
Table of Contents

java.lang and Subpackages.......................................................................... 1
Package java.lang............................................................................................................................................................................. 1
AbstractMethodError...................................................................................................................................................................... 4
AbstractStringBuilder..................................................................................................................................................................... 5
Appendable...................................................................................................................................................................................... 6
ArithmeticException....................................................................................................................................................................... 7
ArrayIndexOutOfBoundsException................................................................................................................................................ 7
ArrayStoreException....................................................................................................................................................................... 8
AssertionError................................................................................................................................................................................ 8
Boolean............................................................................................................................................................................................ 9
Byte................................................................................................................................................................................................ 10
Character........................................................................................................................................................................................ 11
Character.Subset............................................................................................................................................................................ 14
Character.UnicodeBlock................................................................................................................................................................ 15
CharSequence................................................................................................................................................................................ 17
Class<T>........................................................................................................................................................................................ 18
ClassCastException....................................................................................................................................................................... 21
ClassCircularityError..................................................................................................................................................................... 21
ClassFormatError......................................................................................................................................................................... 22
ClassLoader................................................................................................................................................................................... 22
ClassNotFoundException............................................................................................................................................................. 24
Cloneable....................................................................................................................................................................................... 25
CloneNotSupportedException...................................................................................................................................................... 25
Comparable<T>............................................................................................................................................................................ 26
Compiler........................................................................................................................................................................................ 27
Deprecated.................................................................................................................................................................................... 28
Double........................................................................................................................................................................................... 28
Enum<E extends Enum<E>>...................................................................................................................................................... 30
EnumConstantNotPresentException............................................................................................................................................ 31
Error.............................................................................................................................................................................................. 32
Exception....................................................................................................................................................................................... 33
ExceptionInInitializerError.......................................................................................................................................................... 34
Float............................................................................................................................................................................................... 35
IllegalAccessError......................................................................................................................................................................... 36
IllegalAccessException.................................................................................................................................................................. 36
IllegalArgumentException............................................................................................................................................................ 36
IllegalMonitorStateException....................................................................................................................................................... 37
IllegalStateException.................................................................................................................................................................... 38
IllegalThreadStateException........................................................................................................................................................ 38
IncompatibleClassChangeError................................................................................................................................................... 39
IndexOutOfBoundsException....................................................................................................................................................... 39
InheritableThreadLocal<T>......................................................................................................................................................... 40
InstantiationError......................................................................................................................................................................... 41
InstantiationException.................................................................................................................................................................. 41
Integer........................................................................................................................................................................................... 42
InternalError................................................................................................................................................................................. 43
InterruptedException................................................................................................................................................................... 44
Iterable<T>................................................................................................................................................................................... 44
LinkageError................................................................................................................................................................................. 45
Long............................................................................................................................................................................................... 45
Math.............................................................................................................................................................................................. 46
NegativeArraySizeException........................................................................................................................................................ 48
NoClassDefFoundError................................................................................................................................................................ 48
NoSuchFieldError......................................................................................................................................................................... 49
NoSuchFieldException................................................................................................................................................................. 49
NoSuchMethodError.................................................................................................................................................................... 49
NoSuchMethodException............................................................................................................................................................. 50

Chapter 10. java.lang and Subpackages

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



NullPointerException................................................................................................................................................................... 50
Number.......................................................................................................................................................................................... 51
NumberFormatException............................................................................................................................................................. 52
Object............................................................................................................................................................................................. 52
OutOfMemoryError...................................................................................................................................................................... 53
Override......................................................................................................................................................................................... 54
Package.......................................................................................................................................................................................... 54
Process........................................................................................................................................................................................... 56
ProcessBuilder............................................................................................................................................................................... 56
Readable........................................................................................................................................................................................ 57
Runnable....................................................................................................................................................................................... 58
Runtime......................................................................................................................................................................................... 58
RuntimeException........................................................................................................................................................................ 60
RuntimePermission....................................................................................................................................................................... 61
SecurityException......................................................................................................................................................................... 62
SecurityManager........................................................................................................................................................................... 62
Short.............................................................................................................................................................................................. 63
StackOverflowError...................................................................................................................................................................... 65
StackTraceElement....................................................................................................................................................................... 65
StrictMath..................................................................................................................................................................................... 66
String............................................................................................................................................................................................. 67
StringBuffer................................................................................................................................................................................... 72
StringBuilder................................................................................................................................................................................. 75
StringIndexOutOfBoundsException............................................................................................................................................. 76
SuppressWarnings........................................................................................................................................................................ 76
System............................................................................................................................................................................................ 77
Thread........................................................................................................................................................................................... 80
Thread.State.................................................................................................................................................................................. 83
Thread.UncaughtExceptionHandler............................................................................................................................................ 83
ThreadDeath................................................................................................................................................................................. 84
ThreadGroup................................................................................................................................................................................. 85
ThreadLocal<T>........................................................................................................................................................................... 86
Throwable...................................................................................................................................................................................... 87
TypeNotPresentException............................................................................................................................................................ 89
UnknownError.............................................................................................................................................................................. 89
UnsatisfiedLinkError.................................................................................................................................................................... 90
UnsupportedClassVersionError................................................................................................................................................... 90
UnsupportedOperationException................................................................................................................................................ 90
VerifyError..................................................................................................................................................................................... 91
VirtualMachineError..................................................................................................................................................................... 91
Void............................................................................................................................................................................................... 92
Package java.lang.annotation....................................................................................................................................................... 92
Annotation..................................................................................................................................................................................... 93
AnnotationFormatError............................................................................................................................................................... 94
AnnotationTypeMismatchException............................................................................................................................................ 94
Documented.................................................................................................................................................................................. 95
ElementType................................................................................................................................................................................. 95
IncompleteAnnotationException................................................................................................................................................. 96
Inherited........................................................................................................................................................................................ 97
Retention....................................................................................................................................................................................... 97
RetentionPolicy............................................................................................................................................................................. 98
Target............................................................................................................................................................................................ 98
Package java.lang.instrument....................................................................................................................................................... 99
ClassDefinition............................................................................................................................................................................ 100
ClassFileTransformer.................................................................................................................................................................. 100
IllegalClassFormatException...................................................................................................................................................... 101
Instrumentation........................................................................................................................................................................... 101
UnmodifiableClassException...................................................................................................................................................... 102
Package java.lang.management.................................................................................................................................................. 102
ClassLoadingMXBean................................................................................................................................................................. 103
CompilationMXBean................................................................................................................................................................... 104

Chapter 10. java.lang and Subpackages

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



GarbageCollectorMXBean.......................................................................................................................................................... 104
ManagementFactory................................................................................................................................................................... 105
ManagementPermission............................................................................................................................................................. 105
MemoryManagerMXBean........................................................................................................................................................... 106
MemoryMXBean......................................................................................................................................................................... 106
MemoryNotificationInfo............................................................................................................................................................. 107
MemoryPoolMXBean.................................................................................................................................................................. 108
MemoryType............................................................................................................................................................................... 109
MemoryUsage............................................................................................................................................................................. 109
OperatingSystemMXBean........................................................................................................................................................... 110
RuntimeMXBean......................................................................................................................................................................... 110
ThreadInfo.................................................................................................................................................................................... 111
ThreadMXBean............................................................................................................................................................................ 112
Package java.lang.ref.................................................................................................................................................................... 113
PhantomReference<T>................................................................................................................................................................ 113
Reference<T>............................................................................................................................................................................... 114
ReferenceQueue<T>.................................................................................................................................................................... 115
SoftReference<T>........................................................................................................................................................................ 116
WeakReference<T>..................................................................................................................................................................... 116
Package java.lang.reflect.............................................................................................................................................................. 117
AccessibleObject.......................................................................................................................................................................... 119
AnnotatedElement...................................................................................................................................................................... 120
Array............................................................................................................................................................................................ 120
Constructor<T>........................................................................................................................................................................... 122
Field............................................................................................................................................................................................. 123
GenericArrayType........................................................................................................................................................................ 125
GenericDeclaration...................................................................................................................................................................... 125
GenericSignatureFormatError.................................................................................................................................................... 126
InvocationHandler...................................................................................................................................................................... 126
InvocationTargetException......................................................................................................................................................... 127
MalformedParameterizedTypeException................................................................................................................................... 128
Member....................................................................................................................................................................................... 128
Method......................................................................................................................................................................................... 129
Modifier....................................................................................................................................................................................... 130
ParameterizedType...................................................................................................................................................................... 131
Proxy............................................................................................................................................................................................ 132
ReflectPermission........................................................................................................................................................................ 133
Type.............................................................................................................................................................................................. 133
TypeVariable<D extends GenericDeclaration>.......................................................................................................................... 134
UndeclaredThrowableException................................................................................................................................................. 135
WildcardType............................................................................................................................................................................... 135

Chapter 10. java.lang and Subpackages

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Chapter 10. java.lang and Subpackages
This chapter covers the java.lang package which defines the core classes and interfaces
that are indispensable to the Java platform and the Java programming language. It also
covers more specialized subpackages:

java.lang.annotation

Defines the Annotation interface that all annotation types extend, and also defines
meta-annotation types and related enumerated types. Added in Java 5.0.

java.lang.instrument

Provides support for Java-based "agents" that can instrument a Java program by
transforming class files as they are loaded. Added in Java 5.0.

java.lang.management

Defines "management bean" interfaces for remote monitoring and management of a
running Java interpreter.

java.lang.ref

Defines "reference" classes that are used to refer to objects without preventing the
garbage collector from reclaiming those objects.

java.lang.reflect

Allows Java programs to examine the members of arbitrary classes, invoking methods,
and querying and setting the value of fields.

Package java.lang

Java 1.0

The java.lang package contains the classes that are most central to the Java language.
Object is the ultimate superclass of all Java classes and is therefore at the top of all class

Chapter 10. java.lang and Subpackages Page 1 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024



hierarchies. Class is a class that describes a Java class. There is one Class object for each
class that is loaded into Java.

Boolean, Character, Byte, Short, Integer, Long, Float, and Double are
immutable class wrappers around each of the primitive Java data types. These classes are
useful when you need to manipulate primitive types as objects. They also contain useful
conversion and utility methods. Void is a related class that defines a representation for
the void method return type, but that defines no methods. String and
StringBuffer are objects that represent strings. String is an immutable type, while
StringBuffer can have its string changed in place. In Java 5.0, StringBuilder is like
StringBuffer but without synchronized methods, which makes it the preferred
choice in most applications. String, StringBuffer and StringBuilder implement
the Java 1.4 interface CharSequence which allows instances of these classes to be
manipulated through a simple shared API.

String and the various primitive type wrapper classes all implement the Comparable
interface which defines an ordering for instances of those classes and enables sorting and
searching algorithms (such as those of java.util.Arrays and
java.util.Collections, for example). Cloneable is an important marker interface
that specifies that the Object.clone( ) method is allowed to make copies of an object.

The Math class (and, in Java 1.3, the StrictMath class) defines static methods for various
floating-point mathematical functions.

The Thread class provides support for multiple threads of control running within the same
Java interpreter. The Runnable  interface is implemented by objects that have a
run( ) method that can serve as the body of a thread.

System provides low-level system methods. Runtime provides similar low-level methods,
including an exec( ) method that, along with the Process class, defines a platform-
dependent API for running external processes.  Java 5.0 allows Process objects to be
created more easily with the ProcessBuilder class.

Throwable is the root class of the exception and error hierarchy. Throwable objects are
used with the Java throw and catch statements. java.lang defines quite a few
subclasses of Throwable. Exception and Error are the superclasses of all exceptions
and errors. RuntimeException defines a special class or "unchecked exceptions" that
do not need to be declared in a method's throws clause. The Throwable class was
overhauled in Java 1.4, adding the ability to "chain" exceptions, and the ability to obtain
the stack trace of an exception as an array of StackTraceElement objects.

Chapter 10. java.lang and Subpackages Page 2 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0 adds three important interfaces to this package. Iterable  marks types that have
an iterator( ) method and enables iteration with the for/in looping statement
introduced in  Java 5.0. The Appendable interface is implemented by classes (such as
StringBuilder and character output streams) that can have characters appended to
them. Implementing this interface enables formatted text output with a
java.util.Formatter . The Readable  interface is implemented by classes (such as
character input streams) that can sequentially copy characters into a buffer. It enables
interaction with a java.util.Scanner.  

Also new in  Java 5.0 is Enum, which serves as the superclass of all enumerated types
declared with the new enum keyword. Deprecated   , Override, and
SuppressWarnings are annotation types that provide metadata for the compiler.

Interfaces

public interface Appendable;
public interface CharSequence;
public interface Cloneable;
public interface Comparable<T>;
public interface Iterable<T>;
public interface Readable;
public interface Runnable;
public interface Thread.UncaughtExceptionHandler;

Enumerated Types

public enum Thread.State;

Annotation Types

public @interface Deprecated;
public @interface Override;
public @interface SuppressWarnings;

Classes

public class Object;
   abstract class AbstractStringBuilder implements Appendable, CharSequence;
      public final class StringBuffer extends AbstractStringBuilder implements 
      CharSequence, Serializable;
      public final class StringBuilder extends AbstractStringBuilder implements 
      CharSequence, Serializable;
   public final class Boolean implements Serializable, Comparable<Boolean>;
   public final class Character implements Serializable, Comparable<Character>;
   public static class Character.Subset;
      public static final class Character.UnicodeBlock extends Character.Subset;
   public final class Class<T> implements Serializable, java.lang.reflect.
      GenericDeclaration, java.lang.reflect.Type, java.lang.reflect.AnnotatedElement;
   public abstract class ClassLoader;
   public final class Compiler;
   public abstract class Enum<E extends Enum<E>> implements Comparable<E>, 
   Serializable;
   public final class Math;
   public abstract class Number implements Serializable;
      public final class Byte extends Number implements Comparable<Byte>;
      public final class Double extends Number implements Comparable<Double>;
      public final class Float extends Number implements Comparable<Float>;
      public final class Integer extends Number implements Comparable<Integer>;
      public final class Long extends Number implements Comparable<Long>;
      public final class Short extends Number implements Comparable<Short>;
   public class Package implements java.lang.reflect.AnnotatedElement;

Chapter 10. java.lang and Subpackages Page 3 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



   public abstract class Process;
   public final class ProcessBuilder;
   public class Runtime;
   public class SecurityManager;
   public final class StackTraceElement implements Serializable;
   public final class StrictMath;
   public final class String implements Serializable, Comparable<String>, CharSequence;
   public final class System;
   public class Thread implements Runnable;
   public class ThreadGroup implements Thread.UncaughtExceptionHandler;
   public class ThreadLocal<T>;
      public class InheritableThreadLocal<T> extends ThreadLocal<T>;
   public class Throwable implements Serializable;
   public final class Void;
public final class RuntimePermission extends java.security.BasicPermission;

Exceptions

public class Exception extends Throwable;
   public class ClassNotFoundException extends Exception;
   public class CloneNotSupportedException extends Exception;
   public class IllegalAccessException extends Exception;
   public class InstantiationException extends Exception;
   public class InterruptedException extends Exception;
   public class NoSuchFieldException extends Exception;
   public class NoSuchMethodException extends Exception;
   public class RuntimeException extends Exception;
      public class ArithmeticException extends RuntimeException;
      public class ArrayStoreException extends RuntimeException;
      public class ClassCastException extends RuntimeException;
      public class EnumConstantNotPresentException extends RuntimeException;
      public class IllegalArgumentException extends RuntimeException;
         public class IllegalThreadStateException extends IllegalArgumentException;
         public class NumberFormatException extends IllegalArgumentException;
      public class IllegalMonitorStateException extends RuntimeException;
      public class IllegalStateException extends RuntimeException;
      public class IndexOutOfBoundsException extends RuntimeException;
         public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException;
         public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException;
      public class NegativeArraySizeException extends RuntimeException;
      public class NullPointerException extends RuntimeException;
      public class SecurityException extends RuntimeException;
      public class TypeNotPresentException extends RuntimeException;
      public class UnsupportedOperationException extends RuntimeException;

Errors

public class Error extends Throwable;
   public class AssertionError extends Error;
   public class LinkageError extends Error;
      public class ClassCircularityError extends LinkageError;
      public class ClassFormatError extends LinkageError;
         public class UnsupportedClassVersionError extends ClassFormatError;
      public class ExceptionInInitializerError extends LinkageError;
      public class IncompatibleClassChangeError extends LinkageError;
         public class AbstractMethodError extends IncompatibleClassChangeError;
         public class IllegalAccessError extends IncompatibleClassChangeError;
         public class InstantiationError extends IncompatibleClassChangeError;
         public class NoSuchFieldError extends IncompatibleClassChangeError;
         public class NoSuchMethodError extends IncompatibleClassChangeError;
      public class NoClassDefFoundError extends LinkageError;
      public class UnsatisfiedLinkError extends LinkageError;
      public class VerifyError extends LinkageError;
   public class ThreadDeath extends Error;
   public abstract class VirtualMachineError extends Error;
      public class InternalError extends VirtualMachineError;
      public class OutOfMemoryError extends VirtualMachineError;
      public class StackOverflowError extends VirtualMachineError;
      public class UnknownError extends VirtualMachineError;

Chapter 10. java.lang and Subpackages Page 4 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



AbstractMethodError java.lang

Java 1.0 serializable error

Signals an attempt to invoke an abstract method.

Figure 10-1. java.lang.AbstractMethodError

public class AbstractMethodError extends IncompatibleClassChangeError {
// Public Constructors
     public AbstractMethodError( );  
     public AbstractMethodError(String s);  
}

AbstractStringBuilder java.lang

Java 5.0 appendable

This package-private class is the abstract superclass of StringBuffer and
StringBuilder. Because this class is not public, you may not use it directly. It is included
in this quick-reference to fully document the shared API of its two subclasses.

Note that many of the methods of this class are declared to return an
AbstractStringBuilder object. StringBuilder and StringBuffer( ) override
those methods and narrow the return type to StringBuilder or StringBuffer. (This
is an example of "covariant returns," which are allowed in Java 5.0 and later.)

Figure 10-2. java.lang.AbstractStringBuilder

abstract class AbstractStringBuilder implements Appendable, CharSequence {
// No Constructor
// Public Instance Methods
     public AbstractStringBuilder append(char[ ] str);  
     public AbstractStringBuilder append(boolean b);  
     public AbstractStringBuilder append(char c);  
     public AbstractStringBuilder append(Object obj);  
     public AbstractStringBuilder append(CharSequence s);  
     public AbstractStringBuilder append(StringBuffer sb);  

Chapter 10. java.lang and Subpackages Page 5 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public AbstractStringBuilder append(String str);  
     public AbstractStringBuilder append(int i);  
     public AbstractStringBuilder append(double d);  
     public AbstractStringBuilder append(float f);  
     public AbstractStringBuilder append(long l);  
     public AbstractStringBuilder append(char[ ] str, int offset, int len);  
     public AbstractStringBuilder append(CharSequence s, int start, int end);  
     public AbstractStringBuilder appendCodePoint(int codePoint);  
     public int capacity( );  
     public int codePointAt(int index);  
     public int codePointBefore(int index);  
     public int codePointCount(int beginIndex, int endIndex);  
     public AbstractStringBuilder delete(int start, int end);  
     public AbstractStringBuilder deleteCharAt(int index);  
     public void ensureCapacity(int minimumCapacity);  
     public void getChars(int srcBegin, int srcEnd, char[ ] dst, int dstBegin);  
     public int indexOf(String str);  
     public int indexOf(String str, int fromIndex);  
     public AbstractStringBuilder insert(int offset, char c);  
     public AbstractStringBuilder insert(int offset, boolean b);  
     public AbstractStringBuilder insert(int dstOffset, CharSequence s);  
     public AbstractStringBuilder insert(int offset, int i);  
     public AbstractStringBuilder insert(int offset, double d);  
     public AbstractStringBuilder insert(int offset, float f);  
     public AbstractStringBuilder insert(int offset, long l);  
     public AbstractStringBuilder insert(int offset, char[ ] str);  
     public AbstractStringBuilder insert(int offset, Object obj);  
     public AbstractStringBuilder insert(int offset, String str);  
     public AbstractStringBuilder insert(int index, char[ ] str, int offset, int len);  
     public AbstractStringBuilder insert(int dstOffset, CharSequence s, int start, int end);  
     public int lastIndexOf(String str);  
     public int lastIndexOf(String str, int fromIndex);  
     public int offsetByCodePoints(int index, int codePointOffset);  
     public AbstractStringBuilder replace(int start, int end, String str);  
     public AbstractStringBuilder reverse( );  
     public void setCharAt(int index, char ch);  
     public void setLength(int newLength);  
     public String substring(int start);  
     public String substring(int start, int end);  
     public void trimToSize( );  
// Methods Implementing CharSequence
     public char charAt(int index);  
     public int length( );  
     public CharSequence subSequence(int start, int end);  
     public abstract String toString( );  
}

Subclasses

StringBuffer, StringBuilder
Returned By

Too many methods to list.

Appendable java.lang

Java 5.0 appendable

Objects that implement this interface can have characters or character sequences
appended to them. Appendable was added in Java 5.0 as a simple unifying API for
StringBuffer and StringBuilder, java.nio.CharBuffer, and character output

Chapter 10. java.lang and Subpackages Page 6 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



stream subclasses of java.io.Writer. The java.util.Formatter class can send
formatted output to any Appendable object. See also Readable.

public interface Appendable {
// Public Instance Methods
     Appendable append(char c) throws java.io.IOException;  
     Appendable append(CharSequence csq) throws java.io.IOException;  
     Appendable append(CharSequence csq, int start, int end) throws java.io.IOException;  
}

Implementations

java.io.PrintStream, java.io.Writer, java.nio.CharBuffer
Passed To

java.util.Formatter.Formatter( )
Returned By

Too many methods to list.

ArithmeticException java.lang

Java 1.0 serializable unchecked

A RuntimeException that signals an exceptional arithmetic condition, such as integer
division by zero.

Figure 10-3. java.lang.ArithmeticException

public class ArithmeticException extends RuntimeException {
// Public Constructors
     public ArithmeticException( );  
     public ArithmeticException(String s);  
}

ArrayIndexOutOfBoundsException java.lang

Java 1.0 serializable unchecked

Signals that an array index less than zero or greater than or equal to the array size has been
used.

Chapter 10. java.lang and Subpackages Page 7 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-4. java.lang.ArrayIndexOutOfBoundsException

public class ArrayIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors
     public ArrayIndexOutOfBoundsException( );  
     public ArrayIndexOutOfBoundsException(String s);  
     public ArrayIndexOutOfBoundsException(int index);  
}

Thrown By

Too many methods to list.

ArrayStoreException java.lang

Java 1.0 serializable unchecked

Signals an attempt to store the wrong type of object into an array.

Figure 10-5. java.lang.ArrayStoreException

public class ArrayStoreException extends RuntimeException {
// Public Constructors
     public ArrayStoreException( );  
     public ArrayStoreException(String s);  
}

AssertionError java.lang

Java 1.4 serializable error

An instance of this class is thrown if when an assertion fails. This happens when assertions
are enabled, and the expression following an assert statement does not evaluate to
true. If an assertion fails, and the assert statement has a second expression separated
from the first by a colon, then the second expression is evaluated and the resulting value
is passed to the AssertionError( ) constructor, where it is converted to a string and
used as the error message.

Chapter 10. java.lang and Subpackages Page 8 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-6. java.lang.AssertionError

public class AssertionError extends Error {
// Public Constructors
     public AssertionError( );  
     public AssertionError(long detailMessage);  
     public AssertionError(float detailMessage);  
     public AssertionError(double detailMessage);  
     public AssertionError(int detailMessage);  
     public AssertionError(Object detailMessage);  
     public AssertionError(boolean detailMessage);  
     public AssertionError(char detailMessage);  
}

Boolean java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around the boolean primitive type. Note
that the TRUE and FALSE constants are Boolean objects; they are not the same as the
true and false boolean values. As of Java 1.1, this class defines a Class constant that
represents the boolean type. booleanValue( ) returns the boolean value of a
Boolean object. The class method getBoolean( ) retrieves the boolean value of a
named property from the system property list. The static method valueOf( ) parses a
string and returns the Boolean object it represents. Java 1.4 added two static methods
that convert primitive boolean values to Boolean and String objects. In Java 5.0, the
parseBoolean( ) method behaves like valueOf( ) but returns a primitive
boolean value instead of a Boolean object.

Prior to Java 5.0, this class does not implement the Comparable interface.

Figure 10-7. java.lang.Boolean

public final class Boolean implements Serializable, Comparable<Boolean> {
// Public Constructors
     public Boolean(String s);  
     public Boolean(boolean value);  
// Public Constants
     public static final Boolean FALSE;  
     public static final Boolean TRUE;  
1.1  public static final Class<Boolean> TYPE;  
// Public Class Methods

Chapter 10. java.lang and Subpackages Page 9 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static boolean getBoolean(String name);  
5.0  public static boolean parseBoolean(String s);  
1.4  public static String toString(boolean b);  
1.4  public static Boolean valueOf(boolean b);  
     public static Boolean valueOf(String s);  
// Public Instance Methods
     public boolean booleanValue( );  
// Methods Implementing Comparable
5.0  public int compareTo(Boolean b);  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Byte java.lang

Java 1.1 serializable comparable

This class provides an immutable object wrapper around the byte primitive type. It
defines useful constants for the minimum and maximum values that can be stored by the
byte type and a Class object constant that represents the byte type. It also provides
various methods for converting Byte values to and from strings and other numeric types.

Most of the static methods of this class can convert a String to a Byte object or a byte
value: the four parseByte( ) and valueOf( ) methods parse a number from the
specified string using an optionally specified radix and return it in one of these two forms.
The decode( ) method parses a byte specified in base 10, base 8, or base 16 and returns
it as a Byte. If the string begins with "0x" or "#", it is interpreted as a hexadecimal number.
If it begins with "0", it is interpreted as an octal number. Otherwise, it is interpreted as a
decimal number.

Note that this class has two toString( ) methods. One is static and converts a byte
primitive value to a string; the other is the usual toString( ) method that converts a
Byte object to a string. Most of the remaining methods convert a Byte to various primitive
numeric types.

Figure 10-8. java.lang.Byte

public final class Byte extends Number implements Comparable<Byte> {
// Public Constructors
     public Byte(byte value);  
     public Byte(String s) throws NumberFormatException;  
// Public Constants

Chapter 10. java.lang and Subpackages Page 10 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static final byte MAX_VALUE;   =127
     public static final byte MIN_VALUE;   =-128
5.0  public static final int SIZE;     =8
     public static final Class<Byte> TYPE;  
// Public Class Methods
     public static Byte decode(String nm) throws NumberFormatException;  
     public static byte parseByte(String s) throws NumberFormatException;  
     public static byte parseByte(String s, int radix) throws NumberFormatException;  
     public static String toString(byte b);  
     public static Byte valueOf(String s) throws NumberFormatException;  
5.0  public static Byte valueOf(byte b);  
     public static Byte valueOf(String s, int radix) throws NumberFormatException;  
// Methods Implementing Comparable
1.2  public int compareTo(Byte anotherByte);  
// Public Methods Overriding Number
     public byte byteValue( );  
     public double doubleValue( );  
     public float floatValue( );  yu
     public int intValue( );  
     public long longValue( );  
     public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Character java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around the primitive char data type.
charValue( ) returns the char value of a Character object. The compareTo( )
method implements the Comparable interface so that Character objects can be ordered
and sorted. The static methods are the most interesting thing about this class, however:
they categorize char values based on the categories defined by the Unicode standard.
(Some of the methods are only useful if you have a detailed understanding of that
standard.) Static methods beginning with "is" test whether a character is in a given
category. isDigit( )    , isLetter( ), isWhitespace( ), isUpperCase( ) and
isLowerCase( ) are some of the most useful. Note that these methods work for any
Unicode character, not just with the familiar Latin letters and Arabic numbers of the ASCII
character set. getType( ) returns a constant that identifies the category of a character.
getDirectionality( )  returns a separate DIRECTIONALITY_ constant that specifies
the "directionality category" of a character.

In addition to testing the category of a character, this class also defines static methods for
converting characters. toUpperCase( )  returns the uppercase equivalent of the
specified character (or returns the character itself if the character is uppercase or has no
uppercase equivalent). toLowerCase( ) converts instead to lowercase. digit( )

Chapter 10. java.lang and Subpackages Page 11 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



returns the integer equivalent of a given character in a given radix (or base; for example,
use 16 for hexadecimal). It works with any Unicode digit character, and also (for sufficiently
large radix values) the ASCII letters a-z and A-Z. forDigit( ) returns the ASCII
character that corresponds to the specified value (0-35) for the specified radix.
getNumericValue( ) is similar, but also works with any Unicode character including
those, such as Roman numerals, that represent numbers but are not decimal digits. Finally,
the static toString( )  method returns a String of length 1 that contains the specified
char value.

Java 5.0  introduces many new methods to this class to accommodate Unicode
supplementary characters that use 21 bits and do not fit in a single char value. The two
representations for these supplementary characters are as an int codepoint in the range
0 through 0x10ffff, or as a sequence of two char values known as a "surrogate pair." The
first char of such a pair should fall in the "high surrogate" range and the second char
should fall in the "low surrogate" range. toChars( ) converts an int codepoint into one
or two char values. toCodePoint( )  , codePointAt( ), and
codePointBefore( ) convert one or two char values into the corresponding int value.
codePointCount( ) returns the number of characters in a char array or
CharSequence, counting surrogate pairs as a single supplementary character.
offsetByCodePoints( ) tells you how many char indexes to advance in a run of text
if you want to skip over the specified number of code points. Finally, the various character
type testing and case conversion methods such as isWhitespace( ) and
toUpperCase( ) are available in new versions that take an int codepoint argument
instead of a single char argument.

Figure 10-9. java.lang.Character

public final class Character implements Serializable, Comparable<Character> {
// Public Constructors
     public Character(char value);  
// Public Constants
1.1  public static final byte COMBINING_SPACING_MARK;                =8
1.1  public static final byte CONNECTOR_PUNCTUATION;                 =23
1.1  public static final byte CONTROL; =15
1.1  public static final byte CURRENCY_SYMBOL;                       =26
1.1  public static final byte DASH_PUNCTUATION;                      =20
1.1  public static final byte DECIMAL_DIGIT_NUMBER;                  =9
1.4  public static final byte DIRECTIONALITY_ARABIC_NUMBER;          =6
1.4  public static final byte DIRECTIONALITY_BOUNDARY_NEUTRAL;       =9
1.4  public static final byte DIRECTIONALITY_COMMON_NUMBER_SEPARATOR;     =7
1.4  public static final byte DIRECTIONALITY_EUROPEAN_NUMBER;        =3
1.4  public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_SEPARATOR;     =4
1.4  public static final byte DIRECTIONALITY_EUROPEAN_NUMBER_TERMINATOR;     =5
1.4  public static final byte DIRECTIONALITY_LEFT_TO_RIGHT;          =0
1.4  public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_EMBEDDING;     =14
1.4  public static final byte DIRECTIONALITY_LEFT_TO_RIGHT_OVERRIDE;     =15
1.4  public static final byte DIRECTIONALITY_NONSPACING_MARK;        =8

Chapter 10. java.lang and Subpackages Page 12 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



1.4  public static final byte DIRECTIONALITY_OTHER_NEUTRALS;         =13
1.4  public static final byte DIRECTIONALITY_PARAGRAPH_SEPARATOR;     =10
1.4  public static final byte DIRECTIONALITY_POP_DIRECTIONAL_FORMAT;     =18
1.4  public static final byte DIRECTIONALITY_RIGHT_TO_LEFT;          =1
1.4  public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_ARABIC;     =2
1.4  public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_EMBEDDING;     =16
1.4  public static final byte DIRECTIONALITY_RIGHT_TO_LEFT_OVERRIDE;     =17
1.4  public static final byte DIRECTIONALITY_SEGMENT_SEPARATOR;      =11
1.4  public static final byte DIRECTIONALITY_UNDEFINED;              =-1
1.4  public static final byte DIRECTIONALITY_WHITESPACE;             =12
1.1  public static final byte ENCLOSING_MARK;                        =7
1.1  public static final byte END_PUNCTUATION;                       =22
1.4  public static final byte FINAL_QUOTE_PUNCTUATION;               =30
1.1  public static final byte FORMAT;  =16
1.4  public static final byte INITIAL_QUOTE_PUNCTUATION;             =29
1.1  public static final byte LETTER_NUMBER;                         =10
1.1  public static final byte LINE_SEPARATOR;                        =13
1.1  public static final byte LOWERCASE_LETTER;                      =2
1.1  public static final byte MATH_SYMBOL;                           =25
5.0  public static final int MAX_CODE_POINT;                         =1114111
5.0  public static final char MAX_HIGH_SURROGATE;                    = \uDBFF 
5.0  public static final char MAX_LOW_SURROGATE;                     = \uDFFF 
     public static final int MAX_RADIX;    =36
5.0  public static final char MAX_SURROGATE;                         = \uDFFF 
     public static final char MAX_VALUE;   = \uFFFF 
5.0  public static final int MIN_CODE_POINT;                         =0
5.0  public static final char MIN_HIGH_SURROGATE;                    = \uD800 
5.0  public static final char MIN_LOW_SURROGATE;                     = \uDC00 
     public static final int MIN_RADIX;    =2
5.0  public static final int MIN_SUPPLEMENTARY_CODE_POINT;           =65536
5.0  public static final char MIN_SURROGATE;                         = \uD800 
     public static final char MIN_VALUE;   = \0 
1.1  public static final byte MODIFIER_LETTER;                       =4
1.1  public static final byte MODIFIER_SYMBOL;                       =27
1.1  public static final byte NON_SPACING_MARK;                      =6
1.1  public static final byte OTHER_LETTER;                          =5
1.1  public static final byte OTHER_NUMBER;                          =11
1.1  public static final byte OTHER_PUNCTUATION;                     =24
1.1  public static final byte OTHER_SYMBOL;                          =28
1.1  public static final byte PARAGRAPH_SEPARATOR;                   =14
1.1  public static final byte PRIVATE_USE;                           =18
5.0  public static final int SIZE;     =16
1.1  public static final byte SPACE_SEPARATOR;                       =12
1.1  public static final byte START_PUNCTUATION;                     =21
1.1  public static final byte SURROGATE;                             =19
1.1  public static final byte TITLECASE_LETTER;                      =3
1.1  public static final Class<Character> TYPE;  
1.1  public static final byte UNASSIGNED;                            =0
1.1  public static final byte UPPERCASE_LETTER;                      =1
// Nested Types
1.2  public static class Subset; 
1.2  public static final class UnicodeBlock extends Character.Subset; 
// Public Class Methods
5.0  public static int charCount(int codePoint);  
5.0  public static int codePointAt(char[ ] a, int index);  
5.0  public static int codePointAt(CharSequence seq, int index);  
5.0  public static int codePointAt(char[ ] a, int index, int limit);  
5.0  public static int codePointBefore(CharSequence seq, int index);  
5.0  public static int codePointBefore(char[ ] a, int index);  
5.0  public static int codePointBefore(char[ ] a, int index, int start);  
5.0  public static int codePointCount(char[ ] a, int offset, int count);  
5.0  public static int codePointCount(CharSequence seq, int beginIndex, int endIndex);  
5.0  public static int digit(int codePoint, int radix);  
     public static int digit(char ch, int radix);  
     public static char forDigit(int digit, int radix);  
1.4  public static byte getDirectionality(char ch);  
5.0  public static byte getDirectionality(int codePoint);  
1.1  public static int getNumericValue(char ch);  
5.0  public static int getNumericValue(int codePoint);  
1.1  public static int getType(char ch);  
5.0  public static int getType(int codePoint);  
5.0  public static boolean isDefined(int codePoint);  

Chapter 10. java.lang and Subpackages Page 13 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static boolean isDefined(char ch);  
5.0  public static boolean isDigit(int codePoint);  
     public static boolean isDigit(char ch);  
5.0  public static boolean isHighSurrogate(char ch);  
5.0  public static boolean isIdentifierIgnorable(int codePoint);  
1.1  public static boolean isIdentifierIgnorable(char ch);  
1.1  public static boolean isISOControl(char ch);  
5.0  public static boolean isISOControl(int codePoint);  
1.1  public static boolean isJavaIdentifierPart(char ch);  
5.0  public static boolean isJavaIdentifierPart(int codePoint);  
1.1  public static boolean isJavaIdentifierStart(char ch);  
5.0  public static boolean isJavaIdentifierStart(int codePoint);  
     public static boolean isLetter(char ch);  
5.0  public static boolean isLetter(int codePoint);  
     public static boolean isLetterOrDigit(char ch);  
5.0  public static boolean isLetterOrDigit(int codePoint);  
5.0  public static boolean isLowerCase(int codePoint);  
     public static boolean isLowerCase(char ch);  
5.0  public static boolean isLowSurrogate(char ch);  
5.0  public static boolean isMirrored(int codePoint);  
1.4  public static boolean isMirrored(char ch);  
5.0  public static boolean isSpaceChar(int codePoint);  
1.1  public static boolean isSpaceChar(char ch);  
5.0  public static boolean isSupplementaryCodePoint(int codePoint);  
5.0  public static boolean isSurrogatePair(char high, char low);  
     public static boolean isTitleCase(char ch);  
5.0  public static boolean isTitleCase(int codePoint);  
1.1  public static boolean isUnicodeIdentifierPart(char ch);  
5.0  public static boolean isUnicodeIdentifierPart(int codePoint);  
5.0  public static boolean isUnicodeIdentifierStart(int codePoint);  
1.1  public static boolean isUnicodeIdentifierStart(char ch);  
     public static boolean isUpperCase(char ch);  
5.0  public static boolean isUpperCase(int codePoint);  
5.0  public static boolean isValidCodePoint(int codePoint);  
5.0  public static boolean isWhitespace(int codePoint);  
1.1  public static boolean isWhitespace(char ch);  
5.0  public static int offsetByCodePoints(CharSequence seq, int index, 
      int codePointOffset);  
5.0  public static int offsetByCodePoints(char[ ] a, int start, int count, 
      int index, int codePointOffset);  
5.0  public static char reverseBytes(char ch);  
5.0  public static char[ ] toChars(int codePoint);  
5.0  public static int toChars(int codePoint, char[ ] dst, int dstIndex);  
5.0  public static int toCodePoint(char high, char low);  
     public static char toLowerCase(char ch);  
5.0  public static int toLowerCase(int codePoint);  
1.4  public static String toString(char c);  
     public static char toTitleCase(char ch);  
5.0  public static int toTitleCase(int codePoint);  
     public static char toUpperCase(char ch);  
5.0  public static int toUpperCase(int codePoint);  
5.0  public static Character valueOf(char c);  
// Public Instance Methods
     public char charValue( );  
// Methods Implementing Comparable
1.2  public int compareTo(Character anotherCharacter);  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
// Deprecated Public Methods
#    public static boolean isJavaLetter(char ch);  
#    public static boolean isJavaLetterOrDigit(char ch);  
#    public static boolean isSpace(char ch);  
}

Chapter 10. java.lang and Subpackages Page 14 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Character.Subset java.lang

Java 1.2

This class represents a named subset of the Unicode character set. The toString( )
method returns the name of the subset. This is a base class intended for further subclassing.
Note, in particular, that it does not provide a way to list the members of the subset, nor a
way to test for membership in the subset. See Character.UnicodeBlock.

public static class Character.Subset {
// Protected Constructors
     protected Subset(String name);  
// Public Methods Overriding Object
     public final boolean equals(Object obj);  
     public final int hashCode( );  
     public final String toString( );  
}

Subclasses

Character.UnicodeBlock

Character.UnicodeBlock java.lang

Java 1.2

This subclass of Character.Subset defines a number of constants that represent named
subsets of the Unicode character set. The subsets and their names are the character blocks
defined by the Unicode specification (see http://www.unicode.org/). Java 1.4 and 5.0 both
update this class to a new version of the Unicode standard and define a number of new
block constants. The static method of( ) takes a character or int codepoint and returns
the Character.UnicodeBlock to which it belongs, or null if it is not part of any defined
block. When presented with an unknown Unicode character, this method provides a useful
way to determine what alphabet it belongs to. In Java 5.0, the forName( ) factory method
allows lookup of a UnicodeBlock by name.

public static final class Character.UnicodeBlock extends Character.Subset {
// No Constructor
// Public Constants
5.0  public static final Character.UnicodeBlock AEGEAN_NUMBERS;  
     public static final Character.UnicodeBlock ALPHABETIC_PRESENTATION_FORMS;  
     public static final Character.UnicodeBlock ARABIC;  
     public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_A;  
     public static final Character.UnicodeBlock ARABIC_PRESENTATION_FORMS_B;  
     public static final Character.UnicodeBlock ARMENIAN;  
     public static final Character.UnicodeBlock ARROWS;  
     public static final Character.UnicodeBlock BASIC_LATIN;  
     public static final Character.UnicodeBlock BENGALI;  
     public static final Character.UnicodeBlock BLOCK_ELEMENTS;  

Chapter 10. java.lang and Subpackages Page 15 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.unicode.org/


     public static final Character.UnicodeBlock BOPOMOFO;  
1.4  public static final Character.UnicodeBlock BOPOMOFO_EXTENDED;  
     public static final Character.UnicodeBlock BOX_DRAWING;  
1.4  public static final Character.UnicodeBlock BRAILLE_PATTERNS;  
5.0  public static final Character.UnicodeBlock BUHID;  
5.0  public static final Character.UnicodeBlock BYZANTINE_MUSICAL_SYMBOLS;  
1.4  public static final Character.UnicodeBlock CHEROKEE;  
     public static final Character.UnicodeBlock CJK_COMPATIBILITY;  
     public static final Character.UnicodeBlock CJK_COMPATIBILITY_FORMS;  
     public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS;  
5.0  public static final Character.UnicodeBlock CJK_COMPATIBILITY_IDEOGRAPHS_SUPPLEMENT;  
1.4  public static final Character.UnicodeBlock CJK_RADICALS_SUPPLEMENT;  
     public static final Character.UnicodeBlock CJK_SYMBOLS_AND_PUNCTUATION;  
     public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS;  
1.4  public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_A;  
5.0  public static final Character.UnicodeBlock CJK_UNIFIED_IDEOGRAPHS_EXTENSION_B;  
     public static final Character.UnicodeBlock COMBINING_DIACRITICAL_MARKS;  
     public static final Character.UnicodeBlock COMBINING_HALF_MARKS;  
     public static final Character.UnicodeBlock COMBINING_MARKS_FOR_SYMBOLS;  
     public static final Character.UnicodeBlock CONTROL_PICTURES;  
     public static final Character.UnicodeBlock CURRENCY_SYMBOLS;  
5.0  public static final Character.UnicodeBlock CYPRIOT_SYLLABARY;  
     public static final Character.UnicodeBlock CYRILLIC;  
5.0  public static final Character.UnicodeBlock CYRILLIC_SUPPLEMENTARY;  
5.0  public static final Character.UnicodeBlock DESERET;  
     public static final Character.UnicodeBlock DEVANAGARI;  
     public static final Character.UnicodeBlock DINGBATS;  
     public static final Character.UnicodeBlock ENCLOSED_ALPHANUMERICS;  
     public static final Character.UnicodeBlock ENCLOSED_CJK_LETTERS_AND_MONTHS;  
1.4  public static final Character.UnicodeBlock ETHIOPIC;  
     public static final Character.UnicodeBlock GENERAL_PUNCTUATION;  
     public static final Character.UnicodeBlock GEOMETRIC_SHAPES;  
     public static final Character.UnicodeBlock GEORGIAN;  
5.0  public static final Character.UnicodeBlock GOTHIC;  
     public static final Character.UnicodeBlock GREEK;  
     public static final Character.UnicodeBlock GREEK_EXTENDED;  
     public static final Character.UnicodeBlock GUJARATI;  
     public static final Character.UnicodeBlock GURMUKHI;  
     public static final Character.UnicodeBlock HALFWIDTH_AND_FULLWIDTH_FORMS;  
     public static final Character.UnicodeBlock HANGUL_COMPATIBILITY_JAMO;  
     public static final Character.UnicodeBlock HANGUL_JAMO;  
     public static final Character.UnicodeBlock HANGUL_SYLLABLES;  
5.0  public static final Character.UnicodeBlock HANUNOO;  
     public static final Character.UnicodeBlock HEBREW;  
5.0  public static final Character.UnicodeBlock HIGH_PRIVATE_USE_SURROGATES;  
5.0  public static final Character.UnicodeBlock HIGH_SURROGATES;  
     public static final Character.UnicodeBlock HIRAGANA;  
1.4  public static final Character.UnicodeBlock IDEOGRAPHIC_DESCRIPTION_CHARACTERS;  
     public static final Character.UnicodeBlock IPA_EXTENSIONS;  
     public static final Character.UnicodeBlock KANBUN;  
1.4  public static final Character.UnicodeBlock KANGXI_RADICALS;  
     public static final Character.UnicodeBlock KANNADA;  
     public static final Character.UnicodeBlock KATAKANA;  
5.0  public static final Character.UnicodeBlock KATAKANA_PHONETIC_EXTENSIONS;  
1.4  public static final Character.UnicodeBlock KHMER;  
5.0  public static final Character.UnicodeBlock KHMER_SYMBOLS;  
     public static final Character.UnicodeBlock LAO;  
     public static final Character.UnicodeBlock LATIN_1_SUPPLEMENT;  
     public static final Character.UnicodeBlock LATIN_EXTENDED_A;  
     public static final Character.UnicodeBlock LATIN_EXTENDED_ADDITIONAL;  
     public static final Character.UnicodeBlock LATIN_EXTENDED_B;  
     public static final Character.UnicodeBlock LETTERLIKE_SYMBOLS;  
5.0  public static final Character.UnicodeBlock LIMBU;  
5.0  public static final Character.UnicodeBlock LINEAR_B_IDEOGRAMS;  
5.0  public static final Character.UnicodeBlock LINEAR_B_SYLLABARY;  
5.0  public static final Character.UnicodeBlock LOW_SURROGATES;  
     public static final Character.UnicodeBlock MALAYALAM;  
5.0  public static final Character.UnicodeBlock MATHEMATICAL_ALPHANUMERIC_SYMBOLS;  
     public static final Character.UnicodeBlock MATHEMATICAL_OPERATORS;  
5.0  public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_A;  
5.0  public static final Character.UnicodeBlock MISCELLANEOUS_MATHEMATICAL_SYMBOLS_B;  
     public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS;  

Chapter 10. java.lang and Subpackages Page 16 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



5.0  public static final Character.UnicodeBlock MISCELLANEOUS_SYMBOLS_AND_ARROWS;  
     public static final Character.UnicodeBlock MISCELLANEOUS_TECHNICAL;  
1.4  public static final Character.UnicodeBlock MONGOLIAN;  
5.0  public static final Character.UnicodeBlock MUSICAL_SYMBOLS;  
1.4  public static final Character.UnicodeBlock MYANMAR;  
     public static final Character.UnicodeBlock NUMBER_FORMS;  
1.4  public static final Character.UnicodeBlock OGHAM;  
5.0  public static final Character.UnicodeBlock OLD_ITALIC;  
     public static final Character.UnicodeBlock OPTICAL_CHARACTER_RECOGNITION;  
     public static final Character.UnicodeBlock ORIYA;  
5.0  public static final Character.UnicodeBlock OSMANYA;  
5.0  public static final Character.UnicodeBlock PHONETIC_EXTENSIONS;  
     public static final Character.UnicodeBlock PRIVATE_USE_AREA;  
1.4  public static final Character.UnicodeBlock RUNIC;  
5.0  public static final Character.UnicodeBlock SHAVIAN;  
1.4  public static final Character.UnicodeBlock SINHALA;  
     public static final Character.UnicodeBlock SMALL_FORM_VARIANTS;  
     public static final Character.UnicodeBlock SPACING_MODIFIER_LETTERS;  
     public static final Character.UnicodeBlock SPECIALS;  
     public static final Character.UnicodeBlock SUPERSCRIPTS_AND_SUBSCRIPTS;  
5.0  public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_A;  
5.0  public static final Character.UnicodeBlock SUPPLEMENTAL_ARROWS_B;  
5.0  public static final Character.UnicodeBlock SUPPLEMENTAL_MATHEMATICAL_OPERATORS;  
5.0  public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_A;  
5.0  public static final Character.UnicodeBlock SUPPLEMENTARY_PRIVATE_USE_AREA_B;  
1.4  public static final Character.UnicodeBlock SYRIAC;  
5.0  public static final Character.UnicodeBlock TAGALOG;  
5.0  public static final Character.UnicodeBlock TAGBANWA;  
5.0  public static final Character.UnicodeBlock TAGS;  
5.0  public static final Character.UnicodeBlock TAI_LE;  
5.0  public static final Character.UnicodeBlock TAI_XUAN_JING_SYMBOLS;  
     public static final Character.UnicodeBlock TAMIL;  
     public static final Character.UnicodeBlock TELUGU;  
1.4  public static final Character.UnicodeBlock THAANA;  
     public static final Character.UnicodeBlock THAI;  
     public static final Character.UnicodeBlock TIBETAN;  
5.0  public static final Character.UnicodeBlock UGARITIC;  
1.4  public static final Character.UnicodeBlock UNIFIED_CANADIAN_ABORIGINAL_SYLLABICS;  
5.0  public static final Character.UnicodeBlock VARIATION_SELECTORS;  
5.0  public static final Character.UnicodeBlock VARIATION_SELECTORS_SUPPLEMENT;  
1.4  public static final Character.UnicodeBlock YI_RADICALS;  
1.4  public static final Character.UnicodeBlock YI_SYLLABLES;  
5.0  public static final Character.UnicodeBlock YIJING_HEXAGRAM_SYMBOLS;  
// Public Class Methods
5.0  public static final Character.UnicodeBlock forName(String blockName);  
5.0  public static Character.UnicodeBlock of(int codePoint);  
     public static Character.UnicodeBlock of(char c);  
// Deprecated Public Fields
#    public static final Character.UnicodeBlock SURROGATES_AREA;  
}

CharSequence java.lang

Java 1.4

This interface defines a simple API for read-only access to sequences of characters. In the
core platform it is implemented by the String, StringBuffer and
java.nio.CharBuffer classes. charAt( ) returns the character at a specified position
in the sequence. length( ) returns the number of characters in the sequence.
subSequence( ) returns a CharSequence that consists of the characters starting at,

Chapter 10. java.lang and Subpackages Page 17 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



and including, the specified start index, and continuing up to, but not including the
specified end index. Finally, toString( ) returns a String version of the sequence.

Note that CharSequence implementations do not typically have interoperable
equals( ) or hashCode( ) methods, and it is not usually possible to compare two
CharSequence objects or use multiple sequences in a set or hashtable unless they are
instances of the same implementing class.

public interface CharSequence {
// Public Instance Methods
     char charAt(int index);  
     int length( );  
     CharSequence subSequence(int start, int end);  
     String toString( );  
}

Implementations

String, StringBuffer, StringBuilder, java.nio.CharBuffer
Passed To

Too many methods to list.
Returned By

String.subSequence( ), StringBuffer.subSequence( ),
java.nio.CharBuffer.subSequence( )

Class<T> java.lang

Java 1.0 serializable

This class represents a Java type. There is one Class object for each class that is loaded
into the Java Virtual Machine, and, as of Java 1.1, there are special Class objects that
represent the Java primitive types. The TYPE constants defined by Boolean, Integer,
and the other primitive wrapper classes hold these special Class objects. Array types are
also represented by Class objects in Java 1.1.

There is no constructor for this class. You can obtain a Class object by calling the
getClass( ) method of any instance of the desired class. In Java 1.1 and later, you can
also refer to a Class object by appending .class to the name of a class. Finally, and most
interestingly, a class can be dynamically loaded by passing its fully qualified name (i.e.,
package name plus class name) to the static Class.forName( ) method. This method
loads the named class (if it is not already loaded) into the Java interpreter and returns a
Class object for it. Classes can also be loaded with a ClassLoader object.

Chapter 10. java.lang and Subpackages Page 18 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



The newInstance( ) method creates an instance of a given class; this allows you to
create instances of dynamically loaded classes for which you cannot use the new keyword.
Note that this method works only when the target class has a no-argument constructor.
See newInstance( ) in java.lang.reflect.Constructor for a more powerful way
to instantiate dynamically loaded classes. In  Java 5.0, Class is a generic type and the
type variable T specifies the type that is returned by the newInstance( ) method.

getName( ) returns the name of the class. getSuperclass( ) returns its superclass.
isInterface( ) tests whether the Class object represents an interface, and
getInterfaces( ) returns an array of the interfaces that this class implements. In Java
1.2 and later, getPackage( ) returns a Package object that represents the package
containing the class. getProtectionDomain( ) returns the
java.security.ProtectionDomain to which this class belongs. The various other
get( ) and is( ) methods return other information about the represented class; they
form part of the Java Reflection API, along with the classes in java.lang.reflect.

Java 5.0 adds a number of methods to support the new language features it defines.
isAnnotation( )  tests whether a type is an annotation type. Class implements
java.lang.reflect.AnnotatedElement in Java 5.0 and the getAnnotation( )
and related methods allow the retrieval of annotations (with runtime retention) on the
class. isEnum( )  tests whether a Class object represents an enumerated type and
getEnumConstants( )  returns an array of the constants defined by an enumerated
type. getTypeParameters( ) returns the type variables declared by a generic type.
getGenericSuperclass( ) and getGenericInterfaces( ) are the generic
variants of the getSuperclass( ) and getInterfaces( ) methods, returning the
generic type information that appears in the extends and implements clause of the class
declaration. See java.lang.reflect.Type for more information.

Java 5.0 also adds methods that are useful for reflection on inner classes.
isMemberClass( )  , isLocalClass( ), and isAnonymousClass( ) determine
whether a Class represents one of these kinds of nested types.
getEnclosingClass( )  , getEnclosingMethod( ), and
getEnclosingConstructor( ) return the type, method, or constructor that an inner
class is nested within. Finally, getSimpleName( )  returns the name of a type as it would
appear in Java source code. This is typically more useful than the Java VM formatted names
returned by getName( ).

Chapter 10. java.lang and Subpackages Page 19 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-10. java.lang.Class<T>

public final class Class<T> 
        implements Serializable, java.lang.reflect.GenericDeclaration,
        java.lang.reflect.Type, java.lang.reflect.AnnotatedElement {
// No Constructor
// Public Class Methods
     public static Class<?> forName(String className) 
     throws ClassNotFoundException;  
1.2  public static Class<?> forName(String name, boolean initialize, 
        ClassLoader loader) throws ClassNotFoundException;  
// Public Instance Methods
5.0  public <U> Class<? extends U> asSubclass(Class<U> clazz);  
5.0  public T cast(Object obj);  
1.4  public boolean desiredAssertionStatus( );  
5.0  public String getCanonicalName( );  
1.1  public Class[ ] getClasses( );  
     public ClassLoader getClassLoader( );  
1.1  public Class<?> getComponentType( );                     native
1.1  public java.lang.reflect.Constructor<T> getConstructor(Class ... 
        parameterTypes) throws NoSuchMethodException, SecurityException  
1.1  public java.lang.reflect.Constructor[ ] getConstructors( ) 
        throws SecurityException;  
1.1  public Class[ ] getDeclaredClasses( ) 
        throws SecurityException;  
1.1  public java.lang.reflect.Constructor<T> getDeclaredConstructor(Class ... 
parameterTypes) throws NoSuchMethodException, SecurityException;  
1.1  public java.lang.reflect.Constructor[ ] getDeclaredConstructors( ) 
        throws SecurityException;  
1.1  public java.lang.reflect.Field getDeclaredField(String name) 
        throws NoSuchFieldException, SecurityException;  
1.1  public java.lang.reflect.Field[ ] getDeclaredFields( ) 
        throws SecurityException;  
1.1  public java.lang.reflect.Method getDeclaredMethod(String name, Class... 
parameterTypes) throws NoSuchMethodException, SecurityException;  
1.1  public java.lang.reflect.Method[ ] getDeclaredMethods( ) 
        throws SecurityException;  
1.1  public Class<?> getDeclaringClass( );                    native
5.0  public Class<?> getEnclosingClass( );  
5.0  public java.lang.reflect.Constructor<?> getEnclosingConstructor( );  
5.0  public java.lang.reflect.Method getEnclosingMethod( );  
5.0  public T[ ] getEnumConstants( );  
1.1  public java.lang.reflect.Field getField(String name) 
        throws NoSuchFieldException, SecurityException;  
1.1  public java.lang.reflect.Field[ ] getFields( ) throws SecurityException;  
5.0  public java.lang.reflect.Type[ ] getGenericInterfaces( );  
5.0  public java.lang.reflect.Type getGenericSuperclass( );  
     public Class[ ] getInterfaces( );                             native
1.1  public java.lang.reflect.Method getMethod(String name, Class... 
parameterTypes) throws NoSuchMethodException, SecurityException;  
1.1  public java.lang.reflect.Method[ ] getMethods( ) throws SecurityException;  
1.1  public int getModifiers( );                                      native
     public String getName( );  
1.2  public Package getPackage( );  
1.2  public java.security.ProtectionDomain getProtectionDomain( );  
1.1  public java.net.URL getResource(String name);  
1.1  public java.io.InputStream getResourceAsStream(String name);  
1.1  public Object[ ] getSigners( );                           native
5.0  public String getSimpleName( );  
     public Class<? super T> getSuperclass( );                    native
5.0  public boolean isAnnotation( );  
5.0  public boolean isAnonymousClass( );  
1.1  public boolean isArray( );                                  native
1.1  public boolean isAssignableFrom(Class<?> cls);         native
5.0  public boolean isEnum( );  
1.1  public boolean isInstance(Object obj);                         native
     public boolean isInterface( );                                  native

Chapter 10. java.lang and Subpackages Page 20 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



5.0  public boolean isLocalClass( );  
5.0  public boolean isMemberClass( );  
1.1  public boolean isPrimitive( );                                   native
5.0  public boolean isSynthetic( );  
     public T newInstance( ) 
        throws InstantiationException, IllegalAccessException;  
// Methods Implementing AnnotatedElement
5.0  public <A extends java.lang.annotation.Annotation> A getAnnotation
(Class<A> annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getAnnotations( );  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
5.0  public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);  
// Methods Implementing GenericDeclaration
5.0  public java.lang.reflect.TypeVariable<Class<T>>[ ] getTypeParameters( );  
// Public Methods Overriding Object
     public String toString( );  
}

Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

Boolean.TYPE, Byte.TYPE, Character.TYPE, Double.TYPE, Float.TYPE,
Integer.TYPE, Long.TYPE, Short.TYPE, Void.TYPE 

ClassCastException java.lang

Java 1.0 serializable unchecked

Signals an invalid cast of an object to a type of which it is not an instance.

Figure 10-11. java.lang.ClassCastException

public class ClassCastException extends RuntimeException {
// Public Constructors
     public ClassCastException( );  
     public ClassCastException(String s);  
}

Thrown By

org.xml.sax.helpers.ParserFactory.makeParser( )

ClassCircularityError java.lang

Chapter 10. java.lang and Subpackages Page 21 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable error

Signals that a circular dependency has been detected while performing initialization for a
class.

Figure 10-12. java.lang.ClassCircularityError

public class ClassCircularityError extends LinkageError {
// Public Constructors
     public ClassCircularityError( );  
     public ClassCircularityError(String s);  
}

ClassFormatError java.lang

Java 1.0 serializable error

Signals an error in the binary format of a class file.

Figure 10-13. java.lang.ClassFormatError

public class ClassFormatError extends LinkageError {
// Public Constructors
     public ClassFormatError( );  
     public ClassFormatError(String s);  
}

Subclasses

UnsupportedClassVersionError,
java.lang.reflect.GenericSignatureFormatError
Thrown By

ClassLoader.defineClass( )

ClassLoader java.lang

Chapter 10. java.lang and Subpackages Page 22 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0

This class is the abstract superclass of objects that know how to load Java classes into a
Java VM. Given a ClassLoader object, you can dynamically load a class by calling the
public loadClass( ) method, specifying the full name of the desired class. You can
obtain a resource associated with a class by calling getResource( ),
getResources( ), and getResourceAsStream( ). Many applications do not need
to use ClassLoader directly; these applications use the Class.forName( ) and
Class.getResource( ) methods to dynamically load classes and resources using the
ClassLoader object that loaded the application itself.

In order to load classes over the network or from any source other than the class path, you
must use a custom ClassLoader object that knows how to obtain data from that source.
A java.net.URLClassLoader is suitable for this purpose for almost all applications.
Only rarely should an application need to define a ClassLoader subclass of its own. When
this is necessary, the subclass should typically extend
java.security.SecureClassLoader and override the findClass( ) method. This
method must find the bytes that comprise the named class, then pass them to the
defineClass( ) method and return the resulting Class object. In Java 1.2 and later,
the findClass( ) method must also define the Package object associated with the class,
if it has not already been defined. It can use getPackage( ) and definePackage( )
for this purpose. Custom subclasses of ClassLoader should also override
findResource( ) and findResources( ) to enable the public getResource( )
and getResources( ) methods.

In Java 1.4 and later you can specify whether the classes loaded through a
ClassLoader should have assertions (assert statements) enabled.
setDefaultAssertionStatus( ) enables or disables assertions for all loaded classes.
setPackageAssertionStatus( ) and setClassAssertionStatus( ) allow you
to override the default assertion status for a named package or a named class. Finally,
clearAssertionStatus( ) sets the default status to false and discards the
assertions status for any named packages and classes.

public abstract class ClassLoader {
// Protected Constructors
     protected ClassLoader( );  
1.2  protected ClassLoader(ClassLoader parent);  
// Public Class Methods
1.2  public static ClassLoader getSystemClassLoader( );  
1.1  public static java.net.URL getSystemResource(String name);  
1.1  public static java.io.InputStream getSystemResourceAsStream(String name);  
1.2  public static java.util.Enumeration<java.net.URL> getSystemResources(String name) 
throws java.io.IOException;  
// Public Instance Methods
1.4  public void clearAssertionStatus( );                       synchronized
1.2  public final ClassLoader getParent( );  

Chapter 10. java.lang and Subpackages Page 23 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



1.1  public java.net.URL getResource(String name);  
1.1  public java.io.InputStream getResourceAsStream(String name);  
1.2  public java.util.Enumeration<java.net.URL> getResources(String name) throws 
java.io.IOException;  
1.1  public Class<?> loadClass(String name) throws ClassNotFoundException;  
1.4  public void setClassAssertionStatus(String className, boolean enabled);     synchronized
1.4  public void setDefaultAssertionStatus(boolean enabled);        synchronized
1.4  public void setPackageAssertionStatus(String packageName, boolean enabled);     synchronized
// Protected Instance Methods
5.0  protected final Class<?> defineClass(String name, java.nio.ByteBuffer b, 
java.security.ProtectionDomain protectionDomain) 
throws ClassFormatError;  
1.1  protected final Class<?> defineClass(String name, byte[ ] b, int off, int len) 
throws ClassFormatError;  
1.2  protected final Class<?> defineClass(String name, byte[ ] b, int off, int len, 
java.security.ProtectionDomain protectionDomain) 
throws ClassFormatError;  
1.2  protected Package definePackage(String name, String specTitle, String specVersion, 
String specVendor, String implTitle, String implVersion, String implVendor, java.net.URL sealBase) 
throws IllegalArgumentException;  
1.2  protected Class<?> findClass(String name) throws ClassNotFoundException;  
1.2  protected String findLibrary(String libname);                  constant
1.1  protected final Class<?> findLoadedClass(String name);  
1.2  protected java.net.URL findResource(String name);              constant
1.2  protected java.util.Enumeration<java.net.URL> findResources(String name) throws 
java.io.IOException;  
     protected final Class<?> findSystemClass(String name) throws ClassNotFoundException;  
1.2  protected Package getPackage(String name);  
1.2  protected Package[ ] getPackages( );  
     protected Class<?> loadClass(String name, boolean resolve) 
throws ClassNotFoundException;     synchronized
     protected final void resolveClass(Class<?> c);  
1.1  protected final void setSigners(Class<?> c, Object[ ] signers);  
// Deprecated Protected Methods
#    protected final Class<?> defineClass(byte[ ] b, int off, int len) throws ClassFormatError;  
}

Subclasses

java.security.SecureClassLoader
Passed To

Class.forName( ), Thread.setContextClassLoader( ),
java.lang.instrument.ClassFileTransformer.transform( ),
java.lang.instrument.Instrumentation.getInitiatedClasses( ),
java.lang.reflect.Proxy.{getProxyClass( ), newProxyInstance( )},
java.net.URLClassLoader.{newInstance( ), URLClassLoader( )},
java.security.ProtectionDomain.ProtectionDomain( ),
java.security.SecureClassLoader.SecureClassLoader( ),
java.util.ResourceBundle.getBundle( )
Returned By

Class.getClassLoader( ), SecurityManager.currentClassLoader( ),
Thread.getContextClassLoader( ),
java.security.ProtectionDomain.getClassLoader( )

ClassNotFoundException java.lang

Chapter 10. java.lang and Subpackages Page 24 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable checked

Signals that a class to be loaded cannot be found. If an exception of this type was caused
by some underlying exception, you can query that lower-level exeption with
getException( ) or with the newer, more general getCause( ).

Figure 10-14. java.lang.ClassNotFoundException

public class ClassNotFoundException extends Exception {
// Public Constructors
     public ClassNotFoundException( );  
     public ClassNotFoundException(String s);  
1.2  public ClassNotFoundException(String s, Throwable ex);  
// Public Instance Methods
1.2  public Throwable getException( );                                default:null
// Public Methods Overriding Throwable
1.4  public Throwable getCause( );                                    default:null
}

Thrown By

Too many methods to list.

Cloneable java.lang

Java 1.0 cloneable

This interface defines no methods or variables, but indicates that the class that implements
it may be cloned (i.e., copied) by calling the Object method clone( ). Calling
clone( ) for an object that does not implement this interface (and does not override
clone( ) with its own implementation) causes a CloneNotSupportedException to
be thrown.

public interface Cloneable {
}

Implementations

Too many classes to list.

CloneNotSupportedException java.lang

Chapter 10. java.lang and Subpackages Page 25 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable checked

Signals that the clone( ) method has been called for an object of a class that does not
implement the Cloneable interface.

Figure 10-15. java.lang.CloneNotSupportedException

public class CloneNotSupportedException extends Exception {
// Public Constructors
     public CloneNotSupportedException( );  
     public CloneNotSupportedException(String s);  
}

Thrown By

Enum.clone( ), Object.clone( ),
java.security.MessageDigest.clone( ),
java.security.MessageDigestSpi.clone( ),
java.security.Signature.clone( ),
java.security.SignatureSpi.clone( ),
java.util.AbstractMap.clone( ), java.util.EnumMap.clone( ),
java.util.EnumSet.clone( ), javax.crypto.Mac.clone( ),
javax.crypto.MacSpi.clone( )

Comparable<T> java.lang

Java 1.2 comparable

This interface defines a single method, compareTo( ), that is responsible for comparing
one object to another and determining their relative order, according to some natural
ordering for that class of objects. Any general-purpose class that represents a value that
can be sorted or ordered should implement this interface. Any class that does implement
this interface can make use of various powerful methods such as
java.util.Collections.sort( ) and java.util.Arrays.binarySearch( ).
Many of the key classes in the Java API implement this interface. In Java 5.0, this interface
has been made generic. The type variable T represents the type of the object that is passed
to the compareTo( ) method.

Chapter 10. java.lang and Subpackages Page 26 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



The compareTo( ) method compares this object to the object passed as an argument. It
should assume that the supplied object is of the appropriate type; if it is not, it should throw
a ClassCastException. If this object is less than the supplied object or should appear
before the supplied object in a sorted list, compareTo( ) should return a negative
number. If this object is greater than the supplied object or should come after the supplied
object in a sorted list, compareTo( ) should return a positive integer. If the two objects
are equivalent, and their relative order in a sorted list does not matter, compareTo( )
should return 0. If compareTo( ) returns 0 for two objects, the equals( ) method
should typically return true. If this is not the case, the Comparable objects are not
suitable for use in java.util.TreeSet and java.util.TreeMap classes. 

See java.util.Comparator for a way to define an ordering for objects that do not
implement Comparable or to define an ordering other than the natural ordering defined
by a Comparable class.

public interface Comparable<T> {
// Public Instance Methods
     int compareTo(T o);  
}

Implementations

Too many classes to list.

Compiler java.lang

Java 1.0

The static methods of this class provide an interface to the just-in-time (JIT) byte-code-
to-native code compiler in use by the Java interpreter. If no JIT compiler is in use by the
VM, these methods do nothing. compileClass( ) asks the JIT compiler to compile the
specified class. compileClasses( ) asks the JIT compiler to compile all classes that
match the specified name. These methods return true if the compilation was successful,
or false if it failed or if there is no JIT compiler on the system. enable( ) and
disable( ) turn just-in-time compilation on and off. command( ) asks the JIT compiler
to perform some compiler-specific operation; this is a hook for vendor extensions. No
standard operations have been defined.

public final class Compiler {
// No Constructor
// Public Class Methods
     public static Object command(Object any);                          native
     public static boolean compileClass(Class<?> clazz);        native
     public static boolean compileClasses(String string);               native
     public static void disable( );                                       native
     public static void enable( );                                        native
}

Chapter 10. java.lang and Subpackages Page 27 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Deprecated java.lang

Java 5.0 @Documented @Retention(RUNTIME) annotation

This annotation type marks the annotated program element as deprecated. The Java
compiler issues a warning if the annotated element is used or overrided in code that is not
itself @Deprecated.

In Java 5.0, the @Deprecated annotation works in the same way as the @deprecated
javadoc tag. In future releases of Java, the compiler may ignore @deprecated javadoc
tag and rely only on the @Deprecated annotation.

This annotation type has source retention and does not have an @Target meta-
annotation, which means it may be applied to any program element. Deprecated has an
@Documented meta-annotation, meaning that the presence of an @Deprecated
annotation should be a documented part of the annotated element's API.

Figure 10-16. java.lang.Deprecated

public @interface Deprecated {
}

Double java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around the double primitive data type.
doubleValue( ) returns the primitive double value of a Double object, and there are
other methods (which override Number methods and whose names all end in "Value") for
returning a the wrapped double value as a variety of other primitive types.

This class also provides some useful constants and static methods for testing double
values. MIN_VALUE and MAX_VALUE are the smallest (closest to zero) and largest
representable double  values. POSITIVE_INFINITY and NEGATIVE_INFINITY are the

Chapter 10. java.lang and Subpackages Page 28 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



double representations of  infinity and negative infinity, and NaN is special double "not
a number" value. isInfinite( ) in class and instance method forms tests whether a
double or a Double has an infinite value. Similarly, isNaN( ) tests whether a
double or Double is not-a-number; this is a comparison that cannot be done directly
because the NaN constant never tests equal to any other value, including itself.

The static parseDouble( )  method converts a String to a double. The static
valueOf( ) converts a String to a Double, and is basically equivalent to the
Double( ) constructor that takes a String argument. The static and instance
toString( ) methods perform the opposite conversion: they convert a double or a
Double to a String. See also java.text.NumberFormat for more flexible number
parsing and formatting.

The compareTo( ) method makes Double object Comparable which is useful for
ordering and sorting. The static compare( ) method is similar (its return values have the
same meaning as those of Comparable.compareTo( )) but works on primitive values
rather than objects and is useful when ordering and sorting arrays of double values.

doubleToLongBits( ), doubleToRawBits( ) and longBitsToDouble( ) allow
you to manipulate the bit representation (defined by IEEE 754) of a double directly (which
is not something that most applications ever need to do).

Figure 10-17. java.lang.Double

public final class Double extends Number implements Comparable<Double> {
// Public Constructors
     public Double(String s) throws NumberFormatException;  
     public Double(double value);  
// Public Constants
     public static final double MAX_VALUE; =1.7976931348623157E308
     public static final double MIN_VALUE; =4.9E-324
     public static final double NaN;       =NaN
     public static final double NEGATIVE_INFINITY;                       =-Infinity
     public static final double POSITIVE_INFINITY;                       =Infinity
5.0  public static final int SIZE;     =64
1.1  public static final Class<Double> TYPE;  
// Public Class Methods
1.4  public static int compare(double d1, double d2);  
     public static long doubleToLongBits(double value);                 native
1.3  public static long doubleToRawLongBits(double value);          native
     public static boolean isInfinite(double v);  
     public static boolean isNaN(double v);  
     public static double longBitsToDouble(long bits);                  native
1.2  public static double parseDouble(String s) throws NumberFormatException;  
5.0  public static String toHexString(double d);  
     public static String toString(double d);  
     public static Double valueOf(String s) throws NumberFormatException;  
5.0  public static Double valueOf(double d);  
// Public Instance Methods
     public boolean isInfinite( );  

Chapter 10. java.lang and Subpackages Page 29 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public boolean isNaN( );  
// Methods Implementing Comparable
1.2  public int compareTo(Double anotherDouble);  
// Public Methods Overriding Number
1.1  public byte byteValue( );  
     public double doubleValue( );  
     public float floatValue( );  
     public int intValue( );  
     public long longValue( );  
1.1  public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Enum<E extends Enum<E>> java.lang

Java 5.0 serializable comparable

This class is the common superclass of all enumerated types. It is not itself an enum type,
however, and a Java compiler does not allow other classes to extend it. Subclasses of
Enum may be only created with enum declarations. Enum is a generic type, and the type
variable E represents the concrete enumerated type that actually extends Enum. This type
variable exists so that Enum can implement Comparable<E>.

Every enumerated constant has a name (the name it was declared with) and an ordinal
value—the first constant in an enum declaration has an ordinal of 0, the second has an
ordinal of 1, and so on. The final methods name( )  and ordinal( ) return these
values. Most users of enumerated constants will use toString( ) instead of name( ).
The implementation of toString( ) defined by Enum returns the same value as
name( ). The toString( ) method is not final, however, and it can be overridden in
enum declarations.

Enum implements a number of Object and Comparable methods and makes its
implementations final so that they are inherited by all enum types and may not be
overridden. equals( ) compares enumerated constants with the = = operator, and
hashCode( ) returns the System.identityHashCode( )  value. In order to make
this identity-based equals( ) implementation work, Enum overrides the protected
clone( )  method to throw CloneNotSupportedException, preventing additional
copies of enumerated values from being created. Finally, the compareTo( ) method of
the Comparable interface is defined to compare enumerated values based on their
ordinal( ) value.

Chapter 10. java.lang and Subpackages Page 30 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



getDeclaringClass( ) returns the Class object that represents the enum type of
which the constant is a part. It is like the getClass( ) method inherited from Object,
but the return values of these two methods will be different for enumerated constants that
have value-specific class bodies, since those constants are instances of an anonymous
subclass of the enum type.

The static valueOf( ) method is passed the type and name of an enumerated constant
and returns the object that represents that constant (or throws an
IllegalArgumentException).

Figure 10-18. java.lang.Enum<E extends Enum<E>>

public abstract class Enum<E extends Enum<E>> implements Comparable<E>, Serializable {
// Protected Constructors
     protected Enum(String name, int ordinal);  
// Public Class Methods
     public static <T extends Enum<T>> T valueOf(Class<T> enumType, String name);  
// Public Instance Methods
     public final Class<E> getDeclaringClass( );  
     public final String name( );  
     public final int ordinal( );  
// Methods Implementing Comparable
     public final int compareTo(E o);  
// Public Methods Overriding Object
     public final boolean equals(Object other);  
     public final int hashCode( );  
     public String toString( );  
// Protected Methods Overriding Object
     protected final Object clone( ) throws CloneNotSupportedException;  
}

Subclasses

Thread.State, java.lang.annotation.ElementType,
java.lang.annotation.RetentionPolicy,
java.lang.management.MemoryType, java.math.RoundingMode,
java.net.Authenticator.RequestorType, java.net.Proxy.Type,
java.security.KeyRep.Type,
java.util.Formatter.BigDecimalLayoutForm,
java.util.concurrent.TimeUnit,
javax.net.ssl.SSLEngineResult.HandshakeStatus,
javax.net.ssl.SSLEngineResult.Status
Passed To

Too many methods to list.

Chapter 10. java.lang and Subpackages Page 31 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



EnumConstantNotPresentException java.lang

Java 5.0 serializable unchecked

This unchecked exception is thrown when Java code attempts to use an enum constant
that no longer exists. This can happen only if the enumerated constant was removed from
its enumerated type after the referencing code was compiled. The methods of the exception
provide the Class of the enumerated type and the name of the nonexistent constant.

Figure 10-19. java.lang.EnumConstantNotPresentException

public class EnumConstantNotPresentException extends RuntimeException {
// Public Constructors
     public EnumConstantNotPresentException(Class<? extends Enum> enumType, 
     String constantName);  
// Public Instance Methods
     public String constantName( );  
     public Class<? extends Enum> enumType( );  
}

Error java.lang

Java 1.0 serializable error

This class forms the root of the error hierarchy in Java. Subclasses of Error, unlike
subclasses of Exception, should not be caught and generally cause termination of the
program. Subclasses of Error need not be declared in the throws clause of a method
definition. This class inherits methods from Throwable but declares none of its own. Each
of its constructors simply invokes the corresponding Throwable( ) constructor. See
Throwable for details.

Figure 10-20. java.lang.Error

public class Error extends Throwable {
// Public Constructors
     public Error( );  
1.4  public Error(Throwable cause);  

Chapter 10. java.lang and Subpackages Page 32 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public Error(String message);  
1.4  public Error(String message, Throwable cause);  
}

Subclasses

AssertionError, LinkageError, ThreadDeath, VirtualMachineError,
java.lang.annotation.AnnotationFormatError,
java.nio.charset.CoderMalfunctionError,
javax.xml.parsers.FactoryConfigurationError,
javax.xml.transform.TransformerFactoryConfigurationError

Exception java.lang

Java 1.0 serializable checked

This class forms the root of the exception hierarchy in Java. An Exception signals an
abnormal condition that must be specially handled to prevent program termination.
Exceptions may be caught and handled. An exception that is not a subclass of
RuntimeException must be declared in the throws clause of any method that can throw
it. This class inherits methods from Throwable but declares none of its own. Each of its
constructors simply invokes the corresponding Throwable( ) constructor. See
Throwable for details.

Figure 10-21. java.lang.Exception

public class Exception extends Throwable {
// Public Constructors
     public Exception( );  
1.4  public Exception(Throwable cause);  
     public Exception(String message);  
1.4  public Exception(String message, Throwable cause);  
}

Subclasses

Too many classes to list.
Passed To

java.io.WriteAbortedException.WriteAbortedException( ),
java.nio.charset.CoderMalfunctionError.CoderMalfunctionError( ),
java.security.PrivilegedActionException.PrivilegedActionExceptio
n( ), java.util.logging.ErrorManager.error( ),

Chapter 10. java.lang and Subpackages Page 33 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



java.util.logging.Handler.reportError( ),
javax.xml.parsers.FactoryConfigurationError.FactoryConfiguration
Error( ),
javax.xml.transform.TransformerFactoryConfigurationError.Transfo
rmerFactoryConfigurationError( ),
org.xml.sax.SAXException.SAXException( ),
org.xml.sax.SAXParseException.SAXParseException( )
Returned By

java.security.PrivilegedActionException.getException( ),
javax.xml.parsers.FactoryConfigurationError.getException( ),
javax.xml.transform.TransformerFactoryConfigurationError.getExce
ption( ), org.xml.sax.SAXException.getException( )
Thrown By

java.security.PrivilegedExceptionAction.run( ),
java.util.concurrent.Callable.call( )
Type Of

java.io.WriteAbortedException.detail

ExceptionInInitializerError java.lang

Java 1.1 serializable error

This error is thrown by the Java Virtual Machine when an exception occurs in the static
initializer of a class. You can use the getException( ) method to obtain the
Throwable object that was thrown from the initializer. In Java 1.4 and later,
getException( ) has been superseded by the more general getCause( ) method of
the Throwable class.

Figure 10-22. java.lang.ExceptionInInitializerError

public class ExceptionInInitializerError extends LinkageError {
// Public Constructors
     public ExceptionInInitializerError( );  
     public ExceptionInInitializerError(String s);  
     public ExceptionInInitializerError(Throwable thrown);  
// Public Instance Methods
     public Throwable getException( );                                    default:null
// Public Methods Overriding Throwable
1.4  public Throwable getCause( );                                    default:null
}

Chapter 10. java.lang and Subpackages Page 34 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Float java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around a primitive float value.
floatValue( ) returns the primitive float value of a Float object, and there are
methods for returning the value of a Float as a variety of other primitive types. This class
is very similar to Double, and defines the same set of useful methods and constants as
that class does. See Double for details.

Figure 10-23. java.lang.Float

public final class Float extends Number implements Comparable<Float> {
// Public Constructors
     public Float(double value);  
     public Float(String s) throws NumberFormatException;  
     public Float(float value);  
// Public Constants
     public static final float MAX_VALUE;  =3.4028235E38
     public static final float MIN_VALUE;  =1.4E-45
     public static final float NaN;        =NaN
     public static final float NEGATIVE_INFINITY;                        =-Infinity
     public static final float POSITIVE_INFINITY;                        =Infinity
5.0  public static final int SIZE;     =32
1.1  public static final Class<Float> TYPE;  
// Public Class Methods
1.4  public static int compare(float f1, float f2);  
     public static int floatToIntBits(float value);                     native
1.3  public static int floatToRawIntBits(float value);              native
     public static float intBitsToFloat(int bits);                      native
     public static boolean isInfinite(float v);  
     public static boolean isNaN(float v);  
1.2  public static float parseFloat(String s) throws NumberFormatException;  
5.0  public static String toHexString(float f);  
     public static String toString(float f);  
     public static Float valueOf(String s) throws NumberFormatException;  
5.0  public static Float valueOf(float f);  
// Public Instance Methods
     public boolean isInfinite( );  
     public boolean isNaN( );  
// Methods Implementing Comparable
1.2  public int compareTo(Float anotherFloat);  
// Public Methods Overriding Number
1.1  public byte byteValue( );  
     public double doubleValue( );  
     public float floatValue( );  
     public int intValue( );  
     public long longValue( );  
1.1  public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Chapter 10. java.lang and Subpackages Page 35 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



IllegalAccessError java.lang

Java 1.0 serializable error

Signals an attempted use of a class, method, or field that is not accessible.

Figure 10-24. java.lang.IllegalAccessError

public class IllegalAccessError extends IncompatibleClassChangeError {
// Public Constructors
     public IllegalAccessError( );  
     public IllegalAccessError(String s);  
}

IllegalAccessException java.lang

Java 1.0 serializable checked

Signals that a class or initializer is not accessible. Thrown by Class.newInstance( ).

Figure 10-25. java.lang.IllegalAccessException

public class IllegalAccessException extends Exception {
// Public Constructors
     public IllegalAccessException( );  
     public IllegalAccessException(String s);  
}

Thrown By

Too many methods to list.

IllegalArgumentException java.lang

Chapter 10. java.lang and Subpackages Page 36 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable unchecked

Signals an illegal argument to a method. See subclasses
IllegalThreadStateException and NumberFormatException.

Figure 10-26. java.lang.IllegalArgumentException

public class IllegalArgumentException extends RuntimeException {
// Public Constructors
     public IllegalArgumentException( );  
5.0  public IllegalArgumentException(Throwable cause);  
     public IllegalArgumentException(String s);  
5.0  public IllegalArgumentException(String message, Throwable cause);  
}

Subclasses

IllegalThreadStateException, NumberFormatException,
java.nio.channels.IllegalSelectorException,
java.nio.channels.UnresolvedAddressException,
java.nio.channels.UnsupportedAddressTypeException,
java.nio.charset.IllegalCharsetNameException,
java.nio.charset.UnsupportedCharsetException,
java.security.InvalidParameterException,
java.util.IllegalFormatException,
java.util.regex.PatternSyntaxException
Thrown By

Too many methods to list.

IllegalMonitorStateException java.lang

Java 1.0 serializable unchecked

Signals an illegal monitor state. It is thrown by the Object notify( ) and wait( )
methods used for thread synchronization.

Figure 10-27. java.lang.IllegalMonitorStateException

Chapter 10. java.lang and Subpackages Page 37 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public class IllegalMonitorStateException extends RuntimeException {
// Public Constructors
     public IllegalMonitorStateException( );  
     public IllegalMonitorStateException(String s);  
}

IllegalStateException java.lang

Java 1.1 serializable unchecked

Signals that a method has been invoked on an object that is not in an appropriate state to
perform the requested operation.

Figure 10-28. java.lang.IllegalStateException

public class IllegalStateException extends RuntimeException {
// Public Constructors
     public IllegalStateException( );  
5.0  public IllegalStateException(Throwable cause);  
     public IllegalStateException(String s);  
5.0  public IllegalStateException(String message, Throwable cause);  
}

Subclasses

java.nio.InvalidMarkException,
java.nio.channels.AlreadyConnectedException,java.nio.channels.Can
celledKeyException,
java.nio.channels.ClosedSelectorException,java.nio.channels.Conne
ctionPendingException,
java.nio.channels.IllegalBlockingModeException,java.nio.channels.
NoConnectionPendingException,
java.nio.channels.NonReadableChannelException,
java.nio.channels.NonWritableChannelException,
java.nio.channels.NotYetBoundException,java.nio.channels.NotYetCo
nnectedException,
java.nio.channels.OverlappingFileLockException,java.util.Formatte
rClosedException, java.util.concurrent.CancellationException
Thrown By

Too many methods to list.

Chapter 10. java.lang and Subpackages Page 38 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



IllegalThreadStateException java.lang

Java 1.0 serializable unchecked

Signals that a thread is not in the appropriate state for an attempted operation to succeed.

Figure 10-29. java.lang.IllegalThreadStateException

public class IllegalThreadStateException extends IllegalArgumentException {
// Public Constructors
     public IllegalThreadStateException( );  
     public IllegalThreadStateException(String s);  
}

IncompatibleClassChangeError java.lang

Java 1.0 serializable error

This is the superclass of a group of related error types. It signals an illegal use of a legal
class.

Figure 10-30. java.lang.IncompatibleClassChangeError

public class IncompatibleClassChangeError extends LinkageError {
// Public Constructors
     public IncompatibleClassChangeError( );  
     public IncompatibleClassChangeError(String s);  
}

Subclasses

AbstractMethodError, IllegalAccessError, InstantiationError,
NoSuchFieldError, NoSuchMethodError

IndexOutOfBoundsException java.lang

Chapter 10. java.lang and Subpackages Page 39 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable unchecked

Signals that an index is out of bounds. See the subclasses
ArrayIndexOutOfBoundsException and StringIndexOutOfBoundsException.

Figure 10-31. java.lang.IndexOutOfBoundsException

public class IndexOutOfBoundsException extends RuntimeException {
// Public Constructors
     public IndexOutOfBoundsException( );  
     public IndexOutOfBoundsException(String s);  
}

Subclasses

ArrayIndexOutOfBoundsException, StringIndexOutOfBoundsException

InheritableThreadLocal<T> java.lang

Java 1.2

This class holds a thread-local value that is inherited by child threads. See
ThreadLocal for a discussion of thread-local values. Note that the inheritance referred
to in the name of this class is not from superclass to subclass; it is inheritance from parent
thread to child thread. Like its superclass, this class has been made generic in Java 5.0.
The type variable T represents the type of the referenced object.

This class is best understood by example. Suppose that an application has defined an
InheritableThreadLocal object and that a certain thread (the parent thread) has a
thread-local value stored in that object. Whenever that thread creates a new thread (a child
thread), the InheritableThreadLocal object is automatically updated so that the new
child thread has the same value associated with it as the parent thread. Note that the value
associated with the child thread is independent from the value associated with the parent
thread. If the child thread subsequently alters its value by calling the set( ) method of
the InheritableThreadLocal, the value associated with the parent thread does not
change.

By default, a child thread inherits a parent's values unmodified. By overriding the
childValue( ) method, however, you can create a subclass of

Chapter 10. java.lang and Subpackages Page 40 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



InheritableThreadLocal in which the child thread inherits some arbitrary function
of the parent thread's value.

Figure 10-32. java.lang.InheritableThreadLocal<T>

public class InheritableThreadLocal<T> extends ThreadLocal<T> {
// Public Constructors
     public InheritableThreadLocal( );  
// Protected Instance Methods
     protected T childValue(T parentValue);  
}

InstantiationError java.lang

Java 1.0 serializable error

Signals an attempt to instantiate an interface or abstract class.

Figure 10-33. java.lang.InstantiationError

public class InstantiationError extends IncompatibleClassChangeError {
// Public Constructors
     public InstantiationError( );  
     public InstantiationError(String s);  
}

InstantiationException java.lang

Java 1.0 serializable checked

Signals an attempt to instantiate an interface or an abstract class.

Figure 10-34. java.lang.InstantiationException

Chapter 10. java.lang and Subpackages Page 41 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public class InstantiationException extends Exception {
// Public Constructors
     public InstantiationException( );  
     public InstantiationException(String s);  
}

Thrown By

Class.newInstance( ), java.lang.reflect.Constructor.newInstance( ),
org.xml.sax.helpers.ParserFactory.makeParser( )

Integer java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around the int primitive data type. This
class also contains useful minimum and maximum constants and useful  conversion
methods. parseInt( )  and valueOf( ) convert a string to an int or to an
Integer, respectively. Each can take a radix argument to specify the base the value is
represented in. decode( ) also converts a String to an Integer. It assumes a   
hexadecimal number if the string begins with "0X" or "0x", or an octal number if the string
begins with "0". Otherwise, a decimal number is assumed. toString( ) converts in the
other direction, and the static version takes a radix argument. toBinaryString( )  ,
toOctalString( ), and toHexString( ) convert an int to a string using base 2,
base 8, and base 16. These methods treat the integer as an unsigned value. Other routines
return the value of an Integer as various primitive types, and, finally, the
getInteger( ) methods return the integer value of a named property from the system
property list, or the specified default value.

Java 5.0 adds a number of static methods that operate on the bits of an int value.
rotateLeft( )  and rotateRight( ) shift the bits the specified distance in the
specified direction, with bits shifted off one end being shifted in on the other end.
signum( ) returns the sign of the integer as -1, 0, or 1. highestOneBit( )  ,
numberOfTrailingZeros( ), bitCount( ) and related methods can be useful if you
use an int value as a set of bits and want to iterate through the ones bits in the set.

Figure 10-35. java.lang.Integer

public final class Integer extends Number implements Comparable<Integer> {
// Public Constructors
     public Integer(int value);  

Chapter 10. java.lang and Subpackages Page 42 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public Integer(String s) throws NumberFormatException;  
// Public Constants
     public static final int MAX_VALUE;    =2147483647
     public static final int MIN_VALUE;    =-2147483648
5.0  public static final int SIZE;     =32
1.1  public static final Class<Integer> TYPE;  
// Public Class Methods
5.0  public static int bitCount(int i);  
1.1  public static Integer decode(String nm) throws NumberFormatException;  
     public static Integer getInteger(String nm);  
     public static Integer getInteger(String nm, int val);  
     public static Integer getInteger(String nm, Integer val);  
5.0  public static int highestOneBit(int i);  
5.0  public static int lowestOneBit(int i);  
5.0  public static int numberOfLeadingZeros(int i);  
5.0  public static int numberOfTrailingZeros(int i);  
     public static int parseInt(String s) throws NumberFormatException;  
     public static int parseInt(String s, int radix) throws NumberFormatException;  
5.0  public static int reverse(int i);  
5.0  public static int reverseBytes(int i);  
5.0  public static int rotateLeft(int i, int distance);  
5.0  public static int rotateRight(int i, int distance);  
5.0  public static int signum(int i);  
     public static String toBinaryString(int i);  
     public static String toHexString(int i);  
     public static String toOctalString(int i);  
     public static String toString(int i);  
     public static String toString(int i, int radix);  
5.0  public static Integer valueOf(int i);  
     public static Integer valueOf(String s) throws NumberFormatException;  
     public static Integer valueOf(String s, int radix) throws NumberFormatException;  
// Methods Implementing Comparable
1.2  public int compareTo(Integer anotherInteger);  
// Public Methods Overriding Number
1.1  public byte byteValue( );  
     public double doubleValue( );  
     public float floatValue( );  
     public int intValue( );  
     public long longValue( );  
1.1  public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

InternalError java.lang

Java 1.0 serializable error

Signals an internal error in the Java interpreter.

Figure 10-36. java.lang.InternalError

public class InternalError extends VirtualMachineError {
// Public Constructors

Chapter 10. java.lang and Subpackages Page 43 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public InternalError( );  
     public InternalError(String s);  
}

InterruptedException java.lang

Java 1.0 serializable checked

Signals that the thread has been interrupted.

Figure 10-37. java.lang.InterruptedException

public class InterruptedException extends Exception {
// Public Constructors
     public InterruptedException( );  
     public InterruptedException(String s);  
}

Thrown By

Too many methods to list.

Iterable<T> java.lang

Java 5.0

This   interface defines a single method for returning a java.util.Iterator object.
Iterable was added in Java 5.0 to support the for/in loop, which is also new in Java
5.0. The Collection, List, Set, and Queue collection interfaces of java.util extend
this interface, making all collections other than maps Iterable. You can implement this
interface in your own classes if you want to allow them to be iterated with the for/in
loop.

The type variable T specifies the type parameter of the returned Iterator object, which,
in turn, specifies the element type of the collection being iterated over.

public interface Iterable<T> {
// Public Instance Methods
     java.util.Iterator<T> iterator( );  
}

Chapter 10. java.lang and Subpackages Page 44 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Implementations

java.util.Collection

LinkageError java.lang

Java 1.0 serializable error

The superclass of a group of errors that signal problems linking a class or resolving
dependencies between classes.

Figure 10-38. java.lang.LinkageError

public class LinkageError extends Error {
// Public Constructors
     public LinkageError( );  
     public LinkageError(String s);  
}

Subclasses

ClassCircularityError, ClassFormatError,
ExceptionInInitializerError, IncompatibleClassChangeError,
NoClassDefFoundError, UnsatisfiedLinkError, VerifyError

Long java.lang

Java 1.0 serializable comparable

This class provides an immutable object wrapper around the long primitive data type.
This class also contains useful minimum and maximum constants and useful conversion
methods. parseLong( )  and valueOf( ) convert a  string to a long or to a Long,
respectively. Each can take a radix argument to specify the base the value is represented
in. toString( )    converts in the other direction and may also take a   radix argument.
toBinaryString( ), toOctalString( ), and toHexString( ) convert a long to
a string using base 2, base 8, and base 16. These methods treat the long as an unsigned
value. Other routines return the value of a Long as various primitive types, and, finally,
the getLong( ) methods return the long value of a named property or the value of the
specified default.

Chapter 10. java.lang and Subpackages Page 45 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0 adds a number of static methods that operate on the bits of a long value. Except
for their argument type and return type, they are the same as the Integer methods of the
same name.

Figure 10-39. java.lang.Long

public final class Long extends Number implements Comparable<Long> {
// Public Constructors
     public Long(long value);  
     public Long(String s) throws NumberFormatException;  
// Public Constants
     public static final long MAX_VALUE;   =9223372036854775807
     public static final long MIN_VALUE;   =-9223372036854775808
5.0  public static final int SIZE;     =64
1.1  public static final Class<Long> TYPE;  
// Public Class Methods
5.0  public static int bitCount(long i);  
1.2  public static Long decode(String nm) throws NumberFormatException;  
     public static Long getLong(String nm);  
     public static Long getLong(String nm, Long val);  
     public static Long getLong(String nm, long val);  
5.0  public static long highestOneBit(long i);  
5.0  public static long lowestOneBit(long i);  
5.0  public static int numberOfLeadingZeros(long i);  
5.0  public static int numberOfTrailingZeros(long i);  
     public static long parseLong(String s) throws NumberFormatException;  
     public static long parseLong(String s, int radix) throws NumberFormatException;  
5.0  public static long reverse(long i);  
5.0  public static long reverseBytes(long i);  
5.0  public static long rotateLeft(long i, int distance);  
5.0  public static long rotateRight(long i, int distance);  
5.0  public static int signum(long i);  
     public static String toBinaryString(long i);  
     public static String toHexString(long i);  
     public static String toOctalString(long i);  
     public static String toString(long i);  
     public static String toString(long i, int radix);  
5.0  public static Long valueOf(long l);  
     public static Long valueOf(String s) throws NumberFormatException;  
     public static Long valueOf(String s, int radix) throws NumberFormatException;  
// Methods Implementing Comparable
1.2  public int compareTo(Long anotherLong);  
// Public Methods Overriding Number
1.1  public byte byteValue( );  
     public double doubleValue( );  
     public float floatValue( );  
     public int intValue( );  
     public long longValue( );  
1.1  public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Math java.lang

Chapter 10. java.lang and Subpackages Page 46 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0

This class defines constants for the mathematical values e and  and defines static methods
for floating-point trigonometry, exponentiation, and other operations. It is the equivalent
of the C <math.h> functions. It also contains methods for computing minimum and
maximum values and for generating pseudorandom numbers.

Most methods of Math operate on float and double floating-point values. Remember
that these values are only approximations of actual real numbers. To allow
implementations to take full advantage of the floating-point capabilities of a native
platform, the methods of Math are not required to return exactly the same values on all
platforms. In other words, the results returned by different implementations may differ
slightly in the least-significant bits. As of Java 1.3, applications that require strict platform-
independence of results should use StrictMath instead.

Java 5.0 adds several methods including log10( ) to compute the base-ten logarithm,
cbrt( )  to compute the cube root of a number, and signum( ) to compute the sign of
a number as well as sinh( )    , cosh( ), and tanh( ) hyperbolic trigonometric
functions.

public final class Math {
// No Constructor
// Public Constants
     public static final double E;         =2.718281828459045
     public static final double PI;        =3.141592653589793
// Public Class Methods
     public static int abs(int a);  
     public static long abs(long a);  
     public static float abs(float a);  
     public static double abs(double a);  
     public static double acos(double a);  
     public static double asin(double a);  
     public static double atan(double a);  
     public static double atan2(double y, double x);  
5.0  public static double cbrt(double a);  
     public static double ceil(double a);  
     public static double cos(double a);  
5.0  public static double cosh(double x);  
     public static double exp(double a);  
5.0  public static double expm1(double x);  
     public static double floor(double a);  
5.0  public static double hypot(double x, double y);  
     public static double IEEEremainder(double f1, double f2);  
     public static double log(double a);  
5.0  public static double log10(double a);  
5.0  public static double log1p(double x);  
     public static int max(int a, int b);  
     public static long max(long a, long b);  
     public static float max(float a, float b);  
     public static double max(double a, double b);  
     public static int min(int a, int b);  
     public static long min(long a, long b);  
     public static float min(float a, float b);  
     public static double min(double a, double b);  
     public static double pow(double a, double b);  
     public static double random( );  
     public static double rint(double a);  

Chapter 10. java.lang and Subpackages Page 47 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static int round(float a);  
     public static long round(double a);  
5.0  public static float signum(float f);  
5.0  public static double signum(double d);  
     public static double sin(double a);  
5.0  public static double sinh(double x);  
     public static double sqrt(double a);  
     public static double tan(double a);  
5.0  public static double tanh(double x);  
1.2  public static double toDegrees(double angrad);  
1.2  public static double toRadians(double angdeg);  
5.0  public static float ulp(float f);  
5.0  public static double ulp(double d);  
}

NegativeArraySizeException java.lang

Java 1.0 serializable unchecked

Signals an attempt to allocate an array with fewer than zero elements.

Figure 10-40. java.lang.NegativeArraySizeException

public class NegativeArraySizeException extends RuntimeException {
// Public Constructors
     public NegativeArraySizeException( );  
     public NegativeArraySizeException(String s);  
}

Thrown By

java.lang.reflect.Array.newInstance( )

NoClassDefFoundError java.lang

Java 1.0 serializable error

Signals that the definition of a specified class cannot be found.

Figure 10-41. java.lang.NoClassDefFoundError

Chapter 10. java.lang and Subpackages Page 48 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public class NoClassDefFoundError extends LinkageError {
// Public Constructors
     public NoClassDefFoundError( );  
     public NoClassDefFoundError(String s);  
}

NoSuchFieldError java.lang

Java 1.0 serializable error

Signals that a specified field cannot be found.

Figure 10-42. java.lang.NoSuchFieldError

public class NoSuchFieldError extends IncompatibleClassChangeError {
// Public Constructors
     public NoSuchFieldError( );  
     public NoSuchFieldError(String s);  
}

NoSuchFieldException java.lang

Java 1.1 serializable checked

This exception signals that the specified field does not exist in the specified class.

Figure 10-43. java.lang.NoSuchFieldException

public class NoSuchFieldException extends Exception {
// Public Constructors
     public NoSuchFieldException( );  
     public NoSuchFieldException(String s);  
}

Thrown By

Class.{getDeclaredField( ), getField( )}

Chapter 10. java.lang and Subpackages Page 49 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



NoSuchMethodError java.lang

Java 1.0 serializable error

Signals that a specified method cannot be found.

Figure 10-44. java.lang.NoSuchMethodError

public class NoSuchMethodError extends IncompatibleClassChangeError {
// Public Constructors
     public NoSuchMethodError( );  
     public NoSuchMethodError(String s);  
}

NoSuchMethodException java.lang

Java 1.0 serializable checked

Signals that the specified method does not exist in the specified class.

Figure 10-45. java.lang.NoSuchMethodException

public class NoSuchMethodException extends Exception {
// Public Constructors
     public NoSuchMethodException( );  
     public NoSuchMethodException(String s);  
}

Thrown By

Class.{getConstructor( ), getDeclaredConstructor( ),
getDeclaredMethod( ), getMethod( )}

NullPointerException java.lang

Chapter 10. java.lang and Subpackages Page 50 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.0 serializable unchecked

Signals an attempt to access a field or invoke a method of a null object.

Figure 10-46. java.lang.NullPointerException

public class NullPointerException extends RuntimeException {
// Public Constructors
     public NullPointerException( );  
     public NullPointerException(String s);  
}

Thrown By

org.xml.sax.helpers.ParserFactory.makeParser( )

Number java.lang

Java 1.0 serializable

This is an abstract class that is the superclass of Byte, Short, Integer, Long, Float,
and Double. It defines the conversion functions those types implement.

Figure 10-47. java.lang.Number

public abstract class Number implements Serializable {
// Public Constructors
     public Number( );  
// Public Instance Methods
1.1  public byte byteValue( );  
     public abstract double doubleValue( );  
     public abstract float floatValue( );  
     public abstract int intValue( );  
     public abstract long longValue( );  
1.1  public short shortValue( );  
}

Subclasses

Byte, Double, Float, Integer, Long, Short, java.math.BigDecimal,
java.math.BigInteger, java.util.concurrent.atomic.AtomicInteger,
java.util.concurrent.atomic.AtomicLong

Chapter 10. java.lang and Subpackages Page 51 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Returned By

java.text.ChoiceFormat.parse( ), java.text.DecimalFormat.parse( ),
java.text.NumberFormat.parse( ),
javax.xml.datatype.Duration.getField( )

NumberFormatException java.lang

Java 1.0 serializable unchecked

Signals an illegal number format.

Figure 10-48. java.lang.NumberFormatException

public class NumberFormatException extends IllegalArgumentException {
// Public Constructors
     public NumberFormatException( );  
     public NumberFormatException(String s);  
}

Thrown By

Too many methods to list.

Object java.lang

Java 1.0

This is the root class in Java. All classes are subclasses of Object, and thus all objects can
invoke the public and protected methods of this class. For classes that implement the
Cloneable interface, clone( ) makes a byte-for-byte copy of an Object.
getClass( ) returns the Class object associated with any Object, and the
notify( )  , notifyAll( ), and wait( ) methods are used for  thread synchronization
on a given Object.

A number of these Object methods should be overridden by subclasses of Object. For
example, a subclass should provide its own definition of the toString( ) method so that
it can be used with the string concatenation operator and with the
PrintWriter.println( ) methods. Defining the toString( ) method for all objects
also helps with debugging.

Chapter 10. java.lang and Subpackages Page 52 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



The default implementation of the equals( ) method simply uses the = = operator to
test whether this object reference and the specified object reference refer to the same
object. Many subclasses override this method to compare the individual fields of two
distinct objects (i.e., they override the method to test for the equivalence of distinct objects
rather than the equality of object references). Some classes, particularly those that override
equals( ), may also want to override the hashCode( ) method to provide an
appropriate hashcode to be used when storing instances in a Hashtable data structure.

A class that allocates system resources other than memory (such as file descriptors or
windowing system graphic contexts) should override the finalize( ) method to release
these resources when the object is no longer referred to and is about to be garbage-
collected.

public class Object {
// Public Constructors
     public Object( );                                                    empty
// Public Instance Methods
     public boolean equals(Object obj);  
     public final Class<? extends Object> getClass( );            native
     public int hashCode( );                                              native
     public final void notify( );                                         native
     public final void notifyAll( );                                      native
     public String toString( );  
     public final void wait( ) throws InterruptedException;  
     public final void wait(long timeout) throws InterruptedException;     native
     public final void wait(long timeout, int nanos) throws InterruptedException;  
// Protected Instance Methods
     protected Object clone( ) throws CloneNotSupportedException;         native
     protected void finalize( ) throws Throwable;                         empty
}

Subclasses

Too many classes to list.
Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

java.io.Reader.lock, java.io.Writer.lock,
java.util.EventObject.source, java.util.Vector.elementData,
java.util.prefs.AbstractPreferences.lock

OutOfMemoryError java.lang

Java 1.0 serializable error

Signals that the interpreter has run out of memory (and that garbage collection is unable
to free any memory).

Chapter 10. java.lang and Subpackages Page 53 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-49. java.lang.OutOfMemoryError

public class OutOfMemoryError extends VirtualMachineError {
// Public Constructors
     public OutOfMemoryError( );  
     public OutOfMemoryError(String s);  
}

Override java.lang

Java 5.0 @Target(METHOD) @Retention(SOURCE) annotation

An annotation of this type may be applied to methods and indicates that the programmer
intends for the method to override a method from a superclass. In effect, it is an assertion
for the compiler to verify. If a method annotated @Override  does not, in fact, override
another method (perhaps because the method name was misspelled or an argument was
incorrectly typed), the compiler issues an error. This annotation type has source retention.

Figure 10-50. java.lang.Override

public @interface Override {
}

Package java.lang

Java 1.2

This class represents a Java package. You can obtain the Package object for a given
Class by calling the getPackage( ) method of the Class object. The static
Package.getPackage( ) method returns a Package object for the named package, if
any such package has been loaded by the current class loader. Similarly, the static
Package.getPackages( ) returns all Package objects that have been loaded by the
current class loader. Note that a Package object is not defined unless at least one class

Chapter 10. java.lang and Subpackages Page 54 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



has been loaded from that package. Although you can obtain the Package of a given
Class, you cannot obtain an array of Class objects contained in a specified Package.

If the classes that comprise a package are contained in a JAR file that has the appropriate
attributes set in its manifest file, the Package object allows you to query the title, vendor,
and version of both the package specification and the package implementation; all six
values are strings. The specification version string has a special format. It consists of one
or more integers, separated from each other by periods. Each integer can have leading
zeros, but is not considered an octal digit. Increasing numbers indicate later versions. The
isCompatibleWith( ) method calls getSpecificationVersion( ) to obtain the
specification version and compares it with the version string supplied as an argument. If
the package-specification version is the same as or greater than the specified string,
isCompatibleWith( ) returns true. This allows you to test whether the version of a
package (typically a standard extension) is new enough for the purposes of your
application.

Packages may be sealed, which means that all classes in the package must come from the
same JAR file. If a package is sealed, the no-argument version of isSealed( ) returns
true. The one-argument version of isSealed( ) returns true if the specified URL
represents the JAR file from which the package is loaded.

Figure 10-51. java.lang.Package

public class Package implements java.lang.reflect.AnnotatedElement {
// No Constructor
// Public Class Methods
     public static Package getPackage(String name);  
     public static Package[ ] getPackages( );  
// Public Instance Methods
     public String getImplementationTitle( );  
     public String getImplementationVendor( );  
     public String getImplementationVersion( );  
     public String getName( );  
     public String getSpecificationTitle( );  
     public String getSpecificationVendor( );  
     public String getSpecificationVersion( );  
     public boolean isCompatibleWith(String desired) throws NumberFormatException;  
     public boolean isSealed( );  
     public boolean isSealed(java.net.URL url);  
// Methods Implementing AnnotatedElement
5.0  public <A extends java.lang.annotation.Annotation> A getAnnotation(Class<A> 
annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getAnnotations( );  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
5.0  public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);  
// Public Methods Overriding Object
     public int hashCode( );  
     public String toString( );  
}

Chapter 10. java.lang and Subpackages Page 55 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Returned By

Class.getPackage( ), ClassLoader.{definePackage( ), getPackage( ),
getPackages( )}, java.net.URLClassLoader.definePackage( )

Process java.lang

Java 1.0

This class describes a process that is running externally to the Java interpreter. Note that
a Process is very different from a Thread; the Process class is abstract and cannot be
instantiated. Call one of the Runtime.exec( ) methods to start a process and return a
corresponding Process object.

waitFor( ) blocks until the process exits. exitValue( ) returns the exit code of the
process. destroy( ) kills the process. getErrorStream( )   returns an
InputStream from which you can read any bytes the process sends to its standard error
stream. getInputStream( ) returns an InputStream from which you can read any
bytes the process sends to its standard output stream. getOutputStream( ) returns an
OutputStream you can use to send bytes to the standard input stream of the process.

public abstract class Process {
// Public Constructors
     public Process( );  
// Public Instance Methods
     public abstract void destroy( );  
     public abstract int exitValue( );  
     public abstract java.io.InputStream getErrorStream( );  
     public abstract java.io.InputStream getInputStream( );  
     public abstract java.io.OutputStream getOutputStream( );  
     public abstract int waitFor( ) throws InterruptedException;  
}

Returned By

ProcessBuilder.start( ), Runtime.exec( )

ProcessBuilder java.lang

Java 5.0

This class launches operating system processes, producing Process objects. Specify the
operating system command when you invoke the ProcessBuilder( ) constructor or
with the command( ) method. Commands are specified with one or more strings, typically
the filename of the executable to run followed by the command-line arguments for the

Chapter 10. java.lang and Subpackages Page 56 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



executable. Specify these strings in a List, a String[ ], or, most conveniently, using a
variable-length argument list of strings.

Before launching the command you have specified, you can configure the
ProcessBuilder. Query the current working directory with the no-argument version of
directory( ) and set it with the one-argument version of the method. Query the
mapping of environment variables to values with the environment( ) method. You can
alter the mappings in the returned Map to specify the environment you want the child
process to run in. Pass true to redirectErrorStream( ) if you would like both the
standard output and the standard error stream of the child process to be merged into a
single stream that you can obtain with Process.getInputStream( ). If you do so, you
do not have to arrange to read two separate input streams to get the output of the process.

Once you have specified a command and configured your ProcessBuilder as desired,
call the start( ) method to launch the process. You then use methods of the returned
Process to provide input to the process, read output from the process, or wait for the
process to exit. start( ) may throw an IOException. This may occur, for example, if
the executable filename you have specified does not exist. The command( ) and
directory( ) methods do not perform error checking on the values you provide them;
these checks are performed by the start( ) method, so it is also possible for
start( ) to throw exceptions based on bad input to the configuration methods.

Note that a ProcessBuilder can be reused: once you have established a working
directory and environment variables, you can change the command( ) and launch
multiple processes with repeated calls to start( ).

public final class ProcessBuilder {
// Public Constructors
     public ProcessBuilder(java.util.List<String> command);  
     public ProcessBuilder(String... command);  
// Public Instance Methods
     public java.util.List<String> command( );  
     public ProcessBuilder command(String... command);  
     public ProcessBuilder command(java.util.List<String> command);  
     public java.io.File directory( );  
     public ProcessBuilder directory(java.io.File directory);  
     public java.util.Map<String,String> environment( );  
     public boolean redirectErrorStream( );  
     public ProcessBuilder redirectErrorStream(boolean redirectErrorStream);  
     public Process start( ) throws java.io.IOException;  
}

Readable java.lang

Chapter 10. java.lang and Subpackages Page 57 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0 readable

Objects that implement this interface can serve as a source of characters and can transfer
one or more at a time to a java.nio.CharBuffer. Readable was added in Java 5.0 as
a simple unifying API for java.nio.CharBuffer and character input stream subclasses
of java.io.Reader. The java.util.Scanner class can parse input from any
Readable object. See also Appendable.

public interface Readable {
// Public Instance Methods
     int read(java.nio.CharBuffer cb) throws java.io.IOException;  
}

Implementations

java.io.Reader, java.nio.CharBuffer
Passed To

java.util.Scanner.Scanner( )

Runnable java.lang

Java 1.0 runnable

This interface specifies the run( ) method that is required to use with the Thread class.
Any class that implements this interface can provide the body of a thread. See Thread for
more information.

public interface Runnable {
// Public Instance Methods
     void run( );  
}

Implementations

Thread, java.util.TimerTask, java.util.concurrent.FutureTask
Passed To

Too many methods to list.
Returned By

javax.net.ssl.SSLEngine.getDelegatedTask( )

Runtime java.lang

Java 1.0

Chapter 10. java.lang and Subpackages Page 58 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



This class encapsulates a number of platform-dependent system functions. The static
method getRuntime( ) returns the Runtime object for the current platform; this object
can perform system functions in a platform-independent way.

exit( ) causes the Java interpreter to exit and return a specified return code. This
method is usually invoked through System.exit( ). In Java 1.3,
addShutdownHook( ) registers an unstarted Thread object that is run when the virtual
machine shuts down, either through a call to exit( ) or through a user interrupt (a CTRL-
C, for example). The purpose of a shutdown hook is to perform necessary cleanup, such
as shutting down network connections, deleting temporary files, and so on. Any number
of hooks can be registered with addShutdownHook( ). Before the interpreter exits, it
starts all registered shutdown-hook threads and lets them run concurrently. Any hooks
you write should perform their cleanup operation and exit promptly so they do not delay
the shutdown process. To remove a shutdown hook before it is run, call
removeShutdownHook( ). To force an immediate exit that does not invoke the
shutdown hooks, call halt( ).

exec( ) starts a new process running externally to the interpreter. Note that any
processes run outside of Java may be system-dependent.

freeMemory( ) returns the approximate amount of free memory. totalMemory( )
returns the total amount of memory available to the Java interpreter. gc( ) forces the
garbage collector to run synchronously, which may free up more memory. Similarly,
runFinalization( ) forces the finalize( ) methods of unreferenced objects to be
run immediately. This may free up system resources those objects were holding.

load( ) loads a dynamic library with a fully specified pathname. loadLibrary( ) loads
a dynamic library with only the library name specified; it looks in platform-dependent
locations for the specified library. These libraries generally contain native code definitions
for native methods.

traceInstructions( ) and traceMethodCalls( ) enable and disable tracing by
the interpreter. These methods are used for debugging or profiling an application. It is not
specified how the VM emits the trace information, and VMs are not even required to
support this feature.

Note that some of the Runtime methods are more commonly called via the static methods
of the System class.

public class Runtime {
// No Constructor
// Public Class Methods
     public static Runtime getRuntime( );  
// Public Instance Methods
1.3  public void addShutdownHook(Thread hook);  

Chapter 10. java.lang and Subpackages Page 59 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



1.4  public int availableProcessors( );                               native
     public Process exec(String[ ] cmdarray) throws java.io.IOException;  
     public Process exec(String command) throws java.io.IOException;  
     public Process exec(String command, String[ ] envp) throws java.io.IOException;  
     public Process exec(String[ ] cmdarray, String[ ] envp) throws java.io.IOException;  
1.3  public Process exec(String[ ] cmdarray, String[ ] envp, java.io.File dir) 
     throws java.io.IOException;  
1.3  public Process exec(String command, String[ ] envp, java.io.File dir) throws 
     java.io.IOException;  
     public void exit(int status);  
     public long freeMemory( );                                           native
     public void gc( );                                                   native
1.3  public void halt(int status);  
     public void load(String filename);  
     public void loadLibrary(String libname);  
1.4  public long maxMemory( );                                        native
1.3  public boolean removeShutdownHook(Thread hook);  
     public void runFinalization( );  
     public long totalMemory( );                                          native
     public void traceInstructions(boolean on);                         native
     public void traceMethodCalls(boolean on);                          native
// Deprecated Public Methods
#    public java.io.InputStream getLocalizedInputStream(java.io.InputStream in);  
#    public java.io.OutputStream getLocalizedOutputStream(java.io.OutputStream out);  
1.1#  public static void runFinalizersOnExit(boolean value);  
}

RuntimeException java.lang

Java 1.0 serializable unchecked

This exception type is not used directly, but serves as a superclass of a group of run-time
exceptions that need not be declared in the throws clause of a method definition. These
exceptions need not be declared because they are runtime conditions that can generally
occur in any Java method. Thus, declaring them would be unduly burdensome, and Java
does not require it.

This class inherits methods from Throwable but declares none of its own. Each of the
RuntimeException constructors simply invokes the corresponding Exception( )
and Throwable( ) constructor. See Throwable for details.

Figure 10-52. java.lang.RuntimeException

public class RuntimeException extends Exception {
// Public Constructors
     public RuntimeException( );  
1.4  public RuntimeException(Throwable cause);  
     public RuntimeException(String message);  
1.4  public RuntimeException(String message, Throwable cause);  
}

Chapter 10. java.lang and Subpackages Page 60 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Subclasses

Too many classes to list.

RuntimePermission java.lang

Java 1.2 serializable permission

This class is a java.security.Permission that represents access to various important
system facilities. A RuntimePermission has a name, or target, that represents the facility
for which permission is being sought or granted. The name "exitVM" represents
permission to call System.exit( ), and the name "accessClassInPackage.java.lang"
represents permission to read classes from the java.lang package. The name of a
RuntimePermission may use a ".*" suffix as a wildcard. For example, the name
"accessClassInPackage.java.*" represents permission to read classes from any package
whose name begins with "java.". RuntimePermission does not use action list strings as
some Permission classes do; the name of the permission alone is enough.

The following are supported RuntimePermssion names:

accessClassInPackage.package getProtectionDomain setFactory

accessDeclaredMembers loadLibrary.library_name setIO

createClassLoader modifyThread setSecurityManager

createSecurityManager modifyThreadGroup stopThread

defineClassInPackage.package queuePrintJob writeFileDescriptor

exitVM readFileDescriptor  

getClassLoader set-ContextClassLoader  

System administrators configuring security policies should be familiar with these
permission names, the operations they govern access to, and with the risks inherent in
granting any of them. Although system programmers may need to work with this class,
application programmers should never need to use RuntimePermssion directly.

Figure 10-53. java.lang.RuntimePermission

public final class RuntimePermission extends java.security.BasicPermission {
// Public Constructors
     public RuntimePermission(String name);  
     public RuntimePermission(String name, String actions);  
}

Chapter 10. java.lang and Subpackages Page 61 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



SecurityException java.lang

Java 1.0 serializable unchecked

Signals that an operation is not permitted for security reasons.

Figure 10-54. java.lang.SecurityException

public class SecurityException extends RuntimeException {
// Public Constructors
     public SecurityException( );  
5.0  public SecurityException(Throwable cause);  
     public SecurityException(String s);  
5.0  public SecurityException(String message, Throwable cause);  
}

Subclasses

java.security.AccessControlException
Thrown By

Too many methods to list.

SecurityManager java.lang

Java 1.0

This class defines the methods necessary to implement a security policy for the safe
execution of untrusted code. Before performing potentially sensitive operations, Java calls
methods of the SecurityManager object currently in effect to determine whether the
operations are permitted. These methods throw a SecurityException if the operation
is not permitted. Typical applications do not need to use or subclass
SecurityManager. It is typically used only by web browsers, applet viewers, and other
programs that need to run untrusted code in a controlled environment.

Prior to Java 1.2, this class is abstract, and the default implementation of each
check( ) method throws a SecurityException unconditionally. The Java security
mechanism has been overhauled as of Java 1.2. As part of the overhaul, this class is no
longer abstract and its methods have useful default implementations, so there is rarely

Chapter 10. java.lang and Subpackages Page 62 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



a need to subclass it. checkPermission( ) operates by invoking the
checkPermission( ) method of the system java.security.AccessController
object. In Java 1.2 and later, all other check( ) methods of SecurityManager are now
implemented on top of checkPermission( ).

public class SecurityManager {
// Public Constructors
     public SecurityManager( );  
// Public Instance Methods
     public void checkAccept(String host, int port);  
     public void checkAccess(ThreadGroup g);  
     public void checkAccess(Thread t);  
1.1  public void checkAwtEventQueueAccess( );  
     public void checkConnect(String host, int port);  
     public void checkConnect(String host, int port, Object context);  
     public void checkCreateClassLoader( );  
     public void checkDelete(String file);  
     public void checkExec(String cmd);  
     public void checkExit(int status);  
     public void checkLink(String lib);  
     public void checkListen(int port);  
1.1  public void checkMemberAccess(Class<?> clazz, int which);  
1.1  public void checkMulticast(java.net.InetAddress maddr);  
     public void checkPackageAccess(String pkg);  
     public void checkPackageDefinition(String pkg);  
1.2  public void checkPermission(java.security.Permission perm);  
1.2  public void checkPermission(java.security.Permission perm, Object context);  
1.1  public void checkPrintJobAccess( );  
     public void checkPropertiesAccess( );  
     public void checkPropertyAccess(String key);  
     public void checkRead(String file);  
     public void checkRead(java.io.FileDescriptor fd);  
     public void checkRead(String file, Object context);  
1.1  public void checkSecurityAccess(String target);  
     public void checkSetFactory( );  
1.1  public void checkSystemClipboardAccess( );  
     public boolean checkTopLevelWindow(Object window);  
     public void checkWrite(java.io.FileDescriptor fd);  
     public void checkWrite(String file);  
     public Object getSecurityContext( );                     default:AccessControlContext
1.1  public ThreadGroup getThreadGroup( );  
// Protected Instance Methods
     protected Class[ ] getClassContext( );                        native
// Deprecated Public Methods
1.1#  public void checkMulticast(java.net.InetAddress maddr, byte ttl);  
#    public boolean getInCheck( );                                      default:false
// Deprecated Protected Methods
#    protected int classDepth(String name);                           native
#    protected int classLoaderDepth( );  
#    protected ClassLoader currentClassLoader( );  
1.1#  protected Class<?> currentLoadedClass( );  
#    protected boolean inClass(String name);  
#    protected boolean inClassLoader( );  
// Deprecated Protected Fields
#    protected boolean inCheck;  
}

Passed To

System.setSecurityManager( )
Returned By

System.getSecurityManager( )

Chapter 10. java.lang and Subpackages Page 63 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Short java.lang

Java 1.1 serializable comparable

This class provides an object wrapper around the short primitive type. It defines useful
constants for the minimum and maximum values that can be stored by the short type,
and also a Class object constant that represents the short type. It also provides various
methods for converting Short values to and from strings and other numeric types.  

Most of the static methods of this class can convert a String to a Short object or a
short value; the four parseShort( ) and valueOf( ) methods parse a number from
the specified string using an optionally specified radix and return it in one of these two
forms. The decode( ) method parses a number   specified in base 10, base 8, or base 16
and returns it as a Short. If the string begins with "0x" or "#", it is interpreted as a
hexadecimal number; if it begins with "0", it is interpreted as an octal number. Otherwise,
it is interpreted as a decimal number.

Note that this class has two different toString( ) methods. One is static and converts
a short primitive value to a string. The other is the usual toString( ) method that
converts a Short object to a string. Most of the remaining methods convert a Short to
various primitive numeric types.

Figure 10-55. java.lang.Short

public final class Short extends Number implements Comparable<Short> {
// Public Constructors
     public Short(short value);  
     public Short(String s) throws NumberFormatException;  
// Public Constants
     public static final short MAX_VALUE;  =32767
     public static final short MIN_VALUE;  =-32768
5.0  public static final int SIZE;     =16
     public static final Class<Short> TYPE;  
// Public Class Methods
     public static Short decode(String nm) throws NumberFormatException;  
     public static short parseShort(String s) throws NumberFormatException;  
     public static short parseShort(String s, int radix) throws NumberFormatException;  
5.0  public static short reverseBytes(short i);  
     public static String toString(short s);  
     public static Short valueOf(String s) throws NumberFormatException;  
5.0  public static Short valueOf(short s);  
     public static Short valueOf(String s, int radix) throws NumberFormatException;  
// Methods Implementing Comparable
1.2  public int compareTo(Short anotherShort);  
// Public Methods Overriding Number
     public byte byteValue( );  
     public double doubleValue( );  

Chapter 10. java.lang and Subpackages Page 64 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public float floatValue( );  
     public int intValue( );  
     public long longValue( );  
     public short shortValue( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

StackOverflowError java.lang

Java 1.0 serializable error

Signals that a stack overflow has occurred within the Java interpreter.

Figure 10-56. java.lang.StackOverflowError

public class StackOverflowError extends VirtualMachineError {
// Public Constructors
     public StackOverflowError( );  
     public StackOverflowError(String s);  
}

StackTraceElement java.lang

Java 1.4 serializable

Instances of this class are returned in an array by Throwable.getStackTrace( ) .
Each instance represents one frame in the stack trace associated with an exception or error.
getClassName( )  and getMethodName( ) return the name of the class (including
package name) and method that contain the point of execution that the stack frame
represents. If the class file contains sufficient information, getFileName( ) and
getLineNumber( ) return the source file and line number associated with the frame.
getFileName( ) returns null and getLineNumber( ) returns a negative value if
source or line number information is not available. isNativeMethod( ) returns true
if the named method is a native method (and therefore does not have a meaningful source
file or line number).

Chapter 10. java.lang and Subpackages Page 65 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-57. java.lang.StackTraceElement

public final class StackTraceElement implements Serializable {
// Public Constructors
5.0  public StackTraceElement(String declaringClass, String methodName, 
     String fileName, int lineNumber);  
// Public Instance Methods
     public String getClassName( );  
     public String getFileName( );  
     public int getLineNumber( );  
     public String getMethodName( );  
     public boolean isNativeMethod( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Passed To

Throwable.setStackTrace( )
Returned By

Thread.getStackTrace( ), Throwable.getStackTrace( ),
java.lang.management.ThreadInfo.getStackTrace( )

StrictMath java.lang

Java 1.3

This class is identical to the Math class, but additionally requires that its methods strictly
adhere to the behavior of certain published algorithms. The methods of StrictMath are
intended to operate identically on all platforms, and must produce exactly the same result
(down to the very least significant bit) as certain well-known standard algorithms. When
strict platform-independence of floating-point results is not required, use the Math class
for better performance.

public final class StrictMath {
// No Constructor
// Public Constants
     public static final double E;         =2.718281828459045
     public static final double PI;        =3.141592653589793
// Public Class Methods
     public static int abs(int a);  
     public static long abs(long a);  
     public static float abs(float a);  
     public static double abs(double a);  
     public static double acos(double a);                               native
     public static double asin(double a);                               native
     public static double atan(double a);                               native
     public static double atan2(double y, double x);                    native
5.0  public static double cbrt(double a);                           native
     public static double ceil(double a);                               native
     public static double cos(double a);                                native
5.0  public static double cosh(double x);                           native
     public static double exp(double a);                                native

Chapter 10. java.lang and Subpackages Page 66 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



5.0  public static double expm1(double x);                          native
     public static double floor(double a);                              native
5.0  public static double hypot(double x, double y);                native
     public static double IEEEremainder(double f1, double f2);          native
     public static double log(double a);                                native
5.0  public static double log10(double a);                          native
5.0  public static double log1p(double x);                          native
     public static int max(int a, int b);  
     public static long max(long a, long b);  
     public static float max(float a, float b);  
     public static double max(double a, double b);  
     public static int min(int a, int b);  
     public static long min(long a, long b);  
     public static float min(float a, float b);  
     public static double min(double a, double b);  
     public static double pow(double a, double b);                      native
     public static double random( );  
     public static double rint(double a);  
     public static int round(float a);  
     public static long round(double a);  
5.0  public static float signum(float f);  
5.0  public static double signum(double d);  
     public static double sin(double a);                                native
5.0  public static double sinh(double x);                           native
     public static double sqrt(double a);                               native
     public static double tan(double a);                                native
5.0  public static double tanh(double x);                           native
     public static double toDegrees(double angrad);                    
 strictfp
     public static double toRadians(double angdeg);                    
 strictfp
5.0  public static float ulp(float f);  
5.0  public static double ulp(double d);  
}

String java.lang

Java 1.0 serializable comparable

The String class represents a read-only string of characters. A String object is created
by the Java compiler whenever it encounters a string in double quotes; this method of
creation is typically simpler than using a constructor. The static valueOf( ) factory
methods create new String objects that hold the textual representation of various Java
primitive types. There are also valueOf( ) methods, copyValueOf( ) methods and
String( ) constructors for creating a String object that holds a copy of the text
contained in another String, StringBuffer, StringBuilder, or a char or int array.
You can also use the String( ) constructor to create a String object from an array of
bytes. If you do this, you may explicitly specify the name of the charset (or character
encoding) to be used to decode the bytes into characters, or you can rely on the default
charset for your platform. (See java.nio.charset.Charset for more on charset
names.)

Chapter 10. java.lang and Subpackages Page 67 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



In Java 5.0, the static format( ) methods provide another useful way to create
String objects that hold formatted text. These utility methods create and use a new
java.util.Formatter object and behave like the sprintf( ) function in the C
programming language.

length( ) returns the number of characters in a string. charAt( ) extracts a character
from a string. You can use these two methods to iterate through the characters of a string.
You can obtain a char array that holds the characters of a string with
toCharArray( ), or use getChars( ) to copy just a selected region of the string into
an existing array. Use getBytes( ) if you want to obtain an array of bytes that contains
the encoded form of the characters in a string, using either the platform's default encoding
or a named encoding.

This class defines many methods for comparing strings and substrings. equals( )
returns true if two String objects contain the same text, and
equalsIgnoreCase( ) returns true if two strings are equal when uppercase and
lowercase differences are ignored. As of Java 1.4, the contentEquals( ) method
compares a string to a specified StringBuffer object, returning true if they contain the
same text. startsWith( )  and endsWith( ) return true if a string starts with the
specified prefix string or ends with the specified suffix string. A two-argument version of
startsWith( ) allows you to specify a position within this string at which the prefix
comparison is to be done. The regionMatches( ) method is a generalized version of
this startsWith( ) method. It returns true if the specified region of the specified string
matches the characters that begin at a specified position within this string. The five-
argument version of this method allows you to perform this comparison ignoring the case
of the characters being compared. The final string comparison method is matches( ),
which, as described below, compares a string to a regular expression pattern.

compareTo( ) is another string comparison method, but it is used for comparing the
order of two strings, rather than simply comparing them for equality. compareTo( )
implements the Comparable interface and enables sorting of lists and arrays of
String objects. See Comparable for more information. compareToIgnoreCase( )
is like compareTo( ) but ignores the case of the two strings when doing the comparison.
The CASE_INSENSITIVE_ORDER constant is a Comparator for sorting strings in a way
that ignores the case of their characters. (The java.util.Comparator interface is
similar to the Comparable interface but allows the definition of object orderings that are
different from the default ordering defined by Comparable.) The compareTo( ) and
compareToIgnoreCase( ) methods and the CASE_INSENSITIVE_ORDER
Comparator object order strings based only on the numeric ordering of the Unicode
encoding of their characters. This is not always the preferred "alphabetical ordering" in

Chapter 10. java.lang and Subpackages Page 68 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



some languages. See java.text.Collator for a more general technique for collating
strings.

indexOf( ) and lastIndexOf( ) search forward and backward in a string for a
specified character or substring. They return the position of the match, or -1 if there is no
match. The one argument versions of these methods start at the beginning or end of the
string, and the two-argument versions start searching from a specified character position.

Java 5.0 adds new comparison methods that work with any CharSequence. A new version
of contentEquals( ) enables the comparison of a string with any CharSequence,
including StringBuilder objects. The contains( ) method returns true if the string
contains any sequence of characters equal to the specified CharSequence.

substring( ) returns a string that consists of the characters from (and including) the
specified start position to (but not including) the specified end position. A one-argument
version returns all characters from (and including) the specified start position to the end
of the string. As of Java 1.4, the String class implements the CharSequence interface
and defines the subSequence( ) method, which works just like the two-argument
version of substring( ) but returns the specified characters as a CharSequence rather
than as a String.

Several methods return new strings that contain modified versions of the text held by the
original string (the original string remains unchanged). replace( ) creates a new string
with all occurrences of one character replaced by another. Java 5.0 adds a generalized
version of replace( ) that replaces all occurrences of one CharSequence with another.
More general methods, replaceAll( ) and replaceFirst( ), use regular expression
pattern matching; they are described later in this section. toUpperCase( ) and
toLowerCase( ) return a new string in which all characters are converted to upper- or
lowercase respectively. These case-conversion methods take an optional Locale
argument to perform locale-specific case conversion. trim( ) is a utility method that
returns a new string in which all leading and trailing whitespace has been removed.
concat( ) returns the new string formed by concatenating or appending the specified
string to this string. String concatenation is more commonly done, however, with the +
operator.

Note that String objects are immutable; there is no setCharAt( ) method to change
the contents. The methods that return a String do not modify the string they are invoked
on but instead return a new String object that holds a modified copy of the text of the
original. Use a StringBuffer if you want to manipulate the contents of a string or call
toCharArray( ) or getChars( )  to convert a string to an array of char values. 

Chapter 10. java.lang and Subpackages Page 69 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.4 introduced support for pattern matching with regular expressions.
matches( ) returns true if this string exactly matches the pattern specified by the regular
expression argument. replaceAll( )  and replaceFirst( ) create a new string in
which all occurrences or the first occurrence of a substring that matches the specified
regular expression is replaced with the specified replacement string. The split( )
methods return an array of substrings of this string, formed by splitting this string at
positions that match the specified regular expression. These regular expression methods
are all convenience methods that simply call methods of the same name in the
java.util.regex package. See the Pattern and Matcher classes in that package for
further details.

Many programs use strings as commonly as they use Java primitive values. Because the
String type is an object rather than a primitive value, however, you cannot in general use
the = = operator to compare two strings for equality. Instead, even though strings are
immutable, you must use the more expensive equals( ) method. For programs that
perform a lot of string comparison, the intern( ) provides a way to speed up those
comparisons. The String class maintains a set of String objects that includes all double-
quoted string literals and all compile-time constant strings defined in a Java program. The
set is guaranteed not to contain duplicates, and the set is used to ensure that duplicate
String objects are not created unnecessarily. The intern( ) method looks up a string
in or adds a new string to this set of unique strings. It searches the set for a string that
contains exactly the same characters as the string you invoked the method on. If such a
string is found, intern( ) returns it. If no matching string is found, the string you
invoked intern( ) on is itself stored in the set ("interned") and becomes the return value
of the method. What this means is that you can safely compare any strings returned by the
intern( ) method using the = = and != operators instead of equals( ). You can also
successfully compare any string returned by intern( ) to any string constant with =
= and !=.

In   Java 5.0, Unicode supplementary characters may be represented as a single int
codepoint value or as a sequence of two char values known as a "surrogate pair." See
Character for more on supplementary characters and methods for working with them.
String methods for working with supplementary characters, such as
codePointAt( )  , codePointCount( ), and offsetByCodePoints( ), are similar
to those defined by Character.

Figure 10-58. java.lang.String

Chapter 10. java.lang and Subpackages Page 70 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public final class String implements Serializable, Comparable<String>, CharSequence {
// Public Constructors
     public String( );  
5.0  public String(StringBuilder builder);  
     public String(StringBuffer buffer);  
     public String(char[ ] value);  
     public String(String original);  
1.1  public String(byte[ ] bytes);  
1.1  public String(byte[ ] bytes, String charsetName) 
     throws java.io.UnsupportedEncodingException;  
#    public String(byte[ ] ascii, int hibyte);  
     public String(char[ ] value, int offset, int count);  
1.1  public String(byte[ ] bytes, int offset, int length);  
5.0  public String(int[ ] codePoints, int offset, int count);  
#    public String(byte[ ] ascii, int hibyte, int offset, int count);  
1.1  public String(byte[ ] bytes, int offset, int length, String charsetName) 
     throws java.io.UnsupportedEncodingException;  
// Public Constants
1.2  public static final java.util.Comparator<String> CASE_INSENSITIVE_ORDER;  
// Public Class Methods
     public static String copyValueOf(char[ ] data);  
     public static String copyValueOf(char[ ] data, int offset, int count);  
5.0  public static String format(String format, Object... args);  
5.0  public static String format(java.util.Locale l, String format, Object... args);  
     public static String valueOf(float f);  
     public static String valueOf(long l);  
     public static String valueOf(Object obj);  
     public static String valueOf(double d);  
     public static String valueOf(boolean b);  
     public static String valueOf(char[ ] data);  
     public static String valueOf(int i);  
     public static String valueOf(char c);  
     public static String valueOf(char[ ] data, int offset, int count);  
// Public Instance Methods
     public char charAt(int index);          Implements:CharSequence
5.0  public int codePointAt(int index);  
5.0  public int codePointBefore(int index);  
5.0  public int codePointCount(int beginIndex, int endIndex);  
     public int compareTo(String anotherString);                Implements:Comparable
1.2  public int compareToIgnoreCase(String str);  
     public String concat(String str);  
5.0  public boolean contains(CharSequence s);  
1.4  public boolean contentEquals(StringBuffer sb);  
5.0  public boolean contentEquals(CharSequence cs);  
     public boolean endsWith(String suffix);  
     public boolean equalsIgnoreCase(String anotherString);  
1.1  public byte[ ] getBytes( );  
1.1  public byte[ ] getBytes(String charsetName) throws java.io.
     UnsupportedEncodingException;  
     public void getChars(int srcBegin, int srcEnd, char[ ] dst, int dstBegin);  
     public int indexOf(int ch);  
     public int indexOf(String str);  
     public int indexOf(int ch, int fromIndex);  
     public int indexOf(String str, int fromIndex);  
     public String intern( );                                             native
     public int lastIndexOf(String str);  
     public int lastIndexOf(int ch);  
     public int lastIndexOf(String str, int fromIndex);  
     public int lastIndexOf(int ch, int fromIndex);  
     public int length( );                     Implements:CharSequence
1.4  public boolean matches(String regex);  
5.0  public int offsetByCodePoints(int index, int codePointOffset);  
     public boolean regionMatches(int toffset, String other, int ooffset, int len);  
     public boolean regionMatches(boolean ignoreCase, int toffset, String other, 
                    int ooffset, int len);  
     public String replace(char oldChar, char newChar);  
5.0  public String replace(CharSequence target, CharSequence replacement);  
1.4  public String replaceAll(String regex, String replacement);  
1.4  public String replaceFirst(String regex, String replacement);  
1.4  public String[ ] split(String regex);  
1.4  public String[ ] split(String regex, int limit);  
     public boolean startsWith(String prefix);  

Chapter 10. java.lang and Subpackages Page 71 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public boolean startsWith(String prefix, int toffset);  
     public String substring(int beginIndex);  
     public String substring(int beginIndex, int endIndex);  
     public char[ ] toCharArray( );  
     public String toLowerCase( );  
1.1  public String toLowerCase(java.util.Locale locale);  
     public String toString( );                Implements:CharSequence
     public String toUpperCase( );  
1.1  public String toUpperCase(java.util.Locale locale);  
     public String trim( );  
// Methods Implementing CharSequence
     public char charAt(int index);  
     public int length( );  
1.4  public CharSequence subSequence(int beginIndex, int endIndex);  
     public String toString( );  
// Methods Implementing Comparable
     public int compareTo(String anotherString);  
// Public Methods Overriding Object
     public boolean equals(Object anObject);  
     public int hashCode( );  
// Deprecated Public Methods
#    public void getBytes(int srcBegin, int srcEnd, byte[ ] dst, int dstBegin);  
}

Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

Too many fields to list. 

StringBuffer java.lang

Java 1.0 serializable appendable

This class represents a mutable string of characters that can grow or shrink as necessary.
Its mutability makes it suitable for processing text in place, which is not possible with the
immutable String class. Its resizability and the various methods it implements make it
easier to use than a char[ ]. Create a StringBuffer with the StringBuffer( )
constructor. You may pass a String that contains the initial text for the buffer to this
constructor, but if you do not, the buffer will start out empty. You may also specify the
initial capacity for the buffer if you can estimate the number of characters the buffer will
eventually hold.

The methods of this class are synchronized, which makes StringBuffer objects
suitable for use by multiple threads. In Java 5.0 and later, when working with a single
thread, StringBuilder is preferred over this class because it does not have the overhead
of synchronized methods. StringBuilder implements the same methods as
StringBuffer and can be used in the same way.

Chapter 10. java.lang and Subpackages Page 72 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Query the character stored at a given index with charAt( ) and set or delete that
character with   setCharAt( ) or deleteCharAt( ). Use length( ) to return the
length of the buffer, and use setLength( ) to set the length of the buffer, truncating it
or filling it with null characters ('\u0000') as necessary. capacity( ) returns the number
of characters a StringBuffer can hold before its internal buffer needs to be reallocated.
If you expect a StringBuffer to grow substantially and can approximate its eventual
size, you can use ensureCapacity( ) to preallocate sufficient internal storage.

Use the various append( ) methods to append text to the end of the buffer. Use
insert( ) to insert text at a specified position within the buffer. Note that in addition
to strings, primitive values, character arrays, and arbitrary objects may be passed to
append( ) and  insert( ). These values are converted to strings before they are
appended or inserted. Use delete( ) to delete a range of characters from the buffer and
use replace( ) to replace a range of characters with a specified String.

Use substring( )  to convert a portion of a StringBuffer to a String. The two
versions of this method work just like the same-named methods of String. Call
toString( ) to obtain the contents of a StringBuffer as a String object. Or use
getChars( ) to extract the specified range of characters from the StringBuffer and
store them into the specified character array starting at the specified index of that array.

As of Java 1.4, StringBuffer implements CharSequence and so also defines a
subSequence( ) method that is like substring( ) but returns its value as a
CharSequence. Java 1.4 also added indexOf( )  and lastIndexOf( ) methods that
search forward or backward (from the optionally specified index) in a StringBuffer for
a sequence of characters that matches the specified String. These methods return the
index of the matching string or -1 if no match was found. See also the similarly named
methods of String after which these methods are modeled.

In  Java 5.0, this class has a new constructor and new methods for working with
CharSequence objects. It implements the Appendable interface for use with
java.util.Formatter and includes new methods for working with 21-bit Unicode
characters as int codepoints.

String concatenation in Java is performed with the + operator and is implemented, prior
to Java 5.0, using the append( ) method of a StringBuffer. In Java 5.0 and later,
StringBuilder is used instead. After a string is processed in a StringBuffer object,
it can be efficiently converted to a String object for subsequent use. The
StringBuffer.toString( ) method is typically implemented so that it does not copy
the internal array of characters. Instead, it shares that array with the new String object,

Chapter 10. java.lang and Subpackages Page 73 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



making a new copy for itself only if and when further modifications are made to the
StringBuffer object.

Figure 10-59. java.lang.StringBuffer

public final class StringBuffer extends AbstractStringBuilder implements CharSequence, 
Serializable {
// Public Constructors
     public StringBuffer( );  
     public StringBuffer(String str);  
     public StringBuffer(int capacity);  
5.0  public StringBuffer(CharSequence seq);  
// Public Instance Methods
     public StringBuffer append(String str);                      synchronized
1.4  public StringBuffer append(StringBuffer sb);                   synchronized
5.0  public StringBuffer append(CharSequence s);  
     public StringBuffer append(Object obj);                      synchronized
     public StringBuffer append(char[ ] str);                    synchronized
     public StringBuffer append(long lng);                        synchronized
     public StringBuffer append(float f);                         synchronized
     public StringBuffer append(double d);                        synchronized
     public StringBuffer append(boolean b);                       synchronized
     public StringBuffer append(char c);                 synchronized
     public StringBuffer append(int i);                  synchronized
     public StringBuffer append(char[ ] str, int offset, int len);     synchronized
5.0  public StringBuffer append(CharSequence s, int start, int end);     synchronized
5.0  public StringBuffer appendCodePoint(int codePoint);            synchronized
     public char charAt(int index);      Implements:CharSequence synchronized
1.2  public StringBuffer delete(int start, int end);                synchronized
1.2  public StringBuffer deleteCharAt(int index);                   synchronized
     public StringBuffer insert(int offset, char c);                    synchronized
     public StringBuffer insert(int offset, boolean b);  
     public StringBuffer insert(int offset, long l);  
     public StringBuffer insert(int offset, int i);  
     public StringBuffer insert(int offset, String str);                synchronized
     public StringBuffer insert(int offset, Object obj);                synchronized
5.0  public StringBuffer insert(int dstOffset, CharSequence s);  
     public StringBuffer insert(int offset, char[ ] str);        synchronized
     public StringBuffer insert(int offset, double d);  
     public StringBuffer insert(int offset, float f);  
1.2  public StringBuffer insert(int index, char[ ] str, int offset, int len);     synchronized
5.0  public StringBuffer insert(int dstOffset, CharSequence s, int start, 
     int end);     synchronized
     public int length( );                   Implements:CharSequence synchronized
1.2  public StringBuffer replace(int start, int end, String str);     synchronized
     public StringBuffer reverse( );                       synchronized
     public String toString( );            Implements:CharSequence synchronized
// Methods Implementing CharSequence
     public char charAt(int index);                      synchronized
     public int length( );                                 synchronized
1.4  public CharSequence subSequence(int start, int end);           synchronized
     public String toString( );                            synchronized
// Public Methods Overriding AbstractStringBuilder
     public int capacity( );                               synchronized
5.0  public int codePointAt(int index);                       synchronized
5.0  public int codePointBefore(int index);                   synchronized
5.0  public int codePointCount(int beginIndex, int endIndex);       synchronized
     public void ensureCapacity(int minimumCapacity);                   synchronized
     public void getChars(int srcBegin, 
     int srcEnd, char[ ] dst, int dstBegin);     synchronized
1.4  public int indexOf(String str);  
1.4  public int indexOf(String str, int fromIndex);                 synchronized
1.4  public int lastIndexOf(String str);  
1.4  public int lastIndexOf(String str, int fromIndex);             synchronized

Chapter 10. java.lang and Subpackages Page 74 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



5.0  public int offsetByCodePoints(int index, int codePointOffset);     synchronized
     public void setCharAt(int index, char ch);                   synchronized
     public void setLength(int newLength);                        synchronized
1.2  public String substring(int start);                      synchronized
1.2  public String substring(int start, int end);                   synchronized
5.0  public void trimToSize( );                        synchronized
}

Passed To

Too many methods to list.
Returned By

Too many methods to list.  

StringBuilder java.lang

Java 5.0 serializable appendable

This class defines the same methods as StringBuffer but does not declare those
methods synchronized, which can result in better performance in the common case in
which only a single thread is using the object. StringBuilder is a drop-in replacement
for StringBuffer and should be used in preference to StringBuffer except where
thread safety is required. See StringBuffer for an overview of the methods shared by
these two classes.

Figure 10-60. java.lang.StringBuilder

public final class StringBuilder extends AbstractStringBuilder implements CharSequence, 
Serializable {
// Public Constructors
     public StringBuilder( );  
     public StringBuilder(int capacity);  
     public StringBuilder(String str);  
     public StringBuilder(CharSequence seq);  
// Public Instance Methods
     public StringBuilder append(long lng);  
     public StringBuilder append(float f);  
     public StringBuilder append(double d);  
     public StringBuilder append(int i);  
     public StringBuilder append(String str);  
     public StringBuilder append(StringBuffer sb);  
     public StringBuilder append(CharSequence s);  
     public StringBuilder append(Object obj);  
     public StringBuilder append(char c);  
     public StringBuilder append(boolean b);  
     public StringBuilder append(char[ ] str);  
     public StringBuilder append(CharSequence s, int start, int end);  
     public StringBuilder append(char[ ] str, int offset, int len);  
     public StringBuilder appendCodePoint(int codePoint);  
     public StringBuilder delete(int start, int end);  
     public StringBuilder deleteCharAt(int index);  
     public StringBuilder insert(int offset, boolean b);  

Chapter 10. java.lang and Subpackages Page 75 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public StringBuilder insert(int offset, char c);  
     public StringBuilder insert(int offset, int i);  
     public StringBuilder insert(int dstOffset, CharSequence s);  
     public StringBuilder insert(int offset, Object obj);  
     public StringBuilder insert(int offset, String str);  
     public StringBuilder insert(int offset, char[ ] str);  
     public StringBuilder insert(int offset, double d);  
     public StringBuilder insert(int offset, long l);  
     public StringBuilder insert(int offset, float f);  
     public StringBuilder insert(int index, char[ ] str, int offset, int len);  
     public StringBuilder insert(int dstOffset, CharSequence s, int start, int end);  
     public StringBuilder replace(int start, int end, String str);  
     public StringBuilder reverse( );  
// Methods Implementing CharSequence
     public String toString( );  
// Public Methods Overriding AbstractStringBuilder
     public int indexOf(String str);  
     public int indexOf(String str, int fromIndex);  
     public int lastIndexOf(String str);  
     public int lastIndexOf(String str, int fromIndex);  
}

Passed To

String.String( )

StringIndexOutOfBoundsException java.lang

Java 1.0 serializable unchecked

Signals that the index used to access a character of a String or StringBuffer is less
than zero or is too large.

Figure 10-61. java.lang.StringIndexOutOfBoundsException

public class StringIndexOutOfBoundsException extends IndexOutOfBoundsException {
// Public Constructors
     public StringIndexOutOfBoundsException( );  
     public StringIndexOutOfBoundsException(int index);  
     public StringIndexOutOfBoundsException(String s);  
}

SuppressWarnings java.lang

Chapter 10. java.lang and Subpackages Page 76 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0
@Target({TYPE, FIELD, METHOD, PARAMETER,

CONSTRUCTOR, LOCAL_VARIABLE}) @Retention(SOURCE)
annotation

An annotation of this type tells the Java compiler not to generate specified kinds of warning
messages for code within the annotated program element. Annotations of this type have
source retention and may be applied to any program element except packages and other
annotation types. An @SuppressWarnings annotation has an array of String objects
as its value. These strings specify the names of the warnings to be suppressed. The
available warnings (and their names) depend on the compiler implementation, and
compilers will ignore warning names they do not support. Compiler vendors are expected
to cooperate in defining at least a core set of common warning names. In Java 5.0, the
@SuppressWarnings warning names supported by the javac compiler are the same as
the warning flags that can be specfied with the -Xlint compiler flag.

Figure 10-62. java.lang.SuppressWarnings

public @interface SuppressWarnings {
// Public Instance Methods
     String[ ] value( );  
}

System java.lang

Java 1.0

This class defines a platform-independent interface to system facilities, including system
properties and system input and output streams. All methods and variables of this class
are static, and the class cannot be instantiated. Because the methods defined by this class
are low-level system methods, most require special permissions and cannot be executed
by untrusted code.

getProperty( ) looks up a named property on the system properties list, returning the
optionally specified default value if no property definition is found.
getProperties( ) returns the entire properties list. setProperties( ) sets a
Properties object on the properties list. In Java 1.2 and later, setProperty( ) sets
the value of a system property. In Java 5.0, you can clear a property setting with
clearProperty( ) . The following table lists system properties that are always defined.

Chapter 10. java.lang and Subpackages Page 77 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Untrusted code may be unable to read some or all of these properties. Additional properties
can be defined using the -D option when invoking the Java interpreter.

Property name Description
file.separator Platform directory separator character
path.separator Platform path separator character
line.separator Platform line separator character(s)
user.name Current user s account name
user.home Home directory of current user
user.dir The current working directory
java.class.path Where classes are loaded from
java.class.version Version of the Java class file format
java.compiler The name of the just-in-time compiler
java.ext.dirs Path to directories that hold extensions
java.home The directory Java is installed in
java.io.tmpdir The directory that temporary files are written to
java.library.path Directories to search for native libraries
java.specification.version Version of the Java API specification
java.specification.vendor Vendor of the Java API specification
java.specification.name Name of the Java API specification
java.version Version of the Java API implementation
java.vendor Vendor of this Java API implementation
java.vendor.url URL of the vendor of this Java API implementation
java.vm.specification.version Version of the Java VM specification
java.vm.specification.vendor Vendor of the Java VM specification
java.vm.specification.name Name of the Java VM specification
java.vm.version Version of the Java VM implementation
java.vm.vendor Vendor of the Java VM implementation
java.vm.name Name of the Java VM implementation
os.name Name of the host operating system
os.arch Host operating system architecture
os.version Version of the host operating system

The in    , out, and err fields hold the standard input, output, and error streams for the
system. These fields are frequently used in calls such as System.out.println( ). In
Java 1.1, setIn( ), setOut( ), and setErr( ) allow these streams to be redirected.

System also defines various other useful static methods. exit( ) causes the Java VM to
exit. arraycopy( ) efficiently copies an array or a portion of an array into a destination
array. currentTimeMillis( )  returns the current time in milliseconds since midnight
GMT, January 1, 1970 GMT. In   Java 5.0, nanoTime( ) returns a time in nanoseconds.
Unlike currentTimeMillis( ) this time is not relative to any fixed point and so is
useful only for elapsed time computations.

Chapter 10. java.lang and Subpackages Page 78 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



getenv( )  returns the value of a platform-dependent environment variable, or (in Java
5.0) returns a Map of all environment variables. The one-argument version of
getenv( ) was previously deprecated but has been restored in Java 5.0.

identityHashCode( ) computes the hashcode for an object in the same way that the
default Object.hashCode( ) method does. It does this regardless of whether or how
the hashCode( ) method has been overridden.

In   Java 5.0, inheritedChannel( ) returns a java.nio.channels.Channel object
that represents a network connection passed to the Java process by the invoking process.
This allows Java programs to be used with the Unix inetd daemon, for example.

load( )  and loadLibrary( ) can read  libraries of native code into the system.
mapLibraryName( )  converts a system-independent library name into a system-
dependent library filename. Finally, getSecurityManager( )   and
setSecurityManager( ) get and set the system SecurityManager object
responsible for the system security policy.

See also Runtime, which defines several other methods that provide low-level access to
system facilities.

public final class System {
// No Constructor
// Public Constants
     public static final java.io.PrintStream err;  
     public static final java.io.InputStream in;  
     public static final java.io.PrintStream out;  
// Public Class Methods
     public static void arraycopy(Object src, int srcPos, Object dest, int destPos, 
     int length);     native
5.0  public static String clearProperty(String key);  
     public static long currentTimeMillis( );                             native
     public static void exit(int status);  
     public static void gc( );  
5.0  public static java.util.Map<String,String> getenv( );  
     public static String getenv(String name);  
     public static java.util.Properties getProperties( );  
     public static String getProperty(String key);  
     public static String getProperty(String key, String def);  
     public static SecurityManager getSecurityManager( );  
1.1  public static int identityHashCode(Object x);                  native
5.0  public static java.nio.channels.Channel inheritedChannel( ) throws java.io.IOException;  
     public static void load(String filename);  
     public static void loadLibrary(String libname);  
1.2  public static String mapLibraryName(String libname);           native
5.0  public static long nanoTime( );                                  native
     public static void runFinalization( );  
1.1  public static void setErr(java.io.PrintStream err);  
1.1  public static void setIn(java.io.InputStream in);  
1.1  public static void setOut(java.io.PrintStream out);  
     public static void setProperties(java.util.Properties props);  
1.2  public static String setProperty(String key, String value);  
     public static void setSecurityManager(SecurityManager s);  
// Deprecated Public Methods
1.1#  public static void runFinalizersOnExit(boolean value);  
}

Chapter 10. java.lang and Subpackages Page 79 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Thread java.lang

Java 1.0 runnable

This class encapsulates all information about a single thread of control running on the Java
interpreter. To create a thread, you must either pass a Runnable object (i.e., an object
that implements the Runnable interface by defining a run( ) method) to the Thread
constructor or subclass Thread so that it defines its own run( ) method. The run( )
method of the Thread or of the specified Runnable object is the body of the thread. It
begins executing when the start( ) method of the Thread object is called. The thread
runs until the run( ) method returns. isAlive( ) returns true if a thread has been
started, and the run( ) method has not yet exited.

The static methods of this class operate on the currently running thread.
currentThread( ) returns the Thread object of the currently running code.
sleep( ) makes the current thread stop for a specified amount of time. yield( ) makes
the current thread give up control to any other threads of equal priority that are waiting
to run. holdsLock( ) tests whether the current thread holds a lock (through a
synchronized method or statement) on the specified object; this Java 1.4 method is
often useful with an assert statement.

The instance methods may be called by one thread to operate on a different thread.
checkAccess( ) checks whether the running thread has permission to modify a
Thread object and throws a SecurityException if it does not. join( ) waits for a
thread to die. interrupt( ) wakes up a waiting or sleeping thread (with an
InterruptedException) or sets an interrupted flag on a nonsleeping thread. A thread
can test its own interrupted flag with the static interrupted( ) method or can test the
flag of another thread with isInterrupted( ). Calling interrupted( ) implicitly
clears the interrupted flag, but calling isInterrupted( ) does not. Methods related to
sleep( ) and interrupt( ) are the wait( ) and notify( ) methods defined by
the Object class. Calling wait( ) causes the current thread to block until the object's
notify( ) method is called by another thread.

setName( ) sets the name of a thread, which is purely optional. setPriority( ) sets
the priority of the thread. Higher priority threads run before lower priority threads. Java
does not specify what happens to multiple threads of equal priority; some systems perform
time-slicing and share the CPU between such threads. On other systems, one compute-

Chapter 10. java.lang and Subpackages Page 80 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



bound thread that does not call yield( ) may starve another thread of the same priority.
setDaemon( ) sets a boolean flag that specifies whether this thread is a daemon or not.
The Java VM keeps running as long as at least one nondaemon thread is running. Call
getThreadGroup( ) to obtain the ThreadGroup of which a thread is part. In Java 1.2
and later, use setContextClassLoader( ) to specify the ClassLoader to be used to
load any classes required by the thread.

suspend( ), resume( ), and stop( ) suspend, resume, and stop a given thread,
respectively, but all three methods are deprecated because they are inherently unsafe and
can cause deadlock. If a thread must be stoppable, have it periodically check a flag and exit
if the flag is set.

In Java 1.4 and later, the four-argument Thread( ) constructor allows you to specify the
"stack size" parameter for the thread. Typically, larger stack sizes allow threads to recurse
more deeply before running out of stack space. Smaller stack sizes reduce the fixed per-
thread memory requirements and may allow more threads to exist concurrently. The
meaning of this argument is implementation dependent, and implementations may even
ignore it.

Java 5.0 adds important new features to this class. getId( ) returns a unique long 
identifier for the thread. getState( )  returns the state of the thread as an enumerated
constant of type Thread.State. Thread.UncaughtExceptionHandler defines an
API for handling exceptions that cause the run( ) method of the thread to exit. Register
a handler of this type with setUncaughtExceptionHandler( ) or register a default
handler with the static methods setDefaultUncaughtExceptionHandler( ).
Obtain a snapshot of a thread's current stack trace with getStackTrace( ) . This returns
an array of StackTraceElement objects: the first element of the array is the most recent
method invocation and the last element is the least recent. The static
getAllStackTraces( ) returns stack traces for all running threads (the traces may be
obtained at different times for different threads).

Figure 10-63. java.lang.Thread

public class Thread implements Runnable {
// Public Constructors
     public Thread( );  
     public Thread(String name);  
     public Thread(Runnable target);  
     public Thread(Runnable target, String name);  
     public Thread(ThreadGroup group, String name);  
     public Thread(ThreadGroup group, Runnable target);  
     public Thread(ThreadGroup group, Runnable target, String name);  
1.4  public Thread(ThreadGroup group, Runnable target, String name, long stackSize);  
// Public Constants
     public static final int MAX_PRIORITY; =10

Chapter 10. java.lang and Subpackages Page 81 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static final int MIN_PRIORITY; =1
     public static final int NORM_PRIORITY;                              =5
// Nested Types
5.0  public enum State; 
5.0  public interface UncaughtExceptionHandler; 
// Public Class Methods
     public static int activeCount( );  
     public static Thread currentThread( );                               native
     public static void dumpStack( );  
     public static int enumerate(Thread[ ] tarray);  
5.0  public static java.util.Map<Thread,StackTraceElement[ ]> getAllStackTraces( );  
5.0  public static Thread.UncaughtExceptionHandler getDefaultUncaughtExceptionHandler( );  
1.4  public static boolean holdsLock(Object obj);                   native
     public static boolean interrupted( );  
5.0  public static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);  
     public static void sleep(long millis) throws InterruptedException;     native
     public static void sleep(long millis, int nanos) throws InterruptedException;  
     public static void yield( );                                         native
// Public Instance Methods
     public final void checkAccess( );  
1.2  public ClassLoader getContextClassLoader( );  
5.0  public long getId( );                           default:7
     public final String getName( );                                      default:"Thread-0" 
     public final int getPriority( );                                     default:5
5.0  public StackTraceElement[ ] getStackTrace( );  
5.0  public Thread.State getState( );  
     public final ThreadGroup getThreadGroup( );  
5.0  public Thread.UncaughtExceptionHandler getUncaughtExceptionHandler( ); default:ThreadGroup
     public void interrupt( );  
     public final boolean isAlive( );                                     native default:false
     public final boolean isDaemon( );                                    default:false
     public boolean isInterrupted( );                                     default:false
     public final void join( ) throws InterruptedException;  
     public final void join(long millis) throws InterruptedException;     synchronized
     public final void join(long millis, int nanos) throws InterruptedException;     synchronized
1.2  public void setContextClassLoader(ClassLoader cl);  
     public final void setDaemon(boolean on);  
     public final void setName(String name);  
     public final void setPriority(int newPriority);  
5.0  public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh);  
     public void start( );                                 synchronized
// Methods Implementing Runnable
     public void run( );  
// Public Methods Overriding Object
     public String toString( );  
// Deprecated Public Methods
#    public int countStackFrames( );                                    native
#    public void destroy( );  
#    public final void resume( );  
#    public final void stop( );  
#    public final void stop(Throwable obj);                     synchronized
#    public final void suspend( );  
}

Passed To

Runtime.{addShutdownHook( ), removeShutdownHook( )},
SecurityManager.checkAccess( ),
Thread.UncaughtExceptionHandler.uncaughtException( ), ThreadGroup.
{enumerate( ), uncaughtException( )},
java.util.concurrent.ThreadPoolExecutor.beforeExecute( ),
java.util.concurrent.TimeUnit.timedJoin( ),
java.util.concurrent.locks.AbstractQueuedSynchronizer.isQueued(
), java.util.concurrent.locks.LockSupport.unpark( ),

Chapter 10. java.lang and Subpackages Page 82 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



java.util.concurrent.locks.ReentrantLock.hasQueuedThread( ),
java.util.concurrent.locks.ReentrantReadWriteLock.hasQueuedThrea
d( )
Returned By

java.util.concurrent.ThreadFactory.newThread( ),
java.util.concurrent.locks.AbstractQueuedSynchronizer.getFirstQu
euedThread( ),
java.util.concurrent.locks.ReentrantLock.getOwner( ),
java.util.concurrent.locks.ReentrantReadWriteLock.getOwner( ) 

Thread.State java.lang

Java 5.0 serializable comparable enum

This enumerated type defines the possible states of a thread. Call the getState( )
method of a Thread object to obtain one of the enumerated constants defined here. A
NEW   thread has not been started yet, and a TERMINATED thread has exited. A BLOCKED
thread is waiting to enter a synchronized method or block. A WAITING thread is waiting
in Object.wait( ), Thread.join( ), or a similar method. A TIMED_WAITING thread
is waiting but is subject to a timeout, such as in Thread.sleep( ) or the timed versions
of Object.wait( ) and Thread.join( ). Finally, a thread that has been started and
has not yet exited and is not blocked or waiting is RUNNABLE. This does not mean that the
operating system is currently running it or that it is even making any forward progress,
but that it is at least available to run when the operating system gives it the CPU.

public enum Thread.State {
// Enumerated Constants
     NEW,  
     RUNNABLE,  
     BLOCKED,  
     WAITING,  
     TIMED_WAITING,  
     TERMINATED;  
// Public Class Methods
     public static Thread.State valueOf(String name);  
     public static final Thread.State[ ] values( );  
}

Returned By

Thread.getState( ),
java.lang.management.ThreadInfo.getThreadState( )

Thread.UncaughtExceptionHandler java.lang

Chapter 10. java.lang and Subpackages Page 83 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0

This interface defines a handler to be invoked when a thread throws an exception that
remains uncaught. When this happens, the uncaughtException( ) method of the
registered handler is invoked with the Thread object that threw the exception and the
Throwable exception object as arguments. The handler is run by the thread that received
the exception, and that thread will exit as soon as the handler exits. If
uncaughtException( ) itself throws an exception, that exception will be ignored.

An object that implements this interface may be registered for a Thread with the
setUncaughtExceptionHandler( ) method. A default
UncaughtExceptionHandler may be registered with the static method
Thread.setDefaultUncaughtExceptionHandler( ). If no handler or default
handler is registered, the uncaughtException( ) method of the containing
ThreadGroup is used instead.

public interface Thread.UncaughtExceptionHandler {
// Public Instance Methods
     void uncaughtException(Thread t, Throwable e);  
}

Implementations

ThreadGroup
Passed To

Thread.{setDefaultUncaughtExceptionHandler( ),
setUncaughtExceptionHandler( )}
Returned By

Thread.{getDefaultUncaughtExceptionHandler( ),
getUncaughtExceptionHandler( )}

ThreadDeath java.lang

Java 1.0 serializable error

Signals that a thread should terminate. This error is thrown in a thread when the
Thread.stop( ) method is called for that thread. This is an unusual Error type that
simply causes a thread to be terminated, but does not print an error message or cause the
interpreter to exit. You can catch ThreadDeath errors to do any necessary cleanup for a
thread, but if you do, you must rethrow the error so that the thread actually terminates.

Chapter 10. java.lang and Subpackages Page 84 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-64. java.lang.ThreadDeath

public class ThreadDeath extends Error {
// Public Constructors
     public ThreadDeath( );  
}

ThreadGroup java.lang

Java 1.0

This class represents a group of threads and allows that group to be manipulated as a whole.
A ThreadGroup can contain Thread objects, as well as other child ThreadGroup objects.
All ThreadGroup objects are created as children of some other ThreadGroup, and thus
there is a parent/child hierarchy of ThreadGroup objects. Use getParent( ) to obtain
the parent ThreadGroup, and use activeCount( ) , activeGroupCount( ), and
the various enumerate( ) methods to list the child Thread and ThreadGroup objects.
Most applications can simply rely on the default system thread group. System-level code
and applications such as servers that need to create a large number of threads may find it
convenient to create their own ThreadGroup objects, however.

interrupt( ) interrupts all threads in the group at once. setMaxPriority( )
specifies the maximum priority any thread in the group can have. checkAccess( )
checks whether the calling thread has permission to modify the given thread group. The
method throws a SecurityException if the current thread does not have access.
uncaughtException( ) contains the code that is run when a thread terminates because
of an uncaught exception or error. You can customize this method by subclassing
ThreadGroup.

Figure 10-65. java.lang.ThreadGroup

public class ThreadGroup implements Thread.UncaughtExceptionHandler {
// Public Constructors
     public ThreadGroup(String name);  
     public ThreadGroup(ThreadGroup parent, String name);  
// Public Instance Methods
     public int activeCount( );  
     public int activeGroupCount( );  
     public final void checkAccess( );  
     public final void destroy( );  
     public int enumerate(ThreadGroup[ ] list);  

Chapter 10. java.lang and Subpackages Page 85 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public int enumerate(Thread[ ] list);  
     public int enumerate(Thread[ ] list, boolean recurse);  
     public int enumerate(ThreadGroup[ ] list, boolean recurse);  
     public final int getMaxPriority( );  
     public final String getName( );  
     public final ThreadGroup getParent( );  
1.2  public final void interrupt( );  
     public final boolean isDaemon( );  
1.1  public boolean isDestroyed( );                 synchronized
     public void list( );  
     public final boolean parentOf(ThreadGroup g);  
     public final void setDaemon(boolean daemon);  
     public final void setMaxPriority(int pri);  
     public void uncaughtException(Thread t, Throwable e); 
Implements:Thread.UncaughtExceptionHandler
// Methods Implementing Thread.UncaughtExceptionHandler
     public void uncaughtException(Thread t, Throwable e);  
// Public Methods Overriding Object
     public String toString( );  
// Deprecated Public Methods
1.1#  public boolean allowThreadSuspension(boolean b);  
#    public final void resume( );  
#    public final void stop( );  
#    public final void suspend( );  
}

Passed To

SecurityManager.checkAccess( ), Thread.Thread( )
Returned By

SecurityManager.getThreadGroup( ), Thread.getThreadGroup( )

ThreadLocal<T> java.lang

Java 1.2

This class provides a convenient way to create thread-local variables. When you declare a
static field in a class, there is only one value for that field, shared by all objects of the class.
When you declare a nonstatic instance field in a class, every object of the class has its own
separate copy of that variable. ThreadLocal provides an option between these two
extremes. If you declare a static field to hold a ThreadLocal object, that
ThreadLocal holds a different value for each thread. Objects running in the same thread
see the same value when they call the get( ) method of the ThreadLocal object. Objects
running in different threads obtain different values from get( ), however.

In Java 5.0, this class has been made generic and the type variable T represents the type
of the object referenced by this ThreadLocal.

The set( ) method sets the value held by the ThreadLocal object for the currently
running thread. get( ) returns the value held for the currently running thread. Note that
there is no way to obtain the value of the ThreadLocal object for any thread other than

Chapter 10. java.lang and Subpackages Page 86 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



the one that calls get( ). To understand the ThreadLocal class, you may find it helpful
to think of a ThreadLocal object as a hashtable or java.util.Map that maps from
Thread objects to arbitrary values. Calling set( ) creates an association between the
current Thread (Thread.currentThread( )) and the specified value. Calling
get( ) first looks up the current thread, then uses the hashtable to look up the value
associated with that current thread.

If a thread calls get( ) for the first time without having first called set( ) to establish
a thread-local value, get( ) calls the protected initialValue( ) method to obtain
the initial value to return. The default implementation of initialValue( ) simply
returns null, but subclasses can override this if they desire.

See also InheritableThreadLocal, which allows thread-local values to be inherited
from parent threads by child threads.

public class ThreadLocal<T> {
// Public Constructors
     public ThreadLocal( );  
// Public Instance Methods
     public T get( );  
5.0  public void remove( );  
     public void set(T value);  
// Protected Instance Methods
     protected T initialValue( );                                         constant
}

Subclasses

InheritableThreadLocal

Throwable java.lang

Java 1.0 serializable

This is the root class of the Java exception and error hierarchy. All exceptions and errors
are subclasses of Throwable. The getMessage( ) method retrieves any error message
associated with the exception or error. The default implemenation of
getLocalizedMessage( ) simply calls getMessage( ), but subclasses may override
this method to return an error message that has been localized for the default locale.

It is often the case that an Exception or Error is generated as a direct result of some
other exception or error, perhaps one thrown by a lower-level API. As of Java 1.4 and later,
all Throwable objects may have a "cause" which specifies the Throwable that caused
this one. If there is a cause, pass it to the Throwable( ) constructor, or to the

Chapter 10. java.lang and Subpackages Page 87 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



initCause( ) method. When you catch a Throwable object, you can obtain the
Throwable that caused it, if any, with getCause( ).

Every Throwable object has information about the execution stack associated with it.
This information is initialized when the Throwable object is created. If the object will be
thrown somewhere other than where it was created, or if it caught and will be re-thrown,
you can use fillInStackTrace( ) to capture the current execution stack before
throwing it. printStackTrace( ) prints a textual representation of the stack to the
specified PrintWriter, PrintStream, or to the System.err stream. In Java 1.4, you
can also obtain this information with getStackTrace( ) which returns an array of
StackTraceElement objects describing the execution stack.

Figure 10-66. java.lang.Throwable

public class Throwable implements Serializable {
// Public Constructors
     public Throwable( );  
     public Throwable(String message);  
1.4  public Throwable(Throwable cause);  
1.4  public Throwable(String message, Throwable cause);  
// Public Instance Methods
     public Throwable fillInStackTrace( );                                native synchronized
1.4  public Throwable getCause( );                                    default:null
1.1  public String getLocalizedMessage( );                            default:null
     public String getMessage( );                                         default:null
1.4  public StackTraceElement[ ] getStackTrace( );  
1.4  public Throwable initCause(Throwable cause);                   synchronized
     public void printStackTrace( );  
     public void printStackTrace(java.io.PrintStream s);  
1.1  public void printStackTrace(java.io.PrintWriter s);  
1.4  public void setStackTrace(StackTraceElement[ ] stackTrace);  
// Public Methods Overriding Object
     public String toString( );  
}

Subclasses

Error, Exception
Passed To

Too many methods to list.
Returned By

java.io.WriteAbortedException.getCause( ), ClassNotFoundException.
{getCause( ), getException( )}, ExceptionInInitializerError.
{getCause( ), getException( )},
java.lang.reflect.InvocationTargetException.{getCause( ),
getTargetException( )},
java.lang.reflect.UndeclaredThrowableException.{getCause( ),
getUndeclaredThrowable( )},
java.security.PrivilegedActionException.getCause( ),

Chapter 10. java.lang and Subpackages Page 88 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



java.util.logging.LogRecord.getThrown( ),
javax.xml.transform.TransformerException.{getCause( ),
getException( ), initCause( )},
javax.xml.xpath.XPathException.getCause( )
Thrown By

Object.finalize( ), java.lang.reflect.InvocationHandler.invoke( )

TypeNotPresentException java.lang

Java 5.0 serializable unchecked

This unchecked exception signals that a class file associated with a
java.lang.reflect.Type could not be found. It typically results when a class depends
on a type that has changed or been removed and indicates version skew that requires
recompilation or code refactoring. This is essentially the generic type version of
ClassNotFoundException.

Figure 10-67. java.lang.TypeNotPresentException

public class TypeNotPresentException extends RuntimeException {
// Public Constructors
     public TypeNotPresentException(String typeName, Throwable cause);  
// Public Instance Methods
     public String typeName( );  
}

UnknownError java.lang

Java 1.0 serializable error

Signals that an unknown error has occurred at the level of the Java Virtual Machine.

Figure 10-68. java.lang.UnknownError

Chapter 10. java.lang and Subpackages Page 89 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public class UnknownError extends VirtualMachineError {
// Public Constructors
     public UnknownError( );  
     public UnknownError(String s);  
}

UnsatisfiedLinkError java.lang

Java 1.0 serializable error

Signals that Java cannot satisfy all the links in a class that it has loaded.

Figure 10-69. java.lang.UnsatisfiedLinkError

public class UnsatisfiedLinkError extends LinkageError {
// Public Constructors
     public UnsatisfiedLinkError( );  
     public UnsatisfiedLinkError(String s);  
}

UnsupportedClassVersionError java.lang

Java 1.2 serializable error

Every Java class file contains a version number that specifies the version of the class file
format. This error is thrown when the Java Virtual Machine attempts to read a class file
with a version number it does not support.

Figure 10-70. java.lang.UnsupportedClassVersionError

public class UnsupportedClassVersionError extends ClassFormatError {
// Public Constructors
     public UnsupportedClassVersionError( );  
     public UnsupportedClassVersionError(String s);  
}

Chapter 10. java.lang and Subpackages Page 90 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



UnsupportedOperationException java.lang

Java 1.2 serializable unchecked

Signals that a method you have called is not supported, and its implementation does not
do anything (except throw this exception). This exception is used most often by the Java
collection framework of java.util. Immutable or unmodifiable collections throw this
exception when a modification method, such as add( ) or delete( ), is called.

Figure 10-71. java.lang.UnsupportedOperationException

public class UnsupportedOperationException extends RuntimeException {
// Public Constructors
     public UnsupportedOperationException( );  
5.0  public UnsupportedOperationException(Throwable cause);  
     public UnsupportedOperationException(String message);  
5.0  public UnsupportedOperationException(String message, Throwable cause);  
}

Subclasses

java.nio.ReadOnlyBufferException

VerifyError java.lang

Java 1.0 serializable error

Signals that a class has not passed the byte-code verification procedures.

Figure 10-72. java.lang.VerifyError

public class VerifyError extends LinkageError {
// Public Constructors
     public VerifyError( );  
     public VerifyError(String s);  
}

Chapter 10. java.lang and Subpackages Page 91 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



VirtualMachineError java.lang

Java 1.0 serializable error

An abstract error type that serves as superclass for a group of errors related to the Java
Virtual Machine. See InternalError, UnknownError, OutOfMemoryError, and
StackOverflowError.

Figure 10-73. java.lang.VirtualMachineError

public abstract class VirtualMachineError extends Error {
// Public Constructors
     public VirtualMachineError( );  
     public VirtualMachineError(String s);  
}

Subclasses

InternalError, OutOfMemoryError, StackOverflowError, UnknownError

Void java.lang

Java 1.1

The Void class cannot be instantiated and serves merely as a placeholder for its static
TYPE field, which is a Class object constant that represents the void type.

public final class Void {
// No Constructor
// Public Constants
     public static final Class<Void> TYPE;  
}

Package java.lang.annotation

Java 5.0

Chapter 10. java.lang and Subpackages Page 92 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



This package defines the framework for annotations. It includes the base Annotation
interface that all annotation types extend, meta-annotation types, their associated 
enumerated types, and exception and error classes related to annotations. The most
important members of this package are the meta-annotation types: Documented,
Inherited, Retention, and Target.

Interfaces

public interface Annotation;

Enumerated Types

public enum ElementType;
public enum RetentionPolicy;

Annotation Types

public @interface Documented;
public @interface Inherited;
public @interface Retention;
public @interface Target;

Exceptions

public class AnnotationTypeMismatchException extends RuntimeException;
public class IncompleteAnnotationException extends RuntimeException;

Errors

public class AnnotationFormatError extends Error;

Annotation java.lang.annotation

Java 5.0

A type declared with the @interface syntax is an annotation type that implicitly extends
this interface. Note that the Annotation interface is not itself an annotation type.
Furthermore, if you define an interface (rather than an @interface) that explicitly
extends Annotation, the result is not an annotation type either. The only way to define
an annotation type is with an @interface definition. When an annotation is queried with
the java.lang.reflect.AnnotatedElement API, the object returned implements
this interface as well as the interface defined by the specific annotation type.

This interface defines the annotationType( ) method, which returns the Class of the
annotation type for any annotation object. It also includes the equals( )   and
hashCode( ) methods of Object to require an implementation to compare annotations
by the values of their members rather than simply by using = =. Finally, Annotation
also overrides the toString( ) method to require implementations to provide some

Chapter 10. java.lang and Subpackages Page 93 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



meaningful string representation of an annotation. The format of the returned string is
not specified, but you can expect implementations to produce a string using a syntax
similar to that used to encode annotations in Java source code.

public interface Annotation {
// Public Instance Methods
     Class<? extends java.lang.annotation.Annotation> annotationType( );  
     boolean equals(Object obj);  
     int hashCode( );  
     String toString( );  
}

Implementations

Deprecated, Override, SuppressWarnings, Documented, Inherited,
Retention, Target
Returned By

Too many methods to list.

AnnotationFormatError java.lang.annotation

Java 5.0 serializable error

An error of this type indicates that a class file includes a malformed annotation.

Figure 10-74. java.lang.annotation.AnnotationFormatError

public class AnnotationFormatError extends Error {
// Public Constructors
     public AnnotationFormatError(Throwable cause);  
     public AnnotationFormatError(String message);  
     public AnnotationFormatError(String message, Throwable cause);  
}

AnnotationTypeMismatchException java.lang.annotation

Java 5.0 serializable unchecked

An exception of this type indicates version skew in an annotation type. It occurs when the
Java VM attempts to read an annotation from a class file and discovers that the type of an

Chapter 10. java.lang and Subpackages Page 94 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



annotation member has changed since the class file (and the annotation it contains) was
compiled.

Figure 10-75. java.lang.annotation.AnnotationTypeMismatchException

public class AnnotationTypeMismatchException extends RuntimeException {
// Public Constructors
     public AnnotationTypeMismatchException(java.lang.reflect.Method element, String foundType);  
// Public Instance Methods
     public java.lang.reflect.Method element( );  
     public String foundType( );  
}

Documented java.lang.annotation

Java 5.0
@Documented @Retention(RUNTIME)

@Target(ANNOTATION_TYPE) annotation

A   meta-annotation of this type indicates that the annotated type should be documented
by Javadoc and similar documentation tools. If an annotation type is an @Documented
annotation, then the presence of an annotation of that type is part of the public API of the
annotated program element. java.lang.Deprecated is an @Documented annotation
type, for example, and so are each of the meta-annotation types in this package.

It is recommended that any annotation type that is @Documented should also have
runtime @Retention so that the presence of the annotation can be queried via reflection.

Figure 10-76. java.lang.annotation.Documented

public @interface Documented {
}

ElementType java.lang.annotation

Java 5.0 serializable comparable enum

Chapter 10. java.lang and Subpackages Page 95 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



The  constants declared by this enumerated type represent the types of program elements
that can be annotated. The value of an @Target annotation is an array of
ElementType constants. Most of the constants have obvious meanings, but some require
additional explanation. TYPE represents a class, interface, enumerated type, or annotation
type. ANNOTATION_TYPE represents only annotation types and is used for meta-
annotations. FIELD includes enumerated constants, and PARAMETER includes both
method parameters and catch clause parameters. Note that the METHOD and
CONSTRUCTOR are distinct constants.

Figure 10-77. java.lang.annotation.ElementType

public enum ElementType {
// Enumerated Constants
     TYPE,  
     FIELD,  
     METHOD,  
     PARAMETER,  
     CONSTRUCTOR,  
     LOCAL_VARIABLE,  
     ANNOTATION_TYPE,  
     PACKAGE;  
// Public Class Methods
     public static ElementType valueOf(String name);  
     public static final ElementType[ ] values( );  
}

Returned By

Target.value( )

IncompleteAnnotationException java.lang.annotation

Java 5.0 serializable unchecked

An exception of this type indicates version skew in an annotation type. It occurs when the
Java VM attempts to read an annotation from a class file and discovers that the annotation
type has added a new member since the class file was compiled. This means that the
annotation compiled into the class file is incomplete since it does not define a value for all
members of the annotation type. Note that this exception does not occur if a new member
with a default clause is added to the annotation type.

Chapter 10. java.lang and Subpackages Page 96 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-78. java.lang.annotation.IncompleteAnnotationException

public class IncompleteAnnotationException extends RuntimeException {
// Public Constructors
     public IncompleteAnnotationException(Class<? extends java.lang.annotation.Annotation> annotationType, 
     String elementName);  
// Public Instance Methods
     public Class<? extends java.lang.annotation.Annotation> annotationType( );  
     public String elementName( );  
}

Inherited java.lang.annotation

Java 5.0
@Documented @Retention(RUNTIME)

@Target(ANNOTATION_TYPE) annotation

When an annotation type that has an @Inherited   meta-annotation is applied to a class,
that annotation should be inherited by subclasses and descendants of the annotated class.
The inheritance is only for classes and their subclasses. If an @Inherited annotation type
is applied to a method or program element other than a class, no inheritance applies. If
the @Inherited annotation type also has runtime Retention, reflective access to the
annotation through java.lang.reflect.AnnotatedElement manages the
inheritance of the annotation.

Figure 10-79. java.lang.annotation.Inherited

public @interface Inherited {
}

Retention java.lang.annotation

Java 5.0
@Documented @Retention(RUNTIME)

@Target(ANNOTATION_TYPE) annotation

A   meta-annotation of this type specifies how long the annotated annotation type should
be retained. The value( ) of this annotation type is one of the three

Chapter 10. java.lang and Subpackages Page 97 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



RetentionPolicy enumerated constants. See RetentionPolicy for details. If an
annotation type does not have an @Retention meta-annotation, its default retention is
RetentionPolicy.CLASS.

Figure 10-80. java.lang.annotation.Retention

public @interface Retention {
// Public Instance Methods
     RetentionPolicy value( );  
}

RetentionPolicy java.lang.annotation

Java 5.0 serializable comparable enum

The   constants declared by the enumerated type specify the possible retention values for
an @Retention meta-annotation. Annotations with SOURCE retention appear in Java
source code only and are discarded by the compiler. Annotations with CLASS retention
are compiled into the class file and are visible to tools that read class files but are not loaded
by the Java VM at runtime. (This is the default retention for annotation types that do not
have an @Retention meta-annotation.) Finally, annotations with RUNTIME retention are
stored in the class file and loaded by the Java interpreter at runtime. These annotations
are available for reflective access through java.lang.reflect.AnnotatedElement.

Figure 10-81. java.lang.annotation.RetentionPolicy

public enum RetentionPolicy {
// Enumerated Constants
     SOURCE,  
     CLASS,  
     RUNTIME;  
// Public Class Methods
     public static RetentionPolicy valueOf(String name);  
     public static final RetentionPolicy[ ] values( );  
}

Returned By

Retention.value( )

Chapter 10. java.lang and Subpackages Page 98 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Target java.lang.annotation

Java 5.0
@Documented @Retention(RUNTIME)

@Target(ANNOTATION_TYPE) annotation

A   meta-annotation of this type specifies what program elements the annotated annotation
type can be applied to. The value( ) of a Target annotation is an array of
ElementType enumerated constants. See ElementType for details on the allowed
values. If an annotation type does not have an @Target meta-annotation, it can be applied
to any program element.

Figure 10-82. java.lang.annotation.Target

public @interface Target {
// Public Instance Methods
     ElementType[ ] value( );  
}

Package java.lang.instrument

Java 5.0

This package defines the API for instrumenting a Java VM by transforming class files to
add profiling support, code coverage testing, or other features.

The -javaagent command-line option to the Java interpreter provides a hook for
running the premain( ) method of a Java instrumentation agent. An
Instrumentation object passed to the premain( ) method provides an entry point
into this package, and methods of Instrumentation allow loaded classes to be redefined
and ClassFileTransformer objects to be registered for classes not yet loaded.

Interfaces

public interface ClassFileTransformer;
public interface Instrumentation;

Classes

public final class ClassDefinition;

Chapter 10. java.lang and Subpackages Page 99 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Exceptions

public class IllegalClassFormatException extends Exception;
public class UnmodifiableClassException extends Exception;

ClassDefinition java.lang.instrument

Java 5.0

This class is a simple wrapper around a Class object and an array of bytes that represents
a class file for that class. An array of ClassDefinition objects is passed to the
redefineClasses( ) method of the Instrumentation class. Class redefinitions are
allowed to change method implementations, but not the members or inheritance of a class
or the signature of the methods.

public final class ClassDefinition {
// Public Constructors
     public ClassDefinition(Class<?> theClass, byte[ ] theClassFile);  
// Public Instance Methods
     public Class<?> getDefinitionClass( );  
     public byte[ ] getDefinitionClassFile( );  
}

Passed To

Instrumentation.redefineClasses( )

ClassFileTransformer java.lang.instrument

Java 5.0

A ClassFileTransformer  registered through an Instrumentation object is offered
a chance to transform every class that is subsequently loaded or redefined. The final
argument to transform( ) is a byte array that contains the raw bytes of the class file (or
bytes returned by a previously invoked ClassFileTransformer). If the
transform( ) method wishes to transform the class, it should return the transformed
bytes in a newly allocated array. The array passed to transform( ) should not be
modified. If the transform( ) method does not wish to transform a given class, it should
return null.

public interface ClassFileTransformer {
// Public Instance Methods
     byte[ ] transform(ClassLoader loader, String className, Class<?> classBeingRedefined, 
java.security.ProtectionDomain protectionDomain, byte[ ] classfileBuffer) 
throws IllegalClassFormatException;  
}

Chapter 10. java.lang and Subpackages Page 100 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Passed To

Instrumentation.{addTransformer( ), removeTransformer( )}

IllegalClassFormatException java.lang.instrument

Java 5.0 serializable checked

A ClassFileTransformer should throw an exception of this type from its
transform( ) method if it believes that the class file bytes it has been passed are
malformed (this could happen, for example, if a defective ClassFileTransformer had
previously transformed a valid class file).

Figure 10-83. java.lang.instrument.IllegalClassFormatException

public class IllegalClassFormatException extends Exception {
// Public Constructors
     public IllegalClassFormatException( );  
     public IllegalClassFormatException(String s);  
}

Thrown By

ClassFileTransformer.transform( )

Instrumentation java.lang.instrument

Java 5.0

This interface is the main entry point to the java.lang.instrument API. A Java
instrumentation  agent specified on the Java interpreter command line with the -
javaagent argument must be a class that defines the following method:

public static void premain(String args, Instrumentation instr)

The Java interpreter invokes the premain( ) method during startup before calling the
main( ) method of the program. Any arguments specified with the -javaagent
command line are passed in the first premain( ) argument, and an
Instrumentation object is passed as the second argument.

Chapter 10. java.lang and Subpackages Page 101 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



The most powerful feature of the Instrumentation object is the ability to register
ClassFileTransformer objects to augment or rewrite the byte code of Java class files
as they are loaded into the interpreter. If isRedefineClassesSupported( ) returns
true, you can also redefine already-loaded classes on the fly with
redefineClasses( ).

getAllLoadedClasses( ) returns an array of all classes loaded into the VM, and
getInitiatedClasses( ) returns an array of classes loaded by a specified
ClassLoader. getObjectSize( )  returns an implementation-specific approximation
of the amount of memory required by a specified object.

public interface Instrumentation {
// Public Instance Methods
     void addTransformer(ClassFileTransformer transformer);  
     Class[ ] getAllLoadedClasses( );  
     Class[ ] getInitiatedClasses(ClassLoader loader);  
     long getObjectSize(Object objectToSize);  
     boolean isRedefineClassesSupported( );  
     void redefineClasses(ClassDefinition[ ] definitions) throws ClassNotFoundException, 
     UnmodifiableClassException;  
     boolean removeTransformer(ClassFileTransformer transformer);  
}

UnmodifiableClassException java.lang.instrument

Java 5.0 serializable checked

An exception of this type is thrown from Instrumentation.redefineClasses( ) if
a requested redefinition cannot be performed. This might occur, for example, if the
redefinition attempts to add or remove members from the class.

Figure 10-84. java.lang.instrument.UnmodifiableClassException

public class UnmodifiableClassException extends Exception {
// Public Constructors
     public UnmodifiableClassException( );  
     public UnmodifiableClassException(String s);  
}

Thrown By

Instrumentation.redefineClasses( )  

Chapter 10. java.lang and Subpackages Page 102 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Package java.lang.management

Java 5.0

This package defines "management bean" or "  MXBean" interfaces for managing and
monitoring a running Java virtual machine. It relies on the JMX API of the
javax.management package, which is not covered in this book.
ManagementFactory is the main entry point to this API; it defines static factory methods
for obtaining instances of the various management bean interfaces. These instances can
then be queried for specific information about the Java VM. The jconsole tool shipped with
the Java 5.0 JDK demonstrates the capabilites of this package.

Interfaces

public interface ClassLoadingMXBean;
public interface CompilationMXBean;
public interface GarbageCollectorMXBean extends MemoryManagerMXBean;
public interface MemoryManagerMXBean;
public interface MemoryMXBean;
public interface MemoryPoolMXBean;
public interface OperatingSystemMXBean;
public interface RuntimeMXBean;
public interface ThreadMXBean;

Enumerated Types

public enum MemoryType;

Classes

public class ManagementFactory;
public final class ManagementPermission extends java.security.BasicPermission;
public class MemoryNotificationInfo;
public class MemoryUsage;
public class ThreadInfo;

ClassLoadingMXBean java.lang.management

Java 5.0

This  MXBean interface defines methods for determining how many classes are currently
loaded in the Java VM, how many have ever been loaded, and how many have ever been
unloaded. The setVerbose( ) method turns verbose class loading output from the VM
on or off.

public interface ClassLoadingMXBean {
// Public Instance Methods
     int getLoadedClassCount( );  
     long getTotalLoadedClassCount( );  
     long getUnloadedClassCount( );  
     boolean isVerbose( );  

Chapter 10. java.lang and Subpackages Page 103 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     void setVerbose(boolean value);  
}

Returned By

ManagementFactory.getClassLoadingMXBean( )

CompilationMXBean java.lang.management

Java 5.0

This MXBean interface defines methods for querying the just-in-time compiler of the Java
virtual machine. getName( ) returns an identifying name for the compiler. If the
implementation tracks compilation time, getTotalCompilationTime( ) returns the
approximate total compilation time in milliseconds.

public interface CompilationMXBean {
// Public Instance Methods
     String getName( );  
     long getTotalCompilationTime( );  
     boolean isCompilationTimeMonitoringSupported( );  
}

Returned By

ManagementFactory.getCompilationMXBean( )

GarbageCollectorMXBean java.lang.management

Java 5.0

This MXBean interface allows monitoring of the number of garbage collections that have
occurred and the approximate time they consumed in milliseconds. The methods return
-1 to indicate that the garbage collector does not maintain those statistics. Note that VM
implementations commonly have more than one garbage collector and use different
collection strategies for new objects and old objects. Note also that this is a subinterface
of MemoryManagerMXBean.

Figure 10-85. java.lang.management.GarbageCollectorMXBean

public interface GarbageCollectorMXBean extends MemoryManagerMXBean {
// Public Instance Methods
     long getCollectionCount( );  
     long getCollectionTime( );  
}

Chapter 10. java.lang and Subpackages Page 104 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



ManagementFactory java.lang.management

Java 5.0

This class provides the main entry point into the java.lang.management API. The
static factory methods provide a convenient way to obtain instances of the various MXBean
interfaces for the currently running Java virtual machine. The returned instances can then
be queried to monitor memory usage, class loading, and other details of virtual machine
performance.

To obtain an MXBean for a Java virtual machine running in another process, use the
newPlatformMXBeanProxy( ) method, specifying a
javax.management.MBeanServerConnection as well as the name and type of the
desired MXBean. The constant fields of this class define the names of the available beans.
Note that the javax.management package is beyond the scope of this quick reference.

public class ManagementFactory {
// No Constructor
// Public Constants
     public static final String CLASS_LOADING_MXBEAN_NAME;         ="java.lang:type=ClassLoading" 
     public static final String COMPILATION_MXBEAN_NAME;           ="java.lang:type=Compilation" 
     public static final String GARBAGE_COLLECTOR_MXBEAN_DOMAIN_TYPE; ="java.lang:type=GarbageCollector"
     public static final String MEMORY_MANAGER_MXBEAN_DOMAIN_TYPE; ="java.lang:type=MemoryManager" 
     public static final String MEMORY_MXBEAN_NAME;                ="java.lang:type=Memory" 
     public static final String MEMORY_POOL_MXBEAN_DOMAIN_TYPE;    ="java.lang:type=MemoryPool" 
     public static final String OPERATING_SYSTEM_MXBEAN_NAME;      ="java.lang:type=OperatingSystem" 
     public static final String RUNTIME_MXBEAN_NAME;               ="java.lang:type=Runtime" 
     public static final String THREAD_MXBEAN_NAME;                ="java.lang:type=Threading" 
// Public Class Methods
     public static ClassLoadingMXBean getClassLoadingMXBean( );  
     public static CompilationMXBean getCompilationMXBean( );  
     public static java.util.List<GarbageCollectorMXBean> getGarbageCollectorMXBeans( );  
     public static java.util.List<MemoryManagerMXBean> getMemoryManagerMXBeans( );  
     public static MemoryMXBean getMemoryMXBean( );  
     public static java.util.List<MemoryPoolMXBean> getMemoryPoolMXBeans( );  
     public static OperatingSystemMXBean getOperatingSystemMXBean( );  
     public static javax.management.MBeanServer getPlatformMBeanServer( );     synchronized
     public static RuntimeMXBean getRuntimeMXBean( );  
     public static ThreadMXBean getThreadMXBean( );  
     public static <T> T newPlatformMXBeanProxy(javax.management.
MBeanServerConnection connection, String mxbeanName, Class<T> mxbeanInterface) 
throws java.io.IOException;  
}

ManagementPermission java.lang.management

Chapter 10. java.lang and Subpackages Page 105 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 5.0 serializable permission

This java.security.Permission subclass governs access to the Java VM monitoring
and management capabilities of this package. The two defined targets for this permission
are control, which grants permission to manage the VM, and monitor, which grants
permission to monitor VM state. Fine-grained control over individual MXBeans is not
supported.

Figure 10-86. java.lang.management.ManagementPermission

public final class ManagementPermission extends java.security.BasicPermission {
// Public Constructors
     public ManagementPermission(String name);  
     public ManagementPermission(String name, String actions) throws IllegalArgumentException;  
}

MemoryManagerMXBean java.lang.management

Java 5.0

This MXBean interface allows monitoring of a single memory manager (such as a garbage
collector) in a Java VM. A VM implementation typically has more than one memory
manager, and the ManagementFactory method getMemoryManagerMXBeans( )
returns a List of objects of this type. Some or all of the objects in the returned list will
also implement the GarbageCollectorMXBean subinterface.

Each memory manager may manage one or more memory pools, and
getMemoryPoolNames( ) returns the names of these pools. See also
ManagementFactory.getMemoryPoolMXBeans( ) and MemoryPoolMXBean.

public interface MemoryManagerMXBean {
// Public Instance Methods
     String[ ] getMemoryPoolNames( );  
     String getName( );  
     boolean isValid( );  
}

Implementations

GarbageCollectorMXBean

Chapter 10. java.lang and Subpackages Page 106 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



MemoryMXBean java.lang.management

Java 5.0

This MXBean interface allows monitoring of current memory usage information for  heap
memory (allocated objects) and nonheap memory (loaded classes and libraries). It also
allows the garbage collector to be explicitly invoked and verbose garbage-collection related
output to be turned on or off.

See MemoryUsage for details on how memory usage information is returned. See also
MemoryPoolMXBean for a way to obtain both current and peak memory usage for
individual memory pools.

public interface MemoryMXBean {
// Public Instance Methods
     void gc( );  
     MemoryUsage getHeapMemoryUsage( );  
     MemoryUsage getNonHeapMemoryUsage( );  
     int getObjectPendingFinalizationCount( );  
     boolean isVerbose( );  
     void setVerbose(boolean value);  
}

Returned By

ManagementFactory.getMemoryMXBean( )

MemoryNotificationInfo java.lang.management

Java 5.0

This class holds information about memory usage in a given memory pool and is generated
when that usage crosses a threshold specified by a MemoryPoolMXBean. Use the
from( ) method to construct a MemoryNotificationInfo object from the user data
of a javax.management.Notification object. Notifications and the
javax.management package are beyond the scope of this book.

public class MemoryNotificationInfo {
// Public Constructors
     public MemoryNotificationInfo(String poolName, MemoryUsage usage, long count);  
// Public Constants
     public static final String MEMORY_COLLECTION_THRESHOLD_EXCEEDED;    
     ="java.management.memory.collection.threshold.exceeded"
     public static final String MEMORY_THRESHOLD_EXCEEDED; 
     ="java.management.memory.threshold.exceeded" 
// Public Class Methods
     public static MemoryNotificationInfo from(javax.management.openmbean.CompositeData cd);  
// Public Instance Methods
     public long getCount( );  

Chapter 10. java.lang and Subpackages Page 107 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public String getPoolName( );  
     public MemoryUsage getUsage( );  
}

MemoryPoolMXBean java.lang.management

Java 5.0

This MXBean interface allows monitoring of the current and peak memory usage for a
single memory pool. Typical Java VM implementations segregate garbage-collected heap
memory into two or more memory pools based on the age of the objects. Obtain a List of
MemoryPoolMXBean instances with
ManagementFactory.getMemoryPoolMXBeans( ). getName( )  and
getType( ) return the name and type of each pool. getUsage( )  and
getPeakUsage( ) return the current and peak memory usage for the pool in the form
of a MemoryUsage object.

If isUsageThresholdSupported( ) returns true, you can use
setUsageThreshold( ) to define a memory usage threshold. The
MemoryPoolMXBean then keeps track of threshold crossings and issues notifications
through the javax.management.NotificationEmitter API. You can register a
javax.management.NotificationListener to receive these notifications. (Note
that the javax.management package is not covered in this book.) Use
setCollectionUsageThreshold( ) instead to receive notifications when memory
usage exceeds a specified threshold after a garbage collection pass.

public interface MemoryPoolMXBean {
// Public Instance Methods
     MemoryUsage getCollectionUsage( );  
     long getCollectionUsageThreshold( );  
     long getCollectionUsageThresholdCount( );  
     String[ ] getMemoryManagerNames( );  
     String getName( );  
     MemoryUsage getPeakUsage( );  
     MemoryType getType( );  
     MemoryUsage getUsage( );  
     long getUsageThreshold( );  
     long getUsageThresholdCount( );  
     boolean isCollectionUsageThresholdExceeded( );  
     boolean isCollectionUsageThresholdSupported( );  
     boolean isUsageThresholdExceeded( );  
     boolean isUsageThresholdSupported( );  
     boolean isValid( );  
     void resetPeakUsage( );  
     void setCollectionUsageThreshold(long threhsold);  
     void setUsageThreshold(long threshold);  
}

Chapter 10. java.lang and Subpackages Page 108 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



MemoryType java.lang.management

Java 5.0 serializable comparable enum

The constants defined by this enumerated type define the type of a memory pool as either
heap or nonheap memory. See MemoryPoolMXBean.getType( ).

Figure 10-87. java.lang.management.MemoryType

public enum MemoryType {
// Enumerated Constants
     HEAP,  
     NON_HEAP;  
// Public Class Methods
     public static MemoryType valueOf(String name);  
     public static final MemoryType[ ] values( );  
// Public Methods Overriding Enum
     public String toString( );  
}

Returned By

MemoryPoolMXBean.getType( )

MemoryUsage java.lang.management

Java 5.0

A MemoryUsage object represents a snapshot of memory usage for a specified type or pool
of memory. Memory usage is measured as four long values, each of which represents a
number of bytes. getInit( ) returns the initial amount of memory that the Java VM
requests from the operating system. getUsed( )  returns the actual number of bytes
used. getCommitted( ) returns the number of bytes that the operating system has
committed to the Java VM for this pool. These bytes may not all be in use, but they are not
available to other processes running on the system. getMax( ) returns the maximum
amount of memory that the Java VM requests for this pool. getMax( ) returns -1 if there
is no defined maximum value.

public class MemoryUsage {
// Public Constructors
     public MemoryUsage(long init, long used, long committed, long max);  
// Public Class Methods

Chapter 10. java.lang and Subpackages Page 109 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     public static MemoryUsage from(javax.management.openmbean.CompositeData cd);  
// Public Instance Methods
     public long getCommitted( );  
     public long getInit( );  
     public long getMax( );  
     public long getUsed( );  
// Public Methods Overriding Object
     public String toString( );  
}

Passed To

MemoryNotificationInfo.MemoryNotificationInfo( )
Returned By

MemoryMXBean.{getHeapMemoryUsage( ), getNonHeapMemoryUsage( )},
MemoryNotificationInfo.getUsage( ), MemoryPoolMXBean.
{getCollectionUsage( ), getPeakUsage( ), getUsage( )}

OperatingSystemMXBean java.lang.management

Java 5.0

This MXBean interface allows queries of the operating system name, version, and CPU
architecture as well as the number of available CPUs.

public interface OperatingSystemMXBean {
// Public Instance Methods
     String getArch( );  
     int getAvailableProcessors( );  
     String getName( );  
     String getVersion( );  
}

Returned By

ManagementFactory.getOperatingSystemMXBean( )

RuntimeMXBean java.lang.management

Java 5.0

This MXBean interface provides access to the runtime configuration of the Java virtual
machine, including system properties, command-line arguments, class path, virtual
machine vendor and version, and so on. getUptime( )  returns the uptime of the virtual
machine in milliseconds.

public interface RuntimeMXBean {
// Public Instance Methods
     String getBootClassPath( );  

Chapter 10. java.lang and Subpackages Page 110 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     String getClassPath( );  
     java.util.List<String> getInputArguments( );  
     String getLibraryPath( );  
     String getManagementSpecVersion( );  
     String getName( );  
     String getSpecName( );  
     String getSpecVendor( );  
     String getSpecVersion( );  
     long getStartTime( );  
     java.util.Map<String,String> getSystemProperties( );  
     long getUptime( );  
     String getVmName( );  
     String getVmVendor( );  
     String getVmVersion( );  
     boolean isBootClassPathSupported( );  
}

Returned By

ManagementFactory.getRuntimeMXBean( )

ThreadInfo java.lang.management

Java 5.0

This  class represents information about a thread from a ThreadMXBean. Some
information, such as thread name, id, state, and stack trace are also available through the
java.lang.Thread object. Other more useful information includes the object upon
which a thread is waiting and the owner of the lock that the thread is trying to acquire. If
ThreadMXBean indicates that thread contention monitoring is supported and enabled,
the ThreadInfo methods getBlockedCount( )  and getBlockedTime( ) return
the number of times the thread has blocked or waited and the amount of time it has spent
in the blocked and waiting states.

public class ThreadInfo {
// No Constructor
// Public Class Methods
     public static ThreadInfo from(javax.management.openmbean.CompositeData cd);  
// Public Instance Methods
     public long getBlockedCount( );  
     public long getBlockedTime( );  
     public String getLockName( );  
     public long getLockOwnerId( );  
     public String getLockOwnerName( );  
     public StackTraceElement[ ] getStackTrace( );  
     public long getThreadId( );  
     public String getThreadName( );  
     public Thread.State getThreadState( );  
     public long getWaitedCount( );  
     public long getWaitedTime( );  
     public boolean isInNative( );  
     public boolean isSuspended( );  
// Public Methods Overriding Object
     public String toString( );  
}

Chapter 10. java.lang and Subpackages Page 111 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Returned By

ThreadMXBean.getThreadInfo( )

ThreadMXBean java.lang.management

Java 5.0

This MXBean interface  allows monitoring of thread usage in a Java VM. A number of
methods, such as getThreadCount( ) and getPeakThreadCount( ), return
information about all running threads. Other methods return information about
individual threads. Threads are identified by their thread id, which is a long integer.
getAllThreadIds( ) returns all ids as an array of long. Complete information,
including stack trace, about a thread or set of threads can be obtained with the
getThreadInfo( ) methods, which return ThreadInfo objects.

If isThreadCpuTimeSupported( ) returns true, you can enable thread timing with
setThreadCpuTimeEnabled( ) and query the runtime of a specific thread with
getThreadCpuTime( )  and getThreadUserTime( ). The values returned by these
methods are measured in nanoseconds.

One of the potentially most useful methods of this interface is
findMonitorDeadlockedThreads( ) . It looks for cycles of threads that are
deadlocked waiting to lock objects whose locks are held by other threads in the cycle.

public interface ThreadMXBean {
// Public Instance Methods
     long[ ] findMonitorDeadlockedThreads( );  
     long[ ] getAllThreadIds( );  
     long getCurrentThreadCpuTime( );  
     long getCurrentThreadUserTime( );  
     int getDaemonThreadCount( );  
     int getPeakThreadCount( );  
     int getThreadCount( );  
     long getThreadCpuTime(long id);  
     ThreadInfo getThreadInfo(long id);  
     ThreadInfo[ ] getThreadInfo(long[ ] ids);  
     ThreadInfo[ ] getThreadInfo(long[ ] ids, int maxDepth);  
     ThreadInfo getThreadInfo(long id, int maxDepth);  
     long getThreadUserTime(long id);  
     long getTotalStartedThreadCount( );  
     boolean isCurrentThreadCpuTimeSupported( );  
     boolean isThreadContentionMonitoringEnabled( );  
     boolean isThreadContentionMonitoringSupported( );  
     boolean isThreadCpuTimeEnabled( );  
     boolean isThreadCpuTimeSupported( );  
     void resetPeakThreadCount( );  
     void setThreadContentionMonitoringEnabled(boolean enable);  
     void setThreadCpuTimeEnabled(boolean enable);  
}

Chapter 10. java.lang and Subpackages Page 112 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Returned By

ManagementFactory.getThreadMXBean( )   

Package java.lang.ref

Java 1.2

The java.lang.ref package defines classes that allow Java programs to interact with
the Java garbage collector. A Reference represents an indirect reference to an arbitrary
object, known as the referent. SoftReference, WeakReference, and
PhantomReference are three concrete subclasses of Reference that interact with the
garbage collector in different ways, as explained in the individual class descriptions that
follow. ReferenceQueue represents a linked list of Reference objects. Any
Reference object may have a ReferenceQueue associated with it. A Reference object
is enqueued on its ReferenceQueue at some point after the garbage collector determines
that the referent object has become appropriately unreachable. (The exact level of
unreachability depends on the type of Reference being used.) An application can monitor
a ReferenceQueue to determine when referent objects enter a new reachability status.

Using the mechanisms defined in this package, you can implement a cache that grows and
shrinks in size according to the amount of available system memory. Or, you can
implement a hashtable that associates auxiliary information with arbitrary objects, but
does not prevent those objects from being garbage-collected if they are otherwise unused.
The mechanisms provided by this package are low-level ones, however, and typical
applications do not use java.lang.ref directly. Instead, they rely on higher-level
utilities built on top of the package. See java.util.WeakHashMap for one example.

In  Java 5.0, the classes in this package have all been made into generic types. The type
variable T represents the type of the object that is referred to.

Classes

public abstract class Reference<T>;
   public class PhantomReference<T> extends Reference<T>;
   public class SoftReference<T> extends Reference<T>;
   public class WeakReference<T> extends Reference<T>;
public class ReferenceQueue<T>;

PhantomReference<T> java.lang.ref

Chapter 10. java.lang and Subpackages Page 113 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Java 1.2

This class represents a reference to an object that does not prevent the referent object from
being finalized by the garbage collector. When (or at some point after) the garbage collector
determines that there are no more hard (direct) references to the referent object, that there
are no SoftReference or WeakReference objects that refer to the referent, and that
the referent has been finalized, it enqueues the PhantomReference object on the
ReferenceQueue specified when the PhantomReference was created. This serves as
notification that the object has been finalized and provides one last opportunity for any
required cleanup code to be run.

To prevent a PhantomReference object from resurrecting its referent object, its 
get( ) method always returns null, both before and after the PhantomReference is
enqueued. Nevertheless, a PhantomReference is not automatically cleared when it is
enqueued, so when you remove a PhantomReference from a ReferenceQueue, you
must call its clear( ) method or allow the PhantomReference object itself to be
garbage-collected.

This class provides a more flexible mechanism for object cleanup than the
finalize( ) method does. Note that in order to take advantage of it, it is necessary to
subclass PhantomReference and define a method to perform the desired cleanup.
Furthermore, since the get( ) method of a PhantomReference always returns null,
such a subclass must also store whatever data is required for the cleanup operation.

Figure 10-88. java.lang.ref.PhantomReference<T>

public class PhantomReference<T> extends Reference<T> {
// Public Constructors
     public PhantomReference(T referent, ReferenceQueue<? super T> q);  
// Public Methods Overriding Reference
     public T get( );                                                     constant
}

Reference<T> java.lang.ref

Java 1.2

This abstract class represents some type of indirect reference to a referent. get( ) returns
the referent if the reference has not been explicitly cleared by the clear( ) method or

Chapter 10. java.lang and Subpackages Page 114 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



implicitly cleared by the garbage collector. There are three concrete subclasses of
Reference. The garbage collector handles these subclasses differently and clears their
references under different circumstances.

Each of the subclasses of Reference defines a constructor that allows a
ReferenceQueue to be associated with the Reference object. The garbage collector
places Reference objects onto their associated ReferenceQueue objects to provide
notification about the state of the referent object. isEnqueued( ) tests whether a
Reference has been placed on the associated queue, and enqueue( ) explicitly places
it on the queue. enqueue( ) returns false if the Reference object does not have an
associated ReferenceQueue, or if it has already been enqueued.

public abstract class Reference<T> {
// No Constructor
// Public Instance Methods
     public void clear( );  
     public boolean enqueue( );  
     public T get( );  
     public boolean isEnqueued( );  
}

Subclasses

PhantomReference, SoftReference, WeakReference
Returned By

ReferenceQueue.{poll( ), remove( )}

ReferenceQueue<T> java.lang.ref

Java 1.2

This class represents a queue (or linked list) of Reference objects that have been
enqueued because the garbage collector has determined that the referent objects to which
they refer are no longer adequately reachable. It serves as a notification system for object-
reachability changes. Use poll( ) to return the first Reference object on the queue;
the method returns null if the queue is empty. Use remove( ) to return the first element
on the queue, or, if the queue is empty, to wait for a Reference object to be enqueued.
You can create as many ReferenceQueue objects as needed. Specify a
ReferenceQueue for a Reference object by passing it to the SoftReference( ),
WeakReference( ), or PhantomReference( ) constructor.

A ReferenceQueue is required to use PhantomReference objects. It is optional with
SoftReference and WeakReference objects; for these classes, the get( ) method
returns null if the referent object is no longer adequately reachable.

Chapter 10. java.lang and Subpackages Page 115 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



public class ReferenceQueue<T> {
// Public Constructors
     public ReferenceQueue( );  
// Public Instance Methods
     public Reference<? extends T> poll( );  
     public Reference<? extends T> remove( ) throws InterruptedException;  
     public Reference<? extends T> remove(long timeout) throws IllegalArgumentException, 
InterruptedException;  
}

Passed To

PhantomReference.PhantomReference( ),
SoftReference.SoftReference( ), WeakReference.WeakReference( )

SoftReference<T> java.lang.ref

Java 1.2

This class represents a soft reference to an object. A SoftReference is not cleared while
there are any remaining hard (direct) references to the referent. Once the referent is no
longer in use (i.e., there are no remaining hard references to it), the garbage collector may
clear the SoftReference to the referent at any time. However, the garbage collector does
not clear a SoftReference until it determines that system memory is running low. In
particular, the Java VM never throws an OutOfMemoryError without first clearing all
soft references and reclaiming the memory of the referents. The VM may (but is not
required to) clear soft references according to a least-recently-used ordering.

If a SoftReference has an associated ReferenceQueue, the garbage collector
enqueues the SoftReference at some time after it clears the reference.

SoftReference is particularly useful for implementing object-caching systems that do
not have a fixed size, but grow and shrink as available memory allows.

Figure 10-89. java.lang.ref.SoftReference<T>

public class SoftReference<T> extends Reference<T> {
// Public Constructors
     public SoftReference(T referent);  
     public SoftReference(T referent, ReferenceQueue<? super T> q);  
// Public Methods Overriding Reference
     public T get( );  
}

Chapter 10. java.lang and Subpackages Page 116 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



WeakReference<T> java.lang.ref

Java 1.2

This class refers to an object in a way that does not prevent that referent object from being
finalized and reclaimed by the garbage collector. When the garbage collector determines
that there are no more hard (direct) references to the object, and that there are no
SoftReference objects that refer to the object, it clears the WeakReference and marks
the referent object for finalization. At some point after this, it also enqueues the
WeakReference on its associated ReferenceQueue, if there is one, in order to provide
notification that the referent has been reclaimed.

WeakReference is used by java.util.WeakHashMap  to implement a hashtable that
does not prevent the hashtable key object from being garbage-collected. WeakHashMap is
useful when you want to associate auxiliary information with an object but do not want to
prevent the object from being  reclaimed.

Figure 10-90. java.lang.ref.WeakReference<T>

public class WeakReference<T> extends Reference<T> {
// Public Constructors
     public WeakReference(T referent);  
     public WeakReference(T referent, ReferenceQueue<? super T> q);  

}

Package java.lang.reflect

Java 1.1

The java.lang.reflect package contains the classes and interfaces that, along with
java.lang.Class, comprise the Java Reflection API.

The Constructor, Field, and Method classes represent the constructors, fields, and
methods of a class. Because these types all represent members of a class, they each
implement the Member interface, which defines a simple set of methods that can be
invoked for any class member. These classes allow information about the class members
to be obtained, methods and constructors to be invoked, and fields to be queried and set.

Chapter 10. java.lang and Subpackages Page 117 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Class member modifiers are represented as integers that specify a number of bit flags. The
Modifier class defines static methods that help interpret the meanings of these flags.
The Array class defines static methods for creating arrays and reading and writing array
elements.

As of Java 1.3, the Proxy class allows the dynamic creation of new Java classes that
implement a specified set of interfaces. When an interface method is invoked on an
instance of such a proxy class, the invocation is delegated to an InvocationHandler
object.

There have been a number of changes to this package to support the new language features
of  Java 5.0. The most important changes are support for querying the generic signature
of classes, methods, constructors, and fields. Class, Method and Constructor
implement the new GenericDeclaration interface, which provides access to the
TypeVariable declarations of generic classes, methods, and constructors. In general,
the package has been modified to add new generic versions of methods like
Field.getType( ) and Method.getParameterTypes( ). Instead of returning
Class objects, the new generic methods, like Field.getGenericType( )   and
Method.getGenericParameterTypes( ), return Type objects. The Type interface
is new in Java 5.0, and represents any kind of generic or nongeneric type. Class
implements Type, so a Type object may simply be an ordinary Class. Type is also the
super-interface for four other new interfaces: ParameterizedType, TypeVariable,
WildcardType and GenericArrayType. A Type object that is not a Class should be
an instance of one of these other interfaces, representing a generic type of some sort.

Support for reflection on annotations is provided by the AnnotatedElement interface
which is implemented by Class, Package, Method, Constructor and Field.
Method and Constructor also have new getParameterAnnotations( ) for
querying annotations on method parameters. Other, more minor changes in Java 5.0
include the isEnumConstant( ) method of Field and the isVarArgs( ) method of
Method and Constructor.

Interfaces

public interface AnnotatedElement;
public interface GenericArrayType extends Type;
public interface GenericDeclaration;
public interface InvocationHandler;
public interface Member;
public interface ParameterizedType extends Type;
public interface Type;
public interface TypeVariable<D extends GenericDeclaration> extends Type;
public interface WildcardType extends Type;

Classes

public class AccessibleObject implements AnnotatedElement;
   public final class Constructor<T> extends AccessibleObject implements 

Chapter 10. java.lang and Subpackages Page 118 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



GenericDeclaration, Member;
   public final class Field extends AccessibleObject implements Member;
   public final class Method extends AccessibleObject implements 
GenericDeclaration, Member;
public final class Array;
public class Modifier;
public class Proxy implements Serializable;
public final class ReflectPermission extends java.security.BasicPermission;

Exceptions

public class InvocationTargetException extends Exception;
public class MalformedParameterizedTypeException extends RuntimeException;
public class UndeclaredThrowableException extends RuntimeException;

Errors

public class GenericSignatureFormatError extends ClassFormatError;

AccessibleObject java.lang.reflect

Java 1.2

This class is the superclass of the Method, Constructor, and Field classes; its methods
provide a mechanism for trusted applications to work with private, protected, and
default visibility members that would otherwise not be accessible through the Reflection
API. This class is new as of Java 1.2; in Java 1.1, the Method, Constructor, and Field
classes extended Object directly.

To use the java.lang.reflect package to access a member to which your code would
not normally have access, pass true to the setAccessible( ) method. If your code
has an appropriate ReflectPermission (such as "suppressAccessChecks"), this allows
access to the member as if it were declared public. The static version of
setAccessible( ) is a convenience method that sets the accessible flag for an array of
members but performs only a single security check.

Figure 10-91. java.lang.reflect.AccessibleObject

public class AccessibleObject implements AnnotatedElement {
// Protected Constructors
     protected AccessibleObject( );  
// Public Class Methods
     public static void setAccessible(AccessibleObject[ ] array, boolean flag) 
     throws SecurityException;  
// Public Instance Methods
     public boolean isAccessible( );  
     public void setAccessible(boolean flag) throws SecurityException;  
// Methods Implementing AnnotatedElement
5.0  public <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> 
annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getAnnotations( );  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  

Chapter 10. java.lang and Subpackages Page 119 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



5.0  public boolean isAnnotationPresent(Class<? extends java.lang.annotation.
Annotation> annotationClass);  
}

Subclasses

Constructor, Field, Method

AnnotatedElement java.lang.reflect

Java 5.0

This interface is implemented by the classes representing program elements that can be
annotated in Java 5.0: java.lang.Class, java.lang.Package, Method,
Constructor, and Field. The methods of this interface allow you to test for the presence
of a specific annotation, query an annotation object of a specific type, or query all
annotations present on an annotated element. getDeclaredAnnotations( )  differs
from getAnnotations( ) in that it does not include inherited annotations. (See the
java.lang.annotation.Inherited meta-annotation.) If no annotations are
present, getAnnotations( ) and getDeclaredAnnotations( ) return an array of
length zero rather than null. It is safe to modify the arrays returned by these methods.

See also the getParameterAnnotations( ) methods of Method and Constructor,
which provide access to annotations on method parameters.

public interface AnnotatedElement {
// Public Instance Methods
     <T extends java.lang.annotation.Annotation> T getAnnotation(Class<T> annotationType);  
     java.lang.annotation.Annotation[ ] getAnnotations( );  
     java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
     boolean isAnnotationPresent(Class<? extends java.lang.annotation.Annotation> 
     annotationType);  
}

Implementations

Class, Package, AccessibleObject

Array java.lang.reflect

Java 1.1

This class contains methods that allow you to set and query the values of array elements,
to determine the length of an array, and to create new instances of arrays. Note that the
Array class can manipulate only array values, not array types; Java data types, including

Chapter 10. java.lang and Subpackages Page 120 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



array types, are represented by java.lang.Class. Since the Array class represents a
Java value, unlike the Field, Method, and Constructor classes, which represent class
members, the Array class is significantly different (despite some surface similarities) from
those other classes in this package. Most notably, all the methods of Array are static and
apply to all array values, not just a specific field, method, or constructor.

The get( ) method returns the value of the specified element of the specified array as an
Object. If the array elements are of a primitive type, the value is converted to a wrapper
object before being returned. You can also use getInt( ) and related methods to query
array elements and return them as specific primitive types. The set( ) method and its
primitive type variants perform the opposite operation. Also, the getLength( ) method
returns the length of the array.

The newInstance( ) methods create new arrays. One version of this method is passed
the number of elements in the array and the type of those elements. The other version of
this method creates multidimensional arrays. Besides specifying the component type of
the array, it is passed an array of numbers. The length of this array specifies the number
of dimensions for the array to be created, and the values of each of the array elements
specify the size of each dimension of the created array.

public final class Array {
// No Constructor
// Public Class Methods
     public static Object get(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static boolean getBoolean(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static byte getByte(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static char getChar(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static double getDouble(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static float getFloat(Object array, int index)
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static int getInt(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static int getLength(Object array) 
throws IllegalArgumentException;     native
     public static long getLong(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static short getShort(Object array, int index) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static Object newInstance(Class<?> componentType, int length) 
throws NegativeArraySizeException;  
     public static Object newInstance(Class<?> componentType, int[ ] dimensions) 
throws IllegalArgumentException, NegativeArraySizeException;  
     public static void set(Object array, int index, Object value) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setBoolean(Object array, int index, boolean z) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setByte(Object array, int index, byte b) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setChar(Object array, int index, char c) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setDouble(Object array, int index, double d) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setFloat(Object array, int index, float f) 

Chapter 10. java.lang and Subpackages Page 121 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setInt(Object array, int index, int i) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setLong(Object array, int index, long l) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
     public static void setShort(Object array, int index, short s) 
throws IllegalArgumentException, ArrayIndexOutOfBoundsException;     native
}

Constructor<T> java.lang.reflect

Java 1.1

This class represents a constructor method of a class. Instances of Constructor are
obtained by calling getConstructor( ) and related methods of java.lang.Class.
Constructor implements the Member interface, so you can use the methods of that
interface to obtain the constructor name, modifiers, and declaring class. In addition,
getParameterTypes( ) and getExceptionTypes( ) also return important
information about the represented constructor.

In addition to these methods that return information about the constructor, the
newInstance( ) method allows the constructor to be invoked with an array of
arguments in order to create a new instance of the class that declares the constructor. If
any of the arguments to the constructor are of primitive types, they must be converted to
their corresponding wrapper object types to be passed to newInstance( ). If the
constructor causes an exception, the Throwable object it throws is wrapped within the
InvocationTargetException that is thrown by newInstance( ). Note that
newInstance( ) is much more useful than the newInstance( ) method of
java.lang.Class because it can pass arguments to the constructor.

Constructor has been modified in  Java 5.0 to support   generics, annotations, and
varargs. The changes are the same as the Java 5.0 changes to the Method class.
Additionally, Constructor has been made a generic type in Java 5.0. The type variable
T represents the type that the constructor constructs, and is used as the return type of the
newInstance( ) method.

Figure 10-92. java.lang.reflect.Constructor<T>

public final class Constructor<T> extends AccessibleObject implements 
GenericDeclaration, Member {

Chapter 10. java.lang and Subpackages Page 122 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



// No Constructor
// Public Instance Methods
     public Class<?>[ ] getExceptionTypes( );  
5.0  public Type[ ] getGenericExceptionTypes( );  
5.0  public Type[ ] getGenericParameterTypes( );  
5.0  public java.lang.annotation.Annotation[ ][ ] getParameterAnnotations( );  
     public Class<?>[ ] getParameterTypes( );  
5.0  public boolean isVarArgs( );  
     public T newInstance(Object ... initargs) 
throws InstantiationException, IllegalAccessException, IllegalArgumentException, 
InvocationTargetException;  
5.0  public String toGenericString( );  
// Methods Implementing GenericDeclaration
5.0  public TypeVariable<Constructor<T>>[ ] getTypeParameters( );  
// Methods Implementing Member
     public Class<T> getDeclaringClass( );  
     public int getModifiers( );  
     public String getName( );  
5.0  public boolean isSynthetic( );  
// Public Methods Overriding AccessibleObject
5.0  public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Returned By

Class.{getConstructor( ), getConstructors( ),
getDeclaredConstructor( ), getDeclaredConstructors( ),
getEnclosingConstructor( )}

Field java.lang.reflect

Java 1.1

This class represents a field of a class. Instances of Field are obtained by calling the
getField( ) and related methods of java.lang.Class. Field implements the
Member interface, so once you have obtained a Field object, you can use getName( )  ,
getModifiers( ), and getDeclaringClass( ) to determine the name, modifiers,
and class of the field. Additionally, getType( ) returns the type of the field.

The set( ) method sets the value of the represented field for a specified object. (If the
represented field is static, no object need be specified, of course.) If the field is of a
primitive type, its value can be specified using a wrapper object of type Boolean,
Integer, and so on, or it can be set using the setBoolean( ), setInt( ), and related
methods. Similarly, the get( ) method queries the value of the represented field for a
specified object and returns the field value as an Object. Various other methods query
the field value and return it as various primitive types.

Chapter 10. java.lang and Subpackages Page 123 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



In Java 5.0, Field implements AnnotatedElement to support reflection on field 
annotations. The new getGenericType( )  method supports reflection on the generic
type of fields, and isEnumConstant( )  supports fields of enum types.

Figure 10-93. java.lang.reflect.Field

public final class Field extends AccessibleObject implements Member {
// No Constructor
// Public Instance Methods
     public Object get(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public boolean getBoolean(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public byte getByte(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public char getChar(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public double getDouble(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public float getFloat(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
5.0  public Type getGenericType( );  
     public int getInt(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public long getLong(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public short getShort(Object obj) 
throws IllegalArgumentException, IllegalAccessException;  
     public Class<?> getType( );  
5.0  public boolean isEnumConstant( );  
     public void set(Object obj, Object value) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setBoolean(Object obj, boolean z) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setByte(Object obj, byte b) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setChar(Object obj, char c) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setDouble(Object obj, double d) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setFloat(Object obj, float f) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setInt(Object obj, int i) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setLong(Object obj, long l) 
throws IllegalArgumentException, IllegalAccessException;  
     public void setShort(Object obj, short s) 
throws IllegalArgumentException, IllegalAccessException;  
5.0  public String toGenericString( );  
// Methods Implementing Member
     public Class<?> getDeclaringClass( );  
     public int getModifiers( );  
     public String getName( );  
5.0  public boolean isSynthetic( );  
// Public Methods Overriding AccessibleObject
5.0  public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Chapter 10. java.lang and Subpackages Page 124 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Returned By

Class.{getDeclaredField( ), getDeclaredFields( ), getField( ),
getFields( )}

GenericArrayType java.lang.reflect

Java 5.0

This  interface extends Type and represents a one-dimensional array of some element
Type. Note that in the case of multidimensional arrays, the Type returned by
getGenericComponentType( ) is itself a GenericArrayType.

Figure 10-94. java.lang.reflect.GenericArrayType

public interface GenericArrayType extends Type {
// Public Instance Methods
     Type getGenericComponentType( );  
}

GenericDeclaration java.lang.reflect

Java 5.0

This interface is implemented by the classes that represent program elements that can be
made generic: java.lang.Class as well as Method and Constructor. It provides
access to the type variables declared by the generic type, method, or constructor.
getTypeParameters( )  never returns null: if there are no declared type variables, it
returns a zero-length array.

public interface GenericDeclaration {
// Public Instance Methods
     TypeVariable<?>[ ] getTypeParameters( );  
}

Implementations

Class, Constructor, Method
Returned By

TypeVariable.getGenericDeclaration( )

Chapter 10. java.lang and Subpackages Page 125 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



GenericSignatureFormatError java.lang.reflect

Java 5.0 serializable error

An  error of this type is thrown if the Java interpreter tries to load a class file that contains
malformed generic signature information.

Figure 10-95. java.lang.reflect.GenericSignatureFormatError

public class GenericSignatureFormatError extends ClassFormatError {
// Public Constructors
     public GenericSignatureFormatError( );  
}

InvocationHandler java.lang.reflect

Java 1.3

This interface defines a single invoke( ) method that is called whenever a method is
invoked on a dynamically created Proxy object. Every Proxy object has an associated
InvocationHandler object that is specified when the Proxy is instantiated. All method
invocations on the proxy object are translated into calls to the invoke( ) method of the
InvocationHandler.

The first argument to invoke( ) is the Proxy object through which the method was
invoked. The second argument is a Method object that represents the method that was
invoked. Call the getDeclaringClass( ) method of this Method object to determine
the interface in which the method was declared. This may be a superinterface of one of the
specified interfaces or even java.lang.Object when the method invoked is
toString( ), hashCode( ), or one of the other Object methods. The third argument
to invoke( ) is the array of method arguments. Any primitive type arguments are
wrapped in their corresponding object wrappers (e.g., Boolean, Integer, Double).

The value returned by invoke( ) becomes the return value of the proxy object method
invocation and must be of an appropriate type. If the proxy object method returns a

Chapter 10. java.lang and Subpackages Page 126 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



primitive type, invoke( ) should return an instance of the corresponding wrapper class.
invoke( ) can throw any unchecked (i.e., runtime) exceptions or any checked exceptions
declared by the proxy object method. If invoke( ) throws a checked exception that is
not declared by the proxy object, that exception is wrapped within an unchecked
UndeclaredThrowableException that is thrown in its place.

public interface InvocationHandler {
// Public Instance Methods
     Object invoke(Object proxy, Method method, Object[ ] args) throws Throwable;  
}

Passed To

java.lang.reflect.Proxy.{newProxyInstance( ), Proxy( )}
Returned By

java.lang.reflect.Proxy.getInvocationHandler( )
Type Of

java.lang.reflect.Proxy.h

InvocationTargetException java.lang.reflect

Java 1.1 serializable checked

An object of this class is thrown by Method.invoke( ) and
Constructor.newInstance( ) when an exception is thrown by the method or
constructor invoked through those methods. The InvocationTargetException class
serves as a wrapper around the object that was thrown; that object can be retrieved with
the getTargetException( ) method. In Java 1.4 and later, all exceptions can be
"chained" in this way, and getTargetException( ) is superseded by the more general
getCause( ) method.

Figure 10-96. java.lang.reflect.InvocationTargetException

public class InvocationTargetException extends Exception {
// Public Constructors
     public InvocationTargetException(Throwable target);  
     public InvocationTargetException(Throwable target, String s);  
// Protected Constructors
     protected InvocationTargetException( );  
// Public Instance Methods
     public Throwable getTargetException( );  
// Public Methods Overriding Throwable
1.4  public Throwable getCause( );  
}

Chapter 10. java.lang and Subpackages Page 127 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Thrown By

Constructor.newInstance( ), Method.invoke( )

MalformedParameterizedTypeException java.lang.reflect

Java 5.0 serializable unchecked

An  exception of this type is thrown during reflection if the generic type information
contained in a class file is syntactically correct but semantically wrong. An example would
be if the number of type parameters in a ParameterizedType differs from the number
of type variables declared by the generic type. See also
GenericSignatureFormatError. Although this type is not an Error, it does indicate
a malformed class file and should not arise in common practice.

Figure 10-97. java.lang.reflect.MalformedParameterizedTypeException

public class MalformedParameterizedTypeException extends RuntimeException {
// Public Constructors
     public MalformedParameterizedTypeException( );  
}

Member java.lang.reflect

Java 1.1

This interface defines the methods shared by all members (fields, methods, and
constructors) of a class. getName( ) returns the name of the member,
getModifiers( ) returns its modifiers, and getDeclaringClass( ) returns the
Class object that represents the class of which the member is a part.
isSynthetic( ) returns true if the member is one that does not appear in the source
code but was introduced by the compiler.

public interface Member {
// Public Constants
     public static final int DECLARED;     =1
     public static final int PUBLIC;       =0
// Public Instance Methods
     Class getDeclaringClass( );  
     int getModifiers( );  

Chapter 10. java.lang and Subpackages Page 128 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     String getName( );  
5.0  boolean isSynthetic( );  
}

Implementations

Constructor, Field, Method

Method java.lang.reflect

Java 1.1

This class represents a method. Instances of Method are obtained by calling the
getMethod( ) and related methods of java.lang.Class. Method implements the
Member interface, so you can use the methods of that interface to obtain the method name,
modifiers, and declaring class. In addition, getReturnType( )  ,
getParameterTypes( ), and getExceptionTypes( ) also return important
information about the represented method.

Perhaps most importantly, the invoke( ) method allows the method represented by the
Method object to be invoked with a specified array of argument values. If any of the
arguments are of primitive types, they must be converted to their corresponding wrapper
object types in order to be passed to invoke( ). If the represented method is an instance
method (i.e., if it is not static), the instance on which it should be invoked must also be
passed to invoke( ). The return value of the represented method is returned by
invoke( ). If the return value is a primitive value, it is first converted to the
corresponding wrapper type. If the invoked method causes an exception, the
Throwable object it throws is wrapped within the InvocationTargetException that
is thrown by invoke( ).

In Java 5.0, Method  implements GenericDeclaration to support reflection on the
type variables defined by generic methods and AnnotatedElement to support reflection
on method annotations. Additionally, getParameterAnnotations( ) supports
reflection on method parameter annotations. The new methods
getGenericReturnType( )  , getGenericParameterTypes( ), and
getGenericExceptionTypes( ) support reflection on generic method signatures.
Finally, the new isVarArgs( )  method returns true if the method was declared using
Java 5.0 varargs syntax.

Chapter 10. java.lang and Subpackages Page 129 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-98. java.lang.reflect.Method

public final class Method extends AccessibleObject implements GenericDeclaration, Member {
// No Constructor
// Public Instance Methods
5.0  public Object getDefaultValue( );  
     public Class<?>[ ] getExceptionTypes( );  
5.0  public Type[ ] getGenericExceptionTypes( );  
5.0  public Type[ ] getGenericParameterTypes( );  
5.0  public Type getGenericReturnType( );  
5.0  public java.lang.annotation.Annotation[ ][ ] getParameterAnnotations( );  
     public Class<?>[ ] getParameterTypes( );  
     public Class<?> getReturnType( );  
     public Object invoke(Object obj, Object... args) 
throws IllegalAccessException, IllegalArgumentException, InvocationTargetException;  
5.0  public boolean isBridge( );  
5.0  public boolean isVarArgs( );  
5.0  public String toGenericString( );  
// Methods Implementing GenericDeclaration
5.0  public TypeVariable<Method>[ ] getTypeParameters( );  
// Methods Implementing Member
     public Class<?> getDeclaringClass( );  
     public int getModifiers( );  
     public String getName( );  
5.0  public boolean isSynthetic( );  
// Public Methods Overriding AccessibleObject
5.0  public <T extends java.lang.annotation.Annotation> T getAnnotation
(Class<T> annotationClass);  
5.0  public java.lang.annotation.Annotation[ ] getDeclaredAnnotations( );  
// Public Methods Overriding Object
     public boolean equals(Object obj);  
     public int hashCode( );  
     public String toString( );  
}

Passed To

java.lang.annotation.AnnotationTypeMismatchException.AnnotationT
ypeMismatchException( ), InvocationHandler.invoke( )
Returned By

Class.{getDeclaredMethod( ), getDeclaredMethods( ),
getEnclosingMethod( ), getMethod( ), getMethods( )},
java.lang.annotation.AnnotationTypeMismatchException.element( )

Modifier java.lang.reflect

Java 1.1

This class defines a number of constants and static methods that can interpret the integer
values returned by the getModifiers( ) methods of the Field, Method, and
Constructor classes. The isPublic( ) , isAbstract( ), and related methods return
true if the modifier value includes the specified modifier; otherwise, they return

Chapter 10. java.lang and Subpackages Page 130 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



false. The constants defined by this class specify the various bit flags used in the modifiers
value. You can use these constants to test for modifiers if you want to perform your own
boolean algebra.

public class Modifier {
// Public Constructors
     public Modifier( );  
// Public Constants
     public static final int ABSTRACT;     =1024
     public static final int FINAL;        =16
     public static final int INTERFACE;    =512
     public static final int NATIVE;       =256
     public static final int PRIVATE;      =2
     public static final int PROTECTED;    =4
     public static final int PUBLIC;       =1
     public static final int STATIC;       =8
1.2  public static final int STRICT;   =2048
     public static final int SYNCHRONIZED; =32
     public static final int TRANSIENT;    =128
     public static final int VOLATILE;     =64
// Public Class Methods
     public static boolean isAbstract(int mod);  
     public static boolean isFinal(int mod);  
     public static boolean isInterface(int mod);  
     public static boolean isNative(int mod);  
     public static boolean isPrivate(int mod);  
     public static boolean isProtected(int mod);  
     public static boolean isPublic(int mod);  
     public static boolean isStatic(int mod);  
1.2  public static boolean isStrict(int mod);  
     public static boolean isSynchronized(int mod);  
     public static boolean isTransient(int mod);  
     public static boolean isVolatile(int mod);  
     public static String toString(int mod);  
}

ParameterizedType java.lang.reflect

Java 5.0

This subinterface of Type represents a parameterized type. getRawType( ) returns the
base type that has been parameterized. getActualTypeArguments( ) returns the type
parameters as a Type[ ]. Note that these parameters may themselves be
ParameterizedType objects. getOwnerType( ) is used with parameterized types that
are also nested types: it returns the generic type of the containing type.

Figure 10-99. java.lang.reflect.ParameterizedType

public interface ParameterizedType extends Type {
// Public Instance Methods
     Type[ ] getActualTypeArguments( );  
     Type getOwnerType( );  

Chapter 10. java.lang and Subpackages Page 131 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     Type getRawType( );  
}

Proxy java.lang.reflect

Java 1.3 serializable

This class defines a simple but powerful API for dynamically generating a proxy class. A
proxy class implements a specified list of interfaces and delegates invocations of the
methods defined by those interfaces to a separate invocation handler object.

The static getProxyClass( ) method dynamically creates a new Class object that
implements each of the interfaces specified in the supplied Class[ ] array. The newly
created class is defined in the context of the specified ClassLoader. The Class returned
by getProxyClass( ) is a subclass of Proxy. Every class that is dynamically generated
by getProxyClass( ) has a single public constructor, which expects a single argument
of type InvocationHandler. You can create an instance of the dynamic proxy class by
using the Constructor class to invoke this constructor. Or, more simply, you can
combine the call to getProxyClass( ) with the constructor call by calling the static
newProxyInstance( ) method, which both defines and instantiates a proxy class.

Every instance of a dynamic proxy class has an associated InvocationHandler object.
All method calls made on a proxy class are translated into calls to the invoke( ) method
of this InvocationHandler object, which can handle the call in any way it sees fit. The
static getInvocationHandler( ) method returns the InvocationHandler object
for a given proxy object. The static isProxyClass( ) method returns true if a specified
Class object is a dynamically generated proxy class. 

Figure 10-100. java.lang.reflect.Proxy

public class Proxy implements Serializable {
// Protected Constructors
     protected Proxy(InvocationHandler h);  
// Public Class Methods
     public static InvocationHandler getInvocationHandler(Object proxy) 
throws IllegalArgumentException;  
     public static Class<?> getProxyClass(ClassLoader loader, Class<?> 
... interfaces) throws IllegalArgumentException;  
     public static boolean isProxyClass(Class<?> cl);  
     public static Object newProxyInstance(ClassLoader loader, Class<?>[ ] 
interfaces, InvocationHandler h) throws IllegalArgumentException;  
// Protected Instance Fields

Chapter 10. java.lang and Subpackages Page 132 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



     protected InvocationHandler h;  
}

ReflectPermission java.lang.reflect

Java 1.2 serializable permission

This class is a java.security.Permission that governs access to private,
protected, and default-visibility methods, constructors, and fields through the Java
Reflection API. In Java 1.2, the only defined name, or target, for ReflectPermission
is "suppressAccessChecks". This permission is required to call the  setAccessible( )
method of AccessibleObject. Unlike some Permission subclasses,
ReflectPermission does not use a list of actions. See also AccessibleObject.

System administrators configuring security policies should be familiar with this class, but
application programmers should never need to use it directly.

Figure 10-101. java.lang.reflect.ReflectPermission

public final class ReflectPermission extends java.security.BasicPermission {
// Public Constructors
     public ReflectPermission(String name);  
     public ReflectPermission(String name, String actions);  
}

Type java.lang.reflect

Java 5.0

This interface has no members but is implemented or extended by any type that represents
a generic or nongeneric type. java.lang.Class implements this interface. Type is also
extended by four interfaces that represent four specific kinds of generic types:
ParameterizedType, TypeVariable, WildcardType, and GenericArrayType.

public interface Type {
}

Chapter 10. java.lang and Subpackages Page 133 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Implementations

Class, GenericArrayType, ParameterizedType, TypeVariable, WildcardType
Returned By

Class.{getGenericInterfaces( ), getGenericSuperclass( )},
Constructor.{getGenericExceptionTypes( ),
getGenericParameterTypes( )}, Field.getGenericType( ),
GenericArrayType.getGenericComponentType( ), Method.
{getGenericExceptionTypes( ), getGenericParameterTypes( ),
getGenericReturnType( )}, ParameterizedType.
{getActualTypeArguments( ), getOwnerType( ), getRawType( )},
TypeVariable.getBounds( ), WildcardType.{getLowerBounds( ),
getUpperBounds( )}

TypeVariable<D extends GenericDeclaration> java.lang.reflect

Java 5.0

This   interface extends Type and represents the generic type represented by a type
variable. getName( ) returns the name of the type variable, as it was declared in Java
source code. getBounds( ) returns an array of Type objects that serve as the upper
bounds for the variable. The returned array is never empty: if the type variable has no
bounds declared, the single element of the array is Object.class. The
getGenericDeclaration( ) method returns the Class, Method, or Constructor
that declared this type variable (each of these classes implements the
GenericDeclaration interface). Note that TypeVariable is itself a generic type and
is parameterized with the kind of GenericDeclaration that declared the variable.

Figure 10-102. java.lang.reflect.TypeVariable<D extends GenericDeclaration>

public interface TypeVariable<D extends GenericDeclaration> extends Type {
// Public Instance Methods
     Type[ ] getBounds( );  
     D getGenericDeclaration( );  
     String getName( );  
}

Returned By

Class.getTypeParameters( ), Constructor.getTypeParameters( ),
GenericDeclaration.getTypeParameters( ),
Method.getTypeParameters( )

Chapter 10. java.lang and Subpackages Page 134 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



UndeclaredThrowableException java.lang.reflect

Java 1.3 serializable unchecked

Thrown by a method of a Proxy object if the invoke( ) method of the proxy's
InvocationHandler throws a checked exception not declared by the original method.
This class serves as an unchecked exception wrapper around the checked exception. Use
getUndeclaredThrowable( ) to obtain the checked exception thrown by
invoke( ). In Java 1.4 and later, all exceptions can be "chained" in this way, and
getUndeclaredThrowable( ) is superseded by the more general getCause( )
method.

Figure 10-103. java.lang.reflect.UndeclaredThrowableException

public class UndeclaredThrowableException extends RuntimeException {
// Public Constructors
     public UndeclaredThrowableException(Throwable undeclaredThrowable);  
     public UndeclaredThrowableException(Throwable undeclaredThrowable, String s);  
// Public Instance Methods
     public Throwable getUndeclaredThrowable( );  
// Public Methods Overriding Throwable
1.4  public Throwable getCause( );  
}

WildcardType java.lang.reflect

Java 5.0

This interface extends Type and represents a generic type declared with a  bounded or
unbounded wildcard. getUpperBounds( ) returns the upper bounds of the wildcard.
The returned array always includes at least one element. If no upper bound is declared,
Object.class is the implicit upper bound. getLowerBounds( ) returns the lower
bounds of the wildcard. If no lower bound is declared, this method returns an  empty
array .

Chapter 10. java.lang and Subpackages Page 135 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Figure 10-104. java.lang.reflect.WildcardType

public interface WildcardType extends Type {
// Public Instance Methods
     Type[ ] getLowerBounds( );  
     Type[ ] getUpperBounds( );  
}

Chapter 10. java.lang and Subpackages Page 136 Return to Table of Contents

Chapter 10. java.lang and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.


	java.lang and Subpackages
	Package java.lang
	AbstractMethodError
	AbstractStringBuilder
	Appendable
	ArithmeticException
	ArrayIndexOutOfBoundsException
	ArrayStoreException
	AssertionError
	Boolean
	Byte
	Character
	Character.Subset
	Character.UnicodeBlock
	CharSequence
	Class<T>
	ClassCastException
	ClassCircularityError
	ClassFormatError
	ClassLoader
	ClassNotFoundException
	Cloneable
	CloneNotSupportedException
	Comparable<T>
	Compiler
	Deprecated
	Double
	Enum<E extends Enum<E>>
	EnumConstantNotPresentException
	Error
	Exception
	ExceptionInInitializerError
	Float
	IllegalAccessError
	IllegalAccessException
	IllegalArgumentException
	IllegalMonitorStateException
	IllegalStateException
	IllegalThreadStateException
	IncompatibleClassChangeError
	IndexOutOfBoundsException
	InheritableThreadLocal<T>
	InstantiationError
	InstantiationException
	Integer
	InternalError
	InterruptedException
	Iterable<T>
	LinkageError
	Long
	Math
	NegativeArraySizeException
	NoClassDefFoundError
	NoSuchFieldError
	NoSuchFieldException
	NoSuchMethodError
	NoSuchMethodException
	NullPointerException
	Number
	NumberFormatException
	Object
	OutOfMemoryError
	Override
	Package
	Process
	ProcessBuilder
	Readable
	Runnable
	Runtime
	RuntimeException
	RuntimePermission
	SecurityException
	SecurityManager
	Short
	StackOverflowError
	StackTraceElement
	StrictMath
	String
	StringBuffer
	StringBuilder
	StringIndexOutOfBoundsException
	SuppressWarnings
	System
	Thread
	Thread.State
	Thread.UncaughtExceptionHandler
	ThreadDeath
	ThreadGroup
	ThreadLocal<T>
	Throwable
	TypeNotPresentException
	UnknownError
	UnsatisfiedLinkError
	UnsupportedClassVersionError
	UnsupportedOperationException
	VerifyError
	VirtualMachineError
	Void
	Package java.lang.annotation
	Annotation
	AnnotationFormatError
	AnnotationTypeMismatchException
	Documented
	ElementType
	IncompleteAnnotationException
	Inherited
	Retention
	RetentionPolicy
	Target
	Package java.lang.instrument
	ClassDefinition
	ClassFileTransformer
	IllegalClassFormatException
	Instrumentation
	UnmodifiableClassException
	Package java.lang.management
	ClassLoadingMXBean
	CompilationMXBean
	GarbageCollectorMXBean
	ManagementFactory
	ManagementPermission
	MemoryManagerMXBean
	MemoryMXBean
	MemoryNotificationInfo
	MemoryPoolMXBean
	MemoryType
	MemoryUsage
	OperatingSystemMXBean
	RuntimeMXBean
	ThreadInfo
	ThreadMXBean
	Package java.lang.ref
	PhantomReference<T>
	Reference<T>
	ReferenceQueue<T>
	SoftReference<T>
	WeakReference<T>
	Package java.lang.reflect
	AccessibleObject
	AnnotatedElement
	Array
	Constructor<T>
	Field
	GenericArrayType
	GenericDeclaration
	GenericSignatureFormatError
	InvocationHandler
	InvocationTargetException
	MalformedParameterizedTypeException
	Member
	Method
	Modifier
	ParameterizedType
	Proxy
	ReflectPermission
	Type
	TypeVariable<D extends GenericDeclaration>
	UndeclaredThrowableException
	WildcardType


