
Table of Contents

Object-Oriented Programming in Java.. 1
Class Definition Syntax... 2
Fields and Methods... 3
Creating and Initializing Objects... 11
Destroying and Finalizing Objects.. 15
Subclasses and Inheritance... 19
Data Hiding and Encapsulation... 29
Abstract Classes and Methods.. 35
Important Methods of java.lang.Object.. 37
Interfaces... 41
Nested Types... 47
Modifier Summary.. 64
C++ Features Not Found in Java.. 65

Chapter 3. Object-Oriented Programming in Java

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 3. Object-Oriented Programming in
Java

Now that we've covered fundamental Java syntax, we are ready to begin object-oriented
programming in Java. All Java programs use objects, and the type of an object is defined
by its class or interface. Every Java program is defined as a class, and nontrivial programs
usually include a number of classes and interface definitions. This chapter explains how
to define new classes and interfaces and how to do object-oriented programming with
them.[1]

[1] If you do not have object-oriented (OO) programming background, don't worry; this chapter does not assume any prior experience. If you do have experience with
OO programming, however, be careful. The term "object-oriented" has different meanings in different languages. Don't assume that Java works the same way as your
favorite OO language. This is particularly true for C++ programmers. Although Java and C++ borrow much syntax from C, the similarities between the two languages
do not go far beyond the level of syntax. Don't let your experience with C++ lull you into a false familiarity with Java.

This is a relatively long and detailed chapter, so we begin with an overview and some
definitions. A class is a collection of fields that hold values and methods that operate on
those values. Classes are the most fundamental structural element of all Java programs.
You cannot write Java code without defining a class. All Java statements appear within
methods, and all methods are implemented within classes.

A class defines a new reference type, such as the Point type defined in Chapter 2. An
object is an instance of a class. The Point class defines a type that is the set of all possible
two-dimensional points. A Point object is a value of that type: it represents a single two-
dimensional point.

Objects are usually created by instantiating a class with the new keyword and a constructor
invocation, as shown here:

Point p = new Point(1.0, 2.0);

Constructors are covered in Section 3.3 later in this chapter.

A class definition consists of a signature and a body. The class signature defines the name
of the class and may also specify other important information. The body of a class is a set
of members enclosed in curly braces. The members of a class may include fields and
methods, constructors and initializers, and nested types.

Members can be static or nonstatic. A static member belongs to the class itself while a
nonstatic member is associated with the instances of a class (see Section 3.2 later in this
chapter).

Chapter 3. Object-Oriented Programming in Java Page 1 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

The signature of a class may declare that the class extends another class. The extended
class is known as the superclass and the extension is known as the subclass. A subclass
inherits the members of its superclass and may declare new members or override inherited
methods with new implementations.

The signature of a class may also declare that the class implements one or more interfaces.
An interface is a reference type that defines method signatures but does not include
method bodies to implement the methods. A class that implements an interface is required
to provide bodies for the interface's methods. Instances of such a class are also instances
of the interface type that it implements.

The members of a class may have access modifiers public , protected, or private,
which specify their visibility and accessibility to clients and to subclasses. This allows
classes to hide members that are not part of their public API. When applied to fields, this
ability to hide members enables an object-oriented design technique known as data
encapsulation .

Classes and interfaces are the most important of the five fundamental reference types
defined by Java. Arrays, enumerated types (or "enums") and annotation types are the other
three. Arrays are covered in Chapter 2. Enumerated types and annotation types were
introduced in Java 5.0 (see Chapter 4). Enums are a specialized kind of class and
annotation types are a specialized kind of interface.

3.1. Class Definition Syntax
At its simplest level, a class definition consists of the keyword class followed by the name
of the class and a set of class members within curly braces. The class keyword may be
preceded by modifier keywords and annotations (see Chapter 4). If the class extends
another class, the class name is followed by the extends keyword and the name of the
class being extended. If the class implements one or more interfaces then the class name
or the extends clause is followed by the implements keyword and a comma-separated
list of interface names. For example:

public class Integer extends Number implements Serializable, Comparable {
 // class members go here
}

Generic class declarations include additional syntax that is covered in Chapter 4.

Class declarations may include zero or more of the following modifiers:

Chapter 3. Object-Oriented Programming in Java Page 2 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

public

A public class is visible to classes defined outside of its package. See Section 3.6 later
in this chapter.

abstract

An abstract class is one whose implementation is incomplete and cannot be
instantiated. Any class with one or more abstract methods must be declared
abstract.

final

The final modifier specifies that the class may not be extended. Declaring a class
final may enable the Java VM to optimize its methods.

strictfp

If a class is declared strictfp, all its methods behave as if they were declared
strictfp. This rarely used modifier is discussed in Section 2.6 in Chapter 2.

A class cannot be both abstract and final. By convention, if a class has more than one
modifier, they appear in the order shown.

3.2. Fields and Methods
A class can be viewed as a collection of data and code to operate on that data. The data is
stored in fields, and the code is organized into methods. This section covers fields and
methods, the two most important kinds of class members. Fields and methods come in
two distinct types: class members (also known as static members) are associated with the
class itself, while instance members are associated with individual instances of the class
(i.e., with objects). This gives us four kinds of members:

• Class fields
• Class methods
• Instance fields
• Instance methods

The simple class definition for the class Circle, shown in Example 3-1, contains all four
types of members.

Chapter 3. Object-Oriented Programming in Java Page 3 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-6#javanut5-CHP-2-SECT-6

Example 3-1. A simple class and its members

public class Circle {
 // A class field
 public static final double PI= 3.14159; // A useful constant

 // A class method: just compute a value based on the arguments
 public static double radiansToDegrees(double rads) {
 return rads * 180 / PI;
 }

 // An instance field
 public double r; // The radius of the circle

 // Two instance methods: they operate on the instance fields of an object
 public double area() { // Compute the area of the circle
 return PI * r * r;
 }
 public double circumference() { // Compute the circumference of the circle
 return 2 * PI * r;
 }
}

The following sections explain all four kinds of members. First, however, we cover field
declaration syntax. (Method declaration syntax is covered in Section 2.6 later in this
chapter.)

3.2.1. Field Declaration Syntax
Field declaration syntax is much like the syntax for declaring local variables (see Chapter
2) except that field definitions may also include modifiers. The simplest field declaration
consists of the field type followed by the field name. The type may be preceded by zero or
more modifier keywords or annotations (see Chapter 4), and the name may be followed
by an equals sign and initializer expression that provides the initial value of the field. If
two or more fields share the same type and modifiers, the type may be followed by a
comma-separated list of field names and initializers. Here are some valid field
declarations:

int x = 1;
private String name;
public static final DAYS_PER_WEEK = 7;
String[] daynames = new String[DAYS_PER_WEEK];
private int a = 17, b = 37, c = 53;

Field modifiers are comprised of zero or more of the following keywords:

public , protected, private

These access modifiers specify whether and where a field can be used outside of the
class that defines it. These important modifiers are covered in Section 3.6 later in this
chapter. No more than one of these access modifiers may appear in any field
declaration.

Chapter 3. Object-Oriented Programming in Java Page 4 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-6#javanut5-CHP-2-SECT-6
http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2
http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

static

If present, this modifier specifies that the field is associated with the defining class
itself rather than with each instance of the class.

final

This modifier specifies that once the field has been initialized, its value may never be
changed. Fields that are both static and final are compile-time constants that the
compiler can inline. final fields can also be used to create classes whose instances
are immutable.

transient

This modifier specifies that a field is not part of the persistent state of an object and
that it need not be serialized along with the rest of the object. Serialization is covered
in Chapter 5.

volatile

Roughly speaking, a volatile field is like a synchronized method: safe for
concurrent use by two or more threads. More accurately, volatile says that the
value of a field must always be read from and flushed to main memory, and that it
may not be cached by a thread (in a register or CPU cache).

3.2.2. Class Fields
A class field is associated with the class in which it is defined rather than with an instance
of the class. The following line declares a class field:

public static final double PI = 3.14159;

This line declares a field of type double named PI and assigns it a value of 3.14159. As
you can see, a field declaration looks quite a bit like a local variable declaration. The
difference, of course, is that variables are defined within methods while fields are members
of classes.

The static modifier says that the field is a class field. Class fields are sometimes called
static fields because of this static modifier. The final modifier says that the value of
the field does not change. Since the field PI represents a constant, we declare it final so
that it cannot be changed. It is a convention in Java (and many other languages) that
constants are named with capital letters, which is why our field is named PI, not pi.

Chapter 3. Object-Oriented Programming in Java Page 5 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-5#javanut5-CHP-5

Defining constants like this is a common use for class fields, meaning that the static and
final modifiers are often used together. Not all class fields are constants, however. In
other words, a field can be declared static without being declared final. Finally, the
public modifier says that anyone can use the field. This is a visibility modifier, and we'll
discuss it and related modifiers in more detail later in this chapter.

The key point to understand about a static field is that there is only a single copy of it. This
field is associated with the class itself, not with instances of the class. If you look at the
various methods of the Circle class, you'll see that they use this field. From inside the
Circle class, the field can be referred to simply as PI. Outside the class, however, both
class and field names are required to uniquely specify the field. Methods that are not part
of Circle access this field as Circle.PI.

A public class field is essentially a global variable. The names of class fields are qualified
by the unique names of the classes that contain them, however. Thus, Java does not suffer
from the name collisions that can affect other languages when different modules of code
define global variables with the same name.

3.2.3. Class Methods
As with class fields, class methods are declared with the static modifier:

public static double radiansToDegrees(double rads) { return rads * 180 / PI; }

This line declares a class method named radiansToDegrees(). It has a single parameter
of type double and returns a double value. The body of the method is quite short; it
performs a simple computation and returns the result.

Like class fields, class methods are associated with a class, rather than with an object.
When invoking a class method from code that exists outside the class, you must specify
both the name of the class and the method. For example:

// How many degrees is 2.0 radians?
double d = Circle.radiansToDegrees(2.0);

If you want to invoke a class method from inside the class in which it is defined, you don't
have to specify the class name. However, it is often good style to specify the class name
anyway, to make it clear that a class method is being invoked.

Note that the body of our Circle.radiansToDegrees() method uses the class field
PI. A class method can use any class fields and class methods of its own class (or of any
other class). But it cannot use any instance fields or instance methods because class
methods are not associated with an instance of the class. In other words, although the
radiansToDegrees() method is defined in the Circle class, it does not use any

Chapter 3. Object-Oriented Programming in Java Page 6 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Circle objects. The instance fields and instance methods of the class are associated with
Circle objects, not with the class itself. Since a class method is not associated with an
instance of its class, it cannot use any instance methods or fields.

As we discussed earlier, a class field is essentially a global variable. In a similar way, a class
method is a global method, or global function. Although radiansToDegrees() does not
operate on Circle objects, it is defined within the Circle class because it is a utility
method that is sometimes useful when working with circles. In many nonobject-oriented
programming languages, all methods, or functions, are global. You can write complex Java
programs using only class methods. This is not object-oriented programming, however,
and does not take advantage of the power of the Java language. To do true object-oriented
programming, we need to add instance fields and instance methods to our repertoire.

3.2.4. Instance Fields
Any field declared without the static modifier is an instance field:

public double r; // The radius of the circle

Instance fields are associated with instances of the class, rather than with the class itself.
Thus, every Circle object we create has its own copy of the double field r. In our
example, r represents the radius of a circle. Thus, each Circle object can have a radius
independent of all other Circle objects.

Inside a class definition, instance fields are referred to by name alone. You can see an
example of this if you look at the method body of the circumference() instance method.
In code outside the class, the name of an instance method must be prefixed with a reference
to the object that contains it. For example, if the variable c holds a reference to a
Circle object, we use the expression c.r to refer to the radius of that circle:

Circle c = new Circle(); // Create a Circle object; store a reference in c
c.r = 2.0; // Assign a value to its instance field r
Circle d = new Circle(); // Create a different Circle object
d.r = c.r * 2; // Make this one twice as big

Instance fields are key to object-oriented programming. Instance fields hold the state of
an object; the values of those fields make one object distinct from another.

3.2.5. Instance Methods
Any method not declared with the static keyword is an instance method. An instance
method operates on an instance of a class (an object) instead of operating on the class itself.
It is with instance methods that object-oriented programming starts to get interesting. The
Circle class defined in Example 3-1 contains two instance methods, area() and

Chapter 3. Object-Oriented Programming in Java Page 7 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

circumference(), that compute and return the area and circumference of the circle
represented by a given Circle object.

To use an instance method from outside the class in which it is defined, we must prefix it
with a reference to the instance that is to be operated on. For example:

Circle c = new Circle(); // Create a Circle object; store in variable c
c.r = 2.0; // Set an instance field of the object
double a = c.area(); // Invoke an instance method of the object

If you're new to object-oriented programming, that last line of code may look a little
strange. We do not write:

a = area(c);

Instead, we write:
a = c.area();

This is why it is called object-oriented programming; the object is the focus here, not the
function call. This small syntactic difference is perhaps the single most important feature
of the object-oriented paradigm.

The point here is that we don't have to pass an argument to c.area(). The object we are
operating on, c, is implicit in the syntax. Take a look at Example 3-1 again. You'll notice
the same thing in the signature of the area() method: it doesn't have a parameter. Now
look at the body of the area() method: it uses the instance field r. Because the area
() method is part of the same class that defines this instance field, the method can use the
unqualified name r. It is understood that this refers to the radius of whatever Circle
instance invokes the method.

Another important thing to notice about the bodies of the area() and circumference
() methods is that they both use the class field PI. We saw earlier that class methods can
use only class fields and class methods, not instance fields or methods. Instance methods
are not restricted in this way: they can use any member of a class, whether it is declared
static or not.

3.2.5.1. How instance methods work
Consider this line of code again:

a = c.area();

What's going on here? How can a method that has no parameters know what data to
operate on? In fact, the area() method does have a parameter. All instance methods
are implemented with an implicit parameter not shown in the method signature. The

Chapter 3. Object-Oriented Programming in Java Page 8 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

implicit argument is named this; it holds a reference to the object through which the
method is invoked. In our example, that object is a Circle.

The implicit this parameter is not shown in method signatures because it is usually not
needed; whenever a Java method accesses the instance fields in its class, it is implicit that
it is accessing fields in the object referred to by the this parameter. The same is true when
an instance method invokes another instance method in the same class. I said earlier that
to invoke an instance method you must prepend a reference to the object to be operated
on. When an instance method is invoked within another instance method in the same class,
however, you don't need to specify an object. In this case, it is implicit that the method is
being invoked on the this object.

You can use the this keyword explicitly when you want to make it clear that a method is
accessing its own fields and/or methods. For example, we can rewrite the area() method
to use this explicitly to refer to instance fields:

public double area() { return Circle.PI * this.r * this.r; }

This code also uses the class name explicitly to refer to class field PI. In a method this
simple, it is not necessary to be explicit. In more complicated cases, however, you may find
that it increases the clarity of your code to use an explicit this where it is not strictly
required.

In some cases, the this keyword is required, however. For example, when a method
parameter or local variable in a method has the same name as one of the fields of the class,
you must use this to refer to the field since the field name used alone refers to the method
parameter or local variable. For example, we can add the following method to the
Circle class:

public void setRadius(double r) {
 this.r = r; // Assign the argument (r) to the field (this.r)
 // Note that we cannot just say r = r
}

Finally, note that while instance methods can use the this keyword, class methods cannot.
This is because class methods are not associated with objects.

3.2.5.2. Instance methods or class methods?
Instance methods are one of the key features of object-oriented programming. That doesn't
mean, however, that you should shun class methods. In many cases, it is perfectly
reasonable to define class methods. When working with the Circle class, for example,
you might find that you often want to compute the area of a circle with a given radius but
don't want to bother creating a Circle object to represent that circle. In this case, a class
method is more convenient:

Chapter 3. Object-Oriented Programming in Java Page 9 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public static double area(double r) { return PI * r * r; }

It is perfectly legal for a class to define more than one method with the same name, as long
as the methods have different parameters. Since this version of the area() method is a
class method, it does not have an implicit this parameter and must have a parameter that
specifies the radius of the circle. This parameter keeps it distinct from the instance method
of the same name.

As another example of the choice between instance methods and class methods, consider
defining a method named bigger() that examines two Circle objects and returns
whichever has the larger radius. We can write bigger() as an instance method as
follows:

// Compare the implicit "this" circle to the "that" circle passed
// explicitly as an argument and return the bigger one.
public Circle bigger(Circle that) {
 if (this.r > that.r) return this;
 else return that;
}

We can also implement bigger() as a class method as follows:

// Compare circle a to circle b and return the one with the larger radius
public static Circle bigger(Circle a, Circle b) {
 if (a.r > b.r) return a;
 else return b;
}

Given two Circle objects, x and y, we can use either the instance method or the class
method to determine which is bigger. The invocation syntax differs significantly for the
two methods, however:

Circle biggest = x.bigger(y); // Instance method: also y.bigger(x)
Circle biggest = Circle.bigger(x, y); // Static method

Both methods work well, and, from an object-oriented design standpoint, neither of these
methods is "more correct" than the other. The instance method is more formally object-
oriented, but its invocation syntax suffers from a kind of asymmetry. In a case like this,
the choice between an instance method and a class method is simply a design decision.
Depending on the circumstances, one or the other will likely be the more natural choice.

3.2.6. Case Study: System.out.println()
Throughout this book, we've seen a method named System.out.println() used to
display output to the terminal window or console. We've never explained why this method
has such an long, awkward name or what those two periods are doing in it. Now that you
understand class and instance fields and class and instance methods, it is easier to
understand what is going on: System is a class. It has a class field named out. The field

Chapter 3. Object-Oriented Programming in Java Page 10 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

System.out refers to an object. The object System.out has an instance method named
println(). If you want to explore this in more detail, you can look up the
java.lang.System class in the reference section. The class synopsis there tells you that
the field out is of type java.io.PrintStream, and you can look up that class to find
out about the println() method.

3.3. Creating and Initializing Objects
Now that we've covered fields and methods, we move on to other important members of
a class. Constructors and initializers are class members whose job is to initialize the fields
of a class.

Take another look at how we've been creating Circle objects:

Circle c = new Circle();

What are those parentheses doing there? They make it look like we're calling a method. In
fact, that is exactly what we're doing. Every class in Java has at least one constructor, which
is a method that has the same name as the class and whose purpose is to perform any
necessary initialization for a new object. Since we didn't explicitly define a constructor for
our Circle class in Example 3-1, Java gave us a default constructor that takes no
arguments and performs no special initialization.

Here's how a constructor works. The new operator creates a new, but uninitialized,
instance of the class. The constructor method is then called, with the new object passed
implicitly (a this reference, as we saw earlier) as well as whatever arguments that are
specified between parentheses passed explicitly. The constructor can use these arguments
to do whatever initialization is necessary.

3.3.1. Defining a Constructor
There is some obvious initialization we could do for our circle objects, so let's define a
constructor. Example 3-2 shows a new definition for Circle that contains a constructor
that lets us specify the radius of a new Circle object. The constructor also uses the
this reference to distinguish between a method parameter and an instance field of the
same name.

Chapter 3. Object-Oriented Programming in Java Page 11 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 3-2. A constructor for the Circle class

public class Circle {
 public static final double PI = 3.14159; // A constant
 public double r; // An instance field that holds the radius of the circle

 // The constructor method: initialize the radius field
 public Circle(double r) { this.r = r; }

 // The instance methods: compute values based on the radius
 public double circumference() { return 2 * PI * r; }
 public double area() { return PI * r*r; }
}

When we relied on the default constructor supplied by the compiler, we had to write code
like this to initialize the radius explicitly:

Circle c = new Circle();
c.r = 0.25;

With this new constructor, the initialization becomes part of the object creation step:
Circle c = new Circle(0.25);

Here are some important notes about naming, declaring, and writing constructors:

• The constructor name is always the same as the class name.
• Unlike all other methods, a constructor is declared without a return type, not even
void.

• The body of a constructor should initialize the this object.
• A constructor may not return this or any other value. A constructor may include a
return statement, but only one that does not include a return value.

3.3.2. Defining Multiple Constructors
Sometimes you want to initialize an object in a number of different ways, depending on
what is most convenient in a particular circumstance. For example, we might want to
initialize the radius of a circle to a specified value or a reasonable default value. Since our
Circle class has only a single instance field, we can't initialize it too many ways, of course.
But in more complex classes, it is often convenient to define a variety of constructors.
Here's how we can define two constructors for Circle:

public Circle() { r = 1.0; }
public Circle(double r) { this.r = r; }

It is perfectly legal to define multiple constructors for a class, as long as each constructor
has a different parameter list. The compiler determines which constructor you wish to use
based on the number and type of arguments you supply. This is simply an example of
method overloading, as we discussed in Chapter 2.

Chapter 3. Object-Oriented Programming in Java Page 12 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

3.3.3. Invoking One Constructor from Another
A specialized use of the this keyword arises when a class has multiple constructors; it
can be used from a constructor to invoke one of the other constructors of the same class.
In other words, we can rewrite the two previous Circle constructors as follows:

// This is the basic constructor: initialize the radius
public Circle(double r) { this.r = r; }
// This constructor uses this() to invoke the constructor above
public Circle() { this(1.0); }

The this() syntax is a method invocation that calls one of the other constructors of the
class. The particular constructor that is invoked is determined by the number and type of
arguments, of course. This is a useful technique when a number of constructors share a
significant amount of initialization code, as it avoids repetition of that code. This would
be a more impressive example, of course, if the one-parameter version of the Circle
() constructor did more initialization than it does.

There is an important restriction on using this(): it can appear only as the first statement
in a constructor. It may, of course, be followed by any additional initialization a particular
version of the constructor needs to do. The reason for this restriction involves the
automatic invocation of superclass constructor methods, which we'll explore later in this
chapter.

3.3.4. Field Defaults and Initializers
Not every field of a class requires initialization. Unlike local variables, which have no
default value and cannot be used until explicitly initialized, the fields of a class are
automatically initialized to the default value false, '\u0000', 0, 0.0, or null, depending
on their type. These default values are guaranteed by Java and apply to both instance fields
and class fields.

If the default field value is not appropriate for your field, you can explicitly provide a
different initial value. For example:

public static final double PI = 3.14159;
public double r = 1.0;

Field declarations and local variable declarations have similar syntax, but there is an
important difference in how their initializer expressions are handled. As described in
Chapter 2, a local variable declaration is a statement that appears within a Java method;
the variable initialization is performed when the statement is executed. Field declarations,
however, are not part of any method, so they cannot be executed as statements are. Instead,
the Java compiler generates instance-field initialization code automatically and puts it in
the constructor or constructors for the class. The initialization code is inserted into a

Chapter 3. Object-Oriented Programming in Java Page 13 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

constructor in the order in which it appears in the source code, which means that a field
initializer can use the initial values of any fields declared before it. Consider the following
code excerpt, which shows a constructor and two instance fields of a hypothetical class:

public class TestClass {
 public int len = 10;
 public int[] table = new int[len];

 public TestClass() {
 for(int i = 0; i < len; i++) table[i] = i;
 }

 // The rest of the class is omitted...
}

In this case, the code generated for the constructor is actually equivalent to the following:
public TestClass() {
 len = 10;
 table = new int[len];
 for(int i = 0; i < len; i++) table[i] = i;
}

If a constructor begins with a this() call to another constructor, the field initialization
code does not appear in the first constructor. Instead, the initialization is handled in the
constructor invoked by the this() call.

So, if instance fields are initialized in constructor methods, where are class fields
initialized? These fields are associated with the class, even if no instances of the class are
ever created, so they need to be initialized even before a constructor is called. To support
this, the Java compiler generates a class initialization method automatically for every class.
Class fields are initialized in the body of this method, which is invoked exactly once before
the class is first used (often when the class is first loaded by the Java VM.)[2] As with instance
field initialization, class field initialization expressions are inserted into the class
initialization method in the order in which they appear in the source code. This means that
the initialization expression for a class field can use the class fields declared before it. The
class initialization method is an internal method that is hidden from Java programmers.
In the class file, it bears the name <clinit>.

[2] It is actually possible to write a class initializer for a class C that calls a method of another class that creates an instance of C. In this contrived recursive case, an
instance of C is created before the class C is fully initialized. This situation is not common in everyday practice, however.

3.3.4.1. Initializer blocks
So far, we've seen that objects can be initialized through the initialization expressions for
their fields and by arbitrary code in their constructor methods. A class has a class
initialization method, which is like a constructor, but we cannot explicitly define the body
of this method as we can for a constructor. Java does allow us to write arbitrary code for
the initialization of class fields, however, with a construct known as a static initializer. A
static initializer is simply the keyword static followed by a block of code in curly braces.

Chapter 3. Object-Oriented Programming in Java Page 14 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A static initializer can appear in a class definition anywhere a field or method definition
can appear. For example, consider the following code that performs some nontrivial
initialization for two class fields:

// We can draw the outline of a circle using trigonometric functions
// Trigonometry is slow, though, so we precompute a bunch of values
public class TrigCircle {
 // Here are our static lookup tables and their own simple initializers
 private static final int NUMPTS = 500;
 private static double sines[] = new double[NUMPTS];
 private static double cosines[] = new double[NUMPTS];

 // Here's a static initializer that fills in the arrays
 static {
 double x = 0.0;
 double delta_x = (Circle.PI/2)/(NUMPTS-1);
 for(int i = 0, x = 0.0; i < NUMPTS; i++, x += delta_x) {
 sines[i] = Math.sin(x);
 cosines[i] = Math.cos(x);
 }
 }
 // The rest of the class is omitted...
}

A class can have any number of static initializers. The body of each initializer block is
incorporated into the class initialization method, along with any static field initialization
expressions. A static initializer is like a class method in that it cannot use the this keyword
or any instance fields or instance methods of the class.

In Java 1.1 and later, classes are also allowed to have instance initializers. An instance
initializer is like a static initializer, except that it initializes an object, not a class. A class
can have any number of instance initializers, and they can appear anywhere a field or
method definition can appear. The body of each instance initializer is inserted at the
beginning of every constructor for the class, along with any field initialization expressions.
An instance initializer looks just like a static initializer, except that it doesn't use the
static keyword. In other words, an instance initializer is just a block of arbitrary Java
code that appears within curly braces.

Instance initializers can initialize arrays or other fields that require complex initialization.
They are sometimes useful because they locate the initialization code right next to the field,
instead of separating into a constructor method. For example:

private static final int NUMPTS = 100;
private int[] data = new int[NUMPTS];
{ for(int i = 0; i < NUMPTS; i++) data[i] = i; }

In practice, however, this use of instance initializers is fairly rare. Instance initializers were
introduced in Java 1.1 to support anonymous inner classes, which are not allowed to define
constructors. (Anonymous inner classes are covered in Section 3.10 later in this chapter.)

Chapter 3. Object-Oriented Programming in Java Page 15 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.4. Destroying and Finalizing Objects
Now that we've seen how new objects are created and initialized in Java, we need to study
the other end of the object life cycle and examine how objects are finalized and destroyed.
Finalization is the opposite of initialization.

In Java, the memory occupied by an object is automatically reclaimed when the object is
no longer needed. This is done through a process known as garbage collection. Garbage
collection is a technique that has been around for years in languages such as Lisp. It takes
some getting used to for programmers accustomed to such languages as C and C++, in
which you must call the free() function or the delete operator to reclaim memory. The
fact that you don't need to remember to destroy every object you create is one of the features
that makes Java a pleasant language to work with. It is also one of the features that makes
programs written in Java less prone to bugs than those written in languages that don't
support automatic garbage collection.

3.4.1. Garbage Collection
The Java interpreter knows exactly what objects and arrays it has allocated. It can also
figure out which local variables refer to which objects and arrays and which objects and
arrays refer to which other objects and arrays. Thus, the interpreter is able to determine
when an allocated object is no longer referred to by any other active object or variable.
When the interpreter finds such an object, it knows it can safely reclaim the object's
memory and does so. The garbage collector can also detect and destroy cycles of objects
that refer to each other, but are not referenced by any other active objects. Any such cycles
are also reclaimed.

Different VM implementations handle garbage collection in different ways. It is
reasonable, however, to imagine the garbage collector running as a low-priority
background thread, so it does most of its work when nothing else is going on, such as during
idle time while waiting for user input. The only time the garbage collector must run while
something high-priority is going on (i.e., the only time it actually slows down the system)
is when available memory has become dangerously low. This doesn't happen very often
because the low-priority thread cleans things up in the background.

3.4.2. Memory Leaks in Java
The fact that Java supports garbage collection dramatically reduces the incidence of a class
of bugs known as memory leaks. A memory leak occurs when memory is allocated and
never reclaimed. At first glance, it might seem that garbage collection prevents all memory
leaks because it reclaims all unused objects. A memory leak can still occur in Java, however,
if a valid (but unused) reference to an unused object is left hanging around. For example,
when a method runs for a long time (or forever), the local variables in that method can

Chapter 3. Object-Oriented Programming in Java Page 16 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

retain object references much longer than they are actually required. The following code
illustrates:

public static void main(String args[]) {
 int big_array[] = new int[100000];

 // Do some computations with big_array and get a result.
 int result = compute(big_array);

 // We no longer need big_array. It will get garbage collected when there
 // are no more references to it. Since big_array is a local variable,
 // it refers to the array until this method returns. But this method
 // doesn't return. So we've got to explicitly get rid of the reference
 // ourselves, so the garbage collector knows it can reclaim the array.
 big_array = null;

 // Loop forever, handling the user's input
 for(;;) handle_input(result);
}

Memory leaks can also occur when you use a hash table or similar data structure to
associate one object with another. Even when neither object is required anymore, the
association remains in the hash table, preventing the objects from being reclaimed until
the hash table itself is reclaimed. If the hash table has a substantially longer lifetime than
the objects it holds, this can cause memory leaks.

The key to avoiding memory leaks is to set object references to null when they are no
longer needed if the object that contains those references is going to continue to exist. One
common source of leaks is in data structures in which an Object array is used to represent
a collection of objects. It is common to use a separate size field to keep track of which
elements of the array are currently valid. When removing an object from the collection, it
is not sufficient to simply decrement this size field: you must also set the appropriate
array element to null so that the obsolete object reference does not live on.

3.4.3. Object Finalization
A finalizer in Java is the opposite of a constructor. While a constructor method performs
initialization for an object, a finalizer method can be used to perform cleanup or
"finalization" for the object. Garbage collection automatically frees up the memory
resources used by objects, but objects can hold other kinds of resources, such as open files
and network connections. The garbage collector cannot free these resources for you, so
you may occasionally want to write a finalizer method for any object that needs to perform
such tasks as closing files, terminating network connections, deleting temporary files, and
so on. This is particularly true for classes that use native methods: these classes may need
a native finalizer to release native resources (including memory) that are not under the
control of the Java garbage collector.

A finalizer is an instance method that takes no arguments and returns no value. There can
be only one finalizer per class, and it must be named finalize().[3] A finalizer can throw

Chapter 3. Object-Oriented Programming in Java Page 17 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

any kind of exception or error, but when a finalizer is automatically invoked by the garbage
collector, any exception or error it throws is ignored and serves only to cause the finalizer
method to return. Finalizer methods are typically declared protected (which we have
not discussed yet) but can also be declared public. An example finalizer looks like this:

[3] C++ programmers should note that although Java constructor methods are named like C++ constructors, Java finalization methods are not named like C++ destructor
methods. As we will see, they do not behave quite like C++ destructor methods either.

protected void finalize() throws Throwable {
 // Invoke the finalizer of our superclass
 // We haven't discussed superclasses or this syntax yet
 super.finalize();

 // Delete a temporary file we were using
 // If the file doesn't exist or tempfile is null, this can throw
 // an exception, but that exception is ignored.
 tempfile.delete();
}

Here are some important points about finalizers:

• If an object has a finalizer, the finalizer method is invoked sometime after the object
becomes unused (or unreachable), but before the garbage collector reclaims the
object.

• Java makes no guarantees about when garbage collection will occur or in what order
objects will be collected. Therefore, Java can make no guarantees about when (or even
whether) a finalizer will be invoked, in what order finalizers will be invoked, or what
thread will execute finalizers.

• The Java interpreter can exit without garbage collecting all outstanding objects, so
some finalizers may never be invoked. In this case, resources such as network
connections are closed and reclaimed by the operating system. Note, however, that if
a finalizer that deletes a file does not run, that file will not be deleted by the operating
system.

• To ensure that certain actions are taken before the VM exits, Java 1.1 provided the
Runtime method runFinalizersOnExit(). Unfortunately, however, this method
can cause deadlock and is inherently unsafe; it was deprecated in 1.2. In Java 1.3 and
later, the Runtime method addShutdownHook() can safely execute arbitrary code
before the Java interpreter exits.

• After a finalizer is invoked, objects are not freed right away. This is because a finalizer
method can resurrect an object by storing the this pointer somewhere so that the
object once again has references. Thus, after finalize() is called, the garbage
collector must once again determine that the object is unreferenced before it can
garbage-collect it. However, even if an object is resurrected, the finalizer method is
never invoked more than once. Resurrecting an object is never a useful thing to do—
just a strange quirk of object finalization.

• The finalize() method is an instance method, and finalizers act on instances.
There is no equivalent mechanism for finalizing a class.

Chapter 3. Object-Oriented Programming in Java Page 18 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In practice, it is quite rare for an application-level class to require a finalize() method.
Finalizer methods are more useful, however, when writing Java classes that interface to
native platform code with native methods. In this case, the native implementation can
allocate memory or other resources that are not under the control of the Java garbage
collector and need to be reclaimed explicitly by a native finalize() method.

Furthermore, because of the uncertainty about when and whether a finalizer runs, it is best
to avoid dependence on finalizers. For example, a class that includes a reference to a
network socket should define a public close() method, which calls the close()
method of the socket. This way, when the user of your class is done with it, she can call
close() and be sure that the network connection is closed. You might, however, define
a finalize() method as backup in case the user of your class forgets to call close
() and allows an unclosed instance to be garbage-collected.

3.5. Subclasses and Inheritance
The Circle defined earlier is a simple class that distinguishes circle objects only by their
radii. Suppose, instead, that we want to represent circles that have both a size and a
position. For example, a circle of radius 1.0 centered at point 0,0 in the Cartesian plane is
different from the circle of radius 1.0 centered at point 1,2. To do this, we need a new class,
which we'll call PlaneCircle. We'd like to add the ability to represent the position of a
circle without losing any of the existing functionality of the Circle class. This is done by
defining PlaneCircle as a subclass of Circle so that PlaneCircle inherits the fields
and methods of its superclass, Circle. The ability to add functionality to a class by
subclassing, or extending, is central to the object-oriented programming paradigm.

3.5.1. Extending a Class
Example 3-3 shows how we can implement PlaneCircle as a subclass of the Circle
class.

Chapter 3. Object-Oriented Programming in Java Page 19 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 3-3. Extending the Circle class

public class PlaneCircle extends Circle {
 // We automatically inherit the fields and methods of Circle,
 // so we only have to put the new stuff here.
 // New instance fields that store the center point of the circle
 public double cx, cy;

 // A new constructor method to initialize the new fields
 // It uses a special syntax to invoke the Circle() constructor
 public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
 }

 // The area() and circumference() methods are inherited from Circle
 // A new instance method that checks whether a point is inside the circle
 // Note that it uses the inherited instance field r
 public boolean isInside(double x, double y) {
 double dx = x - cx, dy = y - cy; // Distance from center
 double distance = Math.sqrt(dx*dx + dy*dy); // Pythagorean theorem
 return (distance < r); // Returns true or false
 }
}

Note the use of the keyword extends in the first line of Example 3-3. This keyword tells
Java that PlaneCircle extends, or subclasses, Circle, meaning that it inherits the fields
and methods of that class.[4] The definition of the isInside() method shows field
inheritance; this method uses the field r (defined by the Circle class) as if it were defined
right in PlaneCircle itself. PlaneCircle also inherits the methods of Circle. Thus,
if we have a PlaneCircle object referenced by variable pc, we can say:

[4] C++ programmers should note that extends is the Java equivalent of : in C++; both are used to indicate the superclass of a class.

double ratio = pc.circumference() / pc.area();

This works just as if the area() and circumference() methods were defined in
PlaneCircle itself.

Another feature of subclassing is that every PlaneCircle object is also a perfectly legal
Circle object. If pc refers to a PlaneCircle object, we can assign it to a Circle variable
and forget all about its extra positioning capabilities:

PlaneCircle pc = new PlaneCircle(1.0, 0.0, 0.0); // Unit circle at the origin
Circle c = pc; // Assigned to a Circle variable without casting

This assignment of a PlaneCircle object to a Circle variable can be done without a
cast. As we discussed in Section 2.9.6 in Chapter 2 a widening conversion like this is always
legal. The value held in the Circle variable c is still a valid PlaneCircle object, but the
compiler cannot know this for sure, so it doesn't allow us to do the opposite (narrowing)
conversion without a cast:

Chapter 3. Object-Oriented Programming in Java Page 20 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-9#javanut5-CHP-2-SECT-9.6

// Narrowing conversions require a cast (and a runtime check by the VM)
PlaneCircle pc2 = (PlaneCircle) c;
boolean origininside = ((PlaneCircle) c).isInside(0.0, 0.0);

3.5.1.1. Final classes
When a class is declared with the final modifier, it means that it cannot be extended or
subclassed. java.lang.String is an example of a final class. Declaring a class
final prevents unwanted extensions to the class: if you invoke a method on a String
object, you know that the method is the one defined by the String class itself, even if the
String is passed to you from some unknown outside source. Because String is final, no
one can create a subclass of it and change the meaning or behavior of its methods.

Declaring a class final also allows the compiler to make certain optimizations when
invoking the methods of a class. We'll explore this when we talk about method overriding
later in this chapter.

3.5.2. Superclasses, Object, and the Class Hierarchy
In our example, PlaneCircle is a subclass from Circle. We can also say that Circle
is the superclass of PlaneCircle. The superclass of a class is specified in its extends
clause:

public class PlaneCircle extends Circle { ... }

Every class you define has a superclass. If you do not specify the superclass with an
extends clause, the superclass is the class java.lang.Object. Object is a special class
for a couple of reasons:

• It is the only class in Java that does not have a superclass.
• All Java classes inherit the methods of Object.

Because every class has a superclass, classes in Java form a class hierarchy, which can be
represented as a tree with Object at its root. Figure 3-1 shows a partial class hierarchy
diagram that includes our Circle and PlaneCircle classes, as well as some of the
standard classes from the Java API.

Chapter 3. Object-Oriented Programming in Java Page 21 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 3-1. A class hierarchy diagram

3.5.3. Subclass Constructors
Look again at the PlaneCircle() constructor method of Example 3-3:

public PlaneCircle(double r, double x, double y) {
 super(r); // Invoke the constructor of the superclass, Circle()
 this.cx = x; // Initialize the instance field cx
 this.cy = y; // Initialize the instance field cy
}

This constructor explicitly initializes the cx and cy fields newly defined by
PlaneCircle, but it relies on the superclass Circle() constructor to initialize the
inherited fields of the class. To invoke the superclass constructor, our constructor calls
super(). super is a reserved word in Java. One of its uses is to invoke the constructor
method of a superclass from within the constructor method of a subclass. This use is
analogous to the use of this() to invoke one constructor method of a class from within
another constructor method of the same class. Invoking a constructor using super() is
subject to the same restrictions as is using this() :

• super() can be used in this way only within a constructor method.
• The call to the superclass constructor must appear as the first statement within the

constructor method, even before local variable declarations.

The arguments passed to super() must match the parameters of the superclass
constructor. If the superclass defines more than one constructor, super() can be used
to invoke any one of them, depending on the arguments passed.

3.5.4. Constructor Chaining and the Default Constructor
Java guarantees that the constructor method of a class is called whenever an instance of
that class is created. It also guarantees that the constructor is called whenever an instance
of any subclass is created. In order to guarantee this second point, Java must ensure that

Chapter 3. Object-Oriented Programming in Java Page 22 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

every constructor method calls its superclass constructor method. Thus, if the first
statement in a constructor does not explicitly invoke another constructor with this() or
super(), Java implicitly inserts the call super(), that is, it calls the superclass
constructor with no arguments. If the superclass does not have a constructor that takes no
arguments, this implicit invocation causes a compilation error.

Consider what happens when we create a new instance of the PlaneCircle class. First,
the PlaneCircle constructor is invoked. This constructor explicitly calls super(r) to
invoke a Circle constructor, and that Circle() constructor implicitly calls super()
to invoke the constructor of its superclass, Object. The body of the Object constructor
runs first. When it returns, the body of the Circle() constructor runs. Finally, when
the call to super(r) returns, the remaining statements of the PlaneCircle()
constructor are executed.

What all this means is that constructor calls are chained; any time an object is created, a
sequence of constructor methods is invoked, from subclass to superclass on up to
Object at the root of the class hierarchy. Because a superclass constructor is always
invoked as the first statement of its subclass constructor, the body of the Object
constructor always runs first, followed by the constructor of its subclass and on down the
class hierarchy to the class that is being instantiated. There is an important implication
here; when a constructor is invoked, it can count on the fields of its superclass to be
initialized.

3.5.4.1. The default constructor
There is one missing piece in the previous description of constructor chaining. If a
constructor does not invoke a superclass constructor, Java does so implicitly. But what if
a class is declared without a constructor? In this case, Java implicitly adds a constructor
to the class. This default constructor does nothing but invoke the superclass constructor.
For example, if we don't declare a constructor for the PlaneCircle class, Java implicitly
inserts this constructor:

public PlaneCircle() { super(); }

If the superclass, Circle, doesn't declare a no-argument constructor, the super() call
in this automatically inserted default constructor for PlaneCircle() causes a
compilation error. In general, if a class does not define a no-argument constructor, all its
subclasses must define constructors that explicitly invoke the superclass constructor with
the necessary arguments.

If a class does not declare any constructors, it is given a no-argument constructor by
default. Classes declared public are given public constructors. All other classes are
given a default constructor that is declared without any visibility modifier: such a

Chapter 3. Object-Oriented Programming in Java Page 23 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

constructor has default visibility. (The notion of visibility is explained later in this chapter.)
If you are creating a public class that should not be publicly instantiated, you should
declare at least one non-public constructor to prevent the insertion of a default
public constructor. Classes that should never be instantiated (such as
java.lang.Math or java.lang.System) should define a private constructor. Such
a constructor can never be invoked from outside of the class, but it prevents the automatic
insertion of the default constructor.

3.5.4.2. Finalizer chaining?
You might assume that since Java chains constructor methods, it also automatically chains
the finalizer methods for an object. In other words, you might assume that the finalizer
method of a class automatically invokes the finalizer of its superclass, and so on. In fact,
Java does not do this. When you write a finalize() method, you must explicitly invoke
the superclass finalizer. (You should do this even if you know that the superclass does not
have a finalizer because a future implementation of the superclass might add a finalizer.)

As we saw in our example finalizer earlier in the chapter, you can invoke a superclass
method with a special syntax that uses the super keyword:

// Invoke the finalizer of our superclass
super.finalize();

We'll discuss this syntax in more detail when we consider method overriding. In practice,
the need for finalizer methods, and thus finalizer chaining, rarely arises.

3.5.5. Hiding Superclass Fields
For the sake of example, imagine that our PlaneCircle class needs to know the distance
between the center of the circle and the origin (0,0). We can add another instance field to
hold this value:

public double r;

Adding the following line to the constructor computes the value of the field:
this.r = Math.sqrt(cx*cx + cy*cy); // Pythagorean theorem

But wait; this new field r has the same name as the radius field r in the Circle superclass.
When this happens, we say that the field r of PlaneCircle hides the field r of Circle.
(This is a contrived example, of course: the new field should really be called
distanceFromOrigin. Although you should attempt to avoid it, subclass fields do
sometimes hide fields of their superclass.)

Chapter 3. Object-Oriented Programming in Java Page 24 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

With this new definition of PlaneCircle, the expressions r and this.r both refer to
the field of PlaneCircle. How, then, can we refer to the field r of Circle that holds the
radius of the circle? A special syntax for this uses the super keyword:

r // Refers to the PlaneCircle field
this.r // Refers to the PlaneCircle field
super.r // Refers to the Circle field

Another way to refer to a hidden field is to cast this (or any instance of the class) to the
appropriate superclass and then access the field:

((Circle) this).r // Refers to field r of the Circle class

This casting technique is particularly useful when you need to refer to a hidden field defined
in a class that is not the immediate superclass. Suppose, for example, that classes A, B, and
C all define a field named x and that C is a subclass of B, which is a subclass of A. Then, in
the methods of class C, you can refer to these different fields as follows:

x // Field x in class C
this.x // Field x in class C
super.x // Field x in class B
((B)this).x // Field x in class B
((A)this).x // Field x in class A
super.super.x // Illegal; does not refer to x in class A

You cannot refer to a hidden field x in the superclass of a superclass with
super.super.x. This is not legal syntax.

Similarly, if you have an instance c of class C, you can refer to the three fields named x like
this:

c.x // Field x of class C
((B)c).x // Field x of class B
((A)c).x // Field x of class A

So far, we've been discussing instance fields. Class fields can also be hidden. You can use
the same super syntax to refer to the hidden value of the field, but this is never necessary
since you can always refer to a class field by prepending the name of the desired class.
Suppose that the implementer of PlaneCircle decides that the Circle.PI field does
not express to enough decimal places. She can define her own class field PI:

public static final double PI = 3.14159265358979323846;

Now, code in PlaneCircle can use this more accurate value with the expressions PI or
PlaneCircle.PI. It can also refer to the old, less accurate value with the expressions
super.PI and Circle.PI. Note, however, that the area() and circumference()
methods inherited by PlaneCircle are defined in the Circle class, so they use the value
Circle.PI, even though that value is hidden now by PlaneCircle.PI.

Chapter 3. Object-Oriented Programming in Java Page 25 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.5.6. Overriding Superclass Methods
When a class defines an instance method using the same name, return type, and
parameters as a method in its superclass, that method overrides the method of the
superclass. When the method is invoked for an object of the class, it is the new definition
of the method that is called, not the superclass's old definition. In Java 5.0 and later, the
return type of the overriding method may be a subclass of return type of the overridden
method instead of being exactly the same type. This is known as a covariant return and
is described in Section 2.6.5 in Chapter 2.

Method overriding is an important and useful technique in object-oriented programming.
PlaneCircle does not override either of the methods defined by Circle, but suppose
we define another subclass of Circle, named Ellipse.[5] In this case, it is important for
Ellipse to override the area() and circumference() methods of Circle since the
formulas used to compute the area and circumference of a circle do not work for ellipses.

[5] Mathematical purists may argue that since all circles are ellipses, Ellipse should be the superclass and Circle the subclass. A pragmatic engineer might counter
that circles can be represented with fewer instance fields, so Circle objects should not be burdened by inheriting unnecessary fields from Ellipse. In any case, this
is a useful example here.

The upcoming discussion of method overriding considers only instance methods. Class
methods behave quite differently, and there isn't much to say. Like fields, class methods
can be hidden by a subclass but not overridden. As noted earlier in this chapter, it is good
programming style to always prefix a class method invocation with the name of the class
in which it is defined. If you consider the class name part of the class method name, the
two methods have different names, so nothing is actually hidden at all. It is, however, illegal
for a class method to hide an instance method.

Before we go any further with the discussion of method overriding, you should understand
the difference between method overriding and method overloading. As we discussed in
Chapter 2, method overloading refers to the practice of defining multiple methods (in the
same class) that have the same name but different parameter lists. This is very different
from method overriding, so don't get them confused.

3.5.6.1. Overriding is not hiding
Although Java treats the fields and methods of a class analogously in many ways, method
overriding is not like field hiding at all. You can refer to hidden fields simply by casting an
object to an instance of the appropriate superclass, but you cannot invoke overridden
instance methods with this technique. The following code illustrates this crucial difference:

class A { // Define a class named A
 int i = 1; // An instance field
 int f() { return i; } // An instance method
 static char g() { return 'A'; } // A class method
}

class B extends A { // Define a subclass of A

Chapter 3. Object-Oriented Programming in Java Page 26 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-6#javanut5-CHP-2-SECT-6.5
http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

 int i = 2; // Hides field i in class A
 int f() { return -i; } // Overrides instance method f in class A
 static char g() { return 'B'; } // Hides class method g() in class A
}

public class OverrideTest {
 public static void main(String args[]) {
 B b = new B(); // Creates a new object of type B
 System.out.println(b.i); // Refers to B.i; prints 2
 System.out.println(b.f()); // Refers to B.f(); prints -2
 System.out.println(b.g()); // Refers to B.g(); prints B
 System.out.println(B.g()); // This is a better way to invoke B.g()

 A a = (A) b; // Casts b to an instance of class A
 System.out.println(a.i); // Now refers to A.i; prints 1
 System.out.println(a.f()); // Still refers to B.f(); prints -2
 System.out.println(a.g()); // Refers to A.g(); prints A
 System.out.println(A.g()); // This is a better way to invoke A.g()
 }
}

While this difference between method overriding and field hiding may seem surprising at
first, a little thought makes the purpose clear. Suppose we are manipulating a bunch of
Circle and Ellipse objects. To keep track of the circles and ellipses, we store them in
an array of type Circle[]. (We can do this because Ellipse is a subclass of Circle, so
all Ellipse objects are legal Circle objects.) When we loop through the elements of this
array, we don't have to know or care whether the element is actually a Circle or an
Ellipse. What we do care about very much, however, is that the correct value is computed
when we invoke the area() method of any element of the array. In other words, we don't
want to use the formula for the area of a circle when the object is actually an ellipse! Seen
in this context, it is not surprising at all that method overriding is handled differently by
Java than is field hiding.

3.5.6.2. Dynamic method lookup
If we have a Circle[] array that holds Circle and Ellipse objects, how does the
compiler know whether to call the area() method of the Circle class or the
Ellipse class for any given item in the array? In fact, the compiler does not know this
because it cannot know it. The compiler knows that it does not know, however, and
produces code that uses dynamic method lookup at runtime. When the interpreter runs
the code, it looks up the appropriate area() method to call for each of the objects in the
array. That is, when the interpreter interprets the expression o.area(), it checks the
actual type of the object referred to by the variable o and then finds the area() method
that is appropriate for that type. It does not simply use the area() method that is
statically associated with the type of the variable o. This process of dynamic method lookup
is sometimes also called virtual method invocation.[6]

[6] C++ programmers should note that dynamic method lookup is what C++ does for virtual functions. An important difference between Java and C++ is that Java
does not have a virtual keyword. In Java, methods are virtual by default.

Chapter 3. Object-Oriented Programming in Java Page 27 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.5.6.3. Final methods and static method lookup
Virtual method invocation is fast, but method invocation is faster when no dynamic lookup
is necessary at runtime. Fortunately, Java does not always need to use dynamic method
lookup. In particular, if a method is declared with the final modifier, it means that the
method definition is the final one; it cannot be overridden by any subclasses. If a method
cannot be overridden, the compiler knows that there is only one version of the method,
and dynamic method lookup is not necessary.[7] In addition, all methods of a final class
are themselves implicitly final and cannot be overridden. As we'll discuss later in this
chapter, private methods are not inherited by subclasses and, therefore, cannot be
overridden (i.e., all private methods are implicitly final). Finally, class methods
behave like fields (i.e., they can be hidden by subclasses but not overridden). Taken
together, this means that all methods of a class that is declared final, as well as all
methods that are final, private, or static, are invoked without dynamic method
lookup. These methods are also candidates for inlining at runtime by a just-in-time
compiler (JIT) or similar optimization tool.

[7] In this sense, the final modifier is the opposite of the virtual modifier in C++. All non-final methods in Java are virtual.

3.5.6.4. Invoking an overridden method
We've seen the important differences between method overriding and field hiding.
Nevertheless, the Java syntax for invoking an overridden method is quite similar to the
syntax for accessing a hidden field: both use the super keyword. The following code
illustrates:

class A {
 int i = 1; // An instance field hidden by subclass B
 int f() { return i; } // An instance method overridden by subclass B
}

class B extends A {
 int i; // This field hides i in A
 int f() { // This method overrides f() in A
 i = super.i + 1; // It can retrieve A.i like this
 return super.f() + i; // It can invoke A.f() like this
 }
}

Recall that when you use super to refer to a hidden field, it is the same as casting this
to the superclass type and accessing the field through that. Using super to invoke an
overridden method, however, is not the same as casting this. In other words, in the
previous code, the expression super.f() is not the same as ((A)this).f().

When the interpreter invokes an instance method with this super syntax, a modified form
of dynamic method lookup is performed. The first step, as in regular dynamic method
lookup, is to determine the actual class of the object through which the method is invoked.
Normally, the dynamic search for an appropriate method definition would begin with this

Chapter 3. Object-Oriented Programming in Java Page 28 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class. When a method is invoked with the super syntax, however, the search begins at the
superclass of the class. If the superclass implements the method directly, that version of
the method is invoked. If the superclass inherits the method, the inherited version of the
method is invoked.

Note that the super keyword invokes the most immediately overridden version of a
method. Suppose class A has a subclass B that has a subclass C and that all three classes
define the same method f(). The method C.f() can invoke the method B.f(), which
it overrides directly, with super.f(). But there is no way for C.f() to invoke A.f
() directly: super.super.f() is not legal Java syntax. Of course, if C.f() invokes
B.f(), it is reasonable to suppose that B.f() might also invoke A.f(). This kind of
chaining is relatively common when working with overridden methods: it is a way of
augmenting the behavior of a method without replacing the method entirely. We saw this
technique in the the example finalize() method shown earlier in the chapter: that
method invoked super.finalize() to run its superclass finalization method.

Don't confuse the use of super to invoke an overridden method with the super() method
call used in constructor methods to invoke a superclass constructor. Although they both
use the same keyword, these are two entirely different syntaxes. In particular, you can use
super to invoke an overridden method anywhere in the overriding class while you can use
super() only to invoke a superclass constructor as the very first statement of a
constructor.

It is also important to remember that super can be used only to invoke an overridden
method from within the class that overrides it. Given an Ellipse object e, there is no way
for a program that uses an object (with or without the super syntax) to invoke the area
() method defined by the Circle class on this object.

3.6. Data Hiding and Encapsulation
We started this chapter by describing a class as a collection of data and methods. One of
the important object-oriented techniques we haven't discussed so far is hiding the data
within the class and making it available only through the methods. This technique is known
as encapsulation because it seals the data (and internal methods) safely inside the
"capsule" of the class, where it can be accessed only by trusted users (i.e., the methods of
the class).

Why would you want to do this? The most important reason is to hide the internal
implementation details of your class. If you prevent programmers from relying on those
details, you can safely modify the implementation without worrying that you will break
existing code that uses the class.

Chapter 3. Object-Oriented Programming in Java Page 29 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Another reason for encapsulation is to protect your class against accidental or willful
stupidity. A class often contains a number of interdependent fields that must be in a
consistent state. If you allow a programmer (including yourself) to manipulate those fields
directly, he may change one field without changing important related fields, leaving the
class in an inconsistent state. If instead he has to call a method to change the field, that
method can be sure to do everything necessary to keep the state consistent. Similarly, if a
class defines certain methods for internal use only, hiding these methods prevents users
of the class from calling them.

Here's another way to think about encapsulation: when all the data for a class is hidden,
the methods define the only possible operations that can be performed on objects of that
class. Once you have carefully tested and debugged your methods, you can be confident
that the class will work as expected. On the other hand, if all the fields of the class can be
directly manipulated, the number of possibilities you have to test becomes unmanageable.

Other reasons to hide fields and methods of a class include:

• Internal fields and methods that are visible outside the class just clutter up the API.
Keeping visible fields to a minimum keeps your class tidy and therefore easier to use
and understand.

• If a field or method is visible to the users of your class, you have to document it. Save
yourself time and effort by hiding it instead.

3.6.1. Access Control
All the fields and methods of a class can always be used within the body of the class itself.
Java defines access control rules that restrict members of a class from being used outside
the class. In a number of examples in this chapter, you've seen the public modifier used
in field and method declarations. This public keyword, along with protected and
private, are access control modifiers ; they specify the access rules for the field or
method.

3.6.1.1. Access to packages
A package is always accessible to code defined within the package. Whether it is accessible
to code from other packages depends on the way the package is deployed on the host
system. When the class files that comprise a package are stored in a directory, for example,
a user must have read access to the directory and the files within it in order to have access
to the package. Package access is not part of the Java language itself. Access control is
usually done at the level of classes and members of classes instead.

Chapter 3. Object-Oriented Programming in Java Page 30 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.6.1.2. Access to classes
By default, top-level classes are accessible within the package in which they are defined.
However, if a top-level class is declared public, it is accessible everywhere (or everywhere
that the package itself is accessible). The reason that we've restricted these statements to
top-level classes is that, as we'll see later in this chapter, classes can also be defined as
members of other classes. Because these inner classes are members of a class, they obey
the member access-control rules.

3.6.1.3. Access to members
The members of a class are always accessible within the body of the class. By default,
members are also accessible throughout the package in which the class is defined. This
implies that classes placed in the same package should trust each other with their internal
implementation details. This default level of access is often called package access. It is
only one of four possible levels of access. The other three levels of access are defined by
the public, protected, and private modifiers. Here is some example code that uses
these modifiers:

public class Laundromat { // People can use this class.
 private Laundry[] dirty; // They cannot use this internal field,
 public void wash() { ... } // but they can use these public methods
 public void dry() { ... } // to manipulate the internal field.
 protected int temperature; // A subclass might want to tweak this field
}

These access rules apply to members of a class:

• If a member of a class is declared with the public modifier, it means that the member
is accessible anywhere the containing class is accessible. This is the least restrictive
type of access control.

• If a member of a class is declared private, the member is never accessible, except
within the class itself. This is the most restrictive type of access control.

• If a member of a class is declared protected, it is accessible to all classes within the
package (the same as the default package accessibility) and also accessible within the
body of any subclass of the class, regardless of the package in which that subclass is
defined. This is more restrictive than public access, but less restrictive than package
access.

• If a member of a class is not declared with any of these modifiers, it has the default
package access: it is accessible to code within all classes that are defined in the same
package but inaccessible outside of the package.

protected access requires a little more elaboration. Suppose class A declares a
protected field x and is extended by a class B, which is defined in a different package
(this last point is important). Class B inherits the protected field x, and its code can
access that field in the current instance of B or in any other instances of B that the code

Chapter 3. Object-Oriented Programming in Java Page 31 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

can refer to. This does not mean, however, that the code of class B can start reading the
protected fields of arbitrary instances of A! If an object is an instance of A but is not an
instance of B, its fields are obviously not inherited by B, and the code of class B cannot read
them.

3.6.1.4. Access control and inheritance
The Java specification states that a subclass inherits all the instance fields and instance
methods of its superclass accessible to it. If the subclass is defined in the same package as
the superclass, it inherits all non-private instance fields and methods. If the subclass
is defined in a different package, however, it inherits all protected and public instance
fields and methods. private fields and methods are never inherited; neither are class
fields or class methods. Finally, constructors are not inherited; they are chained, as
described earlier in this chapter.

The statement that a subclass does not inherit the inaccessible fields and methods of its
superclass can be a confusing one. It would seem to imply that when you create an instance
of a subclass, no memory is allocated for any private fields defined by the superclass.
This is not the intent of the statement, however. Every instance of a subclass does, in fact,
include a complete instance of the superclass within it, including all inaccessible fields and
methods. It is simply a matter of terminology. Because the inaccessible fields cannot be
used in the subclass, we say they are not inherited. Earlier in this section we said that the
members of a class are always accessible within the body of the class. If this statement is
to apply to all members of the class, including inherited members, we must define
"inherited members" to include only those members that are accessible. If you don't care
for this definition, you can think of it this way instead:

• A class inherits all instance fields and instance methods (but not constructors) of its
superclass.

• The body of a class can always access all the fields and methods it declares itself. It
can also access the accessible fields and members it inherits from its superclass.

3.6.1.5. Member access summary
Table 3-1 summarizes the member access rules.

Table 3-1. Class member accessibility

 Member visibility

Accessible to Public Protected Package Private

Defining class Yes Yes Yes Yes

Class in same package Yes Yes Yes No

Subclass in different package Yes Yes No No

Non-subclass different package Yes No No No

Chapter 3. Object-Oriented Programming in Java Page 32 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here are some simple rules of thumb for using visibility modifiers:

• Use public only for methods and constants that form part of the public API of the
class. Certain important or frequently used fields can also be public, but it is
common practice to make fields non-public and encapsulate them with public
accessor methods.

• Use protected for fields and methods that aren't required by most programmers
using the class but that may be of interest to anyone creating a subclass as part of a
different package. Note that protected members are technically part of the exported
API of a class. They should be documented and cannot be changed without potentially
breaking code that relies on them.

• Use the default package visibility for fields and methods that are internal
implementation details but are used by cooperating classes in the same package. You
cannot take real advantage of package visibility unless you use the package directive
to group your cooperating classes into a package.

• Use private for fields and methods that are used only inside the class and should
be hidden everywhere else.

If you are not sure whether to use protected, package, or private accessibility, it is
better to start with overly restrictive member access. You can always relax the access
restrictions in future versions of your class, if necessary. Doing the reverse is not a good
idea because increasing access restrictions is not a backward-compatible change and can
break code that relies on access to those members.

3.6.2. Data Accessor Methods
In the Circle example, we declared the circle radius to be a public field. The
Circle class is one in which it may well be reasonable to keep that field publicly accessible;
it is a simple enough class, with no dependencies between its fields. On the other hand,
our current implementation of the class allows a Circle object to have a negative radius,
and circles with negative radii should simply not exist. As long as the radius is stored in a
public field, however, any programmer can set the field to any value she wants, no matter
how unreasonable. The only solution is to restrict the programmer's direct access to the
field and define public methods that provide indirect access to the field. Providing
public methods to read and write a field is not the same as making the field itself
public. The crucial difference is that methods can perform error checking.

Example 3-4 shows how we might reimplement Circle to prevent circles with negative
radii. This version of Circle declares the r field to be protected and defines accessor
methods named getRadius() and setRadius() to read and write the field value while
enforcing the restriction on negative radius values. Because the r field is protected, it
is directly (and more efficiently) accessible to subclasses.

Chapter 3. Object-Oriented Programming in Java Page 33 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 3-4. The Circle class using data hiding and encapsulation

package shapes; // Specify a package for the class

public class Circle { // The class is still public
 // This is a generally useful constant, so we keep it public
 public static final double PI = 3.14159;

 protected double r; // Radius is hidden but visible to subclasses

 // A method to enforce the restriction on the radius
 // This is an implementation detail that may be of interest to subclasses
 protected void checkRadius(double radius) {
 if (radius < 0.0)
 throw new IllegalArgumentException("radius may not be negative.");
 }

 // The constructor method
 public Circle(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Public data accessor methods
 public double getRadius() { return r; }
 public void setRadius(double r) {
 checkRadius(r);
 this.r = r;
 }

 // Methods to operate on the instance field
 public double area() { return PI * r * r; }
 public double circumference() { return 2 * PI * r; }
}

We have defined the Circle class within a package named shapes. Since r is
protected, any other classes in the shapes package have direct access to that field and
can set it however they like. The assumption here is that all classes within the shapes
package were written by the same author or a closely cooperating group of authors and
that the classes all trust each other not to abuse their privileged level of access to each
other's implementation details.

Finally, the code that enforces the restriction against negative radius values is itself placed
within a protected method, checkRadius(). Although users of the Circle class
cannot call this method, subclasses of the class can call it and even override it if they want
to change the restrictions on the radius.

Note particularly the getRadius() and setRadius() methods of Example 3-4. It is a
common convention in Java that data accessor methods begin with the prefixes " get" and
"set." If the field being accessed is of type boolean, however, the get() method may be
replaced with an equivalent method that begins with "is." For example, the accessor
method for a boolean field named readable is typically called isReadable() instead
of getReadable(). In the programming conventions of the JavaBeans component model
(covered in Chapter 7), a hidden field with one or more data accessor methods whose

Chapter 3. Object-Oriented Programming in Java Page 34 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-7#javanut5-CHP-7

names begin with "get," "is," or "set" is called a property. An interesting way to study a
complex class is to look at the set of properties it defines. Properties are particularly
common in the AWT and Swing APIs, which are covered in Java Foundation Classes
in a Nutshell (O'Reilly).

3.7. Abstract Classes and Methods
In Example 3-4, we declared our Circle class to be part of a package named shapes.
Suppose we plan to implement a number of shape classes: Rectangle, Square,
Ellipse, Triangle, and so on. We can give these shape classes our two basic area
() and circumference() methods. Now, to make it easy to work with an array of
shapes, it would be helpful if all our shape classes had a common superclass, Shape. If we
structure our class hierarchy this way, every shape object, regardless of the actual type of
shape it represents, can be assigned to variables, fields, or array elements of type Shape.
We want the Shape class to encapsulate whatever features all our shapes have in common
(e.g., the area() and circumference() methods). But our generic Shape class
doesn't represent any real kind of shape, so it cannot define useful implementations of the
methods. Java handles this situation with abstract methods.

Java lets us define a method without implementing it by declaring the method with the
abstract modifier. An abstract method has no body; it simply has a signature
definition followed by a semicolon.[8] Here are the rules about abstract methods and the
abstract classes that contain them:

[8] An abstract method in Java is something like a pure virtual function in C++ (i.e., a virtual function that is declared = 0). In C++, a class that contains a pure
virtual function is called an abstract class and cannot be instantiated. The same is true of Java classes that contain abstract methods.

• Any class with an abstract method is automatically abstract itself and must be
declared as such.

• An abstract class cannot be instantiated.
• A subclass of an abstract class can be instantiated only if it overrides each of the
abstract methods of its superclass and provides an implementation (i.e., a method
body) for all of them. Such a class is often called a concrete subclass, to emphasize the
fact that it is not abstract.

• If a subclass of an abstract class does not implement all the abstract methods it
inherits, that subclass is itself abstract and must be declared as such.

• static, private, and final methods cannot be abstract since these types of
methods cannot be overridden by a subclass. Similarly, a final class cannot contain
any abstract methods.

• A class can be declared abstract even if it does not actually have any abstract
methods. Declaring such a class abstract indicates that the implementation is

Chapter 3. Object-Oriented Programming in Java Page 35 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

somehow incomplete and is meant to serve as a superclass for one or more subclasses
that complete the implementation. Such a class cannot be instantiated.

There is an important feature of the rules of abstract methods. If we define the Shape
class to have abstract area() and circumference() methods, any subclass of
Shape is required to provide implementations of these methods so that it can be
instantiated. In other words, every Shape object is guaranteed to have implementations
of these methods defined. Example 3-5 shows how this might work. It defines an
abstract Shape class and two concrete subclasses of it.

Example 3-5. An abstract class and concrete subclasses

public abstract class Shape {
 public abstract double area(); // Abstract methods: note
 public abstract double circumference(); // semicolon instead of body.
}

class Circle extends Shape {
 public static final double PI = 3.14159265358979323846;
 protected double r; // Instance data
 public Circle(double r) { this.r = r; } // Constructor
 public double getRadius() { return r; } // Accessor
 public double area() { return PI*r*r; } // Implementations of
 public double circumference() { return 2*PI*r; } // abstract methods.
}

class Rectangle extends Shape {
 protected double w, h; // Instance data
 public Rectangle(double w, double h) { // Constructor
 this.w = w; this.h = h;
 }
 public double getWidth() { return w; } // Accessor method
 public double getHeight() { return h; } // Another accessor
 public double area() { return w*h; } // Implementations of
 public double circumference() { return 2*(w + h); } // abstract methods.
}

Each abstract method in Shape has a semicolon right after its parentheses. They have
no curly braces, and no method body is defined. Using the classes defined in Example
3-5, we can now write code such as:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes
shapes[0] = new Circle(2.0); // Fill in the array
shapes[1] = new Rectangle(1.0, 3.0);
shapes[2] = new Rectangle(4.0, 2.0);

double total_area = 0;
for(int i = 0; i < shapes.length; i++)
 total_area += shapes[i].area(); // Compute the area of the shapes

Notice two important points here:

• Subclasses of Shape can be assigned to elements of an array of Shape. No cast is
necessary. This is another example of a widening reference type conversion (discussed
in Chapter 2).

Chapter 3. Object-Oriented Programming in Java Page 36 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

• You can invoke the area() and circumference() methods for any Shape object,
even though the Shape class does not define a body for these methods. When you do
this, the method to be invoked is found using dynamic method lookup, so the area of
a circle is computed using the method defined by Circle, and the area of a rectangle
is computed using the method defined by Rectangle.

3.8. Important Methods of java.lang.Object
As we've noted, all classes extend, directly or indirectly, java.lang.Object. This class
defines several important methods that you should consider overriding in every class you
write. Example 3-6 shows a class that overrides these methods. The sections that follow
the example document the default implementation of each method and explain why you
might want to override it. You may also find it helpful to look up Object in the reference
section for an API listing.

Some of the syntax in Example 3-6 may be unfamiliar to you. The example uses two Java
5.0 features. First, it implements a parameterized, or generic, version of the
Comparable interface. Second, the example uses the @Override annotation to
emphasize (and have the compiler verify) that certain methods override Object.
Parameterized types and annotations are covered in Chapter 4.

Chapter 3. Object-Oriented Programming in Java Page 37 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

Example 3-6. A class that overrides important Object methods

// This class represents a circle with immutable position and radius.
public class Circle implements Comparable<Circle> {
 // These fields hold the coordinates of the center and the radius.
 // They are private for data encapsulation and final for immutability
 private final int x, y, r;

 // The basic constructor: initialize the fields to specified values
 public Circle(int x, int y, int r) {
 if (r < 0) throw new IllegalArgumentException("negative radius");
 this.x = x; this.y = y; this.r = r;
 }

 // This is a "copy constructor"--a useful alternative to clone()
 public Circle(Circle original) {
 x = original.x; // Just copy the fields from the original
 y = original.y;
 r = original.r;
 }

 // Public accessor methods for the private fields.
 // These are part of data encapsulation.
 public int getX() { return x; }
 public int getY() { return y; }
 public int getR() { return r; }

 // Return a string representation
 @Override public String toString() {
 return String.format("center=(%d,%d); radius=%d", x, y, r);
 }

 // Test for equality with another object
 @Override public boolean equals(Object o) {
 if (o == this) return true; // Identical references?
 if (!(o instanceof Circle)) return false; // Correct type and non-null?
 Circle that = (Circle) o; // Cast to our type
 if (this.x == that.x && this.y == that.y && this.r == that.r)
 return true; // If all fields match
 else
 return false; // If fields differ
 }

 // A hash code allows an object to be used in a hash table.
 // Equal objects must have equal hash codes. Unequal objects are allowed
 // to have equal hash codes as well, but we try to avoid that.
 // We must override this method since we also override equals().
 @Override public int hashCode() {
 int result = 17; // This hash code algorithm from the book
 result = 37*result + x; // _Effective Java_, by Joshua Bloch
 result = 37*result + y;
 result = 37*result + r;
 return result;
 }

 // This method is defined by the Comparable interface.
 // Compare this Circle to that Circle. Return a value < 0 if this < that.
 // Return 0 if this == that. Return a value > 0 if this > that.
 // Circles are ordered top to bottom, left to right, and then by radius
 public int compareTo(Circle that) {
 long result = that.y - this.y; // Smaller circles have bigger y values
 if (result == 0) result = this.x - that.x; // If same compare l-to-r
 if (result == 0) result = this.r - that.r; // If same compare radius

 // We have to use a long value for subtraction because the differences
 // between a large positive and large negative value could overflow
 // an int. But we can't return the long, so return its sign as an int.
 return Long.signum(result); // new in Java 5.0
 }
}

Chapter 3. Object-Oriented Programming in Java Page 38 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.8.1. toString()
The purpose of the toString() method is to return a textual representation of an object.
The method is invoked automatically on objects during string concatenation and by
methods such as System.out.println(). Giving objects a textual representation can
be quite helpful for debugging or logging output, and a well-crafted toString() method
can even help with tasks such as report generation.

The version of toString() inherited from Object returns a string that includes the
name of the class of the object as well as a hexadecimal representation of the hashCode
() value of the object (discussed later in this chapter). This default implementation
provides basic type and identity information for an object but is not usually very useful.
The toString() method in Example 3-6 instead returns a human-readable string that
includes the value of each of the fields of the Circle class.

3.8.2. equals()
The = = operator tests two references to see if they refer to the same object. If you want
to test whether two distinct objects are equal to one another, you must use the equals
() method instead. Any class can define its own notion of equality by overriding equals
(). The Object.equals() method simply uses the == operator: this default method
considers two objects equal only if they are actually the very same object.

The equals() method in Example 3-6 considers two distinct Circle objects to be equal
if their fields are all equal. Note that it first does a quick identity test with = = as an
optimization and then checks the type of the other object with instanceof: a Circle
can be equal only to another Circle, and it is not acceptable for an equals() method to
throw a ClassCastException. Note that the instanceof test also rules out null
arguments: instanceof always evaluates to false if its left-hand operand is null.

3.8.3. hashCode()
Whenever you override equals(), you must also override hashCode() . This method
returns an integer for use by hash table data structures. It is critical that two objects have
the same hash code if they are equal according to the equals() method. It is important
(for efficient operation of hash tables) but not required that unequal objects have unequal
hash codes, or at least that unequal objects are unlikely to share a hash code. This second
criterion can lead to hashCode() methods that involve mildly tricky arithmetic or bit-
manipulation.

The Object.hashCode() method works with the Object.equals() method and
returns a hash code based on object identity rather than object equality. (If you ever need

Chapter 3. Object-Oriented Programming in Java Page 39 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

an identity-based hash code, you can access the functionality of Object.hashCode()
through the static method System.identityHashCode().) When you override
equals(), you must always override hashCode() to guarantee that equal objects have
equal hash codes. Since the equals() method in Example 3-6 bases object equality on
the values of the three fields, the hashCode() method computes its hash code based on
these three fields as well. It is clear from the code that if two Circle objects have the same
field values, they will have the same hash code.

Note that the hashCode() method in Example 3-6 does not simply add the three fields
and return their sum. Such an implementation would be legal but not efficient because
two circles with the same radius but whose X and Y coordinates were reversed would then
have the same hash code. The repeated multiplication and addition steps "spread out" the
range of hash codes and dramatically reduce the likelihood that two unequal Circle
objects have the same code. Effective Java Programming Guide by Joshua Bloch (Addison
Wesley) includes a helpful recipe for constructing efficient hashCode() methods like this
one.

3.8.4. Comparable.compareTo()
Example 3-6 includes a compareTo() method. This method is defined by the
java.lang.Comparable interface rather than by Object. (It actually uses the generics
features of Java 5.0 and implements a parameterized version of the interface:
Comparable<Circle>, but we can ignore that fact until Chapter 4.) The purpose of
Comparable and its compareTo() method is to allow instances of a class to be
compared to each other in the way that the <, <=, > and >= operators compare numbers.
If a class implements Comparable, we can say that one instance is less than, greater than,
or equal to another instance. Instances of a Comparable class can be sorted.

Since compareTo() is defined by an interface, the Object class does not provide any
default implementation. It is up to each individual class to determine whether and how its
instances should be ordered and to include a compareTo() method that implements that
ordering. The ordering defined by Example 3-6 compares Circle objects as if they were
words on a page. Circles are first ordered from top to bottom: circles with larger Y
coordinates are less than circles with smaller Y coordinates. If two circles have the same
Y coordinate, they are ordered from left to right. A circle with a smaller X coordinate is
less than a circle with a larger X coordinate. Finally, if two circles have the same X and Y
coordinates, they are compared by radius. The circle with the smaller radius is smaller.
Notice that under this ordering, two circles are equal only if all three of their fields are
equal. This means that the ordering defined by compareTo() is consistent with the
equality defined by equals(). This is very desirable (but not strictly required).

Chapter 3. Object-Oriented Programming in Java Page 40 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

The compareTo() method returns an int value that requires further explanation.
compareTo() should return a negative number if the this object is less than the object
passed to it. It should return 0 if the two objects are equal. And compareTo() should
return a positive number if this is greater than the method argument.

3.8.5. clone()
Object defines a method named clone() whose purpose is to return an object with
fields set identically to those of the current object. This is an unusual method for two
reasons. First, it works only if the class implements the java.lang.Cloneable
interface. Cloneable does not define any methods, so implementing it is simply a matter
of listing it in the implements clause of the class signature. The other unusual feature of
clone() is that it is declared protected (see Section 3.6 earlier in this chapter). This
means that subclasses of Object can call and override Object.clone(), but other code
cannot call it. Therefore, if you want your object to be cloneable, you must implement
Cloneable and override the clone() method, making it public.

The Circle class of Example 3-6 does not implement Cloneable; instead it provides a
copy constructor for making copies of Circle objects:

Circle original = new Circle(1, 2, 3); // regular constructor
Circle copy = new Circle(original); // copy constructor

It can be difficult to implement clone() correctly, and it is usually easier and safer to
provide a copy constructor. To make the Circle class cloneable, you would add
Cloneable to the implements clause and add the following method to the class body:

@Override public Object clone() {
 try { return super.clone(); }
 catch(CloneNotSupportedException e) { throw new AssertionError(e); }
}

See Effective Java Programming Guide by Joshua Bloch for a detailed discussion of the
ins and outs of clone() and Cloneable.

3.9. Interfaces
Like a class, an interface defines a new reference type. Unlike classes, however, interfaces
provide no implementation for the types they define. As its name implies, an interface
specifies only an API: all of its methods are abstract and have no bodies. It is not possible
to directly instantiate an interface and create a member of the interface type. Instead, a
class must implement the interface to provide the necessary method bodies. Any instances
of that class are members of both the type defined by the class and the type defined by the
interface. Interfaces provide a limited but very powerful alternative to multiple
inheritance .[9] Classes in Java can inherit members from only a single superclass, but they

Chapter 3. Object-Oriented Programming in Java Page 41 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

can implement any number of interfaces. Objects that do not share the same class or
superclass may still be members of the same type by virtue of implementing the same
interface.

[9] C++ supports multiple inheritance, but the ability of a class to have more than one superclass adds a lot of complexity to the language.

3.9.1. Defining an Interface
An interface definition is much like a class definition in which all the methods are abstract
and the keyword class has been replaced with interface. For example, the following
code shows the definition of an interface named Centered. A Shape class, such as those
defined earlier in the chapter, might implement this interface if it wants to allow the
coordinates of its center to be set and queried:

public interface Centered {
 void setCenter(double x, double y);
 double getCenterX();
 double getCenterY();
}

A number of restrictions apply to the members of an interface:

• An interface contains no implementation whatsoever. All methods of an interface are
implicitly abstract and must have a semicolon in place of a method body. The
abstract modifier is allowed but, by convention, is usually omitted. Since static
methods may not be abstract, the methods of an interface may not be declared
static.

• An interface defines a public API. All members of an interface are implicitly
public, and it is conventional to omit the unnecessary public modifier. It is an
error to define a protected or private method in an interface.

• An interface may not define any instance fields. Fields are an implementation detail,
and an interface is a pure specification without any implementation. The only fields
allowed in an interface definition are constants that are declared both static and
final.

• An interface cannot be instantiated, so it does not define a constructor.
• Interfaces may contain nested types. Any such types are implicitly public and
static. See Section 3.10 later in this chapter.

3.9.1.1. Extending interfaces
Interfaces may extend other interfaces, and, like a class definition, an interface definition
may include an extends clause. When one interface extends another, it inherits all the
abstract methods and constants of its superinterface and can define new abstract methods
and constants. Unlike classes, however, the extends clause of an interface definition may

Chapter 3. Object-Oriented Programming in Java Page 42 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

include more than one superinterface. For example, here are some interfaces that extend
other interfaces:

public interface Positionable extends Centered {
 void setUpperRightCorner(double x, double y);
 double getUpperRightX();
 double getUpperRightY();
}
public interface Transformable extends Scalable, Translatable, Rotatable {}
public interface SuperShape extends Positionable, Transformable {}

An interface that extends more than one interface inherits all the abstract methods and
constants from each of those interfaces and can define its own additional abstract methods
and constants. A class that implements such an interface must implement the abstract
methods defined directly by the interface, as well as all the abstract methods inherited
from all the superinterfaces.

3.9.2. Implementing an Interface
Just as a class uses extends to specify its superclass, it can use implements to name one
or more interfaces it supports. implements is a Java keyword that can appear in a class
declaration following the extends clause. implements should be followed by a comma-
separated list of interfaces that the class implements.

When a class declares an interface in its implements clause, it is saying that it provides
an implementation (i.e., a body) for each method of that interface. If a class implements
an interface but does not provide an implementation for every interface method, it inherits
those unimplemented abstract methods from the interface and must itself be declared
abstract. If a class implements more than one interface, it must implement every
method of each interface it implements (or be declared abstract).

The following code shows how we can define a CenteredRectangle class that extends
the Rectangle class from earlier in the chapter and implements our Centered interface.

public class CenteredRectangle extends Rectangle implements Centered {
 // New instance fields
 private double cx, cy;

 // A constructor
 public CenteredRectangle(double cx, double cy, double w, double h) {
 super(w, h);
 this.cx = cx;
 this.cy = cy;
 }

 // We inherit all the methods of Rectangle but must
 // provide implementations of all the Centered methods.
 public void setCenter(double x, double y) { cx = x; cy = y; }
 public double getCenterX() { return cx; }
 public double getCenterY() { return cy; }
}

Chapter 3. Object-Oriented Programming in Java Page 43 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Suppose we implement CenteredCircle and CenteredSquare just as we have
implemented this CenteredRectangle class. Since each class extends Shape, instances
of the classes can be treated as instances of the Shape class, as we saw earlier. Since each
class implements the Centered interface, instances can also be treated as instances of
that type. The following code demonstrates how objects can be members of both a class
type and an interface type:

Shape[] shapes = new Shape[3]; // Create an array to hold shapes

// Create some centered shapes, and store them in the Shape[]
// No cast necessary: these are all widening conversions
shapes[0] = new CenteredCircle(1.0, 1.0, 1.0);
shapes[1] = new CenteredSquare(2.5, 2, 3);
shapes[2] = new CenteredRectangle(2.3, 4.5, 3, 4);

// Compute average area of the shapes and average distance from the origin
double totalArea = 0;
double totalDistance = 0;
for(int i = 0; i < shapes.length; i++) {
 totalArea += shapes[i].area(); // Compute the area of the shapes
 if (shapes[i] instanceof Centered) { // The shape is a Centered shape
 // Note the required cast from Shape to Centered (no cast would
 // be required to go from CenteredSquare to Centered, however).
 Centered c = (Centered) shapes[i]; // Assign it to a Centered variable
 double cx = c.getCenterX(); // Get coordinates of the center
 double cy = c.getCenterY(); // Compute distance from origin
 totalDistance += Math.sqrt(cx*cx + cy*cy);
 }
}
System.out.println("Average area: " + totalArea/shapes.length);
System.out.println("Average distance: " + totalDistance/shapes.length);

This example demonstrates that interfaces are data types in Java, just like classes. When
a class implements an interface, instances of that class can be assigned to variables of the
interface type. Don't interpret this example to imply that you must assign a
CenteredRectangle object to a Centered variable before you can invoke the
setCenter() method or to a Shape variable before you can invoke the area() method.
CenteredRectangle defines setCenter() and inherits area() from its
Rectangle superclass, so you can always invoke these methods.

3.9.2.1. Implementing multiple interfaces
Suppose we want shape objects that can be positioned in terms of not only their center
points but also their upper-right corners. And suppose we also want shapes that can be
scaled larger and smaller. Remember that although a class can extend only a single
superclass, it can implement any number of interfaces. Assuming we have defined
appropriate UpperRightCornered and Scalable interfaces, we can declare a class as
follows:

public class SuperDuperSquare extends Shape
 implements Centered, UpperRightCornered, Scalable {
 // Class members omitted here
}

Chapter 3. Object-Oriented Programming in Java Page 44 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When a class implements more than one interface, it simply means that it must provide
implementations for all abstract methods in all its interfaces.

3.9.3. Interfaces vs. Abstract Classes
When defining an abstract type (e.g., Shape) that you expect to have many subtypes (e.g.,
Circle, Rectangle, Square), you are often faced with a choice between interfaces and
abstract classes. Since they have similar features, it is not always clear which to use.

An interface is useful because any class can implement it, even if that class extends some
entirely unrelated superclass. But an interface is a pure API specification and contains no
implementation. If an interface has numerous methods, it can become tedious to
implement the methods over and over, especially when much of the implementation is
duplicated by each implementing class.

An abstract class does not need to be entirely abstract; it can contain a partial
implementation that subclasses can take advantage of. In some cases, numerous
subclasses can rely on default method implementations provided by an abstract class. But
a class that extends an abstract class cannot extend any other class, which can cause design
difficulties in some situations.

Another important difference between interfaces and abstract classes has to do with
compatibility. If you define an interface as part of a public API and then later add a new
method to the interface, you break any classes that implemented the previous version of
the interface. If you use an abstract class, however, you can safely add nonabstract methods
to that class without requiring modifications to existing classes that extend the abstract
class.

In some situations, it is clear that an interface or an abstract class is the right design choice.
In other cases, a common design pattern is to use both. Define the type as a totally abstract
interface, then create an abstract class that implements the interface and provides useful
default implementations that subclasses can take advantage of. For example:

// Here is a basic interface. It represents a shape that fits inside
// of a rectangular bounding box. Any class that wants to serve as a
// RectangularShape can implement these methods from scratch.
public interface RectangularShape {
 void setSize(double width, double height);
 void setPosition(double x, double y);
 void translate(double dx, double dy);
 double area();
 boolean isInside();
}

// Here is a partial implementation of that interface. Many
// implementations may find this a useful starting point.
public abstract class AbstractRectangularShape implements RectangularShape {
 // The position and size of the shape
 protected double x, y, w, h;

 // Default implementations of some of the interface methods
 public void setSize(double width, double height) { w = width; h = height; }

Chapter 3. Object-Oriented Programming in Java Page 45 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public void setPosition(double x, double y) { this.x = x; this.y = y; }
 public void translate (double dx, double dy) { x += dx; y += dy; }
}

3.9.4. Marker Interfaces
Sometimes it is useful to define an interface that is entirely empty. A class can implement
this interface simply by naming it in its implements clause without having to implement
any methods. In this case, any instances of the class become valid instances of the interface.
Java code can check whether an object is an instance of the interface using the
instanceof operator, so this technique is a useful way to provide additional information
about an object.

The java.io.Serializable interface is a marker interface of this sort. A class
implements Serializable interface to tell ObjectOutputStream that its instances
may safely be serialized. java.util.RandomAccess is another example:
java.util.List implementations implement this interface to advertise that they
provide fast random access to the elements of the list. ArrayList implements
RandomAccess, for example, while LinkedList does not. Algorithms that care about
the performance of random-access operations can test for RandomAccess like this:

// Before sorting the elements of a long arbitrary list, we may want to make
// sure that the list allows fast random access. If not, it may be quicker
// make a random-access copy of the list before sorting it.
// Note that this is not necessary when using java.util.Collections.sort().
List l = ...; // Some arbitrary list we're given
if (l.size() > 2 && !(l instanceof RandomAccess)) l = new ArrayList(l);
sortListInPlace(l);

3.9.5. Interfaces and Constants
As noted earlier, constants can appear in an interface definition. Any class that implements
an interface inherits the constants it defines and can use them as if they were defined
directly in the class itself. Importantly, there is no need to prefix the constants with the
name of the interface or provide any kind of implementation of the constants.

When a set of constants is used by more than one class, it is tempting to define the constants
once in an interface and then have any classes that require the constants implement the
interface. This situation might arise, for example, when client and server classes
implement a network protocol whose details (such as the port number to connect to and
listen on) are captured in a set of symbolic constants. As a concrete example, consider the
java.io.ObjectStreamConstants interface, which defines constants for the object
serialization protocol and is implemented by both ObjectInputStream and
ObjectOutputStream.

Chapter 3. Object-Oriented Programming in Java Page 46 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The primary benefit of inheriting constant definitions from an interface is that it saves
typing: you don't need to specify the type that defines the constants. Despite its use with
ObjectStreamConstants, this is not a recommended technique. The use of constants
is an implementation detail that is not appropriate to declare in the implements clause
of a class signature.

A better approach is to define constants in a class and use the constants by typing the full
class name and the constant name. In Java 5.0 and later, you can save typing by importing
the constants from their defining class with the import static declaration. See Section
2.10 in Chapter 2 for details.

3.10. Nested Types
The classes, interfaces, and enumerated types we have seen so far in this book have all
been defined as top-level classes. This means that they are direct members of packages,
defined independently of other types. However, type definitions can also be nested within
other type definitions. These nested types, commonly known as " inner classes," are a
powerful and elegant feature of the Java language. A type can be nested within another
type in four ways:

Static member types

A static member type is any type defined as a static member of another type. A
static method is called a class method, so, by analogy, we could call this type of
nested type a "class type," but this terminology would obviously be confusing. A static
member type behaves much like an ordinary top-level type, but its name is part of the
namespace, rather than the package, of the containing type. Also, a static member
type can access the static members of the class that contains it. Nested interfaces,
enumerated types, and annotation types are implicitly static, whether or not the
static keyword appears. Any type nested within an interface or annotation is also
implicitly static. Static member types may be defined within top-level types or
nested to any depth within other static member types. A static member type may not
be defined within any other kind of nested type, however.

Nonstatic member classes

A "nonstatic member type" is simply a member type that is not declared static.
Since interfaces, enumerated types, and annotations are always implicitly static,
however, we usually use the term "nonstatic member class" instead. Nonstatic
member classes may be defined within other classes or enumerated types and are
analogous to instance methods or fields. An instance of a nonstatic member class is

Chapter 3. Object-Oriented Programming in Java Page 47 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-10#javanut5-CHP-2-SECT-10
http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-10#javanut5-CHP-2-SECT-10

always associated with an instance of the enclosing type, and the code of a nonstatic
member class has access to all the fields and methods (both static and non-
static) of its enclosing type. Several features of Java syntax exist specifically to work
with the enclosing instance of a nonstatic member class.

Local classes

A local class is a class defined within a block of Java code. Interfaces, enumerated
types, and annotation types may not be defined locally. Like a local variable, a local
class is visible only within the block in which it is defined. Although local classes are
not member classes, they are still defined within an enclosing class, so they share
many of the features of member classes. Additionally, however, a local class can access
any final local variables or parameters that are accessible in the scope of the block
that defines the class.

Anonymous classes

An anonymous class is a kind of local class that has no name; it combines the syntax
for class definition with the syntax for object instantiation. While a local class
definition is a Java statement, an anonymous class definition (and instantiation) is a
Java expression, so it can appear as part of a larger expression, such as method
invocation. Interfaces, enumerated types, and annotation types cannot be defined
anonymously.

Nested types have no universally adopted nomenclature. The term "inner class" is
commonly used. Sometimes, however, inner class is used to refer to a nonstatic member
class, local class, or anonymous class, but not a static member type. Although the
terminology for describing nested types is not always clear, the syntax for working with
them is, and it is usually clear from context which kind of nested type is being discussed.

Now we'll describe each of the four kinds of nested types in greater detail. Each section
describes the features of the nested type, the restrictions on its use, and any special Java
syntax used with the type. These four sections are followed by an implementation note that
explains how nested types work under the hood.

3.10.1. Static Member Types
A static member type is much like a regular top-level type. For convenience, however, it
is nested within the namespace of another type. Example 3-7 shows a helper interface
defined as a static member of a containing class. The example also shows how this interface
is used both within the class that contains it and by external classes. Note the use of its
hierarchical name in the external class.

Chapter 3. Object-Oriented Programming in Java Page 48 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 3-7. Defining and using a static member interface

// A class that implements a stack as a linked list
public class LinkedStack {
 // This static member interface defines how objects are linked
 // The static keyword is optional: all nested interfaces are static
 public static interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list is a Linkable object
 Linkable head;

 // Method bodies omitted
 public void push(Linkable node) { ... }
 public Object pop() { ... }
}

// This class implements the static member interface
class LinkableInteger implements LinkedStack.Linkable {
 // Here's the node's data and constructor
 int i;
 public LinkableInteger(int i) { this.i = i; }

 // Here are the data and methods required to implement the interface
 LinkedStack.Linkable next;
 public LinkedStack.Linkable getNext() { return next; }
 public void setNext(LinkedStack.Linkable node) { next = node; }
}

3.10.1.1. Features of static member types
A static member type is defined as a static member of a containing type. Any type (class,
interface, enumerated type, or annotation type) may be defined as a static member of any
other type. Interfaces, enumerated types, and annotation types are implicitly static,
whether or not the static keyword appears in their definition.

A static member type is like the other static members of a class: static fields and static
methods. Like a class method, a static member type is not associated with any instance of
the containing class (i.e., there is no this object). A static member type does, however,
have access to all the static members (including any other static member types) of its
containing type. A static member type can use any other static member without qualifying
its name with the name of the containing type.

A static member type has access to all static members of its containing type, including
private members. The reverse is true as well: the methods of the containing type have
access to all members of a static member type, including the private members. A static
member type even has access to all the members of any other static member types,
including the private members of those types.

Top-level types can be declared with or without the public modifier, but they cannot use
the private and protected modifiers. Static member types, however, are members and
can use any access control modifiers that other members of the containing type can. These

Chapter 3. Object-Oriented Programming in Java Page 49 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

modifiers have the same meanings for static member types as they do for other members
of a type. In Example 3-7, the Linkable interface is declared public, so it can be
implemented by any class that is interested in being stored on a LinkedStack. Recall
that all members of interfaces (and annotation types) are implicitly public, so static
member types nested within interfaces or annotation types cannot be protected or
private.

3.10.1.2. Restrictions on static member types
A static member type cannot have the same name as any of its enclosing classes. In
addition, static member types can be defined only within top-level types and other static
member types. This is actually part of a larger prohibition against static members of
any sort within member, local, and anonymous classes.

3.10.1.3. Syntax for static member types
In code outside the containing class, a static member type is named by combining the name
of the outer type with the name of the inner type (e.g., LinkedStack.Linkable). You
can use the import directive to import a static member type:

import pkg.LinkedStack.Linkable; // Import a specific nested type
import pkg.LinkedStack.*; // Import all nested types of LinkedStack

In Java 5.0 and later, you can also use the import static directive to import a static
member type. See Section 2.10 in Chapter 2 for details on import and import
static. Note that importing a nested type obscures the fact that that type is closely
associated with its containing type, and it is not commonly done.

3.10.2. Nonstatic Member Classes
A nonstatic member class is a class that is declared as a member of a containing class or
enumerated type without the static keyword. If a static member type is analogous to a
class field or class method, a nonstatic member class is analogous to an instance field or
instance method. Example 3-8 shows how a member class can be defined and used. This
example extends the previous LinkedStack example to allow enumeration of the
elements on the stack by defining an iterator() method that returns an
implementation of the java.util.Iterator interface. The implementation of this
interface is defined as a member class. The example uses Java 5.0 generic type syntax in
a couple of places, but this should not prevent you from understanding it. (Generics are
covered in Chapter 4.)

Chapter 3. Object-Oriented Programming in Java Page 50 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-10#javanut5-CHP-2-SECT-10
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

Example 3-8. An iterator implemented as a member class

import java.util.Iterator;

public class LinkedStack {
 // Our static member interface
 public interface Linkable {
 public Linkable getNext();
 public void setNext(Linkable node);
 }

 // The head of the list
 private Linkable head;

 // Method bodies omitted here
 public void push(Linkable node) { ... }
 public Linkable pop() { ... }

 // This method returns an Iterator object for this LinkedStack
 public Iterator<Linkable> iterator() { return new LinkedIterator(); }

 // Here is the implementation of the Iterator interface,
 // defined as a nonstatic member class.
 protected class LinkedIterator implements Iterator<Linkable> {
 Linkable current;
 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }
}

Notice how the LinkedIterator class is nested within the LinkedStack class. Since
LinkedIterator is a helper class used only within LinkedStack, there is real elegance
to having it defined so close to where it is used by the containing class.

3.10.2.1. Features of member classes
Like instance fields and instance methods, every instance of a nonstatic member class is
associated with an instance of the class in which it is defined. This means that the code of
a member class has access to all the instance fields and instance methods (as well as the
static members) of the containing class, including any that are declared private.

This crucial feature is illustrated in Example 3-8. Here is the
LinkedStack.LinkedIterator() constructor again:

public LinkedIterator() { current = head; }

This single line of code sets the current field of the inner class to the value of the head
field of the containing class. The code works as shown, even though head is declared as a
private field in the containing class.

Chapter 3. Object-Oriented Programming in Java Page 51 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A nonstatic member class, like any member of a class, can be assigned one of three visibility
levels: public, protected, or private. If none of these visibility modifiers is specified,
the default package visibility is used. In Example 3-8, the LinkedIterator class is
declared protected, so it is inaccessible to code (in a different package) that uses the
LinkedStack class but is accessible to any class that subclasses LinkedStack.

3.10.2.2. Restrictions on member classes
Member classes have three important restrictions:

• A nonstatic member class cannot have the same name as any containing class or
package. This is an important rule, one not shared by fields and methods.

• Nonstatic member classes cannot contain any static fields, methods, or types,
except for constant fields declared both static and final. static members are
top-level constructs not associated with any particular object while every member
class is associated with an instance of its enclosing class. Defining a static top-level
member within a member class that is not at the top level would cause confusion, so
it is not allowed.

• Only classes may be defined as nonstatic members. Interfaces, enumerated types, and
annotation types are all implicitly static, even if the static keyword is omitted.

3.10.2.3. Syntax for member classes
The most important feature of a member class is that it can access the instance fields and
methods in its containing object. We saw this in the LinkedStack.LinkedIterator
() constructor of Example 3-8:

public LinkedIterator() { current = head; }

In this example, head is a field of the LinkedStack class, and we assign it to the
current field of the LinkedIterator class. What if we want to make these references
explicit? We could try code like this:

public LinkedIterator() { this.current = this.head; }

This code does not compile, however. this.current is fine; it is an explicit reference to
the current field in the newly created LinkedIterator object. It is the this.head
expression that causes the problem; it refers to a field named head in the
LinkedIterator object. Since there is no such field, the compiler generates an error. To
solve this problem, Java defines a special syntax for explicitly referring to the containing
instance of the this object. Thus, if we want to be explicit in our constructor, we can use
the following syntax:

public LinkedIterator() { this.current = LinkedStack.this.head; }

Chapter 3. Object-Oriented Programming in Java Page 52 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The general syntax is classname.this, where classname is the name of a containing
class. Note that member classes can themselves contain member classes, nested to any
depth. Since no member class can have the same name as any containing class, however,
the use of the enclosing class name prepended to this is a perfectly general way to refer
to any containing instance. This syntax is needed only when referring to a member of a
containing class that is hidden by a member of the same name in the member class.

3.10.2.3.1. Accessing superclass members of the containing class
When a class shadows or overrides a member of its superclass, you can use the keyword
super to refer to the hidden member. This super syntax can be extended to work with
member classes as well. On the rare occasion when you need to refer to a shadowed field
f or an overridden method m of a superclass of a containing class C, use the following
expressions:

C.super.f
C.super.m()

3.10.2.3.2. Specifying the containing instance
As we've seen, every instance of a member class is associated with an instance of its
containing class. Look again at our definition of the iterator() method in Example
3-8:

public Iterator<Linkable> iterator() { return new LinkedIterator(); }

When a member class constructor is invoked like this, the new instance of the member
class is automatically associated with the this object. This is what you would expect to
happen and exactly what you want to occur in most cases. Occasionally, however, you may
want to specify the containing instance explicitly when instantiating a member class. You
can do this by preceding the new operator with a reference to the containing instance.
Thus, the iterator() method shown earlier is shorthand for the following:

public Iterator<Linkable> iterator() { return this.new LinkedIterator(); }

Let's pretend we didn't define an iterator() method for LinkedStack. In this case,
the code to obtain an LinkedIterator object for a given LinkedStack object might
look like this:

LinkedStack stack = new LinkedStack(); // Create an empty stack
Iterator i = stack.new LinkedIterator(); // Create an Iterator for it

The containing instance implicitly specifies the containing class; it is a syntax error to
explicitly specify the containing class name:

Iterator i = stack.new LinkedStack.LinkedIterator(); // Syntax error

Chapter 3. Object-Oriented Programming in Java Page 53 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

One other special piece of Java syntax specifies an enclosing instance for a member class
explicitly. Before we consider it, however, let me point out that you should rarely, if ever,
need to use this syntax. It is one of the pathological cases that snuck into the language
along with all the elegant features of nested types.

As strange as it may seem, it is possible for a top-level class to extend a member class. This
means that the subclass does not have a containing instance, but its superclass does. When
the subclass constructor invokes the superclass constructor, it must specify the containing
instance. It does this by prepending the containing instance and a period to the super
keyword. If we had not declared our LinkedIterator class to be a protected member
of LinkedStack, we could subclass it. Although it is not clear why we would want to do
so, we could write code like the following:

// A top-level class that extends a member class
class SpecialIterator extends LinkedStack.LinkedIterator {
 // The constructor must explicitly specify a containing instance
 // when invoking the superclass constructor.
 public SpecialIterator(LinkedStack s) { s.super(); }
 // Rest of class omitted...
}

3.10.2.4. Scope versus inheritance
We've just noted that a top-level class can extend a member class. With the introduction
of nonstatic member classes, two separate hierarchies must be considered for any class.
The first is the inheritance hierarchy, from superclass to subclass, that defines the fields
and methods a member class inherits. The second is the containment hierarchy, from
containing class to contained class, that defines a set of fields and methods that are in the
scope of (and are therefore accessible to) the member class.

The two hierarchies are entirely distinct from each other; it is important that you do not
confuse them. This should not be a problem if you refrain from creating naming conflicts,
where a field or method in a superclass has the same name as a field or method in a
containing class. If such a naming conflict does arise, however, the inherited field or
method takes precedence over the field or method of the same name in the containing
class. This behavior is logical: when a class inherits a field or method, that field or method
effectively becomes part of that class. Therefore, inherited fields and methods are in the
scope of the class that inherits them and take precedence over fields and methods by the
same name in enclosing scopes.

A good way to prevent confusion between the class hierarchy and the containment
hierarchy is to avoid deep containment hierarchies. If a class is nested more than two levels
deep, it is probably going to cause more confusion than it is worth. Furthermore, if a class
has a deep class hierarchy (i.e., it has many ancestors), consider defining it as a top-level
class rather than as a nonstatic member class.

Chapter 3. Object-Oriented Programming in Java Page 54 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3.10.3. Local Classes
A local class is declared locally within a block of Java code rather than as a member of a
class. Only classes may be defined locally: interfaces, enumerated types and annotation
types must be top-level or static member types. Typically, a local class is defined within a
method, but it can also be defined within a static initializer or instance initializer of a class.
Because all blocks of Java code appear within class definitions, all local classes are nested
within containing classes. For this reason, local classes share many of the features of
member classes. It is usually more appropriate, however, to think of them as an entirely
separate kind of nested type. A local class has approximately the same relationship to a
member class as a local variable has to an instance variable of a class.

The defining characteristic of a local class is that it is local to a block of code. Like a local
variable, a local class is valid only within the scope defined by its enclosing block. If a
member class is used only within a single method of its containing class, for example, there
is usually no reason it cannot be coded as a local class rather than a member class. Example
3-9 shows how we can modify the iterator() method of the LinkedStack class so it
defines LinkedIterator as a local class instead of a member class. By doing this, we
move the definition of the class even closer to where it is used and hopefully improve the
clarity of the code even further. For brevity, Example 3-9 shows only the iterator()
method, not the entire LinkedStack class that contains it.

Example 3-9. Defining and using a local class

// This method returns an Iterator object for this LinkedStack
public Iterator<Linkable> Iterator() {
 // Here's the definition of LinkedIterator as a local class
 class LinkedIterator implements Iterator<Linkable> {
 Linkable current;

 // The constructor uses the private head field of the containing class
 public LinkedIterator() { current = head; }
 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }

 // Create and return an instance of the class we just defined
 return new LinkedIterator();
}

3.10.3.1. Features of local classes
Local classes have the following interesting features:

Chapter 3. Object-Oriented Programming in Java Page 55 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Like member classes, local classes are associated with a containing instance and can
access any members, including private members, of the containing class.

• In addition to accessing fields defined by the containing class, local classes can access
any local variables, method parameters, or exception parameters that are in the scope
of the local method definition and are declared final.

3.10.3.2. Restrictions on local classes
Local classes are subject to the following restrictions:

• The name of a local class is defined only within the block that defines it; it can never
be used outside that block. (Note however that instances of a local class created within
the scope of the class can continue to exist outside of that scope. This situation is
described in more detail later in this section.)

• Local classes cannot be declared public , protected, private, or static. These
modifiers are for members of classes; they are not allowed with local variable
declarations or local class declarations.

• Like member classes, and for the same reasons, local classes cannot contain
static fields, methods, or classes. The only exception is for constants that are
declared both static and final.

• Interfaces, enumerated types, and annotation types cannot be defined locally.
• A local class, like a member class, cannot have the same name as any of its enclosing

classes.
• As noted earlier, a local class can use the local variables, method parameters, and even

exception parameters that are in its scope but only if those variables or parameters
are declared final. This is because the lifetime of an instance of a local class can be
much longer than the execution of the method in which the class is defined. For this
reason, a local class must have a private internal copy of all local variables it uses
(these copies are automatically generated by the compiler). The only way to ensure
that the local variable and the private copy are always the same is to insist that the
local variable is final.

3.10.3.3. Syntax for local classes
In Java 1.0, only fields, methods, and classes could be declared final. The addition of
local classes in Java 1.1 required a liberalization in the use of the final modifier. As of
Java 1.1, final can be applied to local variables, method parameters, and even the
exception parameter of a catch statement. The meaning of the final modifier remains
the same in these new uses: once the local variable or parameter has been assigned a value,
that value cannot be changed.

Chapter 3. Object-Oriented Programming in Java Page 56 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Instances of local classes, like instances of nonstatic member classes, have an enclosing
instance that is implicitly passed to all constructors of the local class. Local classes can use
the same this syntax as nonstatic member classes to refer explicitly to members of
enclosing classes. Because local classes are never visible outside the blocks that define
them, however, there is never a need to use the new and super syntax used by member
classes to specify the enclosing instance explicitly.

3.10.3.4. Scope of a local class
In discussing nonstatic member classes, we saw that a member class can access any
members inherited from superclasses and any members defined by its containing classes.
The same is true for local classes, but local classes can also access final local variables
and parameters. The following code illustrates the many fields and variables that may be
accessible to a local class:

class A { protected char a = 'a'; }
class B { protected char b = 'b'; }

public class C extends A {
 private char c = 'c'; // Private fields visible to local class
 public static char d = 'd';
 public void createLocalObject(final char e)
 {
 final char f = 'f';
 int i = 0; // i not final; not usable by local class
 class Local extends B
 {
 char g = 'g';
 public void printVars()
 {
 // All of these fields and variables are accessible to this class
 System.out.println(g); // (this.g) g is a field of this class
 System.out.println(f); // f is a final local variable
 System.out.println(e); // e is a final local parameter
 System.out.println(d); // (C.this.d) d -- field of containing class
 System.out.println(c); // (C.this.c) c -- field of containing class
 System.out.println(b); // b is inherited by this class
 System.out.println(a); // a is inherited by the containing class
 }
 }
 Local l = new Local(); // Create an instance of the local class
 l.printVars(); // and call its printVars() method.
 }
}

3.10.3.5. Local variables, lexical scoping, and closures
A local variable is defined within a block of code that defines its scope. A local variable
ceases to exist outside of its scope. Java is a lexically scoped language, which means that
its concept of scope has to do with the way the source code is written. Any code within the
curly braces that define the boundaries of a block can use local variables defined in that
block.[10]

[10] This section covers advanced material; first-time readers may want to skip it for now and return to it later.

Lexical scoping simply defines a segment of source code within which a variable can be
used. It is common, however, to think of a scope as a temporal scope—to think of a local

Chapter 3. Object-Oriented Programming in Java Page 57 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

variable as existing from the time the Java interpreter begins executing the block until the
time the interpreter exits the block. This is usually a reasonable way to think about local
variables and their scope.

The introduction of local classes confuses the picture, however, because local classes can
use local variables, and instances of a local class can have a lifetime much longer than the
time it takes the interpreter to execute the block of code. In other words, if you create an
instance of a local class, the instance does not automatically go away when the interpreter
finishes executing the block that defines the class, as shown in the following code:

public class Weird {
 // A static member interface used below
 public static interface IntHolder { public int getValue(); }

 public static void main(String[] args) {
 IntHolder[] holders = new IntHolder[10]; // An array to hold 10 objects
 for(int i = 0; i < 10; i++) { // Loop to fill the array up
 final int fi = i; // A final local variable
 class MyIntHolder implements IntHolder {// A local class
 public int getValue() { return fi; } // It uses the final variable
 }
 holders[i] = new MyIntHolder(); // Instantiate the local class
 }

 // The local class is now out of scope, so we can't use it. But we have
 // 10 valid instances of that class in our array. The local variable
 // fi is not in our scope here, but it is still in scope for the
 // getValue() method of each of those 10 objects. So call getValue()
 // for each object and print it out. This prints the digits 0 to 9.
 for(int i = 0; i < 10; i++) System.out.println(holders[i].getValue());
 }
}

The behavior of the previous program is pretty surprising. To make sense of it, remember
that the lexical scope of the methods of a local class has nothing to do with when the
interpreter enters and exits the block of code that defines the local class. Here's another
way to think about it: each instance of a local class has an automatically created private
copy of each of the final local variables it uses, so, in effect, it has its own private copy of
the scope that existed when it was created.

The local class MyIntHolder is sometimes called a closure. In general terms, a closure is
an object that saves the state of a scope and makes that scope available later. Closures are
useful in some styles of programming, and different programming languages define and
implement closures in different ways. Java's closures are relatively weak (and some would
argue that they are not truly closures) because they retain the state of only final
variables.

3.10.4. Anonymous Classes
An anonymous class is a local class without a name. An anonymous class is defined and
instantiated in a single succinct expression using the new operator. While a local class
definition is a statement in a block of Java code, an anonymous class definition is an

Chapter 3. Object-Oriented Programming in Java Page 58 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

expression, which means that it can be included as part of a larger expression, such as a
method call. In practice, anonymous classes are much more common than local classes. If
you find yourself defining a short local class and then instantiating it exactly once, consider
rewriting it using anonymous class syntax, which places the definition and use of the class
in exactly the same place.

Consider Example 3-10, which shows the LinkedIterator class implemented as an
anonymous class within the iterator() method of the LinkedStack class. Compare
it with Example 3-9, which shows the same class implemented as a local class. The generic
syntax in this example is covered in Chapter 4.

Example 3-10. An enumeration implemented with an anonymous class

public Iterator<Linkable> iterator() {
 // The anonymous class is defined as part of the return statement
 return new Iterator<Linkable>() {
 Linkable current;
 // Replace constructor with an instance initializer
 { current = head; }

 // The following 3 methods are defined by the Iterator interface
 public boolean hasNext() { return current != null; }
 public Linkable next() {
 if (current == null) throw new java.util.NoSuchElementException();
 Linkable value = current;
 current = current.getNext();
 return value;
 }
 public void remove() { throw new UnsupportedOperationException(); }
 }; // Note the required semicolon. It terminates the return statement
}

One common use for an anonymous class is to provide a simple implementation of an
adapter class. An adapter class is one that defines code that is invoked by some other
object. Take, for example, the list() method of the java.io.File class. This method
lists the files in a directory. Before it returns the list, though, it passes the name of each
file to a FilenameFilter object you must supply. This FilenameFilter object accepts
or rejects each file. When you implement the FilenameFilter interface, you are defining
an adapter class for use with the File.list() method. Since the body of such a class is
typically quite short, it is easy to define an adapter class as an anonymous class. Here's
how you can define a FilenameFilter class to list only those files whose names end
with .java :

File f = new File("/src"); // The directory to list

// Now call the list() method with a single FilenameFilter argument
// Define and instantiate an anonymous implementation of FilenameFilter
// as part of the method invocation expression.
String[] filelist = f.list(new FilenameFilter() {
 public boolean accept(File f, String s) { return s.endsWith(".java"); }
}); // Don't forget the parenthesis and semicolon that end the method call!

Chapter 3. Object-Oriented Programming in Java Page 59 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

As you can see, the syntax for defining an anonymous class and creating an instance of
that class uses the new keyword, followed by the name of a class and a class body definition
in curly braces. If the name following the new keyword is the name of a class, the
anonymous class is a subclass of the named class. If the name following new specifies an
interface, as in the two previous examples, the anonymous class implements that interface
and extends Object. The syntax does not include any way to specify an extends clause,
an implements clause, or a name for the class.

Because an anonymous class has no name, it is not possible to define a constructor for it
within the class body. This is one of the basic restrictions on anonymous classes. Any
arguments you specify between the parentheses following the superclass name in an
anonymous class definition are implicitly passed to the superclass constructor.
Anonymous classes are commonly used to subclass simple classes that do not take any
constructor arguments, so the parentheses in the anonymous class definition syntax are
often empty. In the previous examples, each anonymous class implemented an interface
and extended Object. Since the Object() constructor takes no arguments, the
parentheses were empty in those examples.

3.10.4.1. Features of anonymous classes
Anonymous classes allow you to define a one-shot class exactly where it is needed.
Anonymous classes have all the features of local classes but use a more concise syntax that
can reduce clutter in your code.

3.10.4.2. Restrictions on anonymous classes
Because an anonymous class is just a type of local class, anonymous classes and local
classes share the same restrictions. An anonymous class cannot define any static fields,
methods, or classes, except for static final constants. Interfaces, enumerated types,
and annotation types cannot be defined anonymously. Also, like local classes, anonymous
classes cannot be public , private, protected, or static.

Since an anonymous class has no name, it is not possible to define a constructor for an
anonymous class. If your class requires a constructor, you must use a local class instead.
However, you can often use an instance initializer as a substitute for a constructor.

The syntax for defining an anonymous class combines definition with instantiation. Using
an anonymous class instead of a local class is not appropriate if you need to create more
than a single instance of the class each time the containing block is executed.

3.10.4.3. Syntax for anonymous classes
We've already seen examples of the syntax for defining and instantiating an anonymous
class. We can express that syntax more formally as:

Chapter 3. Object-Oriented Programming in Java Page 60 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

new class-name ([argument-list]) { class-body }

or:
new interface-name () { class-body }

Although they are not limited to use with anonymous classes, instance initializers were
introduced into the language for this purpose. As described earlier in this chapter in
Section 3.3.4, an instance initializer is a block of initialization code contained within curly
braces inside a class definition. The contents of all instance initializers for a class are
automatically inserted into all constructors for the class, including any automatically
created default constructor. An anonymous class cannot define a constructor, so it gets a
default constructor. By using an instance initializer, you can get around the fact that you
cannot define a constructor for an anonymous class.

3.10.4.4. When to use an anonymous class
As we've discussed, an anonymous class behaves just like a local class and is distinguished
from a local class merely in the syntax used to define and instantiate it. In your own code,
when you have to choose between using an anonymous class and a local class, the decision
often comes down to a matter of style. You should use whichever syntax makes your code
clearer. In general, you should consider using an anonymous class instead of a local class
if:

• The class has a very short body.
• Only one instance of the class is needed.
• The class is used right after it is defined.
• The name of the class does not make your code any easier to understand.

3.10.4.5. Anonymous class indentation and formatting
The common indentation and formatting conventions we are familiar with for block-
structured languages like Java and C begin to break down somewhat once we start placing
anonymous class definitions within arbitrary expressions. Based on their experience with
nested types, the engineers at Sun recommend the following formatting rules:

• The opening curly brace should not be on a line by itself; instead, it should follow the
closing parenthesis of the new operator. Similarly, the new operator should, when
possible, appear on the same line as the assignment or other expression of which it is
a part.

• The body of the anonymous class should be indented relative to the beginning of the
line that contains the new keyword.

• The closing curly brace of an anonymous class should not be on a line by itself either;
it should be followed by whatever tokens are required by the rest of the expression.

Chapter 3. Object-Oriented Programming in Java Page 61 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Often this is a semicolon or a closing parenthesis followed by a semicolon. This extra
punctuation serves as a flag to the reader that this is not just an ordinary block of code
and makes it easier to understand anonymous classes in a code listing.

3.10.5. How Nested Types Work
The preceding sections explained the features and behavior of the four kinds of nested
types. Strictly speaking, that should be all you need to know about nested types. You may
find it easier to understand nested types if you understand how they are implemented,
however.

Nested types were added in Java 1.1. Despite the dramatic changes to the Java language,
the introduction of nested types did not change the Java Virtual Machine or the Java class
file format. As far as the Java interpreter is concerned, there is no such thing as a nested
type: all classes are normal top-level classes. In order to make a nested type behave as if
it is actually defined inside another class, the Java compiler ends up inserting hidden fields,
methods, and constructor arguments into the classes it generates. You may want to use
the javap disassembler to disassemble some of the class files for nested types so you can
see what tricks the compiler has used to make the nested types work. (See Chapter 8 for
information on javap.)

3.10.5.1. Static member type implementation
Recall our first LinkedStack example (Example 3-7), which defined a static member
interface named Linkable. When you compile this LinkedStack class, the compiler
actually generates two class files. The first one is LinkedStack.class, as expected. The
second class file, however, is called LinkedStack$Linkable.class. The $ in this name is
automatically inserted by the Java compiler. This second class file contains the
implementation of the static member interface.

As we discussed earlier, a static member type can access all the static members of its
containing class. If a static member type does this, the compiler automatically qualifies
the member access expression with the name of the containing class. A static member type
is even allowed to access the private static fields of its containing class. Since the static
member type is compiled into an ordinary top-level class, however, there is no way it can
directly access the private members of its container. Therefore, if a static member type
uses a private member of its containing type (or vice versa), the compiler generates
synthetic non-private access methods and converts the expressions that access the
private members into expressions that invoke these specially generated methods. These
methods are given the default package access, which is sufficient, as the member class and
its containing class are guaranteed to be in the same package.

Chapter 3. Object-Oriented Programming in Java Page 62 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

3.10.5.2. Nonstatic member class implementation
A nonstatic member class is implemented much like a static member type. It is compiled
into a separate top-level class file, and the compiler performs various code manipulations
to make interclass member access work correctly.

The most significant difference between a nonstatic member class and a static member
type is that each instance of a nonstatic member class is associated with an instance of the
enclosing class. The compiler enforces this association by defining a synthetic field named
this$0 in each member class. This field is used to hold a reference to the enclosing
instance. Every nonstatic member class constructor is given an extra parameter that
initializes this field. Every time a member class constructor is invoked, the compiler
automatically passes a reference to the enclosing class for this extra parameter.

As we've seen, a nonstatic member class, like any member of a class, can be declared
public, protected, or private, or given the default package visibility. Member classes
are compiled to class files just like top-level classes, but top-level classes can have only
public or package access. Therefore, as far as the Java interpreter is concerned, member
classes can have only public or package visibility. This means that a member class declared
protected is actually treated as a public class, and a member class declared private
actually has package visibility. This does not mean you should never declare a member
class as protected or private. Although the Java VM cannot enforce these access
control modifiers, the modifiers are stored in the class file and conforming Java compilers
do enforce them.

3.10.5.3. Local and anonymous class implementation
A local class is able to refer to fields and methods in its containing class for exactly the
same reason that a nonstatic member class can; it is passed a hidden reference to the
containing class in its constructor and saves that reference away in a private synthetic
field added by the compiler. Also, like nonstatic member classes, local classes can use
private fields and methods of their containing class because the compiler inserts any
required accessor methods.

What makes local classes different from member classes is that they have the ability to
refer to local variables in the scope that defines them. The crucial restriction on this ability,
however, is that local classes can reference only local variables and parameters that are
declared final. The reason for this restriction becomes apparent in the implementation.
A local class can use local variables because the compiler automatically gives the class a
private instance field to hold a copy of each local variable the class uses. The compiler
also adds hidden parameters to each local class constructor to initialize these automatically
created private fields. A local class does not actually access local variables but merely
its own private copies of them. The only way this can work correctly is if the local variables

Chapter 3. Object-Oriented Programming in Java Page 63 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

are declared final so that they are guaranteed not to change. With this guarantee, the
local class can be assured that its internal copies of the variables are always in sync with
the real local variables.

Since anonymous classes have no names, you may wonder what the class files that
represent them are named. This is an implementation detail, but Sun's Java compiler uses
numbers to provide anonymous class names. If you compile the example code shown in
Example 3-10, you'll find that it produces a class file for the anonymous class with a name
like LinkedStack$1.class.

3.11. Modifier Summary
As we've seen, classes, interfaces, and their members can be declared with one or more
modifiers—keywords such as public, static, and final. Table 3-2 lists the Java
modifiers, explains what types of Java constructs they can modify, and explains what they
do. See also Section 3.1 and Section 3.2.1 earlier in this chapter, as well as Section 2.6.2 in
Chapter 2.

Table 3-2. Java modifiers

Modifier Used on Meaning
abstract Class The class contains unimplemented methods and cannot be instantiated.

 Interface All interfaces are abstract. The modifier is optional in interface declarations.

abstract Method
No body is provided for the method; it is provided by a subclass. The signature is followed by a
semicolon. The enclosing class must also be abstract.

final Class The class cannot be subclassed.

 Method The method cannot be overridden (and is not subject to dynamic method lookup).

 Field The field cannot have its value changed. static final fields are compile-time constants.

 Variable
A local variable, method parameter, or exception parameter cannot have its value changed. Useful
with local classes.

native Method
The method is implemented in some platform-dependent way (often in C). No body is provided; the
signature is followed by a semicolon.

None (package) Class A non-public class is accessible only in its package.

 Interface A non-public interface is accessible only in its package.

 Member
A member that is not private, protected, or public has package visibility and is accessible only
within its package.

private Member The member is accessible only within the class that defines it.
protected Member The member is accessible only within the package in which it is defined and within subclasses.
public Class The class is accessible anywhere its package is.

 Interface The interface is accessible anywhere its package is.

 Member The member is accessible anywhere its class is.

strictfp Class All methods of the class are implicitly strictfp.

strictfp Method

All floating-point computation done by the method must be performed in a way that strictly conforms
to the IEEE 754 standard. In particular, all values, including intermediate results, must be expressed
as IEEE float or double values and cannot take advantage of any extra precision or range offered
by native platform floating-point formats or hardware. This modifier is rarely used.

Chapter 3. Object-Oriented Programming in Java Page 64 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-6#javanut5-CHP-2-SECT-6.2

Modifier Used on Meaning

static Class
An inner class declared static is a top-level class, not associated with a member of the containing
class.

 Method
A static method is a class method. It is not passed an implicit this object reference. It can be
invoked through the class name.

 Field
A static field is a class field. There is only one instance of the field, regardless of the number of class
instances created. It can be accessed through the class name.

 Initializer The initializer is run when the class is loaded rather than when an instance is created.

synchronized Method

The method makes nonatomic modifications to the class or instance, so care must be taken to ensure
that two threads cannot modify the class or instance at the same time. For a static method, a lock
for the class is acquired before executing the method. For a non-static method, a lock for the specific
object instance is acquired.

transient Field
The field is not part of the persistent state of the object and should not be serialized with the object.
Used with object serialization; see java.io.ObjectOutputStream.

volatile Field
The field can be accessed by unsynchronized threads, so certain optimizations must not be performed
on it. This modifier can sometimes be used as an alternative to synchronized. This modifier is very
rarely used.

3.12. C++ Features Not Found in Java
This chapter indicates similarities and differences between Java and C++ in footnotes.
Java shares enough concepts and features with C++ to make it an easy language for C++
programmers to pick up. Several features of C++ have no parallel in Java, however. In
general, Java does not adopt those features of C++ that make the language significantly
more complicated.

C++ supports multiple inheritance of method implementations from more than one
superclass at a time. While this seems like a useful feature, it actually introduces many
complexities to the language. The Java language designers chose to avoid the added
complexity by using interfaces instead. Thus, a class in Java can inherit method
implementations only from a single superclass, but it can inherit method declarations from
any number of interfaces.

C++ supports templates that allow you, for example, to implement a Stack class and then
instantiate it as Stack<int> or Stack<double> to produce two separate types: a stack
of integers and a stack of floating-point values. Java 5.0 introduces parameterized types
or "generics" that provide similar functionality in a more robust fashion. Generics are
covered in Chapter 4.

C++ allows you to define operators that perform arbitrary operations on instances of your
classes. In effect, it allows you to extend the syntax of the language. This is a nifty feature,
called operator overloading, that makes for elegant examples. In practice, however, it tends
to make code quite difficult to understand. After much debate, the Java language designers
decided to omit such operator overloading from the language. Note, though, that the use

Chapter 3. Object-Oriented Programming in Java Page 65 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

of the + operator for string concatenation in Java is at least reminiscent of operator
overloading.

C++ allows you to define conversion functions for a class that automatically invokes an
appropriate constructor method when a value is assigned to a variable of that class. This
is simply a syntactic shortcut (similar to overriding the assignment operator) and is not
included in Java.

In C++, objects are manipulated by value by default; you must use & to specify a variable
or function argument automatically manipulated by reference. In Java, all objects are
manipulated by reference, so there is no need for the & syntax.

Chapter 3. Object-Oriented Programming in Java Page 66 Return to Table of Contents

Chapter 3. Object-Oriented Programming in Java
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Object-Oriented Programming in Java
	Class Definition Syntax
	Fields and Methods
	Creating and Initializing Objects
	Destroying and Finalizing Objects
	Subclasses and Inheritance
	Data Hiding and Encapsulation
	Abstract Classes and Methods
	Important Methods of java.lang.Object
	Interfaces
	Nested Types
	Modifier Summary
	C++ Features Not Found in Java

