
Table of Contents

Programming and Documentation Conventions.......................................... 1
Naming and Capitalization Conventions........................................................................................................................................ 1
Portability Conventions and Pure Java Rules................................................................................................................................ 3
Java Documentation Comments..................................................................................................................................................... 5
JavaBeans Conventions................................................................................................................................................................. 16

Chapter 7. Programming and Documentation Conventions

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Chapter 7. Programming and
Documentation Conventions

This chapter explains a number of important and useful Java programming and
documentation conventions. It covers:

• General naming and capitalization conventions
• Portability tips and conventions
• Javadoc documentation comment syntax and conventions
• JavaBeans conventions

None of the conventions described here are mandatory. Following them, however, will
make your code easier to read and maintain, portable, and self-documenting.

7.1. Naming and Capitalization Conventions
The following widely adopted naming conventions apply to packages, reference types,
methods, fields, and constants in Java. Because these conventions are almost universally
followed and because they affect the public API of the classes you define, they should be
followed carefully:

Packages

Ensure that your publicly visible package names are unique by prefixing them with
the inverted name of your Internet domain (e.g., com.davidflanagan.utils). All
package names should be lowercase. Packages of code used internally by applications
distributed in self-contained JAR files are not publicly visible and need not follow this
convention. It is common in this case to use the application name as the package name
or as a package prefix.

Reference types

A type name should begin with a capital letter and be written in mixed case (e.g.,
String). If a class name consists of more than one word, each word should begin
with a capital letter (e.g., StringBuffer). If a type name, or one of the words of a
type name, is an acronym, the acronym can be written in all capital letters (e.g., URL,
HTMLParser).

Chapter 7. Programming and Documentation Conventions Page 1 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024



Since classes and enumerated types are designed to represent objects, you should
choose class names that are nouns (e.g., Thread, Teapot, FormatConverter).

When an interface is used to provide additional information about the classes that
implement it, it is common to choose an interface name that is an adjective (e.g.,
Runnable, Cloneable, Serializable). Annotation types are also commonly
named in this way. When an interface works more like an abstract superclass, use a
name that is a noun (e.g., Document, FileNameMap, Collection).

Methods

A method name always begins with a lowercase letter. If the name contains more than
one word, every word after the first begins with a capital letter (e.g., insert( ),
insertObject(), insertObjectAt( )). Method names are typically chosen so
that the first word is a verb. Method names can be as long as is necessary to make
their purpose clear, but choose succinct names where possible.

Fields and constants

Nonconstant field names follow the same capitalization conventions as method
names. If a field is a static final constant, it should be written in uppercase. If
the name of a constant includes more than one word, the words should be separated
with underscores (e.g., MAX_VALUE). A field name should be chosen to best describe
the purpose of the field or the value it holds.

The constants defined by enum types are also typically written in all capital letters.
Because other programming languages use lowercase or mixed case for enumerated
values, however, this convention is not as strong as the convention for capital letters
in the static final fields of classes and interfaces.

Parameters

Method parameters follow the same capitalization conventions as nonconstant fields.
The names of method parameters appear in the documentation for a method, so you
should choose names that make the purpose of the parameters as clear as possible.
Try to keep parameter names to a single word and use them consistently. For example,
if a WidgetProcessor class defines many methods that accept a Widget object as
the first parameter, name this parameter widget or even w in each method.

Local variables

Local variable names are an implementation detail and never visible outside your
class. Nevertheless, choosing good names makes your code easier to read, understand,

Chapter 7. Programming and Documentation Conventions Page 2 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



and maintain. Variables are typically named following the same conventions as
methods and fields.

In addition to the conventions for specific types of names, there are conventions regarding
the characters you should use in your names. Java allows the $ character in any identifier,
but, by convention, its use is reserved for synthetic names generated by source-code
processors. (It is used by the Java compiler, for example, to make inner classes work.) Also,
Java allows names to use any alphanumeric characters from the entire Unicode character
set. While this can be convenient for non-English-speaking programmers, the use of
Unicode characters should typically be restricted to local variables, private methods and
fields, and other names that are not part of the public API of a class.

7.2. Portability Conventions and Pure Java Rules
Sun's motto, or core value proposition, for Java is "Write once, run anywhere." Java makes
it easy to write portable programs, but Java programs do not automatically run successfully
on any Java platform. The following tips help to avoid portability problems. Portability
rules like those listed here were the focus of Sun's now-defunct "100% Pure Java"
certification program and branding campaign.

Native methods

Portable Java code can use any methods in the core Java APIs, including methods
implemented as native methods. However, portable code must not define its own
native methods. By their very nature, native methods must be ported to each new
platform, so they directly subvert the "Write once, run anywhere" promise of Java.

The Runtime.exec( ) method

Calling the Runtime.exec( ) method to spawn a process and execute an external
command on the native system is rarely allowed in portable code. This is because the
native OS command to be executed is never guaranteed to exist or behave the same
way on all platforms. The only time it is legal to use Runtime.exec( ) is when the
user is allowed to specify the command to run, either by typing the command at
runtime or by specifying the command in a configuration file or preferences dialog
box.

The System.getenv() method

Using System.getenv() is nonportable. The method was deprecated but has been
reintroduced in Java 5.0.

Chapter 7. Programming and Documentation Conventions Page 3 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Undocumented classes

Portable Java code must use only classes and interfaces that are a documented part
of the Java platform. Most Java implementations ship with additional undocumented
public classes that are part of the implementation but not part of the Java platform
specification. Nothing prevents a program from using and relying on these
undocumented classes, but doing so is not portable because the classes are not
guaranteed to exist in all Java implementations or on all platforms.

The java.awt.peer package

The interfaces in the java.awt.peer package are part of the Java platform but are
documented for use by AWT implementors only. Applications that use these interfaces
directly are not portable.

Implementation-specific features

Portable code must not rely on features specific to a single implementation. For
example, Microsoft distributed a version of the Java runtime system that included a
number of additional methods that were not part of the Java platform as defined by
Sun. Any program that depends on such extensions is obviously not portable to other
platforms. Microsoft's proprietary extension of the Java platform resulted in legal
action between Sun and Microsoft and ultimately caused Microsoft to discontinue
ongoing support for Java.

Implementation-specific bugs

Just as portable code must not depend on implementation-specific features, it must
not depend on implementation-specific bugs. If a class or method behaves differently
than the specification says it should, a portable program cannot rely on this behavior,
which may be different on different platforms, and ultimately may be fixed.

Implementation-specific behavior

Sometimes different platforms and different implementations present different
behaviors, all of which are legal according to the Java specification. Portable code
must not depend on any one specific behavior. For example, the Java specification
does not indicate whether threads of equal priority share the CPU or if one long-
running thread can starve another thread at the same priority. If an application
assumes one behavior or the other, it may not run properly on all platforms.

Chapter 7. Programming and Documentation Conventions Page 4 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Standard extensions

Portable code can rely on standard extensions to the Java platform, but, if it does so,
it should clearly specify which extensions it uses and exit cleanly with an appropriate
error message when run on a system that does not have the extensions installed.

Complete programs

Any portable Java program must be complete and self-contained: it must supply all
the classes it uses, except core platform and standard extension classes.

Defining system classes

Portable Java code never defines classes in any of the system or standard extension
packages. Doing so violates the protection boundaries of those packages and exposes
package-visible implementation details.

Hardcoded filenames

A portable program contains no hardcoded file or directory names. This is because
different platforms have significantly different filesystem organizations and use
different directory separator characters. If you need to work with a file or directory,
have the user specify the filename, or at least the base directory beneath which the file
can be found. This specification can be done at runtime, in a configuration file, or as
a command-line argument to the program. When concatenating a file or directory
name to a directory name, use the File( ) constructor or the File.separator
constant.

Line separators

Different systems use different characters or sequences of characters as line
separators. Do not hardcode \n, \r, or \r\n as the line separator in your program.
Instead, use the println()   method of PrintStream or PrintWriter, which
automatically terminates a line with the line separator appropriate for the platform,
or use the value of the line.separator system property. In  Java 5.0 and later, you
can also use the "%n" format string to printf( ) and format() methods of
java.util.Formatter and related classes.  

7.3. Java Documentation Comments
Most ordinary comments within Java code explain the implementation details of that code.
By contrast, the Java language specification defines a special type of comment known as

Chapter 7. Programming and Documentation Conventions Page 5 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



a doc comment that serves to document the API of your code. A doc comment is an ordinary
multiline comment that begins with /** (instead of the usual /*) and ends with */. A doc
comment appears immediately before a type or member definition and contains
documentation for that type or member. The documentation can include simple HTML
formatting tags and other special keywords that provide additional information. Doc
comments are ignored by the compiler, but they can be extracted and automatically turned
into online HTML documentation by the javadoc program. (See Chapter 8 for more
information about javadoc.) Here is an example class that contains appropriate doc
comments:

/**
 * This immutable class represents <i>complex numbers</i>. 
 *
 * @author David Flanagan
 * @version 1.0
 */
public class Complex {
    /**
     * Holds the real part of this complex number. 
     * @see #y
     */
    protected double x;

    /**
     * Holds the imaginary part of this complex number. 
     * @see #x
     */
    protected double y;

    /**
     * Creates a new Complex object that represents the complex number x+yi. 
     * @param x The real part of the complex number. 
     * @param y The imaginary part of the complex number. 
     */
    public Complex(double x, double y) {
        this.x = x;
        this.y = y;
    }

    /**
     * Adds two Complex objects and produces a third object that represents
     * their sum. 
     * @param c1 A Complex object
     * @param c2 Another Complex object
     * @return  A new Complex object that represents the sum of 
     *          <code>c1</code> and <code>c2</code>. 
     * @exception java.lang.NullPointerException 
     *            If either argument is <code>null</code>. 
     */
    public static Complex add(Complex c1, Complex c2) {
        return new Complex(c1.x + c2.x, c1.y + c2.y);
    }
}

7.3.1. Structure of a Doc Comment
The body of a doc comment should begin with a one-sentence summary of the type or
member being documented. This sentence may be displayed by itself as summary
documentation, so it should be written to stand on its own. The initial sentence may be

Chapter 7. Programming and Documentation Conventions Page 6 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8


followed by any number of other sentences and paragraphs that describe the class,
interface, method, or field in full detail.

After the descriptive paragraphs, a doc comment can contain any number of other
paragraphs, each of which begins with a special doc-comment tag, such as @author,
@param, or @returns. These tagged paragraphs provide specific information about the
class, interface, method, or field that the javadoc program displays in a standard way. The
full set of doc-comment tags is listed in the next section.

The descriptive material in a doc comment can contain simple HTML markup tags, such
as such as <i> for emphasis, <code> for class, method, and field names, and <pre> for
multiline code examples. It can also contain <p> tags to break the description into separate
paragraphs and <ul>, <li>, and related tags to display bulleted lists and similar
structures. Remember, however, that the material you write is embedded within a larger,
more complex HTML document. For this reason, doc comments should not contain major
structural HTML tags, such as <h2> or <hr>, that might interfere with the structure of
the larger document.

Avoid the use of the <a> tag to include hyperlinks or cross-references in your doc
comments. Instead, use the special {@link} doc-comment tag, which, unlike the other
doc-comment tags, can appear anywhere within a doc comment. As described in the next
section, the {@link} tag allows you to specify hyperlinks to other classes, interfaces,
methods, and fields without knowing the HTML-structuring conventions and filenames
used by javadoc.

If you want to include an image in a doc comment, place the image file in a doc-files
subdirectory of the source code directory. Give the image the same name as the class, with
an integer suffix. For example, the second image that appears in the doc comment for a
class named Circle can be included with this HTML tag:

<img src="doc-files/Circle-2.gif">

Because the lines of a doc comment are embedded within a Java comment, any leading
spaces and asterisks (*) are stripped from each line of the comment before processing.
Thus, you don't need to worry about the asterisks appearing in the generated
documentation or about the indentation of the comment affecting the indentation of code
examples included within the comment with a <pre> tag.

7.3.2. Doc-Comment Tags
javadoc recognizes a number of special tags, each of which begins with an @ character.
These doc-comment tags allow you to encode specific information into your comments in
a standardized way, and they allow javadoc to choose the appropriate output format for

Chapter 7. Programming and Documentation Conventions Page 7 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



that information. For example, the @param tag lets you specify the name and meaning of
a single parameter for a method. javadoc can extract this information and display it using
an HTML <dl> list, an HTML <table>, or however it sees fit.

The following doc-comment tags are recognized by javadoc; a doc comment should
typically use these tags in the order listed here:

@author name

Adds an "Author:" entry that contains the specified name. This tag should be used for
every class or interface definition but must not be used for individual methods and
fields. If a class has multiple authors, use multiple @author tags on adjacent lines.
For example:

@author David Flanagan
@author Paula Ferguson

List the authors in chronological order, with the original author first. If the author is
unknown, you can use "unascribed." javadoc does not output authorship information
unless the -author command-line argument is specified.

@version text

Inserts a "Version:" entry that contains the specified text. For example:

@version 1.32, 08/26/04

This tag should be included in every class and interface doc comment but cannot be used
for individual methods and fields. This tag is often used in conjunction with the automated
version-numbering capabilities of a version control system, such as SCCS, RCS, or CVS.
javadoc does not output version information in its generated documentation unless the -
version command-line argument is specified.

@param parameter-name description

Adds the specified parameter and its description to the "Parameters:" section of the
current method. The doc comment for a method or constructor must contain one
@param tag for each parameter the method expects. These tags should appear in the

Chapter 7. Programming and Documentation Conventions Page 8 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



same order as the parameters specified by the method. The tag can be used only in
doc comments for methods and constructors. You are encouraged to use phrases and
sentence fragments where possible to keep the descriptions brief. However, if a
parameter requires detailed documentation, the description can wrap onto multiple
lines and include as much text as necessary. For readability in source-code form,
consider using spaces to align the descriptions with each other. For example:

@param o      the object to insert
@param index  the position to insert it at

@return description

Inserts a "Returns:" section that contains the specified description. This tag should
appear in every doc comment for a method, unless the method returns void or is a
constructor. The description can be as long as necessary, but consider using a sentence
fragment to keep it short. For example:

@return <code>true</code> if the insertion is successful, or
        <code>false</code> if the list already contains the specified object.

@exception full-classname description

Adds a "Throws:" entry that contains the specified exception name and description.
A doc comment for a method or constructor should contain an @exception tag for
every checked exception that appears in its throws clause. For example:

@exception java.io.FileNotFoundException 
           If the specified file could not be found

The @exception tag can optionally be used to document unchecked exceptions (i.e.,
subclasses of RuntimeException) the method may throw, when these are exceptions
that a user of the method may reasonably want to catch. If a method can throw more than
one exception, use multiple @exception tags on adjacent lines and list the exceptions in
alphabetical order. The description can be as short or as long as necessary to describe the
significance of the exception. This tag can be used only for method and constructor
comments. The @throws tag is a synonym for @exception.

Chapter 7. Programming and Documentation Conventions Page 9 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



@throws full-classname description

This tag is a synonym for @exception.

@see reference

Adds a "See Also:" entry that contains the specified reference. This tag can appear in
any kind of doc comment. The syntax for the reference is explained in Section
7.3.4 later in this chapter.

@deprecated explanation

This tag specifies that the following type or member has been deprecated and that its
use should be avoided. javadoc adds a prominent "Deprecated" entry to the
documentation and includes the specified explanation text. This text should specify
when the class or member was deprecated and, if possible, suggest a replacement class
or member and include a link to it. For example:

@deprecated As of Version 3.0, this method is replaced
            by {@link #setColor}.

Although the Java compiler ignores all comments, it does take note of the
@deprecated tag in doc comments. When this tag appears, the compiler notes the
deprecation in the class file it produces. This allows it to issue warnings for other classes
that rely on the deprecated feature.

@since version

Specifies when the type or member was added to the API. This tag should be followed
by a version number or other version specification. For example:

@since JNUT 3.0

Every doc comment for a type should include an @since tag, and any members added
after the initial release of the type should have @since tags in their doc comments.

@serial description

Technically, the way a class is serialized is part of its public API. If you write a class
that you expect to be serialized, you should document its serialization format using

Chapter 7. Programming and Documentation Conventions Page 10 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



@serial and the related tags listed below. @serial should appear in the doc
comment for any field that is part of the serialized state of a Serializable class.
For classes that use the default serialization mechanism, this means all fields that are
not declared transient, including fields declared private. The description
should be a brief description of the field and of its purpose within a serialized object.

As of Java 1.4, you can also use the @serial tag at the class and package level to
specify whether a "serialized form page" should be generated for the class or package.
The syntax is:

@serial include
@serial exclude

@serialField name type description

A Serializable class can define its serialized format by declaring an array of
ObjectStreamField objects in a field named serialPersistentFields. For
such a class, the doc comment for serialPersistentFields should include an
@serialField tag for each element of the array. Each tag specifies the name, type,
and description for a particular field in the serialized state of the class.

@serialData description

A Serializable class can define a writeObject( ) method to write data other
than that written by the default serialization mechanism. An Externalizable class
defines a writeExternal() method responsible for writing the complete state of
an object to the serialization stream. The @serialData tag should be used in the doc
comments for these writeObject( ) and writeExternal() methods, and the
description should document the serialization format used by the method.

7.3.3. Inline Doc Comment Tags
In addition to the preceding tags, javadoc also supports several inline tags that may appear
anywhere that HTML text appears in a doc comment. Because these tags appear directly
within the flow of HTML text, they require the use of curly braces as delimiters to separate
the tagged text from the HTML text. Supported inline tags include the following:

Chapter 7. Programming and Documentation Conventions Page 11 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



{@link reference}

In Java 1.2 and later, the {@link} tag is like the @see tag except that instead of
placing a link to the specified reference in a special "See Also:" section, it inserts
the link inline. An {@link} tag can appear anywhere that HTML text appears in a
doc comment. In other words, it can appear in the initial description of the class,
interface, method, or field and in the descriptions associated with the @param,
@returns, @exception, and @deprecated tags. The reference for the
{@link} tag uses the syntax described next in Section 7.3.4. For example:

@param regexp The regular expression to search for. This string
              argument must follow the syntax rules described for
              {@link java.util.regex.Pattern}.

{@linkplain reference}

In Java 1.4 and later, the {@linkplain} tag is just like the {@link} tag, except that
the text of the link is formatted using the normal font rather than the code font used
by the {@link} tag. This is most useful when reference contains both a
feature to link to and a label that specifies alternate text to be displayed in the
link. See Section 7.3.4 for a discussion of the feature and label portions of the
reference argument.

{@inheritDoc}

When a method overrides a method in a superclass or implements a method in an
interface, you can omit a doc comment, and javadoc automatically inherits the
documentation from the overridden or implemented method. As of Java 1.4, however,
the {@inheritDoc} tag allows you to inherit the text of individual tags. This tag also
allows you to inherit and augment the descriptive text of the comment. To inherit
individual tags, use it like this:

@param index @{inheritDoc}
@return @{inheritDoc}

To inherit the entire doc comment, including your own text before and after it, use the tag
like this:

This method overrides {@link java.langObject#toString}, documented as follows:
<P>{@inheritDoc} 
<P>This overridden version of the method returns a string of the form...

Chapter 7. Programming and Documentation Conventions Page 12 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



{@docRoot}

This inline tag takes no parameters and is replaced with a reference to the root
directory of the generated documentation. It is useful in hyperlinks that refer to an
external file, such as an image or a copyright statement:

<img src="{@docroot}/images/logo.gif">
This is <a href="{@docRoot}/legal.html">Copyrighted</a> material.

{@docRoot} was introduced in Java 1.3.

{@literal text}

This inline tag displays text literally, escaping any HTML in it and ignoring any
javadoc tags it may contain. It does not retain whitespace formatting but is useful
when used within a <pre> tag. {@literal} is available in Java 5.0 and later.

{@code text}

This tag is like the {@literal} tag, but displays the literal text in code font.
Equivalent to:

<code>{@literal text}</code>

{@code} is available in Java 5.0 and later.

{@value}

The {@value} tag, with no arguments, is used inline in doc comments for static
final fields and is replaced with the constant value of that field. This tag was
introduced in Java 1.4 and is used only for constant fields.

{@value reference}

This variant of the {@value} tag includes a reference to a static final field
and is replaced with the constant value of that field. Although the no-argument version
of the {@value} tag was introduced in Java 1.4, this version is available only in Java
5.0 and later. See Section 7.3.4 for the syntax of the reference.  

Chapter 7. Programming and Documentation Conventions Page 13 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



7.3.4. Cross-References in Doc Comments
The @see    tag and the inline tags {@link}, {@linkplain} and {@value} all encode
a cross-reference to some other source of documentation, typically to the documentation
comment for some other type or member.

reference can take three different forms. If it begins with a quote character, it is taken
to be the name of a book or some other printed resource and is displayed as is. If
reference begins with a < character, it is taken to be an arbitrary HTML hyperlink that
uses the <a> tag and the hyperlink is inserted into the output documentation as is. This
form of the @see tag can insert links to other online documents, such as a programmer's
guide or user's manual.

If reference is not a quoted string or a hyperlink, it is expected to have the following
form:

feature label

In this case, javadoc outputs the text specified by label and encodes it as a hyperlink to
the specified feature. If label is omitted (as it usually is), javadoc uses the name of the
specified feature instead.

feature can refer to a package, type, or type member, using one of the following forms:

pkgname

A reference to the named package. For example:

@see java.lang.reflect

pkgname.typename

A reference to a class, interface, enumerated type, or annotation type specified with
its full package name. For example:

@see java.util.List

typename

A reference to a type specified without its package name. For example:

Chapter 7. Programming and Documentation Conventions Page 14 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



@see List

javadoc resolves this reference by searching the current package and the list of imported
classes for a class with this name.

typename# methodname

A reference to a named method or constructor within the specified type. For example:

@see java.io.InputStream#reset
@see InputStream#close

If the type is specified without its package name, it is resolved as described for
typename. This syntax is ambiguous if the method is overloaded or the class defines a
field by the same name.

typename# methodname( paramtypes)

A reference to a method or constructor with the type of its parameters explicitly
specified. This is useful when cross-referencing an overloaded method. For example:

@see InputStream#read(byte[], int, int)

# methodname

A reference to a nonoverloaded method or constructor in the current class or interface
or one of the containing classes, superclasses, or superinterfaces of the current class
or interface. Use this concise form to refer to other methods in the same class. For
example:

@see #setBackgroundColor

# methodname( paramtypes)

A reference to a method or constructor in the current class or interface or one of its
superclasses or containing classes. This form works with overloaded methods because
it lists the types of the method parameters explicitly. For example:

@see #setPosition(int, int)

Chapter 7. Programming and Documentation Conventions Page 15 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



typename# fieldname

A reference to a named field within the specified class. For example:

@see java.io.BufferedInputStream#buf

If the type is specified without its package name, it is resolved as described for
typename.

# fieldname

A reference to a field in the current type or one of the containing classes, superclasses,
or superinterfaces of the current type. For example:

@see #x

7.3.5. Doc Comments for Packages
Documentation comments for classes, interfaces, methods, constructors, and fields appear
in Java source code immediately before the definitions of the features they document.
javadoc can also read and display summary documentation for packages. Since a package
is defined in a directory, not in a single file of source code, javadoc looks for the package
documentation in a file named package.html in the directory that contains the source code
for the classes of the package.

The package.html file should contain simple HTML documentation for the package. It can
also contain @see, @link, @deprecated, and @since tags. Since package.html is not a
file of Java source code, the documentation it contains should be HTML and should not
be a Java comment (i.e., it should not be enclosed within /** and */ characters). Finally,
any @see and @link tags that appear in package.html must use fully qualified class
names.

In addition to defining a package.html file for each package, you can also provide high-
level documentation for a group of packages by defining an overview.html file in the source
tree for those packages. When javadoc is run over that source tree, it uses
overview.html as the highest level overview it displays.    

7.4. JavaBeans Conventions
JavaBeans is a framework for defining reusable modular software components. The
JavaBeans specification includes the following definition of a bean: "a reusable software

Chapter 7. Programming and Documentation Conventions Page 16 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



component that can be manipulated visually in a builder tool." As you can see, this is a
rather loose definition; beans can take a variety of forms. The most common use of beans
is for graphical user interface components, such as components of the java.awt and
javax.swing packages, which are documented in Java Foundation Classes in a
Nutshell and Java Swing, both from O'Reilly. Although all beans can be manipulated
visually, this does not mean every bean has its own visual representation. For example,
the javax.sql.RowSet class (documented in O'Reilly's Java Enterprise in a Nutshell)
is a JavaBeans component that represents the data resulting from a database query. There
are no limits on the simplicity or complexity of a JavaBeans component. The simplest
beans are typically basic graphical interface components, such as a java.awt.Button
object. But even complex systems, such as an embeddable spreadsheet application, can
function as individual beans.

The JavaBeans component model consists of the java.beans, the
java.beans.beancontext packages, and a number of important naming and API
conventions to which conforming beans and bean-manipulation tools must adhere. These
conventions are not part of the JavaBeans API itself but are in many ways more important
to bean developers than the API itself. The conventions are sometimes referred to as
design patterns; they specify such things as method names and signatures for property
accessor methods defined by a bean. If the class you are writing is not intended to be a
bean, suitable for visual manipulation in a builder tool, you don't need to follow these
conventions. The JavaBeans conventions are widely used and well-understood, however,
and you can improve the usability and reusabilty of your code by following the relevant
ones. This is particularly true of the property accessor method naming conventions.

We cover the conventions themselves later in this section. First, however, an overview of
the JavaBeans model is in order.

7.4.1. Bean Basics
Any object that conforms to certain basic rules can be a bean; there is no Bean class that
all beans are required to subclass. Many beans are GUI components, but it is also quite
possible, and often useful, to write "invisible" beans that do not have an onscreen
appearance. (A bean having no onscreen appearance in a finished application does not
mean it cannot be visually manipulated by a beanbox tool, however.)

A bean is characterized by the properties, events, and methods it exports. It is these
properties, events, and methods that an application designer manipulates in a beanbox
tool. A property is a piece of the bean's internal state that can be programmatically set
and/or queried, usually through a standard pair of get and set accessor methods.

A bean communicates with the application in which it is embedded as well as with other
beans by generating events. The JavaBeans API uses the same event model that AWT and

Chapter 7. Programming and Documentation Conventions Page 17 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Swing components use. The model is based on the java.util.EventObject class and
the java.util.EventListener interface; it is described in detail in Java Foundation
Classes in a Nutshell (O'Reilly). In brief, the event model works like this:

• A bean defines an event if it provides add and remove methods for registering and
deregistering listener objects for that event.

• An application that wants to be notified when an event of that type occurs uses these
methods to register an event listener object of the appropriate type.

• When the event occurs, the bean notifies all registered listeners by passing an event
object that describes the event to a method defined by the event listener interface.

A unicast event is a rare kind of event for which there can be only a single registered listener
object. The add registration method for a unicast event throws a
TooManyListenersException if an attempt is made to register more than a single
listener.

The methods exported by a bean are simply any public methods defined by the bean,
excluding those methods that get and set property values and register and remove event
listeners.

In addition to the regular sort of properties described earlier, the JavaBeans API also
supports several specialized property subtypes. An indexed property is a property that has
an array value, as well as getter and setter methods that access both individual elements
of the array and the entire array. A bound property is one that sends a
PropertyChangeEvent to any interested PropertyChangeListener objects
whenever the value of the property changes. A constrained property is one that can have
any changes vetoed by any interested listener. When the value of a constrained property
of a bean changes, the bean must send out a PropertyChangeEvent to the list of
interested VetoableChangeListener objects. If any of these objects throws a
PropertyVetoException, the property value is not changed, and the
PropertyVetoException is propagated back to the property setter method.

7.4.2. Bean Classes
A bean class itself must adhere to the following conventions:

Class name

There are no restrictions on the class name of a bean.

Chapter 7. Programming and Documentation Conventions Page 18 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Superclass

A bean can extend any other class. Beans are often AWT or Swing components, but
there are no restrictions.

Instantiation

A bean should provide a no-parameter constructor so bean manipulation tools can
easily instantiate the bean.

7.4.3. Properties
A bean defines a property p of type T if it has accessor methods that follow these patterns
(if T is boolean, a special form of getter method is allowed):

Getter

public T getP( )

Boolean getter

public boolean isP( )

Setter

public void setP(T)

Exceptions

Property accessor methods can throw any type of checked or unchecked exceptions.

7.4.4. Indexed Properties
An indexed property is a property of array type that provides accessor methods that get
and set the entire array as well as methods that get and set individual elements of the array.
A bean defines an indexed property p of type T[ ] if it defines the following accessor
methods:

Chapter 7. Programming and Documentation Conventions Page 19 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Array getter

public T[ ] getP()

Element getter

public T getP(int)

Array setter

public void setP(T[])

Element setter

public void setP(int,T)

Exceptions

Indexed property accessor methods can throw any type of checked or unchecked
exceptions. They should throw an ArrayIndexOutOfBoundsException if the
supplied index is out of bounds.

7.4.5. Bound Properties
A bound property is one that generates a PropertyChangeEvent when its value changes.
Here are the conventions for a bound property:

Accessor methods

The getter and setter methods for a bound property follow the same conventions as a
regular property.

Listener registration

A bean that defines one or more bound properties must define a pair of methods for
the registration of listeners that are notified when any bound property value changes.
The methods must have these signatures:

public void addPropertyChangeListener(PropertyChangeListener)
public void removePropertyChangeListener(PropertyChangeListener)

Chapter 7. Programming and Documentation Conventions Page 20 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Named property listener registration

A bean can optionally provide additional methods that allow event listeners to be
registered for changes to a single bound property value. These methods are passed
the name of a property and have the following signatures:

public void addPropertyChangeListener(String, PropertyChangeListener)
public void removePropertyChangeListener(String, PropertyChangeListener)

Per-property listener registration

A bean can optionally provide additional event listener registration methods that are
specific to a single property. For a property p, these methods have the following
signatures:

public void addPListener(PropertyChangeListener)
public void removePListener(PropertyChangeListener)

Methods of this type allow a beanbox to distinguish a bound property from an unbound
property.

Notification

When the value of a bound property changes, the bean should update its internal state
to reflect the change and then pass a PropertyChangeEvent to the
propertyChange() method of every PropertyChangeListener object
registered for the bean or the specific bound property.

Support

java.beans.PropertyChangeSupport is a helpful class for implementing bound
properties.

7.4.6. Constrained Properties
A constrained property is one for which any changes can be vetoed by registered listeners.
Most constrained properties are also bound properties. Here are the conventions for a
constrained property:

Chapter 7. Programming and Documentation Conventions Page 21 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Getter

The getter method for a constrained property is the same as the getter method for a
regular property.

Setter

The setter method of a constrained property throws a PropertyVetoException if
the property change is vetoed. For a property p of type T, the signature looks like this:

public void setP(T) throws PropertyVetoException

Listener registration

A bean that defines one or more constrained properties must define a pair of methods
for the registration of listeners that are notified when any constrained property value
changes. The methods must have these signatures:

public void addVetoableChangeListener(VetoableChangeListener)
public void removeVetoableChangeListener(VetoableChangeListener)

Named property listener registration

A bean can optionally provide additional methods that allow event listeners to be
registered for changes to a single constrained property value. These methods are
passed the name of a property and have the following signatures:

public void addVetoableChangeListener(String, VetoableChangeListener)
public void removeVetoableChangeListener(String, VetoableChangeListener)

Per-property listener registration

A bean can optionally provide additional listener registration methods that are
specific to a single constrained property. For a property p, these methods have the
following signatures:

public void addPListener(VetoableChangeListener)
public void removePListener(VetoableChangeListener)

Chapter 7. Programming and Documentation Conventions Page 22 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Notification

When the setter method of a constrained property is invoked, the bean must generate
a PropertyChangeEvent that describes the requested change and pass that event
to the vetoableChange( ) method of every VetoableChangeListener object
registered for the bean or the specific constrained property. If any listener vetoes the
change by throwing a PropertyVetoException, the bean must send out another
PropertyChangeEvent to revert the property to its original value. It should then
throw a PropertyVetoException itself. If, on the other hand, the property change
is not vetoed, the bean should update its internal state to reflect the change. If the
constrained property is also a bound property, the bean should notify
PropertyChangeListener objects at this point.

Support

java.beans.VetoableChangeSupport is a helpful class for implementing
constrained properties.

7.4.7. Events
In addition to PropertyChangeEvent events generated when bound and constrained
properties are changed, a bean can generate other types of events. An event named E should
follow these conventions:

Event class

The event class should directly or indirectly extend java.util.EventObject and
should be named EEvent.

Listener interface

The event must be associated with an event listener interface that extends
java.util.EventListener and is named EListener.

Listener methods

The event listener interface can define any number of methods that take a single
argument of type EEvent and return void.

Chapter 7. Programming and Documentation Conventions Page 23 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.



Listener registration

The bean must define a pair of methods for registering event listeners that want to be
notified when an E event occurs. The methods should have the following signatures:

public void addEListener(EListener)
public void removeEListener(EListener)

Unicast events

A unicast event allows only one listener object to be registered at a single time. If E is
a unicast event, the listener registration method should have this signature: 

public void addEListener(EListener) throws TooManyListenersException

Chapter 7. Programming and Documentation Conventions Page 24 Return to Table of Contents

Chapter 7. Programming and Documentation Conventions
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.


	Programming and Documentation Conventions
	Naming and Capitalization Conventions
	Portability Conventions and Pure Java Rules
	Java Documentation Comments
	JavaBeans Conventions


