStampedReference<V>
	Package java.util.concurrent.locks
	AbstractQueuedSynchronizer
	AbstractQueuedSynchronizer.ConditionObject
	Condition
	Lock
	LockSupport
	ReadWriteLock
	ReentrantLock
	ReentrantReadWriteLock
	ReentrantReadWriteLock.ReadLock
	ReentrantReadWriteLock.WriteLock
	Package java.util.jar
	Attributes
	Attributes.Name
	JarEntry
	JarException
	JarFile
	JarInputStream
	JarOutputStream
	Manifest
	Pack200
	Pack200.Packer
	Pack200.Unpacker
	Package java.util.logging
	ConsoleHandler
	ErrorManager
	FileHandler
	Filter
	Formatter
	Handler
	Level
	Logger
	LoggingMXBean
	LoggingPermission
	LogManager
	LogRecord
	MemoryHandler
	SimpleFormatter
	SocketHandler
	StreamHandler
	XMLFormatter
	Package java.util.prefs
	AbstractPreferences
	BackingStoreException
	InvalidPreferencesFormatException
	NodeChangeEvent
	NodeChangeListener
	PreferenceChangeEvent
	PreferenceChangeListener
	Preferences
	PreferencesFactory
	Package java.util.regex
	Matcher
	MatchResult
	Pattern
	PatternSyntaxException
	Package java.util.zip
	Adler32
	CheckedInputStream
	CheckedOutputStream
	Checksum
	CRC32
	DataFormatException
	Deflater
	DeflaterOutputStream
	GZIPInputStream
	GZIPOutputStream
	Inflater
	InflaterInputStream
	ZipEntry
	ZipException
	ZipFile
	ZipInputStream
	ZipOutputStream

