
Table of Contents

Introduction.. 1
What Is Java?... 1
Key Benefits of Java.. 5
An Example Program.. 7

Chapter 1. Introduction

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 1. Introduction
Welcome to Java. This chapter begins by explaining what Java is and describing some of
the features that distinguish it from other programming languages. Next, it outlines the
structure of this book, with special emphasis on what is new in Java 5.0. Finally, as a quick
tutorial introduction to the language, it walks you through a simple Java program you can
type, compile, and run.

1.1. What Is Java?
In discussing Java, it is important to distinguish between the Java programming language,
the Java Virtual Machine, and the Java platform. The Java programming language is the
language in which Java applications, applets, servlets, and components are written. When
a Java program is compiled, it is converted to byte codes that are the portable machine
language of a CPU architecture known as the Java Virtual Machine (also called the Java
VM or JVM). The JVM can be implemented directly in hardware, but it is usually
implemented in the form of a software program that interprets and executes byte codes.

The Java platform is distinct from both the Java language and Java VM. The Java platform
is the predefined set of Java classes that exist on every Java installation; these classes are
available for use by all Java programs. The Java platform is also sometimes referred to as
the Java runtime environment or the core Java APIs (application programming
interfaces). The Java platform can be extended with optional packages (formerly called
standard extensions). These APIs exist in some Java installations but are not guaranteed
to exist in all installations.

1.1.1. The Java Programming Language
The Java programming language is a state-of-the-art, object-oriented language that has a
syntax similar to that of C. The language designers strove to make the Java language
powerful, but, at the same time, they tried to avoid the overly complex features that have
bogged down other object-oriented languages like C++. By keeping the language simple,
the designers also made it easier for programmers to write robust, bug-free code. As a
result of its elegant design and next-generation features, the Java language has proved
popular with programmers, who typically find it a pleasure to work with Java after
struggling with more difficult, less powerful languages.

Java 5.0, the latest version of the Java language,[1] includes a number of new language
features, most notably generic types, which increase both the complexity and the power

Chapter 1. Introduction Page 1 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

of the language. Most experienced Java programmers have welcomed the new features,
despite the added complexity they bring.

[1] Java 5.0 represents a significant change in version numbering for Sun. The previous version of Java is Java 1.4 so you may sometimes hear Java 5.0 informally
referred to as Java 1.5.

1.1.2. The Java Virtual Machine
The Java Virtual Machine, or Java interpreter, is the crucial piece of every Java installation.
By design, Java programs are portable, but they are only portable to platforms to which a
Java interpreter has been ported. Sun ships VM implementations for its own Solaris
operating system and for Microsoft Windows and Linux platforms. Many other vendors,
including Apple and various commercial Unix vendors, provide Java interpreters for their
platforms. The Java VM is not only for desktop systems, however. It has been ported to
set-top boxes and handheld devices that run Windows CE and PalmOS.

Although interpreters are not typically considered high-performance systems, Java VM
performance has improved dramatically since the first versions of the language. The latest
releases of Java run remarkably fast. Of particular note is a VM technology called just-in-
time (JIT) compilation whereby Java byte codes are converted on the fly into native
platform machine language, boosting execution speed for code that is run repeatedly.

1.1.3. The Java Platform
The Java platform is just as important as the Java programming language and the Java
Virtual Machine. All programs written in the Java language rely on the set of predefined
classes[2] that comprise the Java platform. Java classes are organized into related groups
known as packages. The Java platform defines packages for functionality such as input/
output, networking, graphics, user-interface creation, security, and much more.

[2] A class is a module of Java code that defines a data structure and a set of methods (also called procedures, functions, or subroutines) that operate on that data.

It is important to understand what is meant by the term platform. To a computer
programmer, a platform is defined by the APIs he can rely on when writing programs.
These APIs are usually defined by the operating system of the target computer. Thus, a
programmer writing a program to run under Microsoft Windows must use a different set
of APIs than a programmer writing the same program for a Unix-based system. In this
respect, Windows and Unix are distinct platforms.

Java is not an operating system. Nevertheless, the Java platform provides APIs with a
comparable breadth and depth to those defined by an operating system. With the Java
platform, you can write applications in Java without sacrificing the advanced features
available to programmers writing native applications targeted at a particular underlying
operating system. An application written on the Java platform runs on any operating
system that supports the Java platform. This means you do not have to create distinct

Chapter 1. Introduction Page 2 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Windows, Macintosh, and Unix versions of your programs, for example. A single Java
program runs on all these operating systems, which explains why "Write once, run
anywhere" is Sun's motto for Java.

The Java platform is not an operating system, but for programmers, it is an alternative
development target and a very popular one at that. The Java platform reduces
programmers' reliance on the underlying operating system, and, by allowing programs to
run on top of any operating system, it increases end users' freedom to choose an operating
system.

1.1.4. Versions of Java
As of this writing, there have been six major versions of Java. They are:

Java 1.0

This was the first public version of Java. It contained 212 classes organized in 8
packages. It was simple and elegant but is now completely outdated.

Java 1.1

This release of Java more than doubled the size of the Java platform to 504 classes in
23 packages. It introduced nested types (or "inner classes"), an important change to
the Java language itself, and included significant performance improvements in the
Java VM. This version is outdated.

Java 1.2

This was a very significant release of Java; it tripled the size of the Java platform to
1,520 classes in 59 packages. Important additions included the Collections API for
working with sets, lists, and maps of objects and the Swing API for creating graphical
user interfaces. Because of the many new features included in the 1.2 release, the
platform was rebranded as "the Java 2 Platform." The term "Java 2" was simply a
trademark, however, and not an actual version number for the release.

Java 1.3

This was primarily a maintenance release, focused on bug fixes, stability, and
performance improvements (including the high-performance "HotSpot" virtual
machine). Additions to the platform included the Java Naming and Directory
Interface (JNDI) and the Java Sound APIs, which were previously available as
extensions to the platform. The most interesting classes in this release were probably

Chapter 1. Introduction Page 3 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

java.util.Timer and java.lang.reflect.Proxy. In total, Java 1.3 contains
1,842 classes in 76 packages.

Java 1.4

This was another big release, adding important new functionality and increasing the
size of the platform by 62% to 2,991 classes and interfaces in 135 packages. New
features included a high-performance, low-level I/O API; support for pattern
matching with regular expressions; a logging API; a user preferences API; new
Collections classes; an XML-based persistence mechanism for JavaBeans; support for
XML parsing using both the DOM and SAX APIs; user authentication with the Java
Authentication and Authorization Service (JAAS) API; support for secure network
connections using the SSL protocol; support for cryptography; a new API for reading
and writing image files; an API for network printing; a handful of new GUI
components in the Swing API; and a simplified drag-and-drop architecture for Swing.
In addition to these platform changes, the 1.4 release introduced an assert statement
to the Java language.

Java 5.0

The most recent release of Java introduces a number of changes to the core language
itself including generic types, enumerated types, annotations, varargs methods,
autoboxing, and a new for/in statement. Because of the major language changes,
the version number was incremented. This release would logically be known as "Java
2.0" if Sun had not already used the term "Java 2" for marketing Java 1.2.

In addition to the language changes, Java 5.0 includes a number of additions to the
Java platform as well. This release includes 3562 classes and interfaces in 166
packages. Notable additions include utilities for concurrent programming, a remote
management framework, and classes for the remote management and
instrumentation of the Java VM itself.

See the Preface for a list of changes in this edition of the book, including pointers to
coverage of the new language and platform features.

To write programs in Java, you must obtain the Java Development Kit (JDK). Sun releases
a new version of the JDK for each new version of Java. Don't confuse the JDK with the
Java Runtime Environment (JRE). The JRE contains everything you need to run Java
programs, but it does not contain the tools you need to develop Java programs (primarily
the compiler).

In addition to the Standard Edition of Java used by most Java developers and documented
in this book, Sun has also released the Java 2 Platform, Enterprise Edition (or J2EE) for

Chapter 1. Introduction Page 4 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

enterprise developers and the Java 2 Platform, Micro Edition (J2ME) for consumer
electronic systems, such as handheld PDAs and cellular telephones. See Java Enterprise
in a Nutshell and Java Micro Edition in a Nutshell (both by O'Reilly) for more information
on these other editions.

1.2. Key Benefits of Java
Why use Java at all? Is it worth learning a new language and a new platform? This section
explores some of the key benefits of Java.

1.2.1. Write Once, Run Anywhere
Sun identifies "Write once, run anywhere" as the core value proposition of the Java
platform. Translated from business jargon, this means that the most important promise
of Java technology is that you have to write your application only once—for the Java
platform—and then you'll be able to run it anywhere.

Anywhere, that is, that supports the Java platform. Fortunately, Java support is becoming
ubiquitous. It is integrated into practically all major operating systems. It is built into the
popular web browsers, which places it on virtually every Internet-connected PC in the
world. It is even being built into consumer electronic devices such as television set-top
boxes, PDAs, and cell phones.

1.2.2. Security
Another key benefit of Java is its security features. Both the language and the platform
were designed from the ground up with security in mind. The Java platform allows users
to download untrusted code over a network and run it in a secure environment in which
it cannot do any harm: untrusted code cannot infect the host system with a virus, cannot
read or write files from the hard drive, and so forth. This capability alone makes the Java
platform unique.

Java 1.2 took the security model a step further. It made security levels and restrictions
highly configurable and extended them beyond applets. As of Java 1.2, any Java code,
whether it is an applet, a servlet, a JavaBeans component, or a complete Java application,
can be run with restricted permissions that prevent it from doing harm to the host system.

The security features of the Java language and platform have been subjected to intense
scrutiny by security experts around the world. In the earlier days of Java, security-related
bugs, some of them potentially serious, were found and promptly fixed. Because of the
strong security promises Java makes, it is big news when a new security bug is found. No
other mainstream platform can make security guarantees nearly as strong as those Java
makes. No one can say that Java security holes will not be found in the future, but if Java's

Chapter 1. Introduction Page 5 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

security is not yet perfect, it has been proven strong enough for practical day-to-day use
and is certainly better than any of the alternatives.

1.2.3. Network-Centric Programming
Sun's corporate motto has always been "The network is the computer." The designers of
the Java platform believed in the importance of networking and designed the Java platform
to be network-centric. From a programmer's point of view, Java makes it easy to work with
resources across a network and to create network-based applications using client/server
or multitier architectures.

1.2.4. Dynamic, Extensible Programs
Java is both dynamic and extensible. Java code is organized in modular object-oriented
units called classes. Classes are stored in separate files and are loaded into the Java
interpreter only when needed. This means that an application can decide as it is running
what classes it needs and can load them when it needs them. It also means that a program
can dynamically extend itself by loading the classes it needs to expand its functionality.

The network-centric design of the Java platform means that a Java application can
dynamically extend itself by loading new classes over a network. An application that takes
advantage of these features ceases to be a monolithic block of code. Instead, it becomes an
interacting collection of independent software components. Thus, Java enables a powerful
new metaphor of application design and development.

1.2.5. Internationalization
The Java language and the Java platform were designed from the start with the rest of the
world in mind. When it was created, Java was the only commonly used programming
language that had internationalization features at its core rather than tacked on as an
afterthought. While most programming languages use 8-bit characters that represent only
the alphabets of English and Western European languages, Java uses 16-bit Unicode
characters that represent the phonetic alphabets and ideographic character sets of the
entire world. Java's internationalization features are not restricted to just low-level
character representation, however. The features permeate the Java platform, making it
easier to write internationalized programs with Java than it is with any other environment.

1.2.6. Performance
As described earlier, Java programs are compiled to a portable intermediate form known
as byte codes, rather than to native machine-language instructions. The Java Virtual
Machine runs a Java program by interpreting these portable byte-code instructions. This
architecture means that Java programs are faster than programs or scripts written in
purely interpreted languages, but Java programs are typically slower than C and C++

Chapter 1. Introduction Page 6 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

programs compiled to native machine language. Keep in mind, however, that although
Java programs are compiled to byte code, not all of the Java platform is implemented with
interpreted byte codes. For efficiency, computationally intensive portions of the Java
platform—such as the string-manipulation methods—are implemented using native
machine code.

Although early releases of Java suffered from performance problems, the speed of the Java
VM has improved dramatically with each new release. The VM has been highly tuned and
optimized in many significant ways. Furthermore, most current implementations include
a just-in-time (JIT) compiler, which converts Java byte codes to native machine
instructions on the fly. Using sophisticated JIT compilers, Java programs can execute at
speeds comparable to the speeds of native C and C++ applications.

Java is a portable, interpreted language; Java programs run almost as fast as native,
nonportable C and C++ programs. Performance used to be an issue that made some
programmers avoid using Java. With the improvements made in Java 1.2, 1.3, 1.4, and 5.0,
performance issues should no longer keep anyone away.

1.2.7. Programmer Efficiency and Time-to-Market
The final, and perhaps most important, reason to use Java is that programmers like it.
Java is an elegant language combined with a powerful and (usually) well-designed set of
APIs. Programmers enjoy programming in Java and are often amazed at how quickly they
can get results with it. Because Java is a simple and elegant language with a well-designed,
intuitive set of APIs, programmers write better code with fewer bugs than for other
platforms, thus reducing development time.

1.3. An Example Program
Example 1-1 shows a Java program to compute factorials.[3] Note that the numbers at the
beginning of each line are not part of the program; they are there for ease of reference
when we dissect the program line-by-line.

[3] The factorial of an integer is the product of the number and all positive integers less than the number. So, for example, the factorial of 4, which is also written 4!, is
4 times 3 times 2 times 1, or 24. By definition, 0! is 1.

Chapter 1. Introduction Page 7 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 1-1. Factorial.java: a program to compute factorials

 1 /**
 2 * This program computes the factorial of a number
 3 */
 4 public class Factorial { // Define a class
 5 public static void main(String[] args) { // The program starts here
 6 int input = Integer.parseInt(args[0]); // Get the user's input
 7 double result = factorial(input); // Compute the factorial
 8 System.out.println(result); // Print out the result
 9 } // The main() method ends here
10
11 public static double factorial(int x) { // This method computes x!
12 if (x < 0) // Check for bad input
13 return 0.0; // If bad, return 0
14 double fact = 1.0; // Begin with an initial value
15 while(x > 1) { // Loop until x equals 1
16 fact = fact * x; // Multiply by x each time
17 x = x - 1; // And then decrement x
18 } // Jump back to start of loop
19 return fact; // Return the result
20 } // factorial() ends here
21 } // The class ends here

1.3.1. Compiling and Running the Program
Before we look at how the program works, we must first discuss how to run it. In order to
compile and run the program, you need a Java development kit (JDK) of some sort. Sun
Microsystems created the Java language and ships a free JDK for its Solaris operating
system and also for Linux and Microsoft Windows platforms.[4] At the time of this writing,
the current version of Sun's JDK is available for download from http://java.sun.com. Be
sure to get the JDK and not the Java Runtime Environment. The JRE enables you to run
existing Java programs, but not to write and compile your own.

[4] Other companies, such as Apple, have licensed and ported the JDK to their operating systems. In Apple's case, this arrangement leads to a delay in the latest JDK
being available on that platform.

The Sun JDK is not the only Java programming environment you can use. gcj, for example,
is a Java compiler released under the GNU general public license. A number of companies
sell Java IDEs (integrated development environments), and high-quality open-source
IDEs are also available. This book assumes that you are using Sun's JDK and its
accompanying command-line tools. If you are using a product from some other vendor,
be sure to read that vendor's documentation to learn how to compile and run a simple
program, like that shown in Example 1-1.

Once you have a Java programming environment installed, the first step towards running
our program is to type it in. Using your favorite text editor, enter the program as it is shown
in Example 1-1.[5] Omit the line numbers, which are just for reference. Note that Java is a
case-sensitive language, so you must type lowercase letters in lowercase and uppercase
letters in uppercase. You'll notice that many of the lines of this program end with
semicolons. It is a common mistake to forget these characters, but the program won't work

Chapter 1. Introduction Page 8 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com

without them, so be careful! You can omit everything from // to the end of a line: those
are comments that are there for your benefit and are ignored by Java.

[5] I recommend that you type this example in by hand, to get a feel for the language. If you really don't want to, however, you can download this, and all examples in
the book, from http://www.oreilly.com/catalog/javanut5/.

When writing Java programs, you should use a text editor that saves files in plain-text
format, not a word processor that supports fonts and formatting and saves files in a
proprietary format. My favorite text editor on Unix systems is Emacs. If you use a Windows
system, you might use Notepad or WordPad, if you don't have a more specialized
programmer's editor (versions of GNU Emacs, for example, are available for Windows).
If you are using an IDE, it should include an appropriate text editor; read the
documentation that came with the product. When you are done entering the program, save
it in a file named Factorial.java. This is important; the program will not work if you save
it by any other name.

After writing a program like this one, the next step is to compile it. With Sun's JDK, the
Java compiler is known as javac. javac is a command-line tool, so you can only use it from
a terminal window, such as an MS-DOS window on a Windows system or an xterm window
on a Unix system. Compile the program by typing the following command:

C:\> javac Factorial.java

If this command prints any error messages, you probably got something wrong when you
typed in the program. If it does not print any error messages, however, the compilation
has succeeded, and javac creates a file called Factorial.class. This is the compiled version
of the program.

Once you have compiled a Java program, you must still run it. Java programs are not
compiled into native machine language, so they cannot be executed directly by the system.
Instead, they are run by another program known as the Java interpreter. In Sun's JDK,
the interpreter is a command-line program named, appropriately enough, java. To run
the factorial program, type:

C:\> java Factorial 4

java is the command to run the Java interpreter, Factorial is the name of the Java program
we want the interpreter to run, and 4 is the input data—the number we want the interpreter
to compute the factorial of. The program prints a single line of output, telling us that the
factorial of 4 is 24:

C:\> java Factorial 4
24.0

Congratulations! You've just written, compiled, and run your first Java program. Try
running it again to compute the factorials of some other numbers.

Chapter 1. Introduction Page 9 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.oreilly.com/catalog/javanut5/

1.3.2. Analyzing the Program
Now that you have run the factorial program, let's analyze it line by line to see what makes
a Java program tick.

1.3.2.1. Comments
The first three lines of the program are a comment. Java ignores them, but they tell a human
programmer what the program does. A comment begins with the characters /* and ends
with the characters */. Any amount of text, including multiple lines of text, may appear
between these characters. Java also supports another type of comment, which you can see
in lines 4 through 21. If the characters // appear in a Java program, Java ignores those
characters and any other text that appears between those characters and the end of the
line.

1.3.2.2. Defining a class
Line 4 is the first line of Java code. It says that we are defining a class named
Factorial. This explains why the program had to be stored in a file named
Factorial.java. That filename indicates that the file contains Java source code for a class
named Factorial. The word public is a modifier; it says that the class is publicly
available and that anyone may use it. The open curly-brace character ({) marks the
beginning of the body of the class, which extends all the way to line 21, where we find the
matching close curly-brace character (}). The program contains a number of pairs of curly
braces; the lines are indented to show the nesting within these braces.

A class is the fundamental unit of program structure in Java, so it is not surprising that
the first line of our program declares a class. All Java programs are classes, although some
programs use many classes instead of just one. Java is an object-oriented programming
language, and classes are a fundamental part of the object-oriented paradigm. Each class
defines a unique kind of object. Example 1-1 is not really an object-oriented program,
however, so I'm not going to go into detail about classes and objects here. That is the topic
of Chapter 3. For now, all you need to understand is that a class defines a set of interacting
members. Those members may be fields, methods, or other classes. The Factorial class
contains two members, both of which are methods. They are described in upcoming
sections.

1.3.2.3. Defining a method
Line 5 begins the definition of a method of our Factorial class. A method is a named
chunk of Java code. A Java program can call, or invoke, a method to execute the code in
it. If you have programmed in other languages, you have probably seen methods before,
but they may have been called functions, procedures, or subroutines. The interesting thing
about methods is that they have parameters and return values. When you call a method,

Chapter 1. Introduction Page 10 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

you pass it some data you want it to operate on, and it returns a result to you. A method is
like an algebraic function:

y = f(x)

Here, the mathematical function f performs some computation on the value represented
by x and returns a value, which we represent by y.

To return to line 5, the public and static keywords are modifiers. public means the
method is publicly accessible; anyone can use it. The meaning of the static modifier is
not important here; it is explained in Chapter 3. The void keyword specifies the return
value of the method. In this case, it specifies that this method does not have a return value.

The word main is the name of the method. main is a special name.[6] When you run the
Java interpreter, it reads in the class you specify, then looks for a method named main
().[7] When the interpreter finds this method, it starts running the program at that method.
When the main() method finishes, the program is done, and the Java interpreter exits.
In other words, the main() method is the main entry point into a Java program. It is not
actually sufficient for a method to be named main(), however. The method must be
declared public static void exactly as shown in line 5. In fact, the only part of line 5
you can change is the word args, which you can replace with any word you want. You'll
be using this line in all of your Java programs, so go ahead and commit it to memory now!

[6] All Java programs that are run directly by the Java interpreter must have a main() method. Programs of this sort are often called applications. It is possible to
write programs that are not run directly by the interpreter, but are dynamically loaded into some other already running Java program. Examples are applets, which
are programs run by a web browser, and servlets, which are programs run by a web server. Applets are discussed in Java Foundation Classes in a Nutshell (O'Reilly)
while servlets are discussed in Java Enterprise in a Nutshell (O'Reilly). In this book, we consider only applications.

[7] By convention, when this book refers to a method, it follows the name of the method by a pair of parentheses. As you'll see, parentheses are an important part of
method syntax, and they serve here to keep method names distinct from the names of classes, fields, variables, and so on.

Following the name of the main() method is a list of method parameters in parentheses.
This main() method has only a single parameter. String[] specifies the type of the
parameter, which is an array of strings (i.e., a numbered list of strings of text). args
specifies the name of the parameter. In the algebraic equation f(x), x is simply a way of
referring to an unknown value. args serves the same purpose for the main() method. As
we'll see, the name args is used in the body of the method to refer to the unknown value
that is passed to the method.

As I've just explained, the main() method is a special one that is called by the Java
interpreter when it starts running a Java class (program). When you invoke the Java
interpreter like this:

C:\> java Factorial 4

Chapter 1. Introduction Page 11 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

the string "4" is passed to the main() method as the value of the parameter named
args. More precisely, an array of strings containing only one entry, 4, is passed to main
(). If we invoke the program like this:

C:\> java Factorial 4 3 2 1

then an array of four strings, 4, 3, 2, and 1, is passed to the main() method as the value
of the parameter named args. Our program looks only at the first string in the array, so
the other strings are ignored.

Finally, the last thing on line 5 is an open curly brace. This marks the beginning of the body
of the main() method, which continues until the matching close curly brace on line 9.
Methods are composed of statements, which the Java interpreter executes in sequential
order. In this case, lines 6, 7, and 8 are three statements that compose the body of the
main() method. Each statement ends with a semicolon to separate it from the next. This
is an important part of Java syntax; beginning programmers often forget the semicolons.

1.3.2.4. Declaring a variable and parsing input
The first statement of the main() method, line 6, declares a variable and assigns a value
to it. In any programming language, a variable is simply a symbolic name for a value. We've
already seen that, in this program, the name args refers to the parameter value passed to
the main() method. Method parameters are one type of variable. It is also possible for
methods to declare additional "local" variables. Methods can use local variables to store
and reference the intermediate values they use while performing their computations.

This is exactly what we are doing on line 6. That line begins with the words int input,
which declare a variable named input and specify that the variable has the type int; that
is, it is an integer. Java can work with several different types of values, including integers,
real or floating-point numbers, characters (e.g., letters and digits), and strings of text. Java
is a strongly typed language, which means that all variables must have a type specified
and can refer only to values of that type. Our input variable always refers to an integer,
so it cannot refer to a floating-point number or a string. Method parameters are also typed.
Recall that the args parameter had a type of String[].

Continuing with line 6, the variable declaration int input is followed by the = character.
This is the assignment operator in Java; it sets the value of a variable. When reading Java
code, don't read = as "equals," but instead read it as "is assigned the value." As we'll see in
Chapter 2, there is a different operator for "equals."

The value assigned to our input variable is Integer.parseInt(args[0]). This is a
method invocation. This first statement of the main() method invokes another method
whose name is Integer.parseInt(). As you might guess, this method "parses" an

Chapter 1. Introduction Page 12 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

integer; that is, it converts a string representation of an integer, such as 4, to the integer
itself. The Integer.parseInt() method is not part of the Java language, but it is a core
part of the Java API or Application Programming Interface. Every Java program can use
the powerful set of classes and methods defined by this core API. The second half of this
book is a quick reference that documents that core API.

When you call a method, you pass values (called arguments) that are assigned to the
corresponding parameters defined by the method, and the method returns a value. The
argument passed to Integer.parseInt() is args[0]. Recall that args is the name of
the parameter for main(); it specifies an array (or list) of strings. The elements of an array
are numbered sequentially, and the first one is always numbered 0. We care about only
the first string in the args array, so we use the expression args[0] to refer to that string.
When we invoke the program as shown earlier, line 6 takes the first string specified after
the name of the class, 4, and passes it to the method named Integer.parseInt(). This
method converts the string to the corresponding integer and returns the integer as its
return value. Finally, this returned integer is assigned to the variable named input.

1.3.2.5. Computing the result
The statement on line 7 is a lot like the statement on line 6. It declares a variable and assigns
a value to it. The value assigned to the variable is computed by invoking a method. The
variable is named result, and it has a type of double. double means a double-precision
floating-point number. The variable is assigned a value that is computed by the
factorial() method. The factorial() method, however, is not part of the standard
Java API. Instead, it is defined as part of our program by lines 11 through 19. The argument
passed to factorial() is the value referred to by the input variable that was computed
on line 6. We'll consider the body of the factorial() method shortly, but you can
surmise from its name that this method takes an input value, computes the factorial of
that value, and returns the result.

1.3.2.6. Displaying output
Line 8 simply calls a method named System.out.println(). This commonly used
method is part of the core Java API; it causes the Java interpreter to print out a value. In
this case, the value that it prints is the value referred to by the variable named result.
This is the result of our factorial computation. If the input variable holds the value 4, the
result variable holds the value 24, and this line prints out that value.

The System.out.println() method does not have a return value. There is no variable
declaration or = assignment operator in this statement since there is no value to assign to
anything. Another way to say this is that, like the main() method of line 5,
System.out.println() is declared void.

Chapter 1. Introduction Page 13 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1.3.2.7. The end of a method
Line 9 contains only a single character, }. This marks the end of the method. When the
Java interpreter gets here, it is through executing the main() method, so it stops running.
The end of the main() method is also the end of the variable scope for the input and
result variables declared within main() and for the args parameter of main().
These variable and parameter names have meaning only within the main() method and
cannot be used elsewhere in the program unless other parts of the program declare
different variables or parameters that happen to have the same name.

1.3.2.8. Blank lines
Line 10 is a blank line. You can insert blank lines and spaces anywhere in a program, and
you should use them liberally to make the program readable. A blank line appears here to
separate the main() method from the factorial() method that begins on line 11.
You'll notice that the program also uses whitespace to indent the various lines of code. This
kind of indentation is optional; it emphasizes the structure of the program and greatly
enhances the readability of the code.

1.3.2.9. Another method
Line 11 begins the definition of the factorial() method that was used by the main
() method. Compare this line to line 5 to note its similarities and differences. The
factorial() method has the same public and static modifiers. It takes a single
integer parameter, which we call x. Unlike the main() method, which had no return
value (void), factorial() returns a value of type double. The open curly brace marks
the beginning of the method body, which continues past the nested braces on lines 15 and
18 to line 20, where the matching close curly brace is found. The body of the factorial
() method, like the body of the main() method, is composed of statements, which are
found on lines 12 through 19.

1.3.2.10. Checking for valid input
In the main() method, we saw variable declarations, assignments, and method
invocations. The statement on line 12 is different. It is an if statement, which executes
another statement conditionally. We saw earlier that the Java interpreter executes the
three statements of the main() method one after another. It always executes them in
exactly that way, in exactly that order. An if statement is a flow-control statement; it can
affect the way the interpreter runs a program.

The if keyword is followed by a parenthesized expression and a statement. The Java
interpreter first evaluates the expression. If it is true, the interpreter executes the
statement. If the expression is false, however, the interpreter skips the statement and
goes to the next one. The condition for the if statement on line 12 is x < 0. It checks

Chapter 1. Introduction Page 14 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

whether the value passed to the factorial() method is less than zero. If it is, this
expression is true, and the statement on line 13 is executed. Line 12 does not end with a
semicolon because the statement on line 13 is part of the if statement. Semicolons are
required only at the end of a statement.

Line 13 is a return statement. It says that the return value of the factorial() method
is 0.0. return is also a flow-control statement. When the Java interpreter sees a
return, it stops executing the current method and returns the specified value
immediately. A return statement can stand alone, but in this case, the return statement
is part of the if statement on line 12. The indentation of line 13 helps emphasize this fact.
(Java ignores this indentation, but it is very helpful for humans who read Java code!) Line
13 is executed only if the expression on line 12 is true.

Before we move on, we should pull back a bit and talk about why lines 12 and 13 are
necessary in the first place. It is an error to try to compute a factorial for a negative number,
so these lines make sure that the input value x is valid. If it is not valid, they cause
factorial() to return a consistent invalid result, 0.0.

1.3.2.11. An important variable
Line 14 is another variable declaration; it declares a variable named fact of type
double and assigns it an initial value of 1.0. This variable holds the value of the factorial
as we compute it in the statements that follow. In Java, variables can be declared anywhere;
they are not restricted to the beginning of a method or block of code.

1.3.2.12. Looping and computing the factorial
Line 15 introduces another type of statement: the while loop. Like an if statement, a
while statement consists of a parenthesized expression and a statement. When the Java
interpreter sees a while statement, it evaluates the associated expression. If that
expression is true, the interpreter executes the statement. The interpreter repeats this
process, evaluating the expression and executing the statement if the expression is true,
until the expression evaluates to false. The expression on line 15 is x > 1, so the
while statement loops while the parameter x holds a value that is greater than 1. Another
way to say this is that the loop continues until x holds a value less than or equal to 1. We
can assume from this expression that if the loop is ever going to terminate, the value of x
must somehow be modified by the statement that the loop executes.

The major difference between the if statement on lines 12-13 and the while loop on lines
15-18 is that the statement associated with the while loop is a compound statement. A
compound statement is zero or more statements grouped between curly braces. The
while keyword on line 15 is followed by an expression in parentheses and then by an open

Chapter 1. Introduction Page 15 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

curly brace. This means that the body of the loop consists of all statements between that
opening brace and the closing brace on line 18. Earlier in the chapter, I said that all Java
statements end with semicolons. This rule does not apply to compound statements,
however, as you can see by the lack of a semicolon at the end of line 18. The statements
inside the compound statement (lines 16 and 17) do end with semicolons, of course.

The body of the while loop consists of the statements on line 16 and 17. Line 16 multiplies
the value of fact by the value of x and stores the result back into fact. Line 17 is similar.
It subtracts 1 from the value of x and stores the result back into x. The * character on line
16 is important: it is the multiplication operator. And, as you can probably guess, the -
on line 17 is the subtraction operator. An operator is a key part of Java syntax: it performs
a computation on one or two operands to produce a new value. Operands and operators
combine to form expressions, such as fact * x or x - 1. We've seen other operators
in the program. Line 15, for example, uses the greater-than operator (>) in the expression
x > 1, which compares the value of the variable x to 1. The value of this expression is a
boolean truth value—either true or false, depending on the result of the comparison.

To understand this while loop, it is helpful to think like the Java interpreter. Suppose we
are trying to compute the factorial of 4. Before the loop starts, fact is 1.0, and x is 4.
After the body of the loop has been executed once—after the first iteration—fact is 4.0,
and x is 3. After the second iteration, fact is 12.0, and x is 2. After the third iteration,
fact is 24.0, and x is 1. When the interpreter tests the loop condition after the third
iteration, it finds that x > 1 is no longer true, so it stops running the loop, and the program
resumes at line 19.

1.3.2.13. Returning the result
Line 19 is another return statement, like the one we saw on line 13. This one does not
return a constant value like 0.0, but instead returns the value of the fact variable. If the
value of x passed into the factorial() function is 4, then, as we saw earlier, the value
of fact is 24.0, so this is the value returned. Recall that the factorial() method was
invoked on line 7 of the program. When this return statement is executed, control returns
to line 7, where the return value is assigned to the variable named result.

1.3.3. Exceptions
If you've made it all the way through the line-by-line analysis of Example 1-1, you are well
on your way to understanding the basics of the Java language.[8] It is a simple but nontrivial
program that illustrates many of the features of Java. There is one more important feature
of Java programming I want to introduce, but it is one that does not appear in the program
listing itself. Recall that the program computes the factorial of the number you specify on
the command line. What happens if you run the program without specifying a number?

Chapter 1. Introduction Page 16 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[8] If you didn't understand all the details of this factorial program, don't worry. We'll cover the details of the Java language a lot more thoroughly in subsequent chapters.
However, if you feel like you didn't understand any of the line-by-line analysis, you may also find that the upcoming chapters are over your head. In that case, you
should probably go elsewhere to learn the basics of the Java language and return to this book to solidify your understanding, and, of course, to use as a reference. One
resource you may find useful in learning the language is Sun's online Java tutorial, available at http://java.sun.com/docs/books/tutorial.

C:\> java Factorial
java.lang.ArrayIndexOutOfBoundsException: 0
 at Factorial.main(Factorial.java:6)
C:\>

And what happens if you specify a value that is not a number?
C:\> java Factorial ten
java.lang.NumberFormatException: ten
 at java.lang.Integer.parseInt(Integer.java)
 at java.lang.Integer.parseInt(Integer.java)
 at Factorial.main(Factorial.java:6)
C:\>

In both cases, an error occurs or, in Java terminology, an exception is thrown. When an
exception is thrown, the Java interpreter prints a message that explains what type of
exception it was and where it occurred (both exceptions above occurred on line 6). In the
first case, the exception is thrown because there are no strings in the args list, meaning
we asked for a nonexistent string with args[0]. In the second case, the exception is
thrown because Integer.parseInt() cannot convert the string "ten" to a number.
We'll see more about exceptions in Chapter 2 and learn how to handle them gracefully as
they occur.

Chapter 1. Introduction Page 17 Return to Table of Contents

Chapter 1. Introduction
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/docs/books/tutorial
http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

	Introduction
	What Is Java?
	Key Benefits of Java
	An Example Program

