
Table of Contents

The Java Platform... 1
Java Platform Overview... 1
Text.. 2
Numbers and Math.. 14
Dates and Times.. 19
Arrays... 21
Collections... 22
Threads and Concurrency... 37
Files and Directories.. 51
Input/Output with java.io... 53
Networking with java.net.. 56
I/O and Networking with java.nio.. 61
XML... 73
Types, Reflection, and Dynamic Loading... 80
Object Persistence... 82
Security.. 84
Cryptography.. 86
Miscellaneous Platform Features... 88

Chapter 5. The Java Platform

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 5. The Java Platform
Chapters Chapter 2, Chapter 3, and Chapter 4 documented the Java programming
language. This chapter switches gears and covers the Java platform—a vast collection of
predefined classes available to every Java program, regardless of the underlying host
system on which it is running. The classes of the Java platform are collected into related
groups, known as packages. This chapter begins with an overview of the packages of the
Java platform that are documented in this book. It then moves on to demonstrate, in the
form of short examples, the most useful classes in these packages. Most of the examples
are code snippets only, not full programs you can compile and run. For fully fleshed-out,
real-world examples, see Java Examples in a Nutshell (O'Reilly). That book expands
greatly on this chapter and is intended as a companion to this book.

5.1. Java Platform Overview
Table 5-1 summarizes the key packages of the Java platform that are covered in this book.

Table 5-1. Key packages of the Java platform

Package Description

java.io Classes and interfaces for input and output. Although some of the classes in this package are for
working directly with files, most are for working with streams of bytes or characters.

java.lang The core classes of the language, such as String, Math, System, Thread, and Exception.

java.lang.annotation Annotation types and other supporting types for the Java 5.0 annotation feature. (See Chapter 4.)

java.lang.instrument Support classes for Java virtual machine instrumentation agents, which are allowed to modify the
byte code of the program the JVM is running. New in Java 5.0.

java.lang.management A framework for monitoring and managing a running Java virtual machine. New in Java 5.0.

java.lang.ref Classes that define weak references to objects. A weak reference is one that does not prevent the
referent object from being garbage-collected.

java.lang.reflect Classes and interfaces that allow Java programs to reflect on themselves by examining the
constructors, methods, and fields of classes.

java.math A small package that contains classes for arbitrary-precision integer and floating-point arithmetic.
java.net Classes and interfaces for networking with other systems.
java.nio Buffer classes for the New I/O API. Added in Java 1.4.
java.nio.channels Channel and selector interfaces and classes for high-performance, nonblocking I/O.
java.nio.charset Character set encoders and decoders for converting Unicode strings to and from bytes.

java.security Classes and interfaces for access control and authentication. This package and its subpackages
support cryptographic message digests and digital signatures.

java.text Classes and interfaces for working with text in internationalized applications.

java.util Various utility classes, including the powerful collections framework for working with collections of
objects.

java.util.concurrent Thread pools and other utility classes for concurrent programming. Subpackages support atomic
variables and locks. New in Java 5.0.

java.util.jar Classes for reading and writing JAR files.

Chapter 5. The Java Platform Page 1 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2
http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

Package Description
java.util.logging A flexible logging facility. Added in Java 1.4.
java.util.prefs An API to read and write user and system preferences. Added in Java 1.4.
java.util.regex Text pattern matching using regular expressions. Added in Java 1.4.
java.util.zip Classes for reading and writing ZIP files.
javax.crypto Classes and interfaces for encryption and decryption of data.

javax.net Defines factory classes for creating sockets and server sockets. Enables the creation of socket types
other than the default.

javax.net.ssl Classes for encrypted network communication using the Secure Sockets Layer (SSL).

javax.security.auth The top-level package for the JAAS API for authentication and authorization. Various subpackages
hold most of the actual classes. Added in Java 1.4.

javax.xml.parsers A high-level API for parsing XML documents using pluggable DOM and SAX parsers.

javax.xml.transform
A high-level API for transforming XML documents using a pluggable XSLT transformation engine
and for converting XML documents between streams, DOM trees, and SAX events. Subpackages
provide support for DOM, SAX and stream transformations. Added in Java 1.4.

Table 5-1 does not list all the packages in the Java platform, only the most important of
those documented in this book. Java also defines numerous packages for graphics and
graphical user interface programming and for distributed, or enterprise, computing. The
graphics and GUI packages are java.awt and javax.swing and their many
subpackages. These packages are documented in Java Foundation Classes in a Nutshell
and Java Swing, both from O'Reilly. The enterprise packages of Java include java.rmi,
java.sql, javax.jndi, org.omg.CORBA, org.omg.CosNaming, and all of their
subpackages. These packages, as well as several standard extensions to the Java platform,
are documented in Java Enterprise in a Nutshell (O'Reilly).

5.2. Text
Most programs manipulate text in one form or another, and the Java platform defines a
number of important classes and interfaces for representing, formatting, and scanning
text. The sections that follow provide an overview.

5.2.1. The String Class
Strings of text are a fundamental and commonly used data type. In Java, however, strings
are not a primitive type, like char, int, and float. Instead, strings are represented by
the java.lang.String class, which defines many useful methods for manipulating
strings. String objects are immutable: once a String object has been created, there is
no way to modify the string of text it represents. Thus, each method that operates on a
string typically returns a new String object that holds the modified string.

This code shows some of the basic operations you can perform on strings:
// Creating strings
String s = "Now"; // String objects have a special literal syntax
String t = s + " is the time."; // Concatenate strings with + operator
String t1 = s + " " + 23.4; // + converts other values to strings

Chapter 5. The Java Platform Page 2 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

t1 = String.valueOf('c'); // Get string corresponding to char value
t1 = String.valueOf(42); // Get string version of integer or any value
t1 = object.toString(); // Convert objects to strings with toString()

// String length
int len = t.length(); // Number of characters in the string: 16

// Substrings of a string
String sub = t.substring(4); // Returns char 4 to end: "is the time."
sub = t.substring(4, 6); // Returns chars 4 and 5: "is"
sub = t.substring(0, 3); // Returns chars 0 through 2: "Now"
sub = t.substring(x, y); // Returns chars between pos x and y-1
int numchars = sub.length(); // Length of substring is always (y-x)

// Extracting characters from a string
char c = t.charAt(2); // Get the 3rd character of t: w
char[] ca = t.toCharArray(); // Convert string to an array of characters
t.getChars(0, 3, ca, 1); // Put 1st 3 chars of t into ca[1]-ca[3]

// Case conversion
String caps = t.toUpperCase(); // Convert to uppercase
String lower = t.toLowerCase(); // Convert to lowercase

// Comparing strings
boolean b1 = t.equals("hello"); // Returns false: strings not equal
boolean b2 = t.equalsIgnoreCase(caps); // Case-insensitive compare: true
boolean b3 = t.startsWith("Now"); // Returns true
boolean b4 = t.endsWith("time."); // Returns true
int r1 = s.compareTo("Pow"); // Returns < 0: s comes before "Pow"
int r2 = s.compareTo("Now"); // Returns 0: strings are equal
int r3 = s.compareTo("Mow"); // Returns > 0: s comes after "Mow"
r1 = s.compareToIgnoreCase("pow"); // Returns < 0 (Java 1.2 and later)

// Searching for characters and substrings
int pos = t.indexOf('i'); // Position of first 'i': 4
pos = t.indexOf('i', pos+1); // Position of the next 'i': 12
pos = t.indexOf('i', pos+1); // No more 'i's in string, returns -1
pos = t.lastIndexOf('i'); // Position of last 'i' in string: 12
pos = t.lastIndexOf('i', pos-1); // Search backwards for 'i' from char 11

pos = t.indexOf("is"); // Search for substring: returns 4
pos = t.indexOf("is", pos+1); // Only appears once: returns -1
pos = t.lastIndexOf("the "); // Search backwards for a string
String noun = t.substring(pos+4); // Extract word following "the"

// Replace all instances of one character with another character
String exclaim = t.replace('.', '!'); // Works only with chars, not substrings

// Strip blank space off the beginning and end of a string
String noextraspaces = t.trim();

// Obtain unique instances of strings with intern()
String s1 = s.intern(); // Returns s1 equal to s
String s2 = "Now"; // String literals are automatically interned
boolean equals = (s1 == s2); // Now can test for equality with ==

5.2.2. The Character Class
As you know, individual characters are represented in Java by the primitive char type.
The Java platform also defines a Character class, which contains useful class methods
for checking the type of a character and for converting the case of a character. For example:

char[] text; // An array of characters, initialized somewhere else
int p = 0; // Our current position in the array of characters
// Skip leading whitespace
while((p < text.length) && Character.isWhitespace(text[p])) p++;
// Capitalize the first word of text
while((p < text.length) && Character.isLetter(text[p])) {

Chapter 5. The Java Platform Page 3 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 text[p] = Character.toUpperCase(text[p]);
 p++;
}

5.2.3. The StringBuffer Class
Since String objects are immutable, you cannot manipulate the characters of an
instantiated String. If you need to do this, use a java.lang.StringBuffer or
java.lang.StringBuilder instead. These two classes are identical except that
StringBuffer has synchronized methods. StringBuilder was introduced in Java
5.0 and you should use it in preference to StringBuffer unless it might actually be
manipulated by multiple threads. The following code demonstrates the StringBuffer
API but could be easily changed to use StringBuilder:

// Create a string buffer from a string
StringBuffer b = new StringBuffer("Mow");

// Get and set individual characters of the StringBuffer
char c = b.charAt(0); // Returns 'M': just like String.charAt()
b.setCharAt(0, 'N'); // b holds "Now": can't do that with a String!

// Append to a StringBuffer
b.append(' '); // Append a character
b.append("is the time."); // Append a string
b.append(23); // Append an integer or any other value

// Insert Strings or other values into a StringBuffer
b.insert(6, "n't"); // b now holds: "Now isn't the time.23"

// Replace a range of characters with a string (Java 1.2 and later)
b.replace(4, 9, "is"); // Back to "Now is the time.23"

// Delete characters
b.delete(16, 18); // Delete a range: "Now is the time"
b.deleteCharAt(2); // Delete 2nd character: "No is the time"
b.setLength(5); // Truncate by setting the length: "No is"

// Other useful operations
b.reverse(); // Reverse characters: "si oN"
String s = b.toString(); // Convert back to an immutable string
s = b.substring(1,2); // Or take a substring: "i"
b.setLength(0); // Erase buffer; now it is ready for reuse

5.2.4. The CharSequence Interface
As of Java 1.4, both the String and the StringBuffer classes implement the
java.lang.CharSequence interface, which is a standard interface for querying the
length of and extracting characters and subsequences from a readable sequence of
characters. This interface is also implemented by the java.nio.CharBuffer interface,
which is part of the New I/O API that was introduced in Java 1.4. CharSequence provides
a way to perform simple operations on strings of characters regardless of the underlying
implementation of those strings. For example:

/**
 * Return a prefix of the specified CharSequence that starts at the first
 * character of the sequence and extends up to (and includes) the first
 * occurrence of the character c in the sequence. Returns null if c is

Chapter 5. The Java Platform Page 4 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 * not found. s may be a String, StringBuffer, or java.nio.CharBuffer.
 */
public static CharSequence prefix(CharSequence s, char c) {
 int numChars = s.length(); // How long is the sequence?
 for(int i = 0; i < numChars; i++) { // Loop through characters in sequence
 if (s.charAt(i) == c) // If we find c,
 return s.subSequence(0,i+1); // then return the prefix subsequence
 }
 return null; // Otherwise, return null
}

5.2.5. The Appendable Interface
Appendable is a Java 5.0 interface that represents an object that can have a char or a
CharSequence appended to it. Implementing classes include StringBuffer,
StringBuilder, java.nio.CharBuffer, java.io.PrintStream, and
java.io.Writer and all of its character output stream subclasses, including
PrintWriter. Thus, the Appendable interface represents the common appendability
of the text buffer classes and the text output stream classes. As we'll see below, a
Formatter object can send its output to any Appendable object.

5.2.6. String Concatenation
The + operator concatenates two String objects or one String and one value of some
other type, producing a new String object. Be aware that each time a string concatenation
is performed and the result stored in a variable or passed to a method, a new String object
has been created. In some circumstances, this can be inefficient and can result in poor
performance. It is especially important to be careful when doing string concatenation
within a loop. The following code is inefficient, for example:

// Inefficient: don't do this
public String join(List<String> words) {
 String sentence = "";
 // Each iteration creates a new String object and discards an old one.
 for(String word: words) sentence += word;
 return sentence;
}

When you find yourself writing code like this, switch to a StringBuffer or a
StringBuilder and use the append() method:

// This is the right way to do it
public String join(List<String> words) {
 StringBuilder sentence = new StringBuilder();
 for(String word: words) sentence.append(word);
 return sentence.toString();
}

There is no need to be paranoid about string concatenation, however. Remember that
string literals are concatenated by the compiler rather than the Java interpreter. Also, when
a single expression contains multiple string concatenations, these are compiled efficiently

Chapter 5. The Java Platform Page 5 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

using a StringBuilder (or StringBuffer prior to Java 5.0) and result in the creation
of only a single new String object.

5.2.7. String Comparison
Since strings are objects rather than primitive values, they cannot, in general, be compared
for equality with the = = operator. == compares references and can determine if two
expressions evaluate to a reference to the same string. It cannot determine if two distinct
strings contain the same text. To do that, use the equals() method. In Java 5.0 you can
compare the content of a string to any other CharSequence with the contentEquals
() method.

Similarly, the < and > relational operators do not work with strings. To compare the order
of strings, use the compareTo() method, which is defined by the
Comparable<String> interface and is illustrated in the sample code above. To compare
strings without taking the case of the letters into account, use compareToIgnoreCase
() .

Note that StringBuffer and StringBuilder do not implement Comparable and do
not override the default versions of equals() and hashCode() that they inherit from
Object. This means that it is not possible to compare the text held in two
StringBuffer or StringBuilder objects for equality or for order.

One important, but little understood method of the String class is intern(). When
passed a string s, it returns a string t that is guaranteed to have the same content as s.
What's important, though, is that for any given string content, it always returns a reference
to the same String object. That is, if s and t are two String objects such that s.equals
(t), then:

s.intern() == t.intern()

This means that the intern() method provides a way of doing fast string comparisons
using ==. Importantly, string literals are always implicitly interned by the Java VM, so if
you plan to compare a string s against a number of string literals, you may want to intern
s first and then do the comparison with = =.

The compareTo() and equals() methods of the String class allow you to compare
strings. compareTo() bases its comparison on the character order defined by the
Unicode encoding while equals() defines string equality as strict character-by-
character equality. These are not always the right methods to use, however. In some
languages, the character ordering imposed by the Unicode standard does not match the
dictionary ordering used when alphabetizing strings. In Spanish, for example, the letters

Chapter 5. The Java Platform Page 6 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

"ch" are considered a single letter that comes after "c" and before "d." When comparing
human-readable strings in an internationalized application, you should use the
java.text.Collator class instead:

import java.text.*;

// Compare two strings; results depend on where the program is run
// Return values of Collator.compare() have same meanings as String.compareTo()
Collator c = Collator.getInstance(); // Get Collator for current locale
int result = c.compare("chica", "coche"); // Use it to compare two strings

5.2.8. Supplementary Characters
Java 5.0 has adopted the Unicode 4.0 standard, which, for the first time, has defined
codepoints that fall outside the 16-bit range of the char type. When working with these
"supplementary characters" (which are primarily Han ideographs), you must use int
values to represent the individual character. In String objects, or for any other type that
represents text as a sequence of char values, these supplementary characters are
represented as a series of two char values known as a surrogate pair.

Although readers of the English edition of this book are unlikely to ever encounter
supplementary characters, you should be aware of them if you are working on programs
that might be localized for use in China or another country that uses Han ideographs. To
help you work with supplementary characters, the Character, String,
StringBuffer, and StringBuilder classes have been extended with new methods that
operate on int codepoints rather than char values. The following code illustrates some
of these methods. You can find other, similar methods in the reference section and read
about them in the online javadoc documentation.

int codepoint = 0x10001; // This codepoint doesn't fit in a char
// Get the UTF-16 surrogate pair of chars for the codepoint
char[] surrogatePair = Character.toChars(codepoint);
// Convert the chars to a string.
String s = new String(surrogatePair);

// Print string length in characters and codepoints
System.out.println(s.length());
System.out.println(s.codePointCount(0, s.length()-1));

// Print encoding of first character, then encoding of first codepoint.
System.out.println(Integer.toHexString(s.charAt(0)));
System.out.println(Integer.toHexString(s.codePointAt(0)));

// Here's how to safely loop through a string that may contain
// supplementary characters
String tricky = s + "Testing" + s + "!";
int i = 0, n = tricky.length();
while(i < n) {
 // Get the codepoint at the current position
 int cp = tricky.codePointAt(i);
 if (cp < '\uffff') System.out.println((char) cp);
 else System.out.println("\\u" + Integer.toHexString(cp));

 // Increment the string index by one codepoint (1 or 2 chars).
 i = tricky.offsetByCodePoints(i, 1);
}

Chapter 5. The Java Platform Page 7 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.2.9. Formatting Text with printf() and format()
A common task when working with text output is to combine values of various types into
a single block of human-readable text. One way to accomplish this relies on the string-
conversion power of Java's string concatenation operator. It results in code like this:

System.out.println(username + " logged in after " + numattempts +
 "attempts. Last login at: " + lastLoginDate);

Java 5.0 introduces an alternative that is familiar to C programmers: a printf()
method. "printf" is short for "print formatted" and it combines the printing and formatting
functions into one call. The printf() method has been added to the PrintWriter and
PrintStream output stream classes in Java 5.0. It is a varargs method that expects one
or more arguments. The first argument is the "format string." It specifies the text to be
printed and typically includes one or more "format specifiers," which are escape sequences
beginning with character %. The remaining arguments to printf() are values to be
converted to strings and substituted into the format string in place of the format specifiers.
The format specifiers constrain the types of the remaining arguments and specify exactly
how they are converted to strings. The string concatenation shown above can be rewritten
as follows in Java 5.0:

System.out.printf("%s logged in after %d attempts. Last login at: %tc%n",
 username, numattempts, lastLoginDate);

The format specifier %s simply substitutes a string. %d expects the corresponding
argument to be an integer and displays it as such. %tc expects a Date, Calendar, or
number of milliseconds and converts that value to text representation of the full date and
time. %n performs no conversion: it simply outputs the platform-specific line terminator,
just as the println() method does.

The conversions performed by printf() are all properly localized. Times and dates are
displayed with locale-appropriate punctuation, for example. And if you request that a
number be displayed with a thousands separator, you'll get locale-specific punctuation
there, too (a comma in England and a period in France, for example).

In addition to the basic printf() method, PrintWriter and PrintStream also
define a synonymous method named format() : it takes exactly the same arguments and
behaves in exactly the same way. The String class also has a format() method in Java
5.0. This static String.format() method behaves like PrintWriter.format()
except that instead of printing the formatted string to a stream, it simply returns it:

// Format a string, converting a double value to text using two decimal
// places and a thousands separator.
double balance = getBalance();
String msg = String.format("Account balance: $%,.2f", balance);

Chapter 5. The Java Platform Page 8 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The java.util.Formatter class is the general-purpose formatter class behind the
printf() and format() utility methods. It can format text to any Appendable object
or to a named file. The following code uses a Formatter object to write a file:

public static void writeFile(String filename, String[] lines)
 throws IOException
{
 Formatter out = new Formatter(filename); // format to a named file
 for(int i = 0; i < lines.length; i++) {
 // Write a line of the file
 out.format("%d: %s%n", i, lines[i]);
 // Check for exceptions
 IOException e = out.ioException();
 if (e != null) throw e;
 }
 out.close();
}

When you concatenate an object to a string, the object is converted to a string by calling
its toString() method. This is what the Formatter class does by default as well. Classes
that want more precise control over their formatting can implement the
java.util.Formattable interface in addition to implementing toString().

We'll see additional examples of formatting with printf() when we cover the APIs for
working with numbers, dates, and times. See java.util.Formatter for a complete list
of available format specifiers and options.

5.2.10. Logging
Simple terminal-based programs can send their output and error messages to the console
with System.out.println() or System.out.print(). Server programs that run
unattended for long periods need a different solution for output: the hardware they run
on may not have a display terminal attached, and, if it does, there is unlikely to be anyone
looking at it. Programs like this need logging functionality in which output messages are
sent to a file for later analysis or through a network socket for remote monitoring. Java 1.4
provides a logging API in the java.util.logging package.

Typically, the application developer uses a Logger object associated with the class or
package of the application to generate log messages at any of seven severity levels (see
java.util.logging.Level). These messages may report errors and warnings or
provide informational messages about interesting events in the application's life cycle.
They can include debugging information or even trace the execution of important methods
within the program.

The system administrator or end user of the application is responsible for setting up a
logging configuration file that specifies where log messages are directed (the console, a
file, a network socket, or a combination of these), how they are formatted (as plain text or
XML documents), and at what severity threshold they are logged (log messages with a

Chapter 5. The Java Platform Page 9 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

severity below the specified threshold are discarded with very little overhead and should
not significantly impact the performance of the application). The logging level severity
threshold can be configured independently so that Logger objects associated with
different classes or packages can be "tuned in" or "tuned out." Because of this end-user
configurability, you should feel free to use logging output liberally in your program. In
normal operation, most log messages will be discarded efficiently and automatically.
During program development, or when diagnosing a problem in a deployed application,
however, the log messages can prove very valuable.

For most applications, using the Logging API is quite simple. Obtain a named Logger
object whenever necessary by calling the static Logger.getLogger() method, passing
the class or package name of the application as the logger name. Then, use one of the many
Logger instance methods to generate log messages. The easiest methods to use have
names that correspond to severity levels, such as severe() , warning(), and info
(). Here is some sample code:

import java.util.logging.*;

// Get a Logger object named after the current package
Logger logger = Logger.getLogger("com.davidflanagan.servers.pop");
logger.info("Starting server."); // Log an informational message
ServerSocket ss; // Do some stuff
try { ss = new ServerSocket(110); }
catch(Exception e) { // Log exceptions
 logger.log(Level.SEVERE, "Can't bind port 110", e); // Complex log message
 logger.warning("Exiting"); // Simple warning
 return;
}
logger.fine("got server socket"); // Fine-detail (low-severity) debug message

5.2.11. Pattern Matching with Regular Expressions
In Java 1.4 and later, you can perform textual pattern matching with regular expressions.
Regular expression support is provided by the Pattern and Matcher classes of the
java.util.regex package, but the String class defines a number of convenient
methods that allow you to use regular expressions even more simply. Regular expressions
use a fairly complex grammar to describe patterns of characters. The Java implementation
uses the same regex syntax as the Perl 5 programming language. See the
java.util.regex.Pattern class in the reference section for a summary of this syntax
or consult a good Perl programming book for further details. For a complete tutorial on
Perl-style regular expressions, see Mastering Regular Expressions (O'Reilly).

The simplest String method that accepts a regular expression argument is matches
(); it returns true if the string matches the pattern defined by the specified regular
expression:

// This string is a regular expression that describes the pattern of a typical
// sentence. In Perl-style regular expression syntax, it specifies
// a string that begins with a capital letter and ends with a period,
// a question mark, or an exclamation point.

Chapter 5. The Java Platform Page 10 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

String pattern = "^[A-Z].*[\\.?!]$";
String s = "Java is fun!";
s.matches(pattern); // The string matches the pattern, so this returns true.

The matches() method returns true only if the entire string is a match for the specified
pattern. Perl programmers should note that this differs from Perl's behavior, in which a
match means only that some portion of the string matches the pattern. To determine if a
string or any substring matches a pattern, simply alter the regular expression to allow
arbitrary characters before and after the desired pattern. In the following code, the regular
expression characters .* match any number of arbitrary characters:

s.matches(".*\\bJava\\b.*"); // True if s contains the word "Java" anywhere
 // The b specifies a word boundary

If you are already familiar with Perl's regular expression syntax, you know that it relies on
the liberal use of backslashes to escape certain characters. In Perl, regular expressions are
language primitives and their syntax is part of the language itself. In Java, however, regular
expressions are described using strings and are typically embedded in programs using
string literals. The syntax for Java string literals also uses the backslash as an escape
character, so to include a single backslash in the regular expression, you must use two
backslashes. Thus, in Java programming, you will often see double backslashes in regular
expressions.

In addition to matching, regular expressions can be used for search-and-replace
operations. The replaceFirst() and replaceAll() methods search a string for
the first substring or all substrings that match a given pattern and replace the string or
strings with the specified replacement text, returning a new string that contains the
replacements. For example, you could use this code to ensure that the word "Java" is
correctly capitalized in a string s:

s.replaceAll("(?i)\\bjava\\b",// Pattern: the word "java", case-insensitive
 "Java"); // The replacement string, correctly capitalized

The replacement string passed to replaceAll() and replaceFirst() need not be a
simple literal string; it may also include references to text that matched parenthesized
subexpressions within the pattern. These references take the form of a dollar sign followed
by the number of the subexpression. (If you are not familiar with parenthesized
subexpressions within a regular expression, see java.util.regex.Pattern in the
reference section.) For example, to search for words such as JavaBean, JavaScript, JavaOS,
and JavaVM (but not Java or Javanese) and to replace the Java prefix with the letter J
without altering the suffix, you could use code such as:

s.replaceAll("\\bJava([A-Z]\\w+)", // The pattern
 "J$1"); // J followed by the suffix that matched the
 // subexpression in parentheses: [A-Z]\\w+

Chapter 5. The Java Platform Page 11 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The other String method that uses regular expressions is split(), which returns an
array of the substrings of a string, separated by delimiters that match the specified pattern.
To obtain an array of words in a string separated by any number of spaces, tabs, or
newlines, do this:

String sentence = "This is a\n\ttwo-line sentence";
String[] words = sentence.split("[\t\n\r]+");

An optional second argument specifies the maximum number of entries in the returned
array.

The matches(), replaceFirst(), replaceAll(), and split() methods are
suitable for when you use a regular expression only once. If you want to use a regular
expression for multiple matches, you should explicitly use the Pattern and Matcher
classes of the java.util.regex package. First, create a Pattern object to represent
your regular expression with the static Pattern.compile() method. (Another reason
to use the Pattern class explicitly instead of the String convenience methods is that
Pattern.compile() allows you to specify flags such as
Pattern.CASE_INSENSITIVE that globally alter the way the pattern matching is done.)
Note that the compile() method can throw a PatternSyntaxException if you pass
it an invalid regular expression string. (This exception is also thrown by the various
String convenience methods.) The Pattern class defines split() methods that are
similar to the String.split() methods. For all other matching, however, you must
create a Matcher object with the matcher() method and specify the text to be matched
against:

import java.util.regex.*;

Pattern javaword = Pattern.compile("\\bJava(\\w*)", Pattern.CASE_INSENSITIVE);
Matcher m = javaword.matcher(sentence);
boolean match = m.matches(); // True if text matches pattern exactly

Once you have a Matcher object, you can compare the string to the pattern in various
ways. One of the more sophisticated ways is to find all substrings that match the pattern:

String text = "Java is fun; JavaScript is funny.";
m.reset(text); // Start matching against a new string
// Loop to find all matches of the string and print details of each match
while(m.find()) {
 System.out.println("Found '" + m.group(0) + "' at position " + m.start(0));
 if (m.start(1) < m.end(1)) System.out.println("Suffix is " + m.group(1));
}

The Matcher class has been enhanced in several ways in Java 5.0. The most important of
these is the ability to save the results of the most recent match in a MatchResult object.
The previous algorithm that finds all matches in a string could be rewritten in Java 5.0 as
follows:

Chapter 5. The Java Platform Page 12 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

import java.util.regex.*;
import java.util.*;

public class FindAll {
 public static void main(String[] args) {
 Pattern pattern = Pattern.compile(args[0]);
 String text = args[1];

 List<MatchResult> results = findAll(pattern, text);
 for(MatchResult r : results) {
 System.out.printf("Found '%s' at (%d,%d)%n",
 r.group(), r.start(), r.end());
 }
 }

 public static List<MatchResult> findAll(Pattern pattern, CharSequence text)
 {
 List<MatchResult> results = new ArrayList<MatchResult>();
 Matcher m = pattern.matcher(text);
 while(m.find()) results.add(m.toMatchResult());
 return results;
 }
}

5.2.12. Tokenizing Text
java.util.Scanner is a general purpose text tokenizer, added in Java 5.0 to
complement the java.util.Formatter class described earlier in this chapter.
Scanner takes full advantage of Java regular expressions and can take its input text from
a string, file, stream, or any object that implements the java.lang.Readable interface.
Readable is also new in Java 5.0 and is the opposite of the Appendable interface.

A Scanner can break its input text into tokens separated by whitespace or any desired
delimiter character or regular expression. It implements the Iterator<String>
interface, which allows for simple looping through the returned tokens. Scanner also
defines a variety of convenience methods for parsing tokens as boolean, integer, or
floating-point values, with locale-sensitive number parsing. It has skip() methods for
skipping input text that matches a specified pattern and also has methods for searching
ahead in the input text for text that matches a specified pattern.

Here's how you could use a Scanner to break a String into space-separated words:

public static List<String> getTokens(String line) {
 List<String> result = new ArrayList<String>();
 for(Scanner s = Scanner.create(line); s.hasNext();)
 result.add(s.next());
 return result;
}

Here's how you might use a Scanner to break a file into lines:

public static void printLines(File f) throws IOException {
 Scanner s = Scanner.create(f);
 // Use a regex to specify line terminators as the token delimiter
 s.useDelimiter("\r\n|\n|\r");
 while(s.hasNext()) System.out.println(s.next());
}

Chapter 5. The Java Platform Page 13 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The following method uses Scanner to parse an input line in the form x + y = z. It
demonstrates the ability of a Scanner to scan numbers. Note that Scanner does not just
parse Java-style integer literals: it supports thousands separators and does so in a locale-
sensitive way—for example, it would parse the integer 1,234 for an American user and
1.234 for a French user. This code also demonstrates the skip() method and shows that
a Scanner can scan text directly from an InputStream.

public static boolean parseSum() {
 System.out.print("enter sum> "); // Prompt the user for input
 System.out.flush(); // Make sure prompt is visible immediately

 try {
 // Read and parse the user's input from the console
 Scanner s = Scanner.create(System.in);
 s.useDelimiter(""); // Don't require spaces between tokens
 int x = s.nextInt(); // Parse an integer
 s.skip("\\s*\\+\\s*"); // Skip optional space and literal +
 int y = s.nextInt(); // Parse another integer
 s.skip("\\s*=\\s*"); // Skip optional space and literal =
 int z = s.nextInt(); // Parse a third integer

 return x + y == z;
 }
 catch(InputMismatchException e) { // pattern does not match
 throw new IllegalArgumentException("syntax error");
 }
 catch(NoSuchElementException e) { // no more input available
 throw new IllegalArgumentException("syntax error");
 }
}

5.2.13. StringTokenizer
A number of other Java classes operate on strings and characters. One notable class is
java.util.StringTokenizer, which you can use to break a string of text into its
component words:

String s = "Now is the time";
java.util.StringTokenizer st = new java.util.StringTokenizer(s);
while(st.hasMoreTokens()) {
 System.out.println(st.nextToken());
}

You can even use this class to tokenize words that are delimited by characters other than
spaces:

String s = "a:b:c:d";
java.util.StringTokenizer st = new java.util.StringTokenizer(s, ":");

java.io.StreamTokenizer is another tokenizing class. It has a more complicated API
and has more powerful features than StringTokenizer.

Chapter 5. The Java Platform Page 14 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.3. Numbers and Math
Java provides the byte, short, int, long, float, and double primitive types for
representing numbers. The java.lang package includes the corresponding Byte,
Short, Integer, Long, Float, and Double classes, each of which is a subclass of
Number. These classes can be useful as object wrappers around their primitive types, and
they also define some useful constants:

// Integral range constants: Integer, Long, and Character also define these
Byte.MIN_VALUE // The smallest (most negative) byte value
Byte.MAX_VALUE // The largest byte value
Short.MIN_VALUE // The most negative short value
Short.MAX_VALUE // The largest short value

// Floating-point range constants: Double also defines these
Float.MIN_VALUE // Smallest (closest to zero) positive float value
Float.MAX_VALUE // Largest positive float value

// Other useful constants
Math.PI // 3.14159265358979323846
Math.E // 2.7182818284590452354

5.3.1. Mathematical Functions
The Math class defines a number of methods that provide trigonometric, logarithmic,
exponential, and rounding operations, among others. This class is primarily useful with
floating-point values. For the trigonometric functions, angles are expressed in radians.
The logarithm and exponentiation functions are base e, not base 10. Here are some
examples:

double d = Math.toRadians(27); // Convert 27 degrees to radians
d = Math.cos(d); // Take the cosine
d = Math.sqrt(d); // Take the square root
d = Math.log(d); // Take the natural logarithm
d = Math.exp(d); // Do the inverse: e to the power d
d = Math.pow(10, d); // Raise 10 to this power
d = Math.atan(d); // Compute the arc tangent
d = Math.toDegrees(d); // Convert back to degrees
double up = Math.ceil(d); // Round to ceiling
double down = Math.floor(d); // Round to floor
long nearest = Math.round(d); // Round to nearest

In Java 5.0, several new functions have been added to the Math class, including the
following:

double d = 27;
d = Math.cbrt(d); // cube root
d = Math.log10(d); // base-10 logarithm
d = Math.sinh(d); // hyperbolic sine. Also cosh() and tanh()
d = Math.hypot(3, 4); // Hypotenuse

Chapter 5. The Java Platform Page 15 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.3.2. Random Numbers
The Math class also defines a rudimentary method for generating pseudo-random
numbers, but the java.util.Random class is more flexible. If you need very random
pseudo-random numbers, you can use the java.security.SecureRandom class:

// A simple random number
double r = Math.random(); // Returns d such that: 0.0 <= d < 1.0

// Create a new Random object, seeding with the current time
java.util.Random generator = new java.util.Random(System.currentTimeMillis());
double d = generator.nextDouble(); // 0.0 <= d < 1.0
float f = generator.nextFloat(); // 0.0 <= f < 1.0
long l = generator.nextLong(); // Chosen from the entire range of long
int i = generator.nextInt(); // Chosen from the entire range of int
i = generator.nextInt(limit); // 0 <= i < limit (Java 1.2 and later)
boolean b = generator.nextBoolean(); // true or false (Java 1.2 and later)
d = generator.nextGaussian(); // Mean value: 0.0; std. deviation: 1.0
byte[] randomBytes = new byte[128];
generator.nextBytes(randomBytes); // Fill in array with random bytes

// For cryptographic strength random numbers, use the SecureRandom subclass
java.security.SecureRandom generator2 = new java.security.SecureRandom();
// Have the generator generate its own 16-byte seed; takes a *long* time
generator2.setSeed(generator2.generateSeed(16)); // Extra random 16-byte seed
// Then use SecureRandom like any other Random object
generator2.nextBytes(randomBytes); // Generate more random bytes

5.3.3. Big Numbers
The java.math package contains the BigInteger and BigDecimal classes. These
classes allow you to work with arbitrary-size and arbitrary-precision integers and floating-
point values. For example:

import java.math.*;

// Compute the factorial of 1000
BigInteger total = BigInteger.valueOf(1);
for(int i = 2; i <= 1000; i++)
 total = total.multiply(BigInteger.valueOf(i));
System.out.println(total.toString());

In Java 1.4, BigInteger has a method to randomly generate large prime numbers, which
is useful in many cryptographic applications:

BigInteger prime =
 BigInteger.probablePrime(1024, // 1024 bits long
 generator2); // Source of randomness. From above.

The BigDecimal class has been overhauled in Java 5.0 and is much more usable in this
release. In addition to its utility for representing very large or very precise floating point
numbers, it is also useful for financial calculations because it relies on a decimal
representation of fractions rather than a binary representation. float and double values
cannot precisely represent a number as simple as 0.1, and this can cause rounding errors
that are often unacceptable when representing monetary values. BigDecimal and its
associated MathContext and RoundingMode types provide a solution. For example:

Chapter 5. The Java Platform Page 16 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Compute monthly interest payments on a loan
public static BigDecimal monthlyPayment(int amount, // amount of loan
 int years, // term in years
 double apr) // annual interest %
{
 // Convert the loan amount to a BigDecimal
 BigDecimal principal = new BigDecimal(amount);

 // Convert term of loan in years to number of monthly payments
 int payments=years*12;

 // Convert interest from annual percent to a monthly decimal
 BigDecimal interest = BigDecimal.valueOf(apr);
 interest = interest.divide(new BigDecimal(100)); // as fraction
 interest = interest.divide(new BigDecimal(12)); // monthly

 // The monthly payment computation
 BigDecimal x = interest.add(BigDecimal.ONE).pow(payments);
 BigDecimal y = principal.multiply(interest).multiply(x);
 BigDecimal monthly = y.divide(x.subtract(BigDecimal.ONE),
 MathContext.DECIMAL64); // note context

 // Convert to two decimal places
 monthly = monthly.setScale(2, RoundingMode.HALF_EVEN);

 return monthly;
}

5.3.4. Converting Numbers from and to Strings
A Java program that operates on numbers must get its input values from somewhere.
Often, such a program reads a textual representation of a number and must convert it to
a numeric representation. The various Number subclasses define useful conversion
methods:

String s = "-42";
byte b = Byte.parseByte(s); // s as a byte
short sh = Short.parseShort(s); // s as a short
int i = Integer.parseInt(s); // s as an int
long l = Long.parseLong(s); // s as a long
float f = Float.parseFloat(s); // s as a float (Java 1.2 and later)
f = Float.valueOf(s).floatValue(); // s as a float (prior to Java 1.2)
double d = Double.parseDouble(s); // s as a double (Java 1.2 and later)
d = Double.valueOf(s).doubleValue(); // s as a double (prior to Java 1.2)

// The integer conversion routines handle numbers in other bases
byte b = Byte.parseByte("1011", 2); // 1011 in binary is 11 in decimal
short sh = Short.parseShort("ff", 16); // ff in base 16 is 255 in decimal

// The valueOf() method can handle arbitrary bases between 2 and 36
int i = Integer.valueOf("egg", 17).intValue(); // Base 17!

// The decode() method handles octal, decimal, or hexadecimal, depending
// on the numeric prefix of the string
short sh = Short.decode("0377").byteValue(); // Leading 0 means base 8
int i = Integer.decode("0xff").shortValue(); // Leading 0x means base 16
long l = Long.decode("255").intValue(); // Other numbers mean base 10

// Integer class can convert numbers to strings
String decimal = Integer.toString(42);
String binary = Integer.toBinaryString(42);
String octal = Integer.toOctalString(42);
String hex = Integer.toHexString(42);
String base36 = Integer.toString(42, 36);

Chapter 5. The Java Platform Page 17 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.3.5. Formatting Numbers
The printf() and format() methods of Java 5.0 described earlier in this chapter
work well for formatting numbers. The %d format specifier is for formatting integers in
decimal format:

// Format int, long and BigInteger to the string "1 10 100"
String s = String.format("%d %d %d", 1, 10L, BigInteger.TEN.pow(2));
// Add thousands separators
s = String.format("%,d", Integer.MAX_VALUE); // "2,147,483,647"
// Output value right-justified in a field 8 characters wide
s = String.format("%8d", 123); // " 123"
// Pad on the left with zeros to make 5 digits total
s = String.format("%05d", 123); // "00123"

Floating-point numbers can be formatted using %f, %e, or %g format specifiers, which
differ in whether and when exponential notation is used:

double x = 1.234E9; // (1.234 billion)
// returns "1234000000.000000 1.234000e+09 1.234000e+09 1234.000000"
s = String.format("%f %e %g %g", x, x, x, x/1e6);

You'll notice that the numbers above are all formatted with six digits following the decimal
point. This default can be altered by specifying a precision in the format string:

// display a BigDecimal with 2 significant digits
s = String.format("%.2f", new BigDecimal("1.234")); // "1.23"

Other flags can be applied to floating-point conversions as well. The following code formats
a column of numbers right-justified within a field 10 characters wide. Each number has
two digits following the decimal place and includes thousands separators when necessary.
Negative values are formatted in parentheses, a common formatting convention in
accounting.

// A column of 4 numbers. %n is newline.
s = String.format("%(,10.2f%n%(,10.2f%n%(,10.2f%n%(,10.2f%n",
 BigDecimal.TEN, // 10.00
 BigDecimal.TEN.movePointRight(3), // 10,000.00
 BigDecimal.TEN.movePointLeft(3), // 0.01
 BigDecimal.TEN.negate()); // (10.00)

See java.util.Formatter in the reference section for complete details on supported
format specifiers and formatting options.

Prior to Java 5.0, numbers can be formatted using the java.text.NumberFormat
class:

import java.text.*;

// Use NumberFormat to format and parse numbers for the current locale
NumberFormat nf = NumberFormat.getNumberInstance(); // Get a NumberFormat
System.out.println(nf.format(9876543.21)); // Format number for current locale
try {
 Number n = nf.parse("1.234.567,89"); // Parse strings according to locale
} catch (ParseException e) { /* Handle exception */ }

Chapter 5. The Java Platform Page 18 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Monetary values are sometimes formatted differently than other numbers
NumberFormat moneyFmt = NumberFormat.getCurrencyInstance();
System.out.println(moneyFmt.format(1234.56)); // Prints $1,234.56 in U.S.

5.4. Dates and Times
Java allows dates and times to be represented and manipulated in three forms: as long
values or as java.util.Date or java.util.Calendar objects. Java 5.0 introduces
the enumerated type java.util.concurrent.TimeUnit. The values of this type
represent time granularities or units: seconds, milliseconds, microseconds, and
nanoseconds. They have useful convenience methods but do not themselves represent a
time value.

5.4.1. Milliseconds and Nanoseconds
At the lowest level, dates and times are represented as a long value that holds the positive
or negative number of milliseconds since midnight on January 1, 1970. This special date
and time is known as the epoch and is measured in Greenwich Mean Time (GMT) or
Universal Time (UTC). To query the current time in this millisecond representation, use
System.currentTimeMillis()

long now = System.currentTimeMillis();

In Java 5.0 and later, you can use System.nanoTime() to query time in nanoseconds.
This method returns a long number of nanoseconds long. Unlike currentTimeMillis
(), the nanoTime() does not return a time relative to any defined epoch. nanoTime
() is good for measuring relative or elapsed time (as long as the elapsed time is not more
than 292 years) but is not suitable for absolute time:

long start = System.nanoTime();
doSomething();
long end = System.nanoTime();
long elapsedNanoSeconds = end - start;

5.4.2. The Date Class
java.util.Date is an object wrapper around a long that holds a number of
milliseconds since the epoch. Using a Date object instead of a long allows simple
conversion to a nonlocalized string with the toString method. Date objects can be
compared for equality with the equals() method and they can be compared for order
with the compareTo() method or the before() and after() methods.

The no-argument version of the Date() constructor creates a Date that represents the
current time. You can also pass a long number of milliseconds to create a Date that
represents some other time. getTime() returns the millisecond representation of the

Chapter 5. The Java Platform Page 19 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Date. Date is a mutable class, so you can also pass a number of milliseconds to setTime
().

Date has a number of methods for querying and setting the year, month, day, hour,
minute, and second. All of these methods have been deprecated, however, in favor of the
Calendar class, described next.

5.4.3. The Calendar Class
The java.util.Calendar class is a properly localized version of Date. It is simply a
wrapper around a long number of milliseconds but can represent that instant in time
according to the calendar of the current locale (usually a Gregorian calendar) and the time
zone of the current locale. Furthermore, it has methods for querying, setting, and doing
arithmetic on the various fields of the date and time.

The code below shows common uses of the Calendar class. Note that the set(), get
(), and add() methods all take an initial argument that specifies what field of the date
or time is being set, queried, or added to. Fields such as year, day of month, day of week,
hour, minute, and second are defined by integer constants in the class. Other integer
constants define values for the months and weekdays of the Gregorian calendar. The month
constant UNDECIMBER represents a 13th month used in lunar calendars.

// Get a Calendar for current locale and time zone
Calendar cal = Calendar.getInstance();

// Figure out what day of the year today is
cal.setTimeInMillis(System.currentTimeMillis()); // Set to the current time
int dayOfYear = cal.get(Calendar.DAY_OF_YEAR); // What day of the year is it?

// What day of the week does the leap day in the year 2008 occur on?
cal.set(2008, Calendar.FEBRUARY, 29); // Set year, month, day fields
int dayOfWeek = cal.get(Calendar.DAY_OF_WEEK); // Query a different field

// What day of the month is the 3rd Thursday of May, 2005?
cal.set(Calendar.YEAR, 2005); // Set the year
cal.set(Calendar.MONTH, Calendar.MAY); // Set the month
cal.set(Calendar.DAY_OF_WEEK,Calendar.THURSDAY); // Set the day of week
cal.set(Calendar.DAY_OF_WEEK_IN_MONTH, 3); // Set the week
int dayOfMonth = cal.get(Calendar.DAY_OF_MONTH); // Query the day in month

// Get a Date object that represents three months from now
cal.setTimeInMillis(System.currentTimeMillis()); // Current time
cal.add(Calendar.MONTH, 3); // Add 3 months
Date expiration = cal.getTime(); // Retrieve result as a Date
long millis = cal.getTimeInMillis(); // or get it as a long

5.4.4. Formatting Dates and Times
The toString() method of Date produces a textual representation of a date and time
but does no localization and allows no customization of which fields (day, month and year
or hours and minutes, for example) are to be displayed. The toString() method should
be used only to produce a machine-readable timestamp, not a human-readable string.

Chapter 5. The Java Platform Page 20 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Like numbers, dates and times can be converted to strings using the String.format
() method and the related java.util.Formatter class of Java 5.0. Format strings
for displaying dates and times are all two-character sequences that begin with the letter t.
The second letter of each sequence specifies the field or set of fields of the date or time to
display. For example %tR displays the hours and minutes fields using 24-hour time, and
%tD displays the month, day, and year fields separated by slashes. String.format()
can format a date or time specified as a long, a Date, or a Calendar:

// current hours and minutes
long now = System.currentTimeMillis();
String s = String.format("%tR", now); // "15:12"

// Current month/day/year
Date d = new Date(now);
s = String.format("%tD", d); // "07/13/04"

// Hours and minutes using 12-hour clock
Calendar c = Calendar.getInstance();
c.setTime(d);
s = String.format("%tl:%tM %tp", now, d, c); // "3:12 pm"

Prior to Java 5.0 and its Formatter class, you can format dates and times using the
java.text.DateFormat class, which automatically handles locale-specific conventions
for date and time formatting. DateFormat even works correctly in locales that use a
calendar other than the common era (Gregorian) calendar in use throughout much of the
world:

import java.util.Date;
import java.text.*;

// Display today's date using a default format for the current locale
DateFormat defaultDate = DateFormat.getDateInstance();
System.out.println(defaultDate.format(new Date()));

// Display the current time using a short time format for the current locale
DateFormat shortTime = DateFormat.getTimeInstance(DateFormat.SHORT);
System.out.println(shortTime.format(new Date()));

// Display date and time using a long format for both
DateFormat longTimestamp =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);
System.out.println(longTimestamp.format(new Date()));

// Use SimpleDateFormat to define your own formatting template
// See java.text.SimpleDateFormat for the template syntax
DateFormat myformat = new SimpleDateFormat("yyyy.MM.dd");
System.out.println(myformat.format(new Date()));
try { // DateFormat can parse dates too
 Date leapday = myformat.parse("2000.02.29");
}
catch (ParseException e) { /* Handle parsing exception */ }

5.5. Arrays
The java.lang.System class defines an arraycopy() method that is useful for
copying specified elements in one array to a specified position in a second array. The second
array must be the same type as the first, and it can even be the same array:

Chapter 5. The Java Platform Page 21 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

char[] text = "Now is the time".toCharArray();
char[] copy = new char[100];
// Copy 10 characters from element 4 of text into copy, starting at copy[0]
System.arraycopy(text, 4, copy, 0, 10);

// Move some of the text to later elements, making room for insertions
System.arraycopy(copy, 3, copy, 6, 7);

In Java 1.2 and later, the java.util.Arrays class defines useful array-manipulation
methods, including methods for sorting and searching arrays:

import java.util.Arrays;

int[] intarray = new int[] { 10, 5, 7, -3 }; // An array of integers
Arrays.sort(intarray); // Sort it in place
int pos = Arrays.binarySearch(intarray, 7); // Value 7 is found at index 2
pos = Arrays.binarySearch(intarray, 12); // Not found: negative return value

// Arrays of objects can be sorted and searched too
String[] strarray = new String[] { "now", "is", "the", "time" };
Arrays.sort(strarray); // sorted to: { "is", "now", "the", "time" }

// Arrays.equals() compares all elements of two arrays
String[] clone = (String[]) strarray.clone();
boolean b1 = Arrays.equals(strarray, clone); // Yes, they're equal

// Arrays.fill() initializes array elements
byte[] data = new byte[100]; // An empty array; elements set to 0
Arrays.fill(data, (byte) -1); // Set them all to -1
Arrays.fill(data, 5, 10, (byte) -2); // Set elements 5, 6, 7, 8, 9 to -2

Arrays can be treated and manipulated as objects in Java. Given an arbitrary object o, you
can use code such as the following to find out if the object is an array and, if so, what type
of array it is:

Class type = o.getClass();
if (type.isArray()) {
 Class elementType = type.getComponentType();
}

5.6. Collections
The Java Collections Framework is a set of important utility classes and interfaces in the
java.util package for working with collections of objects. The Collections Framework
defines two fundamental types of collections. A Collection is a group of objects while
a Map is a set of mappings, or associations, between objects. A Set is a type of
Collection with no duplicates, and a List is a Collection in which the elements are
ordered. SortedSet and SortedMap are specialized sets and maps that maintain their
elements in a sorted order. Collection , Set, List, Map, SortedSet, and
SortedMap are all interfaces, but the java.util package also defines various concrete
implementations, such as lists based on arrays and linked lists, and maps and sets based
on hashtables or binary trees. Other important interfaces are Iterator and
ListIterator, which allow you to loop through the objects in a collection. The
Collections Framework was added in Java 1.2, but prior to that release you can use

Chapter 5. The Java Platform Page 22 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Vector and Hashtable, which are approximately the same as ArrayList and
HashMap.

In Java 1.4, the Collections API added the RandomAccess marker interface, which is
implemented by List implementations that support efficient random access (i.e., it is
implemented by ArrayList and Vector but not by LinkedList). Java 1.4 also
introduced LinkedHashMap and LinkedHashSet, which are hashtable-based maps
and sets that preserve the insertion order of elements. Finally, IdentityHashMap is a
hashtable-based Map implementation that uses the == operator to compare key objects
rather than using the equals() method to compare them.

The Collections Framework has been overhauled in Java 5.0 to use generics (see Chapter
4). Java 5.0 also adds EnumSet and EnumMap classes that are specialized for working
with enumerated values (see Chapter 4) and the java.lang.Iterable interface used
by the new for/in looping statement. Finally, Java 5.0 adds the Queue interface. Most
of the interesting Queue implementations are BlockingQueue implementations in
java.util.concurrent .

5.6.1. The Collection Interface
Collection<E> is a parameterized interface that represents a generic group of objects
of type E. The group may or may not allow duplicate elements and may or may not impose
an ordering on the elements. Methods are defined for adding and removing objects from
the group, testing an object for membership in the group, and iterating through all
elements in the group. Additional methods return the elements of the group as an array
and return the size of the collection.

The Java Collections Framework does not provide any implementations of
Collection, but this interface is still very important because it defines the features
common to all Set , List, and Queue implementations. The following code illustrates
the operations you can perform on Collection objects:

// Create some collections to work with.
Collection<String> c = new HashSet<String>(); // An empty set
// We'll see these utility methods later
Collection<String> d = Arrays.asList("one", "two"); // immutable
Collection<String> e = Collections.singleton("three"); // immutable

// Add elements to a collection. These methods return true if the collection
// changes, which is useful with Sets that don't allow duplicates.
c.add("zero"); // Add a single element
c.addAll(d); // Add a collection of elements

// Copy a collection: most implementations have a copy constructor
Collection<String> copy = new ArrayList<String>(c);

// Remove elements from a collection.
// All but clear() return true if the collection changes.
c.remove("zero"); // Remove a single element

Chapter 5. The Java Platform Page 23 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

c.removeAll(e); // Remove a collection of elements
c.retainAll(d); // Remove all elements that are not in e
c.clear(); // Remove all elements from the collection

// Querying collection size
boolean b = c.isEmpty(); // Collection is now empty
int s = c.size(); // Collection size is now 0.

// Restore collection from the copy we made
c.addAll(copy);

// Test membership in the collection. Membership is based on the equals()
// method, not the == operator.
b = c.contains("zero"); // true
b = c.containsAll(d); // true

// Iterate through collection elements with a while loop.
// Some implementations (such as lists) guarantee an order of iteration
// Others make no guarantees.
Iterator<String> iterator = c.iterator();
while(iterator.hasNext()) System.out.println(iterator.next());

// Iteration with a for loop
for(Iterator<String> i = c.iterator(); i.hasNext();)
 System.out.println(i.next());

// Java 5.0 iteration using a for/in loop
for(String word : c) System.out.println(word);

// Most Collection implementations have a useful toString() method
System.out.println(c); // As an alternative to the iterations above

// Obtain an array of collection elements. If the iterator guarantees
// an order, this array has the same order. The array is a copy, not a
// reference to an internal data structure.
Object[] elements = c.toArray();

// If we want the elements in a String[], we must pass one in
String[] strings = c.toArray(new String[c.size()]);

// Or we can pass an empty String[] just to specify the type and
// the toArray() method will allocate an array for us
strings = c.toArray(new String[0]);

Remember that you can use any of the methods shown above with any Set, List, or
Queue. These subinterfaces may impose membership restrictions or ordering constraints
on the elements of the collection but still provide the same basic methods. Methods such
as add() , remove(), clear(), and retainAll() that alter the collection are
optional, and read-only implementations may throw
UnsupportedOperationException.

Collection, Map, and their subinterfaces do not extend the Cloneable or
Serializable interfaces. All of the collection and map implementation classes provided
in the Java Collections Framework, however, do implement these interfaces.

Some collection implementations place restrictions on the elements that they can contain.
An implementation might prohibit null as an element, for example. And EnumSet
restricts membership to the values of a specified enumerated type. Attempting to add a
prohibited element to a collection always throws an unchecked exception such as

Chapter 5. The Java Platform Page 24 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

NullPointerException or ClassCastException. Checking whether a collection
contains a prohibited element may also throw such an exception, or it may simply return
false.

5.6.2. The Set Interface
A set is a collection of objects that does not allow duplicates: it may not contain two
references to the same object, two references to null, or references to two objects a and
b such that a.equals(b). Most general-purpose Set implementations impose no
ordering on the elements of the set, but ordered sets are not prohibited (see SortedSet
and LinkedHashSet). Sets are further distinguished from ordered collections like lists
by the general expectation that they have an efficient contains() method that runs in
constant or logarithmic time.

Set defines no additional methods beyond those defined by Collection but places
additional restrictions on those methods. The add() and addAll() methods of a
Set are required to enforce the no-duplicates rules: they may not add an element to the
Set if the set already contains that element. Recall that the add() and addAll()
methods defined by the Collection interface return true if the call resulted in a change
to the collection and false if it did not. This return value is relevant for Set objects
because the no-duplicates restriction means that adding an element does not always result
in a change to the set.

Table 5-2 lists the implementations of the Set interface and summarizes their internal
representation, ordering characteristics, member restrictions, and the performance of the
basic add(), remove(), and contains() operations as well as iteration performance.
You can read more about each class in the reference section. Note that
CopyOnWriteArraySet is in the java.util.concurrent package; all the other
implementations are part of java.util. Also note that java.util.BitSet is not a
Set implementation. This legacy class is useful as a compact and efficient list of
boolean values but is not part of the Java Collections Framework.

Table 5-2. Set Implementations

Class
Internal

represen-
tation

Element order
Member

restric-tions

Basic
opera-
tions

Iteration
perfor-mance

Notes

HashSet hashtable none none O(1) O(capacity)
Best general-purpose
implementation.

LinkedHashSet
linked
hashtable

insertion order none O(1) O(n) Preserves insertion order.

EnumSet bit fields
enum
declaration

enum values O(1) O(n)
Holds non-null enum values
only.

Chapter 5. The Java Platform Page 25 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Class
Internal

represen-
tation

Element order
Member

restric-tions

Basic
opera-
tions

Iteration
perfor-mance

Notes

TreeSet red-black tree
sorted
ascending

comparable O(log(n)) O(n)
Comparable elements or
Comparator.

CopyOnWriteArraySet array insertion order none O(n) O(n)
Threadsafe without
synchronized methods.

The TreeSet implementation uses a red-black tree data structure to maintain a set that
is iterated in ascending order according to the natural ordering of Comparable objects
or according to an ordering specified by a Comparator object. TreeSet actually
implements the SortedSet interface, which is a subinterface of Set.

SortedSet offers several interesting methods that take advantage of its sorted nature.
The following code illustrates:

public static void testSortedSet(String[] args) {
 // Create a SortedSet
 SortedSet<String> s = new TreeSet<String>(Arrays.asList(args));

 // Iterate set: elements are automatically sorted
 for(String word : s) System.out.println(word);

 // Special elements
 String first = s.first(); // First element
 String last = s.last(); // Last element
 // Subrange views of the set
 SortedSet<String> tail = s.tailSet(first+'\0'); // all elements but first
 SortedSet<String> head = s.headSet(last); // all elements but last
 SortedSet<String> middle = s.subSet(first+'\0', // all but ends
 last);
}

5.6.3. The List Interface
A List is an ordered collection of objects. Each element of a list has a position in the list,
and the List interface defines methods to query or set the element at a particular position,
or index. In this respect a List is like an array whose size changes as needed to
accommodate the number of elements it contains. Unlike sets, lists allow duplicate
elements.

In addition to its index-based get() and set() methods, the List interface defines
methods to add or remove an element at a particular index and also defines methods to
return the index of the first or last occurrence of a particular value in the list. The add
() and remove() methods inherited from Collection are defined to append to the
list and to remove the first occurrence of the specified value from the list. The inherited
addAll() appends all elements in the specified collection to the end of the list, and
another version inserts the elements at a specified index. The retainAll() and

Chapter 5. The Java Platform Page 26 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

removeAll() methods behave as they do for any Collection, retaining or removing
multiple occurrences of the same value, if needed.

The List interface does not define methods that operate on a range of list indexes. Instead
it defines a single subList method that returns a List object that represents just the
specified range of the original list. The sublist is backed by the parent list, and any changes
made to the sublist are immediately visible in the parent list. Examples of subList()
and the other basic List manipulation methods are below.

// Create lists to work with
List<String> l = new ArrayList<String>(Arrays.asList(args));
List<String> words = Arrays.asList("hello", "world");

// Querying and setting elements by index
String first = l.get(0); // First element of list
String last = l.get(l.size()-1); // Last element of list
l.set(0, last); // The last shall be first

// Adding and inserting elements. add() can append or insert
l.add(first); // Append the first word at end of list
l.add(0, first); // Insert first word at the start of the list again
l.addAll(words); // Append a collection at the end of the list
l.addAll(1, words); // Insert collection after first word

// Sublists: backed by the original list
List<String> sub = l.subList(1,3); // second and third elements
sub.set(0, "hi"); // modifies 2nd element of l
// Sublists can restrict operations to a subrange of backing list
String s = Collections.min(l.subList(0,4));
Collections.sort(l.subList(0,4));
// Independent copies of a sublist don't affect the parent list.
List<String> subcopy = new ArrayList<String>(l.subList(1,3));

// Searching lists
int p = l.indexOf(last); // Where does the last word appear?
p = l.lastIndexOf(last); // Search backward

// Print the index of all occurrences of last in l. Note subList()
int n = l.size();
p = 0;
do {
 // Get a view of the list that includes only the elements we
 // haven't searched yet.
 List<String> list = l.subList(p, n);
 int q = list.indexOf(last);
 if (q == -1) break;
 System.out.printf("Found '%s' at index %d%n", last, p+q);
 p += q+1;
} while(p < n);

// Removing elements from a list
l.remove(last); // Remove first occurrence of the element
l.remove(0); // Remove element at specified index
l.subList(0,2).clear(); // Remove a range of elements using subList()
l.retainAll(words); // Remove all but elements in words
l.removeAll(words); // Remove all occurrences of elements in words
l.clear(); // Remove everything

A general expectation of List implementations is that they can be efficiently iterated,
typically in time proportional to the size of the list. Lists do not all provide efficient random-
access to the elements at any index, however. Sequential-access lists, such as the

Chapter 5. The Java Platform Page 27 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

LinkedList class, provide efficient insertion and deletion operations at the expense of
random access performance. In Java 1.4 and later, implementations that provide efficient
random access implement the RandomAccess marker interface, and you can test for this
interface with instanceof if you need to ensure efficient list manipulations:

List<?> l = ...; // Arbitrary list we're passed to manipulate
// Ensure we can do efficient random access. If not, use a copy constructor
// to make a random-access copy of the list before manipulating it.
if (!(l instanceof RandomAccess)) l = new ArrayList<?>(l);

The Iterator returned by the iterator() method of a List iterates the list elements
in the order that they occur in the list. List implements Iterable, and lists can be
iterated with a for/in loop just as any other collection can.

To iterate just a portion of a list, you can use the subList() method to create a sublist
view:

List<String> words = ...; // Get a list to iterate

// Iterate just all elements of the list but the first
for(String word : words.subList(1, words.size()))
 System.out.println(word);

In addition to normal iteration, lists also provide enhanced bidirectional iteration using a
ListIterator object returned by the listIterator() method. To iterate backward
through a List, for example, start with a ListIterator with its cursor positioned after
the end of the list:

ListIterator<String> li = words.listIterator(words.size());
while(li.hasPrevious()) {
 System.out.println(li.previous());
}

Table 5-3 summarizes the five general-purpose List implementations in the Java
platform. Vector and Stack are legacy implementations left over from Java 1.0.
CopyOnWriteArrayList is a new in Java 5.0 and is part of the
java.util.concurrent package.

Table 5-3. List implementations

Class Representation Random access Notes

ArrayList array yes Best all-around implementation.

LinkedList double-linked list no Efficient insertion and deletion.

CopyOnWriteArrayList array yes Threadsafe; fast traversal, slow modification.

Vector array yes Legacy class; synchronized method.

Stack array yes Extends Vector; adds push(), pop(), peek().

Chapter 5. The Java Platform Page 28 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.6.4. The Map Interface
A map is a set of key objects and a mapping from each member of that set to a value object.
The Map interface defines an API for defining and querying mappings. Map is part of the
Java Collections Framework, but it does not extend the Collection interface, so a Map
is a little-c collection, not a big-C Collection. Map is a parameterized type with two type
variables. Type variable K represents the type of keys held by the map, and type variable
V represents the type of the values that the keys are mapped to. A mapping from
String keys to Integer values, for example, can be represented with a
Map<String,Integer>.

The most important Map methods are put(), which defines a key/value pair in the map,
get(), which queries the value associated with a specified key, and remove(), which
removes the specified key and its associated value from the map. The general performance
expectation for Map implementations is that these three basic methods are quite efficient:
they should usually run in constant time and certainly no worse than in logarithmic time.

An important feature of Map is its support for "collection views." Although a Map is not a
Collection, its keys can be viewed as a Set, its values can be viewed as a
Collection, and its mappings can be viewed as a Set of Map.Entry objects.
(Map.Entry is a nested interface defined within Map: it simply represents a single key/
value pair.)

The sample code below shows the get(), put(), remove(), and other methods of a
Map and also demonstrates some common uses of the collection views of a Map:

// Create maps to work with
Map<String,Integer> m = new HashMap<String,Integer>(); // New, empty map
// Immutable Map containing a single key-value pair
Map<String,Integer> singleton = Collections.singletonMap("testing", -1);
// Note this rarely-used syntax to explicitly specify the parameter
// types of the generic emptyMap() method. The returned map is immutable
Map<String,Integer> empty = Collections.<String,Integer>emptyMap();

// Populate the map using the put() method to define mappings from array
// elements to the index at which each element appears
String[] words = { "this", "is", "a", "test" };
for(int i = 0; i < words.length; i++)
 m.put(words[i], i); // Note autoboxing of int to Integer

// Each key must map to a single value. But keys may map to the same value
for(int i = 0; i < words.length; i++)
 m.put(words[i].toUpperCase(), i);

// The putAll() method copies mappings from another Map
m.putAll(singleton);

// Query the mappings with the get() method
for(int i = 0; i < words.length; i++)
 if (m.get(words[i]) != i) throw new AssertionError();

// Key and value membership testing
m.containsKey(words[0]); // true

Chapter 5. The Java Platform Page 29 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

m.containsValue(words.length); // false

// Map keys, values, and entries can be viewed as collections
Set<String> keys = m.keySet();
Collection<Integer> values = m.values();
Set<Map.Entry<String,Integer>> entries = m.entrySet();

// The Map and its collection views typically have useful toString() methods
System.out.printf("Map: %s%nKeys: %s%nValues: %s%nEntries: %s%n",
 m, keys, values, entries);

// These collections can be iterated.
// Most maps have an undefined iteration order (but see SortedMap)
for(String key : m.keySet()) System.out.println(key);
for(Integer value: m.values()) System.out.println(value);

// The Map.Entry<K,V> type represents a single key/value pair in a map
for(Map.Entry<String,Integer> pair : m.entrySet()) {
 // Print out mappings
 System.out.printf("'%s' ==> %d%n", pair.getKey(), pair.getValue());
 // And increment the value of each Entry
 pair.setValue(pair.getValue() + 1);
}

// Removing mappings
m.put("testing", null); // Mapping to null can "erase" a mapping:
m.get("testing"); // Returns null
m.containsKey("testing"); // Returns true: mapping still exists
m.remove("testing"); // Deletes the mapping altogether
m.get("testing"); // Still returns null
m.containsKey("testing"); // Now returns false.

// Deletions may also be made via the collection views of a map.

// Additions to the map may not be made this way, however.
m.keySet().remove(words[0]); // Same as m.remove(words[0]);
m.values().remove(2); // Remove one mapping to the value 2
m.values().removeAll(Collections.singleton(4)); // Remove all mappings to 4
m.values().retainAll(Arrays.asList(2, 3)); // Keep only mappings to 2 & 3

// Deletions can also be done via iterators
Iterator<Map.Entry<String,Integer>> iter = m.entrySet().iterator();
while(iter.hasNext()) {
 Map.Entry<String,Integer> e = iter.next();
 if (e.getValue() == 2) iter.remove();
}

// Find values that appear in both of two maps. In general, addAll() and
// retainAll() with
keySet() and values() allow union and intersection
Set<Integer> v = new HashSet<Integer>(m.values());
v.retainAll(singleton.values());

// Miscellaneous methods
m.clear(); // Deletes all mappings
m.size(); // Returns number of mappings: currently 0
m.isEmpty(); // Returns true
m.equals(empty); // true: Maps implementations override equals

The Map interface includes a variety of general-purpose and special-purpose
implementations, which are summarized in Table 5-4. As always, complete details are in
the reference section. All classes in Table 5-4 are in the java.util package except
ConcurrentHashMap, which is part of java.util.concurrent.

Chapter 5. The Java Platform Page 30 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 5-4. Map implementations

Class Representation Since null keys null values Notes

HashMap hashtable 1.2 yes yes General-purpose implementation.

ConcurrentHashMap hashtable 5.0 no no
General-purpose threadsafe implementation; see
ConcurrentMap interface.

EnumMap array 5.0 no yes Keys are instances of an enum.

LinkedHashMap hashtable plus list 1.4 yes yes Preserves insertion or access order.

TreeMap red-black tree 1.2 no yes
Sorts by key value. Operations are O(log(n)). See
SortedMap.

IdentityHashMap hashtable 1.4 yes yes Compares with = = instead of equals().

WeakHashMap hashtable 1.2 yes yes Doesn't prevent garbage collection of keys.

Hashtable hashtable 1.0 no no Legacy class; synchronized methods.

Properties hashtable 1.0 no no Extends Hashtable with String methods.

The ConcurrentHashMap class of the java.util.concurrent package implements
the ConcurrentMap interface of the same package. ConcurrentMap extends Map and
defines some additional atomic operations that are important in multithreaded
programming. For example, the putIfAbsent() method is like put() but adds the
key/value pair to the map only if the key is not already mapped.

TreeMap implements the SortedMap interface, which extends Map to add methods that
take advantage of the sorted nature of the map. SortedMap is quite similar to the
SortedSet interface. The firstKey() and lastKey() methods return the first and
last keys in the keySet(). And headMap() , tailMap(), and subMap() return a
restricted range of the original map.

5.6.5. The Queue and BlockingQueue Interfaces
A queue is an ordered collection of elements with methods for extracting elements, in
order, from the head of the queue. Queue implementations are commonly based on
insertion order as in first-in, first-out (FIFO) queues or last in, first-out queues (LIFO
queues are also known as stacks). Other orderings are possible, however: a priority
queue orders its elements according to an external Comparator object, or according to
the natural ordering of Comparable elements. Unlike a Set, Queue implementations
typically allow duplicate elements. Unlike List, the Queue interface does not define
methods for manipulating queue elements at arbitrary positions. Only the element at the
head of the queue is available for examination. It is common for Queue implementations
to have a fixed capacity: when a queue is full, it is not possible to add more elements.
Similarly, when a queue is empty, it is not possible to remove any more elements. Because
full and empty conditions are a normal part of many queue-based algorithms, the
Queue interface defines methods that signal these conditions with return values rather
than by throwing exceptions. Specifically, the peek() and poll() methods return

Chapter 5. The Java Platform Page 31 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

null to indicate that the queue is empty. For this reason, most Queue implementations
do not allow null elements.

A blocking queue is a type of queue that defines blocking put() and take() methods.
The put() method adds an element to the queue, waiting, if necessary, until there is
space in the queue for the element. And the take() method removes an element from
the head of the queue, waiting, if necessary, until there is an element to remove. Blocking
queues are an important part of many multithreaded algorithms, and the
BlockingQueue interface (which extends Queue) is defined as part of the
java.util.concurrent package. Queue, BlockingQueue, and their
implementations are new in Java 5.0. See Section 5.7.7 later in this chapter for a list of
BlockingQueue implementations.

Queues are not nearly as commonly used as sets, lists, and maps, except perhaps in certain
multithreaded programming styles. In lieu of example code here, we'll try to clarify the
confusing array of queue insertion and removal operations:

• Adding elements to queues

add()

This Collection method simply adds an element in the normal way. In bounded
queues, this method may throw an exception if the queue is full.

offer()

This Queue method is like add() but returns false instead of throwing an
exception if the element cannot be added because a bounded queue is full.

BlockingQueue defines a timeout version of offer() that waits up to a specified
amount of time for space to become available in a full queue. Like the basic version
of the method, it returns true if the element was inserted and false otherwise.

put()

This BlockingQueue method blocks: if the element cannot be inserted because the
queue is full, put() waits until some other thread removes an element from the
queue, and space becomes available for the new element.

• Removing elements from queues

Chapter 5. The Java Platform Page 32 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

remove()

In addition to the Collection.remove() method, which removes a specified
element from the queue, the Queue interface defines a no-argument version of
remove() that removes and returns the element at the head of the queue. If the
queue is empty, this method throws a NoSuchElementException.

poll()

This Queue method removes and returns the element at the head of the queue, like
remove() does but returns null if the queue is empty instead of throwing an
exception.

BlockingQueue defines a timeout version of poll() that waits up to a specified
amount of time for an element to be added to an empty queue.

take()

This BlockingQueue method removes and returns the element at the head of the
queue. If the queue is empty, it blocks until some other thread adds an element to the
queue.

drainTo()

This BlockingQueue method removes all available elements from the queue and
adds them to a specified Collection. It does not block to wait for elements to be
added to the queue. A variant of the method accepts a maximum number of elements
to drain.

• Querying the element at the head, without removing it from the queue

element()

This Queue method returns the element at the head of the queue but does not remove
that element from the queue. If the queue is empty, it throws
NoSuchElementException.

Chapter 5. The Java Platform Page 33 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

peek()

This Queue method is like element() but returns null if the queue is empty.

The LinkedList class has been retrofitted, in Java 5.0, to implement Queue. It provides
unbounded FIFO (first in, first out) ordering, and insertion and removal operations require
constant time. LinkedList allows null elements, although their use is discouraged
when the list is being used as a queue.

The only other Queue implementation in the java.util package is PriorityQueue,
which orders its elements according to a Comparator or orders Comparable elements
according to the order defined by their compareTo() methods. The head of a
PriorityQueue is always the the smallest element according to the defined ordering.

The java.util.concurrent package contains a number of BlockingQueue
implementations; they are described later in the chapter. This package also contains
ConcurrentLinkedQueue, an efficient threadsafe Queue implementation that does not
suffer the overhead of synchronized methods.

5.6.6. Collection Wrappers
The java.util.Collections class is home to quite a few static utility methods
designed for use with collections. One important group of these methods are the collection
wrapper methods: they return a special-purpose collection wrapped around a collection
you specify. The purpose of the wrapper collection is to wrap additional functionality
around a collection that does not provide it itself. Wrappers exist to provide thread-safety,
write-protection and runtime type checking. Wrapper collections are always backed by
the original collection, which means that the methods of the wrapper simply dispatch to
the equivalent methods of the wrapped collection. This means that changes made to the
collection through the wrapper are visible through the wrapped collection and vice versa.

The first set of wrapper methods provides threadsafe wrappers around collections. Except
for the legacy classes Vector and Hashtable, the collection implementations in
java.util do not have synchronized methods and are not protected against
concurrent access by multiple threads. If you need threadsafe collections, create them with
code like this:

List<String> list = Collections.synchronizedList(new ArrayList<String>());
Set<Integer> set = Collections.synchronizedSet(new HashSet<Integer>());
Map<String,Integer> map =
 Collections.synchronizedMap(new HashMap<String,Integer>());

Chapter 5. The Java Platform Page 34 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A second set of wrapper methods provides collection objects through which the underlying
collection cannot be modified. They return a read-only view of a collection: any attempt
to change the content of the collection results in an
UnsupportedOperationException. These wrappers are useful when you must pass a
collection to a method that must not be allowed to modify or mutate the content of the
collection in any way:

List<Integer> primes = new ArrayList<Integer>();
List<Integer> readonly = Collections.unmodifiableList(primes);
// We can modify the list through primes
primes.addAll(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
// But we can't modify through the read-only wrapper
readonly.add(23); // UnsupportedOperationException

The final set of wrapper methods provides runtime type checking of any values added to
the collection. They were added in Java 5.0 to complement the compile-time type safety
provided by generics. These wrappers are helpful when working with legacy code that has
not been converted to use generics. If you have a SortedSet<String>, for example, and
must pass it to a method that expects a Set, you can use a checked wrapper to ensure that
that method cannot add anything to the set that is not a String:

SortedSet<String> words = new TreeSet<String>(); // A set
SortedSet<String> checkedWords = // A checked set
 Collections.checkedSortedSet(words, String.class);
addWordsFromFile(checkedWords, filename); // Passed to legacy method

5.6.7. Special-Case Collections
In addition to its wrapper methods, the java.util.Collections class also defines
utility methods for creating immutable collection instances that contain a single element
and other methods for creating empty collections. singleton() , singletonList
(), and singletonMap() return immutable Set , List, and Map objects that contain
a single specified object or a single key/value pair. These methods are useful, for example,
when you need to pass a single object to a method that expects a collection.

The Collections class also includes methods that return empty collections. If you are
writing a method that returns a collection, it is usually best to handle the no-values-to-
return case by returning an empty collection instead of a special-case value like null:

Set<Integer> si = Collections.emptySet();
List<String> ss = Collections.emptyList();
Map<String,Integer> m = Collections.emptyMap();

Finally, nCopies() returns an immutable List that contains a specified number of
copies of a single specified object:

List<Integer> tenzeros = Collections.nCopies(10, 0);

Chapter 5. The Java Platform Page 35 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.6.8. Converting to and from Arrays
Arrays of objects and collections serve similar purposes. It is possible to convert from one
to the other:

String[] a ={ "this", "is", "a", "test" }; // An array
List<String> l = Arrays.asList(a); // View array as an ungrowable list
List<String> m = new ArrayList<String>(l); // Make a growable copy of the view

// In Java 5.0, asList() is a varargs method so we can do this, too:
Set<Character> abc = new HashSet<Character>(Arrays.asList('a', 'b', 'c'));

// Collection defines the toArray() method. The no-args version creates
// an Object[] array, copies collection elements to it and returns it
Object[] members = set.toArray(); // Get set elements as an array
Object[] items = list.toArray(); // Get list elements as an array
Object[] keys = map.keySet().toArray(); // Get map key objects as an array
Object[] values = map.values().toArray(); // Get map value objects as an array

// If you want the return value to be something other than Object[], pass
// in an array of the appropriate type. If the array is not big enough,
// another one of the same type will be allocated. If the array is too big,
// the collection elements copied to it will be null-terminated
String[] c = l.toArray(new String[0]);

5.6.9. Collections Utility Methods
Just as the java.util.Arrays class defined methods to operate on arrays, the
java.util.Collections class defines methods to operate on collections. Most notable
are methods to sort and search the elements of collections:

Collections.sort(list);
int pos = Collections.binarySearch(list, "key"); // list must be sorted first

Here are some other interesting Collections methods:

Collections.copy(list1, list2); // Copy list2 into list1, overwriting list1
Collections.fill(list, o); // Fill list with Object o
Collections.max(c); // Find the largest element in Collection c
Collections.min(c); // Find the smallest element in Collection c

Collections.reverse(list); // Reverse list
Collections.shuffle(list); // Mix up list

5.6.10. Implementing Collections
The Java Collections Framework provides abstract classes that make it simple to
implement common types of collections. The following code extends AbstractList to
define a QuadraticSequence, a list implementation that computes list values on
demand rather than actually storing them in memory anywhere. See also AbstractSet,
AbstractMap, AbstractQueue, and AbstractSequentialList.

import java.util.*;

/** An immutable List<Double> representing the sequence ax^2 + bx + c */

Chapter 5. The Java Platform Page 36 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class QuadraticSequence extends AbstractList<Double> {
 final int size;
 final double a, b, c;

 QuadraticSequence(double a, double b, double c, int size) {
 this.a = a; this.b = b; this.c = c; this.size = size;
 }

 @Override public int size() { return size; }

 @Override public Double get(int index) {
 if (index<0 || index>=size) throw new ArrayIndexOutOfBoundsException();
 return a*index*index + b*index + c;
 }
}

5.7. Threads and Concurrency
The Java platform has supported multithreaded or concurrent programming with the
Thread class and Runnable interface since Java 1.0. Java 5.0 bolsters that support with
a comprehensive set of new utilities for concurrent programming.

5.7.1. Creating, Running, and Manipulating Threads
Java makes it easy to define and work with multiple threads of execution within a program.
java.lang.Thread is the fundamental thread class in the Java API. There are two ways
to define a thread. One is to subclass Thread, override the run() method and then
instantiate your Thread subclass. The other is to define a class that implements the
Runnable method (i.e., define a run() method) and then pass an instance of this
Runnable object to the Thread() constructor. In either case, the result is a Thread
object, where the run() method is the body of the thread. When you call the start()
method of the Thread object, the interpreter creates a new thread to execute the run()
method. This new thread continues to run until the run() method exits. Meanwhile, the
original thread continues running itself, starting with the statement following the start
() method. The following code demonstrates:

final List list; // Some long unsorted list of objects; initialized elsewhere

/** A Thread class for sorting a List in the background */
class BackgroundSorter extends Thread {
 List l;
 public BackgroundSorter(List l) { this.l = l; } // Constructor
 public void run() { Collections.sort(l); } // Thread body
}

// Create a BackgroundSorter thread
Thread sorter = new BackgroundSorter(list);
// Start it running; the new thread runs the run() method above while
// the original thread continues with whatever statement comes next.
sorter.start();

// Here's another way to define a similar thread
Thread t = new Thread(new Runnable() { // Create a new thread
 public void run() { Collections.sort(list); } // to sort the list of objects.
});
t.start(); // Start it running

Chapter 5. The Java Platform Page 37 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.7.1.1. Thread lifecycle
A thread can be in one of six states. In Java 5.0, these states are represented by the
Thread.State enumerated type, and the state of a thread can be queried with the
getState() method. A listing of the Thread.State constants provides a good
overview of the lifecycle of a thread:

NEW

The Thread has been created but its start() method has not yet been called. All
threads start in this state.

RUNNABLE

The thread is running or is available to run when the operating system schedules it.

BLOCKED

The thread is not running because it is waiting to acquire a lock so that it can enter a
synchronized method or block. We'll see more about synchronized methods and
blocks later in this section.

WAITING

The thread is not running because it has called Object.wait() or Thread.join
().

TIMED_WAITING

The thread is not running because it has called Thread.sleep() or has called
Object.wait() or Thread.join() with a timeout value.

TERMINATED

The thread has completed execution. Its run() method has exited normally or by
throwing an exception.

Chapter 5. The Java Platform Page 38 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.7.1.2. Thread priorities
Threads can run at different priority levels. A thread at a given priority level does not
typically run unless no higher-priority threads are waiting to run. Here is some code you
can use when working with thread priorities:

// Set a thread t to lower-than-normal priority
t.setPriority(Thread.NORM_PRIORITY-1);

// Set a thread to lower priority than the current thread
t.setPriority(Thread.currentThread().getPriority() - 1);

// Threads that don't pause for I/O should explicitly yield the CPU
// to give other threads with the same priority a chance to run.
Thread t = new Thread(new Runnable() {
 public void run() {
 for(int i = 0; i < data.length; i++) { // Loop through a bunch of data
 process(data[i]); // Process it
 if ((i % 10) == 0) // But after every 10 iterations,
 Thread.yield(); // pause to let other threads run.
 }
 }
});

5.7.1.3. Handling uncaught exceptions
A thread terminates normally when it reaches the end of its run() method or when it
executes a return statement in that method. A thread can also terminate by throwing an
exception, however. When a thread exits in this way, the default behavior is to print the
name of the thread, the type of the exception, the exception message, and a stack trace. In
Java 5.0, you can install a custom handler for uncaught exceptions in a thread. For
example:

// This thread just throws an exception
Thread t = new Thread() {
 public void run() {throw new UnsupportedOperationException();}
 };

// Giving threads a name helps with debugging
t.setName("My Broken Thread");

// Here's a handler for the error.
t.setUncaughtExceptionHandler(new Thread.UncaughtExceptionHandler() {
 public void uncaughtException(Thread t, Throwable e) {
 System.err.printf("Exception in thread %d '%s':" +
 "%s at line %d of %s%n",
 t.getId(), // Thread id
 t.getName(), // Thread name
 e.toString(), // Exception name and message
 e.getStackTrace()[0].getLineNumber(), // line #
 e.getStackTrace()[0].getFileName()); // filename
 }
 });

5.7.2. Making a Thread Sleep
Often, threads are used to perform some kind of repetitive task at a fixed interval. This is
particularly true when doing graphical programming that involves animation or similar
effects. The key to doing this is making a thread sleep, or stop running, for a specified

Chapter 5. The Java Platform Page 39 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

amount of time. This is done with the static Thread.sleep() method, or, in Java 5.0,
with utility methods of enumerated constants of the TimeUnit class:

import static java.util.concurrent.TimeUnit.SECONDS; // utility class

public class Clock extends Thread {
 // This field is volatile because two different threads may access it
 volatile boolean keepRunning = true;

 public Clock() { // The constructor
 setDaemon(true); // Daemon thread: interpreter can exit while it runs
 }

 public void run() { // The body of the thread
 while(keepRunning) { // This thread runs until asked to stop
 long now = System.currentTimeMillis(); // Get current time
 System.out.printf("%tr%n", now); // Print it out
 try { Thread.sleep(1000); } // Wait 1000 milliseconds
 catch (InterruptedException e) { return; }// Quit on interrupt
 }
 }

 // Ask the thread to stop running. An alternative to interrupt().
 public void pleaseStop() { keepRunning = false; }

 // This method demonstrates how to use the Clock class
 public static void main(String[] args) {
 Clock c = new Clock(); // Create a Clock thread
 c.start(); // Start it
 try { SECONDS.sleep(10); } // Wait 10 seconds
 catch(InterruptedException ignore) {} // Ignore interrupts
 // Now stop the clock thread. We could also use c.interrupt()
 c.pleaseStop();
 }
}

Notice the pleaseStop() method in this example: it is designed to stop the clock thread
in a controlled way. The example is coded so that it can also be stopped by calling the
interrupt() method it inherits from Thread. The Thread class defines a stop()
method, but it is deprecated.

5.7.3. Running and Scheduling Tasks
Java provides a number of ways to run tasks asynchronously or to schedule them for future
execution without having to explicitly create Thread objects. The following sections
illustrate the Timer class added in Java 1.3 and the executors framework of the Java 5.0
java.util.concurrent package.

5.7.3.1. Scheduling tasks with Timer
Added in Java 1.3, the java.util.Timer and java.util.TimerTask classes make it
easy to run repetitive tasks. Here is some code that behaves much like the Clock class
shown earlier:

import java.util.*;

// Define the time-display task
TimerTask displayTime = new TimerTask() {
 public void run() { System.out.printf("%tr%n", System.currentTimeMillis()); }

Chapter 5. The Java Platform Page 40 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

};
// Create a timer object to run the task (and possibly others)
Timer timer = new Timer();
// Now schedule that task to be run every 1,000 milliseconds, starting now
timer.schedule(displayTime, 0, 1000);

// To stop the time-display task
displayTime.cancel();

5.7.3.2. The Executor interface
In Java 5.0, the java.util.concurrent package includes the Executor interface. An
Executor is an object that can execute a Runnable object. A user of an Executor often
does not need to be aware of just how the Executor accomplishes this: it just needs to
know that the Runnable will, at some point, run. Executor implementations can be
created to use a number of different threading strategies, as the following code makes clear.
(Note that this example also demonstrates the use of a BlockingQueue.)

import java.util.concurrent.*;

/** Execute a Runnable in the current thread. */
class CurrentThreadExecutor implements Executor {
 public void execute(Runnable r) { r.run(); }
}

/** Execute each Runnable using a newly created thread */
class NewThreadExecutor implements Executor {
 public void execute(Runnable r) { new Thread(r).start(); }
}

/**
 * Queue up the Runnables and execute them in order using a single thread
 * created for that purpose.
 */
class SingleThreadExecutor extends Thread implements Executor {
 BlockingQueue<Runnable> q = new LinkedBlockingQueue<Runnable>();

 public void execute(Runnable r) {
 // Don't execute the Runnable here; just put it on the queue.
 // Our queue is effectively unbounded, so this should never block.
 // Since it never blocks, it should never throw InterruptedException.
 try { q.put(r); }
 catch(InterruptedException never) { throw new AssertionError(never); }
 }

 // This is the body of the thread that actually executes the Runnables
 public void run() {
 for(;;) { // Loop forever
 try {
 Runnable r = q.take(); // Get next Runnable, or wait
 r.run(); // Run it!
 }
 catch(InterruptedException e) {
 // If interrupted, stop executing queued Runnables.
 return;
 }
 }
 }
}

These sample implementations help demonstrate how an Executor works and how it
separates the notion of executing a task from the scheduling policy and threading details

Chapter 5. The Java Platform Page 41 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of the implementation. It is rarely necessary to actually implement your own Executor,
however, since java.util.concurrent provides the flexible and powerful
ThreadPoolExecutor class. This class is typically used via one of the static factory
methods in the Executors class:

Executor oneThread = Executors.newSingleThreadExecutor(); // pool size of 1
Executor fixedPool = Executors.newFixedThreadPool(10); // 10 threads in pool
Executor unboundedPool = Executors.newCachedThreadPool(); // as many as needed

In addition to these convenient factory methods, you can also explicitly create a
ThreadPoolExecutor if you want to specify a minimum and maximum size for the
thread pool or want to specify the queue type (bounded, unbounded, priority-sorted, or
synchronized, for example) to use for tasks that cannot immediately be run by a thread.

5.7.3.3. ExecutorService
If you've looked at the signature for ThreadPoolExecutor or for the Executors factory
methods cited above, you'll see that it is an ExecutorService . The
ExecutorService interface extends Executor and adds the ability to execute
Callable objects. Callable is something like a Runnable. Instead of encapsulating
arbitrary code in a run() method, however, a Callable puts that code in a call()
method. call() differs from run() in two important ways: it returns a result, and it is
allowed to throw exceptions.

Because call() returns a result, the Callable interface takes the result type as a
parameter. A time-consuming chunk of code that computes a large prime number, for
example, could be wrapped in a Callable<BigInteger>:

import java.util.concurrent.*;
import java.math.BigInteger;
import java.util.Random;
import java.security.SecureRandom;

/** This is a Callable implementation for computing big primes. */
public class RandomPrimeSearch implements Callable<BigInteger> {
 static Random prng = new SecureRandom(); // self-seeding
 int n;
 public RandomPrimeSearch(int bitsize) { n = bitsize; }
 public BigInteger call() { return BigInteger.probablePrime(n, prng); }
}

You can invoke the call() method of any Callable object directly, of course, but to
execute it using an ExecutorService, you pass it to the submit() method. Because
ExecutorService implementations typically run tasks asynchronously, the submit
() method cannot simply return the result of the call() method. Instead, submit()
returns a Future object. A Future is simply the promise of a result sometime in the
future. It is parameterized with the type of the result, as shown in this code snippet:

// Try to compute two primes at the same time
ExecutorService threadpool = Executors.newFixedThreadPool(2);

Chapter 5. The Java Platform Page 42 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Future<BigInteger> p = threadpool.submit(new RandomPrimeSearch(512));
Future<BigInteger> q = threadpool.submit(new RandomPrimeSearch(512));

Once you have a Future object, what can you do with it? You can call isDone() to see if
the Callable has finished running. You can call cancel() to cancel execution of the
Callable and can call isCancelled() to see if the Callable was canceled before it
completed. But most of the time, you simply call get() to get the result of the call
() method. get() blocks, if necessary, to wait for the call() method to complete.
Here is code you might use with the Future objects shown above:

BigInteger product = p.get().multiply(q.get());

Note that the get() method may throw an ExecutionException. Recall that
Callable.call() can throw any kind of exception. If this happens, the Future wraps
that exception in an ExecutionException and throws it from get(). Note that the
Future.isDone() method considers a Callable to be "done," even if the call()
method terminated abnormally with an exception.

5.7.3.4. ScheduledExecutorService
ScheduledExecutorService is an extension of ExecutorService that adds
Timer-like scheduling capabilities. It allows you to schedule a Runnable or Callable
to be executed once after a specified time delay or to schedule a Runnable for repeated
execution. In each case, the result of scheduling a task for future execution is a
ScheduledFuture object. This is simply a Future that also implements the Delay
interface and provides a getDelay() method that can be used to query the remaining
time before execution of the task.

The easiest way to obtain a ScheduledExecutorService is with factory methods of the
Executors class. The following code uses a ScheduledExecutorService to
repeatedly perform an action and also to cancel the repeated action after a fixed interval.

/**
 * Print random ASCII characters at a rate of cps characters per second
 * for a total of totalSeconds seconds.
 */
public static void spew(int cps, int totalSeconds) {
 final Random rng = new Random(System.currentTimeMillis());
 final ScheduledExecutorService executor =
 Executors.newSingleThreadScheduledExecutor();
 final ScheduledFuture<?> spewer =
 executor.scheduleAtFixedRate(new Runnable() {
 public void run() {
 System.out.print((char)(rng.nextInt('~' - ' ') + ' '));
 System.out.flush();
 }
 },
 0, 1000000/cps, TimeUnit.MICROSECONDS);
 executor.schedule(new Runnable() {
 public void run() {
 spewer.cancel(false);

Chapter 5. The Java Platform Page 43 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 executor.shutdown();
 System.out.println();
 }
 },
 totalSeconds, TimeUnit.SECONDS);
}

5.7.4. Exclusion and Locks
When using multiple threads, you must be very careful if you allow more than one thread
to access the same data structure. Consider what would happen if one thread was trying
to loop through the elements of a List while another thread was sorting those elements.
Preventing this kind of unwanted concurrency is one of the central problems of
multithreaded computing. The basic technique for preventing two threads from accessing
the same object at the same time is to require a thread to obtain a lock on the object before
the thread can modify it. While any one thread holds the lock, another thread that requests
the lock has to wait until the first thread is done and releases the lock. Every Java object
has the fundamental ability to provide such a locking capability.

The easiest way to keep objects threadsafe is to declare all sensitive methods
synchronized. A thread must obtain a lock on an object before it can execute any of its
synchronized methods, which means that no other thread can execute any other
synchronized method at the same time. (If a static method is declared
synchronized, the thread must obtain a lock on the class, and this works in the same
manner.) To do finer-grained locking, you can specify synchronized blocks of code that
hold a lock on a specified object for a short time:

// This method swaps two array elements in a synchronized block
public static void swap(Object[] array, int index1, int index2) {
 synchronized(array) {
 Object tmp = array[index1];
 array[index1] = array[index2];
 array[index2] = tmp;
 }
}

// The Collection, Set, List, and Map implementations in java.util do
// not have synchronized methods (except for the legacy implementations
// Vector and Hashtable). When working with multiple threads, you can
// obtain synchronized wrapper objects.
List synclist = Collections.synchronizedList(list);
Map syncmap = Collections.synchronizedMap(map);

5.7.4.1. The java.util.concurrent.locks package
Note that when you use the synchronized modifier or statement, the lock you acquire
is block-scoped, and is automatically released when the thread exits the method or block.
The java.util.concurrent.locks package in Java 5.0 provides an alternative: a
Lock object that you explicitly lock and unlock. Lock objects are not automatically block-
scoped and you must be careful to use try/finally constructs to ensure that locks are

Chapter 5. The Java Platform Page 44 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

always released. On the other hand, Lock enables algorithms that are simply not possible
with block-scoped locks, such as the following "hand-over-hand" linked list traversal:

import java.util.concurrent.locks.*; // New in Java 5.0

/**
 * A partial implementation of a linked list of values of type E.
 * It demonstrates hand-over-hand locking with Lock
 */
public class LinkList<E> {
 E value; // The value of this node of the list
 LinkList<E> rest; // The rest of the list
 Lock lock; // A lock for this node

 public LinkList(E value) { // Constructor for a list
 this.value = value; // Node value
 rest = null; // This is the only node in the list
 lock = new ReentrantLock(); // We can lock this node
 }

 /**
 * Append a node to the end of the list, traversing the list using
 * hand-over-hand locking. This method is threadsafe: multiple threads
 * may traverse different portions of the list at the same time.
 **/
 public void append(E value) {
 LinkList<E> node = this; // Start at this node
 node.lock.lock(); // Lock it.

 // Loop 'till we find the last node in the list
 while(node.rest != null) {
 LinkList<E> next = node.rest;

 // This is the hand-over-hand part. Lock the next node and then
 // unlock the current node. We use a try/finally construct so
 // that the current node is unlocked even if the lock on the
 // next node fails with an exception.
 try { next.lock.lock(); } // lock the next node
 finally { node.lock.unlock(); } // unlock the current node
 node = next;
 }

 // At this point, node is the final node in the list, and we have
 // a lock on it. Use a try/finally to ensure that we unlock it.
 try {
 node.rest = new LinkList<E>(value); // Append new node
 }
 finally { node.lock.unlock(); }
 }
}

5.7.4.2. Deadlock
When you are using locking to prevent threads from accessing the same data at the same
time, you must be careful to avoid deadlock, which occurs when two threads end up waiting
for each other to release a lock they need. Since neither can proceed, neither one can release
the lock it holds, and they both stop running. The following code is prone to deadlock.
Whether or not a deadlock actually occurs may vary from system to system and from
execution to execution.

// When two threads try to lock two objects, deadlock can occur unless
// they always request the locks in the same order.
final Object resource1 = new Object(); // Here are two objects to lock
final Object resource2 = new Object();

Chapter 5. The Java Platform Page 45 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thread t1 = new Thread(new Runnable() { // Locks resource1 then resource2
 public void run() {
 synchronized(resource1) {
 synchronized(resource2) { compute(); }
 }
 }
});

Thread t2 = new Thread(new Runnable() { // Locks resource2 then resource1
 public void run() {
 synchronized(resource2) {
 synchronized(resource1) { compute(); }
 }
 }
});

t1.start(); // Locks resource1
t2.start(); // Locks resource2 and now neither
thread can progress!

5.7.5. Coordinating Threads
It is common in multithreaded programming to require one thread to wait for another
thread to take some action. The Java platform provides a number of ways to coordinate
threads, including methods built into the Object and Thread classes, as well as
"synchronizer" utility classes introduced in Java 5.0.

5.7.5.1. wait() and notify()
Sometimes a thread needs to stop running and wait until some kind of event occurs, at
which point it is told to continue running. This is done with the wait() and notify
() methods. These aren't methods of the Thread class, however; they are methods of
Object. Just as every Java object has a lock associated with it, every object can maintain
a list of waiting threads. When a thread calls the wait() method of an object, any locks
the thread holds are temporarily released, and the thread is added to the list of waiting
threads for that object and stops running. When another thread calls the notifyAll
() method of the same object, the object wakes up the waiting threads and allows them
to continue running:

import java.util.*;

/**
 * A queue. One thread calls push() to put an object on the queue.
 * Another calls pop() to get an object off the queue. If there is no
 * data, pop() waits until there is some, using wait()/notify().
 * wait() and notify() must be used within a synchronized method or
 * block. In Java 5.0, use a java.util.concurrent.BlockingQueue instead.
 */
public class WaitingQueue<E> {
 LinkedList<E> q = new LinkedList<E>(); // Where objects are stored
 public synchronized void push(E o) {
 q.add(o); // Append the object to the end of the list
 this.notifyAll(); // Tell waiting threads that data is ready
 }
 public synchronized E pop() {
 while(q.size() == 0) {
 try { this.wait(); }
 catch (InterruptedException ignore) {}
 }
 return q.remove(0);

Chapter 5. The Java Platform Page 46 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 }
}

Note that such a class is not necessary in Java 5.0 because java.util.concurrent
defines the BlockingQueue interface and general-purpose implementations such as
ArrayBlockingQueue.

5.7.5.2. Waiting on a Condition
Java 5.0 provides an alternative to the wait() and notifyAll() methods of
Object. java.util.concurrent.locks defines a Condition object with await
() and signalAll() methods. Condition objects are always associated with Lock
objects and are used in much the same way as the locking and waiting capability built into
each Java object. The primary benefit is that it is possible to have more than one
Condition for each Lock, something that is not possible with Object-based locking and
waiting.

5.7.5.3. Waiting for a thread to finish
Sometimes one thread needs to stop and wait for another thread to complete. You can
accomplish this with the join() method:

List list; // A long list of objects to be sorted; initialized elsewhere

// Define a thread to sort the list: lower its priority, so it runs only
// when the current thread is waiting for I/O and then start it running.
Thread sorter = new BackgroundSorter(list); // Defined earlier
sorter.setPriority(Thread.currentThread.getPriority()-1); // Lower priority
sorter.start(); // Start sorting

// Meanwhile, in this original thread, read data from a file
byte[] data = readData(); // Method defined elsewhere

// Before we can proceed, we need the list to be fully sorted, so
// we must wait for the sorter thread to exit, if it hasn't already.
try { sorter.join(); } catch(InterruptedException e) {}

5.7.5.4. Synchronizer utilities
java.util.concurrent includes four " synchronizer" classes that help to synchronize
the state of a concurrent program by making threads wait until certain conditions hold:

Semaphore

The Semaphore class models semaphores, a traditional concurrent programming
construct. Conceptually, a semaphore represents one or more "permits." A thread that
needs a permit calls acquire() and then calls release() when done with it.
acquire() blocks if no permits are available, suspending the thread until another
thread releases a permit.

Chapter 5. The Java Platform Page 47 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

CountDownLatch

A latch is conceptually any variable or concurrency construct that has two possible
states and transitions from its initial state to its final state only once. Once the
transition occurs, it remains in that final state forever. CountDownLatch is a
concurrency utility that can exist in two states, closed and open. In its initial closed
state, any threads that call the await() method block and cannot proceed until it
transitions to its latched open state. Once this transition occurs, all waiting threads
proceed, and any threads that call await() in the future will not block at all. The
transition from closed to open occurs when a specified number of calls to countDown
() have occurred.

Exchanger

An Exchanger is a utility that allows two threads to rendezvous and exchange values.
The first thread to call the exchange() method blocks until a second thread calls
the same method. When this happens, the argument passed to the exchange()
method by the first thread becomes the return value of the method for the second
thread and vice-versa. When the two exchange() invocations return, both threads
are free to continue running concurrently. Exchanger is a generic type and uses its
type parameter to specify the type of values to be exchanged.

CyclicBarrier

A CyclicBarrier is a utility that enables a group of N threads to wait for each other
to reach a synchronization point. The number of threads is specified when the
CyclicBarrier is first created. Threads call the await() method to block until
the last thread calls await(), at which point all threads resume again. Unlike a
CountDownLatch, a CyclicBarrier resets its count and is ready for immediate
reuse. CyclicBarrier is useful in parallel algorithms in which a computation is
decomposed into parts, and each part is handled by a separate thread. In such
algorithms, the threads must typically rendezvous so that their partial solutions can
be merged into a complete solution. To facilitate this, the CyclicBarrier
constructor allows you to specify a Runnable object to be executed by the last thread
that calls await() before any of the other threads are woken up and allowed to
resume. This Runnable can provide the coordination required to assemble a solution
from the threads computations or to assign a new computation to each of the threads.

Chapter 5. The Java Platform Page 48 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.7.6. Thread Interruption
In the examples illustrating the sleep(), join(), and wait() methods, you may
have noticed that calls to each of these methods are wrapped in a try statement that
catches an InterruptedException. This is necessary because the interrupt()
method allows one thread to interrupt the execution of another. The outcome of an
interrupt depends on how you handle the InterruptedException. The response that
is usually preferred is for an interrupted thread to stop running. On the other hand, if you
simply catch and ignore the InterruptedException, an interrupt simply stops a thread
from blocking.

If the interrupt() method is called on a thread that is not blocked, the thread continues
running, but its "interrupt status" is set to indicate that an interrupt has been requested.
A thread can test its own interrupt status by calling the static Thread.interrupted()
method, which returns true if the thread has been interrupted and, as a side effect, clears
the interrupt status. One thread can test the interrupt status of another thread with the
instance method isInterrupted(), which queries the status but does not clear it.

If a thread calls sleep(), join(), or wait() while its interrupt status is set, it does
not block but immediately throws an InterruptedException (the interrupt status is
cleared as a side effect of throwing the exception). Similarly, if the interrupt() method
is called on a thread that is already blocked in a call to sleep(), join(), or wait(),
that thread stops blocking by throwing an InterruptedException.

One of the most common times that threads block is while doing input/output; a thread
often has to pause and wait for data to become available from the filesystem or from the
network. (The java.io, java.net, and java.nio APIs for performing I/O operations
are discussed later in this chapter.) Unfortunately, the interrupt() method does not
wake up a thread blocked in an I/O method of the java.io package. This is one of the
shortcomings of java.io that is cured by the New I/O API in java.nio. If a thread is
interrupted while blocked in an I/O operation on any channel that implements
java.nio.channels.InterruptibleChannel, the channel is closed, the thread's
interrupt status is set, and the thread wakes up by throwing a
java.nio.channels.ClosedByInterruptException. The same thing happens if a
thread tries to call a blocking I/O method while its interrupt status is set. Similarly, if a
thread is interrupted while it is blocked in the select() method of a
java.nio.channels.Selector (or if it calls select() while its interrupt status is
set), select() will stop blocking (or will never start) and will return immediately. No
exception is thrown in this case; the interrupted thread simply wakes up, and the select
() call returns.

Chapter 5. The Java Platform Page 49 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.7.7. Blocking Queues
As noted in Section 5.6.5 earlier in this chapter, a queue is a collection in which elements
are inserted at the "tail" and removed at the "head." The Queue interface and various
implementations were added to java.util as part of Java 5.0.
java.util.concurrent extends the Queue interface: BlockingQueue defines put
() and take() methods that allow you to add and remove elements of the queue,
blocking if necessary until the queue has room, or until there is an element to be removed.
The use of blocking queues is a common pattern in multithreaded programming: one
thread produces objects and places them on a queue for consumption by another thread
which removes them from the queue.

java.util.concurrent provides five implementations of BlockingQueue:

ArrayBlockingQueue

This implementation is based on an array, and, like all arrays, has a fixed capacity
established when it is created. At the cost of reduced throughput, this queue can
operate in a "fair" mode in which threads blocking to put() or take() an element
are served in the order in which they arrived.

LinkedBlockingQueue

This implementation is based on a linked-list data structure. It may have a maximum
size specified, but, by default, it is essentially unbounded.

PriorityBlockingQueue

This unbounded queue does not implement FIFO (first-in, first-out) ordering.
Instead, it orders its elements based on a specified Comparator object, or based on
their natural ordering if they are Comparable objects and no Comparator is
specified. The element returned by take() is the smallest element according to the
Comparator or Comparable ordering. See also java.util.PriorityQueue for
a nonblocking version.

DelayQueue

A DelayQueue is like a PriorityBlockingQueue for elements that implement the
Delayed interface. Delayed is Comparable and orders elements by how long they
are delayed. But DelayQueue is more than just an unbounded queue that sorts its

Chapter 5. The Java Platform Page 50 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

elements. It also restricts take() and related methods so that elements cannot be
removed from the queue until their delay has elapsed.

SynchronousQueue

This class implements the degenerate case of a BlockingQueue with a capacity of
zero. A call to put() blocks until some other thread calls take(), and a call to take
() blocks until some other thread calls put().

5.7.8. Atomic Variables
The java.util.concurrent.atomic package contains utility classes that permit
atomic operations on fields without locking. An atomic operation is one that is indivisible:
no other thread can observe an atomic variable in the middle of an atomic operation on it.
These utility classes define get() and set() accessor methods that have the properties
of volatile fields but also define compound operations such as compare-and-set and
get-and-increment that behave atomically. The code below demonstrates the use of
AtomicInteger and contrasts it with the use of a traditional synchronized method:

// The count1(), count2() and count3() methods are all threadsafe. Two
// threads can call these methods at the same time, and they will never
// see the same return value.
public class Counters {
 // A counter using a synchronized method and locking
 int count1 = 0;
 public synchronized int count1() { return count1++; }

 // A counter using an atomic increment on an AtomicInteger
 AtomicInteger count2 = new AtomicInteger(0);
 public int count2() { return count2.getAndIncrement(); }

 // An optimistic counter using compareAndSet()
 AtomicInteger count3 = new AtomicInteger(0);
 public int count3() {
 // Get the counter value with get() and set it with compareAndSet().
 // If compareAndSet() returns false, try again until we get
 // through the loop without interference.
 int result;
 do {
 result = count3.get();
 } while(!count3.compareAndSet(result, result+1));
 return result;
 }
}

5.8. Files and Directories
The java.io.File class represents a file or a directory and defines a number of
important methods for manipulating files and directories. Note, however, that none of
these methods allow you to read the contents of a file; that is the job of

Chapter 5. The Java Platform Page 51 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

java.io.FileInputStream, which is just one of the many types of I/O streams used
in Java and discussed in the next section. Here are some things you can do with File:

import java.io.*;
import java.util.*;

// Get the name of the user's home directory and represent it with a File
File homedir = new File(System.getProperty("user.home"));
// Create a File object to represent a file in that directory
File f = new File(homedir, ".configfile");

// Find out how big a file is and when it was last modified
long filelength = f.length();
Date lastModified = new java.util.Date(f.lastModified());

// If the file exists, is not a directory, and is readable,
// move it into a newly created directory.
if (f.exists() && f.isFile() && f.canRead()) { // Check config file
 File configdir = new File(homedir, ".configdir"); // A new config directory
 configdir.mkdir(); // Create that directory
 f.renameTo(new File(configdir, ".config")); // Move the file into it
}

// List all files in the home directory
String[] allfiles = homedir.list();

// List all files that have a ".java" suffix
String[] sourcecode = homedir.list(new FilenameFilter() {
 public boolean accept(File d, String name) { return name.endsWith(".java"); }
});

The File class gained some important additional functionality as of Java 1.2:

// List all filesystem root directories; on Windows, this gives us
// File objects for all drive letters (Java 1.2 and later).
File[] rootdirs = File.listRoots();

// Atomically, create a lock file, then delete it (Java 1.2 and later)
File lock = new File(configdir, ".lock");
if (lock.createNewFile()) {
 // We successfully created the file. Now arrange to delete it on exit
 lock.deleteOnExit();

 // Now run the application secure in the knowledge that no one else
 // is running it at the same time
 ...
}
else {
 // We didn't create the file; someone else has a lock
 System.err.println("Can't create lock file; exiting.");
 System.exit(1);
}

// Create a temporary file to use during processing (Java 1.2 and later)
File temp = File.createTempFile("app", ".tmp"); // Filename prefix and suffix
// Do something with the temp file
 ...
// And delete it when we're done
temp.delete();

5.8.1. RandomAccessFile
The java.io package also defines a RandomAccessFile class that allows you to read
binary data from arbitrary locations in a file. This can be useful in certain situations, but

Chapter 5. The Java Platform Page 52 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

most applications read files sequentially, using the stream classes described in the next
section. Here is a short example of using RandomAccessFile:

// Open a file for read/write ("rw") access
File datafile = new File(configdir, "datafile");
RandomAccessFile f = new RandomAccessFile(datafile, "rw");
f.seek(100); // Move to byte 100 of the file
byte[] data = new byte[100]; // Create a buffer to hold data
f.read(data); // Read 100 bytes from the file
int i = f.readInt(); // Read a 4-byte integer from the file
f.seek(100); // Move back to byte 100
f.writeInt(i); // Write the integer first
f.write(data); // Then write the 100 bytes
f.close(); // Close file when done with it

5.9. Input/Output with java.io
The java.io package defines a large number of classes for reading and writing streaming,
or sequential, data. The InputStream and OutputStream classes are for reading and
writing streams of bytes while the Reader and Writer classes are for reading and writing
streams of characters. Streams can be nested, meaning you might read characters from a
FilterReader object that reads and processes characters from an underlying Reader
stream. This underlying Reader stream might read bytes from an InputStream and
convert them to characters.

5.9.1. Reading Console Input
You can perform a number of common operations with streams. One is to read lines of
input the user types at the console:

import java.io.*;

BufferedReader console = new BufferedReader(new InputStreamReader(System.in));
System.out.print("What is your name: ");
String name = null;
try {
 name = console.readLine();
}
catch (IOException e) { name = "<" + e + ">"; } // This should never happen
System.out.println("Hello " + name);

5.9.2. Reading Lines from a Text File
Reading lines of text from a file is a similar operation. The following code reads an entire
text file and quits when it reaches the end:

String filename = System.getProperty("user.home") + File.separator + ".cshrc";
try {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String line;
 while((line = in.readLine()) != null) { // Read line, check for end-of-file
 System.out.println(line); // Print the line
 }
 in.close(); // Always close a stream when you are done with it
}
catch (IOException e) {

Chapter 5. The Java Platform Page 53 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // Handle FileNotFoundException, etc. here
}

5.9.3. Writing Text to a File
Throughout this book, you've seen the use of the System.out.println() method to
display text on the console. System.out simply refers to an output stream. You can print
text to any output stream using similar techniques. The following code shows how to output
text to a file:

try {
 File f = new File(homedir, ".config");
 PrintWriter out = new PrintWriter(new FileWriter(f));
 out.println("## Automatically generated config file. DO NOT EDIT!");
 out.close(); // We're done writing
}
catch (IOException e) { /* Handle exceptions */ }

5.9.4. Reading a Binary File
Not all files contain text, however. The following lines of code treat a file as a stream of
bytes and read the bytes into a large array:

try {
 File f; // File to read; initialized elsewhere
 int filesize = (int) f.length(); // Figure out the file size
 byte[] data = new byte[filesize]; // Create an array that is big enough
 // Create a stream to read the file
 DataInputStream in = new DataInputStream(new FileInputStream(f));
 in.readFully(data); // Read file contents into array
 in.close();
}
catch (IOException e) { /* Handle exceptions */ }

5.9.5. Compressing Data
Various other packages of the Java platform define specialized stream classes that operate
on streaming data in some useful way. The following code shows how to use stream classes
from java.util.zip to compute a checksum of data and then compress the data while
writing it to a file:

import java.io.*;
import java.util.zip.*;

try {
 File f; // File to write to; initialized elsewhere
 byte[] data; // Data to write; initialized elsewhere
 Checksum check = new Adler32(); // An object to compute a simple checksum

 // Create a stream that writes bytes to the file f
 FileOutputStream fos = new FileOutputStream(f);
 // Create a stream that compresses bytes and writes them to fos
 GZIPOutputStream gzos = new GZIPOutputStream(fos);
 // Create a stream that computes a checksum on the bytes it writes to gzos
 CheckedOutputStream cos = new CheckedOutputStream(gzos, check);

 cos.write(data); // Now write the data to the nested streams
 cos.close(); // Close down the nested chain of streams
 long sum = check.getValue(); // Obtain the computed checksum

Chapter 5. The Java Platform Page 54 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

}
catch (IOException e) { /* Handle exceptions */ }

5.9.6. Reading ZIP Files
The java.util.zip package also contains a ZipFile class that gives you random access
to the entries of a ZIP archive and allows you to read those entries through a stream:

import java.io.*;
import java.util.zip.*;

String filename; // File to read; initialized elsewhere
String entryname; // Entry to read from the ZIP file; initialized elsewhere
ZipFile zipfile = new ZipFile(filename); // Open the ZIP file
ZipEntry entry = zipfile.getEntry(entryname); // Get one entry
InputStream in = zipfile.getInputStream(entry); // A stream to read the entry
BufferedInputStream bis = new BufferedInputStream(in); // Improves efficiency
// Now read bytes from bis...
// Print out contents of the ZIP file
for(java.util.Enumeration e = zipfile.entries(); e.hasMoreElements();) {
 ZipEntry zipentry = (ZipEntry) e.nextElement();
 System.out.println(zipentry.getName());
}

5.9.7. Computing Message Digests
If you need to compute a cryptographic-strength checksum (also known as a message
digest), use one of the stream classes of the java.security package. For example:

import java.io.*;
import java.security.*;
import java.util.*;

File f; // File to read and compute digest on; initialized elsewhere
List text = new ArrayList(); // We'll store the lines of text here

// Get an object that can compute an SHA message digest
MessageDigest digester = MessageDigest.getInstance("SHA");
// A stream to read bytes from the file f
FileInputStream fis = new FileInputStream(f);
// A stream that reads bytes from fis and computes an SHA message digest
DigestInputStream dis = new DigestInputStream(fis, digester);
// A stream that reads bytes from dis and converts them to characters
InputStreamReader isr = new InputStreamReader(dis);
// A stream that can read a line at a time
BufferedReader br = new BufferedReader(isr);
// Now read lines from the stream
for(String line; (line = br.readLine()) != null; text.add(line)) ;
// Close the streams
br.close();
// Get the message digest
byte[] digest = digester.digest();

5.9.8. Streaming Data to and from Arrays
So far, we've used a variety of stream classes to manipulate streaming data, but the data
itself ultimately comes from a file or is written to the console. The java.io package
defines other stream classes that can read data from and write data to arrays of bytes or
strings of text:

Chapter 5. The Java Platform Page 55 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

import java.io.*;

// Set up a stream that uses a byte array as its destination
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream out = new DataOutputStream(baos);
out.writeUTF("hello"); // Write some string data out as bytes
out.writeDouble(Math.PI); // Write a floating-point value out as bytes
byte[] data = baos.toByteArray(); // Get the array of bytes we've written
out.close(); // Close the streams

// Set up a stream to read characters from a string
Reader in = new StringReader("Now is the time!");
// Read characters from it until we reach the end
int c;
while((c = in.read()) != -1) System.out.print((char) c);

Other classes that operate this way include ByteArrayInputStream, StringWriter,
CharArrayReader, and CharArrayWriter.

5.9.9. Thread Communication with Pipes
PipedInputStream and PipedOutputStream and their character-based
counterparts, PipedReader and PipedWriter, are another interesting set of streams
defined by java.io. These streams are used in pairs by two threads that want to
communicate. One thread writes bytes to a PipedOutputStream or characters to a
PipedWriter, and another thread reads bytes or characters from the corresponding
PipedInputStream or PipedReader:

// A pair of connected piped I/O streams forms a pipe. One thread writes
// bytes to the PipedOutputStream, and another thread reads them from the
// corresponding PipedInputStream. Or use PipedWriter/PipedReader for chars.
final PipedOutputStream writeEndOfPipe = new PipedOutputStream();
final PipedInputStream readEndOfPipe = new PipedInputStream(writeEndOfPipe);

// This thread reads bytes from the pipe and discards them
Thread devnull = new Thread(new Runnable() {
 public void run() {
 try { while(readEndOfPipe.read() != -1); }
 catch (IOException e) {} // ignore it
 }
});
devnull.start();

5.10. Networking with java.net
The java.net package defines a number of classes that make writing networked
applications surprisingly easy. Various examples follow.

5.10.1. Networking with the URL Class
The easiest networking class to use is URL, which represents a uniform resource locator.
Different Java implementations may support different sets of URL protocols, but, at a
minimum, you can rely on support for the http://, ftp://, and file:// protocols. As

Chapter 5. The Java Platform Page 56 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of Java 1.4, secure HTTP is also supported with the https:// protocol. Here are some
ways you can use the URL class:

import java.net.*;
import java.io.*;

// Create some URL objects
URL url=null, url2=null, url3=null;
try {
 url = new URL("http://www.oreilly.com"); // An absolute URL
 url2 = new URL(url, "catalog/books/javanut4/"); // A relative URL
 url3 = new URL("http:", "www.oreilly.com", "index.html");
} catch (MalformedURLException e) { /* Ignore this exception */ }

// Read the content of a URL from an input stream
InputStream in = url.openStream();

// For more control over the reading process, get a URLConnection object
URLConnection conn = url.openConnection();

// Now get some information about the URL
String type = conn.getContentType();
String encoding = conn.getContentEncoding();
java.util.Date lastModified = new java.util.Date(conn.getLastModified());
int len = conn.getContentLength();

// If necessary, read the contents of the URL using this stream
InputStream in = conn.getInputStream();

5.10.2. Working with Sockets
Sometimes you need more control over your networked application than is possible with
the URL class. In this case, you can use a Socket to communicate directly with a server.
For example:

import java.net.*;
import java.io.*;

// Here's a simple client program that connects to a web server,
// requests a document and reads the document from the server.
String hostname = "java.oreilly.com"; // The server to connect to
int port = 80; // Standard port for HTTP
String filename = "/index.html"; // The file to read from the server
Socket s = new Socket(hostname, port); // Connect to the server

// Get I/O streams we can use to talk to the server
InputStream sin = s.getInputStream();
BufferedReader fromServer = new BufferedReader(new InputStreamReader(sin));
OutputStream sout = s.getOutputStream();
PrintWriter toServer = new PrintWriter(new OutputStreamWriter(sout));

// Request the file from the server, using the HTTP protocol
toServer.print("GET " + filename + " HTTP/1.0\r\n\r\n");
toServer.flush();

// Now read the server's response, assume it is a text file, and print it out
for(String l = null; (l = fromServer.readLine()) != null;)
 System.out.println(l);

// Close everything down when we're done
toServer.close();
fromServer.close();
s.close();

Chapter 5. The Java Platform Page 57 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.10.3. Secure Sockets with SSL
In Java 1.4, the Java Secure Socket Extension, or JSSE, was added to the core Java platform
in the packages javax.net and javax.net.ssl.[1] This API enables encrypted network
communication over sockets that use the SSL (Secure Sockets Layer, also known as TLS)
protocol. SSL is widely used on the Internet: it is the basis for secure web communication
using the https:// protocol. In Java 1.4 and later, you can use https:// with the
URL class as previously shown to securely download documents from web servers that
support SSL.

[1] An earlier version of JSSE using different package names is available as a separate download for use with Java 1.2 and Java 1.3. See http://java.sun.com/products/
jsse/.

Like all Java security APIs, JSSE is highly configurable and gives low-level control over all
details of setting up and communicating over an SSL socket. The javax.net and
javax.net.ssl packages are fairly complex, but in practice, you need only a few classes
to securely communicate with a server. The following program is a variant on the preceding
code that uses HTTPS instead of HTTP to securely transfer the contents of the requested
URL:

import java.io.*;
import java.net.*;
import javax.net.ssl.*;
import java.security.cert.*;

/**
 * Get a document from a web server using HTTPS. Usage:
 * java HttpsDownload <hostname> <filename>
 **/
public class HttpsDownload {
 public static void main(String[] args) throws IOException {
 // Get a SocketFactory object for creating SSL sockets
 SSLSocketFactory factory =
 (SSLSocketFactory) SSLSocketFactory.getDefault();

 // Use the factory to create a secure socket connected to the
 // HTTPS port of the specified web server.
 SSLSocket sslsock=(SSLSocket)factory.createSocket(args[0], // Hostname
 443); // HTTPS port

 // Get the certificate presented by the web server
 SSLSession session = sslsock.getSession();
 X509Certificate cert;
 try { cert = (X509Certificate)session.getPeerCertificates()[0]; }
 catch(SSLPeerUnverifiedException e) { // If no or invalid certificate
 System.err.println(session.getPeerHost() +
 " did not present a valid certificate.");
 return;
 }

 // Display details about the certificate
 System.out.println(session.getPeerHost() +
 " has presented a certificate belonging to:");
 System.out.println("\t[" + cert.getSubjectDN().getName() + "]");
 System.out.println("The certificate bears the valid signature of:");
 System.out.println("\t[" + cert.getIssuerDN().getName() + "]");

 // If the user does not trust the certificate, abort
 System.out.print("Do you trust this certificate (y/n)? ");
 System.out.flush();
 BufferedReader console =

Chapter 5. The Java Platform Page 58 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/products/jsse/
http://java.sun.com/products/jsse/

 new BufferedReader(new InputStreamReader(System.in));
 if (Character.toLowerCase(console.readLine().charAt(0)) != 'y') return;

 // Now use the secure socket just as you would use a regular socket
 // First, send a regular HTTP request over the SSL socket
 PrintWriter out = new PrintWriter(sslsock.getOutputStream());
 out.print("GET " + args[1] + " HTTP/1.0\r\n\r\n");
 out.flush();

 // Next, read the server's response and print it to the console
 BufferedReader in =
 new BufferedReader(new InputStreamReader(sslsock.getInputStream()));
 String line;
 while((line = in.readLine()) != null) System.out.println(line);

 // Finally, close the socket
 sslsock.close();
 }
}

5.10.4. Servers
A client application uses a Socket to communicate with a server. The server does the
same thing: it uses a Socket object to communicate with each of its clients. However, the
server has an additional task in that it must be able to recognize and accept client
connection requests. This is done with the ServerSocket class. The following code shows
how you might use a ServerSocket. The code implements a simple HTTP server that
responds to all requests by sending back (or mirroring) the exact contents of the HTTP
request. A dummy server like this is useful when debugging HTTP clients:

import java.io.*;
import java.net.*;

public class HttpMirror {
 public static void main(String[] args) {
 try {
 int port = Integer.parseInt(args[0]); // The port to listen on
 ServerSocket ss = new ServerSocket(port); // Create a socket to listen
 for(;;) { // Loop forever
 Socket client = ss.accept(); // Wait for a connection
 ClientThread t = new ClientThread(client);// A thread to handle it
 t.start(); // Start the thread running
 } // Loop again
 }
 catch (Exception e) {
 System.err.println(e.getMessage());
 System.err.println("Usage: java HttpMirror <port>;");
 }
 }

 static class ClientThread extends Thread {
 Socket client;
 ClientThread(Socket client) { this.client = client; }
 public void run() {
 try {
 // Get streams to talk to the client
 BufferedReader in =
 new BufferedReader(new InputStreamReader(client.getInputStream()));
 PrintWriter out =
 new PrintWriter(new OutputStreamWriter(client.getOutputStream()));

 // Send an HTTP response header to the client
 out.print("HTTP/1.0 200\r\nContent-Type: text/plain\r\n\r\n");

 // Read the HTTP request from the client and send it right back

Chapter 5. The Java Platform Page 59 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // Stop when we read the blank line from the client that marks
 // the end of the request and its headers.
 String line;
 while((line = in.readLine()) != null) {
 if (line.length() == 0) break;
 out.println(line);
 }

 out.close();
 in.close();
 client.close();
 }
 catch (IOException e) { /* Ignore exceptions */ }
 }
 }
}

This server code could be modified using JSSE to support SSL connections. Making a
server secure is more complex than making a client secure, however, because a server must
have a certificate it can present to the client. Therefore, server-side JSSE is not
demonstrated here.

5.10.5. Datagrams
Both URL and Socket perform networking on top of a stream-based network connection.
Setting up and maintaining a stream across a network takes work at the network level,
however. Sometimes you need a low-level way to speed a packet of data across a network,
but you don't care about maintaining a stream. If, in addition, you don't need a guarantee
that your data will get there or that the packets of data will arrive in the order you sent
them, you may be interested in the DatagramSocket and DatagramPacket classes:

import java.net.*;

// Send a message to another computer via a datagram
try {
 String hostname = "host.example.com"; // The computer to send the data to
 InetAddress address = // Convert the DNS hostname
 InetAddress.getByName(hostname); // to a lower-level IP address.
 int port = 1234; // The port to connect to
 String message = "The eagle has landed."; // The message to send
 byte[] data = message.getBytes(); // Convert string to bytes
 DatagramSocket s = new DatagramSocket(); // Socket to send message with
 DatagramPacket p = // Create the packet to send
 new DatagramPacket(data, data.length, address, port);
 s.send(p); // Now send it!
 s.close(); // Always close sockets when done
}
catch (UnknownHostException e) {} // Thrown by InetAddress.getByName()
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.send()

// Here's how the other computer can receive the datagram
try {
 byte[] buffer = new byte[4096]; // Buffer to hold data

 DatagramSocket s = new DatagramSocket(1234); // Socket that receives it
 // through
 DatagramPacket p =
 new DatagramPacket(buffer, buffer.length); // The packet that receives it
 s.receive(p); // Wait for a packet to arrive
 String msg = // Convert the bytes from the
 new String(buffer, 0, p.getLength()); // packet back to a string.
 s.close(); // Always close the socket

Chapter 5. The Java Platform Page 60 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

}
catch (SocketException e) {} // Thrown by new DatagramSocket()
catch (java.io.IOException e) {} // Thrown by DatagramSocket.receive()

5.10.6. Testing the Reachability of a Host
In Java 5.0 the InetAddress class has an isReachable() method that attempts to
determine whether the host is reachable. The following code uses it in a naive Java
implementation of the Unix ping utility:

import java.io.IOException;
import java.net.InetAddress;
import java.net.UnknownHostException;

public class Ping {
 public static void main(String[] args) throws IOException {
 try {
 String hostname = args[0];
 int timeout = (args.length > 1)?Integer.parseInt(args[1]):2000;
 InetAddress[] addresses = InetAddress.getAllByName(hostname);
 for(InetAddress address : addresses) {
 if (address.isReachable(timeout))
 System.out.printf("%s is reachable%n", address);
 else
 System.out.printf("%s could not be contacted%n", address);
 }
 }
 catch (UnknownHostException e) {
 System.out.printf("Unknown host: %s%n", args[0]);
 }
 catch(IOException e) { System.out.printf("Network error: %s%n", e); }
 catch (Exception e) {
 // ArrayIndexOutOfBoundsException or NumberFormatException
 System.out.println("Usage: java Ping <hostname> [timeout in ms]");
 }
 }
}

5.11. I/O and Networking with java.nio
Java 1.4 introduced an entirely new API for high-performance, nonblocking I/O and
networking. This API consists primarily of three new packages. java.nio defines
Buffer classes that are used to store sequences of bytes or other primitive values.
java.nio.channels defines channels through which data can be transferred between
a buffer and a data source or sink, such as a file or a network socket. This package also
contains important classes used for nonblocking I/O. Finally, the java.nio.charset
package contains classes for efficiently converting buffers of bytes into buffers of
characters. The sections that follow contain examples of using all three of these packages
as well as examples of specific I/O tasks with the New I/O API.

5.11.1. Basic Buffer Operations
The java.nio package includes an abstract Buffer class, which defines generic
operations on buffers. This package also defines type-specific subclasses such as

Chapter 5. The Java Platform Page 61 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ByteBuffer, CharBuffer, and IntBuffer. (See Buffer and ByteBuffer in the
reference section for details on these classes and their various methods.) The following
code illustrates typical sequences of buffer operations on a ByteBuffer. The other type-
specific buffer classes have similar methods.

import java.nio.*;

// Buffers don't have public constructors. They are allocated instead.
ByteBuffer b = ByteBuffer.allocate(4096); // Create a buffer for 4,096 bytes
// Or do this to try to get an efficient buffer from the low-level OS
ByteBuffer buf2 = ByteBuffer.allocateDirect(65536);
// Here's another way to get a buffer: by "wrapping" an array
byte[] data; // Assume this array is created and initialized elsewhere
ByteBuffer buf3 = ByteBuffer.wrap(data); // Create buffer that uses the array
// It is also possible to create a "view buffer" to view bytes as other types
buf3.order(ByteOrder.BIG_ENDIAN); // Specify the byte order for the buffer
IntBuffer ib = buf3.asIntBuffer(); // View those bytes as integers

// Now store some data in the buffer
b.put(data); // Copy bytes from array to buffer at current position
b.put((byte)42); // Store another byte at the new current position
b.put(0, (byte)9); // Overwrite first byte in buffer. Don't change position.
b.order(ByteOrder.BIG_ENDIAN); // Set the byte order of the buffer
b.putChar('x'); // Store the two bytes of a Unicode character in buffer
b.putInt(0xcafebabe); // Store four bytes of an int into the buffer

// Here are methods for querying basic numbers about a buffer
int capacity = b.capacity(); // How many bytes can the buffer hold? (4,096)
int position = b.position(); // Where will the next byte be written or read?
// A buffer's limit specifies how many bytes of the buffer can be used.
// When writing into a buffer, this should be the capacity. When reading data
// from a buffer, it should be the number of bytes that were previously
// written.
int limit = b.limit(); // How many should be used?
int remaining = b.remaining(); // How many left? Return limit-position.
boolean more=b.hasRemaining(); // Test if there is still room in the buffer

// The position and limit can also be set with methods of the same name
// Suppose you want to read the bytes you've written into the buffer
b.limit(b.position()); // Set limit to current position
b.position(0); // Set limit to 0; start reading at beginning

// Instead of the two previous calls, you usually use a convenience method
b.flip(); // Set limit to position and position to 0; prepare for reading
b.rewind(); // Set position to 0; don't change limit; prepare for rereading
b.clear(); // Set position to 0 and limit to capacity; prepare for writing

// Assuming you've called flip(), you can start reading bytes from the buffer
buf2.put(b); // Read all bytes from b and put them into buf2
b.rewind(); // Rewind b for rereading from the beginning
byte b0 = b.get(); // Read first byte; increment buffer position
byte b1 = b.get(); // Read second byte; increment buffer position
byte[] fourbytes = new byte[4];
b.get(fourbytes); // Read next four bytes, add 4 to buffer position
byte b9 = b.get(9); // Read 10th byte, without changing current position
int i = b.getInt(); // Read next four bytes as an integer; add 4 to position

// Discard bytes you've already read; shift the remaining ones to the
// beginning of the buffer; set position to new limit and limit to capacity,
// preparing the buffer for writing more bytes into it.
b.compact();

You may notice that many buffer methods return the object on which they operate. This
is done so that method calls can be "chained" in code, as follows:

ByteBuffer bb=ByteBuffer.allocate(32).order(ByteOrder.BIG_ENDIAN).putInt(1234);

Chapter 5. The Java Platform Page 62 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Many methods throughout java.nio and its subpackages return the current object to
enable this kind of method chaining. Note that the use of this kind of chaining is a stylistic
choice (which I have avoided in this chapter) and does not have any significant impact on
efficiency.

ByteBuffer is the most important of the buffer classes. However, another commonly
used class is CharBuffer. CharBuffer objects can be created by wrapping a string and
can also be converted to strings. CharBuffer implements the new
java.lang.CharSequence interface, which means that it can be used like a String or
StringBuffer in certain applications (e.g., for regular expression pattern matching).

// Create a read-only CharBuffer from a string
CharBuffer cb = CharBuffer.wrap("This string is the data for the CharBuffer");
String s = cb.toString(); // Convert to a String with toString() method
System.out.println(cb); // or rely on an implicit call to toString().
char c = cb.charAt(0); // Use CharSequence methods to get characters
char d = cb.get(1); // or use a CharBuffer absolute read.
// A relative read that reads the char and increments the current position
// Note that only the characters between the position and limit are used when
// a CharBuffer is converted to a String or used as a CharSequence.
char e = cb.get();

Bytes in a ByteBuffer are commonly converted to characters in a CharBuffer and vice
versa. We'll see how to do this when we consider the java.nio.charset package.

5.11.2. Basic Channel Operations
Buffers are not all that useful on their own—there isn't much point in storing bytes into a
buffer only to read them out again. Instead, buffers are typically used with channels: your
program stores bytes into a buffer, then passes the buffer to a channel, which reads the
bytes out of the buffer and writes them to a file, network socket, or some other destination.
Or, in the reverse, your program passes a buffer to a channel, which reads bytes from a
file, socket, or other source and stores those bytes into the buffer, where they can then be
retrieved by your program. The java.nio.channels package defines several channel
classes that represent files, sockets, datagrams, and pipes. (We'll see examples of these
concrete classes later in this chapter.) The following code, however, is based on the
capabilities of the various channel interfaces defined by java.nio.channels and
should work with any Channel object:

Channel c; // Object that implements Channel interface; initialized elsewhere
if (c.isOpen()) c.close(); // These are the only methods defined by Channel

// The read() and write() methods are defined by the
// ReadableByteChannel and WritableByteChannel interfaces.
ReadableByteChannel source; // Initialized elsewhere
WritableByteChannel destination; // Initialized elsewhere
ByteBuffer buffer = ByteBuffer.allocateDirect(16384); // Low-level 16 KB buffer

// Here is the basic loop to use when reading bytes from a source channel and
// writing them to a destination channel until there are no more bytes to read
// from the source and no more buffered bytes to write to the destination.
while(source.read(buffer) != -1 || buffer.position() > 0) {
 // Flip buffer: set limit to position and position to 0. This prepares

Chapter 5. The Java Platform Page 63 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // the buffer for reading (which is done by a channel *write* operation).
 buffer.flip();
 // Write some or all of the bytes in the buffer to the destination
 destination.write(buffer);
 // Discard the bytes that were written, copying the remaining ones to
 // the start of the buffer. Set position to limit and limit to capacity,
 // preparing the buffer for writing (done by a channel *read* operation).
 buffer.compact();
}

// Don't forget to close the channels
source.close();
destination.close();

In addition to the ReadableByteChannel and WritableByteChannel interfaces
illustrated in the preceding code, java.nio.channels defines several other channel
interfaces. ByteChannel simply extends the readable and writable interfaces without
adding any new methods. It is a useful shorthand for channels that support both reading
and writing. GatheringByteChannel is an extension of WritableByteChannel that
defines write() methods that gather bytes from more than one buffer and write them
out. Similarly, ScatteringByteChannel is an extension of ReadableByteChannel
that defines read() methods that read bytes from the channel and scatter or distribute
them into more than one buffer. The gathering and scattering write() and read()
methods can be useful when working with network protocols that use fixed-size headers
that you want to store in a buffer separate from the rest of the transferred data.

One confusing point to be aware of is that a channel read operation involves writing (or
putting) bytes into a buffer, and a channel write operation involves reading (or getting)
bytes from a buffer. Thus, when I say that the flip() method prepares a buffer for
reading, I mean that it prepares a buffer for use in a channel write() operation! The
reverse is true for the buffer's compact() method.

5.11.3. Encoding and Decoding Text with Charsets
A java.nio.charset.Charset object represents a character set plus an encoding for
that character set. Charset and its associated classes, CharsetEncoder and
CharsetDecoder, define methods for encoding strings of characters into sequences of
bytes and decoding sequences of bytes into strings of characters. Since these classes are
part of the New I/O API, they use the ByteBuffer and CharBuffer classes:

// The simplest case. Use Charset convenience routines to convert.
Charset charset = Charset.forName("ISO-8859-1"); // Get Latin-1 Charset
CharBuffer cb = CharBuffer.wrap("Hello World"); // Characters to encode
// Encode the characters and store the bytes in a newly allocated ByteBuffer
ByteBuffer bb = charset.encode(cb);
// Decode these bytes into a newly allocated CharBuffer and print them out
System.out.println(charset.decode(bb));

Note the use of the ISO-8859-1 (a.k.a. Latin-1) charset in this example. This 8-bit charset
is suitable for most Western European languages, including English. Programmers who

Chapter 5. The Java Platform Page 64 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

work only with English may also use the 7-bit US-ASCII charset. The Charset class does
not do encoding and decoding itself, and the previous convenience routines create
CharsetEncoder and CharsetDecoder classes internally. If you plan to encode or
decode multiple times, it is more efficient to create these objects yourself:

Charset charset = Charset.forName("US-ASCII"); // Get the charset
CharsetEncoder encoder = charset.newEncoder(); // Create an encoder from it
CharBuffer cb = CharBuffer.wrap("Hello World!"); // Get a CharBuffer
WritableByteChannel destination; // Initialized elsewhere
destination.write(encoder.encode(cb)); // Encode chars and write

The preceding CharsetEncoder.encode() method must allocate a new
ByteBuffer each time it is called. For maximum efficiency, you can call lower-level
methods to do the encoding and decoding into an existing buffer:

ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("ISO-8859-1"); // Get the charset
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, true); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters
 cb.clear(); // Clear char buffer to prepare for decoding
 bb.clear(); // Prepare byte buffer for next channel read
}
source.close(); // Done with the channel, so close it
System.out.flush(); // Make sure all output characters appear

The preceding code relies on the fact that ISO-8859-1 is an 8-bit encoding charset and that
there is one-to-one mapping between characters and bytes. For more complex charsets,
such as the UTF-8 encoding of Unicode or the EUC-JP charset used with Japanese text;
however, this does not hold, and more than one byte is required for some (or all) characters.
When this is the case, there is no guarantee that all bytes in a buffer can be decoded at once
(the end of the buffer may contain a partial character). Also, since a single character may
encode to more than one byte, it can be tricky to know how many bytes a given string will
encode into. The following code shows a loop you can use to decode bytes in a more general
way:

ReadableByteChannel source; // Initialized elsewhere
Charset charset = Charset.forName("UTF-8"); // A Unicode encoding
CharsetDecoder decoder = charset.newDecoder(); // Create a decoder from it
ByteBuffer bb = ByteBuffer.allocateDirect(2048); // Buffer to hold bytes
CharBuffer cb = CharBuffer.allocate(2048); // Buffer to hold characters

// Tell the decoder to ignore errors that might result from bad bytes
decoder.onMalformedInput(CodingErrorAction.IGNORE);
decoder.onUnmappableCharacter(CodingErrorAction.IGNORE);

decoder.reset(); // Reset decoder if it has been used before
while(source.read(bb) != -1) { // Read bytes from the channel until EOF
 bb.flip(); // Flip byte buffer to prepare for decoding
 decoder.decode(bb, cb, false); // Decode bytes into characters
 cb.flip(); // Flip char buffer to prepare for printing
 System.out.print(cb); // Print the characters

Chapter 5. The Java Platform Page 65 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 cb.clear(); // Clear the character buffer
 bb.compact(); // Discard already decoded bytes
}
source.close(); // Done with the channel, so close it

// At this point, there may still be some bytes in the buffer to decode
bb.flip(); // Prepare for decoding
decoder.decode(bb, cb, true); // Pass true to indicate this is the last call
decoder.flush(cb); // Output any final characters
cb.flip(); // Flip char buffer
System.out.print(cb); // Print the final characters

5.11.4. Working with Files
FileChannel is a concrete Channel class that performs file I/O and implements
ReadableByteChannel and WritableByteChannel (although its read() method
works only if the underlying file is open for reading, and its write() method works only
if the file is open for writing). Obtain a FileChannel object by using the java.io package
to create a FileInputStream, a FileOutputStream, or a RandomAccessFile and
then call the getChannel() method (added in Java 1.4) of that object. As an example,
you can use two FileChannel objects to copy a file:

String filename = "test"; // The name of the file to copy
// Create streams to read the original and write the copy
FileInputStream fin = new FileInputStream(filename);
FileOutputStream fout = new FileOutputStream(filename + ".copy");
// Use the streams to create corresponding channel objects
FileChannel in = fin.getChannel();
FileChannel out = fout.getChannel();
// Allocate a low-level 8KB buffer for the copy
ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
while(in.read(buffer) != -1 || buffer.position() > 0) {
 buffer.flip(); // Prepare to read from the buffer and write to the file
 out.write(buffer); // Write some or all buffer contents
 buffer.compact(); // Discard all bytes that were written and prepare to
} // read more from the file and store them in the buffer.
in.close(); // Always close channels and streams when done with them
out.close();
fin.close(); // Note that closing a FileChannel does not
fout.close(); // automatically close the underlying stream.

FileChannel has special transferTo() and transferFrom() methods that make
it particularly easy (and on many operating systems, particularly efficient) to transfer a
specified number of bytes from a FileChannel to some other specified channel, or from
some other channel to a FileChannel. These methods allow us to simplify the preceding
file-copying code to the following:

FileChannel in, out; // Assume these are initialized as in the
 // preceding example.
long numbytes = in.size(); // Number of bytes in original file
in.transferTo(0, numbytes, out); // Transfer that amount to output channel

This code could be equally well-written using transferFrom() instead of transferTo
() (note that these two methods expect their arguments in different orders):

long numbytes = in.size();
out.transferFrom(in, 0, numbytes);

Chapter 5. The Java Platform Page 66 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FileChannel has other capabilities that are not shared by other channel classes. One of
the most important is the ability to "memory map" a file or a portion of a file, i.e., to obtain
a MappedByteBuffer (a subclass of ByteBuffer) that represents the contents of the
file and allows you to read (and optionally write) file contents simply by reading from and
writing to the buffer. Memory mapping a file is a somewhat expensive operation, so this
technique is usually efficient only when you are working with a large file to which you need
repeated access. Memory mapping offers you yet another way to perform the same file-
copy operation shown previously:

long filesize = in.size();
ByteBuffer bb = in.map(FileChannel.MapMode.READ_ONLY, 0, filesize);
while(bb.hasRemaining()) out.write(bb);

The channel interfaces defined by java.nio.channels include ByteChannel but not
CharChannel. The channel API is low-level and provides methods for reading bytes only.
All of the previous examples have treated files as binary files. It is possible to use the
CharsetEncoder and CharsetDecoder classes introduced earlier to convert between
bytes and characters, but when you want to work with text files, the Reader and
Writer classes of the java.io package are usually much easier to use than
CharBuffer. Fortunately, the Channels class defines convenience methods that bridge
between the old and new APIs. Here is code that wraps a Reader and a Writer object
around input and output channels, reads lines of Latin-1 text from the input channel, and
writes them back out to the output channel, with the encoding changed to UTF-8:

ReadableByteChannel in; // Assume these are initialized elsewhere
WritableByteChannel out;
// Create a Reader and Writer from a FileChannel and charset name
BufferedReader reader=new BufferedReader(Channels.newReader(in, "ISO-8859-1"));
PrintWriter writer = new PrintWriter(Channels.newWriter(out, "UTF-8"));
String line;
while((line = reader.readLine()) != null) writer.println(line);
reader.close();
writer.close();

Unlike the FileInputStream and FileOutputStream classes, the FileChannel
class allows random access to the contents of the file. The zero-argument position()
method returns the file pointer (the position of the next byte to be read), and the one-
argument position() method allows you to set this pointer to any value you want. This
allows you to skip around in a file in the way that the java.io.RandomAccessFile
does. Here is an example:

// Suppose you have a file that has data records scattered throughout, and the
// last 1,024 bytes of the file are an index that provides the position of
// those records. Here is code that reads the index of the file, looks up the
// position of the first record within the file and then reads that record.
FileChannel in = new FileInputStream("test.data").getChannel(); // The channel
ByteBuffer index = ByteBuffer.allocate(1024); // A buffer to hold the index
long size = in.size(); // The size of the file
in.position(size - 1024); // Position at start of index
in.read(index); // Read the index

Chapter 5. The Java Platform Page 67 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

int record0Position = index.getInt(0); // Get first index entry
in.position(record0Position); // Position file at that point
ByteBuffer record0 = ByteBuffer.allocate(128); // Get buffer to hold data
in.read(record0); // Finally, read the record

The final feature of FileChannel that we'll consider here is its ability to lock a file or a
portion of a file against all concurrent access (an exclusive lock) or against concurrent
writes (a shared lock). (Note that some operating systems strictly enforce all locks while
others provide only an advisory locking facility that requires programs to cooperate and
to attempt to acquire a lock before reading or writing portions of a shared file.) In the
previous random-access example, suppose we wanted to ensure that no other program
was modifying the record data while we read it. We could acquire a shared lock on that
portion of the file with the following code:

FileLock lock = in.lock(record0Position, // Start of locked region
 128, // Length of locked region
 true); // Shared lock: prevent concurrent updates
 // but allow concurrent reads.
in.position(record0Position); // Move to start of index
in.read(record0); // Read the index data
lock.release(); // You're done with the lock, so release it

5.11.5. Client-Side Networking
The New I/O API includes networking capabilities as well as file-access capabilities. To
communicate over the network, you can use the SocketChannel class. Create a
SocketChannel with the static open() method, then read and write bytes from and to
it as you would with any other channel object. The following code uses SocketChannel
to send an HTTP request to a web server and saves the server's response (including all of
the HTTP headers) to a file. Note the use of java.net.InetSocketAddress, a subclass
of java.net.SocketAddress, to tell the SocketChannel what to connect to. These
classes were also introduced as part of the New I/O API.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

// Create a SocketChannel connected to the web server at www.oreilly.com
SocketChannel socket =
 SocketChannel.open(new InetSocketAddress("www.oreilly.com",80));
// A charset for encoding the HTTP request
Charset charset = Charset.forName("ISO-8859-1");
// Send an HTTP request to the server. Start with a string, wrap it to
// a CharBuffer, encode it to a ByteBuffer, then write it to the socket.
socket.write(charset.encode(CharBuffer.wrap("GET / HTTP/1.0\r\n\r\n")));
// Create a FileChannel to save the server's response to
FileOutputStream out = new FileOutputStream("oreilly.html");
FileChannel file = out.getChannel();
// Get a buffer for holding bytes while transferring from socket to file
ByteBuffer buffer = ByteBuffer.allocateDirect(8192);
// Now loop until all bytes are read from the socket and written to the file
while(socket.read(buffer) != -1 || buffer.position() > 0) { // Are we done?
 buffer.flip(); // Prepare to read bytes from buffer and write to file
 file.write(buffer); // Write some or all bytes to the file
 buffer.compact(); // Discard those that were written

Chapter 5. The Java Platform Page 68 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

}
socket.close(); // Close the socket channel
file.close(); // Close the file channel
out.close(); // Close the underlying file

Another way to create a SocketChannel is with the no-argument version of open(),
which creates an unconnected channel. This allows you to call the socket() method to
obtain the underlying socket, configure the socket as desired, and connect to the desired
host with the connect method. For example:

SocketChannel sc = SocketChannel.open(); // Open an unconnected socket channel
Socket s = sc.socket(); // Get underlying java.net.Socket
s.setSoTimeout(3000); // Time out after three seconds
// Now connect the socket channel to the desired host and port
sc.connect(new InetSocketAddress("www.davidflanagan.com", 80));

ByteBuffer buffer = ByteBuffer.allocate(8192); // Create a buffer
try { sc.read(buffer); } // Try to read from socket
catch(SocketTimeoutException e) { // Catch timeouts here
 System.out.println("The remote computer is not responding.");
 sc.close();
}

In addition to the SocketChannel class, the java.nio.channels package defines a
DatagramChannel for networking with datagrams instead of sockets.
DatagramChannel is not demonstrated here, but you can read about it in the reference
section.

One of the most powerful features of the New I/O API is that channels such as
SocketChannel and DatagramChannel can be used in nonblocking mode. We'll see
examples of this in later sections.

5.11.6. Server-Side Networking
The java.net package defines a Socket class for communication between a client and
a server and defines a ServerSocket class used by the server to listen for and accept
connections from clients. The java.nio.channels package is analogous: it defines a
SocketChannel class for data transfer and a ServerSocketChannel class for
accepting connections. ServerSocketChannel is an unusual channel because it does
not implement ReadableByteChannel or WritableByteChannel. Instead of read
() and write() methods, it has an accept() method for accepting client connections
and obtaining a SocketChannel through which it communicates with the client. Here is
the code for a simple, single-threaded server that listens for connections on port 8000 and
reports the current time to any client that connects:

import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;

public class DateServer {
 public static void main(String[] args) throws java.io.IOException {
 // Get a CharsetEncoder for encoding the text sent to the client

Chapter 5. The Java Platform Page 69 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 CharsetEncoder encoder = Charset.forName("US-ASCII").newEncoder();

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));

 for(;;) { // This server runs forever
 // Wait for a client to connect
 SocketChannel client = server.accept();
 // Get the current date and time as a string
 String response = new java.util.Date().toString() + "\r\n";
 // Wrap, encode, and send the string to the client
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Disconnect from the client
 client.close();
 }
 }
}

5.11.7. Nonblocking I/O
The preceding DateServer class is a simple network server. Because it does not maintain
a connection with any client, it never needs to communicate with more than one at a time,
and there is never more than one SocketChannel in use. More realistic servers must be
able to communicate with more than one client at a time. The java.io and java.net
APIs allow only blocking I/O, so servers written using these APIs must use a separate
thread for each client. For large-scale servers with many clients, this approach does not
scale well. To solve this problem, the New I/O API allows most channels (but not
FileChannel) to be used in nonblocking mode and allows a single thread to manage all
pending connections. This is done with a Selector object, which keeps track of a set of
registered channels and can block until one or more of those channels is ready for I/O, as
the following code illustrates. This is a longer example than most in this chapter, but it is
a complete working server class that manages a ServerSocketChannel and any number
of SocketChannel connections to clients through a single Selector object.

import java.io.*;
import java.net.*;
import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.*; // For Set and Iterator

public class NonBlockingServer {
 public static void main(String[] args) throws IOException {

 // Get the character encoders and decoders you'll need
 Charset charset = Charset.forName("ISO-8859-1");
 CharsetEncoder encoder = charset.newEncoder();
 CharsetDecoder decoder = charset.newDecoder();

 // Allocate a buffer for communicating with clients
 ByteBuffer buffer = ByteBuffer.allocate(512);

 // All of the channels in this code will be in nonblocking mode.
 // So create a Selector object that will block while monitoring
 // all of the channels and stop blocking only when one or more
 // of the channels is ready for I/O of some sort.
 Selector selector = Selector.open();

Chapter 5. The Java Platform Page 70 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // Create a new ServerSocketChannel and bind it to port 8000
 // Note that this must be done using the underlying ServerSocket
 ServerSocketChannel server = ServerSocketChannel.open();
 server.socket().bind(new java.net.InetSocketAddress(8000));
 // Put the ServerSocketChannel into nonblocking mode
 server.configureBlocking(false);
 // Now register it with the Selector (note that register() is called
 // on the channel, not on the selector object, however).
 // The SelectionKey represents the registration of this channel with
 // this Selector.
 SelectionKey serverkey = server.register(selector,
 SelectionKey.OP_ACCEPT);

 for(;;) { // The main server loop. The server runs forever.
 // This call blocks until there is activity on one of the
 // registered channels. This is the key method in nonblocking
 // I/O.
 selector.select();

 // Get a java.util.Set containing the SelectionKey objects for
 // all channels that are ready for I/O.
 Set keys = selector.selectedKeys();

 // Use a java.util.Iterator to loop through the selected keys
 for(Iterator i = keys.iterator(); i.hasNext();) {
 // Get the next SelectionKey in the set and remove it
 // from the set. It must be removed explicitly, or it will
 // be returned again by the next call to select().
 SelectionKey key = (SelectionKey) i.next();
 i.remove();

 // Check whether this key is the SelectionKey obtained when
 // you registered the ServerSocketChannel.
 if (key == serverkey) {
 // Activity on the ServerSocketChannel means a client
 // is trying to connect to the server.
 if (key.isAcceptable()) {
 // Accept the client connection and obtain a
 // SocketChannel to communicate with the client.
 SocketChannel client = server.accept();
 // Put the client channel in nonblocking mode
 client.configureBlocking(false);
 // Now register it with the Selector object,
 // telling it that you'd like to know when
 // there is data to be read from this channel.
 SelectionKey clientkey =
 client.register(selector, SelectionKey.OP_READ);
 // Attach some client state to the key. You'll
 // use this state when you talk to the client.
 clientkey.attach(new Integer(0));
 }
 }
 else {
 // If the key obtained from the Set of keys is not the
 // ServerSocketChannel key, then it must be a key
 // representing one of the client connections.
 // Get the channel from the key.
 SocketChannel client = (SocketChannel) key.channel();

 // If you are here, there should be data to read from
 // the channel, but double-check.
 if (!key.isReadable()) continue;

 // Now read bytes from the client. Assume that all the
 // client's bytes are in one read operation.
 int bytesread = client.read(buffer);

 // If read() returns -1, it indicates end-of-stream,
 // which means the client has disconnected, so
 // deregister the selection key and close the channel.
 if (bytesread == -1) {
 key.cancel();

Chapter 5. The Java Platform Page 71 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 client.close();
 continue;
 }

 // Otherwise, decode the bytes to a request string
 buffer.flip();
 String request = decoder.decode(buffer).toString();
 buffer.clear();
 // Now reply to the client based on the request string
 if (request.trim().equals("quit")) {
 // If the request was "quit", send a final message
 // Close the channel and deregister the
 // SelectionKey
 client.write(encoder.encode(CharBuffer.wrap("Bye.")));
 key.cancel();
 client.close();
 }
 else {
 // Otherwise, send a response string comprised of
 // the sequence number of this request plus an
 // uppercase version of the request string. Note
 // that you keep track of the sequence number by
 // "attaching" an Integer object to the
 // SelectionKey and incrementing it each time.

 // Get sequence number from SelectionKey
 int num = ((Integer)key.attachment()).intValue();
 // For response string
 String response = num + ": " +
 request.toUpperCase();
 // Wrap, encode, and write the response string
 client.write(encoder.encode(CharBuffer.wrap(response)));
 // Attach an incremented sequence nubmer to the key
 key.attach(new Integer(num+1));
 }
 }
 }
 }
 }
}

Nonblocking I/O is most useful for writing network servers. It is also useful in clients that
have more than one network connection pending at the same time. For example, consider
a web browser downloading a web page and the images referenced by that page at the same
time. One other interesting use of nonblocking I/O is to perform nonblocking socket
connection operations. The idea is that you can ask a SocketChannel to establish a
connection to a remote host and then go do other stuff (such as build a GUI, for example)
while the underlying OS is setting up the connection across the network. Later, you do a
select() call to block until the connection has been established, if it hasn't been already.
The code for a nonblocking connect looks like this:

// Create a new, unconnected SocketChannel. Put it in nonblocking
// mode, register it with a new Selector, and then tell it to connect.
// The connect call will return instead of waiting for the network
// connect to be fully established.
Selector selector = Selector.open();
SocketChannel channel = SocketChannel.open();
channel.configureBlocking(false);
channel.register(selector, SelectionKey.OP_CONNECT);
channel.connect(new InetSocketAddress(hostname, port));

// Now go do other stuff while the connection is set up
// For example, you can create a GUI here

Chapter 5. The Java Platform Page 72 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Now block if necessary until the SocketChannel is ready to connect.
// Since you've registered only one channel with this selector, you
// don't need to examine the key set; you know which channel is ready.
while(selector.select() == 0) /* empty loop */;

// This call is necessary to finish the nonblocking connections
channel.finishConnect();

// Finally, close the selector, which deregisters the channel from it
selector.close();

5.12. XML
Java 1.4 and Java 5.0 have added powerful XML processing features to the Java platform:

org.xml.sax

This package and its two subpackages define the de facto standard SAX API (SAX
stands for Simple API for XML). SAX is an event-driven, XML-parsing API: a SAX
parser invokes methods of a specified ContentHandler object (as well as some other
related handler objects) as it parses an XML document. The structure and content of
the document are fully described by the method calls. This is a streaming API that
does not build any permanent representation of the document. It is up to the
ContentHandler implementation to store any state or perform any actions that are
appropriate. This package includes classes for the SAX 2 API and deprecated classes
for SAX 1.

org.w3c.dom

This package defines interfaces that represent an XML document in tree form. The
Document Object Model (DOM) is a recommendation (essentially a standard) of the
World Wide Web Consortium (W3C). A DOM parser reads an XML document and
converts it into a tree of nodes that represent the full content of the document. Once
the tree representation of the document is created, a program can examine and
manipulate it however it wants. Java 1.4 includes the core module of the Level 2 DOM,
and Java 5.0 includes the core, events, and load/save modules of the Level 3 DOM.

javax.xml.parsers

This package provides high-level interfaces for instantiating SAX and DOM parsers
for parsing XML documents.

Chapter 5. The Java Platform Page 73 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

javax.xml.transform

This package and its subpackages define a Java API for transforming XML document
content and representation using the XSLT standard.

javax.xml.validation

This Java 5.0 package provides support for validating an XML document against a
schema. Implementations are required to support the W3C XML Schema standard
and may also support other schema types as well.

javax.xml.xpath

This package, also new in Java 5.0, supports the evaluation of XPath for selecting
nodes in an XML document.

Examples using each of these packages are presented in the following sections.

5.12.1. Parsing XML with SAX
The first step in parsing an XML document with SAX is to obtain a SAX parser. If you have
a SAX parser implementation of your own, you can simply instantiate the appropriate
parser class. It is usually simpler, however, to use the javax.xml.parsers package to
instantiate whatever SAX parser is provided by the Java implementation. The code looks
like this:

import javax.xml.parsers.*;

// Obtain a factory object for creating SAX parsers
SAXParserFactory parserFactory = SAXParserFactory.newInstance();

// Configure the factory object to specify attributes of the parsers it creates
parserFactory.setValidating(true);
parserFactory.setNamespaceAware(true);

// Now create a SAXParser object
SAXParser parser = parserFactory.newSAXParser(); // May throw exceptions

The SAXParser class is a simple wrapper around the org.xml.sax.XMLReader class.
Once you have obtained one, as shown in the previous code, you can parse a document by
simply calling one of the various parse() methods. Some of these methods use the
deprecated SAX 1 HandlerBase class, and others use the current SAX 2
org.xml.sax.helpers.DefaultHandler class. The DefaultHandler class
provides an empty implementation of all the methods of the ContentHandler,
ErrorHandler, DTDHandler, and EntityResolver interfaces. These are all the
methods that the SAX parser can call while parsing an XML document. By subclassing
DefaultHandler and defining the methods you care about, you can perform whatever

Chapter 5. The Java Platform Page 74 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

actions are necessary in response to the method calls generated by the parser. The
following code shows a method that uses SAX to parse an XML file and determine the
number of XML elements that appear in a document as well as the number of characters
of plain text (possibly excluding "ignorable whitespace") that appear within those
elements:

import java.io.*;
import javax.xml.parsers.*;
import org.xml.sax.*;
import org.xml.sax.helpers.*;

public class SAXCount {
 public static void main(String[] args)
 throws SAXException,IOException, ParserConfigurationException
 {
 // Create a parser factory and use it to create a parser
 SAXParserFactory parserFactory = SAXParserFactory.newInstance();
 SAXParser parser = parserFactory.newSAXParser();
 // This is the name of the file you're parsing
 String filename = args[0];
 // Instantiate a DefaultHandler subclass to do your counting for you
 CountHandler handler = new CountHandler();
 // Start the parser. It reads the file and calls methods of the handler.
 parser.parse(new File(filename), handler);
 // When you're done, report the results stored by your handler object
 System.out.println(filename + " contains " + handler.numElements +
 " elements and " + handler.numChars +
 " other characters ");
 }

 // This inner class extends DefaultHandler to count elements and text in
 // the XML file and saves the results in public fields. There are many
 // other DefaultHandler methods you could override, but you need only
 // these.
 public static class CountHandler extends DefaultHandler {
 public int numElements = 0, numChars = 0; // Save counts here
 // This method is invoked when the parser encounters the opening tag
 // of any XML element. Ignore the arguments but count the element.
 public void startElement(String uri, String localname, String qname,
 Attributes attributes) {
 numElements++;
 }

 // This method is called for any plain text within an element
 // Simply count the number of characters in that text
 public void characters(char[] text, int start, int length) {
 numChars += length;
 }
 }
}

5.12.2. Parsing XML with DOM
The DOM API is much different from the SAX API. While SAX is an efficient way to scan
an XML document, it is not well-suited for programs that want to modify documents.
Instead of converting an XML document into a series of method calls, a DOM parser
converts the document into an org.w3c.dom.Document object, which is a tree of
org.w3c.dom.Node objects. The conversion of the complete XML document to tree form
allows random access to the entire document but can consume substantial amounts of
memory.

Chapter 5. The Java Platform Page 75 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In the DOM API, each node in the document tree implements the Node interface and a
type-specific subinterface. (The most common types of node in a DOM document are
Element and Text nodes.) When the parser is done parsing the document, your program
can examine and manipulate that tree using the various methods of Node and its
subinterfaces. The following code uses JAXP to obtain a DOM parser (which, in JAXP
parlance, is called a DocumentBuilder). It then parses an XML file and builds a
document tree from it. Next, it examines the Document tree to search for <sect1>
elements and prints the contents of the <title> of each.

import java.io.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class GetSectionTitles {
 public static void main(String[] args)
 throws IOException, ParserConfigurationException,
 org.xml.sax.SAXException
 {
 // Create a factory object for creating DOM parsers and configure it
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 factory.setIgnoringComments(true); // We want to ignore comments
 factory.setCoalescing(true); // Convert CDATA to Text nodes
 factory.setNamespaceAware(false); // No namespaces: this is default
 factory.setValidating(false); // Don't validate DTD: also default

 // Now use the factory to create a DOM parser, a.k.a. DocumentBuilder
 DocumentBuilder parser = factory.newDocumentBuilder();

 // Parse the file and build a Document tree to represent its content
 Document document = parser.parse(new File(args[0]));

 // Ask the document for a list of all <sect1> elements it contains
 NodeList sections = document.getElementsByTagName("sect1");
 // Loop through those <sect1> elements one at a time
 int numSections = sections.getLength();
 for(int i = 0; i < numSections; i++) {
 Element section = (Element)sections.item(i); // A <sect1>
 // The first Element child of each <sect1> should be a <title>
 // element, but there may be some whitespace Text nodes first, so
 // loop through the children until you find the first element
 // child.
 Node title = section.getFirstChild();
 while(title != null && title.getNodeType() != Node.ELEMENT_NODE)
 title = title.getNextSibling();
 // Print the text contained in the Text node child of this element
 if (title != null)
 System.out.println(title.getFirstChild().getNodeValue());
 }
 }
}

5.12.3. Transforming XML Documents
The javax.xml.transform package defines a TransformerFactory class for
creating Transformer objects. A Transformer can transform a document from its
Source representation into a new Result representation and optionally apply an XSLT
transformation to the document content in the process. Three subpackages define concrete
implementations of the Source and Result interfaces, which allow documents to be
transformed among three representations:

Chapter 5. The Java Platform Page 76 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

javax.xml.transform.stream

Represents documents as streams of XML text.

javax.xml.transform.dom

Represents documents as DOM Document trees.

javax.xml.transform.sax

Represents documents as sequences of SAX method calls.

The following code shows one use of these packages to transform the representation of a
document from a DOM Document tree into a stream of XML text. An interesting feature
of this code is that it does not create the Document tree by parsing a file; instead, it builds
it up from scratch.

import javax.xml.transform.*;
import javax.xml.transform.dom.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class DOMToStream {
 public static void main(String[] args)
 throws ParserConfigurationException,
 TransformerConfigurationException,
 TransformerException
 {
 // Create a DocumentBuilderFactory and a DocumentBuilder
 DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance();
 DocumentBuilder db = dbf.newDocumentBuilder();
 // Instead of parsing an XML document, however, just create an empty
 // document that you can build up yourself.
 Document document = db.newDocument();

 // Now build a document tree using DOM methods
 Element book = document.createElement("book"); // Create new element
 book.setAttribute("id", "javanut4"); // Give it an attribute
 document.appendChild(book); // Add to the document
 for(int i = 1; i <= 3; i++) { // Add more elements
 Element chapter = document.createElement("chapter");
 Element title = document.createElement("title");
 title.appendChild(document.createTextNode("Chapter " + i));
 chapter.appendChild(title);
 chapter.appendChild(document.createElement("para"));
 book.appendChild(chapter);
 }

 // Now create a TransformerFactory and use it to create a Transformer
 // object to transform our DOM document into a stream of XML text.
 // No arguments to newTransformer() means no XSLT stylesheet
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer();

 // Create the Source and Result objects for the transformation
 DOMSource source = new DOMSource(document); // DOM document
 StreamResult result = new StreamResult(System.out); // to XML text

Chapter 5. The Java Platform Page 77 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // Finally, do the transformation
 transformer.transform(source, result);
 }
}

The most interesting uses of javax.xml.transform involve XSLT stylesheets. XSLT is
a complex but powerful XML grammar that describes how XML document content should
be converted to another form (e.g., XML, HTML, or plain text). A tutorial on XSLT
stylesheets is beyond the scope of this book, but the following code (which contains only
six key lines) shows how you can apply such a stylesheet (which is an XML document itself)
to another XML document and write the resulting document to a stream:

import java.io.*;
import javax.xml.transform.*;
import javax.xml.transform.stream.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

public class Transform {
 public static void main(String[] args)
 throws TransformerConfigurationException,
 TransformerException
 {
 // Get Source and Result objects for input, stylesheet, and output
 StreamSource input = new StreamSource(new File(args[0]));
 StreamSource stylesheet = new StreamSource(new File(args[1]));
 StreamResult output = new StreamResult(new File(args[2]));

 // Create a transformer and perform the transformation
 TransformerFactory tf = TransformerFactory.newInstance();
 Transformer transformer = tf.newTransformer(stylesheet);
 transformer.transform(input, output);
 }
}

5.12.4. Validating XML Documents
The javax.xml.validation package allows you to validate XML documents against
a schema. SAX and DOM parsers obtained from the javax.xml.parsers package can
perform validation against a DTD during the parsing process, but this package separates
validation from parsing and also provides general support for arbitrary schema types. All
implementations must support W3C XML Schema and are allowed to support other
schema types, such as RELAX NG.

To use this package, begin with a SchemaFactory instance—a parser for a specific type
of schema. Use this parser to parse a schema file into a Schema object. Obtain a
Validator from the Schema, and then use the Validator to validate your XML
document. The document is specified as a SAXSource or DOMSource object. You may
recall these classes from the subpackages of javax.xml.transform.

If the document is valid, the validate() method of the Validator object returns
normally. If it is not valid, validate() throws a SAXException. You can install an

Chapter 5. The Java Platform Page 78 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

org.xml.sax.ErrorHandler object for the Validator to provide some control over
the kinds of validation errors that cause exceptions.

import javax.xml.XMLConstants;
import javax.xml.validation.*;
import javax.xml.transform.sax.SAXSource;
import org.xml.sax.*;
import java.io.*;

public class Validate {
 public static void main(String[] args) throws IOException {
 File documentFile = new File(args[0]); // 1st arg is document
 File schemaFile = new File(args[1]); // 2nd arg is schema

 // Get a parser to parse W3C schemas. Note use of javax.xml package
 // This package contains just one class of constants.
 SchemaFactory factory =
 SchemaFactory.newInstance(XMLConstants.W3C_XML_SCHEMA_NS_URI);

 // Now parse the schema file to create a Schema object
 Schema schema = null;
 try { schema = factory.newSchema(schemaFile); }
 catch(SAXException e) { fail(e); }

 // Get a Validator object from the Schema.
 Validator validator = schema.newValidator();

 // Get a SAXSource object for the document
 // We could use a DOMSource here as well
 SAXSource source =
 new SAXSource(new InputSource(new FileReader(documentFile)));

 // Now validate the document
 try { validator.validate(source); }
 catch(SAXException e) { fail(e); }

 System.err.println("Document is valid");
 }

 static void fail(SAXException e) {
 if (e instanceof SAXParseException) {
 SAXParseException spe = (SAXParseException) e;
 System.err.printf("%s:%d:%d: %s%n",
 spe.getSystemId(), spe.getLineNumber(),
 spe.getColumnNumber(), spe.getMessage());
 }
 else {
 System.err.println(e.getMessage());
 }
 System.exit(1);
 }
}

5.12.5. Evaluating XPath Expressions
XPath is a language for referring to specific nodes in an XML document. For example, the
XPath expression "//section/title/text()" refers to the text inside of a <title> element
inside a <section> element at any depth within the document. A full description of the
XPath language is beyond the scope of this book. The javax.xml.xpath package, new
in Java 5.0, provides a way to find all nodes in a document that match an XPath expression.

import javax.xml.xpath.*;
import javax.xml.parsers.*;
import org.w3c.dom.*;

Chapter 5. The Java Platform Page 79 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class XPathEvaluator {
 public static void main(String[] args)
 throws ParserConfigurationException, XPathExpressionException,
 org.xml.sax.SAXException, java.io.IOException
 {
 String documentName = args[0];
 String expression = args[1];

 // Parse the document to a DOM tree
 // XPath can also be used with a SAX InputSource
 DocumentBuilder parser =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document doc = parser.parse(new java.io.File(documentName));

 // Get an XPath object to evaluate the expression
 XPath xpath = XPathFactory.newInstance().newXPath();

 System.out.println(xpath.evaluate(expression, doc));

 // Or evaluate the expression to obtain a DOM NodeList of all matching
 // nodes. Then loop through each of the resulting nodes
 NodeList nodes = (NodeList)xpath.evaluate(expression, doc,
 XPathConstants.NODESET);
 for(int i = 0, n = nodes.getLength(); i < n; i++) {
 Node node = nodes.item(i);
 System.out.println(node);
 }
 }
}

5.13. Types, Reflection, and Dynamic Loading
The java.lang.Class class represents data types in Java and, along with the classes in
the java.lang.reflect package, gives Java programs the capability of introspection
(or self-reflection); a Java class can look at itself, or any other class, and determine its
superclass, what methods it defines, and so on.

5.13.1. Class Objects
You can obtain a Class object in Java in several ways:

// Obtain the Class of an arbitrary object o
Class c = o.getClass();

// Obtain a Class object for primitive types with various predefined constants
c = Void.TYPE; // The special "no-return-value" type
c = Byte.TYPE; // Class object that represents a byte
c = Integer.TYPE; // Class object that represents an int
c = Double.TYPE; // etc; see also Short, Character, Long, Float

// Express a class literal as a type name followed by ".class"
c = int.class; // Same as Integer.TYPE
c = String.class; // Same as "dummystring".getClass()
c = byte[].class; // Type of byte arrays
c = Class[][].class; // Type of array of arrays of Class objects

5.13.2. Reflecting on a Class
Once you have a Class object, you can perform some interesting reflective operations
with it:

Chapter 5. The Java Platform Page 80 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

import java.lang.reflect.*;

Object o; // Some unknown object to investigate
Class c = o.getClass(); // Get its type

// If it is an array, figure out its base type
while (c.isArray()) c = c.getComponentType();

// If c is not a primitive type, print its class hierarchy
if (!c.isPrimitive()) {
 for(Class s = c; s != null; s = s.getSuperclass())
 System.out.println(s.getName() + " extends");
}

// Try to create a new instance of c; this requires a no-arg constructor
Object newobj = null;
try { newobj = c.newInstance(); }
catch (Exception e) {
 // Handle InstantiationException, IllegalAccessException
}

// See if the class has a method named setText that takes a single String
// If so, call it with a string argument
try {
 Method m = c.getMethod("setText", new Class[] { String.class });
 m.invoke(newobj, new Object[] { "My Label" });
} catch(Exception e) { /* Handle exceptions here */ }

// These are varargs methods in Java 5.0 so the syntax is much cleaner.
// Look for and invoke a method named "put" that takes two Object arguments
try {
 Method m = c.getMethod("add", Object.class, Object.class);
 m.invoke(newobj, "key", "value");
} catch(Exception e) { System.out.println(e); }

// In Java 5.0 we can use reflection on enumerated types and constants
Class<Thread.State> ts = Thread.State.class; // Thread.State type
if (ts.isEnum()) { // If it is an enumerated type
 Thread.State[] constants = ts.getEnumConstants(); // get its constants
}
try {
 Field f = ts.getField("RUNNABLE"); // Get the field named "RUNNABLE"
 System.out.println(f.isEnumConstant()); // Is it an enumerated constant?
}
catch(Exception e) { System.out.println(e); }

// The VM discards generic type information at runtime, but it is stored
// in the class file for the compiler and is accessible through reflection
try {
 Class map = Class.forName("java.util.Map");

 TypeVariable<?>[] typevars = map.getTypeParameters();
 for(TypeVariable<?> typevar : typevars) {
 System.out.print(typevar.getName());
 Type[] bounds = typevar.getBounds();
 if (bounds.length > 0) System.out.print(" extends ");
 for(int i = 0; i < bounds.length; i++) {
 if (i > 0) System.out.print(" & ");
 System.out.print(bounds[i]);
 }
 System.out.println();
 }
}
catch(Exception e) { System.out.println(e); }

// In Java 5.0, reflection can also be used on annotation types and to
// determine the values of runtime visible annotations
Class<?> a = Override.class; // an annotation class
if (a.isAnnotation()) { // is this an annotation type?
 // Look for some meta-annotations

Chapter 5. The Java Platform Page 81 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 java.lang.annotation.Retention retention =
 a.getAnnotation(java.lang.annotation.Retention.class);
 if (retention != null)
 System.out.printf("Retention: %s%n", retention.value());
}

5.13.3. Dynamic Class Loading
Class also provides a simple mechanism for dynamic class loading in Java. For more
complete control over dynamic class loading, however, you should use a
java.lang.ClassLoader object, typically a java.net.URLClassLoader. This
technique is useful, for example, when you want to load a class that is named in a
configuration file instead of being hardcoded into your program:

// Dynamically load a class specified by name in a config file
String classname = // Look up the name of the class
 config.getProperty("filterclass", // The property name
 "com.davidflanagan.filters.Default"); // A default

try {
 Class c = Class.forName(classname); // Dynamically load the class
 Object o = c.newInstance(); // Dynamically instantiate it
} catch (Exception e) { /* Handle exceptions */ }

The preceding code works only if the class to be loaded is in the class path. If this is not
the case, you can create a custom ClassLoader object to load a class from a path (or URL)
you specify yourself:

import java.net.*;
String classdir = config.getProperty("filterDirectory"); // Look up class path
try {
 ClassLoader loader = new URLClassLoader(new URL[] { new URL(classdir) });
 Class c = loader.loadClass(classname);
}
catch (Exception e) { /* Handle exceptions */ }

5.13.4. Dynamic Proxies
The Proxy class and InvocationHandler interface to the java.lang.reflect
package were added to Java 1.3. Proxy is a powerful but infrequently used class that allows
you to dynamically create a new class or instance that implements a specified interface or
set of interfaces. It also dispatches invocations of the interface methods to an
InvocationHandler object.

5.14. Object Persistence
The Java platform provides two mechanisms for object persistence: the ability to save
object state so that the object can later be recreated. Both mechanisms involve
serialization; the second is aimed particularly at JavaBeans.

Chapter 5. The Java Platform Page 82 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5.14.1. Serialization
One of the most important features of the java.io package is the ability to serialize
objects: to convert an object into a stream of bytes that can later be deserialized back into
a copy of the original object. The following code shows how to use serialization to save an
object to a file and later read it back:

Object o; // The object we are serializing; it must implement Serializable
File f; // The file we are saving it to

try {
 // Serialize the object
 ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream(f));
 oos.writeObject(o);
 oos.close();

 // Read the object back in
 ObjectInputStream ois = new ObjectInputStream(new FileInputStream(f));
 Object copy = ois.readObject();
 ois.close();
}
catch (IOException e) { /* Handle input/output exceptions */ }
catch (ClassNotFoundException cnfe) { /* readObject() can throw this */ }

The previous example serializes to a file, but remember, you can write serialized objects
to any type of stream. Thus, you can write an object to a byte array, then read it back from
the byte array, creating a deep copy of the object. You can write the object's bytes to a
compression stream or even write the bytes to a stream connected across a network to
another program!

5.14.2. JavaBeans Persistence
Java 1.4 introduced a serialization mechanism intended for use with JavaBeans
components. java.io serialization works by saving the state of the internal fields of an
object. java.beans persistence, on the other hand, works by saving a bean's state as a
sequence of calls to the public methods defined by the class. Since it is based on the public
API rather than on the internal state, the JavaBeans persistence mechanism allows
interoperability between different implementations of the same API, handles version skew
more robustly, and is suitable for longer-term storage of serialized objects.

A bean and any descendant beans or other objects that are serialized with
java.beans.XMLEncoder can be deserialized with java.beans.XMLDecoder. These
classes write to and read from specified streams, but they are not stream classes
themselves. Here is how you might encode a bean:

// Create a JavaBean, and set some properties on it
javax.swing.JFrame bean = new javax.swing.JFrame("PersistBean");
bean.setSize(300, 300);
// Now save its encoded form to the file bean.xml
BufferedOutputStream out = // Create an output stream
 new BufferedOutputStream(new FileOutputStream("bean.xml"));
XMLEncoder encoder = new XMLEncoder(out); // Create encoder for stream
encoder.writeObject(bean); // Encode the bean
encoder.close(); // Close encoder and stream

Chapter 5. The Java Platform Page 83 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here is the corresponding code to decode the bean from its serialized form:
BufferedInputStream in = // Create input stream
 new BufferedInputStream(new FileInputStream("bean.xml"));
XMLDecoder decoder = new XMLDecoder(in); // Create decoder for stream
Object b = decoder.readObject(); // Decode a bean
decoder.close(); // Close decoder and stream
bean = (javax.swing.JFrame) b; // Cast bean to proper type
bean.setVisible(true); // Start using it

5.15. Security
The java.security package defines quite a few classes related to the Java access-control
architecture, which is discussed in more detail in Chapter 6. These classes allow Java
programs to run untrusted code in a restricted environment from which it can do no harm.
While these are important classes, you rarely need to use them. The more interesting
classes are the ones used for message digests and digital signatures; they are demonstrated
in the sections that follow.

5.15.1. Message Digests
A message digest is a value, also known as cryptographic checksum or secure hash, that
is computed over a sequence of bytes. The length of the digest is typically much smaller
than the length of the data for which it is computed, but any change, no matter how small,
in the input bytes produces a change in the digest. When transmitting data (a message),
you can transmit a message digest along with it. The recipient of the message can then
recompute the message digest on the received data and, by comparing the computed digest
to the received digest, determine whether the message or the digest was corrupted or
tampered with during transmission. We saw a way to compute a message digest earlier in
the chapter when we discussed streams. A similar technique can be used to compute a
message digest for nonstreaming binary data:

import java.security.*;

// Obtain an object to compute message digests using the "Secure Hash
// Algorithm"; this method can throw a NoSuchAlgorithmException.
MessageDigest md = MessageDigest.getInstance("SHA");

byte[] data, data1, data2, secret; // Some byte arrays initialized elsewhere

// Create a digest for a single array of bytes
byte[] digest = md.digest(data);

// Create a digest for several chunks of data
md.reset(); // Optional: automatically called by digest()
md.update(data1); // Process the first chunk of data
md.update(data2); // Process the second chunk of data
digest = md.digest(); // Compute the digest

// Create a keyed digest that can be verified if you know the secret bytes
md.update(data); // The data to be transmitted with the digest
digest = md.digest(secret); // Add the secret bytes and compute the digest

// Verify a digest like this
byte[] receivedData, receivedDigest; // The data and the digest we received

Chapter 5. The Java Platform Page 84 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-6#javanut5-CHP-6

byte[] verifyDigest = md.digest(receivedData); // Digest the received data
// Compare computed digest to the received digest
boolean verified = java.util.Arrays.equals(receivedDigest, verifyDigest);

5.15.2. Digital Signatures
A digital signature combines a message-digest algorithm with public-key cryptography.
The sender of a message, Alice, can compute a digest for a message and then encrypt that
digest with her private key. She then sends the message and the encrypted digest to a
recipient, Bob. Bob knows Alice's public key (it is public, after all), so he can use it to decrypt
the digest and verify that the message has not been tampered with. In performing this
verification, Bob also learns that the digest was encrypted with Alice's private key since he
was able to decrypt the digest successfully using Alice's public key. As Alice is the only one
who knows her private key, the message must have come from Alice. A digital signature is
called such because, like a pen-and-paper signature, it serves to authenticate the origin of
a document or message. Unlike a pen-and-paper signature, however, a digital signature is
very difficult, if not impossible, to forge, and it cannot simply be cut and pasted onto
another document.

Java makes creating digital signatures easy. In order to create a digital signature, however,
you need a java.security.PrivateKey object. Assuming that a keystore exists on
your system (see the keytool documentation in Chapter 8), you can get one with code like
the following:

// Here is some basic data we need
File homedir = new File(System.getProperty("user.home"));
File keyfile = new File(homedir, ".keystore"); // Or read from config file
String filepass = "KeyStore password" // Password for entire file
String signer = "david"; // Read from config file
String password = "No one can guess this!"; // Better to prompt for this
PrivateKey key; // This is the key we want to look up from the keystore

try {
 // Obtain a KeyStore object and then load data into it
 KeyStore keystore = KeyStore.getInstance(KeyStore.getDefaultType());
 keystore.load(new BufferedInputStream(new FileInputStream(keyfile)),
 filepass.toCharArray());
 // Now ask for the desired key
 key = (PrivateKey) keystore.getKey(signer, password.toCharArray());
}
catch (Exception e) { /* Handle various exception types here */ }

Once you have a PrivateKey object, you can create a digital signature with a
java.security.Signature object:

PrivateKey key; // Initialized as shown previously
byte[] data; // The data to be signed
Signature s = // Obtain object to create and verify signatures
 Signature.getInstance("SHA1withDSA"); // Can throw a
 // NoSuchAlgorithmException
s.initSign(key); // Initialize it; can throw an InvalidKeyException
s.update(data); // Data to sign; can throw a SignatureException
/* s.update(data2); */ // Call multiple times to specify all data
byte[] signature = s.sign(); // Compute signature

Chapter 5. The Java Platform Page 85 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

A Signature object can verify a digital signature:

byte[] data; // The signed data; initialized elsewhere
byte[] signature; // The signature to be verified; initialized elsewhere
String signername; // Who created the signature; initialized elsewhere
KeyStore keystore; // Where certificates stored; initialize as shown earlier

// Look for a public-key certificate for the signer
java.security.cert.Certificate cert = keystore.getCertificate(signername);
PublicKey publickey = cert.getPublicKey(); // Get the public key from it

Signature s = Signature.getInstance("SHA1withDSA"); // Or some other algorithm
s.initVerify(publickey); // Setup for verification
s.update(data); // Specify signed data
boolean verified = s.verify(signature); // Verify signature data

5.15.3. Signed Objects
The java.security.SignedObject class is a convenient utility for wrapping a digital
signature around an object. The SignedObject can then be serialized and transmitted
to a recipient, who can deserialize it and use the verify() method to verify the signature:

Serializable o; // The object to be signed; must be Serializable
PrivateKey k; // The key to sign with; initialized elsewhere
Signature s = Signature.getInstance("SHA1withDSA"); // Signature "engine"
SignedObject so = new SignedObject(o, k, s); // Create the SignedObject

// The SignedObject encapsulates the object o; it can now be serialized
// and transmitted to a recipient.

// Here's how the recipient verifies the SignedObject
SignedObject so; // The deserialized SignedObject
Object o; // The original object to extract from it
PublicKey pk; // The key to verify with
Signature s = Signature.getInstance("SHA1withDSA"); // Verification "engine"
if (so.verify(pk,s)) // If the signature is valid,
 o = so.getObject(); // retrieve the encapsulated object.

5.16. Cryptography
The java.security package includes cryptography-based classes, but it does not
contain classes for actual encryption and decryption. That is the job of the
javax.crypto package. This package supports symmetric-key cryptography, in which
the same key is used for both encryption and decryption and must be known by both the
sender and the receiver of encrypted data.

5.16.1. Secret Keys
The SecretKey interface represents an encryption key; the first step of any cryptographic
operation is to obtain an appropriate SecretKey. Unfortunately, the keytool program
supplied with the JDK cannot generate and store secret keys, so a program must handle
these tasks itself. Here is some code that shows various ways to work with SecretKey
objects:

import javax.crypto.*;
import javax.crypto.spec.*;

Chapter 5. The Java Platform Page 86 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Generate encryption keys with a KeyGenerator object
KeyGenerator desGen = KeyGenerator.getInstance("DES"); // DES algorithm
SecretKey desKey = desGen.generateKey(); // Generate a key
KeyGenerator desEdeGen = KeyGenerator.getInstance("DESede"); // Triple DES
SecretKey desEdeKey = desEdeGen.generateKey(); // Generate a key

// SecretKey is an opaque representation of a key. Use SecretKeyFactory to
// convert to a transparent representation that can be manipulated: saved
// to a file, securely transmitted to a receiving party, etc.
SecretKeyFactory desFactory = SecretKeyFactory.getInstance("DES");
DESKeySpec desSpec = (DESKeySpec)
 desFactory.getKeySpec(desKey, javax.crypto.spec.DESKeySpec.class);
byte[] rawDesKey = desSpec.getKey();
// Do the same for a DESede key
SecretKeyFactory desEdeFactory = SecretKeyFactory.getInstance("DESede");
DESedeKeySpec desEdeSpec = (DESedeKeySpec)
 desEdeFactory.getKeySpec(desEdeKey, javax.crypto.spec.DESedeKeySpec.class);
byte[] rawDesEdeKey = desEdeSpec.getKey();

// Convert the raw bytes of a key back to a SecretKey object
DESedeKeySpec keyspec = new DESedeKeySpec(rawDesEdeKey);
SecretKey k = desEdeFactory.generateSecret(keyspec);

// For DES and DESede keys, there is an even easier way to create keys
// SecretKeySpec implements SecretKey, so use it to represent these keys
byte[] desKeyData = new byte[8]; // Read 8 bytes of data from a file
byte[] tripleDesKeyData = new byte[24]; // Read 24 bytes of data from a file
SecretKey myDesKey = new SecretKeySpec(desKeyData, "DES");
SecretKey myTripleDesKey = new SecretKeySpec(tripleDesKeyData, "DESede");

5.16.2. Encryption and Decryption with Cipher
Once you have obtained an appropriate SecretKey object, the central class for encryption
and decryption is Cipher. Use it like this:

SecretKey key; // Obtain a SecretKey as shown earlier
byte[] plaintext; // The data to encrypt; initialized elsewhere

// Obtain an object to perform encryption or decryption
Cipher cipher = Cipher.getInstance("DESede"); // Triple-DES encryption
// Initialize the cipher object for encryption
cipher.init(Cipher.ENCRYPT_MODE, key);
// Now encrypt data
byte[] ciphertext = cipher.doFinal(plaintext);

// If we had multiple chunks of data to encrypt, we can do this
cipher.update(message1);
cipher.update(message2);
byte[] ciphertext = cipher.doFinal();

// We simply reverse things to decrypt
cipher.init(Cipher.DECRYPT_MODE, key);
byte[] decryptedMessage = cipher.doFinal(ciphertext);

// To decrypt multiple chunks of data
byte[] decrypted1 = cipher.update(ciphertext1);
byte[] decrypted2 = cipher.update(ciphertext2);
byte[] decrypted3 = cipher.doFinal(ciphertext3);

5.16.3. Encrypting and Decrypting Streams
The Cipher class can also be used with CipherInputStream or
CipherOutputStream to encrypt or decrypt while reading or writing streaming data:

Chapter 5. The Java Platform Page 87 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

byte[] data; // The data to encrypt
SecretKey key; // Initialize as shown earlier
Cipher c = Cipher.getInstance("DESede"); // The object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it

// Create a stream to write bytes to a file
FileOutputStream fos = new FileOutputStream("encrypted.data");

// Create a stream that encrypts bytes before sending them to that stream
// See also CipherInputStream to encrypt or decrypt while reading bytes
CipherOutputStream cos = new CipherOutputStream(fos, c);

cos.write(data); // Encrypt and write the data to the file
cos.close(); // Always remember to close streams
java.util.Arrays.fill(data, (byte)0); // Erase the unencrypted data

5.16.4. Encrypted Objects
Finally, the javax.crypto.SealedObject class provides an especially easy way to
perform encryption. This class serializes a specified object and encrypts the resulting
stream of bytes. The SealedObject can then be serialized itself and transmitted to a
recipient. The recipient can retrieve the original object only if she knows the required
SecretKey:

Serializable o; // The object to be encrypted; must be Serializable
SecretKey key; // The key to encrypt it with
Cipher c = Cipher.getInstance("Blowfish"); // Object to perform encryption
c.init(Cipher.ENCRYPT_MODE, key); // Initialize it with the key
SealedObject so = new SealedObject(o, c); // Create the sealed object

// Object so is a wrapper around an encrypted form of the original object o;
// it can now be serialized and transmitted to another party.
// Here's how the recipient decrypts the original object
Object original = so.getObject(key); // Must use the same SecretKey

5.17. Miscellaneous Platform Features
The following sections detail important but miscellaneous features of the Java platform,
including properties, preferences, processes, and management and instrumentation.

5.17.1. Properties
java.util.Properties is a subclass of java.util.Hashtable, a legacy collections
class that predates the Collections API introduced in Java 1.2. A Properties object
maintains a mapping between string keys and string values and defines methods that allow
the mappings to be written to and read from a simple text file or (in Java 5.0) an XML file.
This makes the Properties class ideal for configuration and user preference files. The
Properties class is also used for the system properties returned by
System.getProperty():

import java.util.*;
import java.io.*;

// Note: many of these system properties calls throw a security exception if

Chapter 5. The Java Platform Page 88 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// called from untrusted code such as applets.
String homedir = System.getProperty("user.home"); // Get a system property
Properties sysprops = System.getProperties(); // Get all system properties

// Print the names of all defined system properties
for(Enumeration e = sysprops.propertyNames(); e.hasMoreElements();)
 System.out.println(e.nextElement());

sysprops.list(System.out); // Here's an even easier way to list the properties

// Read properties from a configuration file
Properties options = new Properties(); // Empty properties list
File configfile = new File(homedir, ".config"); // The configuration file
try {
 options.load(new FileInputStream(configfile)); // Load props from the file
} catch (IOException e) { /* Handle exception here */ }

// Query a property ("color"), specifying a default ("gray") if undefined
String color = options.getProperty("color", "gray");

// Set a property named "color" to the value "green"
options.setProperty("color", "green");

// Store the contents of the Properties object back into a file
try {
 options.store(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // File header comment text
} catch (IOException e) { /* Handle exception */ }

// In Java 5.0 properties can be written to or read from XML files
try {
 options.storeToXML(new FileOutputStream(configfile), // Output stream
 "MyApp Config File"); // Comment text
 options.loadFromXML(new FileInputStream(configfile)); // Read it back in
}
catch(IOException e) { /* Handle exception */ }
catch(InvalidPropertiesFormatException e) { /* malformed input */ }

5.17.2. Preferences
Java 1.4 introduced the Preferences API, which is specifically tailored for working with
user and systemwide preferences and is more useful than Properties for this purpose. The
Preferences API is defined by the java.util.prefs package. The key class in that
package is Preferences. You can obtain a Preferences object that contains user-
specific preferences with the static method Preferences.userNodeForPackage()
and obtain a Preferences object that contains systemwide preferences with
Preferences.systemNodeForPackage(). Both methods take a
java.lang.Class object as their sole argument and return a Preferences object
shared by all classes in that package. (This means that the preference names you use must
be unique within the package.) Once you have a Preferences object, use the get()
method to query the string value of a named preference, or use other type-specific methods
such as getInt(), getBoolean(), and getByteArray(). Note that to query
preference values, a default value must be passed for all methods. This default value is
returned if no preference with the specified name has been registered or if the file or
database that holds the preference data cannot be accessed. A typical use of
Preferences is the following:

Chapter 5. The Java Platform Page 89 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

package com.davidflanagan.editor;
import java.util.prefs.Preferences;

public class TextEditor {
 // Fields to be initialized from preference values
 public int width; // Screen width in columns
 public String dictionary; // Dictionary name for spell checking

 public void initPrefs() {
 // Get Preferences objects for user and system preferences for this package
 Preferences userprefs = Preferences.userNodeForPackage(TextEditor.class);
 Preferences sysprefs = Preferences.systemNodeForPackage(TextEditor.class);

 // Look up preference values. Note that you always pass a default value.
 width = userprefs.getInt("width", 80);
 // Look up a user preference using a system preference as the default
 dictionary = userprefs.get("dictionary",
 sysprefs.get("dictionary",
 "default_dictionary"));
 }
}

In addition to the get() methods for querying preference values, there are
corresponding put() methods for setting the values of named preferences:

// User has indicated a new preference, so store it
userprefs.putBoolean("autosave", false);

If your application wants to be notified of user or system preference changes while the
application is in progress, it may register a PreferenceChangeListener with
addPreferenceChangeListener(). A Preferences object can export the names
and values of its preferences as an XML file and can read preferences from such an XML
file. (See importPreferences(), exportNode(), and exportSubtree() in
java.util.pref.Preferences in the reference section.) Preferences objects exist
in a hierarchy that typically corresponds to the hierarchy of package names. Methods for
navigating this hierarchy exist but are not typically used by ordinary applications.

5.17.3. Processes
Earlier in the chapter, we saw how easy it is to create and manipulate multiple threads of
execution running within the same Java interpreter. Java also has a
java.lang.Process class that represents an operating system process running
externally to the interpreter. A Java program can communicate with an external process
using streams in the same way that it might communicate with a server running on some
other computer on the network. Using a Process is always platform-dependent and is
rarely portable, but it is sometimes a useful thing to do:

// Maximize portability by looking up the name of the command to execute
// in a configuration file.
java.util.Properties config;
String cmd = config.getProperty("sysloadcmd");
if (cmd != null) {
 // Execute the command; Process p represents the running command
 Process p = Runtime.getRuntime().exec(cmd); // Start the command
 InputStream pin = p.getInputStream(); // Read bytes from it
 InputStreamReader cin = new InputStreamReader(pin); // Convert them to chars

Chapter 5. The Java Platform Page 90 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 BufferedReader in = new BufferedReader(cin); // Read lines of chars
 String load = in.readLine(); // Get the command output
 in.close(); // Close the stream
}

In Java 5.0 the java.lang.ProcessBuilder class provides a more flexible way to
launch new processes than the Runtime.exec() method. ProcessBuilder allows
control of environment variables through a Map and makes it simple to set the working
directory. It also has an option to automatically redirect the standard error stream of the
processes it launches to the standard output stream, which makes it much easier to read
all output of a Process.

import java.util.Map;
import java.io.*

public class JavaShell {
 public static void main(String[] args) {
 // We use this to start commands
 ProcessBuilder launcher = new ProcessBuilder();
 // Our inherited environment vars. We may modify these below
 Map<String,String> environment = launcher.environment();
 // Our processes will merge error stream with standard output stream
 launcher.redirectErrorStream(true);
 // Where we read the user's input from
 BufferedReader console =
 new BufferedReader(new InputStreamReader(System.in));

 while(true) {
 try {
 System.out.print("> "); // display prompt
 System.out.flush(); // force it to show
 String command = console.readLine(); // Read input

 if (command.equals("exit")) return; // Exit command

 else if (command.startsWith("cd ")) { // change directory
 launcher.directory(new File(command.substring(3)));
 }

 else if (command.startsWith("set ")) {// set environment var
 command = command.substring(4);
 int pos = command.indexOf('=');
 String name = command.substring(0,pos).trim();
 String var = command.substring(pos+1).trim();
 environment.put(name, var);
 }

 else { // Otherwise it is a process to launch
 // Break command into individual tokens
 String[] words = command.split(" ");
 launcher.command(words); // Set the command
 Process p = launcher.start(); // And launch a new process

 // Now read and display output from the process
 // until there is no more output to read
 BufferedReader output = new BufferedReader(
 new InputStreamReader(p.getInputStream()));
 String line;
 while((line = output.readLine()) != null)
 System.out.println(line);

 // The process should be done now, but wait to be sure.
 p.waitFor();
 }
 }
 catch(Exception e) {
 System.out.println(e);

Chapter 5. The Java Platform Page 91 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 }
 }
 }
}

5.17.4. Management and Instrumentation
Java 5.0 includes the powerful JMX API for remote monitoring and management of
running applications. The full javax.management API is beyond the scope of this book.
The reference section does cover the java.lang.management package, however: this
package is an application of JMX for the monitoring and management of the Java virtual
machine itself. java.lang.instrument is another Java 5.0 package: it allows the
definition of "agents" that can be used to instrument the running JVM. In VMs that support
it, java.lang.instrument can be used to redefine class files as they are loaded to add
profiling or coverage testing code, for example. Class redefinition is beyond the scope of
this chapter, but the following code uses the new instrumentation and management
features of Java 5.0 to determine resource usages of a Java program. The example also
demonstrates the Runtime.addShutdownHook() method, which registers code to be
run when the VM starts shutting down.

import java.lang.instrument.*;
import java.lang.management.*;
import java.util.List;
import java.io.*;

public class ResourceUsageAgent {
 // A Java agent class defines a premain() method to run before main()
 public static void premain(final String args, final Instrumentation inst) {
 // This agent simply registers a shutdown hook to run when the VM exits
 Runtime.getRuntime().addShutdownHook(new Thread() {
 public void run() {
 // This code runs when the VM exits
 try {
 // Decide where to send our output
 PrintWriter out;
 if (args != null && args.length() > 0)
 out = new PrintWriter(new FileWriter(args));
 else
 out = new PrintWriter(System.err);

 // Use java.lang.management to query peak thread usage
 ThreadMXBean tb = ManagementFactory.getThreadMXBean();
 out.printf("Current thread count: %d%n",
 tb.getThreadCount());
 out.printf("Peak thread count: %d%n",
 tb.getPeakThreadCount());

 // Use java.lang.management to query peak memory usage
 List<MemoryPoolMXBean> pools =
 ManagementFactory.getMemoryPoolMXBeans();
 for(MemoryPoolMXBean pool: pools) {
 MemoryUsage peak = pool.getPeakUsage();
 out.printf("Peak %s memory used: %,d%n",
 pool.getName(), peak.getUsed());
 out.printf("Peak %s memory reserved: %,d%n",
 pool.getName(), peak.getCommitted());
 }

 // Use the Instrumentation object passed to premain()
 // to get a list of all classes that have been loaded
 Class[] loaded = inst.getAllLoadedClasses();

Chapter 5. The Java Platform Page 92 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 out.println("Loaded classes:");
 for(Class c : loaded) out.println(c.getName());

 out.close(); // close and flush the output stream
 }
 catch(Throwable t) {
 // Exceptions in shutdown hooks are ignored so
 // we've got to print this out explicitly
 System.err.println("Exception in agent: " + t);
 }
 }
 });
 }
}

To monitor the resource usage of a Java program with this agent, you first must compile
the class normally. You then store the generated class files in a JAR file with a manifest
that specifies the class that contains the premain() method. Create a manifest file that
contains this line:

Premain-Class: ResourceUsageAgent

Create the JAR file with a command like this:
% jar cmf manifest agent.jar ResourceUsageAgent*.class

Finally, to use the agent, specify the JAR file and the agent arguments with the -
javaagent flag to the Java interpreter:

% java -javaagent:agent.jar=/tmp/usage.info my.java.Program

Chapter 5. The Java Platform Page 93 Return to Table of Contents

Chapter 5. The Java Platform
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	The Java Platform
	Java Platform Overview
	Text
	Numbers and Math
	Dates and Times
	Arrays
	Collections
	Threads and Concurrency
	Files and Directories
	Input/Output with java.io
	Networking with java.net
	I/O and Networking with java.nio
	XML
	Types, Reflection, and Dynamic Loading
	Object Persistence
	Security
	Cryptography
	Miscellaneous Platform Features

