
Table of Contents

Java Security... 1
Security Risks.. 1
Java VM Security and Class File Verification... 2
Authentication and Cryptography.. 2
Access Control... 3
Security for Everyone.. 6
Permission Classes.. 8

Chapter 6. Java Security

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 6. Java Security
Java programs can dynamically load Java classes from a variety of sources, including
untrusted sources, such as web sites reached across an insecure network. The ability to
create and work with such mobile code is one of the great strengths and features of Java.
To make it work successfully, however, Java puts great emphasis on a security architecture
that allows untrusted code to run safely, without fear of damage to the host system.

The need for a security system in Java is most acutely demonstrated by applets—miniature
Java applications designed to be embedded in web pages.[1] When a user visits a web page
(with a Java-enabled web browser) that contains an applet, the web browser downloads
the Java class files that define that applet and runs them. In the absence of a security
system, an applet could wreak havoc on the user's system by deleting files, installing a
virus, stealing confidential information, and so on. Somewhat more subtly, an applet could
take advantage of the user's system to forge email, generate spam, or launch hacking
attempts on other systems.

[1] Applets are documented in Java Foundation Classes in a Nutshell (O'Reilly) and are not covered in this book. Still, they serve as good examples here.

Java's main line of defense against such malicious code is access control: untrusted code
is simply not given access to certain sensitive portions of the core Java API. For example,
an untrusted applet is not typically allowed to read, write, or delete files on the host system
or connect over the network to any computer other than the web server from which it was
downloaded. This chapter describes the Java access control architecture and a few other
facets of the Java security system.

6.1. Security Risks
Java has been designed from the ground up with security in mind; this gives it a great
advantage over many other existing systems and platforms. Nevertheless, no system can
guarantee 100% security, and Java is no exception.

The Java security architecture was designed by security experts and has been studied and
probed by many other security experts. The consensus is that the architecture itself is
strong and robust, theoretically without any security holes (at least none that have been
discovered yet). The implementation of the security architecture is another matter,
however, and there is a long history of security flaws being found and patched in particular
implementations of Java. For example, in April 1999, a flaw was found in Sun's
implementation of the class verifier in Java 1.1. Patches for Java 1.1.6 and 1.1.7 were issued
and the problem was fixed in Java 1.1.8. In August 1999, a severe flaw was found in

Chapter 6. Java Security Page 1 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

Microsoft's Java Virtual Machine. Microsoft fixed the problem, and no longer distributes
their VM with the latest versions of their web browser.

In all likelihood, security flaws will continue to be discovered (and patched) in Java VM
implementations. Despite this, Java remains perhaps the most secure platform currently
available. There have been few, if any, reported instances of malicious Java code exploiting
security holes "in the wild." For practical purposes, the Java platform appears to be
adequately secure, especially when contrasted with some of the insecure and virus-ridden
alternatives.

6.2. Java VM Security and Class File Verification
The lowest level of the Java security architecture involves the design of the Java Virtual
Machine and the byte codes it executes. The Java VM does not allow any kind of direct
access to individual memory addresses of the underlying system, which prevents Java code
from interfering with the native hardware and operating system. These intentional
restrictions on the VM are reflected in the Java language itself, which does not support
pointers or pointer arithmetic. The language does not allow an integer to be cast to an
object reference or vice versa, and there is no way whatsoever to obtain an object's address
in memory. Without capabilities like these, malicious code simply cannot gain a foothold.

In addition to the secure design of the Virtual Machine instruction set, the VM goes through
a process known as byte-code verification whenever it loads an untrusted class. This
process ensures that the byte codes of a class (and their operands) are all valid; that the
code never underflows or overflows the VM stack; that local variables are not used before
they are initialized; that field, method, and class access control modifiers are respected;
and so on. The verification step is designed to prevent the VM from executing byte codes
that might crash it or put it into an undefined and untested state where it might be
vulnerable to other attacks by malicious code. Byte-code verification is a defense against
malicious hand-crafted Java byte codes and untrusted Java compilers that might output
invalid byte codes.

6.3. Authentication and Cryptography
The java.security package (and its subpackages) provides classes and interfaces for
authentication. As described in Chapter 5, this piece of the security architecture allows
Java code to create and verify message digests and digital signatures. These technologies
can ensure that any data (such as a Java class file) is authentic: that it originates from the
person who claims to have originated it and has not been accidentally or maliciously
modified in transit.

The Java Cryptography Extension, or JCE, consists of the javax.crypto package and
its subpackages. These packages define classes for encryption and decryption of data. This

Chapter 6. Java Security Page 2 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-5#javanut5-CHP-5

is an important security-related feature for many applications, but is not directly relevant
to the basic problem of preventing untrusted code from damaging the host system, so it is
not discussed in this chapter.

6.4. Access Control
As we noted at the beginning of this chapter, the heart of the Java security architecture is
access control: untrusted code simply must not be granted access to the sensitive parts of
the Java API that would allow it to do malicious things. As we'll discuss in the following
sections, the Java access control model evolved significantly between Java 1.0 and Java
1.2. Since then, the access control model has been relatively stable; it has not changed
significantly since Java 1.2. The next sections provide a brief history of the evolution of
Java security as it developed from Java 1.0 to Java 1.2, which marked the last major changes
to the security model.

6.4.1. Java 1.0: The Sandbox
In this first release of Java, all Java code installed locally on the system is trusted implicitly.
All code downloaded over the network, however, is untrusted and run in a restricted
environment playfully called "the sandbox." The access control policies of the sandbox are
defined by the currently installed java.lang.SecurityManager object. When system
code is about to perform a restricted operation, such as reading a file from the local
filesystem, it first calls an appropriate method (such as checkRead()) of the currently
installed SecurityManager object. If untrusted code is running, the
SecurityManager throws a SecurityException that prevents the restricted
operation from taking place.

The most common user of the SecurityManager class is a Java-enabled web browser,
which installs a SecurityManager object to allow applets to run without damaging the
host system. The precise details of the security policy are an implementation detail of the
web browser, of course, but applets are typically restricted in the following ways:

• An applet cannot read, write, rename, or delete files. It cannot query the length or
modification date of a file or even check whether a given file exists. Similarly, an applet
cannot create, list, or delete a directory.

• An applet cannot connect to or accept a connection from any computer other than the
one it was downloaded from. It cannot use any privileged ports (i.e., ports below and
including port 1024).

• An applet cannot perform system-level functions, such as loading a native library,
spawning a new process, or exiting the Java interpreter. An applet cannot manipulate
any threads or thread groups, except for those it creates itself. In Java 1.1 and later,
applets cannot use the Java Reflection API to obtain information about the nonpublic
members of classes, except for classes that were downloaded with the applet.

Chapter 6. Java Security Page 3 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• An applet cannot access certain graphics- and GUI-related facilities. It cannot initiate
a print job or access the system clipboard or event queue. In addition, all windows
created by an applet typically display a prominent visual indicator that they are
"insecure" to prevent an applet from spoofing the appearance of some other
application.

• An applet cannot read certain system properties, notably the user.home and
user.dir properties, that specify the user's home directory and current working
directory.

• An applet cannot circumvent these security restrictions by registering a new
SecurityManager object.

6.4.1.1. How the sandbox works
Suppose that an applet (or some other untrusted code running in the sandbox) attempts
to read the contents of the file /etc/passwd by passing this filename to the
FileInputStream() constructor. The programmers who wrote the
FileInputStream class were aware that the class provides access to a system resource
(a file), so use of the class should therefore be subject to access control. For this reason,
they coded the FileInputStream() constructor to use the SecurityManager class.

Every time FileInputStream() is called, it checks to see if a SecurityManager
object has been installed. If so, the constructor calls the checkRead() method of that
SecurityManager object, passing the filename (/etc/passwd, in this case) as the sole
argument. The checkRead() method has no return value; it either returns normally or
throws a SecurityException. If the method returns, the FileInputStream()
constructor simply proceeds with whatever initialization is necessary and returns.
Otherwise, it allows the SecurityException to propagate to the caller. When this
happens, no FileInputStream object is created, and the applet does not gain access to
the /etc/passwd file.

6.4.2. Java 1.1: Digitally Signed Classes
Java 1.1 retained the sandbox model of Java 1.0 but added the java.security package
and its digital signature capabilities. With these capabilities, Java classes can be digitally
signed and verified. Thus, web browsers and other Java installations can be configured to
trust downloaded code that bears a valid digital signature of a trusted entity. Such code is
treated as if it were installed locally, so it is given full access to the Java APIs. In this release,
the javakey program manages keys and digitally signs JAR files of Java code. Although
Java 1.1 added the important ability to trust digitally signed code that would otherwise be
untrusted, it sticks to the basic sandbox model: trusted code gets full access and untrusted
code gets totally restricted access.

Chapter 6. Java Security Page 4 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

6.4.3. Java 1.2: Permissions and Policies
Java 1.2 introduced substantial access control features into the Java security architecture.
These features are implemented by classes in the java.security package. The
Policy class is one of the most important: it defines a Java security policy. A Policy
object maps CodeSource objects to associated sets of Permission objects. A
CodeSource object represents the source of a piece of Java code, which includes both the
URL of the class file (and can be a local file) and a list of entities that have applied their
digital signatures to the class file. The Permission objects associated with a
CodeSource in the Policy define the permissions that are granted to code from a given
source. Various Java APIs include subclasses of Permission that represent different
types of permissions. These include java.lang.RuntimePermission,
java.io.FilePermission, and java.net.SocketPermission, for example.

Under this access control model, the SecurityManager class continues to be the central
class; access control requests are still made by invoking methods of a
SecurityManager. However, the default SecurityManager implementation
delegates most of those requests to an AccessController class that makes access
decisions based on the Permission and Policy architecture.

The Java 1.2 access control architecture has several important features:

• Code from different sources can be given different sets of permissions. In other words,
the architecture supports fine-grained levels of trust. Even locally installed code can
be treated as untrusted or partially untrusted. Under this architecture, only system
classes and standard extensions run as fully trusted.

• It is no longer necessary to define a custom subclass of SecurityManager to define
a security policy. Policies can be configured by a system administrator by editing a
text file or using the policytool program, described in Chapter 8.

• The architecture is not limited to a fixed set of access control methods in the
SecurityManager class. Permission subclasses can be defined easily to govern
access to system resources (which might be exposed, for example, by standard
extensions that include native code).

6.4.3.1. How policies and permissions work
Let's return to the example of an applet that attempts to create a FileInputStream to
read the file /etc/passwd. In Java 1.2 and later, the FileInputStream() constructor
behaves exactly the same as it does in Java 1.0 and Java 1.1: it looks to see if a
SecurityManager is installed and, if so, calls its checkRead() method, passing the
name of the file to be read.

Chapter 6. Java Security Page 5 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

What changed as of Java 1.2 is the default behavior of the checkRead() method. Unless
a program has replaced the default security manager with one of its own, the default
implementation creates a FilePermission object to represent the access being
requested. This FilePermission object has a target of "/etc/passwd" and an action of
"read." The checkRead() method passes this FilePermission object to the static
checkPermission() method of the java.security.AccessController class.

It is the AccessController and its checkPermission() method that do the real
work of access control as of Java 1.2. The method determines the CodeSource of each
calling method and uses the current Policy object to determine the Permission objects
associated with it. With this information, the AccessController can determine whether
read access to the /etc/passwd file should be allowed.

The Permission class represents both the permissions granted by a Policy and the
permissions requested by a method like the FileInputStream() constructor. When
requesting a permission, Java typically uses a FilePermission (or other
Permission subclass) with a very specific target, like "/etc/passwd". When granting a
permission, however, a Policy commonly uses a FilePermission object with a
wildcard target, such as "/etc/*", to represent many files. One of the key features of a
Permission subclass such as FilePermission is that it defines an implies() method
that can determine whether permission to read "/etc/*" implies permission to read "/etc/
passwd".

6.5. Security for Everyone
Programmers, system administrators, and end users all have different security concerns
and, thus, different roles to play in the Java security architecture.

6.5.1. Security for System Programmers
System programmers are the people who define new Java APIs that allow access to
sensitive system resources. These programmers are typically working with native methods
that have unprotected access to the system. They need to use the Java access control
architecture to prevent untrusted code from executing those native methods. To do this,
system programmers must carefully insert SecurityManager calls at appropriate places
in their code. A system programmer may choose to use an existing Permission subclass
to govern access to the system resources exposed by her API, or she may decide to define
a specialized subclass of Permission.

The system programmer carries a tremendous security burden: if she does not perform
appropriate access control checks in her code, she compromises the security of the entire
Java platform. The details are complex and are beyond the scope of this book. Fortunately,

Chapter 6. Java Security Page 6 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

however, system programming that involves native methods is rare in Java; almost all of
us are application programmers who can simply rely on the existing APIs.

6.5.2. Security for Application Programmers
Programmers who use the core Java APIs and standard extensions but do not define new
extensions or write native methods can simply rely on the security efforts of the system
programmers who created those APIs. In other words, most of us Java programmers can
simply use the Java APIs and need not worry about introducing security holes into the
Java platform.

In fact, application programmers rarely have to use the access control architecture. If you
are writing Java code that may be run as untrusted code, you should be aware of the
restrictions placed on untrusted code by typical security policies. Keep in mind that some
methods (such as methods that read or write files) can throw SecurityException
objects, but don't feel you must write your code to catch these exceptions. Often, the
appropriate response to a SecurityException is to allow it to propagate uncaught so
that it terminates the application.

Sometimes, as an application programmer, you want to write an application (such as an
applet viewer) that can load untrusted classes and run them subject to access control
checks. To do this in Java 1.2 and later, you must first install a security manager:

System.setSecurityManager(new SecurityManager());

You then use java.net.URLClassLoader to load the untrusted classes.
URLClassLoader assigns a default set of safe permissions to the classes it loads, but in
some cases you may want to modify the permissions granted to the loaded code through
the Policy and PermissionCollection classes.

6.5.3. Security for System Administrators
In Java 1.2 and later, system administrators are responsible for defining the default
security policy for the computers at their site. The default policy is stored in the file lib/
security/java.policy in the Java installation. A system administrator can edit this text file
by hand or use the policytool program from Sun to edit the file graphically. policytool is
the preferred way to define policies, so the syntax of the underlying policy file is not
documented in this book.

The default java.policy file defines a policy that is much like the policy of Java 1.0 and Java
1.1: system classes and installed extensions are fully trusted, while all other code is
untrusted and only allowed a few simple permissions. While this default policy is adequate
for many purposes, it may not be appropriate for all sites. For example, at some

Chapter 6. Java Security Page 7 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

organizations, it may be appropriate to grant extra permissions to code downloaded from
a secure intranet.

In order to define effective security policies, a system administrator must understand the
various Permission subclasses of the Java platform, the target and action names they
support, and the security implications of granting any particular permission. These topics
are explained well in a document titled "Permissions in the Java 2 Standard Edition
Development Kit (JDK)," which is available online at http://java.sun.com/j2se/1.5.0/
docs/guide/security/permissions.html.

6.5.4. Security for End Users
Most end users do not have to think about security at all: their Java programs should simply
run in a secure way with no intervention from them. Some sophisticated end users may
want to define their own security policies, however. An end user can do this by running
policytool himself to define personal policy files that augment the system policy. The
default personal policy is stored in a file named .java.policy in the user's home directory.
By default, Java loads this policy file and uses it to augment the system policy file.

In Java 1.2 and later, a user can specify an additional policy file to use when starting up
the Java interpreter. To do so, you use the -D option to define the
java.security.policy property. For example:

C:\> java -Djava.security.policy=policyfile UntrustedApp

This line runs the class UntrustedApp after augmenting the default system and user
policies with the policy specified in the file or URL policyfile. To replace the system
and user policies instead of augmenting them, use a double equals sign in the property
specification:

C:\> java -Djava.security.policy= =policyfile UntrustedApp

Note, however, that specifying a policy file is useful only if there is a SecurityManager
installed. If a user doesn't trust an application, he presumably doesn't trust that application
to voluntarily install its own security manager. In this case, he can define the
java.security.manager system property:

C:\> java -Djava.security.manager -Djava.security.policy=policyfile
 \ UntrustedApp

The value of this property does not matter; simply defining it is enough to tell the Java
interpreter to automatically install a default SecurityManager object that subjects an
application to the access control policies described in the system, user, and
java.security.policy policy files.

Chapter 6. Java Security Page 8 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html

6.6. Permission Classes
Table 6-1 lists some important Permission subclasses defined by the core Java platform
and summarizes the permissions they represent. See the reference section for more
information on the individual classes. See http://java.sun.com/j2se/1.5.0/docs/guide/
security/permissions.html for a complete list and detailed description of these
permissions classes, along with their target and action names and a list of methods and
the permissions they require (this document is part of the standard documentation bundle
that can be downloaded along with the JDK).

Table 6-1. Java permission classes

Permission class Description
java.security.AllPermission An instance of this special permission class implies all other permissions.
javax.sound.sampled.AudioPermission Controls the ability to play and record sound.

javax.security.auth.AuthPermission Controls access to authentication methods in javax.security.auth and its
subpackages.

java.awt.AWTPermission Controls access to sensitive methods in java.awt and its subpackages.

java.io.FilePermission Governs access to the filesystem.
java.util.logging.LoggingPermission Controls the ability of a program to modify the logging configuration.

java.net.NetPermission Governs access to networking-related resources such as stream handlers and
HTTP authentication. See also java.net.SocketPermission.

java.util.PropertyPermission Governs access to system properties.

java.lang.reflect.ReflectPermission Governs access through the java.lang.reflect package to classes and class
members that would normally be inaccessible.

java.lang.RuntimePermission Governs access to a number of methods and resources. Many of the controlled
methods are defined by java.lang.System and java.lang.Runtime.

java.security.SecurityPermission Governs access to various security-related methods.
java.io.SerializablePermission Governs access to serialization-related methods.
java.net.SocketPermission Governs access to the network.

java.sql.SQLPermission Governs the ability to specify logging streams in the java.sql JDBC API.

Chapter 6. Java Security Page 9 Return to Table of Contents

Chapter 6. Java Security
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html
http://java.sun.com/j2se/1.5.0/docs/guide/security/permissions.html

	Java Security
	Security Risks
	Java VM Security and Class File Verification
	Authentication and Cryptography
	Access Control
	Security for Everyone
	Permission Classes

