
Table of Contents

java.nio and Subpackages.. 1
Package java.nio.. 1
Buffer... 2
BufferOverflowException.. 3
BufferUnderflowException... 3
ByteBuffer.. 4
ByteOrder.. 8
CharBuffer... 9
DoubleBuffer... 10
FloatBuffer... 11
IntBuffer.. 13
InvalidMarkException... 14
LongBuffer... 14
MappedByteBuffer... 15
ReadOnlyBufferException... 16
ShortBuffer.. 17
Package java.nio.channels... 18
AlreadyConnectedException... 19
AsynchronousCloseException.. 20
ByteChannel.. 20
CancelledKeyException... 21
Channel.. 21
Channels.. 22
ClosedByInterruptException.. 23
ClosedChannelException.. 23
ClosedSelectorException.. 24
ConnectionPendingException.. 24
DatagramChannel... 25
FileChannel... 26
FileChannel.MapMode.. 31
FileLock.. 31
FileLockInterruptionException.. 32
GatheringByteChannel.. 32
IllegalBlockingModeException... 33
IllegalSelectorException... 33
InterruptibleChannel.. 34
NoConnectionPendingException.. 35
NonReadableChannelException... 35
NonWritableChannelException.. 35
NotYetBoundException.. 36
NotYetConnectedException.. 36
OverlappingFileLockException... 37
Pipe.. 37
Pipe.SinkChannel.. 38
Pipe.SourceChannel.. 39
ReadableByteChannel... 40
ScatteringByteChannel.. 41
SelectableChannel... 41
SelectionKey.. 43
Selector.. 45
ServerSocketChannel.. 47
SocketChannel.. 48
UnresolvedAddressException... 50
UnsupportedAddressTypeException.. 51
WritableByteChannel.. 51
Package java.nio.channels.spi... 52
AbstractInterruptibleChannel.. 53

Chapter 13. java.nio and Subpackages

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AbstractSelectableChannel... 53
AbstractSelectionKey.. 54
AbstractSelector.. 55
SelectorProvider.. 55
Package java.nio.charset... 57
CharacterCodingException... 58
Charset.. 58
CharsetDecoder... 61
CharsetEncoder... 63
CoderMalfunctionError.. 64
CoderResult... 64
CodingErrorAction.. 65
IllegalCharsetNameException.. 65
MalformedInputException... 66
UnmappableCharacterException... 66
UnsupportedCharsetException... 67
Package java.nio.charset.spi... 67
CharsetProvider.. 68

Chapter 13. java.nio and Subpackages

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 13. java.nio and Subpackages
This chapter documents the New I/O API defined by the java.nio package and its
subpackages. It covers:

java.nio

Defines the Buffer class and type-specific subclasses, most notably the
ByteBuffer class that is heavily used for I/O in the java.nio.channels class.

java.nio.channels

Defines the Channel abstraction for high-performance I/O, and implements
channels for file and network I/O. Also allows nonblocking I/O with the Selector
class.

java.nio.channels.spi

The service provider interface for channel and selector implementations.

java.nio.charset

Defines classes for encoding sequences of characters into bytes and decoding
sequences of bytes into characters, according to the encoding rules of a named charset.

java.nio.charset.spi

The service provider interface for charset implementations.

Package java.nio

Java 1.4

This package defines buffer classes that are fundamental to the java.nio API. See
Buffer for an overview of buffers, and see ByteBuffer (the most important of the buffer
classes) for full documentation of byte buffers. The other type-specific buffer classes are

Chapter 13. java.nio and Subpackages Page 1 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

close analogs to ByteBuffer and are documented in terms of that class. See the
java.nio.channels package for classes that perform I/O operations on buffers.

Classes

public abstract class Buffer;
 public abstract class ByteBuffer extends Buffer
 implements Comparable<ByteBuffer>;
 public abstract class MappedByteBuffer extends ByteBuffer;
 public abstract class CharBuffer extends Buffer
 implements Comparable<CharBuffer>, Appendable, CharSequence,
 Readable;
 public abstract class DoubleBuffer extends Buffer
 implements Comparable<DoubleBuffer>;
 public abstract class FloatBuffer extends Buffer
 implements Comparable<FloatBuffer>;
 public abstract class IntBuffer extends Buffer
 implements Comparable<IntBuffer>;
 public abstract class LongBuffer extends Buffer
 implements Comparable<LongBuffer>;
 public abstract class ShortBuffer extends Buffer
 implements Comparable<ShortBuffer>;
public final class ByteOrder;

Exceptions

public class BufferOverflowException extends RuntimeException;
public class BufferUnderflowException extends RuntimeException;
public class InvalidMarkException extends IllegalStateException;
public class ReadOnlyBufferException extends UnsupportedOperationException;

Buffer java.nio

Java 1.4

This class is the abstract superclass of all buffer classes in the java.nio API. A buffer
is a linear (finite) sequence of prmitive values. The java.nio package defines a
Buffer subclass for each primitive type in Java except for boolean. Buffer itself defines
the common, type-independent features of all buffers. Buffer and its subclasses are
intended for use by a single thread at a time, and contain no synchronization code to make
them thread-safe.

The purpose of a buffer is to store data, and buffer classes must define methods for reading
data from a buffer and writing data into a buffer. Because each Buffer subclass stores
data of a different primitive type, however, the get() and put() methods that read
and write data must be defined by each of the individual subclasses. See ByteBuffer (the
most important subclass) for documentation of these methods; all the other subclasses
define similar methods which differ only in the datatype of the values being read or written.

Each buffer has four numbers associated with it:

Chapter 13. java.nio and Subpackages Page 2 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Buffer defines several methods that perform important operations on a buffer:

Buffer objects may be read-only, in which case any attempt to store data in the buffer
results in a ReadonlyBufferException. The isReadOnly() method returns true
if a buffer is read-only.

public abstract class Buffer {
// No Constructor
// Public Instance Methods
 public final int capacity();
 public final Buffer clear(); omu
 public final Buffer flip();
 public final boolean hasRemaining();
 public abstract boolean isReadOnly();
 public final int limit();
 public final Buffer limit(int newLimit);
 public final Buffer mark();
 public final int position();
 public final Buffer position(int newPosition);
 public final int remaining();
 public final Buffer reset();
 public final Buffer rewind();
}

Subclasses

ByteBuffer, CharBuffer, DoubleBuffer, FloatBuffer, IntBuffer,
LongBuffer, ShortBuffer

BufferOverflowException java.nio

Java 1.4 serializable unchecked

Signals that a relative put() operation on a buffer could not complete because the
number of elements to write exceeds the number of remaining elements between the
buffer's position and its limit.

Figure 13-1. java.nio.BufferOverflowException

public class BufferOverflowException extends RuntimeException {
// Public Constructors
 public BufferOverflowException();
}

BufferUnderflowException java.nio

Chapter 13. java.nio and Subpackages Page 3 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable unchecked

Signals that a relative get() operation on a buffer could not complete because the
number of elements to read exceeds the number of remaining elements between the
buffer's position and its limit.

Figure 13-2. java.nio.BufferUnderflowException

public class BufferUnderflowException extends RuntimeException {
// Public Constructors
 public BufferUnderflowException();
}

ByteBuffer java.nio

Java 1.4 comparable

ByteBuffer holds a sequence of bytes for use in an I/O operation. ByteBuffer is an
abstract class, so you cannot instantiate one by calling a constructor. Instead, you must
use allocate() , allocateDirect(), or wrap().

allocate() returns a ByteBuffer with the specified capacity. The position of this
new buffer is zero, and its limit is set to its capacity. allocateDirect() is like
allocate() except that it attempts to allocate a buffer that the underlying operating
system can use "directly." Such direct buffers" may be substantially more efficient for low-
level I/O operations than normal buffers, but may also have significantly larger allocation
costs.

If you have already allocated an array of bytes, you can use the wrap() method to create
a ByteBuffer that uses the byte array as its storage. In the one-argument version of
wrap() you specify only the array; the buffer capacity and limit are set to the array length,
and the position is set to zero. In the other form of wrap() you specify the array, as well
as an offset and length that specify a portion of that array. The capacity of the resulting
ByteBuffer is again set to the total array length, but its position is set to the specified
offset, and its limit is set to the offset plus length.

Chapter 13. java.nio and Subpackages Page 4 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Once you have obtained a ByteBuffer, you can use the various get() and put()
methods to read data from it or write data into it. Several versions of these methods exist
to read and write single bytes or arrays of bytes. The single-byte methods come in two
forms. Relative get() and put() methods query or set the byte at the current position
and then increment the position. The absolute forms of the methods take an additional
arguement that specifies the buffer element that is to be read or written and do not affect
the buffer position. Two other relative forms of the get() method exist to read as
sequence of bytes (starting at and incrementing the buffer's position) into a specified byte
array or a specified sub-array. These methods throw a BufferUnderflowException if
there are not enough bytes left in the buffer. Two relative forms of the put() method
copy bytes from a specified array or sub-array into the buffer (starting at and incrementing
the buffer's position). They throw a BufferOverflowException if there is not enough
room left in the buffer to hold the bytes. One final form of the put() method transfers
all the remaining bytes from one ByteBuffer into this buffer, incrementing the positions
of both buffers.

In addition to the get() and put() methods, ByteBuffer also defines another
operation that affect the buffer's content. compact() discards any bytes before the buffer
position, and copies all bytes between the position and limit to the beginning of the buffer.
The position is then set to the new limit, and the limit is set to the capacity. This method
compacts a buffer by discarding elements that have already been read, and then prepares
the buffer for appending new elements to those that remain.

All Buffer subclasses, such as CharBuffer, IntBuffer and FloatBuffer have
analogous methods which are just like these get() and put() methods except that
they operate on different data types. ByteBuffer is unique among Buffer subclasses in
that it has additional methods for reading and writing values of other primitive types from
and into the byte buffer. These methods have names like getInt() and putChar(),
and there are methods for all primitive types except byte and boolean. Each method
reads or writes a single primitive value. Like the get() and put() methods, they come
in relative and absolute variations: the relative methods start with the byte at the buffer's
position, and increment the position by the appropriate number of bytes (two bytes for a
char, four bytes for an int, eight bytes for a double, etc.). The absolute methods take
an buffer index (it is a byte index and is not multiplied by the size of the primitive value)
as an argument and do not modify the buffer position. The encoding of multi-byte primitive
values into a byte buffer can be done most-significant byte to least-significant byte ("big-
endian byte order") or the reverse ("little-endian byte order"). The byte order used by these
primitive-type get and put methods is specified by a ByteOrder object. The byte order
for a ByteBuffer can be queried and set with the two forms of the order() method.
The default byte order for all newly-created ByteBuffer objects is
ByteOrder.BIG_ENDIAN.

Chapter 13. java.nio and Subpackages Page 5 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Other methods that are unique to ByteBuffer() are a set of methods that allow a buffer
of bytes to be viewed as a buffer of other primitive types. asCharBuffer(),
asIntBuffer() and related methods return "view buffers" that allow the bytes between
the position and the limit of the underlying ByteBuffer to be viewed as a sequence of
characters, integers, or other primitive values. The returned buffers have position, limit,
and mark values that are independent of those of the underlying buffer. The initial position
of the returned buffer is zero, and the limit and capacity are the number of bytes between
the position and limit of the original buffer divided by the size in bytes of the relevant
primitive type (two for char and short, four for int and float, and eight for long and
double). Note that the returned view buffer is a view of the bytes between the position
and limit of the byte buffer. Subsequent changes to the position and limit of the byte buffer
do not change the size of the view buffer, but changes to the bytes themselves to change
the values that are viewed through the view buffer. View buffers use the byte ordering that
was current in the byte buffer when they were created; subsequent changes to the byte
order of the byte buffer do not affect the view buffer. If the underlying byte buffer is direct,
then the returned buffer is also direct; this is important because ByteBuffer is the only
buffer class with an allocateDirect() method.

ByteBuffer defines some additional methods, which, like the get() and put()
methods have analogs in all Buffer subclasses. duplicate() returns a new buffer that
shares the content with this one. The two buffers have independent position, limit, and
mark values, although the duplicate buffer starts off with the same values as the original
buffer. The duplicate buffer is direct if the original is direct and is read-only if the original
is read-only. The buffers share content, and content changes made to either buffer are
visible through the other. asReadOnlyBuffer() is like duplicate() except that the
returned buffer is read-only, and all of its put() and related methods throw a
ReadOnlyBufferException. slice() is also somewhat like duplicate() except
the returned buffer represents only the content between the current position and limit.
The returned buffer has a position of zero, a limit and capacity equal to the number of
remaining elements in this buffer, and an undefined mark. isDirect() is a simple
method that returns true if a buffer is a direct buffer and false otherwise. If this buffer
has a backing array and is not a read-only buffer (e.g., if it was created with the
allocate() or wrap() methods) then hasArray() returns true, array()
returns the backing array, and arrayOffset() returns the offset within that array of
the first element of the buffer. If hasArray() returns false, then array() and
arrayOffset() may throw an UnsupportedOperationException or a
ReadOnlyBufferException.

Finally, ByteBuffer and other Buffer subclasses override several standard object
methods. The equals() methods compares the elements between the position and limit
of two buffers and returns true only if there are the same number and have the same

Chapter 13. java.nio and Subpackages Page 6 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

value. Note that elements before the position of the buffer are not considered. The
hashCode() method is implemented to match the equals() method: the hashcode
is based only upon the elements between the position and limit of the buffer. This means
that the hashcode changes if either the contents or position of the buffer changes. This
means that instances of ByteBuffer and other Buffer subclasses are not usually useful
as keys for hashtables or java.util.Map objects. toString() returns a string
summary of the buffer, but the precise contents of the string are unspecified.
ByteBuffer and each of the other Buffer subclasses also implement the
Comparable interface and define a compareTo() method that performs an element-
by-element comparison operation on the buffer elements between the position and the
limit of the buffer.

Figure 13-3. java.nio.ByteBuffer

public abstract class ByteBuffer extends Buffer
implements Comparable<ByteBuffer> {
// No Constructor
// Public Class Methods
 public static ByteBuffer allocate(int capacity);
 public static ByteBuffer allocateDirect(int capacity);
 public static ByteBuffer wrap(byte[] array);
 public static ByteBuffer wrap(byte[] array, int offset, int length);
// Public Instance Methods
 public final byte[] array();
 public final int arrayOffset();
 public abstract CharBuffer asCharBuffer();
 public abstract DoubleBuffer asDoubleBuffer();
 public abstract FloatBuffer asFloatBuffer();
 public abstract IntBuffer asIntBuffer();
 public abstract LongBuffer asLongBuffer();
 public abstract ByteBuffer asReadOnlyBuffer();
 public abstract ShortBuffer asShortBuffer();
 public abstract ByteBuffer compact();
 public abstract ByteBuffer duplicate();
 public abstract byte get();
 public abstract byte get(int index);
 public ByteBuffer get(byte[] dst);
 public ByteBuffer get(byte[] dst, int offset, int length);
 public abstract char getChar();
 public abstract char getChar(int index);
 public abstract double getDouble();
 public abstract double getDouble(int index);
 public abstract float getFloat();
 public abstract float getFloat(int index);
 public abstract int getInt();
 public abstract int getInt(int index);
 public abstract long getLong();
 public abstract long getLong(int index);
 public abstract short getShort();
 public abstract short getShort(int index);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public final ByteOrder order();
 public final ByteBuffer order(ByteOrder bo);
 public ByteBuffer put(ByteBuffer src);
 public abstract ByteBuffer put(byte b);
 public final ByteBuffer put(byte[] src);

Chapter 13. java.nio and Subpackages Page 7 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract ByteBuffer put(int index, byte b);
 public ByteBuffer put(byte[] src, int offset, int length);
 public abstract ByteBuffer putChar(char value);
 public abstract ByteBuffer putChar(int index, char value);
 public abstract ByteBuffer putDouble(double value);
 public abstract ByteBuffer putDouble(int index, double value);
 public abstract ByteBuffer putFloat(float value);
 public abstract ByteBuffer putFloat(int index, float value);
 public abstract ByteBuffer putInt(int value);
 public abstract ByteBuffer putInt(int index, int value);
 public abstract ByteBuffer putLong(long value);
 public abstract ByteBuffer putLong(int index, long value);
 public abstract ByteBuffer putShort(short value);
 public abstract ByteBuffer putShort(int index, short value);
 public abstract ByteBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(ByteBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Subclasses

MappedByteBuffer
Passed To

Too many methods to list.
Returned By

java.nio.charset.Charset.encode(),
java.nio.charset.CharsetEncoder.encode()

ByteOrder java.nio

Java 1.4

This class is a type-safe enumeration of byte orders, and is used by the ByteBuffer class.
The two constant fields define the two legal byte order values: BIG_ENDIAN byte order
means most-significant-byte first. LITTLE_ENDIAN means least-significant-byte first.
The static nativeOrder() method returns whichever of these two constants represents
the native byte order of the underlying operating system and hardware. Finally, the
toString() method returns the string "BIG_ENDIAN" or "LITTLE_ENDIAN".

public final class ByteOrder {
// No Constructor
// Public Constants
 public static final ByteOrder BIG_ENDIAN;
 public static final ByteOrder LITTLE_ENDIAN;
// Public Class Methods
 public static ByteOrder nativeOrder();
// Public Methods Overriding Object
 public String toString();
}

Chapter 13. java.nio and Subpackages Page 8 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

ByteBuffer.order()
Returned By

ByteBuffer.order(), CharBuffer.order(), DoubleBuffer.order(),
FloatBuffer.order(), IntBuffer.order(), LongBuffer.order(),
ShortBuffer.order()

CharBuffer java.nio

Java 1.4 comparable appendable readable

CharBuffer holds a sequence of Unicode character values for use in an I/O operation.
Most of the methods of this class are directly analogous to methods defined by
ByteBuffer except that they use char and char[] argument and return values instead
of byte and byte[] values. See ByteBuffer for details.

In addition to the ByteBuffer analogs, this class also implements the
java.lang.CharSequence interface so that it can be used with java.util.regex
regular expression operations or anywhere else a CharSequence is expected. In Java 5.0,
CharBuffer adds the append() and read() methods of the
java.lang.Appendable and java.lang.Readable interfaces, making
CharBuffer objects suitable for use with the Formatter and Scanner classes of
java.util.

Note that CharBuffer is an abstract class and does not defined a constructor. There are
three ways to obtain a CharBuffer:

Note that this class holds a sequence of 16-bit Unicode characters, and does not represent
text in any other encoding. Classes in the java.nio.charset package can be used to
encode a CharBuffer of Unicode characters into a ByteBuffer, or decode the bytes in
a ByteBuffer into a CharBuffer of Unicode text. Java 5.0 supports Unicode
supplementary characters that do not fit in 16 bits. See java.lang.Character for
details. Note that CharBuffer does not include any utility methods for working with
int codepoints or surrogate pairs.

Figure 13-4. java.nio.CharBuffer

Chapter 13. java.nio and Subpackages Page 9 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public abstract class CharBuffer extends Buffer
implements Comparable<CharBuffer>, Appendable, CharSequence, Readable {
// No Constructor
// Public Class Methods
 public static CharBuffer allocate(int capacity);
 public static CharBuffer wrap(char[] array);
 public static CharBuffer wrap(CharSequence csq);
 public static CharBuffer wrap(char[] array, int offset, int length);
 public static CharBuffer wrap(CharSequence csq, int start, int end);
// Public Instance Methods
5.0 public CharBuffer append(char c);
5.0 public CharBuffer append(CharSequence csq);
5.0 public CharBuffer append(CharSequence csq, int start, int end);
 public final char[] array();
 public final int arrayOffset();
 public abstract CharBuffer asReadOnlyBuffer();
 public abstract CharBuffer compact();
 public abstract CharBuffer duplicate();
 public abstract char get();
 public abstract char get(int index);
 public CharBuffer get(char[] dst);
 public CharBuffer get(char[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public final CharBuffer put(char[] src);
 public CharBuffer put(CharBuffer src);
 public final CharBuffer put(String src);
 public abstract CharBuffer put(char c);
 public abstract CharBuffer put(int index, char c);
 public CharBuffer put(String src, int start, int end);
 public CharBuffer put(char[] src, int offset, int length);
 public abstract CharBuffer slice();
// Methods Implementing CharSequence
 public final char charAt(int index);
 public final int length();
 public abstract CharSequence subSequence(int start, int end);
 public String toString();
// Methods Implementing Comparable
5.0 public int compareTo(CharBuffer that);
// Methods Implementing Readable
5.0 public int read(CharBuffer target) throws java.io.IOException;
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
}

Passed To

java.io.Reader.read(), Readable.read(),
java.nio.charset.Charset.encode(),
java.nio.charset.CharsetDecoder.{decode(), decodeLoop(), flush(),
implFlush()}, java.nio.charset.CharsetEncoder.{encode(),
encodeLoop()}
Returned By

ByteBuffer.asCharBuffer(), java.nio.charset.Charset.decode(),
java.nio.charset.CharsetDecoder.decode()

DoubleBuffer java.nio

Chapter 13. java.nio and Subpackages Page 10 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 comparable

DoubleBuffer holds a sequence of double values for use in an I/O operation. Most of
the methods of this class are directly analogous to methods defined by ByteBuffer except
that they use double and double[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

DoubleBuffer is abstract and has no constructor. Create one by calling the static
allocate() or wrap() methods, which are also analogs of ByteBuffer methods.
Or, create a "view" DoubleBuffer by calling the asDoubleBuffer() method of an
underlying ByteBuffer.

Figure 13-5. java.nio.DoubleBuffer

public abstract class DoubleBuffer extends Buffer
implements Comparable<DoubleBuffer> {
// No Constructor
// Public Class Methods
 public static DoubleBuffer allocate(int capacity);
 public static DoubleBuffer wrap(double[] array);
 public static DoubleBuffer wrap(double[] array, int offset, int length);
// Public Instance Methods
 public final double[] array();
 public final int arrayOffset();
 public abstract DoubleBuffer asReadOnlyBuffer();
 public abstract DoubleBuffer compact();
 public abstract DoubleBuffer duplicate();
 public abstract double get();
 public abstract double get(int index);
 public DoubleBuffer get(double[] dst);
 public DoubleBuffer get(double[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public DoubleBuffer put(DoubleBuffer src);
 public abstract DoubleBuffer put(double d);
 public final DoubleBuffer put(double[] src);
 public abstract DoubleBuffer put(int index, double d);
 public DoubleBuffer put(double[] src, int offset, int length);
 public abstract DoubleBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(DoubleBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

ByteBuffer.asDoubleBuffer()

Chapter 13. java.nio and Subpackages Page 11 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FloatBuffer java.nio

Java 1.4 comparable

FloatBuffer holds a sequence of float values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except
that they use float and float[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

FloatBuffer is abstract and has no constructor. Create one by calling the static
allocate() or wrap() methods, which are also analogs of ByteBuffer methods.
Or, create a "view" FloatBuffer by calling the asFloatBuffer() method of an
underlying ByteBuffer.

Figure 13-6. java.nio.FloatBuffer

public abstract class FloatBuffer extends Buffer
implements Comparable<FloatBuffer> {
// No Constructor
// Public Class Methods
 public static FloatBuffer allocate(int capacity);
 public static FloatBuffer wrap(float[] array);
 public static FloatBuffer wrap(float[] array, int offset, int length);
// Public Instance Methods
 public final float[] array();
 public final int arrayOffset();
 public abstract FloatBuffer asReadOnlyBuffer();
 public abstract FloatBuffer compact();
 public abstract FloatBuffer duplicate();
 public abstract float get();
 public abstract float get(int index);
 public FloatBuffer get(float[] dst);
 public FloatBuffer get(float[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public FloatBuffer put(FloatBuffer src);
 public abstract FloatBuffer put(float f);
 public final FloatBuffer put(float[] src);
 public abstract FloatBuffer put(int index, float f);
 public FloatBuffer put(float[] src, int offset, int length);
 public abstract FloatBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(FloatBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Chapter 13. java.nio and Subpackages Page 12 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

ByteBuffer.asFloatBuffer()

IntBuffer java.nio

Java 1.4 comparable

IntBuffer holds a sequence of int values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except
that they use int and int[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

IntBuffer is abstract and has no constructor. Create one by calling the static
allocate() or wrap() methods, which are also analogs of ByteBuffer methods.
Or, create a "view" IntBuffer by calling the asIntBuffer() method of an underlying
ByteBuffer.

Figure 13-7. java.nio.IntBuffer

public abstract class IntBuffer extends Buffer implements Comparable<IntBuffer> {
// No Constructor
// Public Class Methods
 public static IntBuffer allocate(int capacity);
 public static IntBuffer wrap(int[] array);
 public static IntBuffer wrap(int[] array, int offset, int length);
// Public Instance Methods
 public final int[] array();
 public final int arrayOffset();
 public abstract IntBuffer asReadOnlyBuffer();
 public abstract IntBuffer compact();
 public abstract IntBuffer duplicate();
 public abstract int get();
 public abstract int get(int index);
 public IntBuffer get(int[] dst);
 public IntBuffer get(int[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public IntBuffer put(IntBuffer src);
 public abstract IntBuffer put(int i);
 public final IntBuffer put(int[] src);
 public abstract IntBuffer put(int index, int i);
 public IntBuffer put(int[] src, int offset, int length);
 public abstract IntBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(IntBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Chapter 13. java.nio and Subpackages Page 13 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

ByteBuffer.asIntBuffer()

InvalidMarkException java.nio

Java 1.4 serializable unchecked

Signals that a buffer's position cannot be reset() because there is no mark defined.

Figure 13-8. java.nio.InvalidMarkException

public class InvalidMarkException extends IllegalStateException {
// Public Constructors
 public InvalidMarkException();
}

LongBuffer java.nio

Java 1.4 comparable

LongBuffer holds a sequence of long values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except
that they use long and long[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

LongBuffer is abstract and has no constructor. Create one by calling the static
allocate() or wrap() methods, which are also analogs of ByteBuffer methods.
Or, create a "view" LongBuffer by calling the asLongBuffer() method of an
underlying ByteBuffer.

Figure 13-9. java.nio.LongBuffer

Chapter 13. java.nio and Subpackages Page 14 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public abstract class LongBuffer extends Buffer
implements Comparable<LongBuffer> {
// No Constructor
// Public Class Methods
 public static LongBuffer allocate(int capacity);
 public static LongBuffer wrap(long[] array);
 public static LongBuffer wrap(long[] array, int offset, int length);
// Public Instance Methods
 public final long[] array();
 public final int arrayOffset();
 public abstract LongBuffer asReadOnlyBuffer();
 public abstract LongBuffer compact();
 public abstract LongBuffer duplicate();
 public abstract long get();
 public abstract long get(int index);
 public LongBuffer get(long[] dst);
 public LongBuffer get(long[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public LongBuffer put(LongBuffer src);
 public abstract LongBuffer put(long l);
 public final LongBuffer put(long[] src);
 public abstract LongBuffer put(int index, long l);
 public LongBuffer put(long[] src, int offset, int length);
 public abstract LongBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(LongBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Returned By

ByteBuffer.asLongBuffer()

MappedByteBuffer java.nio

Java 1.4 comparable

This class is a ByteBuffer that represents a memory-mapped portion of a file. Create a
MappedByteBuffer by calling the map() method of a
java.nio.channels.FileChannel. All MappedByteBuffer buffers are direct
buffers.

isLoaded() returns a hint as to whether the contents of the buffer are currently in
primary memory (as opposed to resident on disk). If it returns true, then operations on
the buffer will probably execute very quickly. The load() method requests (but does not
require) that the operating system load the buffer contents into primary memory. It is not
guaranteed to succeed. For buffers that are mapped in read/write mode, the force()
method outputs any changes that have been made to the buffer contents to the underlying

Chapter 13. java.nio and Subpackages Page 15 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

file. If the file is on a local device, then it is guaranteed to be updated before force()
returns. No such guarantees can be made for mapped network files.

Note that the underlying file of a MappedByteBuffer may be shared, which means that
the contents of such a buffer can change asynchronously if the contents of the file are
modified by another thread or another process (such asynchronous changes to the
underlying file may or may not be visible through the buffer; this is a platform-dependent,
and should not be relied on). Furthermore, if another thread or process truncates the file,
some or all of the elements of the buffer may no longer map to any content of the file. An
attempt to read or write such an inaccesible element of the buffer will cause an
implementation-defined exception, either immediately or at some later time.

Figure 13-10. java.nio.MappedByteBuffer

public abstract class MappedByteBuffer extends ByteBuffer {
// No Constructor
// Public Instance Methods
 public final MappedByteBuffer force();
 public final boolean isLoaded();
 public final MappedByteBuffer load();
}

Returned By

java.nio.channels.FileChannel.map()

ReadOnlyBufferException java.nio

Java 1.4 serializable unchecked

Signals that a buffer is read-only and that its put() or compact() methods are not
allowed to modify the buffer contents.

Figure 13-11. java.nio.ReadOnlyBufferException

public class ReadOnlyBufferException extends UnsupportedOperationException {
// Public Constructors
 public ReadOnlyBufferException();
}

Chapter 13. java.nio and Subpackages Page 16 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ShortBuffer java.nio

Java 1.4 comparable

ShortBuffer holds a sequence of short values for use in an I/O operation. Most of the
methods of this class are directly analogous to methods defined by ByteBuffer except
that they use short and short[] argument and return values instead of byte and
byte[] values. See ByteBuffer for details.

ShortBuffer is abstract and has no constructor. Create one by calling the static
allocate() or wrap() methods, which are also analogs of ByteBuffer methods.
Or, create a "view" ShortBuffer by calling the asShortBuffer() method of an
underlying ByteBuffer.

Figure 13-12. java.nio.ShortBuffer

public abstract class ShortBuffer extends Buffer
implements Comparable<ShortBuffer> {
// No Constructor
// Public Class Methods
 public static ShortBuffer allocate(int capacity);
 public static ShortBuffer wrap(short[] array);
 public static ShortBuffer wrap(short[] array, int offset, int length);
// Public Instance Methods
 public final short[] array();
 public final int arrayOffset();
 public abstract ShortBuffer asReadOnlyBuffer();
 public abstract ShortBuffer compact();
 public abstract ShortBuffer duplicate();
 public abstract short get();
 public abstract short get(int index);
 public ShortBuffer get(short[] dst);
 public ShortBuffer get(short[] dst, int offset, int length);
 public final boolean hasArray();
 public abstract boolean isDirect();
 public abstract ByteOrder order();
 public ShortBuffer put(ShortBuffer src);
 public abstract ShortBuffer put(short s);
 public final ShortBuffer put(short[] src);
 public abstract ShortBuffer put(int index, short s);
 public ShortBuffer put(short[] src, int offset, int length);
 public abstract ShortBuffer slice();
// Methods Implementing Comparable
5.0 public int compareTo(ShortBuffer that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Chapter 13. java.nio and Subpackages Page 17 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

ByteBuffer.asShortBuffer()

Package java.nio.channels

Java 1.4

This package is at the heart of the NIO API. A channel is a communication channel for
transferring bytes from or to a java.nio.ByteBuffer. Channels serve a similar purpose
to the InputStream and OutputStream classes of the java.io package, but are
completely unrelated to those classes, and provide important features not available with
the java.io API. The Channels class defines methods that bridge the java.io and
java.nio.channels APIs, by returning channels based on streams and streams based
on channels.

The Channel interface simply defines methods for testing whether a channel is open and
for closing a channel. The other interfaces in the package extend Channel and define
read() and write() methods for reading bytes from the channel into one or more
byte buffers and for writing bytes from one or more byte buffers to the channel.

The FileChannel class defines an channel-based API for reading and writing from files
(and also provides other important file functionality such as file locking and memory
mapping that is not available through the java.io package). SocketChannel,
ServerSocketChannel, and DatagramChannel are channels for communication over
a network, and Pipe defines two inner classes that use the channel abstraction for
communication between threads.

The network and pipe channels are all subclasses of the SelectableChannel class, and
may be put into nonblocking mode, in which calls to read() and write() return
immediately, even if the channel is not ready for reading or writing. nonblocking IO and
networking is not possible using the stream abstraction of the java.io and java.net
packages, and is perhaps the most important new feature of the java.nio API. The
Selector class is crucial to the efficient use of nonblocking channels: it allows a program
to register interested in I/O operations on several different channels at once. A call to the
select() method of a Selector will block until one of those channels becomes ready
for I/O, and will then wake up. This technique is important for writing scalable high-
performance network servers. See Selector and SelectionKey for details.

Chapter 13. java.nio and Subpackages Page 18 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finally, this package allows for very fine-grained error handling by defining a large number
of exception classes, several of which may be thrown by only a single method within the
java.nio API.

Interfaces

public interface ByteChannel extends ReadableByteChannel, WritableByteChannel;
public interface Channel extends java.io.Closeable;
public interface GatheringByteChannel extends WritableByteChannel;
public interface InterruptibleChannel extends Channel;
public interface ReadableByteChannel extends Channel;
public interface ScatteringByteChannel extends ReadableByteChannel;
public interface WritableByteChannel extends Channel;

Classes

public final class Channels;
public abstract class DatagramChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public abstract class FileChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;
public static class FileChannel.MapMode;
public abstract class FileLock;
public abstract class Pipe;
public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements GatheringByteChannel, WritableByteChannel;
public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ReadableByteChannel, ScatteringByteChannel;
public abstract class SelectableChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements Channel;
public abstract class SelectionKey;
public abstract class Selector;
public abstract class ServerSocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel;
public abstract class SocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel;

Exceptions

public class AlreadyConnectedException extends IllegalStateException;
public class CancelledKeyException extends IllegalStateException;
public class ClosedChannelException extends java.io.IOException;
 public class AsynchronousCloseException extends ClosedChannelException;
 public class ClosedByInterruptException extends AsynchronousCloseException;
public class ClosedSelectorException extends IllegalStateException;
public class ConnectionPendingException extends IllegalStateException;
public class FileLockInterruptionException extends java.io.IOException;
public class IllegalBlockingModeException extends IllegalStateException;
public class IllegalSelectorException extends IllegalArgumentException;
public class NoConnectionPendingException extends IllegalStateException;
public class NonReadableChannelException extends IllegalStateException;
public class NonWritableChannelException extends IllegalStateException;
public class NotYetBoundException extends IllegalStateException;
public class NotYetConnectedException extends IllegalStateException;
public class OverlappingFileLockException extends IllegalStateException;
public class UnresolvedAddressException extends IllegalArgumentException;
public class UnsupportedAddressTypeException extends IllegalArgumentException;

AlreadyConnectedException java.nio.channels

Chapter 13. java.nio and Subpackages Page 19 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable unchecked

Thrown by a call to connect() on a SocketChannel that is already connected.

Figure 13-13. java.nio.channels.AlreadyConnectedException

public class AlreadyConnectedException extends IllegalStateException {
// Public Constructors
 public AlreadyConnectedException();
}

AsynchronousCloseException java.nio.channels

Java 1.4 serializable checked

Signals the termination of a blocked I/O operation because another thread closed the
channel asynchronously. See also ClosedByInterruptException.

Figure 13-14. java.nio.channels.AsynchronousCloseException

public class AsynchronousCloseException extends ClosedChannelException {
// Public Constructors
 public AsynchronousCloseException();
}

Subclasses

ClosedByInterruptException
Thrown By

java.nio.channels.spi.AbstractInterruptibleChannel.end()

ByteChannel java.nio.channels

Java 1.4 closeable

Chapter 13. java.nio and Subpackages Page 20 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This interface extends ReadableByteChannel and WritableByteChannel but adds
no methods or constants of its own. It exists simply as a convience that to unify the two
interfaces.

Figure 13-15. java.nio.channels.ByteChannel

public interface ByteChannel extends ReadableByteChannelWritableByteChannel {
}

Implementations

DatagramChannel, FileChannel, SocketChannel

CancelledKeyException java.nio.channels

Java 1.4 serializable unchecked

Signals an attempt to use a SelectionKey whose cancel() method has previously
been called.

Figure 13-16. java.nio.channels.CancelledKeyException

public class CancelledKeyException extends IllegalStateException {
// Public Constructors
 public CancelledKeyException();
}

Channel java.nio.channels

Java 1.4 closeable

This interface defines a communication channel for input and output. The Channel
interface is a high-level generic interface which is extended by more specific interfaces,
such as ReadableByteChannel and WritableByteChannel. Channel defines only
two methods: isOpen() determines whether a channel is open, and close() closes

Chapter 13. java.nio and Subpackages Page 21 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a channel. Channels are open when they are first created. Once closed, a channel remains
closed forever, and no further I/O operations may take place through it.

Many channel implementations are interruptible and asynchonously closeable, and
implement the InterruptibleChannel interface to advertise this fact. See
InterruptibleChannel for details.

Figure 13-17. java.nio.channels.Channel

public interface Channel extends java.io.Closeable {
// Public Instance Methods
 void close() throws java.io.IOException;
 boolean isOpen();
}

Implementations

InterruptibleChannel, ReadableByteChannel, SelectableChannel,
WritableByteChannel,
java.nio.channels.spi.AbstractInterruptibleChannel
Returned By

System.inheritedChannel(),
java.nio.channels.spi.SelectorProvider.inheritedChannel()

Channels java.nio.channels

Java 1.4

This class defines static methods that provide a bridge between the byte stream and
character stream classes of the java.io package and the channel classes of
java.nio.channels. Channels is never intended to be instantiated: it serves solely as
a placeholder for static methods. These methods create byte channels based on
java.io byte streams, and create java.io byte streams based on byte channels. Note
that the channel objects returned by the newChannel() methods may not implement
InterruptibleChannel, and so may not be asynchonously closeable and interruptible
like other channel classes in this package. Channels also defines methods to create
character streams (java.io.Reader and java.io.Writer) based on the combination
of a byte channel and a character encoding. The encoding may be specified by charset
name, or with a CharsetDecoder or CharsetEncoder (see java.nio.charset).

public final class Channels {
// No Constructor
// Public Class Methods

Chapter 13. java.nio and Subpackages Page 22 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static ReadableByteChannel newChannel(java.io.InputStream in);
 public static WritableByteChannel newChannel(java.io.OutputStream out);
 public static java.io.InputStream newInputStream(ReadableByteChannel ch);
 public static java.io.OutputStream newOutputStream(WritableByteChannel ch);
 public static java.io.Reader newReader(ReadableByteChannel ch,
String csName);
 public static java.io.Reader newReader(ReadableByteChannel ch,
java.nio.charset.CharsetDecoder dec, int minBufferCap);
 public static java.io.Writer newWriter(WritableByteChannel ch,
String csName);
 public static java.io.Writer newWriter(WritableByteChannel ch,
java.nio.charset.CharsetEncoder enc, int minBufferCap);
}

ClosedByInterruptException java.nio.channels

Java 1.4 serializable checked

An exception of this type is thrown by a thread blocked in an I/O operation on a channel
when another thread calls its interrupt() method. This exception is a subclass of
AsynchronousCloseException and the channel will be closed as a side-effect of the
thread interruption.

Figure 13-18. java.nio.channels.ClosedByInterruptException

public class ClosedByInterruptException extends AsynchronousCloseException {
// Public Constructors
 public ClosedByInterruptException();
}

ClosedChannelException java.nio.channels

Java 1.4 serializable checked

Signals an attempt to perform I/O on a channel that has been closed with the close()
method, or that is closed for a particular type of I/O operation (a SocketChannel, for
example, may have its read and write halves shut down independently.) Channels may be
closed asynchronously, and threads blocking to complete an I/O operation will throw a
subclass of this exception type. See AsynchronousCloseException and
ClosedByInterruptException.

Chapter 13. java.nio and Subpackages Page 23 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-19. java.nio.channels.ClosedChannelException

public class ClosedChannelException extends java.io.IOException {
// Public Constructors
 public ClosedChannelException();
}

Subclasses

AsynchronousCloseException
Thrown By

SelectableChannel.register(),
java.nio.channels.spi.AbstractSelectableChannel.register()

ClosedSelectorException java.nio.channels

Java 1.4 serializable unchecked

Signals an attempt to use a Selector object whose close() method has been called.

Figure 13-20. java.nio.channels.ClosedSelectorException

public class ClosedSelectorException extends IllegalStateException {
// Public Constructors
 public ClosedSelectorException();
}

ConnectionPendingException java.nio.channels

Java 1.4 serializable unchecked

Signals a call to the connect() method of a SocketChannel when there is already a
connection pending for that channel. See
SocketChannel.isConnectionPending().

Chapter 13. java.nio and Subpackages Page 24 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-21. java.nio.channels.ConnectionPendingException

public class ConnectionPendingException extends IllegalStateException {
// Public Constructors
 public ConnectionPendingException();
}

DatagramChannel java.nio.channels

Java 1.4 closeable

This class implements a communication channel based on network datagrams. Obtain a
DatagramChannel by calling the static open() method. Call socket() to obtain the
java.net.DatagramSocket object on which the channel is based if you need to set any
socket options to control low-level networking details.

The send() method sends the remaining bytes of the specified ByteBuffer to the host
and port specified in the java.net.SocketAddress in the form of a datagram.
receive() does the opposite: it receives a datagram, stores its content into the specified
buffer (discarding any bytes that do not fit) and then returns a SocketAddress that
specifies the sender of the datagram (or returns null if the channel was in nonblocking
mode and no datagram was waiting).

The send() and receive() methods typically perform security checks on each
invocation to see if the application has permissions to communicate with the remote host.
If your application will use a DatagramChannel to exchange datagrams with a single
remote host and port, use the connect() method to connect to a specified
SocketAddress. The connect() method performs the required security checks once
and allows future communication with the specified address without the overhead. Once
a DatagramChannel is connected, you can use the standard read() and write()
methods defined by the ReadableByteChannel, WritableByteChannel,
GatheringByteChannel and ScatteringByteChannel interfaces. Like the
receive() method, the read() methods silently discard any received bytes that do
not fit in the specified ByteBuffer. The read() and write() methods throw a
NotYetConnected exception if connect() has not been called.

DatagramChannel is a SelectableChannel; its validOps() method specifies that
read and write operations may be selected. DatagramChannel objects are thread-safe.

Chapter 13. java.nio and Subpackages Page 25 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Read and write operations may proceed concurrently, but the class ensures that only one
thread may read and one thread write at a time.

Figure 13-2. java.nio.channels.DatagramChannel

public abstract class DatagramChannel extends java.nio.channels.spi.
AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected DatagramChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Class Methods
 public static DatagramChannel open() throws java.io.IOException;
// Public Instance Methods
 public abstract DatagramChannel connect(java.net.SocketAddress remote)
throws java.io.IOException;
 public abstract DatagramChannel disconnect() throws java.io.IOException;
 public abstract boolean isConnected();
 public abstract java.net.SocketAddress receive(java.nio.ByteBuffer dst)
throws java.io.IOException;
 public abstract int send(java.nio.ByteBuffer src, java.net.SocketAddress
target) throws java.io.IOException;
 public abstract java.net.DatagramSocket socket();
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
throws java.io.IOException;
// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

java.net.DatagramSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openDatagramChannel()

FileChannel java.nio.channels

Chapter 13. java.nio and Subpackages Page 26 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 closeable

This class implements a communication channel for efficiently reading and and writing
files. It implements the standard read() and write() methods of the
ReadableByteChannel, WritableByteChannel, GatheringByteChannel and
ScatteringByteChannel methods. In addition, however, FileChannel provides
methods for: random-access to the file, efficient transfer of bytes between the file and
another channel, file locking, memory mapping, querying and setting the file size and
forcing buffered updates to be written to disk. These important features are described in
further detail below. Note that since file operations do not typically block for extended
periods the way network operations can, FileChannel does not subclass
SelectableChannel (it is the only channel class that does not) and cannot be used with
Selector objects.

FileChannel has no public constructor and no static factory methods. To obtain a
FileChannel, first create a FileInputStream, FileOutputStream, or
RandomAccessFile object (see the java.io package) and then call the
getChannel() method of that object. If you use a FileInputStream, the resulting
channel will allow reading but not writing, and if you use a FileOutputStream, the
channel will allow writing but not reading. If you obtain a FileChannel from a
RandomAccessFile, then the channel will allow reading, or both reading and writing,
depending on the mode argument to the RandomAccessFile constructor.

A FileChannel has a position or file pointer that specifies the current point in the file.
You can set or query the file position with two methods, both of which share the name
position(). The position of a FileChannel and of the stream or
RandomAccessFile from which it is derived are always the same: changing the position
of the channel changes the position of the stream, and vice versa. The initial position of a
FileChannel is the position of the stream or RandomAccessFile when the
getChannel() method was called. If you create a FileChannel from a
FileOutputStream that was opened in append mode, then any output to the channel
always occurs at the end of the file, and sets the file position to the end end of the file.

Once you have a FileChannel object, you can use the standard read() and
write() methods defined by the various channel interfaces. In addition to updating the
buffer position as they read and write bytes, these methods also update the file position to
or from which those bytes are written or read. These standard read() methods return
the number of bytes actually read, and return -1 if there are no bytes left in the file to read.
The write() methods enlarge the file if they write past the current end-of-file.

Chapter 13. java.nio and Subpackages Page 27 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FileChannel also defines position-independent read() and write() methods that
take a file position as an explicit argument: they read or write starting at that position of
the file, and although they update the position of the ByteBuffer, they do not update the
file position of the FileChannel. If the specified position is past the end-of-file, the read()
method does not read any bytes and returns -1, and the write() method enlarges the
file, leaving any bytes between the old end-of-file and the specified position undefined.

It is common to read bytes from a FileChannel and then immediately write them out to
some other channel (such as a SocketChannel: think of a web server, for example), or
to read bytes from a channel and immediately write them to a FileChannel (consider
an FTP client). FileChannel provides two methods, transferTo() and
transferFrom() that do this very efficiently, without the need for a temporary
ByteBuffer. transferTo() reads up to the specified number of bytes starting at the
specified location from this FileChannel and writes them to the specified channel. It
does not alter the file position of the FileChannel, and it returns the number of bytes
actually transferred. transferFrom() does the reverse: it reads up to the specified
number of available bytes from the specified channel, and writes them to this
FileChannel at the specified location, without altering the file position of this channel,
and returns the actual number of bytes transferred. For both methods, if the destination
or source channel is a FileChannel itself, then the file position of that channel is updated.

The size() method returns the size (in bytes) of the underlying file. truncate()
reduces the file size to the specified value, discarding any file content that exceeds that
size. If the specified size is greater than or equal to the current file size, the file is unchanged.
If the file position is greater than the new size of the file, it the position is changed to the
new size.

Use the force() method to force any buffered modifications to the file to be written to
the underlying storage device. If the file resides on a local device, (as opposed to a network
filesystem, for example) then force() guarantees that any changes to the file made since
the channel was opened or since a previous call to force() will have been written to the
device. The argument to this method is a hint as to whether file meta-data (such as last
modification time) is to be forced out in addition to file content. If this argument is
true, the system will force content and meta-data. If false, the system may omit updates
to meta-data. Note that force() is only required to output change made directly through
the FileChannel. File updates made through a MappedByteBuffer returned by the
map() method (described below)y should be forced out with the force() method of
MappedByteBuffer.

FileChannel defines two blocking lock() and two nonblocking tryLock()
methods for locking a file or a region of a file against concurrent access by another program.

Chapter 13. java.nio and Subpackages Page 28 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(These methods are not suitable for preventing concurrent access to a file by two threads
within the same Java virtual machine.) The no-argument versions of these methods
attempt to acquire an exclusive lock on the entire file. The three-argument versions of the
methods attempt to lock a specified region of the file, and may acquire shared locks in
addition to exclusive locks. (A shared lock prevents any other process from acquiring an
exclusive lock, but does not prevent other shared locks: typically, you acquire a shared lock
when reading a file that should not be concurrently updated, and acquire an exclusive lock
before writing file content to ensure that no one else is trying to read it at the same time.)
The tryLock() methods return a FileLock object, or null if there was already a
conflicting lock on the file. The lock() methods block if there is already a conflicting
lock and never return null. See FileLock for more information about locks. The
FileChannel file locking mechanism uses whatever locking capability is provided by the
underlying platform. Some operating systems enforce file locking: if one process holds a
lock, other processes are prevented by the operating system from accessing the file. Other
operating systems merely prevent other processes from acquiring a conflicting lock: in this
case, successful file locking requires the cooperation of all processes. Some operating
systems do not support shared locks: on these systems an exclusive lock is returned even
when a shared lock is requested.

The map() method returns a MappedByteBuffer that represents the specified region
of the file. File contents can be read directly from the buffer, and (if the mapping is done
in read/write mode) bytes placed in the buffer will be written to the file. The mapping
represented by a MappedByteBuffer remains valid until the buffer is garbage collected;
the buffer continues to function even if the FileChannel from which it was created is
closed. File mappings can be done in three different modes which specify whether bytes
can be written into the buffer and what happens when this is done. See
FileChannel.MapMode for a description of the three modes.

The map() method relies on the memory-mapping facilities provided by the underlying
operating system. This means that a number of details may vary from implementation to
implementation. In particular, it is not specified whether changes to the underlying file
made after the call to map() are visible through the MappedByteBuffer. Using a
mapped file is typically more efficient that an unmapped file only when the file is a large
one.

Chapter 13. java.nio and Subpackages Page 29 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-23. java.nio.channels.FileChannel

public abstract class FileChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel
 implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected FileChannel();
// Nested Types
 public static class MapMode;
// Public Instance Methods
 public abstract void force(boolean metaData) throws java.io.IOException;
 public final FileLock lock() throws java.io.IOException;
 public abstract FileLock lock(long position, long size, boolean shared)
 throws java.io.IOException;
 public abstract java.nio.MappedByteBuffer map(FileChannel.MapMode mode,
 long position, long size) throws java.io.IOException;
 public abstract long position() throws java.io.IOException;
 public abstract FileChannel position(long newPosition)
 throws java.io.IOException;
 public abstract int read(java.nio.ByteBuffer dst, long position)
 throws java.io.IOException;
 public abstract long size() throws java.io.IOException;
 public abstract long transferFrom(ReadableByteChannel src, long position,
 long count) throws java.io.IOException;
 public abstract long transferTo(long position, long count,
 WritableByteChannel target) throws java.io.IOException;
 public abstract FileChannel truncate(long size) throws java.io.IOException;
 public final FileLock tryLock() throws java.io.IOException;
 public abstract FileLock tryLock(long position, long size, boolean shared)
 throws java.io.IOException;
 public abstract int write(java.nio.ByteBuffer src, long position)
 throws java.io.IOException;
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
 throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
 int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
 throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
 throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
 int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
 throws java.io.IOException;
}

Passed To

FileLock.FileLock()
Returned By

java.io.FileInputStream.getChannel(),
java.io.FileOutputStream.getChannel(),
java.io.RandomAccessFile.getChannel(), FileLock.channel()

Chapter 13. java.nio and Subpackages Page 30 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FileChannel.MapMode java.nio.channels

Java 1.4

This class defines three constants that define the legal values of the mode argument to the
map() method of the FileChannel class. The constants and their meanings are the
following:

public static class FileChannel.MapMode {
// No Constructor
// Public Constants
 public static final FileChannel.MapMode PRIVATE;
 public static final FileChannel.MapMode READ_ONLY;
 public static final FileChannel.MapMode READ_WRITE;
// Public Methods Overriding Object
 public String toString();
}

Passed To

FileChannel.map()

FileLock java.nio.channels

Java 1.4

A FileLock object is returned by the lock() and tryLock() methods of
FileChannel and represents a lock on a file or a region of a file. See FileChannel for
more information on file locking with those methods. When a lock is no longer required,
it should be released with the release() method. A lock will also be released if the
channel is closed, or when the virtual machine terminates. isValid() returns true if
the lock has not yet been released, and returns false if it has been released.

The channel() , position(), size() and isShared() methods return basic
information about the lock: the FileChannel that was locked, the region of the file that
was locked, and whether the lock is shared or exclusive. If the entire file is locked, then the
size() method returns a value (Long.MAX_VALUE) that is much greater than the actual
file size. If the underlying operating system does not support shared locks, then
isShared() may return false even if a shared lock was requested. overlaps() is a
convenience method that returns true if the position and size of this lock overlap the
specified position and size.

public abstract class FileLock {
// Protected Constructors

Chapter 13. java.nio and Subpackages Page 31 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected FileLock(FileChannel channel, long position, long size,
 boolean shared);
// Public Instance Methods
 public final FileChannel channel();
 public final boolean isShared();
 public abstract boolean isValid();
 public final boolean overlaps(long position, long size);
 public final long position();
 public abstract void release() throws java.io.IOException;
 public final long size();
// Public Methods Overriding Object
 public final String toString();
}

Returned By

FileChannel.{lock(), tryLock()}

FileLockInterruptionException java.nio.channels

Java 1.4 serializable checked

Signals that the interrupt() method of a thread blocked waiting to acquire a file lock
was called. See FileChannel.lock().

Figure 13-24. java.nio.channels.FileLockInterruptionException

public class FileLockInterruptionException extends java.io.IOException {
// Public Constructors
 public FileLockInterruptionException();
}

GatheringByteChannel java.nio.channels

Java 1.4 closeable

This interface extends WritableByteChannel and adds two additional write()
methods that can "gather" bytes from one or more buffers and write them out to the
channel. These methods are passed an array of ByteBuffer objects, and, optionally, an
offset and length that define the relevant sub-array to be used. The write() method
attempts to write all the remaining bytes from all the specified buffers (in the order in
which they appear in the buffer array) to the channel. The return value of the method is

Chapter 13. java.nio and Subpackages Page 32 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the number of bytes actually written. See WritableByteChannel for a discussion of
exceptions and thread-safety that apply to these write() methods as well.

Figure 13-25. java.nio.channels.GatheringByteChannel

public interface GatheringByteChannel extends WritableByteChannel {
// Public Instance Methods
 long write(java.nio.ByteBuffer[] srcs) throws java.io.IOException;
 long write(java.nio.ByteBuffer[] srcs, int offset, int length)
 throws java.io.IOException;
}

Implementations

DatagramChannel, FileChannel, Pipe.SinkChannel, SocketChannel

IllegalBlockingModeException java.nio.channels

Java 1.4 serializable unchecked

Signals an attempt to use a channel in the wrong blocking mode. An exception of this type
is thrown by SelectableChannel.register() if the channel is not in nonblocking
mode.

Figure 13-26. java.nio.channels.IllegalBlockingModeException

public class IllegalBlockingModeException extends IllegalStateException {
// Public Constructors
 public IllegalBlockingModeException();
}

IllegalSelectorException java.nio.channels

Java 1.4 serializable unchecked

Signals an attempt to register a SelectableChannel with a Selector when the channel
and the selector were not created by the same
java.nio.channels.spi.SelectorProvider.

Chapter 13. java.nio and Subpackages Page 33 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-27. java.nio.channels.IllegalSelectorException

public class IllegalSelectorException extends IllegalArgumentException {
// Public Constructors
 public IllegalSelectorException();
}

InterruptibleChannel java.nio.channels

Java 1.4 closeable

Channels that implement this marker interface have two important properties that are
relevant to multithreaded programs: they are asynchonously closeable and
interruptible. When the close() method of an InterruptibleChannel is called, any
other thread that is blocked waiting for an I/O operation to complete on that channel will
stop blocking and receive an AsynchronousCloseException. Furthermore, if a thread
is blocked waiting for an I/O operation to complete on an InterruptibleChannel, then
another thread may call the interrupt() method of the blocked thread. This causes
the interrupt status of the blocked thread to be set and causes the thread to wake up and
receive an ClosedByInterruptException (a subclass of
AsynchronousCloseException). As the name of this interrupt implies, the channel
that the thread was blocked on is closed as a side-effect of the thread interruption. There
is no way to interrupt a blocked thread without closing the channel upon which it is
blocked. This ability to interrupt a blocked thread is particularly noteworthy because it has
never worked reliably with the older java.io API.

All the concrete channel implementations that are part of this package implement
InterruptibleChannel. Note, however, that methods such as
Channels.newChannel() may return channel objects that are not interruptible. You
can use the instanceof to determine whether an unknown channel object implements
this interface.

Figure 13-28. java.nio.channels.InterruptibleChannel

public interface InterruptibleChannel extends Channel {
// Public Instance Methods

Chapter 13. java.nio and Subpackages Page 34 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 void close() throws java.io.IOException;
}

Implementations

java.nio.channels.spi.AbstractInterruptibleChannel

NoConnectionPendingException java.nio.channels

Java 1.4 serializable unchecked

Signals that SocketChannel.finishConnect() was called without a previous call to
SocketChannel.connect().

Figure 13-29. java.nio.channels.NoConnectionPendingException

public class NoConnectionPendingException extends IllegalStateException {
// Public Constructors
 public NoConnectionPendingException();
}

NonReadableChannelException java.nio.channels

Java 1.4 serializable unchecked

Signals a call to the read() method of a readable channel that is not open for reading,
such as a FileChannel created from a FileOutputStream.

Figure 13-30. java.nio.channels.NonReadableChannelException

public class NonReadableChannelException extends IllegalStateException {
// Public Constructors
 public NonReadableChannelException();
}

Chapter 13. java.nio and Subpackages Page 35 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

NonWritableChannelException java.nio.channels

Java 1.4 serializable unchecked

Signal a call to a write() method of a writable channel that is not open for writing, such
as a FileChannel created from a FileInputStream.

Figure 13-31. java.nio.channels.NonWritableChannelException

public class NonWritableChannelException extends IllegalStateException {
// Public Constructors
 public NonWritableChannelException();
}

NotYetBoundException java.nio.channels

Java 1.4 serializable unchecked

Signals a call to ServerSocketChannel.accept() before the underlying server
socket has been bound to a local port. Call socket().bind() to bind the
java.net.ServerSocket that underlies the ServerSocketChannel.

Figure 13-32. java.nio.channels.NotYetBoundException

public class NotYetBoundException extends IllegalStateException {
// Public Constructors
 public NotYetBoundException();
}

NotYetConnectedException java.nio.channels

Chapter 13. java.nio and Subpackages Page 36 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable unchecked

Signals an attempt to read() or write() on a SocketChannel that is not yet
connected to a remote host. See SocketChannel.connect().

Figure 13-33. java.nio.channels.NotYetConnectedException

public class NotYetConnectedException extends IllegalStateException {
// Public Constructors
 public NotYetConnectedException();
}

OverlappingFileLockException java.nio.channels

Java 1.4 serializable unchecked

This exception is thrown by the lock() and tryLock() methods of FileChannel
if the requested lock region overlaps a file lock that is already held by some thread in this
JVM, or if there is already a thread in this JVM waiting to lock an overlapping region of
the same file. The FileChannel file locking mechanism is designed to lock files against
concurrent access by two separate processes. Two threads within the same JVM should
not attempt to acquire a lock on overlapping regions of the same file, and any attempt to
do so causes an exception of this type to be thrown.

Figure 13-34. java.nio.channels.OverlappingFileLockException

public class OverlappingFileLockException extends IllegalStateException {
// Public Constructors
 public OverlappingFileLockException();
}

Pipe java.nio.channels

Chapter 13. java.nio and Subpackages Page 37 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

A pipe is an abstraction that allows the one-way transfer of bytes from one thread to
another. A pipe has a "read end" and a "write end" which are represented by objects that
implement the ReadableByteChannel and WritableByteChannel interfaces.
Create a new pipe with the static Pipe.open() method. Call the sink() method to
obtain the Pipe.SinkChannel object that represents the write end of the pipe, and call
the source() method to obtain the Pipe.SourceChannel object that represents the
read end of the pipe.

Programmers familiar with Unix-style pipes may find the names and return values of the
sink() and source() methods confusing. A Unix pipe is an interprocess
communication mechanism that is tied to two specific processes, one of which is a source
of bytes and one of which is a destination, or sink, for those bytes. With this conceptual
model of a pipe, you would expect the source to obtain the channel it writes to with the
source() method and the sink to obtain the channel it reads from with the sink()
method.

This Pipe class is not a Unix-style pipe, however. While it can be used for communication
between two threads, the ends of the pipe are not tied to those threads, and there need not
be a single source thread and a single sink thread. Therefore, in the Pipe API it is the pipe
itself that serves as the source and the sink of bytes: bytes are read from the source end of
the pipe, and are written to the sink end.

public abstract class Pipe {
// Protected Constructors
 protected Pipe();
// Nested Types
 public abstract static class SinkChannel extends java.nio.channels.spi.
 AbstractSelectableChannel implements GatheringByteChannel,
 WritableByteChannel;
 public abstract static class SourceChannel extends java.nio.channels.spi.
 AbstractSelectableChannel implements ReadableByteChannel,
 ScatteringByteChannel;
// Public Class Methods
 public static Pipe open() throws java.io.IOException;
// Public Instance Methods
 public abstract Pipe.SinkChannel sink();
 public abstract Pipe.SourceChannel source();
}

Returned By

java.nio.channels.spi.SelectorProvider.openPipe()

Pipe.SinkChannel java.nio.channels

Chapter 13. java.nio and Subpackages Page 38 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 closeable

This public inner class is represents the write end of a pipe. Bytes written to a
Pipe.SinkChannel become available on the corresponding Pipe.SourceChannel of
the pipe. Obtain a Pipe.SinkChannel by creating a Pipe object with Pipe.open()
and then calling the sink() method of that object. See also the containing Pipe class.

Pipe.SinkChannel implements WritableByteChannel and
GatheringByteChannel and defines the write() methods of those interfaces. This
class subclasses SelectableChannel, so that it can be used with a Selector. It
overrides the abstract validOps() method of SelectableChannel to return
SelectionKey.OP_WRITE, but defines no new methods of its own.

public abstract static class Pipe.SinkChannel extends java.nio.channels.spi.
AbstractSelectableChannel implements GatheringByteChannel, WritableByteChannel {
// Protected Constructors
 protected SinkChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

Pipe.sink()

Pipe.SourceChannel java.nio.channels

Java 1.4 closeable

This public inner class is represents the read end of a pipe. Bytes that are written to the
corresponding write end of the pipe (see Pipe.SinkChannel) become available for
reading through this channel. Obtain a Pipe.SourceChannel by creating a Pipe object
with Pipe.open() and then calling the source() method of that object. See also the
containing Pipe class.

Pipe.SourceChannel implements ReadableByteChannel and
ScatteringByteChannel and defines the read() methods of those interfaces. This
class subclasses SelectableChannel, so that it can be used with a Selector. It
overrides the abstract validOps() method of SelectableChannel to return
SelectionKey.OP_READ, but defines no new methods of its own.

public abstract static class Pipe.SourceChannel extends java.nio.channels.spi.
AbstractSelectableChannel implements ReadableByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected SourceChannel(java.nio.channels.spi.SelectorProvider provider);

Chapter 13. java.nio and Subpackages Page 39 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Methods Overriding SelectableChannel
 public final int validOps(); constant
}

Returned By

Pipe.source()

ReadableByteChannel java.nio.channels

Java 1.4 closeable

This subinterface of Channel defines a single key read() method which reads bytes
from the channel and stores them in the specified ByteBuffer, updating the buffer
position as it does so. read() attempts to read as many bytes as will fit in the specified
buffer, (see Buffer.remaining()) but may read fewer than this. If the channel is a
nonblocking channel, for example, the read() will return immediately, even if there are
no bytes available to be read. read() returns the number of bytes actually read (which
may be zero in the nonblocking case), or returns -1 if there are no more bytes to be read in
the channel (if, for example, the end of a file has been reached, or the other end of a socket
has been closed.)

read() is declared to throw an IOException. More specifically, it may throw a
ClosedChannelException if the channel is closed. If the channel is closed
asynchronously, or if a blocked thread is interrupted, the read() method may terminate
with an AsynchronousCloseException or a ClosedByInterruptException.
read() may also throw an unchecked NonReadableChannelException if it is called
on a channel that was not opened or configured to allow reading.

ReadableByteChannel implementations are required to be thread-safe: only one
thread may perform a read operation on a channel at a time. If a read operation is in
progress, then any call to read() will block until the in-progress operation completes.
Some channel implementations may allow read and write operations to proceed
concurrently, but none will allow two read operations to proceed at the same time.

Figure 13-35. java.nio.channels.ReadableByteChannel

public interface ReadableByteChannel extends Channel {
// Public Instance Methods
 int read(java.nio.ByteBuffer dst) throws java.io.IOException;
}

Chapter 13. java.nio and Subpackages Page 40 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

ByteChannel, Pipe.SourceChannel, ScatteringByteChannel
Passed To

Channels.{newInputStream(), newReader()},
FileChannel.transferFrom(), java.util.Scanner.Scanner()
Returned By

Channels.newChannel()

ScatteringByteChannel java.nio.channels

Java 1.4 closeable

This interface extends ReadableByteChannel and adds two additional read()
methods that read bytes for a channel and "scatter" them to an array (or subarray) of
buffers. These methods are passed an array of ByteBuffer objects, and, optionally, an
offset and length that define the region of the array to be used. The read() method
attempts to read enough bytes from the channel to fill each of the specified buffers in the
order in which they appear in the buffer array (the "scattering" process is actually much
more orderly and linear than the name implies). The return value of the method is the
number of bytes actually read, which may be different than the sum of the remaining bytes
in the buffers. See ReadableByteChannel for a discussion of exceptions and thread-
safety that apply to these read() methods as well.

Figure 13-36. java.nio.channels.ScatteringByteChannel

public interface ScatteringByteChannel extends ReadableByteChannel {
// Public Instance Methods
 long read(java.nio.ByteBuffer[] dsts) throws java.io.IOException;
 long read(java.nio.ByteBuffer[] dsts, int offset, int length)
throws java.io.IOException;
}

Implementations

DatagramChannel, FileChannel, Pipe.SourceChannel, SocketChannel

SelectableChannel java.nio.channels

Java 1.4 closeable

Chapter 13. java.nio and Subpackages Page 41 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This abstract class defines the API for channels that can be used with a Selector object
to allow a thread to block while waiting for activity on any of a group of channels. All
channel classes in the java.nio.channels package except for FileChannel are
subclasses of SelectableChannel.

A selectable channel may only be registered with a Selector if it is nonblocking, so this
class defines the configureBlocking() method. Pass false to this method to put a
channel into nonblocking mode, or pass true to make calls to its read() and/or
write() methods block. Use isBlocking() to determine the current blocking mode
of a selectable channel.

Register a SelectableChannel with a Selector by calling the register() method
of the channel (not of the selector). There are two versions of this method: both take a
Selector object and a bitmask that specifies the set of channel operations that are to be
"selected" on that channel. (see SelectionKey for the constants that can be OR-ed
together to form this bitmask). Both methods return a SelectionKey object that
represents the registration of the channel with the selector. One version of the
register() method also takes an arbitrary object argument which serves as an
"attachment" to the SelectionKey and allows you to associate arbitrary data with it. The
validOps() method returns a bitmask that specifies the set of operations that a
particular channel object allows to be selected. The bitmask passed to register()
may only contain bits that are set in this validOps() value.

Note that SelectableChannel does not define a deregister() method. Instead, to
remove a channel from the set of channels being monitored by a Selector, you must call
the cancel() method of the SelectionKey returned by register().

Call isRegistered() to determine whether a SelectableChannel is registered with
any Selector. (Note that a single channel may be registered with more than one
Selector.) If you did not keep track of the SelectionKey returned by a call to
register(), you can query it with the keyFor() method.

See Selector and SelectionKey for further details on multiplexing selectable
channels.

Figure 13-37. java.nio.channels.SelectableChannel

public abstract class SelectableChannel extends java.nio.channels.spi.
AbstractInterruptibleChannel implements Channel {
// Protected Constructors

Chapter 13. java.nio and Subpackages Page 42 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected SelectableChannel();
// Public Instance Methods
 public abstract Object blockingLock();
 public abstract SelectableChannel configureBlocking(boolean block)
 throws java.io.IOException;
 public abstract boolean isBlocking();
 public abstract boolean isRegistered();
 public abstract SelectionKey keyFor(Selector sel);
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public final SelectionKey register(Selector sel, int ops)
 throws ClosedChannelException;
 public abstract SelectionKey register(Selector sel, int ops, Object att)
 throws ClosedChannelException;
 public abstract int validOps();
}

Subclasses

java.nio.channels.spi.AbstractSelectableChannel
Returned By

SelectionKey.channel(),
java.nio.channels.spi.AbstractSelectableChannel.configureBlockin
g()

SelectionKey java.nio.channels

Java 1.4

A SelectionKey represents the registration of a SelectableChannel with a
Selector, and serves to identify a selected channel and the operations that are ready to
be performed on that channel. After a call to the select() method of a selector, the
selectedKeys() method of the selector returns a Set of SelectionKey objects to
identify the channel or channels that are ready for reading, for writing, or for another
operation.

Create a SelectionKey by passing a Selector object to the register() method of
a SelectableChannel. The channel() and selector() methods of the returned
SelectionKey return the SelectableChannel and Selector objects associated with
that key.

When you no longer wish the channel to be registered with the selector, call the
cancel() method of the SelectionKey. isValid() determines whether a
SelectionKey is still "valid"—it returns true unless the cancel() method has been
called, the channel has been closed or the selector has been closed.

The main purpose of a SelectionKey is to hold the "interest set" of channel operations
that the selector should monitor for the channel, and also the "ready set" of operations that

Chapter 13. java.nio and Subpackages Page 43 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the selector has determined are ready to proceed on the channel. Both sets are represented
as integer bitmasks (not java.util.Set objects) formed by OR-ing together any of the
OP_ constants defined by this class. Those constants are the following:

The no-argument version of the interestOps() method allows you to query the interest
set. The inital value of the interest set the bitmask that was passed to the register()
method of the channel. It can be changed, however, by passing a new bitmask to the one-
argument version of interestOps(). (Note that the same method name is used to both
query and set the interest set.) The current state of the ready set can be queried with
readyOps(). You can also use the convenience methods isReadable(),
isWritable() isConnectable() and isAcceptable() to test whether
individual operation bits are set in the ready set bitmask. There is no way to explicitly set
the state of the ready set—each call to select() method updates the ready set for you.
Note, however, that you must remove a SelectionKey object from the Set returned by
Selector.selectedKeys() for the bits of the ready set to be cleared at the start of
the next selection operation. If you never remove the SelectionKey from the set of
selected keys, the Selector assumes that none of the I/O readyness conditions
represented by the ready set have been handled yet, and leaves their bits set.

Use attach() to associate an arbitrary object with a SelectionKey, and call
attachment() to query that object. This ability to associate data with a selection key is
often useful when using a Selector with multiple channels: it can provide the context
necessary to process a SelectionKey that has been selected.

public abstract class SelectionKey {
// Protected Constructors
 protected SelectionKey();
// Public Constants
 public static final int OP_ACCEPT; =16
 public static final int OP_CONNECT; =8
 public static final int OP_READ; =1
 public static final int OP_WRITE; =4
// Public Instance Methods
 public final Object attach(Object ob);
 public final Object attachment();
 public abstract void cancel();
 public abstract SelectableChannel channel();
 public abstract int interestOps();
 public abstract SelectionKey interestOps(int ops);
 public final boolean isAcceptable();
 public final boolean isConnectable();
 public final boolean isReadable();
 public abstract boolean isValid();
 public final boolean isWritable();
 public abstract int readyOps();
 public abstract Selector selector();
}

Subclasses

java.nio.channels.spi.AbstractSelectionKey

Chapter 13. java.nio and Subpackages Page 44 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

SelectableChannel.{keyFor(), register()},
java.nio.channels.spi.AbstractSelectableChannel.{keyFor(),
register()}, java.nio.channels.spi.AbstractSelector.register()

Selector java.nio.channels

Java 1.4

A Selector is an object that monitors multiple nonblocking SelectableChannel
objects and (after blocking if necessary) "selects" the channel that is (or the channels that
are) ready for I/O. Create a new Selector with the static open() method. Next register
the channels that it is to monitor: a channel is registered by passing the Selector to the
register() method of the channel (register() is defined by the abstract
SelectableChannel class). In addition to the Selector you must also pass a bitmask
that specifies which I/O operations (reading, writing, connecting, and accepting) that the
Selector is to monitor for that channel. Each call to this register() method returns
a SelectionKey object. (The SelectionKey class also defines the constants that are
used to form the bitmask of I/O operations.) Note that before a SelectableChannel
can be registered, it must be in nonblocking mode, which can be accomplished with the
configureBlocking() method of SelectableChannel.

Once the channels are registered with the Selector, call select() to block until one
or more of the channels is ready for I/O. One version of select() takes a timeout value
and returns if the specified number of milliseconds elapses without any channels becoming
ready for I/O. These methods also return if any of the channels is closed, if an error occurs
on any channel, if the wakeup() method of the Selector is called, or if the
interrupt() method of the blocked thread is called. There is also a selectNow()
method which is like select() except that it does not block: it simply polls each of the
channels and determines which have become ready for I/O. The return value of
selectNow() and of both select() methods is the number of channels ready for I/
O. It is possible for this return value to be zero.

The select() and selectNow() methods returns the number of channels that are
ready for I/O; they do not return the channels themselves. To obtain this information, you
must call the selectedKeys() method, which returns a java.util.Set containing
SelectionKey objects. After calling select() and selectedKeys(), applications
typically obtain a java.util.Iterator for the Set and use it to loop through the
SelectionKey objects that represent the channels that are ready for I/O. Use the

Chapter 13. java.nio and Subpackages Page 45 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

channel() method of the SelectionKey to determine which channel is ready, and
call readyOps(), isReadable(), isWritable() or related methods of the
SelectionKey to determine what kind of I/O operation is ready on the channel.
SelectionKey objects remain in the selectedKeys() set until explicitly removed,
so after performing the I/O operation for a given SelectionKey, you should remove that
key from the Set returned by selectedKeys() (use the remove() method of the
Set of its Iterator).

In addition to the selectedKeys() method, Selector also defines a keys()
method, which also returns a Set of SelectionKey objects. This set represents the
complete set of channels that are being monitored by the Selector and may not be
modified, except by closing the channel or deregistring the channel by calling the
cancel() method of the associated SelectionKey. Cancelled keys are removed from
the keys() set on the next call to select() or selectNow().

Call wakeup() to cause another thread blocked in a call to select() to wake up and
return immediately. If wakeup() is called but no thread is currently blocked in a
select() call, then the next call to select() or selectNow() will return
immediately.

When a Selector object is no longer needed, close it by calling close(). If any thread
is blocked in a select() call, it will return immediately as if wakeup() had been called.
After calling close(), you should not call any other methods of a Selector.
isOpen() returns true if a Selector is still open, and returns false if it has been
closed.

The Selector class is thread-safe. Note, however, that the Set object returnd by
selectedKeys() is not: it should be used by only one thread at a time.

public abstract class Selector {
// Protected Constructors
 protected Selector();
// Public Class Methods
 public static Selector open() throws java.io.IOException;
// Public Instance Methods
 public abstract void close() throws java.io.IOException;
 public abstract boolean isOpen();
 public abstract java.util.Set<SelectionKey> keys();
 public abstract java.nio.channels.spi.SelectorProvider provider();
 public abstract int select() throws java.io.IOException;
 public abstract int select(long timeout) throws java.io.IOException;
 public abstract java.util.Set<SelectionKey> selectedKeys();
 public abstract int selectNow() throws java.io.IOException;
 public abstract Selector wakeup();
}

Subclasses

java.nio.channels.spi.AbstractSelector

Chapter 13. java.nio and Subpackages Page 46 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

SelectableChannel.{keyFor(), register()},
java.nio.channels.spi.AbstractSelectableChannel.{keyFor(),
register()}
Returned By

SelectionKey.selector()

ServerSocketChannel java.nio.channels

Java 1.4 closeable

This class is the java.nio version of java.net.ServerSocket. It is a selectable
channel that can be used by servers to accept connections from clients. Unlike other
channel classes in this package, this class cannot be used for reading or writing bytes: it
does not implement any of the ByteChannel interfaces, and exists only to accept and
establish connections with clients, not to communicate with those clients.
ServerSocketChannel differs from java.net.ServerSocket in two important
ways: it can put into nonblocking mode and used with a Selector, and its accept()
method returns a SocketChannel rather than a Socket, so that communication with
the client whose connection was just accepted can be done using the java.nio APIs.

Create a new ServerSocketChannel with the static open() method. Next, call
socket() to obtain the associated ServerSocket object, and use its bind() method
to bind the server socket to a specific port on the local host. You can also call any other
ServerSocket methods to configure other socket options at this point.

To accept a new connection through this ServerSocketChannel, simply call
accept(). If the channel is in blocking mode, this method will block until a client
connects, and will then return a SocketChannel that is connected to the client. In
nonblocking mode, (see the inherited configureBlocking() method) accept()
returns a SocketChannel only if there is a client currently waiting to connect, and
otherwise immediately returns null. To be notified when a client is waiting to connect,
use the inherited register() method to register nonblocking a
ServerSocketChannel with a Selector and specify an interest in accept operations
with the SelectionKey.OP_ACCEPT constant. See Selector and SelectionKey for
further details.

Note that the SocketChannel object returned by the accept() method is always in
nonblocking mode, regardless of the blocking mode of the ServerSocketChannel.

Chapter 13. java.nio and Subpackages Page 47 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ServerSocketChannel is thread-safe; only one thread may call the accept() method
at a time. When a ServerSocketChannel is no longer required, close it with the
inherited close() method.

Figure 13-38. java.nio.channels.ServerSocketChannel

public abstract class ServerSocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel {
// Protected Constructors
 protected ServerSocketChannel(java.nio.channels.spi.SelectorProvider
 provider);
// Public Class Methods
 public static ServerSocketChannel open() throws java.io.IOException;
// Public Instance Methods
 public abstract SocketChannel accept() throws java.io.IOException;
 public abstract java.net.ServerSocket socket();
// Public Methods Overriding SelectableChannel
 public final int validOps();
}

Returned By

java.net.ServerSocket.getChannel(),
java.nio.channels.spi.SelectorProvider.openServerSocketChannel()

SocketChannel java.nio.channels

Java 1.4 closeable

This class is a channel for communicating over a java.net.Socket. It implements
ReadableByteChannel and WriteableByteChannel as well as
GatheringByteChannel and ScatteringByteChannel. It is a subclass of
SelectableChannel and can be used with a Selector.

Create a new SocketChannel with one of the static open() methods. The no-argument
version of open() creates a new SocketChannel but does not connect it to a remote
host. The other version of open() opens a new channel and connects it to the specified
java.net.SocketAddress. If you create an unconnected socket, you can explictly
connect it with the connect() method. The main reason to open the channel and
connect to the remote host in separate steps is if you want to do a nonblocking connect.
To do this, first put the channel into nonblocking mode with the inherited

Chapter 13. java.nio and Subpackages Page 48 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

configureBlocking() method. Then, call connect(): it will return immediately,
without waiting for the connection to be established. Then register the channel with a
Selector specifying that you are interested in SelectionKey.OP_CONNECT
operations. When you are notified that your channel is ready to connect (see Selector
and SelectionKey for details) simply call the nonblocking finishConnect() method
to complete the connection. isConnected() returns true once a connection is
established, and false otherwise. isConnectionPending() returns true if
connect() has been called in blocking mode and has not yet returned, or if
connect() has been called in nonblocking mode, but finishConnect() has not
been called yet.

Once you have opened and connected a SocketChannel, you can read and write bytes
to it with the various read() and write() methods. SocketChannel is thread-safe:
read and write operations may proceed concurrently, but SocketChannel will not allow
more than one read operation and more than one write operation to proceed at the same
time. If you place a SocketChannel into nonblocking mode, you can register it with a
Selector using the SelectionKey constants OP_READ and OP_WRITE, to have the
Selector tell you when the channel is ready for reading or writing.

The socket() method returns the java.net.Socket that is associated with the
SocketChannel. You can use this Socket object to configure socket options, bind the
socket to a specific local address, close the socket, or shutdown its input or output sides.
See java.net.Socket. Note that although all SocketChannel objects have associated
Socket objects, the reverse is not true: you cannot obtain a SocketChannel from a
Socket unless the Socket was created along with the SocketChannel by a call to
SocketChannel.open().

When you are done with a SocketChannel, close it with the close() method. You can
also independently shut down the read and write portions of the channel with
socket().shutdownInput() and socket().shutdownOutput(). When the
input is shut down, any future reads (and any blocked read operation) will return -1 to
indicate that the end-of-stream has been reached. When the output is shut down, any
future writes throw a ClosedChannelException, and any write operation that was
blocked at the time of shut down throws a AsynchronousCloseException.

Chapter 13. java.nio and Subpackages Page 49 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-39. java.nio.channels.SocketChannel

public abstract class SocketChannel extends java.nio.channels.spi.
AbstractSelectableChannel
implements ByteChannel, GatheringByteChannel, ScatteringByteChannel {
// Protected Constructors
 protected SocketChannel(java.nio.channels.spi.SelectorProvider provider);
// Public Class Methods
 public static SocketChannel open() throws java.io.IOException;
 public static SocketChannel open(java.net.SocketAddress remote)
 throws java.io.IOException;
// Public Instance Methods
 public abstract boolean connect(java.net.SocketAddress remote)
 throws java.io.IOException;
 public abstract boolean finishConnect() throws java.io.IOException;
 public abstract boolean isConnected();
 public abstract boolean isConnectionPending();
 public abstract java.net.Socket socket();
// Methods Implementing GatheringByteChannel
 public final long write(java.nio.ByteBuffer[] srcs)
 throws java.io.IOException;
 public abstract long write(java.nio.ByteBuffer[] srcs, int offset,
 int length) throws java.io.IOException;
// Methods Implementing ReadableByteChannel
 public abstract int read(java.nio.ByteBuffer dst)
 throws java.io.IOException;
// Methods Implementing ScatteringByteChannel
 public final long read(java.nio.ByteBuffer[] dsts)
 throws java.io.IOException;
 public abstract long read(java.nio.ByteBuffer[] dsts, int offset,
 int length) throws java.io.IOException;
// Methods Implementing WritableByteChannel
 public abstract int write(java.nio.ByteBuffer src)
 throws java.io.IOException;
// Public Methods Overriding SelectableChannel
 public final int validOps();
}

Returned By

java.net.Socket.getChannel(), ServerSocketChannel.accept(),
java.nio.channels.spi.SelectorProvider.openSocketChannel()

UnresolvedAddressException java.nio.channels

Java 1.4 serializable unchecked

Signals the use of a java.net.SocketAddress that could not be resolved: for example
a java.net.InetSocketAddress that contains an unknown hostname.

Chapter 13. java.nio and Subpackages Page 50 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-40. java.nio.channels.UnresolvedAddressException

public class UnresolvedAddressException extends IllegalArgumentException {
// Public Constructors
 public UnresolvedAddressException();
}

UnsupportedAddressTypeException java.nio.channels

Java 1.4 serializable unchecked

Signals the use of a java.net.SocketAddress subclass that is unknown to or not
supported by the implementation. It is safe to assume that addresses of the type
java.net.InetSocketAddress are universally supported.

Figure 13-41. java.nio.channels.UnsupportedAddressTypeException

public class UnsupportedAddressTypeException extends IllegalArgumentException {
// Public Constructors
 public UnsupportedAddressTypeException();
}

WritableByteChannel java.nio.channels

Java 1.4 closeable

This subinterface of Channel defines a single key write() method which writes bytes
from a specified ByteBuffer (updating the buffer position as it goes) to the channel. If
possible, it writes all remaining bytes in the buffer (see Buffer.remaining()). This
is not always possible (with nonblocking channels, for example) so the write() method
returns the number of bytes that it was actually able to write to the channel.

write() is declared to throw an IOException. More specifically, it may throw a
ClosedChannelException if the channel is closed. If the channel is closed

Chapter 13. java.nio and Subpackages Page 51 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

asynchronously, or if a blocked thread is interrupted, the write() method may
terminate with an AsynchronousCloseException or a
ClosedByInterruptException. write() may also throw an unchecked
NonWritableChannelException if it is called on a channel (such as a
FileChannel) that was not opened or configured to allow writing.

WritableByteChannel implementations are required to be thread-safe: only one
thread may perform a write operation on a channel at a time. If a write operation is in
progress, then any call to write() will block until the in-progress operation completes.
Some channel implementations may allow read and write operations to proceed
concurrently; some may not.

Figure 13-42. java.nio.channels.WritableByteChannel

public interface WritableByteChannel extends Channel {
// Public Instance Methods
 int write(java.nio.ByteBuffer src) throws java.io.IOException;
}

Implementations

ByteChannel, GatheringByteChannel, Pipe.SinkChannel
Passed To

Channels.{newOutputStream(), newWriter()},
FileChannel.transferTo()
Returned By

Channels.newChannel()

Package java.nio.channels.spi

Java 1.4

This package defines four classes that are used by implementors of channels and selector
classes of java.nio.channels. It also defines the SelectorProvider class which
allows a custom implementation of channels and selectors to be specified for use instead
of the default implementation. Application programmers should never need to use this
package, except in rare circumstances to explicitly install a SelectionProvider
implementation with the SelectionProvider.provider() method.

Chapter 13. java.nio and Subpackages Page 52 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Classes

public abstract class AbstractInterruptibleChannel
 implements java.nio.channels.Channel, java.nio.channels.
 InterruptibleChannel;
public abstract class AbstractSelectableChannel extends java.nio.channels.
 SelectableChannel;
public abstract class AbstractSelectionKey extends java.nio.channels.
 SelectionKey;
public abstract class AbstractSelector extends java.nio.channels.Selector;
public abstract class SelectorProvider;

AbstractInterruptibleChannel java.nio.channels.spi

Java 1.4 closeable

This class exists as a convenience for implementors of new Channel classes. Application
programmers should never need to subclass or use it.

Figure 13-43. java.nio.channels.spi.AbstractInterruptibleChannel

public abstract class AbstractInterruptibleChannel
implements java.nio.channels.Channel, java.nio.channels.InterruptibleChannel {
// Protected Constructors
 protected AbstractInterruptibleChannel();
// Methods Implementing Channel
 public final void close() throws java.io.IOException;
 public final boolean isOpen();
// Protected Instance Methods
 protected final void begin();
 protected final void end(boolean completed)
 throws java.nio.channels.AsynchronousCloseException;
 protected abstract void implCloseChannel() throws java.io.IOException;
}

Subclasses

java.nio.channels.FileChannel, java.nio.channels.SelectableChannel

AbstractSelectableChannel java.nio.channels.spi

Java 1.4 closeable

This class exists as a convenience for implementors of new selectable channel classes: it
defines common methods of SelectableChannel in terms of protected methods whose

Chapter 13. java.nio and Subpackages Page 53 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

names begin with impl. Application programmers should never need to use or subclass
this class.

Figure 13-44. java.nio.channels.spi.AbstractSelectableChannel

public abstract class AbstractSelectableChannel extends java.nio.channels.
SelectableChannel {
// Protected Constructors
 protected AbstractSelectableChannel(SelectorProvider provider);
// Public Methods Overriding SelectableChannel
 public final Object blockingLock();
 public final java.nio.channels.SelectableChannel configureBlocking(boolean
 block) throws java.io.IOException;
 public final boolean isBlocking();
 public final boolean isRegistered();
 public final java.nio.channels.SelectionKey keyFor(java.nio.channels.
 Selector sel);
 public final SelectorProvider provider();
 public final java.nio.channels.SelectionKey register(java.nio.channels.
Selector sel, int ops, Object att)
throws java.nio.channels.ClosedChannelException;
// Protected Methods Overriding AbstractInterruptibleChannel
 protected final void implCloseChannel() throws java.io.IOException;
// Protected Instance Methods
 protected abstract void implCloseSelectableChannel()
 throws java.io.IOException;
 protected abstract void implConfigureBlocking(boolean block)
 throws java.io.IOException;
}

Subclasses

java.nio.channels.DatagramChannel,
java.nio.channels.Pipe.SinkChannel,
java.nio.channels.Pipe.SourceChannel,
java.nio.channels.ServerSocketChannel,
java.nio.channels.SocketChannel
Passed To

AbstractSelector.register()

AbstractSelectionKey java.nio.channels.spi

Java 1.4

This class exists as a convenience for implementors of new SelectionKey classes.
Application programmers should never need to use or subclass this class.

Chapter 13. java.nio and Subpackages Page 54 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-45. java.nio.channels.spi.AbstractSelectionKey

public abstract class AbstractSelectionKey extends java.nio.channels
.SelectionKey {
// Protected Constructors
 protected AbstractSelectionKey();
// Public Methods Overriding SelectionKey
 public final void cancel();
 public final boolean isValid();
}

Passed To

AbstractSelector.deregister()

AbstractSelector java.nio.channels.spi

Java 1.4

This class exists as a convenience for implementors of new Selector classes. Application
programmers should never need to use or subclass this class.

Figure 13-46. java.nio.channels.spi.AbstractSelector

public abstract class AbstractSelector extends java.nio.channels.Selector {
// Protected Constructors
 protected AbstractSelector(SelectorProvider provider);
// Public Methods Overriding Selector
 public final void close() throws java.io.IOException;
 public final boolean isOpen();
 public final SelectorProvider provider();
// Protected Instance Methods
 protected final void begin();
 protected final java.util.Set<java.nio.channels.SelectionKey>
 cancelledKeys();
 protected final void deregister(AbstractSelectionKey key);
 protected final void end();
 protected abstract void implCloseSelector() throws java.io.IOException;
 protected abstract java.nio.channels.SelectionKey register
 (AbstractSelectableChannel ch, int ops, Object att);
}

Returned By

SelectorProvider.openSelector()

SelectorProvider java.nio.channels.spi

Chapter 13. java.nio and Subpackages Page 55 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

This class is the central service-provider class for the channels and selectors of the
java.nio.channels API. A concrete subclass of SelectorProvider implements
factory methods that return open socket channels, server socket channels, datagram
channels, pipes (with their two internal channels) and Selector objects. There is one
default SelectorProvider object per JVM: this object can be obtained with the static
SelectorProvider.provider() method.

You can specify a custom SelectorProvider implementation by setting its class name
as the value of the system property java.nio.channels.spi.SelectorProvider.
Or, you can put the class name in a file named META-INF/services/
java.nio.channels.spi.SelectorProvider, in your application's JAR file. The
provider() method first looks for the system property, then looks for the JAR file entry.
If it finds neither, it instantiates the implementation's default SelectorProvider.

Applications are not required to use the default SelectorProvider exclusively. It is
legal to instantiate other SelectorProvider objects and explictly invoke their
open() methods to create channels in that way.

public abstract class SelectorProvider {
// Protected Constructors
 protected SelectorProvider();
// Public Class Methods
 public static SelectorProvider provider();
// Public Instance Methods
5.0 public java.nio.channels.Channel inheritedChannel() throws java.io.
 IOException; constant
 public abstract java.nio.channels.DatagramChannel openDatagramChannel()
 throws java.io.IOException;
 public abstract java.nio.channels.Pipe openPipe()
 throws java.io.IOException;
 public abstract AbstractSelector openSelector()
 throws java.io.IOException;
 public abstract java.nio.channels.ServerSocketChannel
 openServerSocketChannel() throws java.io.IOException;
 public abstract java.nio.channels.SocketChannel openSocketChannel()
 throws java.io.IOException;
}

Passed To

java.nio.channels.DatagramChannel.DatagramChannel(),
java.nio.channels.Pipe.SinkChannel.SinkChannel(),
java.nio.channels.Pipe.SourceChannel.SourceChannel(),
java.nio.channels.ServerSocketChannel.ServerSocketChannel(),
java.nio.channels.SocketChannel.SocketChannel(),
AbstractSelectableChannel.AbstractSelectableChannel(),
AbstractSelector.AbstractSelector()

Chapter 13. java.nio and Subpackages Page 56 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

java.nio.channels.SelectableChannel.provider(),
java.nio.channels.Selector.provider(),
AbstractSelectableChannel.provider(),
AbstractSelector.provider()

Package java.nio.charset

Java 1.4

This package contains classes that represent character sets or encodings, and defines
methods that encode characters into bytes and decode bytes into characters. The key class
is Charset, and you can obtain a Charset object for a named character encoding with
the static forName() method. Charset defines encode() and decode()
convenience methods, but for full control over the encoding and decoding process, you
can also obtain a CharsetEncoder or CharsetDecoder object from the Charset.

The Java platform has had a character encoding and decoding facility since Java 1.1, and
defines a number of classes and methods that perform character encoding or decoding.
Some of these classes and methods are specified to use the default charset for the locale;
others take the name of a charset as a method or constructor argument. See, for example,
the String(), java.io.InputStreamReader() and
java.io.OutputStreamWriter() constructors. In Java 1.4, the
java.nio.charset package defines a public API to the character encoding and decoding
facility and allows applications to work with it explicitly. Most applications will not have
to do this, however, and can simply continue to rely on the default charset, or can continue
to supply charset names where needed. Even applications that use the
java.nio.channels package can avoid explicit character encoding and decoding by
passing the name of a desired charset to the newReader() and newWriter() methods
of java.nio.channels.Channels.

Classes

public abstract class Charset implements Comparable<Charset>;
public abstract class CharsetDecoder;
public abstract class CharsetEncoder;
public class CoderResult;
public class CodingErrorAction;

Exceptions

public class CharacterCodingException extends java.io.IOException;
 public class MalformedInputException extends CharacterCodingException;
 public class UnmappableCharacterException extends CharacterCodingException;
public class IllegalCharsetNameException extends IllegalArgumentException;
public class UnsupportedCharsetException extends IllegalArgumentException;

Chapter 13. java.nio and Subpackages Page 57 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Errors

public class CoderMalfunctionError extends Error;

CharacterCodingException java.nio.charset

Java 1.4 serializable checked

Signals a problem encoding or decoding characters or bytes. This is a generic superclass
for more-specific exception types. Note that the one-argument versions of
CharsetEncoder.encode() and CharsetDecoder.decode() may throw an
exception of this type, but that the three-argument versions of the same method instead
report encoding problems through their CoderResult return value. Note also that the
encode() and decode() convenience methods of Charset do not throw this
exception because they specify that malformed input and unmappable characters or bytes
should be replaced. (See CodingErrorAction.)

Figure 13-47. java.nio.charset.CharacterCodingException

public class CharacterCodingException extends java.io.IOException {
// Public Constructors
 public CharacterCodingException();
}

Subclasses

MalformedInputException, UnmappableCharacterException
Thrown By

CharsetDecoder.decode(), CharsetEncoder.encode(),
CoderResult.throwException()

Charset java.nio.charset

Java 1.4 comparable

A Charset represents a character set or encoding. Each Charset has a cannonical name,
returned by name(), and a set of aliases, returned by aliases(). You can look up a
Charset by name or alias with the static Charset.forName() method, which throws
an UnsupportedCharsetException if the named charset is not installed on the system.

Chapter 13. java.nio and Subpackages Page 58 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In Java 5.0, you can obtain the default Charset used by the Java VM with the static
defaultCharset() method. Check whether a charset specified by name or alias is
supported with the static isSupported(). Obtain the complete set of installed charsets
with availableCharsets() which returns a sorted map from canonical names to
Charset objects. Note that charset names are not case-sensitive, and you can use any
capitialization for charset names you pass to isSupported() and forName(). Note
that there are a number of classes and methods in the Java platform that specify charsets
by name rather than by Charset object. See, for example,
java.io.InputStreamReader, java.io.OutputStreamWriter,
String.getBytes(), and java.nio.channels.Channels.newWriter().
When working with classes and methods such as these, there is no need to use a
Charset object.

All implementations of Java are required to support at least the following 6 charsets:

Canonical name Description

US-ASCII seven-bit ASCII

ISO-8859-1
The 8-bit superset of ASCII which includes the characters used in most Western-European languages. Also
known as ISO-LATIN-1.

UTF-8 An 8-bit encoding of Unicode characters that is compatible with US-ASCII.

UTF-16BE A 16-bit encoding of Unicode characters, using big-endian byte order.

UTF-16LE A 16-bit encoding of Unicode characters, using little-endian byte order.

UTF-16
A 16-bit encoding of Unicode characters, with byte order specified by a byte order mark character. Assumes
big-endian when decoding if there is no byte order mark. Encodes using big-endian byte order and outputs
an appropriate byte order mark.

Once you have obtained a Charset with forName() or availableCharsets(), you
can use the encode() method to encode a String or CharBuffer of text into a
ByteBuffer, or you can use the decode() method to convert the bytes in a
ByteBuffer into characters in a CharBuffer. These convenience methods create a new
CharsetEncoder or CharsetDecoder, specify that malformed input or unmappable
characters or bytes should be replaced with the default replacement string or bytes, and
then invoke the encode() or decode() method of the encoder or decoder. For full
control over the encoding and decoding process, you may prefer to obtain your own
CharsetEncoder or CharsetDecoder object with newEncoder() or
newDecoder(). See CharsetDecoder for details.

Instead of using a Charset, CharsetEncoder, or CharsetDecoder directly, you may
also pass an encoder or decoder to the static methods of
java.nio.channels.Channels to obtain a java.io.Reader or
java.io.Writer that you can use to read or write characters from or to a byte-oriented
Channel.

Chapter 13. java.nio and Subpackages Page 59 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that not all Charset objects support encoding ("auto-detect" charsets can determine
the source charset when decoding, but have no way to encode). Use canEncode() to
determine whether a given Charset can encode.

Charset also defines, implements, or overrides various other methods.
displayName() returns a localized name for the charset, or returns the cannonical
name if there is no localization. toString() returns an implementation-dependent
textual representation of the charset. The equals() method compares two charsets by
comparing their canonical names. Charset implements Comparable, and its
compareTo() method orders charsets by their canonical name. contains() returns
true if a specified charset is "contained in" this charset. That is, if every character that
can be represented in the specified charset can also be represented in this charset. Note
that those representations need not be the same, however. isRegistered() returns
true if the charset is registered with the IANA charset registry (see http://www.iana.org/
assignments/character-sets.)

Figure 13-48. java.nio.charset.Charset

public abstract class Charset implements Comparable<Charset> {
// Protected Constructors
 protected Charset(String canonicalName, String[] aliases);
// Public Class Methods
 public static java.util.SortedMap<String,Charset> availableCharsets();
5.0 public static Charset defaultCharset();
 public static Charset forName(String charsetName);
 public static boolean isSupported(String charsetName);
// Public Instance Methods
 public final java.util.Set<String> aliases();
 public boolean canEncode(); constant
 public abstract boolean contains(Charset cs);
 public final java.nio.CharBuffer decode(java.nio.ByteBuffer bb);
 public String displayName();
 public String displayName(java.util.Locale locale);
 public final java.nio.ByteBuffer encode(java.nio.CharBuffer cb);
 public final java.nio.ByteBuffer encode(String str);
 public final boolean isRegistered();
 public final String name();
 public abstract CharsetDecoder newDecoder();
 public abstract CharsetEncoder newEncoder();
// Methods Implementing Comparable
5.0 public final int compareTo(Charset that);
// Public Methods Overriding Object
 public final boolean equals(Object ob);
 public final int hashCode();
 public final String toString();
}

Passed To

java.io.InputStreamReader.InputStreamReader(),
java.io.OutputStreamWriter.OutputStreamWriter(),
CharsetDecoder.CharsetDecoder(), CharsetEncoder.CharsetEncoder()

Chapter 13. java.nio and Subpackages Page 60 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.iana.org/assignments/character-sets
http://www.iana.org/assignments/character-sets

Returned By

CharsetDecoder.{charset(), detectedCharset()},
CharsetEncoder.charset(),
java.nio.charset.spi.CharsetProvider.charsetForName()

CharsetDecoder java.nio.charset

Java 1.4

A CharsetDecoder is a "decoding engine" that converts a sequence of bytes into a
sequence of characters based on the encoding of some charset. Obtain a
CharsetDecoder from the Charset that represents the charset to be decoded. If you
have a complete sequence of bytes to be decoded in a ByteBuffer you can pass that buffer
to the one-argument version of decode(). This convenience method decodes the bytes
and stores the resulting characters into a newly allocated CharBuffer, resetting and
flushing the decoder as necessary. It throws an exception if there are problems with the
bytes to be decoded.

Typically, however, the three-argument version of decode() is used in a multistep
decoding process:

The decode() method returns a CoderResult that indicates the state of the decoding
operation. If the return value is CoderResult.UNDERFLOW, then it means that
decode() returned because all bytes from the input buffer have been read, and more
input is required. If the return value is CoderResult.OVERFLOW, then it means that
decode() returned because the output CharBuffer is full, and no more characters can
be decoded into it. Otherwise, the reurn value is a CoderResult whose isError()
method returns true. There are two basic types of decoding errors. If
isMalformed() returns true then the input included bytes that are not legal for the
charset. These bytes start at the position of the input buffer, and continue for
length() bytes. Otherwise, if isUnmappable() returns true, then the input bytes
include a character for which there is no representation in Unicode. The relevant bytes
start at the position of the input buffer and continue for length() bytes.

By default a CharsetDecoder reports all malformed input and unmappable character
errors by returning a CoderResult object as described above. This behavior can be
altered, however, by passing a CodingErrorAction to onMalformedInput() and
onUnmappableCharacter(). (Query the current action for these types of errors with
malformedInputAction() and unmappableCharacterAction().)
CodingErrorAction defines three constants that represent the three possible actions.

Chapter 13. java.nio and Subpackages Page 61 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The default action is REPORT. The action IGNORE tells the CharsetDecoder to ignore
(i.e. skip) malformed input and unmappable charaters. The REPLACE action tells the
CharsetDecoder to replace malformed input and unmappable characters with the
replacement string. This replacement string can be set with replaceWith(), and can
be queried with replacement().

averageCharsPerByte() and maxCharsPerByte() return the average and
maximum number of characters that are produced by this decoder per decoded byte. These
values can be used to help you choose the size of the CharBuffer to allocate for decoding.

CharsetDecoder is not a thread-safe class. Only one thread should use an instance at a
time.

CharsetDecoder is an abstract class. Implementors defining new charsets will need to
subclass CharsetDecoder and define the abstract decodeLoop() method, which is
invoked by decode().

public abstract class CharsetDecoder {
// Protected Constructors
 protected CharsetDecoder(Charset cs,
 float averageCharsPerByte, float maxCharsPerByte);
// Public Instance Methods
 public final float averageCharsPerByte();
 public final Charset charset();
 public final java.nio.CharBuffer decode(java.nio.ByteBuffer in)
 throws CharacterCodingException;
 public final CoderResult decode(java.nio.ByteBuffer in, java.nio.
 CharBuffer out, boolean endOfInput);
 public Charset detectedCharset();
 public final CoderResult flush(java.nio.CharBuffer out);
 public boolean isAutoDetecting(); constant
 public boolean isCharsetDetected();
 public CodingErrorAction malformedInputAction();
 public final float maxCharsPerByte();
 public final CharsetDecoder onMalformedInput(CodingErrorAction newAction);
 public final CharsetDecoder onUnmappableCharacter(CodingErrorAction
 newAction);
 public final String replacement();
 public final CharsetDecoder replaceWith(String newReplacement);
 public final CharsetDecoder reset();
 public CodingErrorAction unmappableCharacterAction();
// Protected Instance Methods
 protected abstract CoderResult decodeLoop(java.
 nio.ByteBuffer in, java.nio.CharBuffer out);
 protected CoderResult implFlush(java.nio.CharBuffer out);
 protected void implOnMalformedInput(CodingErrorAction
 newAction); empty
 protected void implOnUnmappableCharacter(CodingErrorAction
 newAction); empty
 protected void implReplaceWith(String
 newReplacement); empty
 protected void implReset(); empty
}

Passed To

java.io.InputStreamReader.InputStreamReader(),
java.nio.channels.Channels.newReader()

Chapter 13. java.nio and Subpackages Page 62 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

Charset.newDecoder()

CharsetEncoder java.nio.charset

Java 1.4

A CharsetEncoder is an "encoding engine" that converts a sequence of characters into
a sequence of bytes using some character encoding. Obtain a CharsetEncoder with the
newEncoder() method of the Charset that represents the desired encoding.

A CharsetEncoder works like a CharsetDecoder in reverse. Use the encode()
method to encode characters read from a CharBuffer into bytes stored in a
ByteBuffer. Please see CharsetDecoder, which is documented in detail.

public abstract class CharsetEncoder {
// Protected Constructors
 protected CharsetEncoder(Charset cs,
 float averageBytesPerChar, float maxBytesPerChar);
 protected CharsetEncoder(Charset cs,
 float averageBytesPerChar, float maxBytesPerChar, byte[] replacement);
// Public Instance Methods
 public final float averageBytesPerChar();
 public boolean canEncode(CharSequence cs);
 public boolean canEncode(char c);
 public final Charset charset();
 public final java.nio.ByteBuffer encode(java.nio.CharBuffer in)
 throws CharacterCodingException;
 public final CoderResult encode(java.nio.CharBuffer in,
 java.nio.ByteBuffer out, boolean endOfInput);
 public final CoderResult flush(java.nio.ByteBuffer out);
 public boolean isLegalReplacement(byte[] repl);
 public CodingErrorAction malformedInputAction();
 public final float maxBytesPerChar();
 public final CharsetEncoder onMalformedInput(CodingErrorAction
 newAction);
 public final CharsetEncoder onUnmappableCharacter(CodingErrorAction
 newAction);
 public final byte[] replacement();
 public final CharsetEncoder replaceWith(byte[] newReplacement);
 public final CharsetEncoder reset();
 public CodingErrorAction unmappableCharacterAction();
// Protected Instance Methods
 protected abstract CoderResult encodeLoop(java.nio.CharBuffer in,
 java.nio.ByteBuffer out);
 protected CoderResult implFlush(java.nio.ByteBuffer out);
 protected void implOnMalformedInput(CodingErrorAction
 newAction); empty
 protected void implOnUnmappableCharacter(CodingErrorAction
 newAction); empty
 protected void implReplaceWith(byte[] newReplacement); empty
 protected void implReset(); empty
}

Chapter 13. java.nio and Subpackages Page 63 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

java.io.OutputStreamWriter.OutputStreamWriter(),
java.nio.channels.Channels.newWriter()
Returned By

Charset.newEncoder()

CoderMalfunctionError java.nio.charset

Java 1.4 serializable error

Signals a malfunction—typically an unknown and unrecoverable error—in a
CharsetEncoder or CharsetDecoder. An error of this type is thrown by the
encode() and decode() methods when the protected encodeLoop() or
decodeLoop() methods upon which they are implemented throws an exception of an
unexpected type.

Figure 13-49. java.nio.charset.CoderMalfunctionError

public class CoderMalfunctionError extends Error {
// Public Constructors
 public CoderMalfunctionError(Exception cause);
}

CoderResult java.nio.charset

Java 1.4

A CoderResult object specifies the results of a call to CharsetDecoder.decode()
or CharsetEncoder.encode(). There are four possible reasons why a call to the
decode() or encode() would return:

public class CoderResult {
// No Constructor
// Public Constants
 public static final CoderResult OVERFLOW;
 public static final CoderResult UNDERFLOW;
// Public Class Methods
 public static CoderResult malformedForLength(int length);
 public static CoderResult unmappableForLength(int length);
// Public Instance Methods
 public boolean isError();
 public boolean isMalformed();

Chapter 13. java.nio and Subpackages Page 64 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public boolean isOverflow();
 public boolean isUnderflow();
 public boolean isUnmappable();
 public int length();
 public void throwException() throws CharacterCodingException;
// Public Methods Overriding Object
 public String toString();
}

Returned By

CharsetDecoder.{decode(), decodeLoop(), flush(), implFlush()},
CharsetEncoder.{encode(), encodeLoop(), flush(), implFlush()}

CodingErrorAction java.nio.charset

Java 1.4

This class is a typesafe enumeration that defines three constants that serve as the legal
argument values to the onMalformedInput() and onUnmappableCharacter()
methods of CharsetDecoder and CharsetEncoder. These constants specify how
malformed input and unmappable error conditions should be handled. The values are:

See CharsetDecoder for more information.

public class CodingErrorAction {
// No Constructor
// Public Constants
 public static final CodingErrorAction IGNORE;
 public static final CodingErrorAction REPLACE;
 public static final CodingErrorAction REPORT;
// Public Methods Overriding Object
 public String toString();
}

Passed To

CharsetDecoder.{implOnMalformedInput(),
implOnUnmappableCharacter(), onMalformedInput(),
onUnmappableCharacter()}, CharsetEncoder.
{implOnMalformedInput(), implOnUnmappableCharacter(),
onMalformedInput(), onUnmappableCharacter()}
Returned By

CharsetDecoder.{malformedInputAction(),
unmappableCharacterAction()}, CharsetEncoder.
{malformedInputAction(), unmappableCharacterAction()}

Chapter 13. java.nio and Subpackages Page 65 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

IllegalCharsetNameException java.nio.charset

Java 1.4 serializable unchecked

Signals that a charset name (for example one passed to Charset.forName() or
Charset.isSupported()) is not legal. Charset names may contain only the characters
A-Z (in upper- and lowercase), the digits 0-9, and hyphens, underscores, colons, and
periods. They must begin with a letter or a digit, not with a punctuation character.

Figure 13-50. java.nio.charset.IllegalCharsetNameException

public class IllegalCharsetNameException extends IllegalArgumentException {
// Public Constructors
 public IllegalCharsetNameException(String charsetName);
// Public Instance Methods
 public String getCharsetName();
}

MalformedInputException java.nio.charset

Java 1.4 serializable checked

Signals that input to the CharsetDecoder.decode() or
CharsetEncoder.encode() method was malformed.

Figure 13-51. java.nio.charset.MalformedInputException

public class MalformedInputException extends CharacterCodingException {
// Public Constructors
 public MalformedInputException(int inputLength);
// Public Instance Methods
 public int getInputLength();
// Public Methods Overriding Throwable
 public String getMessage();
}

Chapter 13. java.nio and Subpackages Page 66 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

UnmappableCharacterException java.nio.charset

Java 1.4 serializable checked

Signals that input to the CharsetDecoder.decode() or
CharsetEncoder.encode() method contained a character or byte sequence that is
not mappable in the specified charset.

Figure 13-52. java.nio.charset.UnmappableCharacterException

public class UnmappableCharacterException extends CharacterCodingException {
// Public Constructors
 public UnmappableCharacterException(int inputLength);
// Public Instance Methods
 public int getInputLength();
// Public Methods Overriding Throwable
 public String getMessage();
}

UnsupportedCharsetException java.nio.charset

Java 1.4 serializable unchecked

Signals that the requested charset is not supported on the current platform. This exception
is thrown by Charset.forName() when no Charset object can be obtained for the
named charset. See also Charset.isSupported().

Figure 13-53. java.nio.charset.UnsupportedCharsetException

public class UnsupportedCharsetException extends IllegalArgumentException {
// Public Constructors
 public UnsupportedCharsetException(String charsetName);
// Public Instance Methods
 public String getCharsetName();

}

Chapter 13. java.nio and Subpackages Page 67 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Package java.nio.charset.spi

Java 1.4

This package defines a "provider" class for system developers who are defining new
Charset implementations and want to make them available to the system. Application
programmers never need to us this package or the class it defines.

Classes

public abstract class CharsetProvider;

CharsetProvider java.nio.charset.spi

Java 1.4

System programmers developing new Charset implementations should implement this
class to make those charsets available to the system. charsetForName() should return
a Charset instance for the given name. charsets() should return a
java.util.Iterator that allows the caller to iterate through the set of Charset
objects defined by the provider.

A CharsetProvider and its associated Charset implementations should be packaged
in a JAR file and made available to the system in the jre/lib/ext/ extensions directory (or
some other extensions location.) The JAR file should contain a file named META-INF/
services/java.nio.charset.spi.CharsetProvider which contains the class name of the
CharsetProvider implementation.

public abstract class CharsetProvider {
// Protected Constructors
 protected CharsetProvider();
// Public Instance Methods
 public abstract java.nio.charset.Charset charsetForName(String charsetName);
 public abstract java.util.Iterator<java.nio.charset.Charset> charsets();
}

Chapter 13. java.nio and Subpackages Page 68 Return to Table of Contents

Chapter 13. java.nio and Subpackages
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	java.nio and Subpackages
	Package java.nio
	Buffer
	BufferOverflowException
	BufferUnderflowException
	ByteBuffer
	ByteOrder
	CharBuffer
	DoubleBuffer
	FloatBuffer
	IntBuffer
	InvalidMarkException
	LongBuffer
	MappedByteBuffer
	ReadOnlyBufferException
	ShortBuffer
	Package java.nio.channels
	AlreadyConnectedException
	AsynchronousCloseException
	ByteChannel
	CancelledKeyException
	Channel
	Channels
	ClosedByInterruptException
	ClosedChannelException
	ClosedSelectorException
	ConnectionPendingException
	DatagramChannel
	FileChannel
	FileChannel.MapMode
	FileLock
	FileLockInterruptionException
	GatheringByteChannel
	IllegalBlockingModeException
	IllegalSelectorException
	InterruptibleChannel
	NoConnectionPendingException
	NonReadableChannelException
	NonWritableChannelException
	NotYetBoundException
	NotYetConnectedException
	OverlappingFileLockException
	Pipe
	Pipe.SinkChannel
	Pipe.SourceChannel
	ReadableByteChannel
	ScatteringByteChannel
	SelectableChannel
	SelectionKey
	Selector
	ServerSocketChannel
	SocketChannel
	UnresolvedAddressException
	UnsupportedAddressTypeException
	WritableByteChannel
	Package java.nio.channels.spi
	AbstractInterruptibleChannel
	AbstractSelectableChannel
	AbstractSelectionKey
	AbstractSelector
	SelectorProvider
	Package java.nio.charset
	CharacterCodingException
	Charset
	CharsetDecoder
	CharsetEncoder
	CoderMalfunctionError
	CoderResult
	CodingErrorAction
	IllegalCharsetNameException
	MalformedInputException
	UnmappableCharacterException
	UnsupportedCharsetException
	Package java.nio.charset.spi
	CharsetProvider

