
Table of Contents

Java Syntax from the Ground Up... 1
Java Programs from the Top Down.. 1
Lexical Structure... 2
Primitive Data Types... 6
Expressions and Operators... 13
Statements... 31
Methods... 55
Classes and Objects Introduced.. 63
Arrays.. 66
Reference Types.. 74
Packages and the Java Namespace... 82
Java File Structure.. 88
Defining and Running Java Programs... 89
Differences Between C and Java... 90

Chapter 2. Java Syntax from the Ground Up

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 2. Java Syntax from the Ground Up
This chapter is a terse but comprehensive introduction to Java syntax. It is written
primarily for readers who are new to the language but have at least some previous
programming experience. Determined novices with no prior programming experience
may also find it useful. If you already know Java, you should find it a useful language
reference. The chapter includes comparisons of Java to C and C++ for the benefit of
programmers coming from those languages.

This chapter documents the syntax of Java programs by starting at the very lowest level of
Java syntax and building from there, covering increasingly higher orders of structure. It
covers:

• The characters used to write Java programs and the encoding of those characters.
• Literal values, identifiers, and other tokens that comprise a Java program.
• The data types that Java can manipulate.
• The operators used in Java to group individual tokens into larger expressions.
• Statements, which group expressions and other statements to form logical chunks of

Java code.
• Methods (also called functions, procedures, or subroutines), which are named

collections of Java statements that can be invoked by other Java code.
• Classes, which are collections of methods and fields. Classes are the central program

element in Java and form the basis for object-oriented programming. Chapter 3 is
devoted entirely to a discussion of classes and objects.

• Packages, which are collections of related classes.
• Java programs, which consist of one or more interacting classes that may be drawn

from one or more packages.

The syntax of most programming languages is complex, and Java is no exception. In
general, it is not possible to document all elements of a language without referring to other
elements that have not yet been discussed. For example, it is not really possible to explain
in a meaningful way the operators and statements supported by Java without referring to
objects. But it is also not possible to document objects thoroughly without referring to the
operators and statements of the language. The process of learning Java, or any language,
is therefore an iterative one. If you are new to Java (or a Java-style programming language),
you may find that you benefit greatly from working through this chapter and the next
twice, so that you can grasp the interrelated concepts.

Chapter 2. Java Syntax from the Ground Up Page 1 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

2.1. Java Programs from the Top Down
Before we begin our bottom-up exploration of Java syntax, let's take a moment for a top-
down overview of a Java program. Java programs consist of one or more files, or
compilation units, of Java source code. Near the end of the chapter, we describe the
structure of a Java file and explain how to compile and run a Java program. Each
compilation unit begins with an optional package declaration followed by zero or more
import declarations. These declarations specify the namespace within which the
compilation unit will define names, and the namespaces from which the compilation unit
imports names. We'll see package and import again in Section 2.10 later in this chapter.

The optional package and import declarations are followed by zero or more reference
type definitions. These are typically class or interface definitions, but in Java 5.0 and
later, they can also be enum definitions or annotation definitions. The general features of
reference types are covered later in this chapter, and detailed coverage of the various kinds
of reference types is in Chapters Chapter 3 and Chapter 4.

Type definitions include members such as fields, methods, and constructors. Methods are
the most important type member. Methods are blocks of Java code comprised of
statements. Most statements include expressions, which are built using operators and
values known as primitive data types. Finally, the keywords used to write statements, the
punctuation characters that represent operators, and the literals values that appear in a
program are all tokens, which are described next. As the name of this section implies, this
chapter moves from describing the smallest units, tokens, to progressively larger units.
Since the concepts build upon one another, we recommend reading this chapter
sequentially.

2.2. Lexical Structure
This section explains the lexical structure of a Java program. It starts with a discussion of
the Unicode character set in which Java programs are written . It then covers the tokens
that comprise a Java program, explaining comments, identifiers, reserved words, literals,
and so on.

2.2.1. The Unicode Character Set
Java programs are written using Unicode. You can use Unicode characters anywhere in a
Java program, including comments and identifiers such as variable names. Unlike the 7-
bit ASCII character set, which is useful only for English, and the 8-bit ISO Latin-1 character
set, which is useful only for major Western European languages, the Unicode character set
can represent virtually every written language in common use on the planet. 16-bit Unicode
characters are typically written to files using an encoding known as UTF-8, which converts
the 16-bit characters into a stream of bytes. The format is designed so that plain ASCII text

Chapter 2. Java Syntax from the Ground Up Page 2 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

(and the 7-bit characters of Latin-1) are valid UTF-8 byte streams. Thus, you can simply
write plain ASCII programs, and they will work as valid Unicode.

If you do not use a Unicode-enabled text editor, or if you do not want to force other
programmers who view or edit your code to use a Unicode-enabled editor, you can embed
Unicode characters into your Java programs using the special Unicode escape sequence
\uxxxx, in other words, a backslash and a lowercase u, followed by four hexadecimal
characters. For example, \u0020 is the space character, and \u03c0 is the character .

Unicode 3.1 and above, used in Java 5.0 and later, includes "supplementary characters"
that require 21 bits to represent. 16-bit encodings of Unicode characters represent these
supplementary characters using a surrogate pair, which is a sequence of two 16-bit
characters taken from a special reserved range of the 16-bit encoding space. If you ever
need to include one of these (rarely used) supplementary characters in Java source code,
use two \u sequences to represent the surrogate pair. (Details of surrogate pair encoding
are beyond the scope of this book, however.)

2.2.2. Case-Sensitivity and Whitespace
Java is a case-sensitive language. Its keywords are written in lowercase and must always
be used that way. That is, While and WHILE are not the same as the while keyword.
Similarly, if you declare a variable named i in your program, you may not refer to it as I.

Java ignores spaces, tabs, newlines, and other whitespace, except when it appears within
quoted characters and string literals. Programmers typically use whitespace to format and
indent their code for easy readability, and you will see common indentation conventions
in the code examples of this book.

2.2.3. Comments
Comments are natural-language text intended for human readers of a program. They are
ignored by the Java compiler. Java supports three types of comments. The first type is a
single-line comment, which begins with the characters // and continues until the end of
the current line. For example:

int i = 0; // Initialize the loop variable

The second kind of comment is a multiline comment. It begins with the characters /* and
continues, over any number of lines, until the characters */. Any text between the /* and
the */ is ignored by the Java compiler. Although this style of comment is typically used
for multiline comments, it can also be used for single-line comments. This type of comment
cannot be nested (i.e., one /* */ comment cannot appear within another). When writing

Chapter 2. Java Syntax from the Ground Up Page 3 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

multiline comments, programmers often use extra * characters to make the comments
stand out. Here is a typical multiline comment:

/*
 * First, establish a connection to the server.
 * If the connection attempt fails, quit right away.
 */

The third type of comment is a special case of the second. If a comment begins with /**,
it is regarded as a special doc comment. Like regular multiline comments, doc comments
end with */ and cannot be nested. When you write a Java class you expect other
programmers to use, use doc comments to embed documentation about the class and each
of its methods directly into the source code. A program named javadoc extracts these
comments and processes them to create online documentation for your class. A doc
comment can contain HTML tags and can use additional syntax understood by javadoc.
For example:

/**
 * Upload a file to a web server.
 *
 * @param file The file to upload.
 * @return <tt>true</tt> on success,
 * <tt>false</tt> on failure.
 * @author David Flanagan
 */

See Chapter 7 for more information on the doc comment syntax and Chapter 8 for more
information on the javadoc program.

Comments may appear between any tokens of a Java program, but may not appear within
a token. In particular, comments may not appear within double-quoted string literals. A
comment within a string literal simply becomes a literal part of that string.

2.2.4. Reserved Words
The following words are reserved in Java: they are part of the syntax of the language and
may not be used to name variables, classes, and so forth.

abstract const final int public throw
assert continue finally interface return throws
boolean default float long short transient
break do for native static true
byte double goto new strictfp try
case else if null super void
catch enum implements package switch volatile
char extends import private synchronized while
class false instanceof protected this

We'll meet each of these reserved words again later in this book. Some of them are the
names of primitive types and others are the names of Java statements, both of which are
discussed later in this chapter. Still others are used to define classes and their members
(see Chapter 3).

Chapter 2. Java Syntax from the Ground Up Page 4 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-7#javanut5-CHP-7
http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8
http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

Note that const and goto are reserved but aren't actually used in the language.
strictfp was added in Java 1.2, assert was added in Java 1.4, and enum was added in
Java 5.0.

2.2.5. Identifiers
An identifier is simply a name given to some part of a Java program, such as a class, a
method within a class, or a variable declared within a method. Identifiers may be of any
length and may contain letters and digits drawn from the entire Unicode character set. An
identifier may not begin with a digit, however, because the compiler would then think it
was a numeric literal rather than an identifier.

In general, identifiers may not contain punctuation characters. Exceptions include the
ASCII underscore (_) and dollar sign ($) as well as other Unicode currency symbols such
as £ and ¥. Currency symbols are intended for use in automatically generated source code,
such as code produced by parser generators. By avoiding the use of currency symbols in
your own identifiers you don't have to worry about collisions with automatically generated
identifiers. Formally, the characters allowed at the beginning of and within an identifier
are defined by the methods isJavaIdentifierStart() and
isJavaIdentifierPart() of the class java.lang.Character.

The following are examples of legal identifiers:
i x1 theCurrentTime the_current_time

2.2.6. Literals
Literals are values that appear directly in Java source code. They include integer and
floating-point numbers, characters within single quotes, strings of characters within
double quotes, and the reserved words true, false and null. For example, the following
are all literals:

1 1.0 '1' "one" true false null

The syntax for expressing numeric, character, and string literals is detailed in Section
2.3 later in this chapter.

2.2.7. Punctuation
Java also uses a number of punctuation characters as tokens. The Java Language
Specification divides these characters (somewhat arbitrarily) into two categories,
separators and operators. Separators are:

() { } []

< > : ;

Chapter 2. Java Syntax from the Ground Up Page 5 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

, . @

Operators are:
+ - * / % & | ^ << >> >>>
+= -= *= /= %= &= |= ^= <<= >>= >>>=
= = = != < <= > >=
! ~ && || ++ -- ? :

We'll see separators throughout the book, and will cover each operator individually in
Section 2.4 later in this chapter.

2.3. Primitive Data Types
Java supports eight basic data types known as primitive types as secribed in Table 2-1.
The primitive types include a boolean type, a character type, four integer types, and two
floating-point types. The four integer types and the two floating-point types differ in the
number of bits that represent them and therefore in the range of numbers they can
represent. The next section summarizes these primitive data types. In addition to these
primitive types, Java supports nonprimitive data types such as classes, interfaces, and
arrays. These composite types are known as reference types, which are introduced in
Section 2.9 later in this chapter.

Table 2-1. Java primitive data types

Type Contains Default Size Range

boolean true or false false 1 bit NA

char Unicode character \u0000 16 bits \u0000 to \uFFFF
byte Signed integer 0 8 bits -128 to 127

short Signed integer 0 16 bits -32768 to 32767

int Signed integer 0 32 bits -2147483648 to 2147483647

long Signed integer 0 64 bits -9223372036854775808 to 9223372036854775807

float IEEE 754 floating point 0.0 32 bits 1.4E-45 to 3.4028235E+38

double IEEE 754 floating point 0.0 64 bits 4.9E-324 to 1.7976931348623157E+308

2.3.1. The boolean Type
The boolean type represents truth values. This type has only two possible values,
representing the two boolean states: on or off, yes or no, true or false. Java reserves the
words true and false to represent these two boolean values.

C and C++ programmers should note that Java is quite strict about its boolean type:
boolean values can never be converted to or from other data types. In particular, a
boolean is not an integral type, and integer values cannot be used in place of a
boolean. In other words, you cannot take shortcuts such as the following in Java:

Chapter 2. Java Syntax from the Ground Up Page 6 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

if (o) {
 while(i) {
 }
}

Instead, Java forces you to write cleaner code by explicitly stating the comparisons you
want:

if (o != null) {
 while(i != 0) {
 }
}

2.3.2. The char Type
The char type represents Unicode characters. It surprises many experienced
programmers to learn that Java char values are 16 bits long, but in practice this fact is
totally transparent. To include a character literal in a Java program, simply place it between
single quotes (apostrophes):

char c = 'A';

You can, of course, use any Unicode character as a character literal, and you can use the
\u Unicode escape sequence. In addition, Java supports a number of other escape
sequences that make it easy both to represent commonly used nonprinting ASCII
characters such as newline and to escape certain punctuation characters that have special
meaning in Java. For example:

char tab = '\t', apostrophe = '\'', nul = '\000', aleph='\u05D0';

Table 2-2 lists the escape characters that can be used in char literals. These characters
can also be used in string literals, which are covered in the next section.

Table 2-2. Java escape characters

Escape sequence Character value

\b Backspace

\t Horizontal tab

\n Newline

\f Form feed

\r Carriage return

\" Double quote

\' Single quote

\\ Backslash

\xxx
The Latin-1 character with the encoding xxx, where xxx is an octal (base 8) number between 000 and 377. The
forms \x and \xx are also legal, as in '\0', but are not recommended because they can cause difficulties in string
constants where the escape sequence is followed by a regular digit.

Chapter 2. Java Syntax from the Ground Up Page 7 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Escape sequence Character value

\uxxxx The Unicode character with encoding xxxx, where xxxx is four hexadecimal digits. Unicode escapes can appear
anywhere in a Java program, not only in character and string literals.

char values can be converted to and from the various integral types. Unlike byte,
short, int, and long, however, char is an unsigned type. The Character class defines
a number of useful static methods for working with characters, including isDigit
() , isJavaLetter(), isLowerCase(), and toUpperCase().

The Java language and its char type were designed with Unicode in mind. The Unicode
standard is evolving, however, and each new version of Java adopts the latest version of
Unicode. Java 1.4 used Unicode 3.0 and Java 5.0 adopts Unicode 4.0. This is significant
because Unicode 3.1 was the first release to include characters whose encodings, or
codepoints, do not fit in 16 bits. These supplementary characters, which are mostly
infrequently used Han (Chinese) ideographs, occupy 21 bits and cannot be represented in
a single char value. Instead, you must use an int value to hold the codepoint of a
supplementary character, or you must encode it into a so-called "surrogate pair" of two
char values. Unless you commonly write programs that use Asian languages, you are
unlikely to encounter any supplementary characters. If you do anticipate having to process
characters that do not fit into a char, Java 5.0 has added methods to the Character,
String, and related classes for working with text using int codepoints.

2.3.3. Strings
In addition to the char type, Java also has a data type for working with strings of text
(usually simply called strings). The String type is a class, however, and is not one of the
primitive types of the language. Because strings are so commonly used, though, Java does
have a syntax for including string values literally in a program. A String literal consists
of arbitrary text within double quotes. For example:

"Hello, world"
"'This' is a string!"

String literals can contain any of the escape sequences that can appear as char literals
(see Table 2-2). Use the \" sequence to include a double-quote within a String literal.
Since String is a reference type, string literals are described in more detail in Section
2.7.4 later in this chapter. Chapter 5 demonstrates some of the ways you can work with
String objects in Java.

2.3.4. Integer Types
The integer types in Java are byte, short, int, and long. As shown in Table 2-1, these
four types differ only in the number of bits and, therefore, in the range of numbers each

Chapter 2. Java Syntax from the Ground Up Page 8 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-5#javanut5-CHP-5

type can represent. All integral types represent signed numbers; there is no unsigned
keyword as there is in C and C++.

Literals for each of these types are written exactly as you would expect: as a string of
decimal digits, optionally preceded by a minus sign.[1] Here are some legal integer literals:

[1] Technically, the minus sign is an operator that operates on the literal, but is not part of the literal itself. Also, all integer literals are 32-bit int values unless followed
by the letter L, in which case they are 64-bit long values. There is no special syntax for byte and short literals, but int literals are usually converted to these shorter types
as needed. For example, in the following code

0
1
123
-42000

Integer literals can also be expressed in hexadecimal or octal notation. A literal that begins
with 0x or 0X is taken as a hexadecimal number, using the letters A to F (or a to f) as the
additional digits required for base-16 numbers. Integer literals beginning with a leading
0 are taken to be octal (base-8) numbers and cannot include the digits 8 or 9. Java does
not allow integer literals to be expressed in binary (base-2) notation. Legal hexadecimal
and octal literals include:

0xff // Decimal 255, expressed in hexadecimal
0377 // The same number, expressed in octal (base 8)
0xCAFEBABE // A magic number used to identify Java class files

Integer literals are 32-bit int values unless they end with the character L or l, in which
case they are 64-bit long values:

1234 // An int value
1234L // A long value
0xffL // Another long value

Integer arithmetic in Java is modular, which means that it never produces an overflow or
an underflow when you exceed the range of a given integer type. Instead, numbers just
wrap around. For example:

byte b1 = 127, b2 = 1; // Largest byte is 127
byte sum = (byte)(b1 + b2); // Sum wraps to -128, which is the smallest byte

Neither the Java compiler nor the Java interpreter warns you in any way when this occurs.
When doing integer arithmetic, you simply must ensure that the type you are using has a
sufficient range for the purposes you intend. Integer division by zero and modulo by zero
are illegal and cause an ArithmeticException to be thrown.

Each integer type has a corresponding wrapper class: Byte, Short, Integer, and
Long. Each of these classes defines MIN_VALUE and MAX_VALUE constants that describe
the range of the type. The classes also define useful static methods, such as

Chapter 2. Java Syntax from the Ground Up Page 9 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Byte.parseByte() and Integer.parseInt(), for converting strings to integer
values.

2.3.5. Floating-Point Types
Real numbers in Java are represented by the float and double data types. As shown in
Table 2-1, float is a 32-bit, single-precision floating-point value, and double is a 64-bit,
double-precision floating-point value. Both types adhere to the IEEE 754-1985 standard,
which specifies both the format of the numbers and the behavior of arithmetic for the
numbers.

Floating-point values can be included literally in a Java program as an optional string of
digits, followed by a decimal point and another string of digits. Here are some examples:

123.45
0.0
.01

Floating-point literals can also use exponential, or scientific, notation, in which a number
is followed by the letter e or E (for exponent) and another number. This second number
represents the power of ten by which the first number is multiplied. For example:

1.2345E02 // 1.2345
 102, or 123.45
1e-6 // 1
 10-6, or 0.000001
6.02e23 // Avogadro's Number: 6.02
 1023

Floating-point literals are double values by default. To include a float value literally in
a program, follow the number with f or F:

double d = 6.02E23;
float f = 6.02e23f;

Floating-point literals cannot be expressed in hexadecimal or octal notation.

Most real numbers, by their very nature, cannot be represented exactly in any finite
number of bits. Thus, it is important to remember that float and double values are only
approximations of the numbers they are meant to represent. A float is a 32-bit
approximation, which results in at least 6 significant decimal digits, and a double is a 64-
bit approximation, which results in at least 15 significant digits. In practice, these data
types are suitable for most real-number computations.

In addition to representing ordinary numbers, the float and double types can also
represent four special values: positive and negative infinity, zero, and NaN. The infinity
values result when a floating-point computation produces a value that overflows the

Chapter 2. Java Syntax from the Ground Up Page 10 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

representable range of a float or double. When a floating-point computation
underflows the representable range of a float or a double, a zero value results. The Java
floating-point types make a distinction between positive zero and negative zero, depending
on the direction from which the underflow occurred. In practice, positive and negative zero
behave pretty much the same. Finally, the last special floating-point value is NaN, which
stands for "not-a-number." The NaN value results when an illegal floating-point operation,
such as 0.0/0.0, is performed. Here are examples of statements that result in these special
values:

double inf = 1.0/0.0; // Infinity
double neginf = -1.0/0.0; // -Infinity
double negzero = -1.0/inf; // Negative zero
double NaN = 0.0/0.0; // Not-a-Number

Because the Java floating-point types can handle overflow to infinity and underflow to zero
and have a special NaN value, floating-point arithmetic never throws exceptions, even
when performing illegal operations, like dividing zero by zero or taking the square root of
a negative number.

The float and double primitive types have corresponding classes, named Float and
Double. Each of these classes defines the following useful constants: MIN_VALUE ,
MAX_VALUE, NEGATIVE_INFINITY, POSITIVE_INFINITY, and NaN.

The infinite floating-point values behave as you would expect. Adding or subtracting any
finite value to or from infinity, for example, yields infinity. Negative zero behaves almost
identically to positive zero, and, in fact, the = = equality operator reports that negative
zero is equal to positive zero. One way to distinguish negative zero from positive, or regular,
zero is to divide by it. 1.0/0.0 yields positive infinity, but 1.0 divided by negative zero yields
negative infinity. Finally, since NaN is not-a-number, the = = operator says that it is not
equal to any other number, including itself! To check whether a float or double value
is NaN, you must use the Float.isNaN() and Double.isNaN() methods.

2.3.6. Primitive Type Conversions
Java allows conversions between integer values and floating-point values. In addition,
because every character corresponds to a number in the Unicode encoding, char values
can be converted to and from the integer and floating-point types. In fact, boolean is the
only primitive type that cannot be converted to or from another primitive type in Java.

There are two basic types of conversions. A widening conversion occurs when a value of
one type is converted to a wider type—one that has a larger range of legal values. Java
performs widening conversions automatically when, for example, you assign an int literal
to a double variable or a char literal to an int variable.

Chapter 2. Java Syntax from the Ground Up Page 11 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Narrowing conversions are another matter, however. A narrowing conversion occurs
when a value is converted to a type that is not wider than it is. Narrowing conversions are
not always safe: it is reasonable to convert the integer value 13 to a byte, for example, but
it is not reasonable to convert 13000 to a byte since byte can hold only numbers between
-128 and 127. Because you can lose data in a narrowing conversion, the Java compiler
complains when you attempt any narrowing conversion, even if the value being converted
would in fact fit in the narrower range of the specified type:

int i = 13;
byte b = i; // The compiler does not allow this

The one exception to this rule is that you can assign an integer literal (an int value) to a
byte or short variable if the literal falls within the range of the variable.

If you need to perform a narrowing conversion and are confident you can do so without
losing data or precision, you can force Java to perform the conversion using a language
construct known as a cast. Perform a cast by placing the name of the desired type in
parentheses before the value to be converted. For example:

int i = 13;
byte b = (byte) i; // Force the int to be converted to a byte
i = (int) 13.456; // Force this double literal to the int 13

Casts of primitive types are most often used to convert floating-point values to integers.
When you do this, the fractional part of the floating-point value is simply truncated (i.e.,
the floating-point value is rounded towards zero, not towards the nearest integer). The
methods Math.round(), Math.floor(), and Math.ceil() perform other types
of rounding.

The char type acts like an integer type in most ways, so a char value can be used anywhere
an int or long value is required. Recall, however, that the char type is unsigned, so it
behaves differently than the short type, even though both are 16 bits wide:

short s = (short) 0xffff; // These bits represent the number -1
char c = '\uffff'; // The same bits, representing a Unicode character
int i1 = s; // Converting the short to an int yields -1
int i2 = c; // Converting the char to an int yields 65535

Table 2-3 shows which primitive types can be converted to which other types and how the
conversion is performed. The letter N in the table means that the conversion cannot be
performed. The letter Y means that the conversion is a widening conversion and is
therefore performed automatically and implicitly by Java. The letter C means that the
conversion is a narrowing conversion and requires an explicit cast. Finally, the notation
Y* means that the conversion is an automatic widening conversion, but that some of the
least significant digits of the value may be lost in the conversion. This can happen when
converting an int or long to a float or double. The floating-point types have a larger

Chapter 2. Java Syntax from the Ground Up Page 12 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

range than the integer types, so any int or long can be represented by a float or
double. However, the floating-point types are approximations of numbers and cannot
always hold as many significant digits as the integer types.

Table 2-3. Java primitive type conversions

Convert Convert to:

from: boolean byte short char int long float double
boolean - N N N N N N N

byte N - Y C Y Y Y Y

short N C - C Y Y Y Y

char N C C - Y Y Y Y

int N C C C - Y Y* Y

long N C C C C - Y* Y*

float N C C C C C - Y

double N C C C C C C -

2.4. Expressions and Operators
So far in this chapter, we've learned about the primitive types that Java programs can
manipulate and seen how to include primitive values as literals in a Java program. We've
also used variables as symbolic names that represent, or hold, values. These literals and
variables are the tokens out of which Java programs are built.

An expression is the next higher level of structure in a Java program. The Java interpreter
evaluates an expression to compute its value. The very simplest expressions are called
primary expressions and consist of literals and variables. So, for example, the following
are all expressions:

1.7 // A floating-point literal
true // A boolean literal
sum // A variable

When the Java interpreter evaluates a literal expression, the resulting value is the literal
itself. When the interpreter evaluates a variable expression, the resulting value is the value
stored in the variable.

Primary expressions are not very interesting. More complex expressions are made by using
operators to combine primary expressions. For example, the following expression uses
the assignment operator to combine two primary expressions—a variable and a floating-
point literal—into an assignment expression:

sum = 1.7

Chapter 2. Java Syntax from the Ground Up Page 13 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But operators are used not only with primary expressions; they can also be used with
expressions at any level of complexity. The following are all legal expressions:

sum = 1 + 2 + 3*1.2 + (4 + 8)/3.0
sum/Math.sqrt(3.0 * 1.234)
(int)(sum + 33)

2.4.1. Operator Summary
The kinds of expressions you can write in a programming language depend entirely on the
set of operators available to you. Table 2-4 summarizes the operators available in Java.
The P and A columns of the table specify the precedence and associativity of each group
of related operators, respectively. These concepts—and the operators themselves—are
explained in more detail in the following sections.

Table 2-4. Java operators

P A Operator Operand type(s) Operation performed

15 L . object, member object member access

 [] array, int array element access

 (args) method, arglist method invocation

 ++, -- variable post-increment, decrement

14 R ++, -- variable pre-increment, decrement

 +, - number unary plus, unary minus

 ~ integer bitwise complement

 ! boolean boolean NOT

13 R new class, arglist object creation

 (type) type, any cast (type conversion)

12 L *, /, % number, number multiplication, division, remainder

11 L +, - number, number addition, subtraction

 + string, any string concatenation

10 L << integer, integer left shift

 >> integer, integer right shift with sign extension

 >>> integer, integer right shift with zero extension

9 L <, <= number, number less than, less than or equal

 >, >= number, number greater than, greater than or equal

 instanceof reference, type type comparison

8 L = = primitive, primitive equal (have identical values)

 != primitive, primitive not equal (have different values)

 = = reference, reference equal (refer to same object)

 != reference, reference not equal (refer to different objects)

7 L & integer, integer bitwise AND

 & boolean, boolean boolean AND

6 L ^ integer, integer bitwise XOR

 ^ boolean, boolean boolean XOR

5 L | integer, integer bitwise OR

 | boolean, boolean boolean OR

Chapter 2. Java Syntax from the Ground Up Page 14 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

P A Operator Operand type(s) Operation performed

4 L && boolean, boolean conditional AND

3 L || boolean, boolean conditional OR

2 R ?: boolean, any conditional (ternary) operator

1 R = variable, any assignment

 *=, /=, %=, variable, any assignment with operation

 +=, -=, <<=,

 >>=, >>>=,

 &=, ^=,|=

2.4.1.1. Precedence
The P column of Table 2-4 specifies the precedence of each operator. Precedence specifies
the order in which operations are performed. Consider this expression:

a + b * c

The multiplication operator has higher precedence than the addition operator, so a is
added to the product of b and c. Operator precedence can be thought of as a measure of
how tightly operators bind to their operands. The higher the number, the more tightly they
bind.

Default operator precedence can be overridden through the use of parentheses that
explicitly specify the order of operations. The previous expression can be rewritten as
follows to specify that the addition should be performed before the multiplication:

(a + b) * c

The default operator precedence in Java was chosen for compatibility with C; the designers
of C chose this precedence so that most expressions can be written naturally without
parentheses. There are only a few common Java idioms for which parentheses are required.
Examples include:

// Class cast combined with member access
((Integer) o).intValue();

// Assignment combined with comparison
while((line = in.readLine()) != null) { ... }

// Bitwise operators combined with comparison
if ((flags & (PUBLIC | PROTECTED)) != 0) { ... }

2.4.1.2. Associativity
When an expression involves several operators that have the same precedence, the
operator associativity governs the order in which the operations are performed. Most
operators are left-to-right associative, which means that the operations are performed
from left to right. The assignment and unary operators, however, have right-to-left

Chapter 2. Java Syntax from the Ground Up Page 15 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

associativity. The A column of Table 2-4 specifies the associativity of each operator or
group of operators. The value L means left to right, and R means right to left.

The additive operators are all left-to-right associative, so the expression a+b-c is
evaluated from left to right: (a+b)-c. Unary operators and assignment operators are
evaluated from right to left. Consider this complex expression:

a = b += c = -~d

This is evaluated as follows:
a = (b += (c = -(~d)))

As with operator precedence, operator associativity establishes a default order of
evaluation for an expression. This default order can be overridden through the use of
parentheses. However, the default operator associativity in Java has been chosen to yield
a natural expression syntax, and you rarely need to alter it.

2.4.1.3. Operand number and type
The fourth column of Table 2-4 specifies the number and type of the operands expected
by each operator. Some operators operate on only one operand; these are called unary
operators. For example, the unary minus operator changes the sign of a single number:

-n // The unary minus operator

Most operators, however, are binary operators that operate on two operand values. The
- operator actually comes in both forms:

a - b // The subtraction operator is a binary operator

Java also defines one ternary operator, often called the conditional operator. It is like an
if statement inside an expression. Its three operands are separated by a question mark
and a colon; the second and third operands must be convertible to the same type:

x > y ? x : y // Ternary expression; evaluates to the larger of x and y

In addition to expecting a certain number of operands, each operator also expects
particular types of operands. Column four of the table lists the operand types. Some of the
codes used in that column require further explanation:

Chapter 2. Java Syntax from the Ground Up Page 16 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

number

An integer, floating-point value, or character (i.e., any primitive type except
boolean). In Java 5.0 and later, autounboxing (see Section 2.9.7 later in this chapter)
means that the wrapper classes (such as Character, Integer, and Double) for
these types can be be used in this context as well.

integer

A byte, short, int, long, or char value (long values are not allowed for the array
access operator []). With autounboxing, Byte, Short, Integer, Long, and
Character values are also allowed.

reference

An object or array.

variable

A variable or anything else, such as an array element, to which a value can be assigned

2.4.1.4. Return type
Just as every operator expects its operands to be of specific types, each operator produces
a value of a specific type. The arithmetic, increment and decrement, bitwise, and shift
operators return a double if at least one of the operands is a double. They return a
float if at least one of the operands is a float. They return a long if at least one of the
operands is a long. Otherwise, they return an int, even if both operands are byte,
short, or char types that are narrower than int.

The comparison, equality, and boolean operators always return boolean values. Each
assignment operator returns whatever value it assigned, which is of a type compatible with
the variable on the left side of the expression. The conditional operator returns the value
of its second or third argument (which must both be of the same type).

2.4.1.5. Side effects
Every operator computes a value based on one or more operand values. Some operators,
however, have side effects in addition to their basic evaluation. If an expression contains
side effects, evaluating it changes the state of a Java program in such a way that evaluating
the expression again may yield a different result. For example, the ++ increment operator
has the side effect of incrementing a variable. The expression ++a increments the variable

Chapter 2. Java Syntax from the Ground Up Page 17 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a and returns the newly incremented value. If this expression is evaluated again, the value
will be different. The various assignment operators also have side effects. For example, the
expression a*=2 can also be written as a=a*2. The value of the expression is the value of
a multiplied by 2, but the expression also has the side effect of storing that value back into
a. The method invocation operator () has side effects if the invoked method has side
effects. Some methods, such as Math.sqrt(), simply compute and return a value
without side effects of any kind. Typically, however, methods do have side effects. Finally,
the new operator has the profound side effect of creating a new object.

2.4.1.6. Order of evaluation
When the Java interpreter evaluates an expression, it performs the various operations in
an order specified by the parentheses in the expression, the precedence of the operators,
and the associativity of the operators. Before any operation is performed, however, the
interpreter first evaluates the operands of the operator. (The exceptions are the &&, ||,
and ?: operators, which do not always evaluate all their operands.) The interpreter always
evaluates operands in order from left to right. This matters if any of the operands are
expressions that contain side effects. Consider this code, for example:

int a = 2;
int v = ++a + ++a * ++a;

Although the multiplication is performed before the addition, the operands of the +
operator are evaluated first. Thus, the expression evaluates to 3+4*5, or 23.

2.4.2. Arithmetic Operators
Since most programs operate primarily on numbers, the most commonly used operators
are often those that perform arithmetic operations. The arithmetic operators can be used
with integers, floating-point numbers, and even characters (i.e., they can be used with any
primitive type other than boolean). If either of the operands is a floating-point number,
floating-point arithmetic is used; otherwise, integer arithmetic is used. This matters
because integer arithmetic and floating-point arithmetic differ in the way division is
performed and in the way underflows and overflows are handled, for example. The
arithmetic operators are:

Addition (+)

The + operator adds two numbers. As we'll see shortly, the + operator can also be used
to concatenate strings. If either operand of + is a string, the other one is converted to
a string as well. Be sure to use parentheses when you want to combine addition with
concatenation. For example:

Chapter 2. Java Syntax from the Ground Up Page 18 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

System.out.println("Total: " + 3 + 4); // Prints "Total: 34", not 7!

Subtraction (-)

When the - operator is used as a binary operator, it subtracts its second operand from
its first. For example, 7-3 evaluates to 4. The - operator can also perform unary
negation.

Multiplication (*)

The * operator multiplies its two operands. For example, 7*3 evaluates to 21.

Division (/)

The / operator divides its first operand by its second. If both operands are integers,
the result is an integer, and any remainder is lost. If either operand is a floating-point
value, however, the result is a floating-point value. When dividing two integers,
division by zero throws an ArithmeticException. For floating-point calculations,
however, division by zero simply yields an infinite result or NaN:

7/3 // Evaluates to 2
7/3.0f // Evaluates to 2.333333f
7/0 // Throws an ArithmeticException
7/0.0 // Evaluates to positive infinity
0.0/0.0 // Evaluates to NaN

Modulo (%)

The % operator computes the first operand modulo the second operand (i.e., it returns
the remainder when the first operand is divided by the second operand an integral
number of times). For example, 7%3 is 1. The sign of the result is the same as the sign
of the first operand. While the modulo operator is typically used with integer
operands, it also works for floating-point values. For example, 4.3%2.1 evaluates to
0.1. When operating with integers, trying to compute a value modulo zero causes an
ArithmeticException. When working with floating-point values, anything
modulo 0.0 evaluates to NaN, as does infinity modulo anything.

Chapter 2. Java Syntax from the Ground Up Page 19 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Unary minus (-)

When the - operator is used as a unary operator—that is, before a single operand—it
performs unary negation. In other words, it converts a positive value to an equivalently
negative value, and vice versa.

2.4.3. String Concatenation Operator
In addition to adding numbers, the + operator (and the related += operator) also
concatenates, or joins, strings. If either of the operands to + is a string, the operator
converts the other operand to a string. For example:

System.out.println("Quotient: " + 7/3.0f); // Prints "Quotient: 2.3333333"

As a result, you must be careful to put any addition expressions in parentheses when
combining them with string concatenation. If you do not, the addition operator is
interpreted as a concatenation operator.

The Java interpreter has built-in string conversions for all primitive types. An object is
converted to a string by invoking its toString() method. Some classes define custom
toString() methods so that objects of that class can easily be converted to strings in
this way. An array is converted to a string by invoking the built-in toString() method,
which, unfortunately, does not return a useful string representation of the array contents.

2.4.4. Increment and Decrement Operators
The ++ operator increments its single operand, which must be a variable, an element of
an array, or a field of an object, by one. The behavior of this operator depends on its position
relative to the operand. When used before the operand, where it is known as the pre-
increment operator, it increments the operand and evaluates to the incremented value of
that operand. When used after the operand, where it is known as the post-increment
operator, it increments its operand, but evaluates to the value of that operand before it
was incremented.

For example, the following code sets both i and j to 2:

i = 1;
j = ++i;

But these lines set i to 2 and j to 1:

i = 1;
j = i++;

Chapter 2. Java Syntax from the Ground Up Page 20 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Similarly, the -- operator decrements its single numeric operand, which must be a
variable, an element of an array, or a field of an object, by one. Like the ++ operator, the
behavior of -- depends on its position relative to the operand. When used before the
operand, it decrements the operand and returns the decremented value. When used after
the operand, it decrements the operand, but returns the undecremented value.

The expressions x++ and x-- are equivalent to x=x+1 and x=x-1, respectively, except
that when using the increment and decrement operators, x is only evaluated once. If x is
itself an expression with side effects, this makes a big difference. For example, these two
expressions are not equivalent:

a[i++]++; // Increments an element of an array
a[i++] = a[i++] + 1; // Adds one to an array element and stores it in another

These operators, in both prefix and postfix forms, are most commonly used to increment
or decrement the counter that controls a loop.

2.4.5. Comparison Operators
The comparison operators consist of the equality operators that test values for equality or
inequality and the relational operators used with ordered types (numbers and characters)
to test for greater than and less than relationships. Both types of operators yield a
boolean result, so they are typically used with if statements and while and for loops
to make branching and looping decisions. For example:

if (o != null) ...; // The not equals operator
while(i < a.length) ...; // The less than operator

Java provides the following equality operators:

Equals (= =)

The = = operator evaluates to true if its two operands are equal and false
otherwise. With primitive operands, it tests whether the operand values themselves
are identical. For operands of reference types, however, it tests whether the operands
refer to the same object or array. In other words, it does not test the equality of two
distinct objects or arrays. In particular, note that you cannot test two distinct strings
for equality with this operator.

If = = is used to compare two numeric or character operands that are not of the same
type, the narrower operand is converted to the type of the wider operand before the
comparison is done. For example, when comparing a short to a float, the short
is first converted to a float before the comparison is performed. For floating-point

Chapter 2. Java Syntax from the Ground Up Page 21 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

numbers, the special negative zero value tests equal to the regular, positive zero value.
Also, the special NaN (not-a-number) value is not equal to any other number,
including itself. To test whether a floating-point value is NaN, use the Float.isNan
() or Double.isNan() method.

Not equals (!=)

The != operator is exactly the opposite of the = = operator. It evaluates to true if its
two primitive operands have different values or if its two reference operands refer to
different objects or arrays. Otherwise, it evaluates to false.

The relational operators can be used with numbers and characters, but not with
boolean values, objects, or arrays because those types are not ordered. Java provides the
following relational operators:

Less than (<)

Evaluates to true if the first operand is less than the second.

Less than or equal (<=)

Evaluates to true if the first operand is less than or equal to the second.

Greater than (>)

Evaluates to true if the first operand is greater than the second.

Greater than or equal (>=)

Evaluates to true if the first operand is greater than or equal to the second.

2.4.6. Boolean Operators
As we've just seen, the comparison operators compare their operands and yield a
boolean result, which is often used in branching and looping statements. In order to make
branching and looping decisions based on conditions more interesting than a single
comparison, you can use the boolean (or logical) operators to combine multiple
comparison expressions into a single, more complex expression. The boolean operators
require their operands to be boolean values and they evaluate to boolean values. The
operators are:

Chapter 2. Java Syntax from the Ground Up Page 22 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Conditional AND (&&)

This operator performs a boolean AND operation on its operands. It evaluates to
true if and only if both its operands are true. If either or both operands are
false, it evaluates to false. For example:

if (x < 10 && y > 3) ... // If both comparisons are true

This operator (and all the boolean operators except the unary ! operator) have a lower
precedence than the comparison operators. Thus, it is perfectly legal to write a line of code
like the one above. However, some programmers prefer to use parentheses to make the
order of evaluation explicit:

if ((x < 10) && (y > 3)) ...

You should use whichever style you find easier to read.

This operator is called a conditional AND because it conditionally evaluates its second
operand. If the first operand evaluates to false, the value of the expression is false,
regardless of the value of the second operand. Therefore, to increase efficiency, the Java
interpreter takes a shortcut and skips the second operand. Since the second operand is not
guaranteed to be evaluated, you must use caution when using this operator with
expressions that have side effects. On the other hand, the conditional nature of this
operator allows us to write Java expressions such as the following:

if (data != null && i < data.length && data[i] != -1)
 ...

The second and third comparisons in this expression would cause errors if the first or
second comparisons evaluated to false. Fortunately, we don't have to worry about this
because of the conditional behavior of the && operator.

Conditional OR (||)

This operator performs a boolean OR operation on its two boolean operands. It
evaluates to true if either or both of its operands are true. If both operands are
false, it evaluates to false. Like the && operator, || does not always evaluate its
second operand. If the first operand evaluates to true, the value of the expression is
true, regardless of the value of the second operand. Thus, the operator simply skips
the second operand in that case.

Chapter 2. Java Syntax from the Ground Up Page 23 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Boolean NOT (!)

This unary operator changes the boolean value of its operand. If applied to a true
value, it evaluates to false, and if applied to a false value, it evaluates to true. It
is useful in expressions like these:

if (!found) ... // found is a boolean variable declared somewhere
while (!c.isEmpty()) ... // The isEmpty() method returns a boolean value

Because ! is a unary operator, it has a high precedence and often must be used with
parentheses:

if (!(x > y && y > z))

Boolean AND (&)

When used with boolean operands, the & operator behaves like the && operator,
except that it always evaluates both operands, regardless of the value of the first
operand. This operator is almost always used as a bitwise operator with integer
operands, however, and many Java programmers would not even recognize its use
with boolean operands as legal Java code.

Boolean OR (|)

This operator performs a boolean OR operation on its two boolean operands. It is
like the || operator, except that it always evaluates both operands, even if the first
one is true. The | operator is almost always used as a bitwise operator on integer
operands; its use with boolean operands is very rare.

Boolean XOR (^)

When used with boolean operands, this operator computes the Exclusive OR (XOR)
of its operands. It evaluates to true if exactly one of the two operands is true. In
other words, it evaluates to false if both operands are false or if both operands are
true. Unlike the && and || operators, this one must always evaluate both operands.
The ^ operator is much more commonly used as a bitwise operator on integer
operands. With boolean operands, this operator is equivalent to the != operator.

Chapter 2. Java Syntax from the Ground Up Page 24 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2.4.7. Bitwise and Shift Operators
The bitwise and shift operators are low-level operators that manipulate the individual bits
that make up an integer value. The bitwise operators are most commonly used for testing
and setting individual flag bits in a value. In order to understand their behavior, you must
understand binary (base-2) numbers and the twos-complement format used to represent
negative integers. You cannot use these operators with floating-point, boolean, array, or
object operands. When used with boolean operands, the &, |, and ^ operators perform
a different operation, as described in the previous section.

If either of the arguments to a bitwise operator is a long, the result is a long. Otherwise,
the result is an int. If the left operand of a shift operator is a long, the result is a long;
otherwise, the result is an int. The operators are:

Bitwise complement (~)

The unary ~ operator is known as the bitwise complement, or bitwise NOT, operator.
It inverts each bit of its single operand, converting ones to zeros and zeros to ones.
For example:

byte b = ~12; // ~00001100 = => 11110011 or -13 decimal
flags = flags & ~f; // Clear flag f in a set of flags

Bitwise AND (&)

This operator combines its two integer operands by performing a boolean AND
operation on their individual bits. The result has a bit set only if the corresponding
bit is set in both operands. For example:

10 & 7 // 00001010 & 00000111 = => 00000010 or 2
if ((flags & f) != 0) // Test whether flag f is set

When used with boolean operands, & is the infrequently used boolean AND operator
described earlier.

Bitwise OR (|)

This operator combines its two integer operands by performing a boolean OR
operation on their individual bits. The result has a bit set if the corresponding bit is

Chapter 2. Java Syntax from the Ground Up Page 25 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

set in either or both of the operands. It has a zero bit only where both corresponding
operand bits are zero. For example:

10 | 7 // 00001010 | 00000111 = => 00001111 or 15
flags = flags | f; // Set flag f

When used with boolean operands, | is the infrequently used boolean OR operator
described earlier.

Bitwise XOR (^)

This operator combines its two integer operands by performing a boolean XOR
(Exclusive OR) operation on their individual bits. The result has a bit set if the
corresponding bits in the two operands are different. If the corresponding operand
bits are both ones or both zeros, the result bit is a zero. For example:

10 ^ 7 // 00001010 ^ 00000111 = => 00001101 or 13

When used with boolean operands, ^ is the infrequently used boolean XOR operator.

Left shift (<<)

The << operator shifts the bits of the left operand left by the number of places specified
by the right operand. High-order bits of the left operand are lost, and zero bits are
shifted in from the right. Shifting an integer left by n places is equivalent to multiplying
that number by 2n. For example:

10 << 1 // 00001010 << 1 = 00010100 = 20 = 10*2
7 << 3 // 00000111 << 3 = 00111000 = 56 = 7*8
-1 << 2 // 0xFFFFFFFF << 2 = 0xFFFFFFFC = -4 = -1*4

If the left operand is a long, the right operand should be between 0 and 63. Otherwise,
the left operand is taken to be an int, and the right operand should be between and 31.

Signed right shift (>>)

The >> operator shifts the bits of the left operand to the right by the number of places
specified by the right operand. The low-order bits of the left operand are shifted away
and are lost. The high-order bits shifted in are the same as the original high-order bit

Chapter 2. Java Syntax from the Ground Up Page 26 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

of the left operand. In other words, if the left operand is positive, zeros are shifted into
the high-order bits. If the left operand is negative, ones are shifted in instead. This
technique is known as sign extension; it is used to preserve the sign of the left operand.
For example:

10 >> 1 // 00001010 >> 1 = 00000101 = 5 = 10/2
27 >> 3 // 00011011 >> 3 = 00000011 = 3 = 27/8
-50 >> 2 // 11001110 >> 2 = 11110011 = -13 != -50/4

If the left operand is positive and the right operand is n, the >> operator is the same as
integer division by 2n.

Unsigned right shift (>>>)

This operator is like the >> operator, except that it always shifts zeros into the high-
order bits of the result, regardless of the sign of the left-hand operand. This technique
is called zero extension; it is appropriate when the left operand is being treated as an
unsigned value (despite the fact that Java integer types are all signed). These are
examples:

0xff >>> 4 // 11111111 >>> 4 = 00001111 = 15 = 255/16
-50 >>> 2 // 0xFFFFFFCE >>> 2 = 0x3FFFFFF3 = 1073741811

2.4.8. Assignment Operators
The assignment operators store, or assign, a value into some kind of variable. The left
operand must evaluate to an appropriate local variable, array element, or object field. The
right side can be any value of a type compatible with the variable. An assignment expression
evaluates to the value that is assigned to the variable. More importantly, however, the
expression has the side effect of actually performing the assignment. Unlike all other binary
operators, the assignment operators are right-associative, which means that the
assignments in a=b=c are performed right-to-left, as follows: a=(b=c).

The basic assignment operator is =. Do not confuse it with the equality operator, = =. In
order to keep these two operators distinct, I recommend that you read = as "is assigned
the value."

In addition to this simple assignment operator, Java also defines 11 other operators that
combine assignment with the 5 arithmetic operators and the 6 bitwise and shift operators.
For example, the += operator reads the value of the left variable, adds the value of the right
operand to it, stores the sum back into the left variable as a side effect, and returns the
sum as the value of the expression. Thus, the expression x+=2 is almost the same as x=x

Chapter 2. Java Syntax from the Ground Up Page 27 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

+2. The difference between these two expressions is that when you use the += operator,
the left operand is evaluated only once. This makes a difference when that operand has a
side effect. Consider the following two expressions, which are not equivalent:

a[i++] += 2;
a[i++] = a[i++] + 2;

The general form of these combination assignment operators is:
var op= value

This is equivalent (unless there are side effects in var) to:

var = var op value

The available operators are:

+= -= *= /= %= // Arithmetic operators plus assignment

&= |= ^= // Bitwise operators plus assignment

<<= >>= >>>= // Shift operators plus assignment

The most commonly used operators are += and -=, although &= and |= can also be useful
when working with boolean flags. For example:

i += 2; // Increment a loop counter by 2
c -= 5; // Decrement a counter by 5
flags |= f; // Set a flag f in an integer set of flags
flags & ~f; // Clear a flag f in an integer set of flags

2.4.9. The Conditional Operator
The conditional operator ?: is a somewhat obscure ternary (three-operand) operator
inherited from C. It allows you to embed a conditional within an expression. You can think
of it as the operator version of the if/else statement. The first and second operands of
the conditional operator are separated by a question mark (?) while the second and third
operands are separated by a colon (:). The first operand must evaluate to a boolean value.
The second and third operands can be of any type, but they must be convertible to the same
type.

The conditional operator starts by evaluating its first operand. If it is true, the operator
evaluates its second operand and uses that as the value of the expression. On the other
hand, if the first operand is false, the conditional operator evaluates and returns its third
operand. The conditional operator never evaluates both its second and third operand, so
be careful when using expressions with side effects with this operator. Examples of this
operator are:

Chapter 2. Java Syntax from the Ground Up Page 28 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

int max = (x > y) ? x : y;
String name = (name != null) ? name : "unknown";

Note that the ?: operator has lower precedence than all other operators except the
assignment operators, so parentheses are not usually necessary around the operands of
this operator. Many programmers find conditional expressions easier to read if the first
operand is placed within parentheses, however. This is especially true because the
conditional if statement always has its conditional expression written within parentheses.

2.4.10. The instanceof Operator
The instanceof operator requires an object or array value as its left operand and the
name of a reference type as its right operand. It evaluates to true if the object or array is
an instance of the specified type; it returns false otherwise. If the left operand is null,
instanceof always evaluates to false. If an instanceof expression evaluates to
true, it means that you can safely cast and assign the left operand to a variable of the type
of the right operand.

The instanceof operator can be used only with reference types and objects, not primitive
types and values. Examples of instanceof are:

"string" instanceof String // True: all strings are instances of String
"" instanceof Object // True: strings are also instances of Object
null instanceof String // False: null is never an instance of anything

Object o = new int[] {1,2,3};
o instanceof int[] // True: the array value is an int array
o instanceof byte[] // False: the array value is not a byte array
o instanceof Object // True: all arrays are instances of Object

// Use instanceof to make sure that it is safe to cast an object
if (object instanceof Point) {
 Point p = (Point) object;
}

2.4.11. Special Operators
Java has five language constructs that are sometimes considered operators and sometimes
considered simply part of the basic language syntax. These "operators" were included in
Table 2-4 in order to show their precedence relative to the other true operators. The use
of these language constructs is detailed elsewhere in this book but is described briefly here
so that you can recognize them in code examples.

Object member access (.)

An object is a collection of data and methods that operate on that data; the data fields
and methods of an object are called its members. The dot (.) operator accesses these

Chapter 2. Java Syntax from the Ground Up Page 29 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

members. If o is an expression that evaluates to an object reference, and f is the name
of a field of the object, o.f evaluates to the value contained in that field. If m is the
name of a method, o.m refers to that method and allows it to be invoked using the
() operator shown later.

Array element access ([])

An array is a numbered list of values. Each element of an array can be referred to by
its number, or index. The [] operator allows you to refer to the individual elements
of an array. If a is an array, and i is an expression that evaluates to an int, a[i]
refers to one of the elements of a. Unlike other operators that work with integer values,
this operator restricts array index values to be of type int or narrower.

Method invocation (())

A method is a named collection of Java code that can be run, or invoked, by following
the name of the method with zero or more comma-separated expressions contained
within parentheses. The values of these expressions are the arguments to the method.
The method processes the arguments and optionally returns a value that becomes the
value of the method invocation expression. If o.m is a method that expects no
arguments, the method can be invoked with o.m(). If the method expects three
arguments, for example, it can be invoked with an expression such as o.m(x,y,z).
Before the Java interpreter invokes a method, it evaluates each of the arguments to
be passed to the method. These expressions are guaranteed to be evaluated in order
from left to right (which matters if any of the arguments have side effects).

Object creation (new)

In Java, objects (and arrays) are created with the new operator, which is followed by
the type of the object to be created and a parenthesized list of arguments to be passed
to the object constructor. A constructor is a special method that initializes a newly
created object, so the object creation syntax is similar to the Java method invocation
syntax. For example:

new ArrayList();
new Point(1,2)

Type conversion or casting (())

As we've already seen, parentheses can also be used as an operator to perform
narrowing type conversions, or casts. The first operand of this operator is the type to

Chapter 2. Java Syntax from the Ground Up Page 30 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

be converted to; it is placed between the parentheses. The second operand is the value
to be converted; it follows the parentheses. For example:

(byte) 28 // An integer literal cast to a byte type
(int) (x + 3.14f) // A floating-point sum value cast to an integer value
(String)h.get(k) // A generic object cast to a more specific string type

2.5. Statements
A statement is a single command executed by the Java interpreter. By default, the Java
interpreter runs one statement after another, in the order they are written. Many of the
statements defined by Java, however, are flow-control statements, such as conditionals
and loops, that alter this default order of execution in well-defined ways. Table 2-5
summarizes the statements defined by Java.

Table 2-5. Java statements

Statement Purpose Syntax

expression side effects var = expr; expr++; method(); new Type();
compound group statements { statements }
empty do nothing ;
labeled name a statement label : statement

variable declare a variable [final] type name [= value] [, name [= value]] ...;
if conditional if (expr) statement [else statement]
switch conditional switch (expr) { [case expr : statements] ... [default: statements] }
while loop while (expr) statement
do loop do statement while (expr);
for simplified loop for (init ; test ; increment) statement
for/in collection iteration for (variable : iterable) statement Java 5.0 and later; also called "foreach"

break exit block break [label] ;
continue restart loop continue [label] ;
return end method return [expr] ;
synchronized critical section synchronized (expr) { statements }
throw throw exception throw expr ;

try handle exception
try { statements } [catch (type name) { statements }] ... [finally
{ statements }]

assert verify invariant assert invariant [: error] ; Java 1.4 and later.

2.5.1. Expression Statements
As we saw earlier in the chapter, certain types of Java expressions have side effects. In
other words, they do not simply evaluate to some value; they also change the program state
in some way. Any expression with side effects can be used as a statement simply by
following it with a semicolon. The legal types of expression statements are assignments,
increments and decrements, method calls, and object creation. For example:

Chapter 2. Java Syntax from the Ground Up Page 31 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a = 1; // Assignment
x *= 2; // Assignment with operation
i++; // Post-increment
--c; // Pre-decrement
System.out.println("statement"); // Method invocation

2.5.2. Compound Statements
A compound statement is any number and kind of statements grouped together within
curly braces. You can use a compound statement anywhere a statement is required by Java
syntax:

for(int i = 0; i < 10; i++) {
 a[i]++; // Body of this loop is a compound statement.
 b[i]--; // It consists of two expression statements
} // within curly braces.

2.5.3. The Empty Statement
An empty statement in Java is written as a single semicolon. The empty statement doesn't
do anything, but the syntax is occasionally useful. For example, you can use it to indicate
an empty loop body in a for loop:

for(int i = 0; i < 10; a[i++]++) // Increment array elements
 /* empty */; // Loop body is empty statement

2.5.4. Labeled Statements
A labeled statement is simply a statement that has been given a name by prepending an
identifier and a colon to it. Labels are used by the break and continue statements. For
example:

rowLoop: for(int r = 0; r < rows.length; r++) { // A labeled loop
 colLoop: for(int c = 0; c < columns.length; c++) { // Another one
 break rowLoop; // Use a label
 }
}

2.5.5. Local Variable Declaration Statements
A local variable, often simply called a variable, is a symbolic name for a location to store
a value that is defined within a method or compound statement. All variables must be
declared before they can be used; this is done with a variable declaration statement.
Because Java is a strongly typed language, a variable declaration specifies the type of the
variable, and only values of that type can be stored in the variable.

In its simplest form, a variable declaration specifies a variable's type and name:
int counter;
String s;

Chapter 2. Java Syntax from the Ground Up Page 32 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A variable declaration can also include an initializer: an expression that specifies an initial
value for the variable. For example:

int i = 0;
String s = readLine();
int[] data = {x+1, x+2, x+3}; // Array initializers are documented later

The Java compiler does not allow you to use a local variable that has not been initialized,
so it is usually convenient to combine variable declaration and initialization into a single
statement. The initializer expression need not be a literal value or a constant expression
that can be evaluated by the compiler; it can be an arbitrarily complex expression whose
value is computed when the program is run.

A single variable declaration statement can declare and initialize more than one variable,
but all variables must be of the same type. Variable names and optional initializers are
separated from each other with commas:

int i, j, k;
float x = 1.0, y = 1.0;
String question = "Really Quit?", response;

In Java 1.1 and later, variable declaration statements can begin with the final keyword.
This modifier specifies that once an initial value is specified for the variable, that value is
never allowed to change:

final String greeting = getLocalLanguageGreeting();

C programmers should note that Java variable declaration statements can appear
anywhere in Java code; they are not restricted to the beginning of a method or block of
code. Local variable declarations can also be integrated with the initialize portion of a
for loop, as we'll discuss shortly.

Local variables can be used only within the method or block of code in which they are
defined. This is called their scope or lexical scope:

void method() { // A method definition
 int i = 0; // Declare variable i
 while (i < 10) { // i is in scope here
 int j = 0; // Declare j; the scope of j begins here
 i++; // i is in scope here; increment it
 } // j is no longer in scope; can't use it anymore
 System.out.println(i); // i is still in scope here
} // The scope of i ends here

2.5.6. The if/else Statement
The if statement is the fundamental control statement that allows Java to make decisions
or, more precisely, to execute statements conditionally. The if statement has an associated
expression and statement. If the expression evaluates to true, the interpreter executes

Chapter 2. Java Syntax from the Ground Up Page 33 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the statement. If the expression evaluates to false the interpreter skips the statement.
In Java 5.0, the expression may be of the wrapper type Boolean instead of the primitive
type boolean. In this case, the wrapper object is automatically unboxed.

Here is an example if statement:

if (username == null) // If username is null,
 username = "John Doe"; // use a default value

Although they look extraneous, the parentheses around the expression are a required part
of the syntax for the if statement.

As I already mentioned, a block of statements enclosed in curly braces is itself a statement,
so we can also write if statements that look like this:

if ((address == null) || (address.equals(""))) {
 address = "[undefined]";
 System.out.println("WARNING: no address specified.");
}

An if statement can include an optional else keyword that is followed by a second
statement. In this form of the statement, the expression is evaluated, and, if it is true, the
first statement is executed. Otherwise, the second statement is executed. For example:

if (username != null)
 System.out.println("Hello " + username);
else {
 username = askQuestion("What is your name?");
 System.out.println("Hello " + username + ". Welcome!");
}

When you use nested if/else statements, some caution is required to ensure that the
else clause goes with the appropriate if statement. Consider the following lines:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
else
 System.out.println("i doesn't equal j"); // WRONG!!

In this example, the inner if statement forms the single statement allowed by the syntax
of the outer if statement. Unfortunately, it is not clear (except from the hint given by the
indentation) which if the else goes with. And in this example, the indentation hint is
wrong. The rule is that an else clause like this is associated with the nearest if statement.
Properly indented, this code looks like this:

if (i == j)
 if (j == k)
 System.out.println("i equals k");
 else
 System.out.println("i doesn't equal j"); // WRONG!!

Chapter 2. Java Syntax from the Ground Up Page 34 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is legal code, but it is clearly not what the programmer had in mind. When working
with nested if statements, you should use curly braces to make your code easier to read.
Here is a better way to write the code:

if (i == j) {
 if (j == k)
 System.out.println("i equals k");
}
else {
 System.out.println("i doesn't equal j");
}

2.5.6.1. The else if clause
The if/else statement is useful for testing a condition and choosing between two
statements or blocks of code to execute. But what about when you need to choose between
several blocks of code? This is typically done with an else if clause, which is not really
new syntax, but a common idiomatic usage of the standard if/else statement. It looks
like this:

if (n == 1) {
 // Execute code block #1
}
else if (n == 2) {
 // Execute code block #2
}
else if (n == 3) {
 // Execute code block #3
}
else {
 // If all else fails, execute block #4
}

There is nothing special about this code. It is just a series of if statements, where each
if is part of the else clause of the previous statement. Using the else if idiom is
preferable to, and more legible than, writing these statements out in their fully nested
form:

if (n = = 1) {
 // Execute code block #1
}
else {
 if (n = = 2) {
 // Execute code block #2
 }
 else {
 if (n = = 3) {
 // Execute code block #3
 }
 else {
 // If all else fails, execute block #4
 }
 }
}

Chapter 2. Java Syntax from the Ground Up Page 35 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2.5.7. The switch Statement
An if statement causes a branch in the flow of a program's execution. You can use multiple
if statements, as shown in the previous section, to perform a multiway branch. This is
not always the best solution, however, especially when all of the branches depend on the
value of a single variable. In this case, it is inefficient to repeatedly check the value of the
same variable in multiple if statements.

A better solution is to use a switch statement, which is inherited from the C programming
language. Although the syntax of this statement is not nearly as elegant as other parts of
Java, the brute practicality of the construct makes it worthwhile. If you are not familiar
with the switch statement itself, you may at least be familiar with the basic concept, under
the name computed goto or jump table.

A switch statement starts with an expression whose type is an int, short, char, or
byte. In Java 5.0 Integer, Short, Character and Byte wrapper types are allowed, as
are enumerated types. (Enums are new in Java 5.0; see Chapter 4 for details on enumerated
types and their use in switch statements.) This expression is followed by a block of code
in curly braces that contains various entry points that correspond to possible values for
the expression. For example, the following switch statement is equivalent to the repeated
if and else/if statements shown in the previous section:

switch(n) {
 case 1: // Start here if n = = 1
 // Execute code block #1
 break; // Stop here
 case 2: // Start here if n = = 2
 // Execute code block #2
 break; // Stop here
 case 3: // Start here if n = = 3
 // Execute code block #3
 break; // Stop here
 default: // If all else fails...
 // Execute code block #4
 break; // Stop here
}

As you can see from the example, the various entry points into a switch statement are
labeled either with the keyword case, followed by an integer value and a colon, or with
the special default keyword, followed by a colon. When a switch statement executes,
the interpreter computes the value of the expression in parentheses and then looks for a
case label that matches that value. If it finds one, the interpreter starts executing the block
of code at the first statement following the case label. If it does not find a case label with
a matching value, the interpreter starts execution at the first statement following a special-
case default: label. Or, if there is no default: label, the interpreter skips the body of
the switch statement altogether.

Chapter 2. Java Syntax from the Ground Up Page 36 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

Note the use of the break keyword at the end of each case in the previous code. The
break statement is described later in this chapter, but, in this case, it causes the interpreter
to exit the body of the switch statement. The case clauses in a switch statement specify
only the starting point of the desired code. The individual cases are not independent blocks
of code, and they do not have any implicit ending point. Therefore, you must explicitly
specify the end of each case with a break or related statement. In the absence of break
statements, a switch statement begins executing code at the first statement after the
matching case label and continues executing statements until it reaches the end of the
block. On rare occasions, it is useful to write code like this that falls through from one
case label to the next, but 99% of the time you should be careful to end every case and
default section with a statement that causes the switch statement to stop executing.
Normally you use a break statement, but return and throw also work.

A switch statement can have more than one case clause labeling the same statement.
Consider the switch statement in the following method:

boolean parseYesOrNoResponse(char response) {
 switch(response) {
 case 'y':
 case 'Y': return true;
 case 'n':
 case 'N': return false;
 default: throw new IllegalArgumentException("Response must be Y or N");
 }
}

The switch statement and its case labels have some important restrictions. First, the
expression associated with a switch statement must have a byte, char, short, or
int value. The floating-point and boolean types are not supported, and neither is
long, even though long is an integer type. Second, the value associated with each case
label must be a constant value or a constant expression the compiler can evaluate. A
case label cannot contain a runtime expression involving variables or method calls, for
example. Third, the case label values must be within the range of the data type used for
the switch expression. And finally, it is obviously not legal to have two or more case
labels with the same value or more than one default label.

2.5.8. The while Statement
Just as the if statement is the basic control statement that allows Java to make decisions,
the while statement is the basic statement that allows Java to perform repetitive actions.
It has the following syntax:

while (expression)
 statement

Chapter 2. Java Syntax from the Ground Up Page 37 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The while statement works by first evaluating the expression, which must result in a
boolean (or, in Java 5.0, a Boolean) value. If the value is false, the interpreter skips
the statement associated with the loop and moves to the next statement in the program.
If it is true, however, the statement that forms the body of the loop is executed, and the
expression is reevaluated. Again, if the value of expression is false, the interpreter
moves on to the next statement in the program; otherwise it executes the statement
again. This cycle continues while the expression remains true (i.e., until it evaluates
to false), at which point the while statement ends, and the interpreter moves on to the
next statement. You can create an infinite loop with the syntax while(true).

Here is an example while loop that prints the numbers 0 to 9:

int count = 0;
while (count < 10) {
 System.out.println(count);
 count++;
}

As you can see, the variable count starts off at 0 in this example and is incremented each
time the body of the loop runs. Once the loop has executed 10 times, the expression
becomes false (i.e., count is no longer less than 10), the while statement finishes, and
the Java interpreter can move to the next statement in the program. Most loops have a
counter variable like count. The variable names i, j, and k are commonly used as loop
counters, although you should use more descriptive names if it makes your code easier to
understand.

2.5.9. The do Statement
A do loop is much like a while loop, except that the loop expression is tested at the bottom
of the loop rather than at the top. This means that the body of the loop is always executed
at least once. The syntax is:

do
 statement
while (expression) ;

Notice a couple of differences between the do loop and the more ordinary while loop.
First, the do loop requires both the do keyword to mark the beginning of the loop and the
while keyword to mark the end and introduce the loop condition. Also, unlike the
while loop, the do loop is terminated with a semicolon. This is because the do loop ends
with the loop condition rather than simply ending with a curly brace that marks the end
of the loop body. The following do loop prints the same output as the while loop just
discussed:

int count = 0;
do {
 System.out.println(count);

Chapter 2. Java Syntax from the Ground Up Page 38 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 count++;
} while(count < 10);

The do loop is much less commonly used than its while cousin because, in practice, it is
unusual to encounter a situation where you are sure you always want a loop to execute at
least once.

2.5.10. The for Statement
The for statement provides a looping construct that is often more convenient than the
while and do loops. The for statement takes advantage of a common looping pattern.
Most loops have a counter, or state variable of some kind, that is initialized before the loop
starts, tested to determine whether to execute the loop body, and then incremented or
updated somehow at the end of the loop body before the test expression is evaluated again.
The initialization, test, and update steps are the three crucial manipulations of a loop
variable, and the for statement makes these three steps an explicit part of the loop syntax:

for(initialize ; test ; update)
 statement

This for loop is basically equivalent to the following while loop:[2]

[2] As you'll see when we consider the continue statement, this while loop is not exactly equivalent to the for loop.

initialize;
while(test) {
 statement;
 update;
}

Placing the initialize, test, and update expressions at the top of a for loop makes
it especially easy to understand what the loop is doing, and it prevents mistakes such as
forgetting to initialize or update the loop variable. The interpreter discards the values of
the initialize and update expressions, so in order to be useful, these expressions must
have side effects. initialize is typically an assignment expression while update is
usually an increment, decrement, or some other assignment.

The following for loop prints the numbers 0 to 9, just as the previous while and do loops
have done:

int count;
for(count = 0 ; count < 10 ; count++)
 System.out.println(count);

Notice how this syntax places all the important information about the loop variable on a
single line, making it very clear how the loop executes. Placing the update expression in
the for statement itself also simplifies the body of the loop to a single statement; we don't
even need to use curly braces to produce a statement block.

Chapter 2. Java Syntax from the Ground Up Page 39 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The for loop supports some additional syntax that makes it even more convenient to use.
Because many loops use their loop variables only within the loop, the for loop allows the
initialize expression to be a full variable declaration, so that the variable is scoped to
the body of the loop and is not visible outside of it. For example:

for(int count = 0 ; count < 10 ; count++)
 System.out.println(count);

Furthermore, the for loop syntax does not restrict you to writing loops that use only a
single variable. Both the initialize and update expressions of a for loop can use a
comma to separate multiple initializations and update expressions. For example:

for(int i = 0, j = 10 ; i < 10 ; i++, j--)
 sum += i * j;

Even though all the examples so far have counted numbers, for loops are not restricted
to loops that count numbers. For example, you might use a for loop to iterate through the
elements of a linked list:

for(Node n = listHead; n != null; n = n.nextNode())
 process(n);

The initialize, test, and update expressions of a for loop are all optional; only the
semicolons that separate the expressions are required. If the test expression is omitted,
it is assumed to be true. Thus, you can write an infinite loop as for(;;).

2.5.11. The for/in Statement
The for/in statement is a powerful new loop that was added to the language in Java 5.0.
It iterates through the elements of an array or collection or any object that implements
java.lang.Iterable (we'll see more about this new interface in a moment). On each
iteration it assigns an element of the array or Iterable object to the loop variable you
declare and then executes the loop body, which typically uses the loop variable to operate
on the element. No loop counter or Iterator object is involved; the for/in loop
performs the iteration automatically, and you need not concern yourself with correct
initialization or termination of the loop.

A for/in loop is written as the keyword for followed by an open parenthesis, a variable
declaration (without initializer), a colon, an expression, a close parenthesis, and finally the
statement (or block) that forms the body of the loop.

for(declaration : expression)
 statement

Chapter 2. Java Syntax from the Ground Up Page 40 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Despite its name, the for/in loop does not use the keyword in. It is common to read the
colon as "in," however. Because this statement does not have a keyword of its own, it does
not have an unambiguous name. You may also see it called " enhanced for" or "foreach."

For the while, do, and for loops, we've shown an example that prints ten numbers. The
for/in loop can do this too, but not on its own. for/in is not a general-purpose loop
like the others. It is a specialized loop that executes its body once for each element in an
array or collection. So, in order to loop ten times (to print out ten numbers), we need an
array or other collection with ten elements. Here's code we can use:

// These are the numbers we want to print
int[] primes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, 23, 29 };
// This is the loop that prints them
for(int n : primes)
 System.out.println(n);

Here are some more things you should know about the syntax of the for/in loop:

• As noted earlier, expression must be either an array or an object that implements
the java.lang.Iterable interface. This type must be known at compile-time so
that the compiler can generate appropriate looping code. For example, you can't use
this loop with an array or List that you have cast to an Object.

• The type of the array or Iterable elements must be assignment-compatible with the
type of the variable declared in the declaration. If you use an Iterable object
that is not parameterized with an element type, the variable must be declared as an
Object. (Parameterized types are also new in Java 5.0; they are covered in Chapter
4.)

• The declaration usually consists of just a type and a variable name, but it may
include a final modifier and any appropriate annotations (see Chapter 4). Using
final prevents the loop variable from taking on any value other than the array or
collection element the loop assigns it and serves to emphasize that the array or
collection cannot be altered through the loop variable.

• The loop variable of the for/in loop must be declared as part of the loop, with both
a type and a variable name. You cannot use a variable declared outside the loop as you
can with the for loop.

The following class further illustrates the use of the for/in statement. It relies on
parameterized types, which are covered in Chapter 4, and you may want to return to this
section after reading that chapter.

import java.util.*;

public class ForInDemo {
 public static void main(String[] args) {
 // This is a collection we'll iterate over below.
 Set<String> wordset = new HashSet<String>();

 // We start with a basic loop over the elements of an array.

Chapter 2. Java Syntax from the Ground Up Page 41 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

 // The body of the loop is executed once for each element of args[].
 // Each time through one element is assigned to the variable word.
 for(String word : args) {
 System.out.print(word + " ");
 wordset.add(word);
 }
 System.out.println();

 // Now iterate through the elements of the Set.
 for(String word : wordset) System.out.print(word + " ");
 }
}

2.5.11.1. Iterable and iterator
To understand how the for/in loop works with collections, we need to consider two
interfaces, java.lang.Iterable , introduced in Java 5.0, and
java.util.Iterator, introduced in Java 1.2, but parameterized with the rest of the
Collections Framework in Java 5.0.[3] The APIs of both interfaces are reproduced here for
convenience:

[3] If you are not already familiar with parameterized types, you may want to skip this section now and return to it after reading Chapter 4.

public interface Iterator<E> {
 boolean hasNext();
 E next();
 void remove();
}

Iterator defines a way to iterate through the elements of a collection or other data
structure. It works like this: while there are more elements in the collection (hasNext
() returns true), call next() to obtain the next element of the collection. Ordered
collections, such as lists, typically have iterators that guarantee that they'll return elements
in order. Unordered collections like Set simply guarantee that repeated calls to next
() return all elements of the set without omissions or duplications but do not specify an
ordering.

public interface Iterable<E> {
 java.util.Iterator<E> iterator();
}

The Iterable interface was introduced to make the for/in loop work. A class
implements this interface in order to advertise that it is able to provide an Iterator to
anyone interested. (This can be useful in its own right, even when you are not using the
for/in loop). If an object is Iterable<E>, that means that that it has an iterator
() method that returns an Iterator<E>, which has a next() method that returns
an object of type E. If you implement Iterable and provide an Iterator for your own
classes, you'll be able to iterate over those classes with the for/in loop.

Remember that if you use the for/in loop with an Iterable<E>, the loop variable must
be of type E or a superclass or interface. For example, to iterate through the elements of a

Chapter 2. Java Syntax from the Ground Up Page 42 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

List<String>, the variable must be declared String or its superclass Object, or one
of its interfaces CharSequence, Comparable, or Serializable.

If you use for/in to iterate through the elements of a raw List with no type parameter,
the Iterable and Iterator also have no type parameter, and the type returned by the
next() method of the raw Iterator is Object. In this case, you have no choice but to
declare the loop variable to be an Object.

2.5.11.2. What for/in cannot do
for/in is a specialized loop that can simplify your code and reduce the possibility of
looping errors in many circumstances. It is not a general replacement for the while,
for, or do loops, however, because it hides the loop counter or Iterator from you. This
means that some algorithms simply cannot be expressed with a for/in loop.

Suppose you want to print the elements of an array as a comma-separated list. To do this,
you need to print a comma after every element of the array except the last, or equivalently,
before every element of the array except the first. With a traditional for loop, the code
might look like this:

for(int i = 0; i < words.length; i++) {
 if (i > 0) System.out.print(", ");
 System.out.print(words[i]);
}

This is a very straightforward task, but you simply cannot do it with for/in. The problem
is that the for/in loop doesn't give you a loop counter or any other way to tell if you're
on the first iteration, the last iteration, or somewhere in between. Here are two other simple
loops that can't be converted to use for/in, for the same basic reason:

String[] args; // Initialized elsewhere
for(int i = 0; i < args.length; i++)
 System.out.println(i + ": " + args[i]);

// Map words to the position at which they occur.
List<String> words; // Initialized elsewhere
Map<String,Integer> map = new HashMap<String,Integer>();
for(int i = 0, n = words.size(); i < n; i++) map.put(words.get(i), i);

A similar issue exists when using for/in to iterate through the elements of the collection.
Just as a for/in loop over an array has no way to obtain the array index of the current
element, a for/in loop over a collection has no way to obtain the Iterator object that
is being used to itemize the elements of the collection. This means, for example, that you
cannot use the remove() method of the iterator (or any of the additional methods
defined by java.util.ListIterator) as you could if you used the Iterator explicitly
yourself.

Chapter 2. Java Syntax from the Ground Up Page 43 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here are some other things you cannot do with for/in:

• Iterate backwards through the elements of an array or List.
• Use a single loop counter to access the same-numbered elements of two distinct

arrays.
• Iterate through the elements of a List using calls to its get() method rather than

calls to its iterator.

2.5.12. The break Statement
A break statement causes the Java interpreter to skip immediately to the end of a
containing statement. We have already seen the break statement used with the switch
statement. The break statement is most often written as simply the keyword break
followed by a semicolon:

break;

When used in this form, it causes the Java interpreter to immediately exit the innermost
containing while, do, for, or switch statement. For example:

for(int i = 0; i < data.length; i++) { // Loop through the data array.
 if (data[i] = = target) { // When we find what we're looking for,
 index = i; // remember where we found it
 break; // and stop looking!
 }
} // The Java interpreter goes here after executing break

The break statement can also be followed by the name of a containing labeled statement.
When used in this form, break causes the Java interpreter to immediately exit the named
block, which can be any kind of statement, not just a loop or switch. For example:

testfornull: if (data != null) { // If the array is defined,
 for(int row = 0; row < numrows; row++) { // loop through one dimension,
 for(int col = 0; col < numcols; col++) { // then loop through the other.
 if (data[row][col] = = null) // If the array is missing data,
 break testfornull; // treat the array as undefined.
 }
 }
} // Java interpreter goes here after executing break testfornull

2.5.13. The continue Statement
While a break statement exits a loop, a continue statement quits the current iteration
of a loop and starts the next one. continue, in both its unlabeled and labeled forms, can
be used only within a while, do, or for loop. When used without a label, continue
causes the innermost loop to start a new iteration. When used with a label that is the name
of a containing loop, it causes the named loop to start a new iteration. For example:

Chapter 2. Java Syntax from the Ground Up Page 44 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for(int i = 0; i < data.length; i++) { // Loop through data.
 if (data[i] = = -1) // If a data value is missing,
 continue; // skip to the next iteration.
 process(data[i]); // Process the data value.
}

while, do, and for loops differ slightly in the way that continue starts a new iteration:

• With a while loop, the Java interpreter simply returns to the top of the loop, tests
the loop condition again, and, if it evaluates to true, executes the body of the loop
again.

• With a do loop, the interpreter jumps to the bottom of the loop, where it tests the loop
condition to decide whether to perform another iteration of the loop.

• With a for loop, the interpreter jumps to the top of the loop, where it first evaluates
the update expression and then evaluates the test expression to decide whether to
loop again. As you can see, the behavior of a for loop with a continue statement is
different from the behavior of the "basically equivalent" while loop presented earlier;
update gets evaluated in the for loop but not in the equivalent while loop.

2.5.14. The return Statement
A return statement tells the Java interpreter to stop executing the current method. If the
method is declared to return a value, the return statement is followed by an expression.
The value of the expression becomes the return value of the method. For example, the
following method computes and returns the square of a number:

double square(double x) { // A method to compute x squared
 return x * x; // Compute and return a value
}

Some methods are declared void to indicate that they do not return any value. The Java
interpreter runs methods like this by executing their statements one by one until it reaches
the end of the method. After executing the last statement, the interpreter returns implicitly.
Sometimes, however, a void method has to return explicitly before reaching the last
statement. In this case, it can use the return statement by itself, without any expression.
For example, the following method prints, but does not return, the square root of its
argument. If the argument is a negative number, it returns without printing anything:

void printSquareRoot(double x) { // A method to print square root of x
 if (x < 0) return; // If x is negative, return explicitly
 System.out.println(Math.sqrt(x)); // Print the square root of x
} // End of method: return implicitly

2.5.15. The synchronized Statement
Java makes it easy to write multithreaded programs (see Chapter 5 for examples). When
working with multiple threads, you must often take care to prevent multiple threads from

Chapter 2. Java Syntax from the Ground Up Page 45 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-5#javanut5-CHP-5

modifying an object simultaneously in a way that might corrupt the object's state. Sections
of code that must not be executed simultaneously are known as critical sections. Java
provides the synchronized statement to protect these critical sections. The syntax is:

synchronized (expression) {
 statements
}

expression is an expression that must evaluate to an object or an array. The
statements constitute the code of the critical section and must be enclosed in curly
braces. Before executing the critical section, the Java interpreter first obtains an exclusive
lock on the object or array specified by expression. It holds the lock until it is finished
running the critical section, then releases it. While a thread holds the lock on an object, no
other thread can obtain that lock. Therefore, no other thread can execute this or any other
critical sections that require a lock on the same object. If a thread cannot immediately
obtain the lock required to execute a critical section, it simply waits until the lock becomes
available.

Note that you do not have to use the synchronized statement unless your program
creates multiple threads that share data. If only one thread ever accesses a data structure,
there is no need to protect it with synchronized. When you do have to use
synchronized, it might be in code like the following:

public static void SortIntArray(int[] a) {
 // Sort the array a. This is synchronized so that some other thread
 // cannot change elements of the array while we're sorting it (at
 // least not other threads that protect their changes to the array
 // with synchronized).
 synchronized (a) {
 // Do the array sort here
 }
}

The synchronized keyword is also available as a modifier in Java and is more commonly
used in this form than as a statement. When applied to a method, the synchronized
keyword indicates that the entire method is a critical section. For a synchronized class
method (a static method), Java obtains an exclusive lock on the class before executing the
method. For a synchronized instance method, Java obtains an exclusive lock on the
class instance. (Class and instance methods are discussed in Chapter 3.)

2.5.16. The throw Statement
An exception is a signal that indicates some sort of exceptional condition or error has
occurred. To throw an exception is to signal an exceptional condition. To catch an
exception is to handle it—to take whatever actions are necessary to recover from it.

In Java, the throw statement is used to throw an exception:

Chapter 2. Java Syntax from the Ground Up Page 46 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

throw expression ;

The expression must evaluate to an exception object that describes the exception or
error that has occurred. We'll talk more about types of exceptions shortly; for now, all you
need to know is that an exception is represented by an object. Here is some example code
that throws an exception:

public static double factorial(int x) {
 if (x < 0)
 throw new IllegalArgumentException("x must be >= 0");
 double fact;
 for(fact=1.0; x > 1; fact *= x, x--)
 /* empty */ ; // Note use of the empty statement
 return fact;
}

When the Java interpreter executes a throw statement, it immediately stops normal
program execution and starts looking for an exception handler that can catch, or handle,
the exception. Exception handlers are written with the try/catch/finally statement,
which is described in the next section. The Java interpreter first looks at the enclosing
block of code to see if it has an associated exception handler. If so, it exits that block of
code and starts running the exception-handling code associated with the block. After
running the exception handler, the interpreter continues execution at the statement
immediately following the handler code.

If the enclosing block of code does not have an appropriate exception handler, the
interpreter checks the next higher enclosing block of code in the method. This continues
until a handler is found. If the method does not contain an exception handler that can
handle the exception thrown by the throw statement, the interpreter stops running the
current method and returns to the caller. Now the interpreter starts looking for an
exception handler in the blocks of code of the calling method. In this way, exceptions
propagate up through the lexical structure of Java methods, up the call stack of the Java
interpreter. If the exception is never caught, it propagates all the way up to the main()
method of the program. If it is not handled in that method, the Java interpreter prints an
error message, prints a stack trace to indicate where the exception occurred, and then exits.

2.5.16.1. Exception types
An exception in Java is an object. The type of this object is java.lang.Throwable, or
more commonly, some subclass[4] of Throwable that more specifically describes the type
of exception that occurred. Throwable has two standard subclasses:
java.lang.Error and java.lang.Exception. Exceptions that are subclasses of
Error generally indicate unrecoverable problems: the virtual machine has run out of
memory, or a class file is corrupted and cannot be read, for example. Exceptions of this
sort can be caught and handled, but it is rare to do so. Exceptions that are subclasses of
Exception, on the other hand, indicate less severe conditions. These exceptions can be

Chapter 2. Java Syntax from the Ground Up Page 47 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

reasonably caught and handled. They include such exceptions as
java.io.EOFException, which signals the end of a file, and
java.lang.ArrayIndexOutOfBoundsException, which indicates that a program
has tried to read past the end of an array. In this book, I use the term "exception" to refer
to any exception object, regardless of whether the type of that exception is Exception or
Error.

[4] We haven't talked about subclasses yet; they are covered in detail in Chapter 3.

Since an exception is an object, it can contain data, and its class can define methods that
operate on that data. The Throwable class and all its subclasses include a String field
that stores a human-readable error message that describes the exceptional condition. It's
set when the exception object is created and can be read from the exception with the
getMessage() method. Most exceptions contain only this single message, but a few
add other data. The java.io.InterruptedIOException, for example, adds a field
named bytesTransferred that specifies how much input or output was completed
before the exceptional condition interrupted it.

2.5.17. The try/catch/finally Statement
The try/catch/finally statement is Java's exception-handling mechanism. The
try clause of this statement establishes a block of code for exception handling. This try
block is followed by zero or more catch clauses, each of which is a block of statements
designed to handle a specific type of exception. The catch clauses are followed by an
optional finally block that contains cleanup code guaranteed to be executed regardless
of what happens in the try block. Both the catch and finally clauses are optional, but
every try block must be accompanied by at least one or the other. The try, catch, and
finally blocks all begin and end with curly braces. These are a required part of the syntax
and cannot be omitted, even if the clause contains only a single statement.

The following code illustrates the syntax and purpose of the try/catch/finally
statement:

try {
 // Normally this code runs from the top of the block to the bottom
 // without problems. But it can sometimes throw an exception,
 // either directly with a throw statement or indirectly by calling
 // a method that throws an exception.
}
catch (SomeException e1) {
 // This block contains statements that handle an exception object
 // of type SomeException or a subclass of that type. Statements in
 // this block can refer to that exception object by the name e1.
}
catch (AnotherException e2) {
 // This block contains statements that handle an exception object
 // of type AnotherException or a subclass of that type. Statements
 // in this block can refer to that exception object by the name e2.
}
finally {

Chapter 2. Java Syntax from the Ground Up Page 48 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

 // This block contains statements that are always executed
 // after we leave the try clause, regardless of whether we leave it:
 // 1) normally, after reaching the bottom of the block;
 // 2) because of a break, continue, or return statement;
 // 3) with an exception that is handled by a catch clause above; or
 // 4) with an uncaught exception that has not been handled.
 // If the try clause calls System.exit(), however, the interpreter
 // exits before the finally clause can be run.
}

2.5.17.1. try
The try clause simply establishes a block of code that either has its exceptions handled
or needs special cleanup code to be run when it terminates for any reason. The try clause
by itself doesn't do anything interesting; it is the catch and finally clauses that do the
exception-handling and cleanup operations.

2.5.17.2. catch
A try block can be followed by zero or more catch clauses that specify code to handle
various types of exceptions. Each catch clause is declared with a single argument that
specifies the type of exceptions the clause can handle and also provides a name the clause
can use to refer to the exception object it is currently handling. The type and name of an
exception handled by a catch clause are exactly like the type and name of an argument
passed to a method, except that for a catch clause, the argument type must be
Throwable or one of its subclasses.

When an exception is thrown, the Java interpreter looks for a catch clause with an
argument of the same type as the exception object or a superclass of that type. The
interpreter invokes the first such catch clause it finds. The code within a catch block
should take whatever action is necessary to cope with the exceptional condition. If the
exception is a java.io.FileNotFoundException exception, for example, you might
handle it by asking the user to check his spelling and try again. It is not required to have
a catch clause for every possible exception; in some cases the correct response is to allow
the exception to propagate up and be caught by the invoking method. In other cases, such
as a programming error signaled by NullPointerException, the correct response is
probably not to catch the exception at all, but allow it to propagate and have the Java
interpreter exit with a stack trace and an error message.

2.5.17.3. finally
The finally clause is generally used to clean up after the code in the try clause (e.g.,
close files and shut down network connections). What is useful about the finally clause
is that it is guaranteed to be executed if any portion of the try block is executed, regardless
of how the code in the try block completes. In fact, the only way a try clause can exit
without allowing the finally clause to be executed is by invoking the System.exit
() method, which causes the Java interpreter to stop running.

Chapter 2. Java Syntax from the Ground Up Page 49 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In the normal case, control reaches the end of the try block and then proceeds to the
finally block, which performs any necessary cleanup. If control leaves the try block
because of a return, continue, or break statement, the finally block is executed
before control transfers to its new destination.

If an exception occurs in the try block and there is an associated catch block to handle
the exception, control transfers first to the catch block and then to the finally block.
If there is no local catch block to handle the exception, control transfers first to the
finally block, and then propagates up to the nearest containing catch clause that can
handle the exception.

If a finally block itself transfers control with a return, continue, break, or throw
statement or by calling a method that throws an exception, the pending control transfer
is abandoned, and this new transfer is processed. For example, if a finally clause throws
an exception, that exception replaces any exception that was in the process of being thrown.
If a finally clause issues a return statement, the method returns normally, even if an
exception has been thrown and has not yet been handled.

try and finally can be used together without exceptions or any catch clauses. In this
case, the finally block is simply cleanup code that is guaranteed to be executed,
regardless of any break, continue, or return statements within the try clause.

In previous discussions of the for and continue statements, we've seen that a for loop
cannot be naively translated into a while loop because the continue statement behaves
slightly differently when used in a for loop than it does when used in a while loop. The
finally clause gives us a way to write a while loop that handles the continue statement
in the same way that a for loop does. Consider the following generalized for loop:

for(initialize ; test ; update)
 statement

The following while loop behaves the same, even if the statement block contains a
continue statement:

initialize ;
while (test) {
 try { statement }
 finally { update ; }
}

Note, however, that placing the update statement within a finally block causes this
while loop to respond to break statements differently than the for loop does.

Chapter 2. Java Syntax from the Ground Up Page 50 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2.5.18. The assert Statement
An assert statement is used to document and verify design assumptions in Java code.
This statement was added in Java 1.4 and cannot be used with previous versions of the
language. An assertion consists of the assert keyword followed by a boolean expression
that the programmer believes should always evaluate to true. By default, assertions are
not enabled, and the assert statement does not actually do anything. It is possible to
enable assertions as a debugging and testing tool, however; when this is done, the
assert statement evaluates the expression. If it is indeed true, assert does nothing.
On the other hand, if the expression evaluates to false, the assertion fails, and the
assert statement throws a java.lang.AssertionError.

The assert statement may include an optional second expression, separated from the
first by a colon. When assertions are enabled and the first expression evaluates to
false, the value of the second expression is taken as an error code or error message and
is passed to the AssertionError() constructor. The full syntax of the statement is:

assert assertion ;

or:
assert assertion : errorcode ;

It is important to remember that the assertion must be a boolean expression, which
typically means that it contains a comparison operator or invokes a boolean-valued
method.

2.5.18.1. Compiling assertions
Because the assert statement was added in Java 1.4, and because assert was not a
reserved word prior to Java 1.4, the introduction of this new statement can cause code that
uses "assert" as an identifier to break. For this reason, the javac compiler does not
recognize the assert statement by default. To compile Java code that uses the assert
statement, you must use the command-line argument -source 1.4. For example:

javac -source 1.4 ClassWithAssertions.java

In Java 1.4, the javac compiler allows "assert" to be used as an identifier unless -source
1.4 is specified. If it finds assert used as an identifier, it issues an incompatibility
warning to encourage you to modify your code.

In Java 5.0, the javac compiler recognizes the assert statement (as well as all the new
Java 5.0 syntax) by default, and no special compiler arguments are required to compile
code that contains assertions. If you have legacy code that still uses assert as an identifier,

Chapter 2. Java Syntax from the Ground Up Page 51 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

it will no longer compile by default in Java 5.0. If you can't fix it, you can compile it in Java
5.0 using the -source 1.3 option.

2.5.18.2. Enabling assertions
assert statements encode assumptions that should always be true. For efficiency, it does
not make sense to test assertions each time code is executed. Thus, by default, assertions
are disabled, and assert statements have no effect. The assertion code remains compiled
in the class files, however, so it can always be enabled for testing, diagnostic, and debugging
purposes. You can enable assertions, either across the board or selectively, with command-
line arguments to the Java interpreter. To enable assertions in all classes except for system
classes, use the -ea argument. To enable assertions in system classes, use -esa. To enable
assertions within a specific class, use -ea followed by a colon and the classname:

java -ea:com.example.sorters.MergeSort com.example.sorters.Test

To enable assertions for all classes in a package and in all of its subpackages, follow the -
ea argument with a colon, the package name, and three dots:

java -ea:com.example.sorters... com.example.sorters.Test

You can disable assertions in the same way, using the -da argument. For example, to
enable assertions throughout a package and then disable them in a specific class or
subpackage, use:

java -ea:com.example.sorters... -da:com.example.sorters.QuickSort
java -ea:com.example.sorters... -da:com.example.sorters.plugins...

If you prefer verbose command-line arguments, you can use -enableassertions and
-disableassertions instead of -ea and -da and -enablesystemassertions
instead of -esa.

Java 1.4 added to java.lang.ClassLoader methods for enabling and disabling the
assertions for classes loaded through that ClassLoader. If you use a custom class loader
in your program and want to turn on assertions, you may be interested in these methods.
See ClassLoader in the reference section.

2.5.18.3. Using assertions
Because assertions are disabled by default and impose no performance penalty on your
code, you can use them liberally to document any assumptions you make while
programming. It may take some time to get used to this, but as you do, you'll find more
and more uses for the assert statement. Suppose, for example, that you're writing a
method in such a way that you know that the variable x is either 0 or 1. Without assertions,
you might code an if statement that looks like this:

Chapter 2. Java Syntax from the Ground Up Page 52 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

if (x = = 0) {
 ...
}
else { // x is 1
 ...
}

The comment in this code is an informal assertion indicating that you believe that within
the body of the else clause, x will always equal 1.

Now suppose your code is later modified in such a way that x can take on a value other
than 0 and 1. The comment and the assumption that go along with it are no longer valid,
and this may cause a bug that is not immediately apparent or is difficult to localize. The
solution in this situation is to convert your comment into an assert statement. The code
becomes:

if (x = = 0) {
 ...
}
else {
 assert x = = 1 : x // x must be 0 or 1
 ...
}

Now, if x somehow ends up holding an unexpected value, an AssertionError is thrown,
which makes the bug immediately apparent and easy to pinpoint. Furthermore, the second
expression (following the colon) in the assert statement includes the unexpected value
of x as the "error message" of the AssertionError. This message is not intended to mean
anything to an end user, but to provide enough information so that you know not just that
an assertion failed but also what caused it to fail.

A similar technique is useful with switch statements. If you write a switch statement
without a default clause, you make an assumption about the set of possible values for
the switch expression. If you believe that no other value is possible, you can add an
assert statement to document and validate that fact. For example:

switch(x) {
 case -1: return LESS;
 case 0: return EQUALS;
 case 1: return GREATER;
 default: assert false:x; // Throw AssertionError if x is not -1, 0, or 1.
}

Note that the form assert false; always fails. It is a useful "dead-end" statement when
you believe that the statement can never be reached.

Another common use of the assert statement is to test whether the arguments passed to
a method all have values that are legal for that method; this is also known as enforcing
method preconditions. For example:

Chapter 2. Java Syntax from the Ground Up Page 53 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

private static Object[] subArray(Object[] a, int x, int y) {
 assert x <= y : "subArray: x > y"; // Precondition: x must be <= y
 // Now go on to create and return a subarray of a...
}

Note that this is a private method. The programmer has used an assert statement to
document a precondition of the subArray() method and state that she believes that all
methods that invoke this private method do in fact honor that precondition. She can state
this because she has control over all the methods that invoke subArray(). She can verify
her belief by enabling assertions while testing the code. But once the code is tested, if
assertions are left disabled, the method does not suffer the overhead of testing its
arguments each time it is called. Note that the programmer did not use an assert
statement to test that argument a is non-null and that the x and y arguments were legal
indexes into that array. These implicit preconditions are always tested by Java at runtime,
and a failure results in an unchecked NullPointerException or an
ArrayIndexOutOfBoundsException, so an assertion is not required for them.

It is important to understand that the assert statement is not suitable for enforcing
preconditions on public methods. A public method can be called from anywhere, and the
programmer cannot assert in advance that it will be invoked correctly. To be robust, a
public API must explicitly test its arguments and enforce its preconditions each time it is
called, whether or not assertions are enabled.

A related use of the assert statement is to verify a class invariant. Suppose you are
creating a class that represents a list of objects and allows objects to be inserted and deleted
but always maintains the list in sorted order. You believe that your implementation is
correct and that the insertion methods always leave the list in sorted order, but you want
to test this to be sure. You might write a method that tests whether the list is actually sorted,
then use an assert statement to invoke the method at the end of each method that
modifies the list. For example:

public void insert(Object o) {
 ... // Do the insertion here
 assert isSorted(); // Assert the class invariant here
}

When writing code that must be threadsafe, you must obtain locks (using a
synchronized method or statement) when required. One common use of the assert
statement in this situation is to verify that the current thread holds the lock it requires:

assert Thread.holdsLock(data);

The Thread.holdsLock() method was added in Java 1.4 primarily for use with the
assert statement.

Chapter 2. Java Syntax from the Ground Up Page 54 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To use assertions effectively, you must be aware of a couple of fine points. First, remember
that your programs will sometimes run with assertions enabled and sometimes with
assertions disabled. This means that you should be careful not to write assertion
expressions that contain side effects. If you do, your code will run differently when
assertions are enabled than it will when they are disabled. There are a few exceptions to
this rule, of course. For example, if a method contains two assert statements, the first
can include a side effect that affects only the second assertion. Another use of side effects
in assertions is the following idiom that determines whether assertions are enabled (which
is not something that your code should ever really need to do):

boolean assertions = false; // Whether assertions are enabled
assert assertions = true; // This assert never fails but has a side effect

Note that the expression in the assert statement is an assignment, not a comparison.
The value of an assignment expression is always the value assigned, so this expression
always evaluates to true, and the assertion never fails. Because this assignment
expression is part of an assert statement, the assertions variable is set to true only
if assertions are enabled.

In addition to avoiding side effects in your assertions, another rule for working with the
assert statement is that you should never try to catch an AssertionError (unless you
catch it at the top level simply so that you can display the error in a more user-friendly
fashion). If an AssertionError is thrown, it indicates that one of the programmer's
assumptions has not held up. This means that the code is being used outside of the
parameters for which it was designed, and it cannot be expected to work correctly. In short,
there is no plausible way to recover from an AssertionError, and you should not
attempt to catch it.

2.6. Methods
A method is a named sequence of Java statements that can be invoked by other Java code.
When a method is invoked, it is passed zero or more values known as arguments. The
method performs some computations and, optionally, returns a value. As described in
Section 2.4 earlier in this chapter, a method invocation is an expression that is evaluated
by the Java interpreter. Because method invocations can have side effects, however, they
can also be used as expression statements. This section does not discuss method
invocation, but instead describes how to define methods.

2.6.1. Defining Methods
You already know how to define the body of a method; it is simply an arbitrary sequence
of statements enclosed within curly braces. What is more interesting about a method is its
signature.[5] The signature specifies the following:

Chapter 2. Java Syntax from the Ground Up Page 55 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[5] In the Java Language Specification, the term "signature" has a technical meaning that is slightly different than that used here. This book uses a less formal definition
of method signature.

• The name of the method
• The number, order, type, and name of the parameters used by the method
• The type of the value returned by the method
• The checked exceptions that the method can throw (the signature may also list

unchecked exceptions, but these are not required)
• Various method modifiers that provide additional information about the method

A method signature defines everything you need to know about a method before calling it.
It is the method specification and defines the API for the method. The reference section
of this book is essentially a list of method signatures for all publicly accessible methods of
all publicly accessible classes of the Java platform. In order to use the reference section of
this book, you need to know how to read a method signature. And, in order to write Java
programs, you need to know how to define your own methods, each of which begins with
a method signature.

A method signature looks like this:
modifiers type name (paramlist) [throws exceptions]

The signature (the method specification) is followed by the method body (the method
implementation), which is simply a sequence of Java statements enclosed in curly braces.
If the method is abstract (see Chapter 3), the implementation is omitted, and the method
body is replaced with a single semicolon. In Java 5.0 and later, the signature of a generic
method may also include type variable declarations. Generic methods and type variables
are discussed in Chapter 4.

Here are some example method definitions, which begin with the signature and are
followed by the method body:

// This method is passed an array of strings and has no return value.
// All Java programs have a main entry point with this name and signature.
public static void main(String[] args) {
 if (args.length > 0) System.out.println("Hello " + args[0]);
 else System.out.println("Hello world");
}

// This method is passed two double arguments and returns a double.
static double distanceFromOrigin(double x, double y) {
 return Math.sqrt(x*x + y*y);
}

// This method is abstract which means it has no body.
// Note that it may throw exceptions when invoked.
protected abstract String readText(File f, String encoding)
 throws FileNotFoundException, UnsupportedEncodingException;

Chapter 2. Java Syntax from the Ground Up Page 56 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

modifiers is zero or more special modifier keywords, separated from each other by
spaces. A method might be declared with the public and static modifiers, for example.
The allowed modifiers and their meanings are described in the next section.

The type in a method signature specifies the return type of the method. If the method
does not return a value, type must be void. If a method is declared with a non-void
return type, it must include a return statement that returns a value of (or convertible to)
the declared type.

A constructor is a special kind of method used to initialize newly created objects. As we'll
see in Chapter 3, constructors are defined just like methods, except that their signatures
do not include this type specification.

The name of a method follows the specification of its modifiers and type. Method names,
like variable names, are Java identifiers and, like all Java identifiers, may contain letters
in any language represented by the Unicode character set. It is legal, and often quite useful,
to define more than one method with the same name, as long as each version of the method
has a different parameter list. Defining multiple methods with the same name is called
method overloading . The System.out.println() method we've seen so much of is
an overloaded method. One method by this name prints a string and other methods by the
same name print the values of the various primitive types. The Java compiler decides which
method to call based on the type of the argument passed to the method.

When you are defining a method, the name of the method is always followed by the
method's parameter list, which must be enclosed in parentheses. The parameter list
defines zero or more arguments that are passed to the method. The parameter
specifications, if there are any, each consist of a type and a name and are separated from
each other by commas (if there are multiple parameters). When a method is invoked, the
argument values it is passed must match the number, type, and order of the parameters
specified in this method signature line. The values passed need not have exactly the same
type as specified in the signature, but they must be convertible to those types without
casting. C and C++ programmers should note that when a Java method expects no
arguments, its parameter list is simply (), not (void).

In Java 5.0 and later, it is possible to define and invoke methods that accept a variable
number of arguments, using a syntax known colloquially as varargs. Varargs are covered
in detail later in this chapter.

The final part of a method signature is the throws clause, which is used to list the checked
exceptions that a method can throw. Checked exceptions are a category of exception classes
that must be listed in the throws clauses of methods that can throw them. If a method
uses the throw statement to throw a checked exception, or if it calls some other method

Chapter 2. Java Syntax from the Ground Up Page 57 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

that throws a checked exception and does not catch or handle that exception, the method
must declare that it can throw that exception. If a method can throw one or more checked
exceptions, it specifies this by placing the throws keyword after the argument list and
following it by the name of the exception class or classes it can throw. If a method does not
throw any exceptions, it does not use the throws keyword. If a method throws more than
one type of exception, separate the names of the exception classes from each other with
commas. More on this in a bit.

2.6.2. Method Modifiers
The modifiers of a method consist of zero or more modifier keywords such as public,
static, or abstract. Here is a list of allowed modifiers and their meanings. Note that
in Java 5.0 and later, annotations, such as @Override, @Deprecated, and
@SuppressWarnings, are treated as modifiers and may be mixed in with the modifier
list. Anyone can define new annotation types, so it is not possible to list all possible method
annotations. See Chapter 4 for more on annotations.

abstract

An abstract method is a specification without an implementation. The curly braces
and Java statements that would normally comprise the body of the method are
replaced with a single semicolon. A class that includes an abstract method must
itself be declared abstract. Such a class is incomplete and cannot be instantiated
(see Chapter 3).

final

A final method may not be overridden or hidden by a subclass, which makes it
amenable to compiler optimizations that are not possible for regular methods. All
private methods are implicitly final, as are all methods of any class that is declared
final.

native

The native modifier specifies that the method implementation is written in some
"native" language such as C and is provided externally to the Java program. Like
abstract methods, native methods have no body: the curly braces are replaced
with a semicolon.

When Java was first released, native methods were sometimes used for efficiency
reasons. That is almost never necessary today. Instead, native methods are used to

Chapter 2. Java Syntax from the Ground Up Page 58 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

interface Java code to existing libraries written in C or C++. Native methods are
implicitly platform-dependent, and the procedure for linking the implementation
with the Java class that declares the method is dependent on the implementation of
the Java virtual machine. Native methods are not covered in this book.

public, protected, private

These access modifiers specify whether and where a method can be used outside of
the class that defines it. These very important modifiers are explained in Chapter 3.

static

A method declared static is a class method associated with the class itself rather
than with an instance of the class. This is explained in detail in Chapter 3.

strictfp

A method declared strictfp must perform floating-point arithmetic using 32- or
64-bit floating point formats strictly and may not take advantage of any extended
exponent bits available to the platform's floating-point hardware. The "fp" in this
awkwardly named, rarely used modifier stands for "floating point."

synchronized

The synchronized modifier makes a method threadsafe. Before a thread can invoke
a synchronized method, it must obtain a lock on the method's class (for static
methods) or on the relevant instance of the class (for non-static methods). This
prevents two threads from executing the method at the same time.

The synchronized modifier is an implementation detail (because methods can
make themselves threadsafe in other ways) and is not formally part of the method
specification or API. Good documentation specifies explicitly whether a method is
threadsafe; you should not rely on the presence or absence of the synchronized
keyword when working with multithreaded programs.

2.6.3. Declaring Checked Exceptions
In the discussion of the throw statement, we said that exceptions are Throwable objects
and that exceptions fall into two main categories, specified by the Error and
Exception subclasses. In addition to making a distinction between Error and
Exception classes, the Java exception-handling scheme also distinguishes between
checked and unchecked exceptions. Any exception object that is an Error is unchecked.

Chapter 2. Java Syntax from the Ground Up Page 59 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3
http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

Any exception object that is an Exception is checked, unless it is a subclass of
java.lang.RuntimeException , in which case it is unchecked.
(RuntimeException is a subclass of Exception.)

The distinction between checked and unchecked exceptions has to do with the
circumstances under which the exceptions are thrown. Practically any method can throw
an unchecked exception at essentially any time. There is no way to predict an
OutOfMemoryError, for example, and any method that uses objects or arrays can throw
a NullPointerException if it is passed an invalid null argument. Checked exceptions,
on the other hand, arise only in specific, well-defined circumstances. If you try to read data
from a file, for example, you must at least consider the possibility that a
FileNotFoundException will be thrown if the specified file cannot be found.

Java has different rules for working with checked and unchecked exceptions. If you write
a method that throws a checked exception, you must use a throws clause to declare the
exception in the method signature. The reason these types of exceptions are called checked
exceptions is that the Java compiler checks to make sure you have declared them in method
signatures and produces a compilation error if you have not.

Even if you never throw an exception yourself, sometimes you must use a throws clause
to declare an exception. If your method calls a method that can throw a checked exception,
you must either include exception-handling code to handle that exception or use
throws to declare that your method can also throw that exception. For example, the
following method reads the first line of text from a named file. It uses methods that can
throw various types of java.io.IOException objects, so it declares this fact with a
throws clause:

public static String readFirstLine(String filename) throws IOException {
 BufferedReader in = new BufferedReader(new FileReader(filename));
 String firstline = in.readLine();
 in.close();
 return firstline;
}

How do you know if the method you are calling can throw a checked exception? You can
look at its method signature to find out. Or, failing that, the Java compiler will tell you (by
reporting a compilation error) if you've called a method whose exceptions you must handle
or declare.

2.6.4. Variable-Length Argument Lists
In Java 5.0 and later, methods may be declared to accept, and may be invoked with, variable
numbers of arguments. Such methods are commonly known as varargs methods. The
new System.out.printf() method as well as the related format() methods of
String and java.util.Formatter use varargs. The similar, but unrelated, format

Chapter 2. Java Syntax from the Ground Up Page 60 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

() method of java.text.MessageFormat has been converted to use varargs as have
a number of important methods from the Reflection API of java.lang.reflect.

A variable-length argument list is declared by following the type of the last argument to
the method with an ellipsis (...), indicating that this last argument can be repeated zero
or more times. For example:

public static int max(int first, int... rest) {
 int max = first;
 for(int i: rest) {
 if (i > max) max = i;
 }
 return max;
}

This max() method is declared with two arguments. The first is just a regular int value.
The second, however may be repeated zero or more times. All of the following are legal
invocations of max():

max(0)
max(1, 2)
max(16, 8, 4, 2, 1)

As you can tell from the for/in statement in the body of max(), the second argument
is treated as an array of int values. Varargs methods are handled purely by the compiler.
To the Java interpreter, the max() method is indistinguishable from this one:

public static int max(int first, int[] rest) { /* body omitted */ }

To convert a varargs signature to the "real" signature, simply replace ... with [].
Remember that only one ellipsis can appear in a parameter list, and it may only appear on
the last parameter in the list.

Since varargs methods are compiled into methods that expect an array of arguments,
invocations of those methods are compiled to include code that creates and initializes such
an array. So the call max(1,2,3) is compiled to this:

max(1, new int[] { 2, 3 })

If you already have method arguments stored in an array, it is perfectly legal for you to
pass them to the method that way, instead of writing them out individually. You can treat
any ... argument as if it were declared as an array. The converse is not true, however: you
can only use varargs method invocation syntax when the method is actually declared as a
varargs method using an ellipsis.

Varargs methods interact particularly well with the new autoboxing feature of Java 5.0
(see Section 2.9.7 later in this chapter). A method that has an Object... variable length

Chapter 2. Java Syntax from the Ground Up Page 61 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

argument list can take arguments of any reference type because all objects and arrays are
subclasses of Object. Furthermore, autoboxing allows you to invoke the method using
primitive values as well: the compiler boxes these up into wrapper objects as it builds the
Object[] that is the true argument to the method. The printf() and format()
methods mentioned at the beginning of this section are all declared with an Object...
parameter.

One quirk arises with methods with an Object... parameter. It does not arise very often
in practice, but studying the quirk will solidify your understanding of varargs. Recall that
varargs methods can be invoked with an argument of array type or any number of
arguments of the element type. When a method is declared with an Object... argument,
you can pass an Object[] of arguments, or zero or more individual Object arguments.
But every Object[] is also an Object. What do you do if you want to pass an Object
[] as the single object argument to the method? Consider the following code that uses
the printf() method:

import static java.lang.System.out; // out now refers to System.out

// Here we invoke the varargs method with individual Object arguments.
// Note the use of autoboxing to convert primitives to wrapper objects
out.printf("%d %d %d\n", 1, 2, 3);

// This line does the same thing but passes the arguments in an array
// that has already been created:
Object[] args = new Object[] { 1, 2, 3 };
out.printf("%d %d %d\n", args);

// Now consider the following Object[], which we wish to pass
// as a single argument, not as an array of two arguments.
Object[] arg = new Object[] { "hello", "world" };
// These two lines do the same thing: print "hello". Not what we want.
out.printf("%s\n", "hello", "world");
out.printf("%s\n", arg);

// If we want arg to be treated as a single Object argument, we need to
// pass it as an the element of an array. Here's one way:
out.printf("%s\n", new Object[] { arg });

// An easier way is to convince the compiler to create the array itself.
// We use a cast to say that arg is a single Object argument, not an array:
out.printf("%s\n", (Object)arg);

2.6.5. Covariant Return Types
As part of the addition of generic types, Java 5.0 now also supports covariant returns.
This means that an overriding method may narrow the return type of the method it
overrides.[6] The following example makes this clearer:

[6] Method overriding is not the same as method overloading discussed earlier in this section. Method overriding involves subclassing and is covered in Chapter 3. If
you are not already familiar with these concepts, you should skip this section for now and return to it later.

class Point2D { int x, y; }
class Point3D extends Point2D { int z; }

class Event2D {
 public Point2D getLocation() { return new Point2D(); }
}

Chapter 2. Java Syntax from the Ground Up Page 62 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

class Event3D extends Event2D {
 @Override public Point3D getLocation() { return new Point3D(); }
}

This code defines four classes: a two-dimensional point, a three-dimensional point, and
event objects that represent an event in two-dimensional space and in three-dimensional
space. Each event class has a getLocation() method. The Event2D method returns
a Point2D object. Event3D subclasses Event2D and overrides getLocation(). Its
version of the method sensibly returns a Point3D. Because every Point3D object is also
a Point2D object, this is a perfectly reasonable thing to do. It simply wasn't allowed prior
to Java 5.0.

In Java 1.4 and earlier, the return type of an overriding method must be identical to the
type of the method it overrides. In order to compile under Java 1.4, the
Event3D.getLocation() method would have to be modified to have a return type of
Point2D. It could still return a Point3D object, of course, but the caller would have to
cast the return value from Point2D to Point3D.

The @Override in the code example is an annotation, covered in Chapter 4. This one is
a compile-time assertion that the method overrides something. The compiler would have
produced a compilation error if the assertion failed.

2.7. Classes and Objects Introduced
Now that we have introduced operators, expressions, statements, and methods, we can
finally talk about classes. A class is a named collection of fields that hold data values and
methods that operate on those values. Classes are just one of five reference types supported
by Java, but they are the most important type. Classes are thoroughly documented in a
chapter of their own, Chapter 3. We introduce them here, however, because they are the
next higher level of syntax after methods, and because the rest of this chapter requires a
basic familiarity with the concept of class and the basic syntax for defining a class,
instantiating it, and using the resulting object.

The most important thing about classes is that they define new data types. For example,
you might define a class named Point to represent a data point in the two-dimensional
Cartesian coordinate system. This class would define fields (each of type double) to hold
the X and Y coordinates of a point and methods to manipulate and operate on the point.
The Point class is a new data type.

When discussing data types, it is important to distinguish between the data type itself and
the values the data type represents. char is a data type: it represents Unicode characters.
But a char value represents a single specific character. A class is a data type; a class value

Chapter 2. Java Syntax from the Ground Up Page 63 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

is called an object. We use the name class because each class defines a type (or kind, or
species, or class) of objects. The Point class is a data type that represents X,Y points, while
a Point object represents a single specific X,Y point. As you might imagine, classes and
their objects are closely linked. In the sections that follow, we will discuss both.

2.7.1. Defining a Class
Here is a possible definition of the Point class we have been discussing:

/** Represents a Cartesian (x,y) point */
public class Point {
 public double x, y; // The coordinates of the point
 public Point(double x, double y) { // A constructor that
 this.x = x; this.y = y; // initializes the fields
 }

 public double distanceFromOrigin() { // A method that operates on
 return Math.sqrt(x*x + y*y); // the x and y fields
 }
}

This class definition is stored in a file named Point.java and compiled to a file named
Point.class, where it is available for use by Java programs and other classes. This class
definition is provided here for completeness and to provide context, but don't expect to
understand all the details just yet; most of Chapter 3 is devoted to the topic of defining
classes.

Keep in mind that you don't have to define every class you want to use in a Java program.
The Java platform includes thousands of predefined classes that are guaranteed to be
available on every computer that runs Java.

2.7.2. Creating an Object
Now that we have defined the Point class as a new data type, we can use the following
line to declare a variable that holds a Point object:

Point p;

Declaring a variable to hold a Point object does not create the object itself, however. To
actually create an object, you must use the new operator. This keyword is followed by the
object's class (i.e., its type) and an optional argument list in parentheses. These arguments
are passed to the constructor method for the class, which initializes internal fields in the
new object:

// Create a Point object representing (2,-3.5).
// Declare a variable p and store a reference to the new Point object in it.
Point p = new Point(2.0, -3.5);

// Create some other objects as well
Date d = new Date(); // A Date object that represents the current time
Set words = new HashSet(); // A HashSet object to hold a set of objects

Chapter 2. Java Syntax from the Ground Up Page 64 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

The new keyword is by far the most common way to create objects in Java. A few other
ways are also worth mentioning. First, a couple of classes are so important that Java defines
special literal syntax for creating objects of those types (as we discuss later in this section).
Second, Java supports a dynamic loading mechanism that allows programs to load classes
and create instances of those classes dynamically. This dynamic instantiation is done with
the newInstance() methods of java.lang.Class and
java.lang.reflect.Constructor. Finally, objects can also be created by
deserializing them. In other words, an object that has had its state saved, or serialized,
usually to a file, can be recreated using the java.io.ObjectInputStream class.

2.7.3. Using an Object
Now that we've seen how to define classes and instantiate them by creating objects, we
need to look at the Java syntax that allows us to use those objects. Recall that a class defines
a collection of fields and methods. Each object has its own copies of those fields and has
access to those methods. We use the dot character (.) to access the named fields and
methods of an object. For example:

Point p = new Point(2, 3); // Create an object
double x = p.x; // Read a field of the object
p.y = p.x * p.x; // Set the value of a field
double d = p.distanceFromOrigin(); // Access a method of the object

This syntax is central to object-oriented programming in Java, so you'll see it a lot. Note,
in particular, the expression p.distanceFromOrigin(). This tells the Java compiler
to look up a method named distanceFromOrigin() defined by the class Point and
use that method to perform a computation on the fields of the object p. We'll cover the
details of this operation in Chapter 3.

2.7.4. Object Literals
In our discussion of primitive types, we saw that each primitive type has a literal syntax
for including values of the type literally into the text of a program. Java also defines a literal
syntax for a few special reference types, as described next.

2.7.4.1. String literals
The String class represents text as a string of characters. Since programs usually
communicate with their users through the written word, the ability to manipulate strings
of text is quite important in any programming language. In some languages, strings are a
primitive type, on a par with integers and characters. In Java, however, strings are objects;
the data type used to represent text is the String class.

Because strings are such a fundamental data type, Java allows you to include text literally
in programs by placing it between double-quote (") characters. For example:

Chapter 2. Java Syntax from the Ground Up Page 65 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

String name = "David";
System.out.println("Hello, " + name);

Don't confuse the double-quote characters that surround string literals with the single-
quote (or apostrophe) characters that surround char literals. String literals can contain
any of the escape sequences char literals can (see Table 2-2). Escape sequences are
particularly useful for embedding double-quote characters within double-quoted string
literals. For example:

String story = "\t\"How can you stand it?\" he asked sarcastically.\n";

String literals cannot contain comments and may consist of only a single line. Java does
not support any kind of continuation-character syntax that allows two separate lines to be
treated as a single line. If you need to represent a long string of text that does not fit on a
single line, break it into independent string literals and use the + operator to concatenate
the literals. For example:

String s = "This is a test of the // This is illegal; string literals
 emergency broadcast system"; // cannot be broken across lines.

String s = "This is a test of the " + // Do this instead
 "emergency broadcast system";

This concatenation of literals is done when your program is compiled, not when it is run,
so you do not need to worry about any kind of performance penalty.

2.7.4.2. Type literals
The second type that supports its own special object literal syntax is the class named
Class. Instances of the Class class represent a Java data type. To include a Class object
literally in a Java program, follow the name of any data type with .class. For example:

Class typeInt = int.class;
Class typeIntArray = int[].class;
Class typePoint = Point.class;

2.7.4.3. The null reference
The null keyword is a special literal value that is a reference to nothing, or an absence of
a reference. The null value is unique because it is a member of every reference type. You
can assign null to variables of any reference type. For example:

String s = null;
Point p = null;

2.8. Arrays
An array is a special kind of object that holds zero or more primitive values or references.
These values are held in the elements of the array, which are unnamed variables referred

Chapter 2. Java Syntax from the Ground Up Page 66 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to by their position or index. The type of an array is characterized by its element type , and
all elements of the array must be of that type.

Array elements are numbered starting with zero, and valid indexes range from zero to the
number of elements minus one. The array element with index 1, for example, is the
second element in the array. The number of elements in an array is its length. The length
of an array is specified when the array is created, and it never changes.

The element type of an array may be any valid Java type, including array types. This means
that Java supports arrays of arrays, which provide a kind of multidimensional array
capability. Java does not support the matrix-style multidimensional arrays found in some
languages.

2.8.1. Array Types
Array types are reference types, just as classes are. Instances of arrays are objects, just as
the instances of a class are.[7] Unlike classes, array types do not have to be defined. Simply
place square brackets after the element type. For example, the following code declares
three variables of array type:

[7] There is a terminology difficulty when discussing arrays. Unlike with classes and their instances, we use the term "array" for both the array type and the array
instance. In practice, it is usually clear from context whether a type or a value is being discussed.

byte b; // byte is a primitive type
byte[] arrayOfBytes; // byte[] is an array type: array of byte
byte[][] arrayOfArrayOfBytes; // byte[][] is another type: array of byte[]
String[] points; // String[] is an array of String objects

The length of an array is not part of the array type. It is not possible, for example, to declare
a method that expects an array of exactly four int values, for example. If a method
parameter is of type int[], a caller can pass an array with any number (including zero)
of elements.

Array types are not classes, but array instances are objects. This means that arrays inherit
the methods of java.lang.Object. Arrays implement the Cloneable interface and
override the clone() method to guarantee that an array can always be cloned and that
clone() never throws a CloneNotSupportedException. Arrays also implement
Serializable so that any array can be serialized if its element type can be serialized.
Finally, all arrays have a public final int field named length that specifies the
number of elements in the array.

2.8.1.1. Array type widening conversions
Since arrays extend Object and implement the Cloneable and Serializable
interfaces, any array type can be widened to any of these three types. But certain array
types can also be widened to other array types. If the element type of an array is a reference

Chapter 2. Java Syntax from the Ground Up Page 67 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

type T, and T is assignable to a type S, the array type T[] is assignable to the array type
S[]. Note that there are no widening conversions of this sort for arrays of a given primitive
type. As examples, the following lines of code show legal array widening conversions:

String[] arrayOfStrings; // Created elsewhere
int[][] arrayOfArraysOfInt; // Created elsewhere
// String is assignable to Object, so String[] is assignable to Object[]
Object[] oa = arrayOfStrings;
// String implements Comparable, so a String[] can be considered a Comparable[]
Comparable[] ca = arrayOfStrings;
// An int[] is an Object, so int[][] is assignable to Object[]
Object[] oa2 = arrayOfArraysOfInt;
// All arrays are cloneable, serializable Objects
Object o = arrayOfStrings;
Cloneable c = arrayOfArraysOfInt;
Serializable s = arrayOfArraysOfInt[0];

This ability to widen an array type to another array type means that the compile-time type
of an array is not always the same as its runtime type. The compiler must usually insert
runtime checks before any operation that stores a reference value into an array element
to ensure that the runtime type of the value matches the runtime type of the array element.
If the runtime check fails, an ArrayStoreException is thrown.

2.8.1.2. C compatibility syntax
As we've seen, an array type is written simply by placing brackets after the element type.
For compatibility with C and C++, however, Java supports an alternative syntax in
variable declarations: brackets may be placed after the name of the variable instead of, or
in addition to, the element type. This applies to local variables, fields, and method
parameters. For example:

// This line declares local variables of type int, int[] and int[][]
int justOne, arrayOfThem[], arrayOfArrays[][];

// These three lines declare fields of the same array type:
public String[][] aas1; // Preferred Java syntax
public String aas2[][]; // C syntax
public String[] aas3[]; // Confusing hybrid syntax

// This method signature includes two parameters with the same type
public static double dotProduct(double[] x, double y[]) { ... }

This compatibility syntax is uncommon, and its use is strongly discouraged.

2.8.2. Creating and Initializing Arrays
To create an array value in Java, you use the new keyword, just as you do to create an
object. Array types don't have constructors, but you are required to specify a length
whenever you create an array. Specify the desired size of your array as a nonnegative
integer between square brackets:

byte[] buffer = new byte[1024]; // Create a new array to hold 1024 bytes
String[] lines = new String[50]; // Create an array of 50 references to strings

Chapter 2. Java Syntax from the Ground Up Page 68 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When you create an array with this syntax, each of the array elements is automatically
initialized to the same default value that is used for the fields of a class: false for
boolean elements, '\u0000' for char elements, 0 for integer elements, 0.0 for floating-
point elements, and null for elements of reference type.

Array creation expressions can also be used to create and initialize a multidimensional
rectangular array of arrays. This syntax is somewhat more complicated and is explained
later in this section.

2.8.2.1. Array initializers
To create an array and initialize its elements in a single expression, omit the array length
and follow the square brackets with a comma-separated list of expressions within curly
braces. The type of each expression must be assignable to the element type of the array, of
course. The length of the array that is created is equal to the number of expressions. It is
legal, but not necessary, to include a trailing comma following the last expression in the
list. For example:

String[] greetings = new String[] { "Hello", "Hi", "Howdy" };
int[] smallPrimes = new int[] { 2, 3, 5, 7, 11, 13, 17, 19, };

Note that this syntax allows arrays to be created, initialized, and used without ever being
assigned to a variable. In a sense these array creation expressions are anonymous array
literals. Here are examples:

// Call a method, passing an anonymous array literal that contains two strings
String response = askQuestion("Do you want to quit?",
 new String[] {"Yes", "No"});

// Call another method with an anonymous array (of anonymous objects)
double d = computeAreaOfTriangle(new Point[] { new Point(1,2),
 new Point(3,4),
 new Point(3,2) });

When an array initializer is part of a variable declaration, you may omit the new keyword
and element type and list the desired array elements within curly braces:

String[] greetings = { "Hello", "Hi", "Howdy" };
int[] powersOfTwo = {1, 2, 4, 8, 16, 32, 64, 128};

The Java Virtual Machine architecture does not support any kind of efficient array
initialization. In other words, array literals are created and initialized when the program
is run, not when the program is compiled. Consider the following array literal:

int[] perfectNumbers = {6, 28};

This is compiled into Java byte codes that are equivalent to:
int[] perfectNumbers = new int[2];
perfectNumbers[0] = 6;
perfectNumbers[1] = 28;

Chapter 2. Java Syntax from the Ground Up Page 69 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you want to initialize a large array, you should think twice before including the values
literally in the program, since the Java compiler has to emit lots of Java byte codes to
initialize the array. It may be more space-efficient to store your data in an external file and
read it into the program at runtime.

The fact that Java does all array initialization at runtime has an important corollary,
however. It means that the expressions in an array initializer may be computed at runtime
and need not be compile-time constants. For example:

Point[] points = { circle1.getCenterPoint(), circle2.getCenterPoint() };

2.8.3. Using Arrays
Once an array has been created, you are ready to start using it. The following sections
explain basic access to the elements of an array and cover common idioms of array usage
such as iterating through the elements of an array and copying an array or part of an array.

2.8.3.1. Accessing array elements
The elements of an array are variables. When an array element appears in an expression,
it evaluates to the value held in the element. And when an array element appears on the
left-hand side of an assignment operator, a new value is stored into that element. Unlike
a normal variable, however, an array element has no name, only a number. Array elements
are accessed using a square bracket notation. If a is an expression that evaluates to an
array reference, you index that array and refer to a specific element with a[i], where i is
an integer literal or an expression that evaluates to an int. For example:

String[] responses = new String[2]; // Create an array of two strings
responses[0] = "Yes"; // Set the first element of the array
responses[1] = "No"; // Set the second element of the array

// Now read these array elements
System.out.println(question + " (" + responses[0] + "/" +
 responses[1] + "): ");

// Both the array reference and the array index may be more complex expressions
double datum = data.getMatrix()[data.row()*data.numColumns() +
 data.column()];

The array index expression must be of type int, or a type that can be widened to an int:
byte, short, or even char. It is obviously not legal to index an array with a boolean,
float, or double value. Remember that the length field of an array is an int and that
arrays may not have more than Integer.MAX_VALUE elements. Indexing an array with
an expression of type long generates a commpile-time error, even if the value of that
expression at runtime would be within the range of an int.

Chapter 2. Java Syntax from the Ground Up Page 70 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2.8.3.2. Array bounds
Remember that the first element of an array a is a[0] , the second element is a[1] and
the last is a[a.length-1]. If you are accustomed to a language in which the arrays are
1-based, 0-based arrays take some getting used to.

A common bug involving arrays is use of an index that is too small (a negative index) or
too large (greater than or equal to the array length). In languages like C or C++, accessing
elements before the beginning or after the end of an array yields unpredictable behavior
that can vary from invocation to invocation and platform to platform. Such bugs may not
always be caught, and if a failure occurs, it may be at some later time. While it is just as
easy to write faulty array indexing code in Java, Java guarantees predictable results by
checking every array access at runtime. If an array index is too small or too large, Java
throws an ArrayIndexOutOfBoundsException immediately.

2.8.3.3. Iterating arrays
It is common to write loops that iterate through each of the elements of an array in order
to perform some operation on it. This is typically done with a for loop. The following code,
for example, computes the sum of an array of integers:

int[] primes = { 2, 3, 5, 7, 11, 13, 17, 19 };
int sumOfPrimes = 0;
for(int i = 0; i < primes.length; i++)
 sumOfPrimes += primes[i];

The structure of this for loop is idiomatic, and you'll see it frequently.

In Java 5.0 and later, arrays can also be iterated with the for/in loop. The summing code
could be rewritten succinctly as follows:

for(int p : primes) sumOfPrimes += p;

2.8.3.4. Copying arrays
All array types implement the Cloneable interface, and any array can be copied by
invoking its clone() method. Note that a cast is required to convert the return value to
the appropriate array type, but that the clone() method of arrays is guaranteed not to
throw CloneNotSupportedException:

int[] data = { 1, 2, 3 };
int[] copy = (int[]) data.clone();

The clone() method makes a shallow copy. If the element type of the array is a reference
type, only the references are copied, not the referenced objects themselves. Because the
copy is shallow, any array can be cloned, even if the element type is not itself
Cloneable.

Chapter 2. Java Syntax from the Ground Up Page 71 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Sometimes you simply want to copy elements from one existing array to another existing
array. The System.arraycopy() method is designed to do this efficiently, and you
can assume that Java VM implementations performs this method using high-speed block
copy operations on the underlying hardware.

arraycopy() is a straightforward function that is difficult to use only because it has
five arguments to remember. First pass the source array from which elements are to be
copied. Second, pass the index of the start element in that array. Pass the destination array
and the destination index as the third and fourth arguments. Finally, as the fifth argument,
specify the number of elements to be copied.

arraycopy() works correctly even for overlapping copies within the same array. For
example, if you've "deleted" the element at index 0 from array a and want to shift the
elements between indexes 1 and n down one so that they occupy indexes 0 through n-1
you could do this:

System.arraycopy(a, 1, a, 0, n);

2.8.3.5. Array utilities
The java.util.Arrays class contains a number of static utility methods for working
with arrays. Most of these methods are heavily overloaded, with versions for arrays of each
primitive type and another version for arrays of objects. The sort() and
binarySearch() methods are particularly useful for sorting and searching arrays. The
equals() method allows you to compare the content of two arrays. The
Arrays.toString() method is useful when you want to convert array content to a
string, such as for debugging or logging output.

As of Java 5.0, the Arrays class includes deepEquals() , deepHashCode(), and
deepToString() methods that work correctly for multidimensional arrays.

2.8.4. Multidimensional Arrays
As we've seen, an array type is written as the element type followed by a pair of square
brackets. An array of char is char[], and an array of arrays of char is char[][].
When the elements of an array are themselves arrays, we say that the array is
multidimensional. In order to work with multidimensional arrays, you need to understand
a few additional details.

Imagine that you want to use a multidimensional array to represent a multiplication table:
int[][] products; // A multiplication table

Chapter 2. Java Syntax from the Ground Up Page 72 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Each of the pairs of square brackets represents one dimension, so this is a two-dimensional
array. To access a single int element of this two-dimensional array, you must specify two
index values, one for each dimension. Assuming that this array was actually initialized as
a multiplication table, the int value stored at any given element would be the product of
the two indexes. That is, products[2][4] would be 8, and products[3][7] would be
21.

To create a new multidimensional array, use the new keyword and specify the size of both
dimensions of the array. For example:

int[][] products = new int[10][10];

In some languages, an array like this would be created as a single block of 100 int values.
Java does not work this way. This line of code does three things:

• Declares a variable named products to hold an array of arrays of int.
• Creates a 10-element array to hold 10 arrays of int.
• Creates 10 more arrays, each of which is a 10-element array of int. It assigns each of

these 10 new arrays to the elements of the initial array. The default value of every
int element of each of these 10 new arrays is 0.

To put this another way, the previous single line of code is equivalent to the following code:
int[][] products = new int[10][]; // An array to hold 10 int[] values
for(int i = 0; i < 10; i++) // Loop 10 times...
 products[i] = new int[10]; // ...and create 10 arrays

The new keyword performs this additional initialization automatically for you. It works
with arrays with more than two dimensions as well:

float[][][] globalTemperatureData = new float[360][180][100];

When using new with multidimensional arrays, you do not have to specify a size for all
dimensions of the array, only the leftmost dimension or dimensions. For example, the
following two lines are legal:

float[][][] globalTemperatureData = new float[360][][];
float[][][] globalTemperatureData = new float[360][180][];

The first line creates a single-dimensional array, where each element of the array can hold
a float[][]. The second line creates a two-dimensional array, where each element of
the array is a float[]. If you specify a size for only some of the dimensions of an array,
however, those dimensions must be the leftmost ones. The following lines are not legal:

float[][][] globalTemperatureData = new float[360][][100]; // Error!
float[][][] globalTemperatureData = new float[][180][100]; // Error!

Chapter 2. Java Syntax from the Ground Up Page 73 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Like a one-dimensional array, a multidimensional array can be initialized using an array
initializer. Simply use nested sets of curly braces to nest arrays within arrays. For example,
we can declare, create, and initialize a 55 multiplication table like this:

int[][] products = { {0, 0, 0, 0, 0},
 {0, 1, 2, 3, 4},
 {0, 2, 4, 6, 8},
 {0, 3, 6, 9, 12},
 {0, 4, 8, 12, 16} };

Or, if you want to use a multidimensional array without declaring a variable, you can use
the anonymous initializer syntax:

boolean response = bilingualQuestion(question, new String[][] {
 { "Yes", "No" },
 { "Oui", "Non" }});

When you create a multidimensional array using the new keyword, you always get a
rectangular array: one in which all the array values for a given dimension have the same
size. This is perfect for rectangular data structures, such as matrices. However, because
multidimensional arrays are implemented as arrays of arrays in Java, instead of as a single
rectangular block of elements, you are in no way constrained to use rectangular arrays.
For example, since our multiplication table is symmetrical diagonally from top left to
bottom right, we can represent the same information in a nonrectangular array with fewer
elements:

int[][] products = { {0},
 {0, 1},
 {0, 2, 4},
 {0, 3, 6, 9},
 {0, 4, 8, 12, 16} };

When working with multidimensional arrays, you'll often find yourself using nested loops
to create or initialize them. For example, you can create and initialize a large triangular
multiplication table as follows:

int[][] products = new int[12][]; // An array of 12 arrays of int.
for(int row = 0; row < 12; row++) { // For each element of that array,
 products[row] = new int[row+1]; // allocate an array of int.
 for(int col = 0; col < row+1; col++) // For each element of the int[],
 products[row][col] = row * col; // initialize it to the product.
}

2.9. Reference Types
Now that we've covered arrays and introduced classes and objects, we can turn to a more
general description of reference types. Classes and arrays are two of Java's five kinds of
reference types. Classes were introduced earlier and are covered in complete detail, along
with interfaces, in Chapter 3. Enumerated types and annotation types are reference types
introduced in Java 5.0 (see Chapter 4).

Chapter 2. Java Syntax from the Ground Up Page 74 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

This section does not cover specific syntax for any particular reference type, but instead
explains the general behavior of reference types and illustrates how they differ from Java's
primitive types. In this section, the term object refers to a value or instance of any reference
type, including arrays.

2.9.1. Reference vs. Primitive Types
Reference types and objects differ substantially from primitive types and their primitive
values:

• Eight primitive types are defined by the Java language. Reference types are user-
defined, so there is an unlimited number of them. For example, a program might
define a class named Point and use objects of this newly defined type to store and
manipulate X,Y points in a Cartesian coordinate system. The same program might use
an array of characters—of type char[]—to store text and might use an array of
Point objects—of type Point[]—to store a sequence of points.

• Primitive types represent single values. Reference types are aggregate types that hold
zero or more primitive values or objects. Our hypothetical Point class, for example,
might hold two double values to represent the X and Y coordinates of the points. The
char[] and Point[] array types are obviously aggregate types because they hold
a sequence of primitive char values or Point objects.

• Primitive types require between one and eight bytes of memory. When a primitive
value is stored in a variable or passed to a method, the computer makes a copy of the
bytes that hold the value. Objects, on the other hand, may require substantially more
memory. Memory to store an object is dynamically allocated on the heap when the
object is created and this memory is automatically "garbage-collected" when the
object is no longer needed. When an object is assigned to a variable or passed to a
method, the memory that represents the object is not copied. Instead, only a reference
to that memory is stored in the variable or passed to the method.

This last difference between primitive and reference types explains why reference types
are so named. The sections that follow are devoted to exploring the substantial differences
between types that are manipulated by value and types that are manipulated by reference.

Before moving on, however, it is worth briefly considering the nature of references. A
reference is simply some kind of reference to an object. References are completely opaque
in Java and the representation of a reference is an implementation detail of the Java
interpreter. If you are a C programmer, however, you can safely imagine a reference as a
pointer or a memory address. Remember, though, that Java programs cannot manipulate
references in any way. Unlike pointers in C and C++, references cannot be converted to or
from integers, and they cannot be incremented or decremented. C and C++ programmers
should also note that Java does not support the & address-of operator or the * and ->
dereference operators. In Java, primitive types are always handled exclusively by value,

Chapter 2. Java Syntax from the Ground Up Page 75 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

and objects are always handled exclusively by reference: the . operator in Java is more like
the -> operator in C and C++ than it is like the . operator of those languages.

2.9.2. Copying Objects
The following code manipulates a primitive int value:

int x = 42;
int y = x;

After these lines execute, the variable y contains a copy of the value held in the variable
x. Inside the Java VM, there are two independent copies of the 32-bit integer 42.

Now think about what happens if we run the same basic code but use a reference type
instead of a primitive type:

Point p = new Point(1.0, 2.0);
Point q = p;

After this code runs, the variable q holds a copy of the reference held in the variable p.
There is still only one copy of the Point object in the VM, but there are now two copies of
the reference to that object. This has some important implications. Suppose the two
previous lines of code are followed by this code:

System.out.println(p.x); // Print out the X coordinate of p: 1.0
q.x = 13.0; // Now change the X coordinate of q
System.out.println(p.x); // Print out p.x again; this time it is 13.0

Since the variables p and q hold references to the same object, either variable can be used
to make changes to the object, and those changes are visible through the other variable as
well.

This behavior is not specific to objects; the same thing happens with arrays, as illustrated
by the following code:

char[] greet = { 'h','e','l','l','o' }; // greet holds an array reference
char[] cuss = greet; // cuss holds the same reference
cuss[4] = '!'; // Use reference to change an element
System.out.println(greet); // Prints "hell!"

A similar difference in behavior between primitive types and reference types occurs when
arguments are passed to methods. Consider the following method:

void changePrimitive(int x) {
 while(x > 0)
 System.out.println(x--);
}

When this method is invoked, the method is given a copy of the argument used to invoke
the method in the parameter x. The code in the method uses x as a loop counter and

Chapter 2. Java Syntax from the Ground Up Page 76 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

decrements it to zero. Since x is a primitive type, the method has its own private copy of
this value, so this is a perfectly reasonable thing to do.

On the other hand, consider what happens if we modify the method so that the parameter
is a reference type:

void changeReference(Point p) {
 while(p.x > 0)
 System.out.println(p.x--);
}

When this method is invoked, it is passed a private copy of a reference to a Point object
and can use this reference to change the Point object. Consider the following:

Point q = new Point(3.0, 4.5); // A point with an X coordinate of 3
changeReference(q); // Prints 3,2,1 and modifies the Point
System.out.println(q.x); // The X coordinate of q is now 0!

When the changeReference() method is invoked, it is passed a copy of the reference
held in variable q. Now both the variable q and the method parameter p hold references
to the same object. The method can use its reference to change the contents of the object.
Note, however, that it cannot change the contents of the variable q. In other words, the
method can change the Point object beyond recognition, but it cannot change the fact
that the variable q refers to that object.

The title of this section is "Copying Objects," but, so far, we've only seen copies of references
to objects, not copies of the objects and arrays themselves. To make an actual copy of an
object, you must use the special clone() method (inherited by all objects from
java.lang.Object):

Point p = new Point(1,2); // p refers to one object
Point q = (Point) p.clone(); // q refers to a copy of that object
q.y = 42; // Modify the copied object, but not the original

int[] data = {1,2,3,4,5}; // An array
int[] copy = (int[]) data.clone(); // A copy of the array

Note that a cast is necessary to coerce the return value of the clone() method to the
correct type. There are a couple of points you should be aware of when using clone().
First, not all objects can be cloned. Java only allows an object to be cloned if the object's
class has explicitly declared itself to be cloneable by implementing the Cloneable
interface. (We haven't discussed interfaces or how they are implemented yet; that is
covered in Chapter 3.) The definition of Point that we showed earlier does not actually
implement this interface, so our Point type, as implemented, is not cloneable. Note,
however, that arrays are always cloneable. If you call the clone() method for a
noncloneable object, it throws a CloneNotSupportedException. When you use the
clone() method, you may want to use it within a try block to catch this exception.

Chapter 2. Java Syntax from the Ground Up Page 77 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

The second thing you need to understand about clone() is that, by default, it creates
a shallow copy of an object. The copied object contains copies of all the primitive values
and references in the original object. In other words, any references in the object are copied,
not cloned; clone() does not recursively make copies of the objects referred to by those
references. A class may need to override this shallow copy behavior by defining its own
version of the clone() method that explicitly performs a deeper copy where needed. To
understand the shallow copy behavior of clone(), consider cloning a two-dimensional
array of arrays:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = (int[][]) data.clone(); // Copy the 2 refs to a new array
copy[0][0] = 99; // This changes data[0][0] too!
copy[1] = new int[] {7,8,9}; // This does not change data[1]

If you want to make a deep copy of this multidimensional array, you have to copy each
dimension explicitly:

int[][] data = {{1,2,3}, {4,5}}; // An array of 2 references
int[][] copy = new int[data.length][]; // A new array to hold copied arrays
for(int i = 0; i < data.length; i++)
 copy[i] = (int[]) data[i].clone();

2.9.3. Comparing Objects
We've seen that primitive types and reference types differ significantly in the way they are
assigned to variables, passed to methods, and copied. The types also differ in the way they
are compared for equality. When used with primitive values, the equality operator (= =)
simply tests whether two values are identical (i.e., whether they have exactly the same bits).
With reference types, however, = = compares references, not actual objects. In other
words, = = tests whether two references refer to the same object; it does not test whether
two objects have the same content. For example:

String letter = "o";
String s = "hello"; // These two String objects
String t = "hell" + letter; // contain exactly the same text.
if (s = = t) System.out.println("equal"); // But they are not equal!

byte[] a = { 1, 2, 3 }; // An array.
byte[] b = (byte[]) a.clone(); // A copy with identical content.
if (a = = b) System.out.println("equal"); // But they are not equal!

When working with reference types, there are two kinds of equality: equality of reference
and equality of object. It is important to distinguish between these two kinds of equality.
One way to do this is to use the word "identical" when talking about equality of references
and the word "equal" when talking about two distinct objects that have the same content.
To test two nonidentical objects for equality, pass one of them to the equals() method
of the other:

String letter = "o";
String s = "hello"; // These two String objects

Chapter 2. Java Syntax from the Ground Up Page 78 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

String t = "hell" + letter; // contain exactly the same text.
if (s.equals(t)) // And the equals() method
 System.out.println("equal"); // tells us so.

All objects inherit an equals() method (from Object), but the default implementation
simply uses = = to test for identity of references, not equality of content. A class that wants
to allow objects to be compared for equality can define its own version of the equals
() method. Our Point class does not do this, but the String class does, as indicated in
the code example. You can call the equals() method on an array, but it is the same as
using the = = operator, because arrays always inherit the default equals() method that
compares references rather than array content. You can compare arrays for equality with
the convenience method java.util.Arrays.equals().

2.9.4. Terminology: Pass by Value
I've said that Java handles objects "by reference." Don't confuse this with the phrase "pass
by reference." "Pass by reference" is a term used to describe the method-calling
conventions of some programming languages. In a pass-by-reference language, values—
even primitive values—are not passed directly to methods. Instead, methods are always
passed references to values. Thus, if the method modifies its parameters, those
modifications are visible when the method returns, even for primitive types.

Java does not do this; it is a "pass by value" language. However, when a reference type is
involved, the value that is passed is a reference. But this is still not the same as pass-by-
reference. If Java were a pass-by-reference language, when a reference type is passed to a
method, it would be passed as a reference to the reference.

2.9.5. Memory Allocation and Garbage Collection
As we've already noted, objects are composite values that can contain a number of other
values and may require a substantial amount of memory. When you use the new keyword
to create a new object or use an object literal in your program, Java automatically creates
the object for you, allocating whatever amount of memory is necessary. You don't need to
do anything to make this happen.

In addition, Java also automatically reclaims that memory for reuse when it is no longer
needed. It does this through a process called garbage collection. An object is considered
garbage when no references to it are stored in any variables, the fields of any objects, or
the elements of any arrays. For example:

Point p = new Point(1,2); // Create an object
double d = p.distanceFromOrigin(); // Use it for something
p = new Point(2,3); // Create a new object

Chapter 2. Java Syntax from the Ground Up Page 79 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

After the Java interpreter executes the third line, a reference to the new Point object has
replaced the reference to the first one. No references to the first object remain, so it is
garbage. At some point, the garbage collector discovers this and reclaims the memory used
by the object.

C programmers, who are used to using malloc() and free() to manage memory, and
C++ programmers, who are used to explicitly deleting their objects with delete, may find
it a little hard to relinquish control and trust the garbage collector. Even though it seems
like magic, it really works! There is a slight, but usually negligible, performance penalty
due to the use of garbage collection. However, having garbage collection built into the
language dramatically reduces the occurrence of memory leaks and related bugs and
almost always improves programmer productivity.

2.9.6. Reference Type Conversions
Objects can be converted between different reference types. As with primitive types,
reference type conversions can be widening conversions (allowed automatically by the
compiler) or narrowing conversions that require a cast (and possibly a runtime check). In
order to understand reference type conversions, you need to understand that reference
types form a hierarchy, usually called the class hierarchy .

Every Java reference type extends some other type, known as its superclass. A type inherits
the fields and methods of its superclass and then defines its own additional fields and
methods. A special class named Object serves as the root of the class hierarchy in Java.
All Java classes extend Object directly or indirectly. The Object class defines a number
of special methods that are inherited (or overridden) by all objects.

The predefined String class and the Point class we discussed earlier in this chapter both
extend Object. Thus, we can say that all String objects are also Object objects. We can
also say that all Point objects are Object objects. The opposite is not true, however. We
cannot say that every Object is a String because, as we've just seen, some Object
objects are Point objects.

With this simple understanding of the class hierarchy, we can return to the rules of
reference type conversion:

• An object cannot be converted to an unrelated type. The Java compiler does not allow
you to convert a String to a Point, for example, even if you use a cast operator.

• An object can be converted to the type of its superclass or of any ancestor class. This
is a widening conversion, so no cast is required. For example, a String value can be
assigned to a variable of type Object or passed to a method where an Object
parameter is expected. Note that no conversion is actually performed; the object is
simply treated as if it were an instance of the superclass.

Chapter 2. Java Syntax from the Ground Up Page 80 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• An object can be converted to the type of a subclass, but this is a narrowing conversion
and requires a cast. The Java compiler provisionally allows this kind of conversion,
but the Java interpreter checks at runtime to make sure it is valid. Only cast an object
to the type of a subclass if you are sure, based on the logic of your program, that the
object is actually an instance of the subclass. If it is not, the interpreter throws a
ClassCastException. For example, if we assign a String object to a variable of
type Object, we can later cast the value of that variable back to type String:

Object o = "string"; // Widening conversion from String to Object
// Later in the program...
String s = (String) o; // Narrowing conversion from Object to String

Arrays are objects and follow some conversion rules of their own. First, any array can be
converted to an Object value through a widening conversion. A narrowing conversion
with a cast can convert such an object value back to an array. For example:

Object o = new int[] {1,2,3}; // Widening conversion from array to Object
// Later in the program...
int[] a = (int[]) o; // Narrowing conversion back to array type

In addition to converting an array to an object, an array can be converted to another type
of array if the "base types" of the two arrays are reference types that can themselves be
converted. For example:

// Here is an array of strings.
String[] strings = new String[] { "hi", "there" };
// A widening conversion to CharSequence[] is allowed because String
// can be widened to CharSequence
CharSequence[] sequences = strings;
// The narrowing conversion back to String[] requires a cast.
strings = (String[]) sequences;
// This is an array of arrays of strings
String[][] s = new String[][] { strings };
// It cannot be converted to CharSequence[] because String[] cannot be
// converted to CharSequence: the number of dimensions don't match
sequences = s; // This line will not compile
// s can be converted to Object or Object[], however because all array types
// (including String[] and String[][]) can be converted to Object.
Object[] objects = s;

Note that these array conversion rules apply only to arrays of objects and arrays of arrays.
An array of primitive type cannot be converted to any other array type, even if the primitive
base types can be converted:

// Can't convert int[] to double[] even though int can be widened to double
double[] data = new int[] {1,2,3}; // This line causes a compilation error
// This line is legal, however, since int[] can be converted to Object
Object[] objects = new int[][] {{1,2},{3,4}};

2.9.7. Boxing and Unboxing Conversions
Primitive types and reference types behave quite differently. It is sometimes useful to treat
primitive values as objects, and for this reason, the Java platform includes wrapper classes

Chapter 2. Java Syntax from the Ground Up Page 81 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for each of the primitive types. Boolean, Byte, Short, Character, Integer, Long,
Float, and Double are immutable classes whose instances each hold a single primitive
value. These wrapper classes are usually used when you want to store primitive values in
collections such as java.util.List:

List numbers = new ArrayList(); // Create a List collection
numbers.add(new Integer(-1)); // Store a wrapped primitive
int i = ((Integer)numbers.get(0)).intValue(); // Extract the primitive value

Prior to Java 5.0, no conversions between primitive types and reference types were
allowed. This code explicitly calls the Integer() constructor to wrap a primitive int
in an object and explicitly calls the intValue() method to extract a primitive value from
the wrapper object.

Java 5.0 introduces two new types of conversions known as boxing and unboxing
conversions. Boxing conversions convert a primitive value to its corresponding wrapper
object and unboxing conversions do the opposite. You may explicitly specify a boxing or
unboxing conversion with a cast, but this is unnecessary since these conversions are
automatically performed when you assign a value to a variable or pass a value to a method.
Furthermore, unboxing conversions are also automatic if you use a wrapper object when
a Java operator or statement expects a primitive value. Because Java 5.0 performs boxing
and unboxing automatically, this new language feature is often known as autoboxing.

Here are some examples of automatic boxing and unboxing conversions:
Integer i = 0; // int literal 0 is boxed into an Integer object
Number n = 0.0f; // float literal is boxed into Float and widened to Number
Integer i = 1; // this is a boxing conversion
int j = i; // i is unboxed here
i++; // i is unboxed, incremented, and then boxed up again
Integer k = i+2; // i is unboxed and the sum is boxed up again
i = null;
j = i; // unboxing here throws a NullPointerException

Automatic boxing and unboxing conversions make it much simple to use primitive values
with collection classes. The list-of-numbers code earlier in this section can be translated
as follows in Java 5.0. Note that the translation also uses generics, another new feature of
Java 5.0 that is covered in Chapter 4.

List<Integer> numbers = new ArrayList<Integer>(); // Create a List of Integer
numbers.add(-1); // Box int to Integer
int i = numbers.get(0); // Unbox Integer to int

2.10. Packages and the Java Namespace
A package is a named collection of classes, interfaces, and other reference types. Packages
serve to group related classes and define a namespace for the classes they contain.

Chapter 2. Java Syntax from the Ground Up Page 82 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

The core classes of the Java platform are in packages whose names begin with java. For
example, the most fundamental classes of the language are in the package java.lang.
Various utility classes are in java.util. Classes for input and output are in java.io,
and classes for networking are in java.net. Some of these packages contain subpackages,
such as java.lang.reflect and java.util.regex. Extensions to the Java platform
that have been standardized by Sun typically have package names that begin with
javax. Some of these extensions, such as javax.swing and its myriad subpackages,
were later adopted into the core platform itself. Finally, the Java platform also includes
several "endorsed standards," which have packages named after the standards body that
created them, such as org.w3c and org.omg.

Every class has both a simple name, which is the name given to it in its definition, and a
fully qualified name, which includes the name of the package of which it is a part. The
String class, for example, is part of the java.lang package, so its fully qualified name
is java.lang.String.

This section explains how to place your own classes and interfaces into a package and how
to choose a package name that won't conflict with anyone else's package name. Next, it
explains how to selectively import type names into the namespace so that you don't have
to type the package name of every class or interface you use. Finally, the section explains
a feature that is new in Java 5.0: the ability to import static members of types into the
namespace so that you don't need to prefix these with a package name or a class name.

2.10.1. Package Declaration
To specify the package a class is to be part of, you use a package declaration. The
package keyword, if it appears, must be the first token of Java code (i.e., the first thing
other than comments and space) in the Java file. The keyword should be followed by the
name of the desired package and a semicolon. Consider a Java file that begins with this
directive:

package com.davidflanagan.examples;

All classes defined by this file are part of the package
com.davidflanagan.examples.

If no package directive appears in a Java file, all classes defined in that file are part of an
unnamed default package. In this case, the qualified and unqualified names of a class are
the same. The possibility of naming conflicts means that you should use this default
package only for very simple code or early on in the development process of a larger project.

Chapter 2. Java Syntax from the Ground Up Page 83 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2.10.2. Globally Unique Package Names
One of the important functions of packages is to partition the Java namespace and prevent
name collisions between classes. It is only their package names that keep the
java.util.List and java.awt.List classes distinct, for example. In order for this
to work, however, package names must themselves be distinct. As the developer of Java,
Sun controls all package names that begin with java , javax, and sun.

For the rest of us, Sun proposes a package-naming scheme, which, if followed correctly,
guarantees globally unique package names. The scheme is to use your Internet domain
name, with its elements reversed, as the prefix for all your package names. My web site is
at http://davidflanagan.com, so all my Java packages begin with com.davidflanagan.
It is up to me to decide how to partition the namespace below com.davidflanagan, but
since I own that domain name, no other person or organization who is playing by the rules
can define a package with the same name as any of mine.

Note that these package-naming rules apply primarily to API developers. If other
programmers will be using classes that you develop along with unknown other classes, it
is important that your package name be globally unique. On the other hand, if you are
developing a Java application and will not be releasing any of the classes for reuse by
others, you know the complete set of classes that your application will be deployed with
and do not have to worry about unforeseen naming conflicts. In this case, you can choose
a package naming scheme for your own convenience rather than for global uniqueness.
One common approach is to use the application name as the main package name (it may
have subpackages beneath it).

2.10.3. Importing Types
When referring to a class or interface in your Java code, you must, by default, use the fully
qualified name of the type, including the package name. If you're writing code to
manipulate a file and need to use the File class of the java.io package, you must type
java.io.File. This rule has three exceptions:

• Types from the package java.lang are so important and so commonly used that
they can always be referred to by their simple names.

• The code in a type p.T may refer to other types defined in the package p by their
simple names.

• Types that have been imported into the namespace with an import declaration may
be referred to by their simple names.

The first two exceptions are known as "automatic imports." The types from java.lang
and the current package are "imported" into the namespace so that they can be used
without their package name. Typing the package name of commonly used types that are

Chapter 2. Java Syntax from the Ground Up Page 84 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://davidflanagan.com

not in java.lang or the current package quickly becomes tedious, and so it is also possible
to explicitly import types from other packages into the namespace. This is done with the
import declaration.

import declarations must appear at the start of a Java file, immediately after the
package declaration, if there is one, and before any type definitions. You may use any
number of import declarations in a file. An import declaration applies to all type
definitions in the file (but not to any import declarations that follow it).

The import declaration has two forms. To import a single type into the namespace, follow
the import keyword with the name of the type and a semicolon:

import java.io.File; // Now we can type File instead of java.io.File

This is known as the "single type import" declaration.

The other form of import is the "on-demand type import." In this form, you specify the
name of a package followed the characters .* to indicate that any type from that package
may be used without its package name. Thus, if you want to use several other classes from
the java.io package in addition to the File class, you can simply import the entire
package:

import java.io.*; // Now we can use simple names for all classes in java.io

This on-demand import syntax does not apply to subpackages. If I import the
java.util package, I must still refer to the java.util.zip.ZipInputStream class
by its fully qualified name.

Using an on-demand type import declaration is not the same as explicitly writing out a
single type import declaration for every type in the package. It is more like an explicit single
type import for every type in the package that you actually use in your code. This is the
reason it's called "on demand"; types are imported as you use them.

2.10.3.1. Naming conflicts and shadowing
import declarations are invaluable to Java programming. They do expose us to the
possibility of naming conflicts, however. Consider the packages java.util and
java.awt. Both contain types named List. java.util.List is an important and
commonly used interface. The java.awt package contains a number of important types
that are commonly used in client-side applications, but java.awt.List has been
superseded and is not one of these important types. It is illegal to import both
java.util.List and java.awt.List in the same Java file. The following single type
import declarations produce a compilation error:

Chapter 2. Java Syntax from the Ground Up Page 85 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

import java.util.List;
import java.awt.List;

Using on-demand type imports for the two packages is legal:
import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.

Difficulty arises, however, if you actually try to use the type List. This type can be imported
"on demand" from either package, and any attempt to use List as an unqualified type
name produces a compilation error. The workaround, in this case, is to explicitly specify
the package name you want.

Because java.util.List is much more commonly used than java.awt.List, it is
useful to combine the two on-demand type import declarations with a single-type import
declaration that serves to disambiguate what we mean when we say List:

import java.util.*; // For collections and other utilities.
import java.awt.*; // For fonts, colors, and graphics.
import java.util.List; // To disambiguate from java.awt.List

With these import declarations in place, we can use List to mean the
java.util.List interface. If we actually need to use the java.awt.List class, we can
still do so as long as we include its package name. There are no other naming conflicts
between java.util and java.awt, and their types will be imported "on demand" when
we use them without a package name.

2.10.4. Importing Static Members
In Java 5.0 and later, you can import the static members of types as well as types themselves
using the keywords import static. (Static members are explained in Chapter 3. If you
are not already familiar with them, you may want to come back to this section later.) Like
type import declarations, these static import declarations come in two forms: single static
member import and on-demand static member import. Suppose, for example, that you
are writing a text-based program that sends a lot of output to System.out. In this case,
you might use this single static member import to save yourself typing:

import static java.lang.System.out;

With this import in place, you can then use out.print() instead of
System.out.print(). Or suppose you are writing a program that uses many of the
the trigonometric and other functions of the Math class. In a program that is clearly focused
on numerical methods like this, having to repeatedly type the class name "Math" does not
add clarity to your code; it just gets in the way. In this case, an on-demand static member
import may be appropriate:

Chapter 2. Java Syntax from the Ground Up Page 86 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

import static java.lang.Math.*

With this import declaration, you are free to write concise expressions like sqrt(abs(sin
(x))) without having to prefix the name of each static method with the class name
Math.

Another important use of import static declarations is to import the names of
constants into your code. This works particularly well with enumerated types (see Chapter
4). Suppose, for example that you want to use the values of this enumerated type in code
you are writing:

package climate.temperate;
enum Seasons { WINTER, SPRING, SUMMER, AUTUMN };

You could import the type climate.temperate.Seasons and then prefix the constants
with the type name: Seasons.SPRING. For more concise code, you could import the
enumerated values themselves:

import static climate.temperate.Seasons.*;

Using static member import declarations for constants is generally a better technique than
implementing an interface that defines the constants.

2.10.4.1. Static member imports and overloaded methods
A static import declaration imports a name, not any one specific member with that name.
Since Java allows method overloading and allows a type to have fields and methods with
the same name, a single static member import declaration may actually import more than
one member. Consider this code:

import static java.util.Arrays.sort;

This declaration imports the name "sort" into the namespace, not any one of the 19 sort
() methods defined by java.util.Arrays. If you use the imported name sort to
invoke a method, the compiler will look at the types of the method arguments to determine
which method you mean.

It is even legal to import static methods with the same name from two or more different
types as long as the methods all have different signatures. Here is one natural example:

import static java.util.Arrays.sort;
import static java.util.Collections.sort;

You might expect that this code would cause a syntax error. In fact, it does not because the
sort() methods defined by the Collections class have different signatures than all
of the sort() methods defined by the Arrays class. When you use the name "sort" in

Chapter 2. Java Syntax from the Ground Up Page 87 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4
http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

your code, the compiler looks at the types of the arguments to determine which of the 21
possible imported methods you mean.

2.11. Java File Structure
This chapter has taken us from the smallest to the largest elements of Java syntax, from
individual characters and tokens to operators, expressions, statements, and methods, and
on up to classes and packages. From a practical standpoint, the unit of Java program
structure you will be dealing with most often is the Java file. A Java file is the smallest unit
of Java code that can be compiled by the Java compiler. A Java file consists of:

• An optional package directive
• Zero or more import or import static directives
• One or more type definitions

These elements can be interspersed with comments, of course, but they must appear in
this order. This is all there is to a Java file. All Java statements (except the package and
import directives, which are not true statements) must appear within methods, and all
methods must appear within a type definition.

Java files have a couple of other important restrictions. First, each file can contain at most
one class that is declared public. A public class is one that is designed for use by other
classes in other packages. This restriction on public classes only applies to top-level classes;
a class can contain any number of nested or inner classes that are declared public. We'll
see more about the public modifier and nested classes in Chapter 3.

The second restriction concerns the filename of a Java file. If a Java file contains a
public class, the name of the file must be the same as the name of the class, with the
extension .java appended. Thus, if Point is defined as a public class, its source code
must appear in a file named Point.java. Regardless of whether your classes are public
or not, it is good programming practice to define only one per file and to give the file the
same name as the class.

When a Java file is compiled, each of the classes it defines is compiled into a separate
class file that contains Java byte codes to be interpreted by the Java Virtual Machine. A
class file has the same name as the class it defines, with the extension .class appended.
Thus, if the file Point.java defines a class named Point, a Java compiler compiles it to a
file named Point.class. On most systems, class files are stored in directories that
correspond to their package names. Thus, the class
com.davidflanagan.examples.Point is defined by the class file com/
davidflanagan/examples/Point.class.

Chapter 2. Java Syntax from the Ground Up Page 88 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

The Java interpreter knows where the class files for the standard system classes are located
and can load them as needed. When the interpreter runs a program that wants to use a
class named com.davidflanagan.examples.Point, it knows that the code for that
class is located in a directory named com/davidflanagan/examples/ and, by default, it
"looks" in the current directory for a subdirectory of that name. In order to tell the
interpreter to look in locations other than the current directory, you must use the -
classpath option when invoking the interpreter or set the CLASSPATH environment
variable. For details, see the documentation for the Java interpreter, java, in Chapter 8.

2.12. Defining and Running Java Programs
A Java program consists of a set of interacting class definitions. But not every Java class
or Java file defines a program. To create a program, you must define a class that has a
special method with the following signature:

public static void main(String[] args)

This main() method is the main entry point for your program. It is where the Java
interpreter starts running. This method is passed an array of strings and returns no value.
When main() returns, the Java interpreter exits (unless main() has created separate
threads, in which case the interpreter waits for all those threads to exit).

To run a Java program, you run the Java interpreter, java, specifying the fully qualified
name of the class that contains the main() method. Note that you specify the name of
the class, not the name of the class file that contains the class. Any additional arguments
you specify on the command line are passed to the main() method as its String[]
parameter. You may also need to specify the -classpath option (or -cp) to tell the
interpreter where to look for the classes needed by the program. Consider the following
command:

% java -classpath /usr/local/Jude com.davidflanagan.jude.Jude datafile.jude

java is the command to run the Java interpreter. -classpath /usr/local/Jude tells the
interpreter where to look for .class files. com.davidflanagan.jude.Jude is the name
of the program to run (i.e., the name of the class that defines the main() method). Finally,
datafile.jude is a string that is passed to that main() method as the single element of an
array of String objects.

There is an easier way to run programs. If a program and all its auxiliary classes (except
those that are part of the Java platform) have been properly bundled in a Java archive
(JAR) file, you can run the program simply by specifying the name of the JAR file:

% java -jar /usr/local/Jude/jude.jar datafile.jude

Chapter 2. Java Syntax from the Ground Up Page 89 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

Some operating systems make JAR files automatically executable. On those systems, you
can simply say:

% /usr/local/Jude/jude.jar datafile.jude

See Chapter 8 for details.

2.13. Differences Between C and Java
If you are a C or C++ programmer, you should have found much of the syntax of Java—
particularly at the level of operators and statements—to be familiar. Because Java and C
are so similar in some ways, it is important for C and C++ programmers to understand
where the similarities end. C and Java differ in important ways, as summarized in the
following list:

No preprocessor

Java does not include a preprocessor and does not define any analogs of the
#define, #include, and #ifdef directives. Constant definitions are replaced with
static final fields in Java. (See the java.lang.Math.PI field for an example.)
Macro definitions are not available in Java, but advanced compiler technology and
inlining has made them less useful. Java does not require an #include directive
because Java has no header files. Java class files contain both the class API and the
class implementation, and the compiler reads API information from class files as
necessary. Java lacks any form of conditional compilation, but its cross-platform
portability means that this feature is rarely needed.

No global variables

Java defines a very clean namespace. Packages contain classes, classes contain fields
and methods, and methods contain local variables. But Java has no global variables,
and thus there is no possibility of namespace collisions among those variables.

Well-defined primitive type sizes

All the primitive types in Java have well-defined sizes. In C, the size of short, int,
and long types is platform-dependent, which hampers portability.

No pointers

Java classes and arrays are reference types, and references to objects and arrays are
akin to pointers in C. Unlike C pointers, however, references in Java are entirely

Chapter 2. Java Syntax from the Ground Up Page 90 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

opaque. There is no way to convert a reference to a primitive type, and a reference
cannot be incremented or decremented. There is no address-of operator like &,
dereference operator like * or ->, or sizeof operator. Pointers are a notorious source
of bugs. Eliminating them simplifies the language and makes Java programs more
robust and secure.

Garbage collection

The Java Virtual Machine performs garbage collection so that Java programmers do
not have to explicitly manage the memory used by all objects and arrays. This feature
eliminates another entire category of common bugs and all but eliminates memory
leaks from Java programs.

No goto statement

Java doesn't support a goto statement. Use of goto except in certain well-defined
circumstances is regarded as poor programming practice. Java adds exception
handling and labeled break and continue statements to the flow-control
statements offered by C. These are a good substitute for goto.

Variable declarations anywhere

C requires local variable declarations to be made at the beginning of a method or block,
while Java allows them anywhere in a method or block. Many programmers prefer to
keep all their variable declarations grouped together at the top of a method, however.

Forward references

The Java compiler is smarter than the C compiler in that it allows methods to be
invoked before they are defined. This eliminates the need to declare functions in a
header file before defining them in a program file, as is done in C.

Method overloading

Java programs can define multiple methods with the same name, as long as the
methods have different parameter lists.

No struct and union types

Java doesn't support C struct and union types. A Java class can be thought of as
an enhanced struct, however.

Chapter 2. Java Syntax from the Ground Up Page 91 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

No bitfields

Java doesn't support the (infrequently used) ability of C to specify the number of
individual bits occupied by fields of a struct.

No typedef

Java doesn't support the typedef keyword used in C to define aliases for type names.
Java's lack of pointers makes its type-naming scheme simpler and more consistent
than C's, however, so many of the common uses of typedef are not really necessary
in Java.

No method pointers

C allows you to store the address of a function in a variable and pass this function
pointer to other functions. You cannot do this with Java methods, but you can often
achieve similar results by passing an object that implements a particular interface.
Also, a Java method can be represented and invoked through a
java.lang.reflect.Method object.

Chapter 2. Java Syntax from the Ground Up Page 92 Return to Table of Contents

Chapter 2. Java Syntax from the Ground Up
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Java Syntax from the Ground Up
	Java Programs from the Top Down
	Lexical Structure
	Primitive Data Types
	Expressions and Operators
	Statements
	Methods
	Classes and Objects Introduced
	Arrays
	Reference Types
	Packages and the Java Namespace
	Java File Structure
	Defining and Running Java Programs
	Differences Between C and Java

