
Table of Contents

java.io.. 1
Package java.io... 1
BufferedInputStream.. 4
BufferedOutputStream.. 5
BufferedReader... 5
BufferedWriter.. 6
ByteArrayInputStream.. 7
ByteArrayOutputStream... 8
CharArrayReader.. 8
CharArrayWriter... 9
CharConversionException.. 10
Closeable.. 10
DataInput... 11
DataInputStream... 12
DataOutput.. 13
DataOutputStream.. 13
EOFException.. 14
Externalizable.. 15
File.. 15
FileDescriptor.. 18
FileFilter.. 19
FileInputStream.. 19
FilenameFilter... 20
FileNotFoundException.. 21
FileOutputStream.. 21
FilePermission... 22
FileReader... 23
FileWriter.. 24
FilterInputStream... 24
FilterOutputStream... 25
FilterReader.. 26
FilterWriter.. 27
Flushable... 28
InputStream.. 28
InputStreamReader.. 29
InterruptedIOException... 30
InvalidClassException... 31
InvalidObjectException... 31
IOException.. 32
LineNumberInputStream... 33
LineNumberReader.. 34
NotActiveException.. 34
NotSerializableException.. 35
ObjectInput... 35
ObjectInputStream... 36
ObjectInputStream.GetField.. 38
ObjectInputValidation.. 39
ObjectOutput.. 40
ObjectOutputStream... 40
ObjectOutputStream.PutField.. 42
ObjectStreamClass.. 43
ObjectStreamConstants.. 44
ObjectStreamException.. 45
ObjectStreamField.. 46
OptionalDataException.. 46
OutputStream.. 47
OutputStreamWriter... 48

Chapter 9. java.io

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PipedInputStream... 49
PipedOutputStream.. 50
PipedReader.. 50
PipedWriter... 51
PrintStream... 52
PrintWriter.. 54
PushbackInputStream.. 56
PushbackReader.. 56
RandomAccessFile.. 57
Reader... 59
SequenceInputStream.. 60
Serializable... 61
SerializablePermission.. 62
StreamCorruptedException.. 62
StreamTokenizer... 63
StringBufferInputStream.. 64
StringReader... 65
StringWriter.. 66
SyncFailedException... 66
UnsupportedEncodingException.. 67
UTFDataFormatException.. 67
WriteAbortedException.. 68
Writer.. 68

Chapter 9. java.io

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 9. java.io

Package java.io

Java 1.0

The java.io package is large, but most of the classes it contains fall into a well-structured
hierarchy. Most of the package consists of byte streams—subclasses of InputStream or
OutputStream and character streams—subclasses of Reader or Writer. Each of these
stream subtypes has a specific purpose, and, despite its size, java.io is a straightforward
package to understand and to use. In Java 1.4, the java.io package was complemented
by a "New I/O API" defined in the java.nio package and its subpackages. The
java.nio package is totally new, although it included some compatibility with the classes
in this package. It was designed for high-performance I/O, particularly for use in servers
and has a lower-level API than this package does. The I/O facilities of java.io are still
quite adequate for most of the I/O required by typical client-side applications.

Before we consider the stream classes that comprise the bulk of this package, let's examine
the important nonstream classes. File represents a file or directory name in a system-
independent way and provides methods for listing directories, querying file attributes, and
renaming and deleting files. FilenameFilter is an interface that defines a method that
accepts or rejects specified filenames. It is used by File to specify what types of files should
be included in directory listings. RandomAccessFile allows you to read from or write to
arbitrary locations of a file. Often, though, you'll prefer sequential access to a file and
should use one of the stream classes.

InputStream and OutputStream are abstract classes that define methods for reading
and writing bytes. Their subclasses allow bytes to be read from and written to a variety
of sources and sinks. FileInputStream and FileOutputStream read from and write
to files. ByteArrayInputStream and ByteArrayOutputStream read from and write
to an array of bytes in memory. PipedInputStream reads bytes from a
PipedOutputStream, and PipedOutputStream writes bytes to a
PipedInputStream. These classes work together to implement a pipe for
communication between threads.

Chapter 9. java.io Page 1 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

FilterInputStream and FilterOutputStream are special; they filter input and
output bytes. When you create a FilterInputStream, you specify an InputStream for
it to filter. When you call the read() method of a FilterInputStream, it calls the
read() method of its InputStream, processes the bytes it reads, and returns the
filtered bytes. Similarly, when you create a FilterOutputStream, you specify an
OutputStream to be filtered. Calling the write() method of a
FilterOutputStream causes it to process your bytes in some way and then pass those
filtered bytes to the write() method of its OutputStream.

FilterInputStream and FilterOutputStream do not perform any filtering
themselves; this is done by their subclasses. BufferedInputStream and
BufferedOutputStream are filtered streams that provide input and output buffering
and can increase I/O efficiency. DataInputStream reads raw bytes from a stream and
interprets them in various binary formats. It has various methods to read primitive Java
data types in their standard binary formats. DataOutputStream allows you to write Java
primitive data types in binary format. The ObjectInputStream and
ObjectOutputStream classes are special. These byte-stream classes are used for
serializing and deserializing the internal state of objects for storage or interprocess
communication.

The byte streams just described are complemented by an analogous set of character input
and output streams. Reader is the superclass of all character input streams, and
Writer is the superclass of all character output streams. Most of the Reader and
Writer streams have obvious byte-stream analogs. BufferedReader is a commonly
used stream; it provides buffering for efficiency and also has a readLine() method to
read a line of text at a time. PrintWriter is another very common stream; its methods
allow output of a textual representation of any primitive Java type or of any object (via the
object's toString() method).

Java 5.0 adds the Closeable and Flushable interfaces to identify types that have
close() and flush() methods. All streams have a close() method and implement
the Closeable interface. And all byte and character output streams have a flush()
method and implement Flushable. In a related change, all character output streams
(and the byte stream PrintStream) implement the (new in Java 5.0) interface
java.lang.Appendable, making them suitable for use with the
java.util.Formatter class. Similarly, all character input streams implement the
java.lang.Readable interface, making them suitable for use with the
java.util.Scanner class. Finally, both PrintStream and PrintWriter have been
enhanced in two ways for Java 5.0. Both now include constructors for creating a stream

Chapter 9. java.io Page 2 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

that writes directly to a file. And both include formatted-text output methods
printf() and format(). See java.util.Formatter for details.

Interfaces

public interface Closeable;
public interface DataInput;
public interface DataOutput;
public interface Externalizable extends Serializable;
public interface FileFilter;
public interface FilenameFilter;
public interface Flushable;
public interface ObjectInput extends DataInput;
public interface ObjectInputValidation;
public interface ObjectOutput extends DataOutput;
public interface ObjectStreamConstants;
public interface Serializable;

Classes

public class File implements Serializable, Comparable<File>;
public final class FileDescriptor;
public final class FilePermission extends java.security.Permission implements
 Serializable;
public abstract class InputStream implements Closeable;
 public class ByteArrayInputStream extends InputStream;
 public class FileInputStream extends InputStream;
 public class FilterInputStream extends InputStream;
 public class BufferedInputStream extends FilterInputStream;
 public class DataInputStream extends FilterInputStream implements
 DataInput;
 public class LineNumberInputStream extends FilterInputStream;
 public class PushbackInputStream extends FilterInputStream;
 public class ObjectInputStream extends InputStream implements ObjectInput,
 ObjectStreamConstants;
 public class PipedInputStream extends InputStream;
 public class SequenceInputStream extends InputStream;
 public class StringBufferInputStream extends InputStream;
public abstract static class ObjectInputStream.GetField;
public abstract static class ObjectOutputStream.PutField;
public class ObjectStreamClass implements Serializable;
public class ObjectStreamField implements Comparable<Object>;
public abstract class OutputStream implements Closeable, Flushable;
 public class ByteArrayOutputStream extends OutputStream;
 public class FileOutputStream extends OutputStream;
 public class FilterOutputStream extends OutputStream;
 public class BufferedOutputStream extends FilterOutputStream;
 public class DataOutputStream extends FilterOutputStream implements
 DataOutput;
 public class PrintStream extends FilterOutputStream implements Appendable,
 Closeable;
 public class ObjectOutputStream extends OutputStream implements ObjectOutput,
 ObjectStreamConstants;
 public class PipedOutputStream extends OutputStream;
public class RandomAccessFile implements Closeable, DataInput, DataOutput;
public abstract class Reader implements Closeable, Readable;
 public class BufferedReader extends Reader;
 public class LineNumberReader extends BufferedReader;
 public class CharArrayReader extends Reader;
 public abstract class FilterReader extends Reader;
 public class PushbackReader extends FilterReader;
 public class InputStreamReader extends Reader;
 public class FileReader extends InputStreamReader;
 public class PipedReader extends Reader;
 public class StringReader extends Reader;
public final class SerializablePermission extends java.security.BasicPermission;
public class StreamTokenizer;
public abstract class Writer implements Appendable, Closeable, Flushable;
 public class BufferedWriter extends Writer;
 public class CharArrayWriter extends Writer;

Chapter 9. java.io Page 3 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract class FilterWriter extends Writer;
 public class OutputStreamWriter extends Writer;
 public class FileWriter extends OutputStreamWriter;
 public class PipedWriter extends Writer;
 public class PrintWriter extends Writer;
 public class StringWriter extends Writer;

Exceptions

public class IOException extends Exception;
 public class CharConversionException extends IOException;
 public class EOFException extends IOException;
 public class FileNotFoundException extends IOException;
 public class InterruptedIOException extends IOException;
 public abstract class ObjectStreamException extends IOException;
 public class InvalidClassException extends ObjectStreamException;
 public class InvalidObjectException extends ObjectStreamException;
 public class NotActiveException extends ObjectStreamException;
 public class NotSerializableException extends ObjectStreamException;
 public class OptionalDataException extends ObjectStreamException;
 public class StreamCorruptedException extends ObjectStreamException;
 public class WriteAbortedException extends ObjectStreamException;
 public class SyncFailedException extends IOException;
 public class UnsupportedEncodingException extends IOException;
 public class UTFDataFormatException extends IOException;

BufferedInputStream java.io

Java 1.0 closeable

This class is a FilterInputStream that provides input data buffering; efficiency is
increased by reading in a large amount of data and storing it in an internal buffer. When
data is requested, it is usually available from the buffer. Thus, most calls to read data do
not actually have to read data from a disk, network, or other slow source. Create a
BufferedInputStream by specifying the InputStream that is to be buffered in the call
to the constructor. See also BufferedReader.

Figure 9-1. java.io.BufferedInputStream

public class BufferedInputStream extends FilterInputStream {
// Public Constructors
 public BufferedInputStream(InputStream in);
 public BufferedInputStream(InputStream in, int size);
// Public Methods Overriding FilterInputStream
 public int available() throws IOException; synchronized
1.2 public void close() throws IOException;
 public void mark(int readlimit); synchronized
 public boolean markSupported(); constant
 public int read() throws IOException; synchronized
 public int read(byte[] b, int off, int len) throws IOException; synchronized
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException; synchronized
// Protected Instance Fields
 protected volatile byte[] buf;

Chapter 9. java.io Page 4 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected int count;
 protected int marklimit;
 protected int markpos;
 protected int pos;
}

BufferedOutputStream java.io

Java 1.0 closeable flushable

This class is a FilterOutputStream that provides output data buffering; output
efficiency is increased by storing values to be written in a buffer and actually writing them
out only when the buffer fills up or when the flush() method is called. Create a
BufferedOutputStream by specifying the OutputStream that is to be buffered in the
call to the constructor. See also BufferedWriter.

Figure 9-2. java.io.BufferedOutputStream

public class BufferedOutputStream extends FilterOutputStream {
// Public Constructors
 public BufferedOutputStream(OutputStream out);
 public BufferedOutputStream(OutputStream out, int size);
// Public Methods Overriding FilterOutputStream
 public void flush() throws IOException; synchronized
 public void write(int b) throws IOException; synchronized
 public void write(byte[] b, int off, int len) throws IOException; synchronized
// Protected Instance Fields
 protected byte[] buf;
 protected int count;
}

BufferedReader java.io

Java 1.1 readable closeable

This class applies buffering to a character input stream, thereby improving the efficiency
of character input. You create a BufferedReader by specifying some other character
input stream from which it is to buffer input. (You can also specify a buffer size at this time,
although the default size is usually fine.) Typically, you use this sort of buffering with a
FileReader or InputStreamReader. BufferedReader defines the standard set of

Chapter 9. java.io Page 5 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Reader methods and provides a readLine() method that reads a line of text (not
including the line terminator) and returns it as a String. BufferedReader is the
character-stream analog of BufferedInputStream. It also provides a replacement for
the deprecated readLine() method of DataInputStream, which did not properly
convert bytes into characters.

Figure 9-3. java.io.BufferedReader

public class BufferedReader extends Reader {
// Public Constructors
 public BufferedReader(Reader in);
 public BufferedReader(Reader in, int sz);
// Public Instance Methods
 public String readLine() throws IOException;
// Public Methods Overriding Reader
 public void close() throws IOException;
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

Subclasses

LineNumberReader

BufferedWriter java.io

Java 1.1 appendable closeable flushable

This class applies buffering to a character output stream, improving output efficiency by
coalescing many small write requests into a single larger request. You create a
BufferedWriter by specifying some other character output stream to which it sends its
buffered and coalesced output. (You can also specify a buffer size at this time, although
the default size is usually satisfactory.) Typically, you use this sort of buffering with a
FileWriter or OutputStreamWriter. BufferedWriter defines the standard
write(), flush(), and close() methods all output streams define, but it adds a
newLine() method that outputs the platform-dependent line separator (usually a
newline character, a carriage-return character, or both) to the stream.
BufferedWriter is the character-stream analog of BufferedOutputStream.

Chapter 9. java.io Page 6 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-4. java.io.BufferedWriter

public class BufferedWriter extends Writer {
// Public Constructors
 public BufferedWriter(Writer out);
 public BufferedWriter(Writer out, int sz);
// Public Instance Methods
 public void newLine() throws IOException;
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String s, int off, int len) throws IOException;
}

ByteArrayInputStream java.io

Java 1.0 closeable

This class is a subclass of InputStream in which input data comes from a specified array
of byte values. This is useful when you want to read data in memory as if it were coming
from a file, pipe, or socket. Note that the specified array of bytes is not copied when a
ByteArrayInputStream is created. See also CharArrayReader.

Figure 9-5. java.io.ByteArrayInputStream

public class ByteArrayInputStream extends InputStream {
// Public Constructors
 public ByteArrayInputStream(byte[] buf);
 public ByteArrayInputStream(byte[] buf, int offset, int length);
// Public Methods Overriding InputStream
 public int available(); synchronized
1.2 public void close() throws IOException; empty
1.1 public void mark(int readAheadLimit);
1.1 public boolean markSupported(); constant
 public int read(); synchronized
 public int read(byte[] b, int off, int len); synchronized
 public void reset(); synchronized
 public long skip(long n); synchronized
// Protected Instance Fields
 protected byte[] buf;
 protected int count;
1.1 protected int mark;
 protected int pos;
}

Chapter 9. java.io Page 7 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ByteArrayOutputStream java.io

Java 1.0 closeable flushable

This class is a subclass of OutputStream in which output data is stored in an internal
byte array. The internal array grows as necessary and can be retrieved with
toByteArray() or toString(). The reset() method discards any data currently
stored in the internal array and stores data from the beginning again. See also
CharArrayWriter.

Figure 9-6. java.io.ByteArrayOutputStream

public class ByteArrayOutputStream extends OutputStream {
// Public Constructors
 public ByteArrayOutputStream();
 public ByteArrayOutputStream(int size);
// Public Instance Methods
 public void reset(); synchronized
 public int size();
 public byte[] toByteArray(); synchronized
1.1 public String toString(String enc) throws UnsupportedEncodingException;
 public void writeTo(OutputStream out) throws IOException; synchronized
// Public Methods Overriding OutputStream
1.2 public void close() throws IOException; empty
 public void write(int b); synchronized
 public void write(byte[] b, int off, int len); synchronized
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected byte[] buf;
 protected int count;
// Deprecated Public Methods
public String toString(int hibyte);
}

CharArrayReader java.io

Java 1.1 readable closeable

This class is a character input stream that uses a character array as the source of the
characters it returns. You create a CharArrayReader by specifying the character array
(or portion of an array) it is to read from. CharArrayReader defines the usual Reader
methods and supports the mark() and reset() methods. Note that the character

Chapter 9. java.io Page 8 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

array you pass to the CharArrayReader() constructor is not copied. This means that
changes you make to the elements of the array after you create the input stream affect the
values read from the array. CharArrayReader is the character-array analog of
ByteArrayInputStream and is similar to StringReader.

Figure 9-7. java.io.CharArrayReader

public class CharArrayReader extends Reader {
// Public Constructors
 public CharArrayReader(char[] buf);
 public CharArrayReader(char[] buf, int offset, int length);
// Public Methods Overriding Reader
 public void close();
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] b, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected char[] buf;
 protected int count;
 protected int markedPos;
 protected int pos;
}

CharArrayWriter java.io

Java 1.1 appendable closeable flushable

This class is a character output stream that uses an internal character array as the
destination of characters written to it. When you create a CharArrayWriter, you may
optionally specify an initial size for the character array, but you do not specify the character
array itself; this array is managed internally by the CharArrayWriter and grows as
necessary to accommodate all the characters written to it. The toString() and
toCharArray() methods return a copy of all characters written to the stream, as a string
and an array of characters, respectively. CharArrayWriter defines the standard
write() , flush(), and close() methods all Writer subclasses define. It also
defines a few other useful methods. size() returns the number of characters that have
been written to the stream. reset() resets the stream to its initial state, with an empty
character array; this is more efficient than creating a new CharArrayWriter. Finally,
writeTo() writes the contents of the internal character array to some other specified

Chapter 9. java.io Page 9 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

character stream. CharArrayWriter is the character-stream analog of
ByteArrayOutputStream and is quite similar to StringWriter.

Figure 9-8. java.io.CharArrayWriter

public class CharArrayWriter extends Writer {
// Public Constructors
 public CharArrayWriter();
 public CharArrayWriter(int initialSize);
// Public Instance Methods
5.0 public CharArrayWriter append(CharSequence csq);
5.0 public CharArrayWriter append(char c);
5.0 public CharArrayWriter append(CharSequence csq, int start, int end);
 public void reset();
 public int size();
 public char[] toCharArray();
 public void writeTo(Writer out) throws IOException;
// Public Methods Overriding Writer
 public void close(); empty
 public void flush(); empty
 public void write(int c);
 public void write(char[] c, int off, int len);
 public void write(String str, int off, int len);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected char[] buf;
 protected int count;
}

CharConversionException java.io

Java 1.1 serializable checked

Signals an error when converting bytes to characters or vice versa.

Figure 9-9. java.io.CharConversionException

public class CharConversionException extends IOException {
// Public Constructors
 public CharConversionException();
 public CharConversionException(String s);
}

Chapter 9. java.io Page 10 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Closeable java.io

Java 5.0 closeable

This interface defines a close() method and is implemented by closeable objects such
as java.io streams and java.nio channels. This interface was added in Java 5.0 to
enable java.util.Formatter to distinguish java.lang.Appendable objects that
need to be closed (such as streams) from those that do not (such as StringBuilder
objects). See also Flushable.

public interface Closeable {
// Public Instance Methods
 void close() throws IOException;
}

Implementations

InputStream, OutputStream, PrintStream, RandomAccessFile, Reader,
Writer, java.nio.channels.Channel, java.util.Formatter

DataInput java.io

Java 1.0

This interface defines the methods required for streams that can read Java primitive data
types in a machine-independent binary format. It is implemented by
DataInputStream and RandomAccessFile. See DataInputStream for more
information on the methods.

public interface DataInput {
// Public Instance Methods
 boolean readBoolean() throws IOException;
 byte readByte() throws IOException;
 char readChar() throws IOException;
 double readDouble() throws IOException;
 float readFloat() throws IOException;
 void readFully(byte[] b) throws IOException;
 void readFully(byte[] b, int off, int len) throws IOException;
 int readInt() throws IOException;
 String readLine() throws IOException;
 long readLong() throws IOException;
 short readShort() throws IOException;
 int readUnsignedByte() throws IOException;
 int readUnsignedShort() throws IOException;
 String readUTF() throws IOException;
 int skipBytes(int n) throws IOException;
}

Chapter 9. java.io Page 11 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

DataInputStream, ObjectInput, RandomAccessFile
Passed To

DataInputStream.readUTF()

DataInputStream java.io

Java 1.0 closeable

This class is a type of FilterInputStream that allows you to read binary representations
of Java primitive data types in a portable way. Create a DataInputStream by specifying
the InputStream that is to be filtered in the call to the constructor.
DataInputStream reads only primitive Java types; use ObjectInputStream to read
object values.

Many of the methods read and return a single Java primitive type, in binary format, from
the stream. readUnsignedByte() and readUnsignedShort() read unsigned
values and return them as int values, since unsigned byte and short types are not
supported in Java. read() reads data into an array of bytes, blocking until at least some
data is available. By contrast, readFully() reads data into an array of bytes, but blocks
until all requested data becomes available. skipBytes() blocks until the specified
number of bytes have been read and discarded. readLine() reads characters from the
stream until it encounters a newline, a carriage return, or a newline/carriage return pair.
The returned string is not terminated with a newline or carriage return. This method is
deprecated as of Java 1.1; see BufferedReader for an alternative. readUTF() reads a
string of Unicode text encoded in a slightly modified version of the UTF-8 transformation
format. UTF-8 is an ASCII-compatible encoding of Unicode characters that is often used
for the transmission and storage of Unicode text. This class uses a modified UTF-8
encoding that never contains embedded null characters.

Figure 9-10. java.io.DataInputStream

public class DataInputStream extends FilterInputStream implements DataInput {
// Public Constructors
 public DataInputStream(InputStream in);
// Public Class Methods
 public static final String readUTF(DataInput in) throws IOException;
// Methods Implementing DataInput
 public final boolean readBoolean() throws IOException;
 public final byte readByte() throws IOException;
 public final char readChar() throws IOException;
 public final double readDouble() throws IOException;

Chapter 9. java.io Page 12 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public final float readFloat() throws IOException;
 public final void readFully(byte[] b) throws IOException;
 public final void readFully(byte[] b, int off, int len) throws IOException;
 public final int readInt() throws IOException;
 public final long readLong() throws IOException;
 public final short readShort() throws IOException;
 public final int readUnsignedByte() throws IOException;
 public final int readUnsignedShort() throws IOException;
 public final String readUTF() throws IOException;
 public final int skipBytes(int n) throws IOException;
// Public Methods Overriding FilterInputStream
 public final int read(byte[] b) throws IOException;
 public final int read(byte[] b, int off, int len) throws IOException;
// Deprecated Public Methods
public final String readLine() throws IOException; Implements:DataInput
}

DataOutput java.io

Java 1.0

This interface defines the methods required for streams that can write Java primitive data
types in a machine-independent binary format. It is implemented by
DataOutputStream and RandomAccessFile. See DataOutputStream for more
information on the methods.

public interface DataOutput {
// Public Instance Methods
 void write(byte[] b) throws IOException;
 void write(int b) throws IOException;
 void write(byte[] b, int off, int len) throws IOException;
 void writeBoolean(boolean v) throws IOException;
 void writeByte(int v) throws IOException;
 void writeBytes(String s) throws IOException;
 void writeChar(int v) throws IOException;
 void writeChars(String s) throws IOException;
 void writeDouble(double v) throws IOException;
 void writeFloat(float v) throws IOException;
 void writeInt(int v) throws IOException;
 void writeLong(long v) throws IOException;
 void writeShort(int v) throws IOException;
 void writeUTF(String str) throws IOException;
}

Implementations

DataOutputStream, ObjectOutput, RandomAccessFile

DataOutputStream java.io

Java 1.0 closeable flushable

Chapter 9. java.io Page 13 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class is a subclass of FilterOutputStream that allows you to write Java primitive
data types in a portable binary format. Create a DataOutputStream by specifying the
OutputStream that is to be filtered in the call to the constructor. DataOutputStream
has methods that output only primitive types; use ObjectOutputStream to output
object values.

Many of this class's methods write a single Java primitive type, in binary format, to the
output stream. write() writes a single byte, an array, or a subarray of bytes.
flush() forces any buffered data to be output. size() returns the number of bytes
written so far. writeUTF() outputs a Java string of Unicode characters using a slightly
modified version of the UTF-8 transformation format. UTF-8 is an ASCII-compatible
encoding of Unicode characters that is often used for the transmission and storage of
Unicode text. Except for the writeUTF() method, this class is used for binary output of
data. Textual output should be done with PrintWriter (or PrintStream in Java 1.0).

Figure 9-11. java.io.DataOutputStream

public class DataOutputStream extends FilterOutputStream implements DataOutput {
// Public Constructors
 public DataOutputStream(OutputStream out);
// Public Instance Methods
 public final int size();
// Methods Implementing DataOutput
 public void write(int b) throws IOException; synchronized
 public void write(byte[] b, int off, int len) throws IOException; synchronized
 public final void writeBoolean(boolean v) throws IOException;
 public final void writeByte(int v) throws IOException;
 public final void writeBytes(String s) throws IOException;
 public final void writeChar(int v) throws IOException;
 public final void writeChars(String s) throws IOException;
 public final void writeDouble(double v) throws IOException;
 public final void writeFloat(float v) throws IOException;
 public final void writeInt(int v) throws IOException;
 public final void writeLong(long v) throws IOException;
 public final void writeShort(int v) throws IOException;
 public final void writeUTF(String str) throws IOException;
// Public Methods Overriding FilterOutputStream
 public void flush() throws IOException;
// Protected Instance Fields
 protected int written;
}

EOFException java.io

Java 1.0 serializable checked

Chapter 9. java.io Page 14 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An IOException that signals the end-of-file.

Figure 9-12. java.io.EOFException

public class EOFException extends IOException {
// Public Constructors
 public EOFException();
 public EOFException(String s);
}

Externalizable java.io

Java 1.1 serializable

This interface defines the methods that must be implemented by an object that wants
complete control over the way it is serialized. The writeExternal() and
readExternal() methods should be implemented to write and read object data in some
arbitrary format, using the methods of the DataOutput and DataInput interfaces.
Externalizable objects must serialize their own fields and are also responsible for
serializing the fields of their superclasses. Most objects do not need to define a custom
output format and can use the Serializable interface instead of Externalizable for
serialization.

Figure 9-13. java.io.Externalizable

public interface Externalizable extends Serializable {
// Public Instance Methods
 void readExternal(ObjectInput in) throws IOException, ClassNotFoundException;
 void writeExternal(ObjectOutput out) throws IOException;
}

File java.io

Java 1.0 serializable comparable

Chapter 9. java.io Page 15 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class supports a platform-independent definition of file and directory names. It also
provides methods to list the files in a directory; check the existence, readability, writability,
type, size, and modification time of files and directories; make new directories; rename
files and directories; delete files and directories; and create and delete temporary and lock
files. The constants defined by this class are the platform-dependent directory and path-
separator characters, available as a String and a char.

getName() returns the name of the File with any directory names omitted.
getPath() returns the full name of the file, including the directory name.
getParent() and getParentFile() return the directory that contains the File;
the only difference between the two methods is that one returns a String, while the other
returns a File. isAbsolute() tests whether the File is an absolute specification. If
not, getAbsolutePath() returns an absolute filename created by appending the
relative filename to the current working directory. getAbsoluteFile() returns the
equivalent absolute File object. getCanonicalPath() and
getCanonicalFile() are similar methods: they return an absolute filename or
File object that has been converted to its system-dependent canonical form. This can be
useful when comparing two File objects to see if they refer to the same file or directory.
In Java 1.4 and later, the toURI() method returns a java.net.URI object that uses a
file: scheme to name this file. This file-to-URI transformation can be reversed by passing
a file: URI object to the File() constructor.

exists(), canWrite(), canRead(), isFile(), isDirectory(), and
isHidden() perform the obvious tests on the specified File. length() returns the
length of the file. lastModified() returns the modification time of the file (which
should be used for comparison with other file times only and not interpreted as any
particular time format). setLastModified() allows the modification time to be set;
setReadOnly() makes a file or directory read-only.

list() returns the names of all entries in a directory that are not rejected by an optional
FilenameFilter. listFiles() returns an array of File objects that represent all
entries in a directory not rejected by an optional FilenameFilter or FileFilter.
listRoots() returns an array of File objects representing all root directories on the
system. Unix systems typically have only one root, /. Windows systems have a different
root for each drive letter: c:\, d:\, and e:\, for example.

mkdir() creates a directory, and mkdirs() creates all the directories in a File
specification. renameTo() renames a file or directory; delete() deletes a file or
directory. Prior to Java 1.2, the File class doesn't provide any way to create a file; that
task is accomplished typically with FileOutputStream. Two special-purpose file
creation methods have were added in Java 1.2. The static createTempFile() method

Chapter 9. java.io Page 16 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

returns a File object that refers to a newly created empty file with a unique name that
begins with the specified prefix (which must be at least three characters long) and ends
with the specified suffix. One version of this method creates the file in a specified directory,
and the other creates it in the system temporary directory. Applications can use temporary
files for any purpose without worrying about overwriting files belonging to other
applications. The other file-creation method of Java 1.2 is createNewFile(). This
instance method attempts to create a new, empty file with the name specified by the
File object. If it succeeds, it returns true. However, if the file already exists, it returns
false. createNewFile() works atomically and is therefore useful for file locking and
other mutual-exclusion schemes. When working with createTempFile() or
createNewFile(), consider using deleteOnExit() to request that the files be
deleted when the Java VM exits normally.

Figure 9-14. java.io.File

public class File implements Serializable, Comparable<File> {
// Public Constructors
1.4 public File(java.net.URI uri);
 public File(String pathname);
 public File(File parent, String child);
 public File(String parent, String child);
// Public Constants
 public static final String pathSeparator;
 public static final char pathSeparatorChar;
 public static final String separator;
 public static final char separatorChar;
// Public Class Methods
1.2 public static File createTempFile(String prefix, String suffix) throws IOException;
1.2 public static File createTempFile(String prefix, String suffix, File directory) throws
 IOException;
1.2 public static File[] listRoots();
// Public Instance Methods
 public boolean canRead();
 public boolean canWrite();
1.2 public boolean createNewFile() throws IOException;
 public boolean delete();
1.2 public void deleteOnExit();
 public boolean exists();
1.2 public File getAbsoluteFile();
 public String getAbsolutePath();
1.2 public File getCanonicalFile() throws IOException;
1.1 public String getCanonicalPath() throws IOException;
 public String getName();
 public String getParent();
1.2 public File getParentFile();
 public String getPath();
 public boolean isAbsolute();
 public boolean isDirectory();
 public boolean isFile();
1.2 public boolean isHidden();
 public long lastModified();
 public long length();
 public String[] list();
 public String[] list(FilenameFilter filter);
1.2 public File[] listFiles();
1.2 public File[] listFiles(FilenameFilter filter);

Chapter 9. java.io Page 17 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1.2 public File[] listFiles(FileFilter filter);
 public boolean mkdir();
 public boolean mkdirs();
 public boolean renameTo(File dest);
1.2 public boolean setLastModified(long time);
1.2 public boolean setReadOnly();
1.4 public java.net.URI toURI();
1.2 public java.net.URL toURL() throws java.net.MalformedURLException;
// Methods Implementing Comparable
1.2 public int compareTo(File pathname);
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

Too many methods to list.
Returned By

ProcessBuilder.directory()

FileDescriptor java.io

Java 1.0

This class is a platform-independent representation of a low-level handle to an open file
or socket. The static in , out, and err variables are FileDescriptor objects that
represent the standard input, output, and error streams, respectively. There is no public
constructor method to create a FileDescriptor object. You can obtain one with the
getFD() method of FileInputStream, FileOutputStream, or
RandomAccessFile.

public final class FileDescriptor {
// Public Constructors
 public FileDescriptor();
// Public Constants
 public static final FileDescriptor err;
 public static final FileDescriptor in;
 public static final FileDescriptor out;
// Public Instance Methods
1.1 public void sync() throws SyncFailedException; native
 public boolean valid();
}

Passed To

FileInputStream.FileInputStream(),
FileOutputStream.FileOutputStream(), FileReader.FileReader(),
FileWriter.FileWriter(), SecurityManager.{checkRead(),
checkWrite()}

Chapter 9. java.io Page 18 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

FileInputStream.getFD(), FileOutputStream.getFD(),
RandomAccessFile.getFD(),
java.net.DatagramSocketImpl.getFileDescriptor(),
java.net.SocketImpl.getFileDescriptor()
Type Of

java.net.DatagramSocketImpl.fd, java.net.SocketImpl.fd

FileFilter java.io

Java 1.2

This interface, added in Java 1.2, defines an accept() method that filters a list of files.
You can list the contents of a directory by calling the listFiles() method of the
File object that represents the desired directory. If you want a filtered listing, such as a
listing of files but not subdirectories or a listing of files whose names end in .class, you can
pass a FileFilter object to listFiles(). For each entry in the directory, a File
object is passed to the accept() method. If accept() returns true, that File is
included in the return value of listFiles(). If accept() returns false, that entry is
not included in the listing. Use FilenameFilter if compatibility with previous releases
of Java is required or if you prefer to filter filenames (i.e., String objects) rather than
File objects.

public interface FileFilter {
// Public Instance Methods
 boolean accept(File pathname);
}

Passed To

File.listFiles()

FileInputStream java.io

Java 1.0 closeable

This class is a subclass of InputStream that reads bytes from a file specified by name or
by a File or FileDescriptor object. read() reads a byte or array of bytes from the
file. It returns -1 when the end-of-file has been reached. To read binary data, you typically
use this class in conjunction with a BufferedInputStream and DataInputStream.

Chapter 9. java.io Page 19 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To read text, you typically use it with an InputStreamReader and BufferedReader.
Call close() to close the file when input is no longer needed.

In Java 1.4 and later, use getChannel() to obtain a FileChannel object for reading
from the underlying file using the New I/O API of java.nio and its subpackages.

Figure 9-15. java.io.FileInputStream

public class FileInputStream extends InputStream {
// Public Constructors
 public FileInputStream(String name) throws FileNotFoundException;
 public FileInputStream(File file) throws FileNotFoundException;
 public FileInputStream(FileDescriptor fdObj);
// Public Instance Methods
1.4 public java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding InputStream
 public int available() throws IOException; native
 public void close() throws IOException;
 public int read() throws IOException; native
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public long skip(long n) throws IOException; native
// Protected Methods Overriding Object
 protected void finalize() throws IOException;
}

FilenameFilter java.io

Java 1.0

This interface defines the accept() method that must be implemented by any object
that filters filenames (i.e., selects a subset of filenames from a list of filenames). There are
no standard FilenameFilter classes implemented by Java, but objects that implement
this interface are used by the java.awt.FileDialog object and the File.list()
method. A typical FilenameFilter object might check that the specified File
represents a file (not a directory), is readable (and possibly writable as well), and that its
name ends with some desired extension.

public interface FilenameFilter {
// Public Instance Methods
 boolean accept(File dir, String name);
}

Chapter 9. java.io Page 20 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

File.{list(), listFiles()}

FileNotFoundException java.io

Java 1.0 serializable checked

An IOException that signals that a specified file cannot be found.

Figure 9-16. java.io.FileNotFoundException

public class FileNotFoundException extends IOException {
// Public Constructors
 public FileNotFoundException();
 public FileNotFoundException(String s);
}

Thrown By

Too many methods to list.

FileOutputStream java.io

Java 1.0 closeable flushable

This class is a subclass of OutputStream that writes data to a file specified by name or
by a File or FileDescriptor object. If the specified file already exists, a
FileOutputStream can be configured to overwrite or append to the existing file.
write() writes a byte or array of bytes to the file. To write binary data, you typically use
this class in conjunction with a BufferedOutputStream and a DataOutputStream.
To write text, you typically use it with a PrintWriter, BufferedWriter and an
OutputStreamWriter (or you use the convenience class FileWriter). Use
close() to close a FileOutputStream when no further output will be written to it.

In Java 1.4 and later, use getChannel() to obtain a FileChannel object for writing
to the underlying file using the New I/O API of java.nio and its subpackages.

Chapter 9. java.io Page 21 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-17. java.io.FileOutputStream

public class FileOutputStream extends OutputStream {
// Public Constructors
 public FileOutputStream(FileDescriptor fdObj);
 public FileOutputStream(File file) throws FileNotFoundException;
 public FileOutputStream(String name) throws FileNotFoundException;
1.1 public FileOutputStream(String name, boolean append) throws FileNotFoundException;
1.4 public FileOutputStream(File file, boolean append) throws FileNotFoundException;
// Public Instance Methods
1.4 public java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
// Public Methods Overriding OutputStream
 public void close() throws IOException;
 public void write(int b) throws IOException; native
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Protected Methods Overriding Object
 protected void finalize() throws IOException;
}

FilePermission java.io

Java 1.2 serializable permission

This class is a java.security.Permission that governs access to the local filesystem.
A FilePermission has a name, or target, which specifies what file or files it pertains to,
and a commaseparated list of actions that may be performed on the file or files. The
supported actions are read, write, delete, and execute. Read and write permission are
required by any methods that read or write a file. Delete permission is required by
File.delete(), and execute permission is required by Runtime.exec().

The name of a FilePermission may be as simple as a file or directory name.
FilePermission also supports the use of certain wildcards, however, to specify a
permission that applies to more than one file. If the name of the FilePermission is a
directory name followed by /* (* on Windows platforms), it specifies all files in the
named directory. If the name is a directory name followed by /- (\- on Windows), it
specifies all files in the directory, and, recursively, all files in all subdirectories. A * alone
specifies all files in the current directory, and a - alone specifies all files in or beneath the
current directory. Finally, the special name <<ALL FILES>> matches all files anywhere
in the filesystem.

Applications do not need to use this class directly. Programmers writing system-level code
and system administrators configuring security policies may need to use it, however. Be

Chapter 9. java.io Page 22 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

very careful when granting any type of FilePermission. Restricting access (especially
write access) to files is one of the cornerstones of the Java security model with regard to
untrusted code.

Figure 9-18. java.io.FilePermission

public final class FilePermission extends java.security.Permission implements Serializable {
// Public Constructors
 public FilePermission(String path, String actions);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

FileReader java.io

Java 1.1 readable closeable

FileReader is a convenience subclass of InputStreamReader that is useful when you
want to read text (as opposed to binary data) from a file. You create a FileReader by
specifying the file to be read in any of three possible forms. The FileReader constructor
internally creates a FileInputStream to read bytes from the specified file and uses the
functionality of its superclass, InputStreamReader, to convert those bytes from
characters in the local encoding to the Unicode characters used by Java. Because
FileReader is a trivial subclass of InputStreamReader, it does not define any
read() methods or other methods of its own. Instead, it inherits all its methods from
its superclass. If you want to read Unicode characters from a file that uses some encoding
other than the default encoding for the locale, you must explicitly create your own
InputStreamReader to perform the byte-to-character conversion.

Figure 9-19. java.io.FileReader

public class FileReader extends InputStreamReader {
// Public Constructors
 public FileReader(FileDescriptor fd);
 public FileReader(File file) throws FileNotFoundException;

Chapter 9. java.io Page 23 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public FileReader(String fileName) throws FileNotFoundException;
}

FileWriter java.io

Java 1.1 appendable closeable flushable

FileWriter is a convenience subclass of OutputStreamWriter that is useful when you
want to write text (as opposed to binary data) to a file. You create a FileWriter by
specifying the file to be written to and, optionally, whether the data should be appended
to the end of an existing file instead of overwriting that file. The FileWriter class creates
an internal FileOutputStream to write bytes to the specified file and uses the
functionality of its superclass, OutputStreamWriter, to convert the Unicode characters
written to the stream into bytes using the default encoding of the default locale. (If you
want to use an encoding other than the default, you cannot use FileWriter; in that case
you must create your own OutputStreamWriter and FileOutputStream.) Because
FileWriter is a trivial subclass of OutputStreamWriter, it does not define any
methods of its own, but simply inherits them from its superclass.

Figure 9-20. java.io.FileWriter

public class FileWriter extends OutputStreamWriter {
// Public Constructors
 public FileWriter(File file) throws IOException;
 public FileWriter(FileDescriptor fd);
 public FileWriter(String fileName) throws IOException;
1.4 public FileWriter(File file, boolean append) throws IOException;
 public FileWriter(String fileName, boolean append) throws IOException;
}

FilterInputStream java.io

Java 1.0 closeable

This class provides method definitions required to filter data obtained from the
InputStream specified when the FilterInputStream is created. It must be subclassed
to perform some sort of filtering operation and cannot be instantiated directly. See the

Chapter 9. java.io Page 24 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

subclasses BufferedInputStream, DataInputStream, and
PushbackInputStream.

Figure 9-21. java.io.FilterInputStream

public class FilterInputStream extends InputStream {
// Protected Constructors
 protected FilterInputStream(InputStream in);
// Public Methods Overriding InputStream
 public int available() throws IOException;
 public void close() throws IOException;
 public void mark(int readlimit); synchronized
 public boolean markSupported();
 public int read() throws IOException;
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected volatile InputStream in;
}

Subclasses

BufferedInputStream, DataInputStream, LineNumberInputStream,
PushbackInputStream, java.security.DigestInputStream,
java.util.zip.CheckedInputStream,
java.util.zip.InflaterInputStream, javax.crypto.CipherInputStream

FilterOutputStream java.io

Java 1.0 closeable flushable

This class provides method definitions required to filter the data to be written to the
OutputStream specified when the FilterOutputStream is created. It must be
subclassed to perform some sort of filtering operation and may not be instantiated directly.
See the subclasses BufferedOutputStream and DataOutputStream.

Figure 9-22. java.io.FilterOutputStream

public class FilterOutputStream extends OutputStream {
// Public Constructors
 public FilterOutputStream(OutputStream out);
// Public Methods Overriding OutputStream

Chapter 9. java.io Page 25 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int b) throws IOException;
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Protected Instance Fields
 protected OutputStream out;
}

Subclasses

BufferedOutputStream, DataOutputStream, PrintStream,
java.security.DigestOutputStream,
java.util.zip.CheckedOutputStream,
java.util.zip.DeflaterOutputStream,
javax.crypto.CipherOutputStream

FilterReader java.io

Java 1.1 readable closeable

This abstract class is intended to act as a superclass for character input streams that read
data from some other character input stream, filter it in some way, and then return the
filtered data when a read() method is called. FilterReader is declared abstract so
that it cannot be instantiated. But none of its methods are themselves abstract: they all
simply call the requested operation on the input stream passed to the
FilterReader() constructor. If you were allowed to instantiate a FilterReader,
you'd find that it is a null filter (i.e., it simply reads characters from the specified input
stream and returns them without any kind of filtering).

Because FilterReader implements a null filter, it is an ideal superclass for classes that
want to implement simple filters but do not want to override all the methods of Reader.
In order to create your own filtered character input stream, you should subclass
FilterReader and override both its read() methods to perform the desired filtering
operation. Note that you can implement one of the read() methods in terms of the other,
and thus only implement the filtration once. Recall that the other read() methods
defined by Reader are implemented in terms of these methods, so you do not need to
override those. In some cases, you may need to override other methods of
FilterReader and provide methods or constructors that are specific to your subclass.
FilterReader is the character-stream analog to FilterInputStream.

Chapter 9. java.io Page 26 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-23. java.io.FilterReader

public abstract class FilterReader extends Reader {
// Protected Constructors
 protected FilterReader(Reader in);
// Public Methods Overriding Reader
 public void close() throws IOException;
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported();
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Protected Instance Fields
 protected Reader in;
}

Subclasses

PushbackReader

FilterWriter java.io

Java 1.1 appendable closeable flushable

This abstract class is intended to act as a superclass for character output streams that filter
the data written to them before writing it to some other character output stream.
FilterWriter is declared abstract so that it cannot be instantiated. But none of its
methods are themselves abstract: they all simply invoke the corresponding method on the
output stream that was passed to the FilterWriter constructor. If you were allowed to
instantiate a FilterWriter object, you'd find that it acts as a null filter (i.e., it simply
passes the characters written to it along, without any filtration).

Because FilterWriter implements a null filter, it is an ideal superclass for classes that
want to implement simple filters without having to override all of the methods of
Writer. In order to create your own filtered character output stream, you should subclass
FilterWriter and override all its write() methods to perform the desired filtering
operation. Note that you can implement two of the write() methods in terms of the
third and thus implement your filtering algorithm only once. In some cases, you may want
to override other Writer methods and add other methods or constructors that are specific
to your subclass. FilterWriter is the character-stream analog of
FilterOutputStream.

Chapter 9. java.io Page 27 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-24. java.io.FilterWriter

public abstract class FilterWriter extends Writer {
// Protected Constructors
 protected FilterWriter(Writer out);
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
// Protected Instance Fields
 protected Writer out;
}

Flushable java.io

Java 5.0 flushable

This interface defines a flush() method and is implemented by flushable objects such
as java.io streams. This interface was added in Java 5.0 to enable
java.util.Formatter to distinguish java.lang.Appendable objects that need to
be flushed (such as streams) from those that do not (such as StringBuilder objects).
See also Closeable.

public interface Flushable {
// Public Instance Methods
 void flush() throws IOException;
}

Implementations

OutputStream, Writer, java.util.Formatter

InputStream java.io

Java 1.0 closeable

This abstract class is the superclass of all input streams. It defines the basic input methods
all input stream classes provide. read() reads a single byte or an array (or subarray) of
bytes. It returns the bytes read, the number of bytes read, or -1 if the end-of-file has been
reached. skip() skips a specified number of bytes of input. available() returns the
number of bytes that can be read without blocking. close() closes the input stream and

Chapter 9. java.io Page 28 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

frees up any system resources associated with it. The stream should not be used after
close() has been called.

If markSupported() returns true for a given InputStream, that stream supports
mark() and reset() methods. mark() marks the current position in the input
stream so that reset() can return to that position (as long as no more than the specified
number of bytes have been read between the calls to mark() and reset()). See also
Reader.

Figure 9-25. java.io.InputStream

public abstract class InputStream implements Closeable {
// Public Constructors
 public InputStream();
// Public Instance Methods
 public int available() throws IOException; constant
 public void close() throws IOException; Implements:Closeable empty
 public void mark(int readlimit); synchronized empty
 public boolean markSupported(); constant
 public abstract int read() throws IOException;
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException; synchronized
 public long skip(long n) throws IOException;
// Methods Implementing Closeable
 public void close() throws IOException; empty
}

Subclasses

ByteArrayInputStream, FileInputStream, FilterInputStream,
ObjectInputStream, PipedInputStream, SequenceInputStream,
StringBufferInputStream
Passed To

Too many methods to list.
Returned By

Too many methods to list.
Type Of

FilterInputStream.in, System.in

InputStreamReader java.io

Java 1.1 readable closeable

This class is a character input stream that uses a byte input stream as its data source. It
reads bytes from a specified InputStream and translates them into Unicode characters

Chapter 9. java.io Page 29 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

according to a particular platform- and locale-dependent character encoding. This is an
important internationalization feature in Java 1.1 and later. InputStreamReader
supports the standard Reader methods. It also has a getEncoding() method that
returns the name of the encoding being used to convert bytes to characters.

When you create an InputStreamReader, you specify an InputStream from which the
InputStreamReader is to read bytes and, optionally, the name of the character encoding
used by those bytes. If you do not specify an encoding name, the InputStreamReader
uses the default encoding for the default locale, which is usually the correct thing to do. In
Java 1.4 and later, this class uses the charset conversion facilities of the
java.nio.charset package and allows you to explicitly specify the Charset or
CharsetDecoder to be used. Prior to Java 1.4, the class allows you to specify only the
name of the desired charset encoding.

Figure 9-26. java.io.InputStreamReader

public class InputStreamReader extends Reader {
// Public Constructors
 public InputStreamReader(InputStream in);
 public InputStreamReader(InputStream in, String charsetName) throws
 UnsupportedEncodingException;
1.4 public InputStreamReader(InputStream in, java.nio.charset.Charset cs);
1.4 public InputStreamReader(InputStream in, java.nio.charset.CharsetDecoder dec);
// Public Instance Methods
 public String getEncoding();
// Public Methods Overriding Reader
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(char[] cbuf, int offset, int length) throws IOException;
 public boolean ready() throws IOException;
}

Subclasses

FileReader

InterruptedIOException java.io

Java 1.0 serializable checked

An IOException that signals that an input or output operation was interrupted. The
bytesTransferred field contains the number of bytes read or written before the
operation was interrupted.

Chapter 9. java.io Page 30 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-27. java.io.InterruptedIOException

public class InterruptedIOException extends IOException {
// Public Constructors
 public InterruptedIOException();
 public InterruptedIOException(String s);
// Public Instance Fields
 public int bytesTransferred;
}

Subclasses

java.net.SocketTimeoutException

InvalidClassException java.io

Java 1.1 serializable checked

Signals that the serialization mechanism has encountered one of several possible problems
with the class of an object that is being serialized or deserialized. The classname field
should contain the name of the class in question, and the getMessage() method is
overridden to return this class name with the message.

Figure 9-28. java.io.InvalidClassException

public class InvalidClassException extends ObjectStreamException {
// Public Constructors
 public InvalidClassException(String reason);
 public InvalidClassException(String cname, String reason);
// Public Methods Overriding Throwable
 public String getMessage();
// Public Instance Fields
 public String classname;
}

InvalidObjectException java.io

Java 1.1 serializable checked

Chapter 9. java.io Page 31 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This exception should be thrown by the validateObject() method of an object that
implements the ObjectInputValidation interface when a deserialized object fails an
input validation test for any reason.

Figure 9-29. java.io.InvalidObjectException

public class InvalidObjectException extends ObjectStreamException {
// Public Constructors
 public InvalidObjectException(String reason);
}

Thrown By

ObjectInputStream.registerValidation(),
ObjectInputValidation.validateObject(),
java.text.AttributedCharacterIterator.Attribute.readResolve(),
java.text.DateFormat.Field.readResolve(),
java.text.MessageFormat.Field.readResolve(),
java.text.NumberFormat.Field.readResolve()

IOException java.io

Java 1.0 serializable checked

Signals that an exceptional condition has occurred during input or output. This class has
several more specific subclasses. See EOFException, FileNotFoundException,
InterruptedIOException, and UTFDataFormatException.

Figure 9-30. java.io.IOException

public class IOException extends Exception {
// Public Constructors
 public IOException();
 public IOException(String s);
}

Chapter 9. java.io Page 32 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

CharConversionException, EOFException, FileNotFoundException,
InterruptedIOException, ObjectStreamException, SyncFailedException,
UnsupportedEncodingException, UTFDataFormatException,
java.net.HttpRetryException, java.net.MalformedURLException,
java.net.ProtocolException, java.net.SocketException,
java.net.UnknownHostException, java.net.UnknownServiceException,
java.nio.channels.ClosedChannelException,
java.nio.channels.FileLockInterruptionException,
java.nio.charset.CharacterCodingException,
java.util.InvalidPropertiesFormatException,
java.util.zip.ZipException, javax.net.ssl.SSLException
Passed To

java.net.ProxySelector.connectFailed()
Returned By

java.util.Formatter.ioException(),
java.util.Scanner.ioException()
Thrown By

Too many methods to list.

LineNumberInputStream java.io

Java 1.0; Deprecated in 1.1 @Deprecated closeable

This class is a FilterInputStream that keeps track of the number of lines of data that
have been read. getLineNumber() returns the current line number;
setLineNumber() sets the line number of the current line. Subsequent lines are
numbered starting from that number. This class is deprecated as of Java 1.1 because it does
not properly convert bytes to characters. Use LineNumberReader instead.

Figure 9-31. java.io.LineNumberInputStream

public class LineNumberInputStream extends FilterInputStream {
// Public Constructors
 public LineNumberInputStream(InputStream in);
// Public Instance Methods
 public int getLineNumber();
 public void setLineNumber(int lineNumber);
// Public Methods Overriding FilterInputStream
 public int available() throws IOException;
 public void mark(int readlimit);
 public int read() throws IOException;

Chapter 9. java.io Page 33 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public int read(byte[] b, int off, int len) throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

LineNumberReader java.io

Java 1.1 readable closeable

This class is a character input stream that keeps track of the number of lines of text that
have been read from it. It supports the usual Reader methods and also the
readLine() method introduced by its superclass. In addition to these methods, you can
call getLineNumber() to query the number of lines set so far. You can also call
setLineNumber() to set the line number for the current line. Subsequent lines are
numbered sequentially from this specified starting point. This class is a character-stream
analog to LineNumberInputStream, which has been deprecated as of Java 1.1.

Figure 9-32. java.io.LineNumberReader

public class LineNumberReader extends BufferedReader {
// Public Constructors
 public LineNumberReader(Reader in);
 public LineNumberReader(Reader in, int sz);
// Public Instance Methods
 public int getLineNumber();
 public void setLineNumber(int lineNumber);
// Public Methods Overriding BufferedReader
 public void mark(int readAheadLimit) throws IOException;
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public String readLine() throws IOException;
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
}

NotActiveException java.io

Java 1.1 serializable checked

This exception is thrown in several circumstances. It indicates that the invoked method
was not invoked at the right time or in the correct context. Typically, it means that an

Chapter 9. java.io Page 34 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ObjectOutputStream or ObjectInputStream is not currently active and therefore
the requested operation cannot be performed.

Figure 9-33. java.io.NotActiveException

public class NotActiveException extends ObjectStreamException {
// Public Constructors
 public NotActiveException();
 public NotActiveException(String reason);
}

Thrown By

ObjectInputStream.registerValidation()

NotSerializableException java.io

Java 1.1 serializable checked

Signals that an object cannot be serialized. It is thrown when serialization is attempted on
an instance of a class that does not implement the Serializable interface. Note that it
is also thrown when an attempt is made to serialize a Serializable object that refers to
(or contains) an object that is not Serializable. A subclass of a class that is
Serializable can prevent itself from being serialized by throwing this exception from
its writeObject() and/or readObject() methods.

Figure 9-34. java.io.NotSerializableException

public class NotSerializableException extends ObjectStreamException {
// Public Constructors
 public NotSerializableException();
 public NotSerializableException(String classname);
}

ObjectInput java.io

Chapter 9. java.io Page 35 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1

This interface extends the DataInput interface and adds methods for deserializing
objects and reading bytes and arrays of bytes.

Figure 9-35. java.io.ObjectInput

public interface ObjectInput extends DataInput {
// Public Instance Methods
 int available() throws IOException;
 void close() throws IOException;
 int read() throws IOException;
 int read(byte[] b) throws IOException;
 int read(byte[] b, int off, int len) throws IOException;
 Object readObject() throws ClassNotFoundException, IOException;
 long skip(long n) throws IOException;
}

Implementations

ObjectInputStream
Passed To

Externalizable.readExternal()

ObjectInputStream java.io

Java 1.1 closeable

ObjectInputStream deserializes objects, arrays, and other values from a stream that
was previously created with an ObjectOutputStream. The readObject() method
deserializes objects and arrays (which should then be cast to the appropriate type); various
other methods read primitive data values from the stream. Note that only objects that
implement the Serializable or Externalizable interface can be serialized and
deserialized.

A class may implement its own private readObject(ObjectInputStream) method to
customize the way it is deserialized. If you define such a method, there are several
ObjectInputStream methods you can use to help deserialize the object.
defaultReadObject() is the easiest. It reads the content of the object just as an
ObjectInputStream would normally do. If you wrote additional data before or after the
default object contents, you should read that data before or after calling
defaultReadObject(). When working with multiple versions or implementations of
a class, you may have to deserialize a set of fields that do not match the fields of your class.

Chapter 9. java.io Page 36 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this case, give your class a static field named serialPersistentFields whose value
is an array of ObjectStreamField objects that describe the fields to be deserialized. If
you do this, your readObject() method can call readFields() to read the specified
fields from the stream and return them in a ObjectInputStream.GetField object.
See ObjectStreamField and ObjectInputStream.GetField for more details.
Finally, you can call registerValidation() from a custom readObject()
method. This method registers an ObjectInputValidation object (typically the object
being deserialized) to be notified when a complete tree of objects has been deserialized,
and the original call to the readObject() method of the ObjectInputStream is about
to return to its caller.

The remaining methods include miscellaneous stream-manipulation methods and several
protected methods for use by subclasses that want to customize the deserialization
behavior of ObjectInputStream.

Figure 9-36. java.io.ObjectInputStream

public class ObjectInputStream extends InputStream implements ObjectInput,
 ObjectStreamConstants {
// Public Constructors
 public ObjectInputStream(InputStream in) throws IOException;
// Protected Constructors
1.2 protected ObjectInputStream() throws IOException, SecurityException;
// Nested Types
1.2 public abstract static class GetField;
// Public Instance Methods
 public void defaultReadObject() throws IOException, ClassNotFoundException;
1.2 public ObjectInputStream.GetField readFields() throws IOException,
 ClassNotFoundException;
1.4 public Object readUnshared() throws IOException, ClassNotFoundException;
 public void registerValidation(ObjectInputValidation obj, int prio) throws
 NotActiveException, InvalidObjectException;
// Methods Implementing DataInput
 public boolean readBoolean() throws IOException;
 public byte readByte() throws IOException;
 public char readChar() throws IOException;
 public double readDouble() throws IOException;
 public float readFloat() throws IOException;
 public void readFully(byte[] buf) throws IOException;
 public void readFully(byte[] buf, int off, int len) throws IOException;
 public int readInt() throws IOException;
 public long readLong() throws IOException;
 public short readShort() throws IOException;
 public int readUnsignedByte() throws IOException;
 public int readUnsignedShort() throws IOException;
 public String readUTF() throws IOException;
 public int skipBytes(int len) throws IOException;
// Methods Implementing ObjectInput
 public int available() throws IOException;
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(byte[] buf, int off, int len) throws IOException;
 public final Object readObject() throws IOException, ClassNotFoundException;
// Protected Instance Methods
 protected boolean enableResolveObject(boolean enable) throws SecurityException;

Chapter 9. java.io Page 37 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1.3 protected ObjectStreamClass readClassDescriptor() throws IOException,
 ClassNotFoundException;
1.2 protected Object readObjectOverride() throws IOException,
 ClassNotFoundException; constant
 protected void readStreamHeader() throws IOException, StreamCorruptedException;
 protected Class<?> resolveClass(ObjectStreamClass desc) throws IOException,
 ClassNotFoundException;
 protected Object resolveObject(Object obj) throws IOException;
1.3 protected Class<?> resolveProxyClass(String[] interfaces) throws IOException,
 ClassNotFoundException;
// Deprecated Public Methods
public String readLine() throws IOException; Implements:DataInput
}

ObjectInputStream.GetField java.io

Java 1.2

This class holds the values of named fields read by an ObjectInputStream. It gives the
programmer precise control over the deserialization process and is typically used when
implementing an object with a set of fields that do not match the set of fields (and the
serialization stream format) of the original implementation of the object. This class allows
the implementation of a class to change without breaking serialization compatibility.

In order to use the GetField class, your class must implement a private
readObject() method that is responsible for custom deserialization. Typically, when
using the GetField class, you have also specified an array of ObjectStreamField
objects as the value of a private static field named serialPersistentFields. This
array specifies the names and types of all fields expected to be found when reading from
a serialization stream. If there is no serialPersistentField field, the array of
ObjectStreamField objects is created from the actual fields (excluding static and
transient fields) of the class.

Within the readObject() method of your class, call the readFields() method of
ObjectInputStream(). This method reads the values of all fields from the stream and
stores them in an ObjectInputStream.GetField object that it returns. This
GetField object is essentially a mapping from field names to field values, and you can
extract the values of whatever fields you need in order to restore the proper state of the
object being deserialized. The various get() methods return the values of named fields
of specified types. Each method takes a default value as an argument, in case no value for
the named field was present in the serialization stream. (This can happen when
deserializing an object written by an earlier version of the class, for example.) Use the
defaulted() method to determine whether the GetField object contains a value for
the named field. If this method returns true, the named field had no value in the stream,

Chapter 9. java.io Page 38 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

so the get() method of the GetField object has to return the specified default value.
The getObjectStreamClass() method of a GetField object returns the
ObjectStreamClass object for the object being deserialized. This
ObjectStreamClass can obtain the array of ObjectStreamField objects for the class.

See also

ObjectOutputStream.PutField
public abstract static class ObjectInputStream.GetField {
// Public Constructors
 public GetField();
// Public Instance Methods
 public abstract boolean defaulted(String name) throws IOException;
 public abstract boolean get(String name, boolean val) throws IOException;
 public abstract byte get(String name, byte val) throws IOException;
 public abstract char get(String name, char val) throws IOException;
 public abstract short get(String name, short val) throws IOException;
 public abstract int get(String name, int val) throws IOException;
 public abstract long get(String name, long val) throws IOException;
 public abstract float get(String name, float val) throws IOException;
 public abstract double get(String name, double val) throws IOException;
 public abstract Object get(String name, Object val) throws IOException;
 public abstract ObjectStreamClass getObjectStreamClass();
}

Returned By

ObjectInputStream.readFields()

ObjectInputValidation java.io

Java 1.1

A class implements this interface and defines the validateObject() method in order
to validate itself when it and all the objects it depends on have been completely deserialized
from an ObjectInputStream. The validateObject() method is only invoked,
however, if the object is passed to ObjectInputStream.registerValidation();
this must be done from the readObject() method of the object. Note that if an object
is deserialized as part of a larger object graph, its validateObject() method is not
invoked until the entire graph is read, and the original call to
ObjectInputStream.readObject() is about to return. validateObject()
should throw an InvalidObjectException if the object fails validation. This stops
object serialization, and the original call to ObjectInputStream.readObject()
terminates with the InvalidObjectException exception.

public interface ObjectInputValidation {
// Public Instance Methods
 void validateObject() throws InvalidObjectException;
}

Chapter 9. java.io Page 39 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

ObjectInputStream.registerValidation()

ObjectOutput java.io

Java 1.1

This interface extends the DataOutput interface and adds methods for serializing objects
and writing bytes and arrays of bytes.

Figure 9-37. java.io.ObjectOutput

public interface ObjectOutput extends DataOutput {
// Public Instance Methods
 void close() throws IOException;
 void flush() throws IOException;
 void write(byte[] b) throws IOException;
 void write(int b) throws IOException;
 void write(byte[] b, int off, int len) throws IOException;
 void writeObject(Object obj) throws IOException;
}

Implementations

ObjectOutputStream
Passed To

Externalizable.writeExternal(),
ObjectOutputStream.PutField.write()

ObjectOutputStream java.io

Java 1.1 closeable flushable

The ObjectOutputStream serializes objects, arrays, and other values to a stream. The
writeObject() method serializes an object or array, and various other methods write
primitive data values to the stream. Note that only objects that implement the
Serializable or Externalizable interface can be serialized.

A class that wants to customize the way instances are serialized should declare a private
writeObject(ObjectOutputStream) method. This method is invoked when an
object is being serialized and can use several additional methods of
ObjectOutputStream. defaultWriteObject() performs the same serialization

Chapter 9. java.io Page 40 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

that would happen if no writeObject() method existed. An object can call this method
to serialize itself and then use other methods of ObjectOutputStream to write
additional data to the serialization stream. The class must define a matching
readObject() method to read that additional data, of course. When working with
multiple versions or implementations of a class, you may have to serialize a set of fields
that do not precisely match the fields of your class. In this case, give your class a static field
named serialPersistentFields whose value is an array of ObjectStreamField
objects that describe the fields to be serialized. In your writeObject() method, call
putFields() to obtain an ObjectOutputStream.PutField object. Store field
names and values into this object, and then call writeFields() to write them out to
the serialization stream. See ObjectStreamField and
ObjectOutputStream.PutField for further details.

The remaining methods of ObjectOutputStream are miscellaneous stream-
manipulation methods and protected methods for use by subclasses that want to customize
its serialization behavior.

Figure 9-38. java.io.ObjectOutputStream

public class ObjectOutputStream extends OutputStream implements ObjectOutput,
 ObjectStreamConstants {
// Public Constructors
 public ObjectOutputStream(OutputStream out) throws IOException;
// Protected Constructors
1.2 protected ObjectOutputStream() throws IOException, SecurityException;
// Nested Types
1.2 public abstract static class PutField;
// Public Instance Methods
 public void defaultWriteObject() throws IOException;
1.2 public ObjectOutputStream.PutField putFields() throws IOException;
 public void reset() throws IOException;
1.2 public void useProtocolVersion(int version) throws IOException;
1.2 public void writeFields() throws IOException;
1.4 public void writeUnshared(Object obj) throws IOException;
// Methods Implementing DataOutput
 public void writeBoolean(boolean val) throws IOException;
 public void writeByte(int val) throws IOException;
 public void writeBytes(String str) throws IOException;
 public void writeChar(int val) throws IOException;
 public void writeChars(String str) throws IOException;
 public void writeDouble(double val) throws IOException;
 public void writeFloat(float val) throws IOException;
 public void writeInt(int val) throws IOException;
 public void writeLong(long val) throws IOException;
 public void writeShort(int val) throws IOException;
 public void writeUTF(String str) throws IOException;
// Methods Implementing ObjectOutput
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int val) throws IOException;
 public void write(byte[] buf) throws IOException;
 public void write(byte[] buf, int off, int len) throws IOException;
 public final void writeObject(Object obj) throws IOException;

Chapter 9. java.io Page 41 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Protected Instance Methods
 protected void annotateClass(Class<?> cl) throws IOException; empty
1.3 protected void annotateProxyClass(Class<?> cl) throws IOException; empty
 protected void drain() throws IOException;
 protected boolean enableReplaceObject(boolean enable) throws SecurityException;
 protected Object replaceObject(Object obj) throws IOException;
1.3 protected void writeClassDescriptor(ObjectStreamClass desc) throws IOException;
1.2 protected void writeObjectOverride(Object obj) throws IOException; empty
 protected void writeStreamHeader() throws IOException;
}

ObjectOutputStream.PutField java.io

Java 1.2

This class holds values of named fields and allows them to be written to an
ObjectOutputStream during the process of object serialization. It gives the
programmer precise control over the serialization process and is typically used when the
set of fields defined by a class does not match the set of fields (and the serialization stream
format) defined by the original implementation of the class. In other words,
ObjectOutputStream.PutField allows the implementation of a class to change
without breaking serialization compatibility.

In order to use the PutField class, you typically define a private static
serialPersistentFields field that refers to an array of ObjectStreamField
objects. This array defines the set of fields written to the ObjectOutputStream and
therefore defines the serialization format. If you do not declare a
serialPersistentFields field, the set of fields is all fields of the class, excluding
static and transient fields.

In addition to the serialPersistentFields field, your class must also define a private
writeObject() method that is responsible for the custom serialization of your class.
In this method, call the putFields() method of ObjectOutputStream to obtain an
ObjectOutputStream.PutField object. Once you have this object, use its various
put() methods to specify the names and values of the field to be written out. The set of
named fields should match those specified by serialPersistentFields. You may
specify the fields in any order; the PutField class is responsible for writing them out in
the correct order. Once you have specified the values of all fields, call the write()
method of your PutField object in order to write the field values out to the serialization
stream.

To reverse this custom serialization process, see ObjectInputStream.GetField.

Chapter 9. java.io Page 42 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public abstract static class ObjectOutputStream.PutField {
// Public Constructors
 public PutField();
// Public Instance Methods
 public abstract void put(String name, long val);
 public abstract void put(String name, int val);
 public abstract void put(String name, float val);
 public abstract void put(String name, Object val);
 public abstract void put(String name, double val);
 public abstract void put(String name, byte val);
 public abstract void put(String name, boolean val);
 public abstract void put(String name, short val);
 public abstract void put(String name, char val);
// Deprecated Public Methods
public abstract void write(ObjectOutput out) throws IOException;
}

Returned By

ObjectOutputStream.putFields()

ObjectStreamClass java.io

Java 1.1 serializable

This class represents a class that is being serialized. An ObjectStreamClass object
contains the name of a class, its unique version identifier, and the name and type of the
fields that constitute the serialization format for the class. getSerialVersionUID()
returns a unique version identifier for the class. It returns either the value of the private
serialVersionUID field of the class or a computed value that is based upon the public
API of the class. In Java 1.2 and later, getFields() returns an array of
ObjectStreamField objects that represent the names and types of the fields of the class
to be serialized. getField() returns a single ObjectStreamField object that
represents a single named field. By default, these methods use all the fields of a class except
those that are static or transient. However, this default set of fields can be overridden
by declaring a private serialPersistentFields field in the class. The value of this
field should be the desired array of ObjectStreamField objects.

ObjectStreamClass class does not have a constructor; you should use the static
lookup() method to obtain an ObjectStreamClass object for a given Class object.
The forClass() instance method performs the opposite operation; it returns the
Class object that corresponds to a given ObjectStreamClass. Most applications never
need to use this class.

Figure 9-39. java.io.ObjectStreamClass

Chapter 9. java.io Page 43 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class ObjectStreamClass implements Serializable {
// No Constructor
// Public Constants
1.2 public static final ObjectStreamField[] NO_FIELDS;
// Public Class Methods
 public static ObjectStreamClass lookup(Class<?> cl);
// Public Instance Methods
 public Class<?> forClass();
1.2 public ObjectStreamField getField(String name);
1.2 public ObjectStreamField[] getFields();
 public String getName();
 public long getSerialVersionUID();
// Public Methods Overriding Object
 public String toString();
}

Passed To

ObjectInputStream.resolveClass(),
ObjectOutputStream.writeClassDescriptor()
Returned By

ObjectInputStream.readClassDescriptor(),
ObjectInputStream.GetField.getObjectStreamClass()

ObjectStreamConstants java.io

Java 1.2

This interface defines various constants used by the Java object-serialization mechanism.
Two important constants are PROTOCOL_VERSION_1 and PROTOCOL_VERSION_2,
which specify the version of the serialization protocol to use. In Java 1.2, you can pass
either of these values to the useProtocolVersion() method of an
ObjectOutputStream. By default, Java 1.2 uses Version 2 of the protocol, and Java 1.1
uses Version 1 when serializing objects. Java 1.2 can deserialize objects written using either
version of the protocol, as can Java 1.1.7 and later. If you want to serialize an object so that
it can be read by versions of Java prior to Java 1.1.7, use PROTOCOL_VERSION_1.

The other constants defined by this interface are low-level values used by the serialization
protocol. You do not need to use them unless you are reimplementing the serialization
mechanism yourself.

public interface ObjectStreamConstants {
// Public Constants
 public static final int baseWireHandle; =8257536
 public static final int PROTOCOL_VERSION_1; =1
 public static final int PROTOCOL_VERSION_2; =2
 public static final byte SC_BLOCK_DATA; =8
5.0 public static final byte SC_ENUM; =16
 public static final byte SC_EXTERNALIZABLE; =4
 public static final byte SC_SERIALIZABLE; =2
 public static final byte SC_WRITE_METHOD; =1
 public static final short STREAM_MAGIC; =-21267
 public static final short STREAM_VERSION; =5

Chapter 9. java.io Page 44 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static final SerializablePermission SUBCLASS_IMPLEMENTATION_PERMISSION;
 public static final SerializablePermission SUBSTITUTION_PERMISSION;
 public static final byte TC_ARRAY; =117
 public static final byte TC_BASE; =112
 public static final byte TC_BLOCKDATA; =119
 public static final byte TC_BLOCKDATALONG; =122
 public static final byte TC_CLASS; =118
 public static final byte TC_CLASSDESC; =114
 public static final byte TC_ENDBLOCKDATA; =120
5.0 public static final byte TC_ENUM; =126
 public static final byte TC_EXCEPTION; =123
1.3 public static final byte TC_LONGSTRING; =124
 public static final byte TC_MAX; =126
 public static final byte TC_NULL; =112
 public static final byte TC_OBJECT; =115
1.3 public static final byte TC_PROXYCLASSDESC; =125
 public static final byte TC_REFERENCE; =113
 public static final byte TC_RESET; =121
 public static final byte TC_STRING; =116
}

Implementations

ObjectInputStream, ObjectOutputStream

ObjectStreamException java.io

Java 1.1 serializable checked

This class is the superclass of a number of more specific exception types that may be raised
in the process of serializing and deserializing objects with the ObjectOutputStream and
ObjectInputStream classes.

Figure 9-40. java.io.ObjectStreamException

public abstract class ObjectStreamException extends IOException {
// Protected Constructors
 protected ObjectStreamException();
 protected ObjectStreamException(String classname);
}

Subclasses

InvalidClassException, InvalidObjectException, NotActiveException,
NotSerializableException, OptionalDataException,
StreamCorruptedException, WriteAbortedException
Thrown By

java.security.KeyRep.readResolve(),
java.security.cert.Certificate.writeReplace(),

Chapter 9. java.io Page 45 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

java.security.cert.Certificate.CertificateRep.readResolve(),
java.security.cert.CertPath.writeReplace(),
java.security.cert.CertPath.CertPathRep.readResolve()

ObjectStreamField java.io

Java 1.2 comparable

This class represents a named field of a specified type (i.e., a specified Class). When a
class serializes itself by writing a set of fields that are different from the fields it uses in its
own implementation, it defines the set of fields to be written with an array of
ObjectStreamField objects. This array should be the value of a private static field
named serialPersistentFields. The methods of this class are used internally by the
serialization mechanism and are not typically used elsewhere. See also
ObjectOutputStream.PutField and ObjectInputStream.GetField.

Figure 9-41. java.io.ObjectStreamField

public class ObjectStreamField implements Comparable<Object> {
// Public Constructors
 public ObjectStreamField(String name, Class<?> type);
1.4 public ObjectStreamField(String name, Class<?> type, boolean unshared);
// Public Instance Methods
 public String getName();
 public int getOffset();
 public Class<?> getType();
 public char getTypeCode();
 public String getTypeString();
 public boolean isPrimitive();
1.4 public boolean isUnshared();
// Methods Implementing Comparable
 public int compareTo(Object obj);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected void setOffset(int offset);
}

Returned By

ObjectStreamClass.{getField(), getFields()}
Type Of

ObjectStreamClass.NO_FIELDS

OptionalDataException java.io

Chapter 9. java.io Page 46 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.1 serializable checked

Thrown by the readObject() method of an ObjectInputStream when it encounters
primitive type data where it expects object data. Despite the exception name, this data is
not optional, and object deserialization is stopped.

Figure 9-42. java.io.OptionalDataException

public class OptionalDataException extends ObjectStreamException {
// No Constructor
// Public Instance Fields
 public boolean eof;
 public int length;
}

OutputStream java.io

Java 1.0 closeable flushable

This abstract class is the superclass of all output streams. It defines the basic output
methods all output stream classes provide. write() writes a single byte or an array (or
subarray) of bytes. flush() forces any buffered output to be written. close() closes
the stream and frees up any system resources associated with it. The stream may not be
used once close() has been called. See also Writer.

Figure 9-43. java.io.OutputStream

public abstract class OutputStream implements Closeable, Flushable {
// Public Constructors
 public OutputStream();
// Public Instance Methods
 public void close() throws IOException; Implements:Closeable empty
 public void flush() throws IOException; Implements:Flushable empty
 public abstract void write(int b) throws IOException;
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
// Methods Implementing Closeable
 public void close() throws IOException; empty
// Methods Implementing Flushable
 public void flush() throws IOException; empty
}

Chapter 9. java.io Page 47 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

ByteArrayOutputStream, FileOutputStream, FilterOutputStream,
ObjectOutputStream, PipedOutputStream
Passed To

Too many methods to list.
Returned By

Process.getOutputStream(), Runtime.getLocalizedOutputStream(),
java.net.CacheRequest.getBody(),
java.net.Socket.getOutputStream(),
java.net.SocketImpl.getOutputStream(),
java.net.URLConnection.getOutputStream(),
java.nio.channels.Channels.newOutputStream(),
javax.xml.transform.stream.StreamResult.getOutputStream()
Type Of

FilterOutputStream.out

OutputStreamWriter java.io

Java 1.1 appendable closeable flushable

This class is a character output stream that uses a byte output stream as the destination
for its data. When characters are written to an OutputStreamWriter, it translates them
into bytes according to a particular locale- and/or platform-specific character encoding
and writes those bytes to the specified OutputStream. This is a very important
internationalization feature in Java 1.1 and later. OutputStreamWriter supports the
usual Writer methods. It also has a getEncoding() method that returns the name
of the encoding being used to convert characters to bytes.

When you create an OutputStreamWriter, specify the OutputStream to which it
writes bytes and, optionally, the name of the character encoding that should be used to
convert characters to bytes. If you do not specify an encoding name, the
OutputStreamWriter uses the default encoding of the default locale, which is usually
the correct thing to do. In Java 1.4 and later, this class uses the charset conversion facilities
of the java.nio.charset package and allows you to explicitly specify the Charset or
CharsetEncoder to be used. Prior to Java 1.4, the class allows you to specify only the
name of the desired charset encoding.

Chapter 9. java.io Page 48 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-44. java.io.OutputStreamWriter

public class OutputStreamWriter extends Writer {
// Public Constructors
 public OutputStreamWriter(OutputStream out);
 public OutputStreamWriter(OutputStream out, String charsetName) throws
 UnsupportedEncodingException;
1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.CharsetEncoder enc);
1.4 public OutputStreamWriter(OutputStream out, java.nio.charset.Charset cs);
// Public Instance Methods
 public String getEncoding();
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException;
 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
}

Subclasses

FileWriter

PipedInputStream java.io

Java 1.0 closeable

This class is an InputStream that implements one half of a pipe and is useful for
communication between threads. A PipedInputStream must be connected to a
PipedOutputStream object, which may be specified when the PipedInputStream is
created or with the connect() method. Data read from a PipedInputStream object
is received from the PipedOutputStream to which it is connected. See InputStream
for information on the low-level methods for reading data from a PipedInputStream.
A FilterInputStream can provide a higher-level interface for reading data from a
PipedInputStream.

Figure 9-45. java.io.PipedInputStream

public class PipedInputStream extends InputStream {
// Public Constructors
 public PipedInputStream();
 public PipedInputStream(PipedOutputStream src) throws IOException;
// Protected Constants
1.1 protected static final int PIPE_SIZE; =1024
// Public Instance Methods
 public void connect(PipedOutputStream src) throws IOException;

Chapter 9. java.io Page 49 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Methods Overriding InputStream
 public int available() throws IOException; synchronized
 public void close() throws IOException;
 public int read() throws IOException; synchronized
 public int read(byte[] b, int off, int len) throws IOException; synchronized
// Protected Instance Methods
1.1 protected void receive(int b) throws IOException; synchronized
// Protected Instance Fields
1.1 protected byte[] buffer;
1.1 protected int in;
1.1 protected int out;
}

Passed To

PipedOutputStream.{connect(), PipedOutputStream()}

PipedOutputStream java.io

Java 1.0 closeable flushable

This class is an OutputStream that implements one half a pipe and is useful for
communication between threads. A PipedOutputStream must be connected to a
PipedInputStream, which may be specified when the PipedOutputStream is created
or with the connect() method. Data written to the PipedOutputStream is available
for reading on the PipedInputStream. See OutputStream for information on the low-
level methods for writing data to a PipedOutputStream. A FilterOutputStream can
provide a higher-level interface for writing data to a PipedOutputStream.

Figure 9-46. java.io.PipedOutputStream

public class PipedOutputStream extends OutputStream {
// Public Constructors
 public PipedOutputStream();
 public PipedOutputStream(PipedInputStream snk) throws IOException;
// Public Instance Methods
 public void connect(PipedInputStream snk) throws IOException; synchronized
// Public Methods Overriding OutputStream
 public void close() throws IOException;
 public void flush() throws IOException; synchronized
 public void write(int b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
}

Passed To

PipedInputStream.{connect(), PipedInputStream()}

Chapter 9. java.io Page 50 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PipedReader java.io

Java 1.1 readable closeable

PipedReader is a character input stream that reads characters from a PipedWriter
character output stream to which it is connected. PipedReader implements one half of
a pipe and is useful for communication between two threads of an application. A
PipedReader cannot be used until it is connected to a PipedWriter object, which may
be passed to the PipedReader() constructor or to the connect() method.
PipedReader inherits most of the methods of its superclass. See Reader for more
information. PipedReader is the character-stream analog of PipedInputStream.

Figure 9-47. java.io.PipedReader

public class PipedReader extends Reader {
// Public Constructors
 public PipedReader();
 public PipedReader(PipedWriter src) throws IOException;
// Public Instance Methods
 public void connect(PipedWriter src) throws IOException;
// Public Methods Overriding Reader
 public void close() throws IOException;
1.2 public int read() throws IOException; synchronized
 public int read(char[] cbuf, int off, int len) throws IOException; synchronized
1.2 public boolean ready() throws IOException; synchronized
}

Passed To

PipedWriter.{connect(), PipedWriter()}

PipedWriter java.io

Java 1.1 appendable closeable flushable

PipedWriter is a character output stream that writes characters to the PipedReader
character input stream to which it is connected. PipedWriter implements one half of a
pipe and is useful for communication between two threads of an application. A
PipedWriter cannot be used until it is connected to a PipedReader object, which may
be passed to the PipedWriter() constructor or to the connect() method.

Chapter 9. java.io Page 51 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PipedWriter inherits most of the methods of its superclass. See Writer for more
information. PipedWriter is the character-stream analog of PipedOutputStream.

Figure 9-48. java.io.PipedWriter

public class PipedWriter extends Writer {
// Public Constructors
 public PipedWriter();
 public PipedWriter(PipedReader snk) throws IOException;
// Public Instance Methods
 public void connect(PipedReader snk) throws IOException; synchronized
// Public Methods Overriding Writer
 public void close() throws IOException;
 public void flush() throws IOException; synchronized
1.2 public void write(int c) throws IOException;
 public void write(char[] cbuf, int off, int len) throws IOException;
}

Passed To

PipedReader.{connect(), PipedReader()}

PrintStream java.io

Java 1.0 appendable closeable flushable

This class is a byte output stream that implements a number of methods for displaying
textual representations of Java primitive data types. System.out and System.err are
PrintStream objects. PrintStream converts characters to bytes using the platform's
default charset, or the charset or encoding named in the PrintStream() constructor
invocation. In Java 5.0, convenience constructors allow you to specify a file (either as a file
name or a File object) as the destination of a PrintStream. Prior to Java 5.0 the
destination had to be another OutputStream object.

The print() methods output standard textual representations of each data type. The
println() methods do the same and follow the representations with newlines. Each
method converts a Java primitive type to a String representation and outputs the
resulting string. When an Object is passed to a print() or println(), it is converted
to a String by calling its toString() method. In Java 5.0, you can also use the
printf() methods (or the format() methods that behave identically) for formatted
output. These methods behave like the format() method of a
java.util.Formatter object that uses the PrintStream as its destination.

Chapter 9. java.io Page 52 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class implements the java.lang.Appendable interface in Java 5.0, which makes
it suitable for use with a java.util.Formatter.

See also PrintWriter for a character output stream with similar functionality. And see
DataOutputStream for a byte output stream that outputs binary, rather than textual,
representations of Java's primitive types.

Figure 9-49. java.io.PrintStream

public class PrintStream extends FilterOutputStream implements Appendable, Closeable {
// Public Constructors
5.0 public PrintStream(File file) throws FileNotFoundException;
5.0 public PrintStream(String fileName) throws FileNotFoundException;
 public PrintStream(OutputStream out);
5.0 public PrintStream(String fileName, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
 public PrintStream(OutputStream out, boolean autoFlush);
5.0 public PrintStream(File file, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
1.4 public PrintStream(OutputStream out, boolean autoFlush, String encoding) throws
 UnsupportedEncodingException;
// Public Instance Methods
5.0 public PrintStream append(char c);
5.0 public PrintStream append(CharSequence csq);
5.0 public PrintStream append(CharSequence csq, int start, int end);
 public boolean checkError();
 public void close(); Implements:Closeable
5.0 public PrintStream format(String format, Object... args);
5.0 public PrintStream format(java.util.Locale l, String format, Object... args);
 public void print(double d);
 public void print(float f);
 public void print(char[] s);
 public void print(Object obj);
 public void print(String s);
 public void print(long l);
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
5.0 public PrintStream printf(String format, Object... args);
5.0 public PrintStream printf(java.util.Locale l, String format, Object... args);
 public void println();
 public void println(char[] x);
 public void println(double x);
 public void println(Object x);
 public void println(String x);
 public void println(float x);
 public void println(char x);
 public void println(boolean x);
 public void println(long x);
 public void println(int x);
// Methods Implementing Closeable
 public void close();
// Public Methods Overriding FilterOutputStream
 public void flush();
 public void write(int b);
 public void write(byte[] buf, int off, int len);
// Protected Instance Methods
1.1 protected void setError();
}

Chapter 9. java.io Page 53 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

System.{setErr(), setOut()}, Throwable.printStackTrace(),
java.util.Formatter.Formatter(), java.util.Properties.list(),
javax.xml.transform.TransformerException.printStackTrace(),
javax.xml.xpath.XPathException.printStackTrace()
Type Of

System.{err, out}

PrintWriter java.io

Java 1.1 appendable closeable flushable

This class is a character output stream that implements a number of print() and
println() methods that output textual representations of primitive values and objects.
When you create a PrintWriter object, you specify a character or byte output stream
that it should write its characters to and, optionally, whether the PrintWriter stream
should be automatically flushed whenever println() is called. If you specify a byte
output stream as the destination, the PrintWriter() constructor automatically creates
the necessary OutputStreamWriter object to convert characters to bytes using the
default encoding. In Java 5.0, convenience constructors allow you to specify a file (either
as a file name or a File object) as the destination. You may optionally specify the name
of a charset to use for character-to-byte conversion when writing to the file.

PrintWriter implements the normal write(), flush(), and close() methods
all Writer subclasses define. It is more common to use the higher-level print() and
println() methods, each of which converts its argument to a string before outputting
it. println() can also terminate the line (and optionally flush the buffer) after printing
its argument. In Java 5.0, you can also use the printf() methods (or the
format() methods that behave identically) for formatted output. These methods behave
like the format() method of a java.util.Formatter object that uses the
PrintWriter as its destination.

The methods of PrintWriter never throw exceptions. Instead, when errors occur, they
set an internal flag you can check by calling checkError(). checkError() first
flushes the internal stream and then returns true if any exception has occurred while
writing values to that stream. Once an error has occurred on a PrintWriter object, all
subsequent calls to checkError() return true; there is no way to reset the error flag.

Chapter 9. java.io Page 54 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PrintWriter is the character stream analog to PrintStream, which it supersedes. You
can usually easily replace any PrintStream objects in a program with PrintWriter
objects. This is particularly important for internationalized programs. The only valid
remaining use for the PrintStream class is for the System.out and System.err
standard output streams. See PrintStream for details.

Figure 9-50. java.io.PrintWriter

public class PrintWriter extends Writer {
// Public Constructors
5.0 public PrintWriter(String fileName) throws FileNotFoundException;
5.0 public PrintWriter(File file) throws FileNotFoundException;
 public PrintWriter(OutputStream out);
 public PrintWriter(Writer out);
5.0 public PrintWriter(File file, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
5.0 public PrintWriter(String fileName, String csn) throws FileNotFoundException,
 UnsupportedEncodingException;
 public PrintWriter(OutputStream out, boolean autoFlush);
 public PrintWriter(Writer out, boolean autoFlush);
// Public Instance Methods
5.0 public PrintWriter append(char c);
5.0 public PrintWriter append(CharSequence csq);
5.0 public PrintWriter append(CharSequence csq, int start, int end);
 public boolean checkError();
5.0 public PrintWriter format(String format, Object... args);
5.0 public PrintWriter format(java.util.Locale l, String format, Object... args);
 public void print(double d);
 public void print(float f);
 public void print(long l);
 public void print(Object obj);
 public void print(String s);
 public void print(char[] s);
 public void print(boolean b);
 public void print(char c);
 public void print(int i);
5.0 public PrintWriter printf(String format, Object... args);
5.0 public PrintWriter printf(java.util.Locale l, String format, Object... args);
 public void println();
 public void println(double x);
 public void println(float x);
 public void println(char[] x);
 public void println(Object x);
 public void println(String x);
 public void println(char x);
 public void println(boolean x);
 public void println(long x);
 public void println(int x);
// Public Methods Overriding Writer
 public void close();
 public void flush();
 public void write(String s);
 public void write(char[] buf);
 public void write(int c);
 public void write(String s, int off, int len);
 public void write(char[] buf, int off, int len);
// Protected Instance Methods
 protected void setError();
// Protected Instance Fields
1.2 protected Writer out;
}

Chapter 9. java.io Page 55 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

Throwable.printStackTrace(), java.util.Properties.list(),
javax.xml.transform.TransformerException.printStackTrace(),
javax.xml.xpath.XPathException.printStackTrace()

PushbackInputStream java.io

Java 1.0 closeable

This class is a FilterInputStream that implements a one-byte pushback buffer or, as
of Java 1.1, a pushback buffer of a specified length. The unread() methods push bytes
back into the stream; these bytes are the first ones read by the next call to a read()
method. This class is sometimes useful when writing parsers. See also
PushbackReader.

Figure 9-51. java.io.PushbackInputStream

public class PushbackInputStream extends FilterInputStream {
// Public Constructors
 public PushbackInputStream(InputStream in);
1.1 public PushbackInputStream(InputStream in, int size);
// Public Instance Methods
 public void unread(int b) throws IOException;
1.1 public void unread(byte[] b) throws IOException;
1.1 public void unread(byte[] b, int off, int len) throws IOException;
// Public Methods Overriding FilterInputStream
 public int available() throws IOException;
1.2 public void close() throws IOException; synchronized
5.0 public void mark(int readlimit); synchronized empty
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
5.0 public void reset() throws IOException; synchronized
1.2 public long skip(long n) throws IOException;
// Protected Instance Fields
1.1 protected byte[] buf;
1.1 protected int pos;
}

PushbackReader java.io

Java 1.1 readable closeable

Chapter 9. java.io Page 56 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This class is a character input stream that uses another input stream as its input source
and adds the ability to push characters back onto the stream. This feature is often useful
when writing parsers. When you create a PushbackReader stream, you specify the
stream to be read from and, optionally, the size of the pushback buffer (i.e., the number
of characters that may be pushed back onto the stream or unread). If you do not specify a
size for this buffer, the default size is one character. PushbackReader inherits or
overrides all standard Reader methods and adds three unread() methods that push a
single character, an array of characters, or a portion of an array of characters back onto
the stream. This class is the character stream analog of PushbackInputStream.

Figure 9-52. java.io.PushbackReader

public class PushbackReader extends FilterReader {
// Public Constructors
 public PushbackReader(Reader in);
 public PushbackReader(Reader in, int size);
// Public Instance Methods
 public void unread(int c) throws IOException;
 public void unread(char[] cbuf) throws IOException;
 public void unread(char[] cbuf, int off, int len) throws IOException;
// Public Methods Overriding FilterReader
 public void close() throws IOException;
1.2 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException;
1.2 public void reset() throws IOException;
1.4 public long skip(long n) throws IOException;
}

RandomAccessFile java.io

Java 1.0 closeable

This class allows you to read and write arbitrary bytes, text, and primitive Java data types
from or to any specified location in a file. Because this class provides random, rather than
sequential, access to files, it is neither a subclass of InputStream nor of
OutputStream, but provides an entirely independent method for reading and writing
data from or to files. RandomAccessFile implements the same interfaces as
DataInputStream and DataOutputStream, and thus defines the same methods for
reading and writing data as those classes do.

Chapter 9. java.io Page 57 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The seek() method provides random access to the file; it is used to select the position
in the file where data should be read or written. The various read and write methods update
this file position so that a sequence of read or write operations can be performed on a
contiguous portion of the file without having to call the seek() method before each read
or write.

The mode argument to the constructor methods should be "r" for a file that is to be read-
only or "rw" for a file that is to be written (and perhaps read as well). In Java 1.4 and later,
two other values for the mode argument are allowed as well. A mode of "rwd" opens the
file for reading and writing, and requires that (if the file resides on a local filesystem) every
update to the file content be written synchronously to the underlying file. The "rws" mode
is similar, but requires synchronous updates to both the file's content and its metadata
(which includes things such as file access times). Using "rws" mode may require that the
file metadata be modified every time the file is read.

In Java 1.4 and later, use the getChannel() method to obtain a FileChannel object
that you can use to access the file using the New I/O API of java.nio and its subpackages.
If the RandomAccessFile was opened with a mode of "r", the FileChannel allows only
reading. Otherwise, it allows both reading and writing.

Figure 9-53. java.io.RandomAccessFile

public class RandomAccessFile implements Closeable, DataInput, DataOutput {
// Public Constructors
 public RandomAccessFile(File file, String mode) throws FileNotFoundException;
 public RandomAccessFile(String name, String mode) throws FileNotFoundException;
// Public Instance Methods
 public void close() throws IOException; Implements:Closeable
1.4 public final java.nio.channels.FileChannel getChannel();
 public final FileDescriptor getFD() throws IOException;
 public long getFilePointer() throws IOException; native
 public long length() throws IOException; native
 public int read() throws IOException; native
 public int read(byte[] b) throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
 public void seek(long pos) throws IOException; native
1.2 public void setLength(long newLength) throws IOException; native
// Methods Implementing Closeable
 public void close() throws IOException;
// Methods Implementing DataInput
 public final boolean readBoolean() throws IOException;
 public final byte readByte() throws IOException;
 public final char readChar() throws IOException;
 public final double readDouble() throws IOException;
 public final float readFloat() throws IOException;
 public final void readFully(byte[] b) throws IOException;
 public final void readFully(byte[] b, int off, int len) throws IOException;
 public final int readInt() throws IOException;
 public final String readLine() throws IOException;
 public final long readLong() throws IOException;
 public final short readShort() throws IOException;
 public final int readUnsignedByte() throws IOException;

Chapter 9. java.io Page 58 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public final int readUnsignedShort() throws IOException;
 public final String readUTF() throws IOException;
 public int skipBytes(int n) throws IOException;
// Methods Implementing DataOutput
 public void write(int b) throws IOException; native
 public void write(byte[] b) throws IOException;
 public void write(byte[] b, int off, int len) throws IOException;
 public final void writeBoolean(boolean v) throws IOException;
 public final void writeByte(int v) throws IOException;
 public final void writeBytes(String s) throws IOException;
 public final void writeChar(int v) throws IOException;
 public final void writeChars(String s) throws IOException;
 public final void writeDouble(double v) throws IOException;
 public final void writeFloat(float v) throws IOException;
 public final void writeInt(int v) throws IOException;
 public final void writeLong(long v) throws IOException;
 public final void writeShort(int v) throws IOException;
 public final void writeUTF(String str) throws IOException;
}

Reader java.io

Java 1.1 readable closeable

This abstract class is the superclass of all character input streams. It is an analog to
InputStream, which is the superclass of all byte input streams. Reader defines the basic
methods that all character output streams provide. read() returns a single character or
an array (or subarray) of characters, blocking if necessary; it returns -1 if the end of the
stream has been reached. ready() returns true if there are characters available for
reading. If ready() returns true, the next call to read() is guaranteed not to block.
close() closes the character input stream. skip() skips a specified number of
characters in the input stream. If markSupported() returns true, mark() marks a
position in the stream and, if necessary, creates a look-ahead buffer of the specified size.
Future calls to reset() restore the stream to the marked position if they occur within
the specified look-ahead limit. Note that not all stream types support this mark-and-reset
functionality. To create a subclass of Reader, you need only implement the three-
argument version of read() and the close() method. Most subclasses implement
additional methods, however.

Figure 9-54. java.io.Reader

public abstract class Reader implements Closeable, Readable {
// Protected Constructors
 protected Reader();
 protected Reader(Object lock);
// Public Instance Methods

Chapter 9. java.io Page 59 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract void close() throws IOException; Implements:Closeable
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf) throws IOException;
 public abstract int read(char[] cbuf, int off, int len) throws IOException;
 public boolean ready() throws IOException; constant
 public void reset() throws IOException;
 public long skip(long n) throws IOException;
// Methods Implementing Closeable
 public abstract void close() throws IOException;
// Methods Implementing Readable
5.0 public int read(java.nio.CharBuffer target) throws IOException;
// Protected Instance Fields
 protected Object lock;
}

Subclasses

BufferedReader, CharArrayReader, FilterReader, InputStreamReader,
PipedReader, StringReader
Passed To

BufferedReader.BufferedReader(), FilterReader.FilterReader(),
LineNumberReader.LineNumberReader(),
PushbackReader.PushbackReader(),
StreamTokenizer.StreamTokenizer(),
javax.xml.transform.stream.StreamSource.{setReader(),
StreamSource()}, org.xml.sax.InputSource.{InputSource(),
setCharacterStream()}
Returned By

java.nio.channels.Channels.newReader(),
javax.xml.transform.stream.StreamSource.getReader(),
org.xml.sax.InputSource.getCharacterStream()
Type Of

FilterReader.in

SequenceInputStream java.io

Java 1.0 closeable

This class provides a way of seamlessly concatenating the data from two or more input
streams. It provides an InputStream interface to a sequence of InputStream objects.
Data is read from the streams in the order in which the streams are specified. When the
end of one stream is reached, data is automatically read from the next stream. This class
might be useful, for example, when implementing an include file facility for a parser.

Chapter 9. java.io Page 60 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 9-55. java.io.SequenceInputStream

public class SequenceInputStream extends InputStream {
// Public Constructors
 public SequenceInputStream(java.util.Enumeration<? extends InputStream> e);
 public SequenceInputStream(InputStream s1, InputStream s2);
// Public Methods Overriding InputStream
1.1 public int available() throws IOException;
 public void close() throws IOException;
 public int read() throws IOException;
 public int read(byte[] b, int off, int len) throws IOException;
}

Serializable java.io

Java 1.1 serializable

The Serializable interface defines no methods or constants. A class should implement
this interface simply to indicate that it allows itself to be serialized and deserialized with
ObjectOutputStream.writeObject() and
ObjectInputStream.readObject().

Objects that need special handling during serialization or deserialization may implement
one or both of the following methods; note, however, that these methods are not part of
the Serializable interface):

private void writeObject(java.io.ObjectOutputStream out) throws IOException;
private void readObject(java.io.ObjectInputStream in) throws IOException,
 ClassNotFoundException;

Typically, the writeObject() method performs any necessary cleanup or preparation
for serialization, invokes the defaultWriteObject() method of the
ObjectOutputStream to serialize the nontransient fields of the class, and optionally
writes any additional data that is required. Similarly, the readObject() method
typically invokes the defaultReadObject() method of the ObjectInputStream,
reads any additional data written by the corresponding writeObject() method, and
performs any extra initialization required by the object. The readObject() method
may also register an ObjectInputValidation object to validate the object once it is
completely deserialized.

public interface Serializable {
}

Chapter 9. java.io Page 61 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

Too many classes to list.
Passed To

java.security.SignedObject.SignedObject(),
javax.crypto.SealedObject.SealedObject()

SerializablePermission java.io

Java 1.2 serializable permission

This class is a java.security.Permission that governs the use of certain sensitive
features of serialization. SerializablePermission objects have a name, or target, but
do not have an action list. The name "enableSubclassImplementation" represents
permission to serialize and deserialize objects using subclasses of
ObjectOutputStream and ObjectInputStream. This capability is protected by a
permission because malicious code can define object stream subclasses that incorrectly
serialize and deserialize objects.

The only other name supported by SerializablePermission is "enableSubstitution,"
which represents permission for one object to be substituted for another during
serialization or deserialization. Permission of this type is required by the
ObjectOutputStream.enableReplaceObject() and
ObjectInputStream.enableResolveObject() methods.

Applications never need to use this class. Programmers writing system-level code may use
it, and system administrators configuring security policies should be familiar with it.

Figure 9-56. java.io.SerializablePermission

public final class SerializablePermission extends java.security.BasicPermission {
// Public Constructors
 public SerializablePermission(String name);
 public SerializablePermission(String name, String actions);
}

Type Of

ObjectStreamConstants.{SUBCLASS_IMPLEMENTATION_PERMISSION,
SUBSTITUTION_PERMISSION}

Chapter 9. java.io Page 62 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

StreamCorruptedException java.io

Java 1.1 serializable checked

Signals that the data stream being read by an ObjectInputStream has been corrupted
and does not contain valid serialized object data.

Figure 9-57. java.io.StreamCorruptedException

public class StreamCorruptedException extends ObjectStreamException {
// Public Constructors
 public StreamCorruptedException();
 public StreamCorruptedException(String reason);
}

Thrown By

ObjectInputStream.readStreamHeader()

StreamTokenizer java.io

Java 1.0

This class performs lexical analysis of a specified input stream and breaks the input into
tokens. It can be extremely useful when writing simple parsers. nextToken() returns
the next token in the stream; this is either one of the constants defined by the class (which
represent end-of-file, end-of-line, a parsed floating-point number, and a parsed word) or
a character value. pushBack() pushes the token back onto the stream, so that it is
returned by the next call to nextToken(). The public variables sval and nval contain
the string and numeric values (if applicable) of the most recently read token. They are
applicable when the returned token is TT_WORD or TT_NUMBER. lineno() returns the
current line number.

The remaining methods allow you to specify how tokens are recognized.
wordChars() specifies a range of characters that should be treated as parts of words.
whitespaceChars() specifies a range of characters that serve to delimit tokens.
ordinaryChars() and ordinaryChar() specify characters that are never part of
tokens and should be returned as-is. resetSyntax() makes all characters ordinary.
eolIsSignificant() specifies whether end-of-line is significant. If so, the TT_EOL

Chapter 9. java.io Page 63 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

constant is returned for end-of-lines; otherwise, they are treated as whitespace.
commentChar() specifies a character that begins a comment that lasts until the end of
the line. No characters in the comment are returned. slashStarComments() and
slashSlashComments() specify whether the StreamTokenizer should recognize
C- and C++-style comments. If so, no part of the comment is returned as a token.
quoteChar() specifies a character used to delimit strings. When a string token is parsed,
the quote character is returned as the token value, and the body of the string is stored in
the sval variable. lowerCaseMode() specifies whether TT_WORD tokens should be
converted to all lowercase characters before being stored in sval. parseNumbers()
specifies that the StreamTokenizer should recognize and return double-precision
floating-point number tokens.

public class StreamTokenizer {
// Public Constructors
public StreamTokenizer(InputStream is);
1.1 public StreamTokenizer(Reader r);
// Public Constants
 public static final int TT_EOF; =-1
 public static final int TT_EOL; =10
 public static final int TT_NUMBER; =-2
 public static final int TT_WORD; =-3
// Public Instance Methods
 public void commentChar(int ch);
 public void eolIsSignificant(boolean flag);
 public int lineno();
 public void lowerCaseMode(boolean fl);
 public int nextToken() throws IOException;
 public void ordinaryChar(int ch);
 public void ordinaryChars(int low, int hi);
 public void parseNumbers();
 public void pushBack();
 public void quoteChar(int ch);
 public void resetSyntax();
 public void slashSlashComments(boolean flag);
 public void slashStarComments(boolean flag);
 public void whitespaceChars(int low, int hi);
 public void wordChars(int low, int hi);
// Public Methods Overriding Object
 public String toString();
// Public Instance Fields
 public double nval;
 public String sval;
 public int ttype;
}

StringBufferInputStream java.io

Java 1.0; Deprecated in 1.1 @Deprecated closeable

This class is a subclass of InputStream in which input bytes come from the characters
of a specified String object. This class does not correctly convert the characters of a
StringBuffer into bytes and is deprecated as of Java 1.1. Use StringReader instead

Chapter 9. java.io Page 64 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to convert characters into bytes or use ByteArrayInputStream to read bytes from an
array of bytes.

Figure 9-58. java.io.StringBufferInputStream

public class StringBufferInputStream extends InputStream {
// Public Constructors
 public StringBufferInputStream(String s);
// Public Methods Overriding InputStream
 public int available(); synchronized
 public int read(); synchronized
 public int read(byte[] b, int off, int len); synchronized
 public void reset(); synchronized
 public long skip(long n); synchronized
// Protected Instance Fields
 protected String buffer;
 protected int count;
 protected int pos;
}

StringReader java.io

Java 1.1 readable closeable

This class is a character input stream that uses a String object as the source of the
characters it returns. When you create a StringReader, you must specify the String to
read from. StringReader defines the normal Reader methods and supports mark()
and reset(). If reset() is called before mark() has been called, the stream is reset
to the beginning of the specified string. StringReader is a character stream analog to
StringBufferInputStream, which is deprecated as of Java 1.1. StringReader is also
similar to CharArrayReader.

Figure 9-59. java.io.StringReader

public class StringReader extends Reader {
// Public Constructors
 public StringReader(String s);
// Public Methods Overriding Reader
 public void close();
 public void mark(int readAheadLimit) throws IOException;
 public boolean markSupported(); constant
 public int read() throws IOException;
 public int read(char[] cbuf, int off, int len) throws IOException;

Chapter 9. java.io Page 65 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public boolean ready() throws IOException;
 public void reset() throws IOException;
 public long skip(long ns) throws IOException;
}

StringWriter java.io

Java 1.1 appendable closeable flushable

This class is a character output stream that uses an internal StringBuffer object as the
destination of the characters written to the stream. When you create a StringWriter,
you may optionally specify an initial size for the StringBuffer, but you do not specify
the StringBuffer itself; it is managed internally by the StringWriter and grows as
necessary to accommodate the characters written to it. StringWriter defines the
standard write() , flush(), and close() methods all Writer subclasses define,
as well as two methods to obtain the characters that have been written to the stream's
internal buffer. toString() returns the contents of the internal buffer as a String,
and getBuffer() returns the buffer itself. Note that getBuffer() returns a reference
to the actual internal buffer, not a copy of it, so any changes you make to the buffer are
reflected in subsequent calls to toString(). StringWriter is quite similar to
CharArrayWriter, but does not have a byte-stream analog.

Figure 9-60. java.io.StringWriter

public class StringWriter extends Writer {
// Public Constructors
 public StringWriter();
 public StringWriter(int initialSize);
// Public Instance Methods
5.0 public StringWriter append(CharSequence csq);
5.0 public StringWriter append(char c);
5.0 public StringWriter append(CharSequence csq, int start, int end);
 public StringBuffer getBuffer();
// Public Methods Overriding Writer
 public void close() throws IOException; empty
 public void flush(); empty
 public void write(int c);
 public void write(String str);
 public void write(String str, int off, int len);
 public void write(char[] cbuf, int off, int len);
// Public Methods Overriding Object
 public String toString();
}

Chapter 9. java.io Page 66 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SyncFailedException java.io

Java 1.1 serializable checked

Signals that a call to FileDescriptor.sync() did not complete successfully.

Figure 9-61. java.io.SyncFailedException

public class SyncFailedException extends IOException {
// Public Constructors
 public SyncFailedException(String desc);
}

Thrown By

FileDescriptor.sync()

UnsupportedEncodingException java.io

Java 1.1 serializable checked

Signals that a requested character encoding is not supported by the current Java Virtual
Machine.

Figure 9-62. java.io.UnsupportedEncodingException

public class UnsupportedEncodingException extends IOException {
// Public Constructors
 public UnsupportedEncodingException();
 public UnsupportedEncodingException(String s);
}

Thrown By

Too many methods to list.

UTFDataFormatException java.io

Chapter 9. java.io Page 67 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.0 serializable checked

An IOException that signals that a malformed UTF-8 string has been encountered by a
class that implements the DataInput interface. UTF-8 is an ASCII-compatible
transformation format for Unicode characters that is often used to store and transmit
Unicode text.

Figure 9-63. java.io.UTFDataFormatException

public class UTFDataFormatException extends IOException {
// Public Constructors
 public UTFDataFormatException();
 public UTFDataFormatException(String s);
}

WriteAbortedException java.io

Java 1.1 serializable checked

Thrown when reading a stream of data that is incomplete because an exception was thrown
while it was being written. The detail field may contain the exception that terminated
the output stream. In Java 1.4 and later, this exception can also be obtained with the
standard Throwable getCause() method. The getMessage() method has been
overridden to include the message of this detail exception, if any.

Figure 9-64. java.io.WriteAbortedException

public class WriteAbortedException extends ObjectStreamException {
// Public Constructors
 public WriteAbortedException(String s, Exception ex);
// Public Methods Overriding Throwable
1.4 public Throwable getCause();
 public String getMessage();
// Public Instance Fields
 public Exception detail;
}

Chapter 9. java.io Page 68 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Writer java.io

Java 1.1 appendable closeable flushable

This abstract class is the superclass of all character output streams. It is an analog to
OutputStream, which is the superclass of all byte output streams. Writer defines the
basic write() , flush(), and close() methods all character output streams
provide. The five versions of the write() method write a single character, a character
array or subarray, or a string or substring to the destination of the stream. The most general
version of this method—the one that writes a specified portion of a character array—is
abstract and must be implemented by all subclasses. By default, the other write()
methods are implemented in terms of this abstract one. The flush() method is another
abstract method all subclasses must implement. It should force any output buffered by the
stream to be written to its destination. If that destination is itself a character or byte output
stream, it should invoke the flush() method of the destination stream as well. The
close() method is also abstract. A subclass must implement this method so that it
flushes and then closes the current stream and also closes whatever destination stream it
is connected to. Once the stream is closed, any future calls to write() or flush()
should throw an IOException.

In Java 5.0, this class has been modified to implement the Closeable and Flushable
interfaces. It has also changed to implement java.lang.Appendable, which means
that any Writer object can be used as the destination for a java.util.Formatter.

Figure 9-65. java.io.Writer

public abstract class Writer implements Appendable, Closeable, Flushable {
// Protected Constructors
 protected Writer();
 protected Writer(Object lock);
// Public Instance Methods
5.0 public Writer append(char c) throws IOException;
5.0 public Writer append(CharSequence csq) throws IOException;
5.0 public Writer append(CharSequence csq, int start, int end) throws IOException;
 public abstract void close() throws IOException; Implements:Closeable
 public abstract void flush() throws IOException; Implements:Flushable
 public void write(int c) throws IOException;
 public void write(String str) throws IOException;
 public void write(char[] cbuf) throws IOException;
 public abstract void write(char[] cbuf, int off, int len) throws IOException;
 public void write(String str, int off, int len) throws IOException;
// Methods Implementing Closeable
 public abstract void close() throws IOException;
// Methods Implementing Flushable
 public abstract void flush() throws IOException;
// Protected Instance Fields

Chapter 9. java.io Page 69 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected Object lock;
}

Subclasses

BufferedWriter, CharArrayWriter, FilterWriter, OutputStreamWriter,
PipedWriter,PrintWriter, StringWriter
Passed To

BufferedWriter.BufferedWriter(), CharArrayWriter.writeTo(),
FilterWriter.FilterWriter(), PrintWriter.PrintWriter(),
javax.xml.transform.stream.StreamResult.{setWriter(),
StreamResult()}
Returned By

CharArrayWriter.append(), PrintWriter.append(),
StringWriter.append(), java.nio.channels.Channels.newWriter(),
javax.xml.transform.stream.StreamResult.getWriter()
Type Of

FilterWriter.out, PrintWriter.out

Chapter 9. java.io Page 70 Return to Table of Contents

Chapter 9. java.io
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	java.io
	Package java.io
	BufferedInputStream
	BufferedOutputStream
	BufferedReader
	BufferedWriter
	ByteArrayInputStream
	ByteArrayOutputStream
	CharArrayReader
	CharArrayWriter
	CharConversionException
	Closeable
	DataInput
	DataInputStream
	DataOutput
	DataOutputStream
	EOFException
	Externalizable
	File
	FileDescriptor
	FileFilter
	FileInputStream
	FilenameFilter
	FileNotFoundException
	FileOutputStream
	FilePermission
	FileReader
	FileWriter
	FilterInputStream
	FilterOutputStream
	FilterReader
	FilterWriter
	Flushable
	InputStream
	InputStreamReader
	InterruptedIOException
	InvalidClassException
	InvalidObjectException
	IOException
	LineNumberInputStream
	LineNumberReader
	NotActiveException
	NotSerializableException
	ObjectInput
	ObjectInputStream
	ObjectInputStream.GetField
	ObjectInputValidation
	ObjectOutput
	ObjectOutputStream
	ObjectOutputStream.PutField
	ObjectStreamClass
	ObjectStreamConstants
	ObjectStreamException
	ObjectStreamField
	OptionalDataException
	OutputStream
	OutputStreamWriter
	PipedInputStream
	PipedOutputStream
	PipedReader
	PipedWriter
	PrintStream
	PrintWriter
	PushbackInputStream
	PushbackReader
	RandomAccessFile
	Reader
	SequenceInputStream
	Serializable
	SerializablePermission
	StreamCorruptedException
	StreamTokenizer
	StringBufferInputStream
	StringReader
	StringWriter
	SyncFailedException
	UnsupportedEncodingException
	UTFDataFormatException
	WriteAbortedException
	Writer

