
Table of Contents

Java Development Tools.. 1
apt.. 1
extcheck... 3
jarsigner... 3
jar... 5
java.. 9
javac... 20
javadoc... 26
javah.. 36
javap.. 38
javaws.. 40
jconsole.. 42
jdb.. 43
jinfo... 50
jmap... 51
jps.. 52
jsadebugd... 53
jstack.. 54
jstat.. 55
jstatd.. 57
keytool... 58
native2ascii.. 63
pack200... 64
policytool... 67
serialver... 69
unpack200... 70

Chapter 8. Java Development Tools

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 8. Java Development Tools
Sun's implementation of Java includes a number of tools for Java developers. Chief among
these are the Java interpreter and the Java compiler, of course, but there are a number of
others as well. This chapter documents most tools shipped with the JDK. Notable
omissions are the RMI and IDL tools that are specific to enterprise programming and
which are documented in Java Enterprise in a Nutshell (O'Reilly).

The tools documented here are part of Sun's development kit; they are implementation
details and not part of the Java specification itself. If you are using a Java development
environment other than Sun's JDK, you should consult your vendor's tool documentation.

Some examples in this chapter use Unix conventions for file and path separators. If
Windows is your development platform, change forward slashes in filenames to backward
slashes, and colons in path specifications to semicolons.

apt Annotation Processing Tool

Synopsis

apt [options] sourcefiles

Description

apt reads and parses the specified sourcefiles. Any annotations it finds are passed to
appropriate annotation processor factory objects, which can use the annotations to
produce auxiliary source or resource files based on annotation content. apt next compiles
sourcefiles and generated files.

Annotation processor classes and factory classes are defined with the
com.sun.mirror.apt API and other subpackages of com.sun.mirror.
Options

apt shares several options with javac. If a command-line argument begins with @, apt
treats it as a file and reads options and source files from that specified file. See javac for
more on this.

-A name=value

Passes the name=value pair as an argument to annotation processors.

Chapter 8. Java Development Tools Page 1 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

-cp path

-classpath path

Sets the classpath. See javac.

-d dir

The directory under which to place class files. See javac.

-factory classname

Explicitly specifies the class name of the annotation processor factory to use.

-factorypath path

A path to search for annotation processor factories instead of searching the classpath.

-help

Prints usage information and exits.

-nocompile

Tells apt not to compile the sourcefiles or any generated files.

-print

Simply parses the specified sourcefiles and prints a synopsis of the types they
define. Does not process annotations or compile any files.

-s dir

Specifies the root directory beneath which generated source files will be stored.

-source version

Specifies what version of the language to accept. See javac.

-version

Prints apt version information.

Chapter 8. Java Development Tools Page 2 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-X

Displays information about nonstandard options.

See also

javac, Chapter 4

extcheck JAR Version Conflict Utility

Synopsis

extcheck [-verbose] jarfile

Description

extcheck checks to see if the extension contained in the specified jarfile (or a newer
version of that extension) has already been installed on the system. It does this by reading
the Specification-Title and Specification-Version manifest attributes from
the specified jarfile and from all of the JAR files found in the system extensions
directory.

extcheck is designed for use in automated installation scripts. Without the -verbose
option, it does not print the results of its check. Instead, it sets its exit code to 0 if the
specified extension does not conflict with any installed extensions and can be safely
installed. It sets its exit code to a nonzero value if an extension with the same name is
already installed and has a specification version number equal to or greater than the
version of the specified file.
Options

-verbose

Lists the installed extensions as they are checked and displays the results of the check.

See also

jar

jarsigner JAR Signing and Verification Tool

Synopsis

jarsigner [options] jarfile signer
jarsigner -verify jarfile

Chapter 8. Java Development Tools Page 3 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-4#javanut5-CHP-4

Description

jarsigner adds a digital signature to the specified jarfile, or, if the -verify option is
specified, it verifies the digital signature or signatures already attached to the JAR file. The
specified signer is a case-insensitive nickname or alias for the entity whose signature is
to be used. The specified signer name is used to look up the private key that generates
the signature.

When you apply your digital signature to a JAR file, you are implicitly vouching for the
contents of the archive. You are offering your personal word that the JAR file contains only
nonmalicious code, files that do not violate copyright laws, and so forth. When you verify
a digitally signed JAR file, you can determine who the signer or signers of the file are and
(if the verification succeeds) that the contents of the JAR file have not been changed,
corrupted, or tampered with since the signature or signatures were applied. Verifying a
digital signature is entirely different from deciding whether or not you trust the person or
organization whose signature you verified.

jarsigner and the related keytool program replace the javakey program of Java 1.1.
Options

jarsigner defines a number of options, many of which specify how a private key is to be
found for the specified signer. Most of these options are unnecessary when using the -
verify option to verify a signed JAR file:

-certs

If this option is specified along with either the -verify or -verbose option, it causes
jarsigner to display details of the public key certificates associated with the signed
JAR file.

-J javaoption

Passes the specified javaoption directly to the Java interpreter.

-keypass password

Specifies the password that encrypts the private key of the specified signer. If this
option is not specified, jarsigner prompts you for the password.

-keystore url

A keystore is a file that contains keys and certificates. This option specifies the
filename or URL of the keystore in which the private and public key certificates of the

Chapter 8. Java Development Tools Page 4 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

specified signer are looked up. The default is the file named .keystore in the user's
home directory (the value of the system property user.home). This is also the default
location of the keystore managed by keytool.

-sigfile basename

Specifies the base names of the .SF and .DSA files added to the META-INF/ directory
of the JAR file. If you leave this option unspecified, the base filename is chosen based
on the signer name.

-signedjar outputfile

Specifies the name for the signed JAR file created by jarsigner. If this option is not
specified, jarsigner overwrites the jarfile specified on the command line.

-storepass password

Specifies the password that verifies the integrity of the keystore (but does not encrypt
the private key). If this option is omitted, jarsigner prompts you for the password.

-storetype type

Specifies the type of keystore specified by the -keystore option. The default is the
system-default keystore type, which on most systems is the Java Keystore type, known
as JKS. If you have the Java Cryptography Extension installed, you may want to use
a JCEKS keystore instead.

-verbose

Displays extra information about the signing or verification process.

-verify

Specifies that jarsigner should verify the specified JAR file rather than sign it.

See also

jar, keytool, javakey

jar Java Archive Tool

Chapter 8. Java Development Tools Page 5 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Synopsis

jar c|t|u|x[f][m][M][0][v] [jar-file] [manifest] [-C directory] [input-files]
jar i [jar-file]

Description

jar is a tool that can create and manipulate Java Archive (JAR) files. A JAR file is a ZIP
file that contains Java class files, auxiliary resource files required by those classes, and
optional meta-information. This meta-information includes a manifest file that lists the
contents of the JAR archive and provides auxiliary information about each file.

The jar command can create JAR files, list the contents of JAR files, and extract files from
a JAR archive. In Java 1.2 and later, it can also add files to an existing archive or update
the manifest file of an archive. In Java 1.3 and later, jar can also add an index entry to a
JAR file.

The syntax of the jar command is reminiscent of the Unix tar (tape archive) command.
Most options to jar are specified as a block of concatenated letters passed as a single
argument rather than as individual command-line arguments. The first letter of the first
argument specifies what action jar is to perform; it is required. Other letters are optional.
The various file arguments depend on which letters are specified.

As in javac, any command-line argument that begins with @ is taken to be the name of a
file that contains options or filenames.
Command options

The first letter of the first option to jar specifies the basic operation jar is to perform. The
available options are:

c

Creates a new JAR archive. A list of input files and/or directories must be specified
as the final arguments to jar. The newly created JAR file has a META-INF/
MANIFEST.MF file as its first entry. This automatically created manifest lists the
contents of the JAR file and contains a message digest for each file.

i

Indexes the contents of this JAR file as well as the contents of all JAR files it refers to
in the Class-Path manifest attribute. The resulting index is stored in the JAR file
as META-INF/INDEX.LIST and can be used by a Java interpreter or applet viewer to
optimize its class and resource lookup algorithm and avoid downloading unnecessary
JAR files. This i option must be followed by the name of the JAR file to be indexed.
No other options are allowed. Java 1.3 and later.

Chapter 8. Java Development Tools Page 6 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

t

Lists the contents of a JAR archive.

u

Updates the contents of a JAR archive. Any files listed on the command line are added
to the archive. When used with the m option, this adds the specified manifest
information to the JAR file. Java 1.2 and later.

x

Extracts the contents of a JAR archive. The files and directories specified on the
command line are extracted and created in the current working directory. If no file or
directory names are specified, all the files and directories in the JAR file are extracted.

Modifier options

Each of the four command specifier letters can be followed by additional letters that
provide further detail about the operation to be performed:

f

Indicates that jar is to operate on a JAR file whose name is specified on the command
line. If this option is not present, jar reads a JAR file from standard input and/or
writes a JAR file to standard output. If the f option is present, the command line must
contain the name of the JAR file to operate on.

m

When jar creates or updates a JAR file, it automatically creates (or updates) a manifest
file named META-INF/MANIFEST.MF in the JAR archive. This default manifest
simply lists the contents of the JAR file. Many JAR files require additional information
to be specified in the manifest; the m option tells the jar command that a manifest
template is specified on the command line. jar reads this manifest file and stores all
the information it contains into the META-INF/MANIFEST.MF file it creates. This
m option should be used only with the c or u commands, not with the t or x commands.

M

Used with the c and u commands to tell jar not to create a default manifest file.

Chapter 8. Java Development Tools Page 7 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

v

Tells jar to produce verbose output.

0

Used with the c and u commands to tell jar to store files in the JAR archive without
compressing them. Note that this option is the digit zero, not the letter O.

Files

The first option to jar consists of an initial command letter and various option letters. This
first option is followed by a list of files:

jar-file

If the first option contains the letter f, that option must be followed by the name of
the JAR file to create or manipulate.

manifest-file

If the first option contains the letter m, that option must be followed by the name of
the file that contains manifest information. If the first option contains both the letters
f and m, the JAR and manifest files should be listed in the same order the f and m
options appear. jar automatically creates a manifest for the JAR file it creates unless
the M option is specified. The manifest-file specified with the m option should
contain additional manifest entries to be placed in the manifest in addition to the
automatically generated entries.

files

The list of one or more files and/or directories to be inserted into or extracted from
the JAR archive.

Additional options

In addition to all the options listed previously, jar also supports the following:

-C dir

Used within the list of files to process; it tells jar to change to the specified dir while
processing the subsequent files and directories. The subsequent file and directory
names are interpreted relative to dir and are inserted into the JAR archive without

Chapter 8. Java Development Tools Page 8 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

dir as a prefix. Any number of -C options can be used; each remains in effect until
the next is encountered. The directory specified by a -C option is interpreted relative
to the current working directory, not the directory specified by the previous -C option.
Java 1.2 and later.

-J javaopt

Passes the option javaopt to the Java interpreter.

Examples

The jar command has a confusing array of options, but, in most cases, its use is quite
simple. To create a simple JAR file that contains all the class files in the current directory
and all files in a subdirectory called images, you can type:

% jar cf my.jar *.class images

To verbosely list the contents of a JAR archive:
% jar tvf your.jar

To extract the manifest file from a JAR file for examination or editing:
% jar xf the.jar META-INF/MANIFEST.MF

To update the manifest of a JAR file:
% jar ufm my.jar manifest.template

See also

jarsigner

java The Java Interpreter

Synopsis

java [interpreter-options] classname [program-arguments]
java [interpreter-options] -jar jarfile [program-arguments]

Description

java is the Java byte-code interpreter; it runs Java programs. The program to be run is the
class specified by classname. This must be a fully qualified name: it must include the
package name of the class but not the .class file extension. For example:

% java david.games.Checkers
% java Test

The specified class must define a main() method with exactly the following signature:

Chapter 8. Java Development Tools Page 9 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public static void main(String[] args)

This method serves as the program entry point: the interpreter begins execution here.

In Java 1.2 and later, a program can be packaged in an executable JAR file. To run a
program packaged in this fashion, use the -jar option to specify the JAR file. The manifest
of an executable JAR file must contain a Main-Class attribute that specifies which class
within the JAR file contains the main() method at which the interpreter is to begin
execution.

Any command-line options that precede the name of the class or JAR file to execute are
options to the Java interpreter itself. Any options that follow the class name or JAR
filename are options to the program; they are ignored by the Java interpreter and passed
as an array of strings to the main() method of the program.

The Java interpreter runs until the main() method exits, and any threads (except for
threads marked as daemon threads) created by the program have also exited.
Interpreter versions

The java program is the basic version of the Java interpreter. In addition to this program,
however, there are several other versions of the Java interpreter. Each of these versions is
similar to java but has a specialized function. This list includes all the interpreter versions,
including those that are no longer in use.

java

This is the basic version of the Java interpreter; it is usually the correct one to use.

javaw

This version of the interpreter is included only on Windows platforms. Use javaw
when you want to run a Java program (from a script, for example) without forcing a
console window to appear.

Client or Server VM

Sun's "HotSpot" virtual machine comes in two versions: one is tuned for use with
short-lived client applications and one is for use with long-running server code. As of
Java 1.4, you can select the server version of the VM with the -server option. You
can specify the client VM (which is the default) with the -client option. In Java 5.0,
the interpreter automatically enters server mode if it detects that it is running on
"server-class" hardware (typically a computer with multiple CPUs).

Chapter 8. Java Development Tools Page 10 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Legacy interpreter versions

oldjava

This version of the interpreter was included in Java 1.2 and Java 1.3 for compatibility
with the Java 1.1 interpreter. It loaded classes using the Java 1.1 class-loading scheme.
Very few Java applications needed to use this version of the interpreter, and it was
removed in Java 1.4.

oldjavaw

In Java 1.2 and 1.3, this version of the interpreter, included only on Windows
platforms, combined the features of oldjava and javaw.

java_g

In Java 1.0 and Java 1.1, java_g was a debugging version of the Java interpreter. It
included a few specialized command-line options. Windows platforms also had a
javaw_g program. java_g is not included in Java 1.2 or later versions.

Classic VM

In Java 1.3, you could use the -classic option to specify that you wanted to use the
"Classic VM" (essentially the same as the Java 1.2 VM) instead of the HotSpot VM
(which uses incremental compilation). This option was removed in Java 1.4.

Just-in-time compiler

In Java 1.2 and Java 1.3 when you specified the -classic option, the Java interpreter
used a just-in-time compiler (if one were available for your platform). A JIT converts
Java byte codes to native machine instructions at runtime and significantly speeds up
the execution of a typical Java program. If you do not want to use the JIT, you can
disable it by setting the JAVA_COMPILER environment variable to "NONE" or the
java.compiler system property to "NONE" using the -D option:

% setenv JAVA_COMPILER NONE // Unix csh syntax
% java -Djava.compiler=NONE MyProgram

If you want to use a different JIT compiler implementation, set the environment
variable or system property to the name of the desired implementation. This
environment variable and property are no longer used as of Java 1.4, which uses the
HotSpot VM, which includes efficient JIT technology.

Chapter 8. Java Development Tools Page 11 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Threading systems

On Solaris and related Unix platforms, you had a choice of the type of threads used
by the Java 1.2 interpreter and the "Classic VM" of Java 1.3. To use native OS threads,
you could specify -native. To use nonnative, or green, threads (the default), you
could specify -green. In Java 1.3, the default "Client VM" used native threads.
Specifying -green or -native in Java 1.3 implicitly specified -classic as well.
These options are no longer supported (or necessary) as of Java 1.4.

Common options

The following options are the most commonly used.

-classpath path

Specifies the directories and JAR files java searches when trying to load a class. In
Java 1.2 and later, this option specifies only the location of application classes. In Java
1.0 and 1.1, and with the oldjava interpreter, this option specified the location of
system classes, extension classes, and application classes.

-cp

A synonym for -classpath. Java 1.2 and later.

-D propertyname= value

Defines propertyname to equal value in the system properties list. Your Java
program can then look up the specified value by its property name. You can specify
any number of -D options. For example:

% java -Dawt.button.color=gray -Dmy.class.pointsize=14 my.class

-fullversion

Prints the full Java version string, including build number, and exits. Compare with
-version.

-help, -?

Prints a usage message and exits. See also -X.

Chapter 8. Java Development Tools Page 12 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-jar jarfile

Runs the specified executable jarfile. The manifest of the specified jarfile must
contain a Main-Class attribute that identifies the class with the main() method at
which program execution is to begin. Java 1.2 and later.

-showversion

Works like the -version option, except that the interpreter continues running after
printing the version information. Java 1.3 and later.

-version

Prints the version of the Java interpreter and exits.

-X

Displays usage information for the nonstandard interpreter options (those beginning
with -X) and exits. See also -help. Java 1.2 and later.

-Xbootclasspath :path

Specifies a search path consisting of directories, ZIP files, and JAR files the java
interpreter should use to look up system classes. Use of this option is very rare. Java
1.2 and later.

-Xbootclasspath/a :path

Appends the specified path to the system classpath. Java 1.3 and later.

-Xbootclasspath/p :path

Prepends the specified path to the system boot classpath. Java 1.3 and later.

Assertion options

The following options specify whether and where assertions are tested. These options were
added in Java 1.4.

-disableassertions[:where]

Disables assertions. It is new in Java 1.4 and can be abbreviated -da. Used alone, it
disables all assertions (except those in the system classes), which is the default. To

Chapter 8. Java Development Tools Page 13 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

disable assertions in a single class, follow the option with a colon and the fully qualified
class name. To disable assertions in an entire package (and all of its subpackages),
follow this option with a colon, the name of the package, and three dots. See also -
enableassertions and -disablesystemassertions.

-da[:where]

Disables assertions. See -disableassertions.

-disablesystemassertions

Disables assertions in all system classes (which is the default). It can be abbreviated
-dsa and takes no options.

-dsa

An abbreviation for -disablesystemassertions.

-enableassertions[:where]

Enables assertions. This option can be abbreviated -ea. Used alone, it enables all
assertions (except in system classes). To enable assertions in a single class, follow the
option with a colon and the full class name. To enable assertions in an entire package
(and its subpackages), follow the option with a colon, the package name, and three
dots. See also -disableassertions and -enablesystemassertions.

-ea[:where]

Enables assertions. An abbreviation for -enableassertions.

-enablesystemassertions

Enables assertions in all system classes. May be abbreviated -esa.

-esa

An abbreviation for -enablesystemassertions.

Performance tuning options

The following options select which version of the VM is to be run and fine-tune its memory
allocation, garbage collection, and incremental compilation. Options beginning with -X
are nonstandard and may change from release to release.

Chapter 8. Java Development Tools Page 14 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-classic

Runs the "Classic VM" instead of the default high-performance "Client VM." Java 1.3
only.

-client

Optimizes the incremental compilation of the HotSpot VM for typical client-side
applications. This option typically defers some compilation to favor quicker
application launch times. Java 1.4 and later. See also the -server option.

-d32

Runs in 32-bit mode. This option is valid in Java 1.4 and later but is currently
implemented only for Solaris platforms.

-d64

Runs in 64-bit mode. This option is valid in Java 1.4 and later but is currently
implemented only for Solaris platforms.

-green

Selects nonnative, or green, threads on operating systems such as Solaris and Linux
that support multiple styles of threading. This is the default in Java 1.2. In Java 1.3,
using this option also selects the -classic option. See also -native. Java 1.2 and
1.3 only.

-native

Selects native threads, instead of the default green threads, on operating systems such
as Solaris that support multiple styles of threading. Using native threads can be
advantageous in some circumstances, such as when running on a multi-CPU
computer. In Java 1.3, the default HotSpot virtual machine uses native threads. Java
1.2 and 1.3 only.

-server

Optimizes the incremental compilation of the VM for server-class applications. In
general, this option results in slower startup time but better subsequent performance.
Java 1.4 and later. In Java 5.0 and later, many VMs automatically select this option if
they are running on "server-class" hardware such as a dual-processor machine. See
also -client.

Chapter 8. Java Development Tools Page 15 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-Xbatch

Tells the HotSpot VM to perform all just-in-time compilation in the foreground,
regardless of the time required for compilation. Without this option, the VM compiles
methods in the background while interpreting them in the foreground. Java 1.3 and
later.

-Xincgc

Uses incremental garbage collection. In this mode, the garbage collector runs
continuously in the background, and a running program is rarely, if ever, subject to
noticeable pauses while garbage collection occurs. Using this option typically results
in a 10% decrease in overall performance, however. Java 1.3 and later.

-Xint

Tells the HotSpot VM to operate in interpreted mode only, without performing any
just-in-time compilation. Java 1.3 and later.

-Xmixed

Tells the HotSpot VM to perform just-in-time compilation on frequently used
methods ("hotspots") and execute other methods in interpreted mode. This is the
default behavior. Contrast with -Xbatch and -Xint. Java 1.3 and later.

-Xms initmem[k|m]

Specifies how much memory is allocated for the heap when the interpreter starts up.
By default, initmem is specified in bytes. You can specify it in kilobytes by appending
the letter k or in megabytes by appending the letter m. The default is 2 MB. For large
or memory-intensive applications (such as the Java compiler), you can improve
runtime performance by starting the interpreter with a larger amount of memory. You
must specify an initial heap size of at least 1 MB. Java 1.2 and later. Prior to Java 1.2,
use -ms.

-Xmx maxmem[k|m]

Specifies the maximum heap size the interpreter uses for dynamically allocated
objects and arrays. maxmem is specified in bytes by default. You can specify maxmem
in kilobytes by appending the letter k and in megabytes by appending the letter m. The
default is 64 MB. You cannot specify a heap size less than 2 MB. Java 1.2 and later.
Prior to Java 1.2, use -mx.

Chapter 8. Java Development Tools Page 16 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-Xnoclassgc

Does not garbage-collect classes. Java 1.2 and later. In Java 1.1, use -noclassgc.

-Xss size[k|m]

Sets the thread stack size in bytes, kilobytes, or megabytes. Java 1.3 and later.

Instrumentation options

The following options support debugging, profiling, and other VM instrumentation.
Options beginning with -X are nonstandard and may change from release to release.

-agentlib :agent[=options]

New in Java 5.0, this option specifies a JVMTI agent, and options for it, to be started
along with the interpeter. JVMTI is the Java Virtual Machine Tool Interface, and it is
slated to supercede the JVMDI and JVMPI (debugging and profiling interfaces) in a
future release. This means that the general -agentlib option will replace tool-
specific options such as -Xdebug and -Xrunhprof. Examples:

% java -agentlib:hprof=help
% java -agentlib:jdwp=help

-agentpath :path-to-agent[=options]

Like -agentlib, but with an explicitly specified path to the agent library. Java 5.0
and later.

-debug

Causes java to start up in a way that allows the jdb debugger to attach itself to the
interpreter session. In Java 1.2 and later, this option has been replaced with -
Xdebug.

-javaagent :jarfile[=options]

Load a Java-language instrumentation agent when the interpreter starts. The
specified jarfile must have a manifest that includes an Agent-Class attribute. This
attribute must name a class that includes the agent's premain() method. Any
options will be passed to this premain() method along with a

Chapter 8. Java Development Tools Page 17 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

java.lang.instrument.Instrumentation object. See
java.lang.instrument for further detail.

-verbose, -verbose:class

Prints a message each time java loads a class. In Java 1.2 and later, you can use -
verbose:class as a synonym.

-verbose:gc

Prints a message when garbage collection occurs. Java 1.2 and later. Prior to Java 1.2,
use -verbosegc.

-verbose:jni

Prints a message when native methods are called. Java 1.2 and later.

-Xcheck:jni

Performs additional validity checks when using Java Native Interface functions. Java
1.2 and later.

-Xdebug

Starts the interpreter in a way that allows a debugger to communicate with it. Java
1.2 and later. Prior to Java 1.2, use -debug. Deprecated in Java 5.0 in favor of the -
agentlib option.

-Xfuture

Strictly checks the format of all class files loaded. Without this option, java performs
the same checks that were performed in Java 1.1. Java 1.2 and later.

-Xloggc :filename

Logs garbage collection events with timestamps to the named file.

-Xprof

Prints profiling output to standard output. Java 1.3 and later. In Java 1.2, or when
using the -classic option, use -Xrunhprof. Prior to Java 1.2, use -prof.

Chapter 8. Java Development Tools Page 18 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-Xrunhprof :suboptions

Turns on CPU, heap, or monitor profiling. suboptions is a comma-separated list of
name=value pairs. Use -Xrunhprof:help for a list of supported options and
values. Java 1.2 and later. Deprecated in Java 5.0 in favor of the -agentlib option.

Advanced options

The Java interpreter also supports quite a few advanced configuration options that begin
with -XX. These options are release and platform-dependent, and Sun's documentation
describes them as "not recommended for casual use." If you want to fine-tune the
threading, memory allocation, garbage collection, signal-handling, or just-in-time
compilation performance of a production application, however, you may be interested in
them. See http://java.sun.com/docs/hotspot/.
Loading classes

The Java interpreter knows where to find the system classes that comprise the Java
platform. In Java 1.2 and later, it also knows where to find the class files for all extensions
installed in the system extensions directory. However, the interpreter must be told where
to find the nonsystem classes that comprise the application to be run.

Class files are stored in a directory that corresponds to their package name. For example,
the class com.davidflanagan.utils.Util is stored in a file com/davidflanagan/
utils/Util.class. By default, the interpreter uses the current working directory as the root
and looks for all classes in and beneath this directory.

The interpreter can also search for classes within ZIP and JAR files. To tell the interpreter
where to look for classes, you specify a classpath: a list of directories and ZIP and JAR
archives. When looking for a class, the interpreter searches each of the specified locations
in the order in which they are specified.

The easiest way to specify a classpath is to set the CLASSPATH environment variable, which
works much like the PATH variable used by a Unix shell or a Windows command-
interpreter path. To specify a classpath in Unix, you might type a command like this:

% setenv CLASSPATH .:~/myclasses:/usr/lib/javautils.jar:/usr/lib/javaapps

On a Windows system, you might use a command like the following:
C:\> set CLASSPATH=.;c:\myclasses;c:\javatools\classes.zip;d:\javaapps

Note that Unix and Windows use different characters to separate directory and path
components.

Chapter 8. Java Development Tools Page 19 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://java.sun.com/docs/hotspot/

You can also specify a classpath with the -classpath or -cp options to the Java
interpreter. A path specified with one of these options overrides any path specified by the
CLASSPATH environment variable. In Java 1.2 and later, the -classpath option specifies
only the search path for application and user classes. Prior to Java 1.2, or when using the
oldjava interpreter, this option specified the search path for all classes, including system
classes and extension classes.
See also

javac, jdb

javac The Java Compiler

Synopsis

javac [options] files

Description

javac is the Java compiler; it compiles Java source code (in .java files) into Java byte
codes (in .class files). The Java compiler is itself written in Java.

javac can be passed any number of Java source files, whose names must all end with
the .java extension. javac produces a separate .class class file for each class defined in the
source files. Each source file can contain any number of classes, although only one can be
a public top-level class. The name of the source file (minus the .java extension) must
match the name of the public class it contains.

In Java 1.2 and later, if a filename specified on the command line begins with the character
@, that file is taken not as a Java source file but as a list of compiler options and Java source
files. Thus, if you keep a list of Java source files for a particular project in a file named
project.list, you can compile all those files at once with the command:

% javac @project.list

To compile a source file, javac must be able to find definitions of all classes used in the
source file. It looks for definitions in both source-file and class-file form, automatically
compiling any source files that have no corresponding class files or that have been modified
since they were most recently compiled.
Common options

The most commonly used compilation options include the following:

Chapter 8. Java Development Tools Page 20 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-classpath path

Specifies the path javac uses to look up classes referenced in the specified source code.
This option overrides any path specified by the CLASSPATH environment variable.
The path specified is an ordered list of directories, ZIP files, and JAR archives,
separated by colons on Unix systems or semicolons on Windows systems. If the -
sourcepath option is not set, this option also specifies the search path for source
files.

-d directory

Specifies the directory in which (or beneath which) class files should be stored. By
default, javac stores the .class files it generates in the same directory as the .java files
those classes were defined in. If the -d option is specified, however, the specified
directory is treated as the root of the class hierarchy, and .class files are placed in
this directory or the appropriate subdirectory below it, depending on the package
name of the class. Thus, the following command:

% javac -d /java/classes Checkers.java

places the file Checkers.class in the directory /java/classes if the Checkers.java file
has no package statement. On the other hand, if the source file specifies that it is in
a package:

package com.davidflanagan.games;

the .class file is stored in /java/classes/com/davidflanagan/games. When the -d
option is specified, javac automatically creates any directories it needs to store its
class files in the appropriate place.

-encoding encoding-name

Specifies the name of the character encoding used by the source files if it differs from
the default platform encoding.

-g

Tells javac to add line number, source file, and local variable information to the output
class files, for use by debuggers. By default, javac generates only the line numbers.

Chapter 8. Java Development Tools Page 21 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-g:none

Tells javac to include no debugging information in the output class files. Java 1.2 and
later.

-g :keyword-list

Tells javac to output the types of debugging information specified by the comma-
separated keyword-list. The valid keywords are: source, which specifies source-
file information; lines, which specifies line number information; and vars, which
specifies local variable debugging information. Java 1.2 and later.

-help

Prints a list of options. See also -X.

-J javaoption

Passes the argument javaoption directly through to the Java interpreter. For
example: -J-Xmx32m. javaoption should not contain spaces; if multiple
arguments must be passed to the interpreter, use multiple -J options. Java 1.1 and
later.

-source release-number

Specifies the version of Java the code is written in. Legal values of release-number
are 5, 1.5, 1.4, and 1.3. The options 5 and 1.5 are synonyms and are the default: the
compiler accepts all Java 5.0 language features. Use -source 1.4 to have the
compiler ignore Java 5.0 language features such as the enum keyword. Use -source
1.3 to have the compiler ignore the assert keyword that was introduced in Java 1.4.
This option is available in Java 1.4 and later.

-sourcepath path

Specifies the list of directories, ZIP files, and JAR archives that javac searches when
looking for source files. The files found in this source path are compiled if no
corresponding class files are found or if the source files are newer than the class files.
By default, source files are searched for in the same places class files are searched for.
Java 1.2 and later.

Chapter 8. Java Development Tools Page 22 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-verbose

Tells the compiler to display messages about what it is doing. In particular, it causes
javac to list all the source files it compiles, including files that did not appear on the
command line.

-X

Tells the javac compiler to display usage information for its nonstandard options (all
of which begin with -X). Java 1.2 and later.

Warning options

The following options control the generation of warning messages by javac :

-deprecation

Tells javac to issue a warning for every use of a deprecated API. By default, javac
issues only a single warning for each source file that uses deprecated APIs. Java 1.1
and later. In Java 5.0, this is a synonym for -Xlint:deprecation.

-nowarn

Tells javac not to print warning messages. Errors are still reported as usual.

-Xlint

Enables all recommended warnings about program "lint." At the time of this writing,
all the warnings detailed below are recommended.

-Xlint :warnings

Enables or disables a comma-separated list of named warning types. At the time of
this writing, the available warning types are the following. A named warning can be
suppressed by preceding it with a minus sign:

all

Enables all lint warnings.

Chapter 8. Java Development Tools Page 23 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

deprecation

Warns about the use of deprecated APIs. See also -deprecation.

fallthrough

Warns when a case in a switch statement "falls through" to the next case. See
also -Xswitchcheck.

finally

Warns when a finally clause cannot complete normally.

path

Warns if any path directories specified elsewhere on the command line are
nonexistent.

serial

Warns about Serializable classes that do not have a serialVersionUID
field.

unchecked

Provides detailed warnings about each unchecked use of a generic type.

-Xmaxerrors num

Don't print more than num errors.

-Xmaxwarns num

Don't print more than num warnings.

-Xstdout filename

Tells javac to send warning and error messages to the specified file instead of writing
them to the console. Java 1.4 and later.

Chapter 8. Java Development Tools Page 24 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-Xswitchcheck

Warns about case clauses in switch statements that "fall through." In Java 5.0, use
-Xlint:fallthrough.

Cross-compilation options

The following options are useful when using javac to compile class files intended to run
under a different version of Java:

-bootclasspath path

Specifies the search path javac uses to look up system classes. This option does not
specify the system classes used to run the compiler itself, only the system classes read
by the compiler. Java 1.2 and later.

-endorseddirs path

Overrides the directories to search for endorsed standards JAR files.

-extdirs path

Specifies a list of directories to search for standard extension JAR files. Java 1.2 and
later.

-target version

Specifies the class file format version to use for the generated class files. version may
be 1.1, 1.2, 1.3, 1.4, 1.5, or 5. The options 1.5 and 5 are synonyms and are the default
in Java 5.0, unless -source 1.4 is specified, in which case -target 1.4 is the
default. Use of this flag sets the class file version number so that the resulting class
file cannot be run by VMs from previous releases.

-Xbootclasspath :path

An alternative to -bootclasspath

-Xbootclasspath/a :path

Appends the specified path to the bootclasspath. Java 1.3 and later.

Chapter 8. Java Development Tools Page 25 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-Xbootclasspath/p :path

Prefixes the bootclasspath with the specified path.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows
systems) of directories, ZIP files, and JAR archives in which javac should look for user
class files and source files. This variable is overridden by the -classpath option.

See also

java, jdb

javadoc The Java Documentation Generator

Synopsis

javadoc [options] @list package... sourcefiles...

Description

javadoc generates API documentation for any number of packages and classes you specify.
The javadoc command line can list any number of package names and any number of Java
source files. For convenience, when working with a large number of command-line
options, or a large number of package or class names, you can place them all in an auxiliary
file and specify the name of that file on the command line, preceded by an @ character.

javadoc uses the javac compiler to process all the specified Java source files and all the
Java source files in all the specified packages. It uses the information it gleans from this
processing to generate detailed API documentation. Most importantly, the generated
documentation includes the contents of all documentation comments included in the
source files. See Chapter 7 for information about writing doc comments in your own Java
code.

When you specify a Java source file for javadoc to process, you must specify the name of
the file that contains the source, including a complete path to the file. It is more common,
however, to use javadoc to create documentation for entire packages of classes. When you
specify a package for javadoc to process, you specify the package name, not the directory
that contains the source code for the package. In this case, you may need to specify the -

Chapter 8. Java Development Tools Page 26 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-7#javanut5-CHP-7

sourcepath option so that javadoc can find your package source code correctly if it is
not stored in a location already listed in your default classpath.

javadoc creates HTML documentation by default, but you can customize its behavior by
defining a doclet class that generates documentation in whatever format you desire. You
can write your own doclets using the doclet API defined by the com.sun.javadoc
package. Documentation for this package is included in the standard documentation
bundle for Java 1.2 and later.

javadoc gained significant new functionality in Java 1.2. Here we document Java 1.2 and
later versions of the program and do not distinguish these features from those in previous
versions.
Options

javadoc defines a large number of options. Some are standard options that are always
recognized by javadoc. Other options are defined by the doclet that produces the
documentation. The options for the standard HTML doclet are included in the following
list:

-1.1

Simulates the output style and directory structure of the Java 1.1 version of javadoc.
This option existed in Java 1.2 and 1.3 and was removed in Java 1.4.

-author

Includes authorship information specified with @author in the generated
documentation. Default doclet only.

-bootclasspath

Specifies the location of an alternate set of system classes. This can be useful when
cross-compiling. See javac for more information on this option.

-bottom text

Displays text at the bottom of each generated HTML file. text can contain HTML
tags. See also -footer. Default doclet only.

-breakiterator

Uses the java.text.BreakIterator algorithm for determining the end of the
summary sentence in doc comments. Default doclet only.

Chapter 8. Java Development Tools Page 27 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-charset encoding

Specifies the character encoding for the output. This depends on the encoding used
in the documentation comments of your source code, of course. The encoding value
is used in a <meta> tag in the HTML output. Default doclet only.

-classpath path

Specifies a path javadoc uses to look up both class files and, if you do not specify the
-sourcepath option, source files. Because javadoc uses the javac compiler, it needs
to be able to locate class files for all classes referenced by the packages being
documented. See java and javac for more information about this option and the
default value provided by the CLASSPATH environment variable.

-d directory

Specifies the directory in and beneath which javadoc should store the HTML files it
generates. If this option is omitted, the current directory is used. Default doclet only.

-docencoding encoding

Specifies the encoding to be used for output HTML documents. The name of the
encoding specified here may not exactly match the name of the charset specified with
the -charset option. Default doclet only.

-docfilessubdirs

Recursively copies any subdirectories of a doc-files directory instead of simply copying
the files contained directly within doc-files. Default doclet only.

-doclet classname

Specifies the name of the doclet class to use to generate the documentation. If this
option is not specified, javadoc generates documentation using the default HTML
doclet.

-docletpath classpath

Specifies a path from which the class specified by the -doclet tag can be loaded if it
is not available from the default classpath.

Chapter 8. Java Development Tools Page 28 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-doctitle text

Provides a title to display at the top of the documentation overview file. This file is
often the first thing readers see when they browse the generated documentation. The
title can contain HTML tags. Default doclet only.

-encoding encoding-name

Specifies the character encoding of the input source files and the documentation
comments they contain. This can be different from the desired output encoding
specified by -docencoding. The default is the platform default encoding.

-exclude packages

Excludes the named packages from the set of packages defined by a -
subpackages option. packages is a colon-separated list of package names. Default
doclet only.

-excludedocfilessubdir dirs

Excludes specified subdirectories of a doc-files directory when -
docfilessubdirs is specified. This is useful for excluding version control
directories, for example. dirs is a colon-separated list of directory names relative to
the doc-files directory. Default doclet only.

-extdirs dirlist

Specifies a list of directories to search for standard extensions. Only necessary when
cross-compiling with -bootclasspath. See javac for details.

-footer text

Specifies text to be displayed near the bottom of each file to the right of the navigation
bar. text can contain HTML tags. See also -bottom and -header. Default doclet
only.

-group title packagelist

javadoc generates a top-level overview page that lists all packages in the generated
document. By default, these packages are listed in alphabetical order in a single table.
You can break them into groups of related packages with this option, however. The
title specifies the title of the package group, such as "Core Packages." The

Chapter 8. Java Development Tools Page 29 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

packagelist is a colon-separated list of package names, each of which can include
a trailing * character as a wildcard. The javadoc command line can contain any
number of -group options. For example:

% javadoc -group "AWT Packages" java.awt* \
-group "Swing Packages" javax.accessibility:javax.swing*

-header text

Specifies text to be displayed near the top of file, to the right of the upper navigation
bar. text can contain HTML tags. See also -footer, -doctitle, and -
windowtitle. Default doclet only.

-help

Displays a usage message for javadoc.

-helpfile file

Specifies the name of an HTML file that contains help for using the generated
documentation. javadoc includes links to this help file in all files it generates. If this
option is not specified, javadoc creates a default help file. Default doclet only.

-J javaoption

Passes the argument javaoption directly through to the Java interpreter. When
processing a large number of packages, you may need to use this option to increase
the amount of memory javadoc is allowed to use. For example:

% javadoc -J-Xmx64m

Note that because -J options are passed directly to the Java interpreter before
javadoc starts up, they cannot be included in an external file specified on the
command line with the @list syntax.

-keywords

Tells javadoc to include type and member names in <Meta> tag keyword lists. Default
doclet only.

-link url

Specifies an absolute or relative URL of the top-level directory of another javadoc-
generated document. javadoc uses this URL as the base URL for links from the current

Chapter 8. Java Development Tools Page 30 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

document to packages, classes, methods, and fields that are not documented in the
current document. For example, when using javadoc to produce documentation for
your own packages, you can use this option to link your documentation to the
javadoc documentation for the core Java APIs. Default doclet only.

The directory specified by url must contain a file named package-list, and javadoc must
be able to read this file at runtime. This file is automatically generated by a previous run
of javadoc; it contains a list of all packages documented at the url.

More than one -link option can be specified, although this does not work properly in
early releases of Java 1.2. If no -link option is specified, references in the generated
documentation to classes and members that are external to the documentation are not
hyperlinked.

-linkoffline url packagelist

Similar to the -link option, except that the packagelist file is explicitly specified
on the command line. This is useful when the directory specified by url does not have
a package-list file or when that file is not available when javadoc is run. Default doclet
only.

-linksource

Creates an HTML version of each source file read and includes links to it from the
documentation pages. Default doclet only.

-locale language_country_variant

Specifies the locale to use for generated documentation. This is used to look up a
resource file that contains localized messages and text for the output files.

-nocomment

Ignores all doc comments and generates documentation that includes only raw API
information without any accompanying prose. Default doclet only.

-nodeprecated

Tells javadoc to omit documentation for deprecated features. This option implies -
nodeprecatedlist. Default doclet only.

Chapter 8. Java Development Tools Page 31 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-nodeprecatedlist

Tells javadoc not to generate the deprecated-list.html file and not to output a link to
it on the navigation bar. Default doclet only.

-nohelp

Tells javadoc not to generate a help file or a link to it in the navigation bar. Default
doclet only.

-noindex

Tells javadoc not to generate index files. Default doclet only.

-nonavbar

Tells javadoc to omit the navigation bars from the top and bottom of every file. Also
omits the text specified by -header and -footer. This is useful when generating
documentation to be printed. Default doclet only.

-noqualifier packages | all

javadoc omits package names in its generated documentation for classes in the same
package being documented. This option tells it to additionally omit package names
for classes in the specified packages, or, if the all keyword is used, in all packages.
packages is a colon-separated list of package names, which may include the *
wildcard to indicate subpackages. For example, -noqualifier
java.io:java.nio.* would exclude package names for all classes in the
java.io package and in java.nio and its subpackages. Default doclet only.

-nosince

Ignores @since tags in doc comments. Default doclet only.

-notimestamp

Don't output timestamps in HTML comments. Default doclet only.

-notree

Tells javadoc not to generate the tree.html class hierarchy diagram or a link to it in
the navigation bar. Default doclet only.

Chapter 8. Java Development Tools Page 32 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-overview filename

Reads an overview doc comment from filename and uses that comment in the
overview page. This file does not contain Java source code, so the doc comment should
not actually appear between /** and */ delimiters.

-package

Includes package-visible classes and members in the output, as well as public and
protected classes and members.

-private

Includes all classes and members, including private and package-visible classes and
members, in the generated documentation.

-protected

Includes public and protected classes and members in the generated output. This
is the default.

-public

Includes only public classes and members in the generated output. Omits
protected, private, and package-visible classes and members.

-quiet

Suppresses output except warnings and error messages.

-serialwarn

Issues warnings about serializable classes that do not adequately document their
serialization format with @serial and related doc-comment tags. Default doclet
only.

-source release

Specifies the release of Java for which the source files were written. See the -
source option of javac. Legal values are 5, 1.5, 1.4, and 1.3. The options 1.5 and 5 are
synonyms and are the default.

Chapter 8. Java Development Tools Page 33 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-sourcepath path

Specifies a search path for source files, typically set to a single root directory.
javadoc uses this path when looking for the Java source files that implement a
specified package.

-splitindex

Generates multiple index files, one for each letter of the alphabet. Use this option
when documenting large amounts of code. Otherwise, the single index file generated
by javadoc will be too large to be useful. Default doclet only.

-stylesheetfile file

Specifies a file to use as a CSS stylesheet for the generated HTML. javadoc inserts
appropriate links to this file in the generated documentation. Default doclet only.

-subpackages packages

Specifies that javadoc should process the specified packages and all of their
subpackages. packages is a colon-separated list of package names or package name
prefixes. Using this option is often easier than explicitly listing all desired package
names. For example:

-subpackages java:javax

See also -exclude. Default doclet only.

-tag tagname:where:header-text

Specifies that javadoc should handle a doc-comment tag named tagname by
outputting the text header-text followed by whatever text follows the tag. This
enables the use of simple custom tags (with the same syntax as @return and
@author) in doc comments. where is a string of characters that specifies the types
of doc comments in which this custom tag is allowed. The characters and their
meanings are a (all: valid everywhere), p (packages), t (types: classes and interfaces),
c (constructors), m (methods), and f (fields).

A secondary purpose of the -tag option is to specify the order in which tags are processed
and in which their output appears. You can include the names of standard tags after the -
tag option to specify this ordering. Custom tags and taglets can be included within this
list of standard -tag options. Default doclet only.

Chapter 8. Java Development Tools Page 34 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-taglet classname

Specifies the classname of a "taglet" class to process a custom tag. Writing taglets is
not covered here. -taglet tags may be interspersed with -tag tags to specify the
order in which tags should be processed and output. Default doclet only.

-tagletpath classpath

Specifies a colon-separated list of JAR files or directories that form the classpath to
be searched for taglet classes. Default doclet only.

-use

Generates and inserts links to an additional file for each class and package that lists
the uses of the class or package.

-verbose

Displays additional messages while processing source files.

-version

Includes information from @version tags in the generated output. This option does
not tell javadoc to print its own version number. Default doclet only.

-windowtitle text

Specifies text to be output in the <Title> tag of each generated file. This title
typically appears as the title of the web browser window and in history and bookmark
lists. text should not contain HTML tags. See also -doctitle and -header.
Default doclet only.

Environment

CLASSPATH

This environment variable specifies the default classpath javadoc uses to find the class
files and source files. It is overridden by the -classpath and -sourcepath options.
See java and javac for further discussion of the classpath.

Chapter 8. Java Development Tools Page 35 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See also

java, javac

javah Native Method C Stub Generator

Synopsis

javah [options] classnames

Description

javah generates C header and source files (.h and .c files) that are used when implementing
Java native methods in C. The preferred native method interface changed between Java
1.0 and Java 1.1. In Java 1.1 and earlier, javah generated files for old-style native methods.
In Java 1.1, the -jni option specified that javah should generate new-style files. In Java
1.2 and later, this option is the default.

This section describes only how to use javah. A full description of how to implement Java
native methods in C is beyond the scope of this book.
Options

-bootclasspath

Specifies the path to search for system classes. See javac for further discussion. Java
1.2 and later.

-classpath path

Specifies the path javah uses to look up the classes named on the command line. This
option overrides any path specified by the CLASSPATH environment variable. Prior
to Java 1.2, this option can specify the location of the system classes and extensions.
In Java 1.2 and later, it specifies only the location of application classes. See -
bootclasspath. See also java for further discussion of the classpath.

-d directory

Specifies the directory into which javah stores the files it generates. By default, it
stores them in the current directory. This option cannot be used with -o.

-force

Causes javah to always write output files, even if they contain no useful content.

Chapter 8. Java Development Tools Page 36 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-help

Causes javah to display a simple usage message and exit.

-J javaopt

Passes the option javaopt to the Java interpreter.

-jni

Specifies that javah should output header files for use with the Java Native Interface
(JNI) rather than the old JDK 1.0 native interface. This option is the default in Java
1.2 and later. See also -old. Java 1.1 and later.

-o outputfile

Combines all output into a single file, outputfile, instead of creating separate files
for each specified class.

-old

Outputs files for Java 1.0-style native methods. Prior to Java 1.2, this was the default.
See also -jni. Java 1.2 and later.

-stubs

Generates .c stub files for the class or classes instead of header files. This option is
only for the Java 1.0 native methods interface. See -old.

-trace

Specifies that javah should include tracing output commands in the stub files it
generates. In Java 1.2 and later, this option is obsolete and has been removed. In its
place, you can use the -verbose:jni option of the Java interpreter.

-v, -verbose

Specifies verbose mode. Causes javah to print messages about what it is doing. In Java
1.2 and later, -verbose is a synonym.

-version

Causes javah to display its version number.

Chapter 8. Java Development Tools Page 37 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Environment

CLASSPATH

Specifies the default classpath javah searches to find the specified classes. See java
for a further discussion of the classpath.

See also

java, javac

javap The Java Class Disassembler

Synopsis

javap [options] classnames

Description

javap reads the class files specified by the class names on the command line and prints a
human-readable version of the API defined by those classes. javap can also disassemble
the specified classes, displaying the Java VM byte codes for the methods they contain.
Options

-b

Enables backward compatibility with the output of the Java 1.1 version of javap. This
option exists for programs that depend on the precise output format of javap. Java
1.2 and later.

-bootclasspath path

Specifies the search path for the system classes. See javac for information about this
rarely used option. Java 1.2 and later.

-c

Displays the code (i.e., Java VM byte codes) for each method of each specified class.
This option always disassembles all methods, regardless of their visibility level.

Chapter 8. Java Development Tools Page 38 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-classpath path

Specifies the path javap uses to look up the classes named on the command line. This
option overrides the path specified by the CLASSPATH environment variable. Prior to
Java 1.2, this argument specifies the path for all system classes, extensions, and
application classes. In Java 1.2 and later, it specifies only the application classpath.
See also -bootclasspath and -extdirs. See java and javac for more information
on the classpath.

-extdirs dirs

Specifies one or more directories that should be searched for extension classes. See
javac for information about this rarely used option. Java 1.2 and later.

-J javaopt

Pass the option javaopt to the Java interpreter.

-l

Displays tables of line numbers and local variables, if available in the class files. This
option is typically useful only when used with -c. The javac compiler does not include
local variable information in its class files by default. See -g and related options to
javac.

-help

Prints a usage message and exits.

-J javaoption

Passes the specified javaoption directly to the Java interpreter.

-package

Displays package-visible, protected, and public class members, but not
private members. This is the default.

-private

Displays all class members, including private members.

Chapter 8. Java Development Tools Page 39 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-protected

Displays only protected and public members.

-public

Displays only public members of the specified classes.

-s

Outputs the class member declarations using the internal VM type and method
signature format instead of the more readable source-code format.

-verbose

Specifies verbose mode. Outputs additional information (in the form of Java
comments) about each member of each specified class.

Environment

CLASSPATH

Specifies the default search path for application classes. The -classpath option
overrides this environment variable. See java for a discussion of the classpath.

See also

java, javac

javaws Java Web Start launcher

Synopsis

javaws
javaws [options] url

Description

javaws is the command-line interface to the Java Web Start network application launcher.
When started without a url, javaws displays a graphical cache viewer which allows cached
applications to be launched and Java Web Start to be configured.

If the URL of a JNLP (Java Network Launching Protocol) is specified on the command
line, javaws launches the specified application.

Chapter 8. Java Development Tools Page 40 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Options

-association

Allows the creation of file associations during a -silent -import.

-codebase url

Overrides the codebase in the JNLP file with the specified url.

-import

Imports the specified application to the user cache but does not run it.

-offline

Runs in offline mode.

-online

Starts in online mode. This is the default behavior.

-shortcut

Allows desktop shortcuts to be created during a -silent -import.

-silent

When used with -import, this option prevents a GUI window from appearing.

-system

Uses the system cache.

-uninstall

Removes the application identified by url from the user's cache and exits.

-updateVersions

Updates the javaws configuration file (such as after upgrading to a newer version of
Java).

Chapter 8. Java Development Tools Page 41 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-userConfig name [value]

Sets the deployment property name or, if value is specified, sets it to the specified
value.

-viewer

Launches the cache viewer application. This is the default behavior if javaws is
invoked with no arguments.

-wait

Does not exit until the launched application exits.

-Xclearcache

Clears the user's cache and exits.

-Xnosplash

Does not display the Java Web Start splash screen.

jconsole Graphical Java Process Monitor

Synopsis

jconsole [options]
jconsole [options] pid
jconsole [options] host:port

Description

jconsole is a graphical interface to the memory, thread, class loading, and other
monitoring tools provided by the java.lang.management package. It can monitor one
or more local or remote Java processes. Processes can be monitored only if started with
special system properties set. To allow a Java VM to be monitored locally, start it with:

% jconsole -Dcom.sun.management.jmxremote=true

To allow a Java VM to be monitored remotely, start it with:
% jconsole -Dcom.sun.management.jmxremote.port= port

where port is the remote port to which jconsole will connect.

Chapter 8. Java Development Tools Page 42 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You may start jconsole with no local or remote process specified and use its Connection
menu to establish connections. This is the only way to connect jconsole to more than one
Java process.

To connect jconsole to a local process when it starts up, simply list the process id on the
command line. See jps to determine process ids.

To connect jconsole to a remote process when it starts up, specify the hostname and port
number on the command line. The port should be the same as that specified by the
com.sun.management.jmxremote.port system property of the target process.
Options

-help

Display a usage message.

-interval= n

Set the update interval to n seconds. The default is 4.

-version

Display the jconsole version and exit.

See also

jps, jstat

jdb The Java Debugger

Synopsis

jdb [options] class [program options]
jdb connect options

Description

jdb is a debugger for Java classes. It is text-based, command-line-oriented, and has a
command syntax like that of the Unix dbx or gdb debuggers used with C and C++ programs.

jdb is written in Java, so it runs within a Java interpreter. When jdb is invoked with the
name of a Java class, it starts another copy of the java interpreter, using any interpreter
options specified on the command line. The new interpreter is started with special options
that enable it to communicate with jdb. The new interpreter loads the specified class file
and then stops and waits for debugging commands before executing the first byte code.

Chapter 8. Java Development Tools Page 43 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

jdb can also debug a program that is already running in another Java interpreter. Doing
so requires that special options be passed to both the java interpreter and to jdb. See the
-attach option below.
jdb expression syntax

jdb debugging commands such as print, dump, and suspend allow you to refer to classes,
objects, methods, fields, and threads in the program being debugged. You can refer to
classes by name, with or without their package names. You can also refer to static class
members by name. You can refer to individual objects by object ID, which is an eight-digit
hexadecimal integer. Or, when the classes you are debugging contain local variable
information, you can often use local variable names to refer to objects. You can use normal
Java syntax to refer to the fields of an object and the elements of an array; you can also use
this syntax to write quite complex expressions. As of Java 1.3, jdb even supports method
invocation using standard Java syntax.
Options

When invoking jdb with a specified class file, any of the java interpreter options can be
specified. See the java reference page for an explanation of these options. In addition,
jdb supports the following options:

-attach [host:]port

Specifies that jdb should connect to the Java VM that is already running on the
specified host (or the local host, if unspecified) and listening for debugging
connections on the specified port. Java 1.3 and later.

In order to use jdb to connect to a running VM in this way, the VM must have been
started with special command-line options. In Java 1.3 and 1.4, use these options:

% java -Xdebug -Xrunjdwp:transport=dt_socket,address=8000,server=y,suspend=n

In Java 5.0, use these options instead:

% java -agentlib:jdwp=transport=dt_socket,address=8000,server=y,suspend=n

The Java debugging architecture allows a complex set of interpreter-to-debugger
connection options, and java and jdb provide a complex set of options and suboptions
to enable it. A detailed description of those options is beyond the scope of this book.

-connect connector:args

This option provides the most general and flexible method for connecting jdb to the
process to be debugged. Specify the name of a connector (a Java class) followed by

Chapter 8. Java Development Tools Page 44 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a colon and a comma-separated list of arguments in name=value form. Java 1.4 and
later. See -listconnectors for available connectors and their arguments.

-help

Displays a usage message listing supported options.

-launch

Starts the specified application when jdb starts. This avoids the need to explicitly use
the run command to start it. Java 1.3 and later.

-listconnectors

List available connection methods. Each connector is a Java class and a list of
arguments. Java 5.0 and later. See the -connect option.

-listen port

Listens on the specified port for a Java VM to connect to the debugger. To make this
work, the VM must be with options like these:

% java -agentlib:jdwp=transport=dt_socket,address=8000,server=n,suspend=y

Java 1.4 and later.

-listenany

Like the -listen option but jdb picks a port to listen on and prints out the port
number for use when launching the Java process to debug. Java 1.4 and later.

-sourcepath path

Specifies the locations jdb searches when attempting to find source files that
correspond to the class files being debugged. If unspecified, jdb uses the classpath by
default. Java 1.3 and later.

-tclient

Tells jdb to invoke the client version of the Java interpreter.

-tserver

Tells jdb to invoke the server version of the Java interpreter.

Chapter 8. Java Development Tools Page 45 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-version

Displays the jdb version number and exits.

Commands

jdb understands the following debugging commands. Use the help command for more.

? or help

Lists all supported commands, with a short explanation of each.

!!

A shorthand command that is replaced with the text of the last command entered. It
can be followed with additional text to append to that command.

catch [exception-class]

Causes a breakpoint whenever the specified exception is thrown. If no exception is
specified, the command lists the exceptions currently being caught. Use ignore to
stop these breakpoints from occurring.

classes

Lists all classes that have been loaded.

clear

Lists all currently set breakpoints.

clear class.method [(param-type...)]

Clears the breakpoint set in the specified method of the specified class.

clear [class:line]

Removes the breakpoint set at the specified line of the specified class.

cont

Resumes execution. This command should be used when the current thread is stopped
at a breakpoint.

Chapter 8. Java Development Tools Page 46 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

down [n]

Moves down n frames in the call stack of the current thread. If n is not specified, moves
down one frame.

dump id...

Prints the value of all fields of the specified object or objects. If you specify the name
of a class, dump displays all class (static) methods and variables of the class and also
displays the superclass and list of implemented interfaces. Objects and classes can be
specified by name or by their eight-digit hexadecimal ID numbers. Threads can also
be specified with the shorthand t@thread-number.

exit or quit

Quits jdb.

gc

Runs the garbage collector to force unused objects to be reclaimed.

ignore exception-class

Does not treat the specified exception as a breakpoint. This command turns off a
catch command. This command does not cause the Java interpreter to ignore
exceptions; it merely tells jdb to ignore them.

list [line-number]

Lists the specified line of source code as well as several lines that appear before and
after it. If no line number is specified, uses the line number of the current stack frame
of the current thread. The lines listed are from the source file of the current stack frame
of the current thread. Use the use command to tell jdb where to find source files.

list method

Displays the source code of the specified method.

load classname

Loads the specified class into jdb.

Chapter 8. Java Development Tools Page 47 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

locals

Displays a list of local variables for the current stack frame. Java code must be
compiled with the -g option in order to contain local variable information.

methods class

Lists all methods of the specified class. Use dump to list the instance variables of an
object or the class (static) variables of a class.

print id...

Prints the value of the specified item or items. Each item can be a class, object, field,
or local variable, and can be specified by name or by eight-digit hexadecimal ID
number. You can also refer to threads with the special syntax t@thread-number.
The print command displays an object's value by invoking its toString() method.

next

Executes the current line of source code, including any method calls it makes. See also
step.

resume [thread-id...]

Resumes execution of the specified thread or threads. If no threads are specified, all
suspended threads are resumed. See also suspend.

run [class] [args]

Runs the main() method of the specified class, passing the specified arguments to
it. If no class or arguments are specified, uses the class and arguments specified on
the jdb command line.

step

Runs the current line of the current thread and stops again. If the line invokes a
method, steps into that method and stops. See also next.

stepi

Executes a single Java VM instruction.

Chapter 8. Java Development Tools Page 48 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

step up

Runs until the current method returns to its caller and stops again.

stop

Lists current breakpoints.

stop at class:line

Sets a breakpoint at the specified line of the specified class. Program execution stops
when it reaches this line. Use clear to remove a breakpoint.

stop in class.method [(param-type...)]

Sets a breakpoint at the beginning of the specified method of the specified class.
Program execution stops when it enters the method. Use clear to remove a
breakpoint.

suspend [thread-id...]

Suspends the specified thread or threads. If no threads are specified, suspends all
running threads. Use resume to restart them.

thread thread-id

Sets the current thread to the specified thread number. This thread is used implicitly
by a number of other jdb commands.

threadgroup name

Sets the current thread group.

threadgroups

Lists all thread groups running in the Java interpreter session being debugged.

threads [threadgroup]

Lists all threads in the named thread group. If no thread group is specified, lists all
threads in the current thread group (specified by threadgroup).

Chapter 8. Java Development Tools Page 49 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

up [n]

Moves up n frames in the call stack of the current thread. If n is not specified, moves
up one frame.

use [source-file-path]

Sets the path used by jdb to look up source files for the classes being debugged. If no
path is specified, displays the current source path.

where [thread-id] [all]

Displays a stack trace for the specified thread. If no thread is specified, displays a stack
trace for the current thread. If all is specified, displays a stack trace for all threads.

wherei [thread-id x]

Displays a stack trace for the specified or current thread, including detailed program
counter information.

Environment

CLASSPATH

Specifies an ordered list (colon-separated on Unix, semicolon-separated on Windows
systems) of directories, ZIP files, and JAR archives in which jdb should look for class
definitions. When a path is specified with this environment variable, jdb always
implicitly appends the location of the system classes to the end of the path. If this
environment variable is not specified, the default path is the current directory and the
system classes. This variable is overridden by the -classpath option.

See also

java

jinfo Display configuration of a Java process

Synopsis

jinfo [options] pid // info on local process
jinfo [options] executable core // info from core file
jinfo [options] [process-name@]hostname // info from remote process

Chapter 8. Java Development Tools Page 50 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Description

jinfo prints the system properties and JVM command-line options for a running Java
process or core file. jinfo can be started in one of three ways:

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the java
executable that produced the core file and the core file itself on the command line.

• To obtain configuration information about a Java process running remotely, specify
the name of the remote host, optionally prefixed by a remote process name.
jsadebugd must be running on the remote host.

In Java 5.0, jinfo is experimental, unsupported, and not available on all platforms.
Options

These options are mutually exclusive; only one may be specified.

-flags

Prints only JVM flags, not system properties.

-help, -h

Prints a help message.

-sysprops

Prints only system properties, not JVM flags.

See also

jps, jsadebugd

jmap Display memory usage

Synopsis

jmap [options] pid // local process
jmap [options] executable core // core file
jmap [options] [process-name@]hostname // remote process

Description

jmap prints memory usage information for a local or remote Java process or a Java core
file. Depending on the option it is invoked with, jmap displays one of four memory usage
reports. See the Options section for details. jmap can be started in three ways:

Chapter 8. Java Development Tools Page 51 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the java
executable that produced the core file and the core file itself on the command line.

• To obtain configuration information about a Java process running remotely, specify
the name of the remote host, optionally prefixed by a remote process name and @
sign. jsadebugd must be running on the remote host.

In Java 5.0, jmap is experimental, unsupported, and not available on all platforms.
Options

When invoked with no options, jmap prints a memory map of the shared objects or
libraries loaded by the VM. Other reports can be produced by using the options below.
These options are mutually exclusive; only one may be specified.

-heap

Displays a summary of heap memory usage.

-help, -h

Prints a help message.

-histo

Displays a histogram of heap usage by class.

-permstat

Displays memory used by loaded classes, grouped by class loader.

See also

jps, jsadebugd

jps List Java processes

Synopsis

jps [options] [hostname[:port]]

Description

jps lists the Java processes running on the local host or on the specified remote host. If a
remote host is specified, it must be running the jstatd daemon. For each Java process, it

Chapter 8. Java Development Tools Page 52 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

displays a process id and names the class or JAR file that the process is executing. Process
ids are used by a number of other Java tools, such as jconsole, jstat, and jmap.
Options

The options below alter the default jps display. The single-letter options, except for -q,
may be combined into a single command-line argument, such as -lmv:

-help

Displays a usage message.

-l

Lists the full package name of the main class or the full path of the JAR file running
in each Java process.

-m

Lists the arguments passed to main() method of each Java process.

-q

Lists only Java process identifiers, without application name or any additional
information.

-v

Lists arguments passed to the Java interpreter for each Java process.

-V

Lists arguments passed to the interpreter through a flags file such as .hotspotrc.

See also

jstatd

jsadebugd Daemon process for remote debugging

Synopsis

jsadebugd pid [process-name] // running process
jsadebugd executable core [process-name] // core file

Chapter 8. Java Development Tools Page 53 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Description

jsadebugd is a server process that allows remote invocations of jinfo, jmap, and jstack
on a local Java process or core file. Invoke jsadebugd by specifying either the process id
of a running Java process or an executable file and core file pair on the command line. If
more than one jsadebugd server will run on the same host at the same time, follow these
arguments with an identifying process name that remote clients can use to identify the
desired process.

jsadebugd starts the rmiregistry server.

In Java 5.0, jsadebugd is experimental, unsupported, and not available on all platforms.
See also

jinfo, jmap, jstack

jstack Display stack traces for a Java process

Synopsis

jstack [options] pid // local process
jstack [options] executable core // core file
jstack [options] [process-name@]hostname // remote process

Description

jstack prints stack traces for each of the Java threads running in the specified Java
process. jstack can be started in three ways:

• Specify the process id of a Java process running locally to obtain configuration
information about it. See jps to list local processes.

• To obtain post-mortem configuration information from a core file, specify the Java
executable that produced the core file and the core file itself on the command line.

• To obtain configuration information about a Java process running remotely, specify
the name of the remote host, optionally prefixed by a remote process name and @
sign. jsadebugd must be running on the remote host.

In Java 5.0, jstack is experimental, unsupported, and not available on all platforms.
Options

-help, -h

Prints a help message.

Chapter 8. Java Development Tools Page 54 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-m

Displays stack traces in "mixed mode," that is, displays both Java and native method
stack frames. Without this option, the default is to display Java stack frames only.

See also

jps, jsadebugd

jstat Java VM statistics

Synopsis

jstat [options] pid [interval[s|ms] [count]]
jstat [options] pid@hostname[:port] [interval[s|ms] [count]]

Description

jstat probes a running JVM once or repeatedly and displays statistics about its class
loading, just-in-time compilation, memory, or garbage collection performance. The type
of information to be displayed is specified by options. A local process to be probed is
specified by its process id, as returned, for example, by jps. A remote Java process may be
probed by specifying the remote process id, the remote host name, and the port number
on which the remote host's rmiregistry server is running (if other than the default of 1099).
The remote host must also be running the jstatd server.

By default, jstat probes the specified Java VM once. You may also specify a probe interval,
in milliseconds or seconds, to have it probe repeatedly. If you do this, you may additionally
specify a total number of probes it should conduct.

jconsole can report many of the same statistics that jstat does but displays them in
graphical rather than tabular form. In Java 5.0, jinfo is experimental, unsupported, and
not available on all platforms.
Options

-help

Displays a help message.

-options

Displays a list of report types that jstat can display. You must use one of the listed
options each time you run jstat.

Chapter 8. Java Development Tools Page 55 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-version

Displays the jstat version information and exits.

-h n

When jstat probes the Java process repeatedly, this option specifies how often it
should repeat the table headers in its output. This option must follow one of the report
type options below.

-t

Adds a Timestamp column to the report generated by jstat. The column displays
elapsed time (in seconds) since the target Java process was started.

The following options specify the type of statistics to be reported by jstat. Unless you run
jstat with -help, -options or -version, you must specify exactly one of these options,
and it must be the first option on the command line. Most of the options produce detailed
reports of garbage collection minutiae. Consult Sun's tool documentation (part of the JDK
documentation bundle) for the interpretation of these reports.

-class

Reports the number of classes loaded and their size in kilobytes.

-compiler

Reports the amount of just-in-time compilation that has been performed, and how
long it has taken.

-gc

Reports heap garbage collection statistics.

-gccapacity

Reports capacity information of the garbage collector's various memory pools.

-gccause

Like the -gcutil report but includes information about the cause of the most recent
garbage collection.

Chapter 8. Java Development Tools Page 56 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-gcnew

Reports information on the "new generation" memory pools of the garbage collector.

-gcnewcapacity

Reports capacity information for the garbage collector's "new generation" memory
pools.

-gcold

Reports information on the old generation and permanent memory pools of the
garbage collector.

-gcoldcapacity

Reports capacity information for the garbage collector's old generation memory pools.

-gcpermcapacity

Reports capacity information for the garbage collector's permanent generation.

-gcutil

Reports garbage collection summaries.

-printcompilation

Reports additional information about just-in-time compilation, including the method
names of compiled methods.

See also

jconsole, jps, jstatd

jstatd jstat daemon

Synopsis

jstatd options

Description

jstatd is a server that provides information about local Java processes to the jps and
jstat programs running on remote hosts.

Chapter 8. Java Development Tools Page 57 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

jstatd uses RMI and requires special security permissions to run successfully. To start
jstatd, create the following file and name it jstatd.policy:

grant codebase "file:${java.home}../lib/tools.jar {
 permission java.security.AllPermission
}

This policy grants all permissions to any class loaded from the JDK's tools.jar JAR file. To
launch jstatd with this policy, use this command line:

% jstatd -J-Djava.security.policy=jstat.policy

If an existing rmiregistry server is running, jstatd uses it. Otherwise, it creates its own
RMI registry.
Options

-n rminame

Binds the jstatd remote object to the name rminame in the RMI registry. The default
name is "JStatRemoteHost", which is what jps and jstat look for. Use of this option
requires rminame to be used in remote jps and jstat invocations.

-nr

Tells jstatd that not to start an internal RMI registry if none are already running.

-p port

Looks for an existing RMI registry on port, or starts one on that port if no existing
registry is found.

See also

jps, jstat

keytool Key and Certificate Management Tool

Synopsis

keytool command options

Description

keytool manages and manipulates a keystore, a repository for public and private keys and
public key certificates. keytool defines various commands for generating keys, importing
data into the keystore, and exporting and displaying keystore data. Keys and certificates

Chapter 8. Java Development Tools Page 58 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

are stored in a keystore using a case-insensitive name or alias. keytool uses this alias to
refer to a key or certificate.

The first option to keytool always specifies the basic command to be performed.
Subsequent options provide details about how the command is to be performed. Only the
command must be specified. If a command requires an option that does not have a default
value, keytool prompts you interactively for the value.
Commands

-certreq

Generates a certificate signing request in PKCS#10 format for the specified alias. The
request is written to the specified file or to the standard output stream. The request
should be sent to a certificate authority (CA), which authenticates the requestor and
sends back a signed certificate authenticating the requestor's public key. This signed
certificate can then be imported into the keystore with the -import command. This
command uses the following options: -alias, -file, -keypass, -keystore, -
sigalg, -storepass, -storetype, and -v.

-delete

Deletes a specified alias from a specified keystore. This command uses the following
options: -alias, -keystore, -storepass, -storetype, and -v.

-export

Writes the certificate associated with the specified alias to the specified file or to
standard output. This command uses the following options: -alias, -file, -
keystore, -rfc, -storepass, -storetype, and -v.

-genkey

Generates a public/private key pair and a self-signed X.509 certificate for the public
key. Self-signed certificates are not often useful by themselves, so this command is
often followed by -certreq. This command uses the following options: -alias, -
dname, -keyalg, -keypass, -keysize, -keystore, -sigalg, -storepass, -
storetype, -v, and -validity.

-help

Lists all available keytool commands and their options. This command is not used
with any other options.

Chapter 8. Java Development Tools Page 59 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-identitydb

Reads keys and certificates from a legacy identity database managed with the
deprecated javakey program and stores them into a keystore so that they can be
manipulated by keytool. The identity database is read from the specified file or from
standard input if no file is specified. The keys and certificates are written into the
specified keystore file, which is automatically created if it does not exist yet. This
command uses the following options: -file, -keystore, -storepass, -
storetype, and -v.

-import

Reads a certificate or PKCS#7-formatted certificate chain from a specified file or from
standard input and stores it as a trusted certificate in the keystore with the specified
alias. This command uses the following options: -alias, -file, -keypass, -
keystore, -noprompt, -storepass, -storetype, -trustcacerts, and -v.

-keyclone

Duplicates the keystore entry of a specified alias and stores it in the keystore under a
new alias. This command uses the following options: -alias, -dest, -keypass, -
keystore, -new, -storepass, -storetype, and -v.

-keypasswd

Changes the password that encrypts the private key associated with a specified alias.
This command uses the following options: -alias, -keypass, -new, -
storetype, and -v.

-list

Displays (on standard output) the fingerprint of the certificate associated with the
specified alias. With the -v option, prints certificate details in human-readable
format. With -rfc, prints certificate contents in a machine-readable, printable-
encoding format. This command uses the following options: -alias, -keystore, -
rfc, -storepass, -storetype, and -v.

-printcert

Displays the contents of a certificate read from the specified file or from standard
input. Unlike most keytool commands, this one does not use a keystore. This
command uses the following options: -file and -v.

Chapter 8. Java Development Tools Page 60 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-selfcert

Creates a self-signed certificate for the public key associated with the specified alias
and uses it to replace any certificate or certificate chain already associated with that
alias. This command uses the following options: -alias, -dname, -keypass, -
keystore, -sigalg, -storepass, -storetype, -v, and -validity.

-storepasswd

Changes the password that protects the integrity of the keystore as a whole. The new
password must be at least six characters long. This command uses the following
options: -keystore, -new, -storepass, -storetype, and -v.

Options

The various keytool commands can be passed various options from the following list. Many
of these options have reasonable default values. keytool interactively prompts for any
unspecified options that do not have defaults:

-alias name

Specifies the alias to be manipulated in the keystore. The default is "mykey".

-dest newalias

Specifies the new alias name (the destination alias) for the -keyclone command. If
not specified, keytool prompts for a value.

-dname X.500-distinguished-name

Specifies the X.500 distinguished name to appear on the certificate generated by -
selfcert or -genkey. A distinguished name is a highly qualified name intended to
be globally unique. For example:

CN=David Flanagan, OU=Editorial, O=OReilly, L=Cambridge, S=Massachusetts, C=US

The -genkey command of keytool prompts for a distinguished name if none is
specified. The -selfcert command uses the distinguished name of the current
certificate if no replacement name is specified.

Chapter 8. Java Development Tools Page 61 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

-file file

Specifies the input or output file for many of the keytool commands. If left unspecified,
keytool reads from the standard input or writes to the standard output.

-keyalg algorithm-name

Used with -genkey to specify what type of cryptographic keys to generate. In the
default Java implementation shipped from Sun, the only supported algorithm is
"DSA"; this is the default if this option is omitted.

-keypass password

Specifies the password that encrypts a private key in the keystore. If this option is
unspecified, keytool first tries the -storepass password. If that does not work, it
prompts for the appropriate password.

-keysize size

Used with the -genkey command to specify the length in bits of the generated keys.
If unspecified, the default is 1024.

-keystore filename

Specifies the location of the keystore file. If unspecified, a file named .keystore in the
user's home directory is used.

-new new-password-or-alias

Used with the -keyclone command to specify the new alias name and with -
keypasswd and -storepasswd to specify the new password. If unspecified,
keytool prompts for the value of this option.

-noprompt

Used with the -import command to disable interactive prompting of the user when
a chain of trust cannot be established for an imported certificate. If this option is not
specified, the -import command prompts the user.

-rfc

Used with the -list and -export commands to specify that certificate output
should be in the printable encoding format specified by RFC 1421. If this option is not

Chapter 8. Java Development Tools Page 62 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

specified, -export outputs the certificate in binary format, and -list lists only the
certificate fingerprint. This option cannot be combined with -v in the -list
command.

-sigalg algorithm-name

Specifies a digital signature algorithm that signs a certificate. If omitted, the default
for this option depends on the type of underlying public key. If it is a DSA key, the
default algorithm is "SHA1withDSA". If the key is an RSA key, the default signature
algorithm is "MD5withRSA".

-storepass password

Specifies a password that protects the integrity of the entire keystore file. This
password also serves as a default password for any private keys that do not have their
own -keypass specified. If -storepass is not specified, keytool prompts for it. The
password must be at least six characters long.

-storetype type

Specifies the type of the keystore to be used. If this option is not specified, the default
is taken from the system security properties file. Often, the default is "JKS"—Sun's
Java Keystore type.

-trustcacerts

Used with the -import command to specify that the self-signed certificate authority
certificates contained in the keystore in the jre/lib/security/cacerts file should be
considered trusted. If this option is omitted, keytool ignores that file.

-v

Specifies verbose mode, if present, and makes many keytool commands produce
additional output.

-validity time

Used with the -genkey and -selfcert commands to specify the period of validity
(in days) of the generated certificate. If unspecified, the default is 90 days.

See also

jarsigner, policytool

Chapter 8. Java Development Tools Page 63 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

native2ascii Convert text to ASCII with Unicode escapes

Synopsis

native2ascii [options] [inputfile [outputfile]]

Description

native2ascii is a simple program that reads a text file (usually of Java source code) encoded
using a local encoding and converts it to a Latin-1-plus-ASCII-encoded-Unicode form
allowed by the Java Language Specification. This is helpful when you must edit a file of
Java code but do not have an editor that can handle the encoding of the file.

The inputfile and outputfile are optional. If unspecified, standard input and
standard output are used, making native2ascii suitable for use in pipes.
Options

-encoding encoding-name

Specifies the encoding used by source files. If this option is not specified, the encoding
is taken from the file.encoding system property.

-reverse

Specifies that the conversion should be done in reverse—from encoded \uxxxx
characters to characters in the native encoding.

See also

java.io.InputStreamReader, java.io.OutputStreamWriter

pack200 Compress a JAR file

Synopsis

pack200 [options] outputfile jarfile

Description

pack200 tightly compresses a JAR file using the compression algorithm defined by JSR
200 and the standard gzip compression algorithm. Notice that the output file is specified
on the command line before the input JAR file.
Basic options

All pack200 options exist in both a long form that begins with a double dash and a single-
letter form that begins with a single dash. When the option requires a value, the value

Chapter 8. Java Development Tools Page 64 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

should be separated from the long form of the option with an equals sign and no space or
should immediately follow the short form with no intervening space or punctuation.

--config-file= file, -f file

Reads options from the specified configuration file. file should be a
java.util.Properties file in name=value format. Supported property names
are the same as the long-form option names listed here, with with hyphens converted
to periods.

--effort= value, -E value

Specifies how hard to try to pack the JAR file. value must be a digit between 0 and
9. 0 means no compression at all and simply produces a copy of the input JAR file.
The default is 5.

--help, -h

Displays a help message and exits.

--log-file= file, -l file

Log output to file.

--no-gzip, -g

Tells pack200 not to apply gzip compression to the packed JAR file. Use this option
if you want to apply a different compression filter, such as bzip2. The default is --
gzip.

--no-keep-file-order, -o

Allows pack200 to reorder the elements of the JAR file. --keep-file-order is the
default.

--quiet, -q

Suppresses output messages.

Chapter 8. Java Development Tools Page 65 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

--pass-file= file, -P file

Passes the specified file without compression. If file ends with a /, all files in the
directory are passed through without packing. This option may be specified multiple
times.

--repack, -r

Packs the specified JAR file, and then immediately unpacks it. In this case, the
outputfile specified on the command line should be the name of a JAR file. It is
important to do a pack/unpack cycle on a JAR file before signing it with jarsigner
because the pack/unpack cycle reorders some internal elements of a class file and
invalidates any digital signatures or checksums in the JAR file manifest.

--strip-debug, -G

Permanently strips debugging attributes from the Java class files instead of
compressing them. This makes it harder to debug the resulting JAR file.

--verbose, -v

Displays more output messages.

--version, -V

Displays version number and exits.

Advanced packing options

The following options provide fine control over the compression performed by pack200.

--deflate-hint= value, -H value

Specifies whether pack200 should preserve the deflation status of each entry in the
input JAR file. The default value is keep, which preserves the status. A value of
true places a hint in the packed archive that the unpacker should deflate all entries
after unpacking them. A value of true places a hint in the packed archive that the
unpacker should store each entry in the JAR file without deflation. Using a value of
true or false reduces the packed file size slightly because deflation hints do not
need to be stored for each entry.

Chapter 8. Java Development Tools Page 66 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

--modification-time= value, -m value

With the default value of keep, pack200 transmits the modification time of each
entry in the JAR file. If you specify latest instead, only the most recent modification
time is transmitted, and is applied to all entries when they are unpacked.

--segment-limit= n, -S n

Sets a target segment size of n. Pack200 files may be divided into separately packed
segments in order to reduce the amount of memory required by the unpacker. This
option sets the approximate size of each segment. The default value is one million
bytes. The value -1 produces a single large segment, and the value 0 produces a single
segment for each class file. Larger segment sizes result in better compression ratios,
but require additional memory to unpack.

--unknown-attribute= action, -U action

Specifies how pack200 should handle unknown class file attributes. The default
action is pass, which specifies that the entire class file will be transmitted with no
compression. An action of error specifies that pack200 should produce an error
message. An action of strip says that the attribute should be stripped from the class
file.

--class-attribute= name=action, -C name=action,

--code-attribute= name=action, -D name=action,

--field-attribute= name=action, -F name=action,

--method-attribute= name=action, -M name=action,

These four options specify how pack200 should handle specific named class, field,
method, and code attributes in a class file. The name of the attribute is specified by
name. The action may be any of the pass, strip, and error values supported by
the --unknown-attribute option. The action may also be a "layout string" that
specifies how the attribute should be packed. See the Pack200 specification for details
on the layout language. These options may be repeated to specify handling for more
than one attribute.

See also

unpack200

Chapter 8. Java Development Tools Page 67 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

policytool Policy File Creation and Management Tool

Synopsis

policytool

Description

policytool displays a Swing user interface that makes it easy to edit security policy
configuration files. The Java security architecture is based on policy files, which specify
sets of permissions to be granted to code from various sources. By default, the Java security
policy is defined by a system policy file stored in the jre/lib/security/java.policy file and
a user policy file stored in the .java.policy file in the user's home directory. System
administrators and users can edit these files with a text editor, but the syntax of the file is
somewhat complex, so it is usually easier to use policytool to define and edit security
policies.
Selecting the policy file to edit

When policytool starts up, it opens the .java.policy file in the user's home directory by
default. Use the New, Open, and Save commands in the File menu to create a new policy
file, open an existing file, and save an edited file, respectively.
Editing the policy file

The main policytool window displays a list of the entries contained in the policy file. Each
entry specifies a code source and the permissions that are to be granted to code from that
source. The window also contains buttons that allow you to add a new entry, edit an existing
entry, or delete an entry from the policy file. If you add or edit an entry, policytool opens
a new window that displays the details of that policy entry.

With the addition of the JAAS API to the core Java platform in Java 1.4, policytool allows
the specification of a Principal to whom a set of permissions is granted.

Every policy file has an associated keystore from which it obtains the certificates it needs
when verifying the digital signatures of Java code. You can usually rely on the default
keystore, but if you need to specify the keystore explicitly for a policy file, use the Change
Keystore command in the Edit menu of the main policytool window.
Adding or editing a policy entry

The policy entry editor window displays the code source for the policy entry and a list of
permissions associated with that code source. It also contains buttons that allow you to
add a new permission, delete a permission, or edit an existing permission.

When defining a new policy entry, the first step is to specify the code source. A code source
is defined by a URL from which the code is downloaded and/or a list of digital signatures
that must appear on the code. Specify one or both of these values by typing in a URL and/

Chapter 8. Java Development Tools Page 68 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

or a comma-separated list of aliases. These aliases identify trusted certificates in the
keystore associated with the policy file.

After you have defined the code source for a policy entry, you must define the permissions
to be granted to code from that source. Use the Add Permission and Edit Permission
buttons to add and edit permissions. These buttons bring up yet another policytool
window.
Defining a permission

To define a permission in the permission editor window, first select the desired permission
type from the Permission pulldown menu, then select an appropriate target value from the
Target Name menu. The choices in this menu are customized depending on the permission
type you selected. Some types of permissions, such as FilePermission, do not have a
fixed set of possible targets, and you usually have to type in the target you want. For
example, you might type "/tmp" to specify the directory /tmp, "/tmp/*" to specify all the
files in that directory, or "/tmp/-" to specify all the files in the directory, and, recursively,
any subdirectories. See the documentation of the individual Permission classes for a
description of the targets they support.

Depending on the type of permission you select, you may also have to select one or more
action values from the Actions menu. When you have selected a permission and
appropriate target and action values, click the Okay button to dismiss the window.
See also

jarsigner, keytool

serialver Class Version Number Generator

Synopsis

serialver [-classpath path] classnames...
serialver [-classpath path] -show

Description

serialver displays the version number of a class or classes. This version number is used
for the purposes of serialization: the version number must change each time the
serialization format of the class changes.

If the specified class declares a long serialVersionUID constant, the value of that field
is displayed. Otherwise, a unique version number is computed by applying the Secure
Hash Algorithm (SHA) to the API defined by the class. This program is primarily useful
for computing an initial unique version number for a class, which is then declared as a
constant in the class. The output of serialver is a line of legal Java code, suitable for pasting
into a class definition.

Chapter 8. Java Development Tools Page 69 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Options

-classpath path

Specifies the search path for classes.

-show

When the -show option is specified, serialver displays a simple graphical interface
that allows the user to type in a single class name at a time and obtain its serialization
UID. When using -show, no class names can be specified on the command line.

Environment

CLASSPATH

serialver is written in Java, so it is sensitive to the CLASSPATH environment variable
in the same way the java interpreter is. The specified classes are looked up relative to
this classpath.

See also

java.io.ObjectStreamClass

unpack200 Unpack a JAR file

Synopsis

unpack200 [options] packedfile jarfile

Description

unpack200 unpacks a JAR file that has been compressed, or packed, by the pack200 tool,
and optionally additionally compressed with gzip. Specify the name of the packed file and
the name of the JAR file to unpack it to on the command line.

Because unpack200 is used as part of the Java installation process, it is a native application
that can run on a system without a Java interpreter.
Options

All unpack200 options exist in both a long form that begins with a double dash and a
single-letter form that begins with a single dash. When the option requires a value, the
value should be separated from the long form of the option with an equals sign and no

Chapter 8. Java Development Tools Page 70 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

space or should immediately follow the short form with no intervening space or
punctuation.

--deflate-hint= value -H value

Specifies whether unpack200 should compress individual entries in the resulting JAR
file. value must be true, false, or keep. The default is keep, which specifies that
each JAR entry should have the same compression that it had in the original JAR file.

--help, -h

Displays a help message and exits.

--log-file= file, -l file

Logs output to file.

--quiet, -q

Suppresses output messages.

--remove-pack-file, -r

Deletes the packed file after unpacking it.

--verbose, -v

Displays more output messages.

--version, -V

Displays version number and exits.

See also

jar, pack200

Chapter 8. Java Development Tools Page 71 Return to Table of Contents

Chapter 8. Java Development Tools
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Java Development Tools
	apt
	extcheck
	jarsigner
	jar
	java
	javac
	javadoc
	javah
	javap
	javaws
	jconsole
	jdb
	jinfo
	jmap
	jps
	jsadebugd
	jstack
	jstat
	jstatd
	keytool
	native2ascii
	pack200
	policytool
	serialver
	unpack200

