
Table of Contents

Java 5.0 Language Features... 1
Generic Types.. 1
Enumerated Types... 21
Annotations... 34

Chapter 4. Java 5.0 Language Features

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 4. Java 5.0 Language Features
This chapter covers the three most important new language features of Java 5.0.
Generics add type-safety and expressiveness to Java programs by allowing types to be
parameterized with other types. A List that contains String objects, for example, can
be written as List<String>. Using parameterized types makes Java code clearer and
allows us to remove most casts from our programs.

Enumerated types, or enums, are a new category of reference type, like classes and
interfaces. An enumerated type defines a finite ("enumerated") set of values, and,
importantly, provides type-safety: a variable of enumerated type can hold only values of
that enumerated type or null. Here is a simple enumerated type definition:

public enum Seasons { WINTER, SPRING, SUMMER, AUTUMN }

The third Java 5.0 feature discussed in this chapter is program annotations and the
annotation types that define them. An annotation associates arbitrary data (or metadata)
with a program element such as a class, method, field, or even a method parameter or local
variable. The type of data held in an annotation is defined by its annotation type, which,
like enumerated types, is another new category of reference type. The Java 5.0 platform
includes three standard annotation types used to provide additional information to the
Java compiler. Annotations will probably find their greatest use with code generation tools
in Java enterprise programming.

Java 5.0 also introduces a number of other important new language features that don't
require a special chapter to explain. Coverage of these changes is found in sections
throughout Chapter 2. They include:

• Autoboxing and unboxing conversions
• The for/in looping statement, sometimes called "foreach"
• Methods with variable-length argument lists, also known as varargs methods
• The ability to narrow the return type of a method when overriding, known as a "

covariant return"
• The import static directive, which imports the static members of a type into the

namespace

4.1. Generic Types
Generic types and methods are the defining new feature of Java 5.0. A generic type is
defined using one or more type variables and has one or more methods that use a type

Chapter 4. Java 5.0 Language Features Page 1 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

variable as a placeholder for an argument or return type. For example, the type
java.util.List<E> is a generic type: a list that holds elements of some type
represented by the placeholder E. This type has a method named add(), declared to take
an argument of type E, and a method named get(), declared to return a value of type E.

In order to use a generic type like this, you specify actual types for the type variable (or
variables), producing a parameterized type such as List<String>.[1] The reason to
specify this extra type information is that the compiler can provide much stronger compile-
time type checking for you, increasing the type safety of your programs. This type checking
prevents you from adding a String[], for example, to a List that is intended to hold
only String objects. Also, the additional type information enables the compiler to do
some casting for you. The compiler knows that the get() method of a List<String>
(for example) returns a String object: you are no longer required to cast a return value
of type Object to a String.

[1] Throughout this chapter, I've tried to consistently use the term " generic type" to mean a type that declares one or more type variables and the term "parameterized
type" to mean a generic type that has had actual type arguments substituted for its type varaiables. In common usage, however, the distinction is not a sharp one and
the terms are sometimes used interchangeably.

The collections classes of the java.util package have been made generic in Java 5.0,
and you will probably use them frequently in your programs. Typesafe collections are the
canonical use case for generic types. Even if you never define generic types of your own
and never use generic types other than the collections classes in java.util, the benefits
of typesafe collections are so significant that they justify the complexity of this major new
language feature.

We begin by exploring the basic use of generics in typesafe collections, then delve into
more complex details about the use of generic types. Next we cover type parameter
wildcards and bounded wildcards. After describing how to use generic types, we explain
how to write your own generic types and generic methods. Our coverage of generics
concludes with a tour of important generic types in the core Java API. It explores these
types and their use in depth in order to provide a deeper understanding of how generics
work.

4.1.1. Typesafe Collections
The java.util package includes the Java Collections Framework for working with sets
and lists of objects and mappings from key objects to value objects. Collections are covered
in Chapter 5. Here, we discuss the fact that in Java 5.0 the collections classes use type
parameters to identify the type of the objects in the collection. This is not the case in Java
1.4 and earlier. Without generics, the use of collections requires the programmer to
remember the proper element type for each collection. When you create a collection in
Java 1.4, you know what type of objects you intend to store in that collection, but the
compiler cannot know this. You must be careful to add elements of the appropriate type.

Chapter 4. Java 5.0 Language Features Page 2 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-5#javanut5-CHP-5

And when querying elements from a collection, you must write explicit casts to convert
them from Object to their actual type. Consider the following Java 1.4 code:

public static void main(String[] args) {
 // This list is intended to hold only strings.
 // The compiler doesn't know that so we have to remember ourselves.
 List wordlist = new ArrayList();

 // Oops! We added a String[] instead of a String.
 // The compiler doesn't know that this is an error.
 wordlist.add(args);

 // Since List can hold arbitrary objects, the get() method returns
 // Object. Since the list is intended to hold strings, we cast the
 // return value to String but get a ClassCastException because of
 // the error above.
 String word = (String)wordlist.get(0);
}

Generic types solve the type safety problem illustrated by this code. List and the other
collection classes in java.util have been rewritten to be generic. As mentioned above,
List has been redefined in terms of a type variable named E that represents the type of
the elements of the list. The add() method is redefined to expect an argument of type
E instead of Object and get() has been redefined to return E instead of Object.

In Java 5.0, when we declare a List variable or create an instance of an ArrayList, we
specify the actual type we want E to represent by placing the actual type in angle brackets
following the name of the generic type. A List that holds strings is a List<String>, for
example. Note that this is much like passing an argument to a method, except that we use
types rather than values and angle brackets instead of parentheses.

The elements of the java.util collection classes must be objects; they cannot be used
with primitive values. The introduction of generics does not change this. Generics do not
work with primitives: we can't declare a Set<char>, or a List<int> for example. Note,
however, that the autoboxing and autounboxing features of Java 5.0 make working with
a Set<Character> or a List<Integer> just as easy as working directly with char and
int values. (See Chapter 2 for details on autoboxing and autounboxing).

In Java 5.0, the example above would be rewritten as follows:
public static void main(String[] args) {
 // This list can only hold String objects
 List<String> wordlist = new ArrayList<String>();

 // args is a String[], not String, so the compiler won't let us do this
 wordlist.add(args); // Compilation error!

 // We can do this, though.
 // Notice the use of the new for/in looping statement
 for(String arg : args) wordlist.add(arg);

 // No cast is required. List<String>.get() returns a String.
 String word = wordlist.get(0);
}

Chapter 4. Java 5.0 Language Features Page 3 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

Note that this code isn't much shorter than the nongeneric example it replaces. The cast,
which uses the word String in parentheses, is replaced with the type parameter, which
places the word String in angle brackets. The difference is that the type parameter has
to be declared only once, but the list can be used any number of times without a cast. This
would be more apparent in a longer example. But even in cases where the generic syntax
is more verbose than the nongeneric syntax, it is still very much worth using generics
because the extra type information allows the compiler to perform much stronger error
checking on your code. Errors that would only be apparent at runtime can now be detected
at compile time. Furthermore, the compilation error appears at the exact line where the
type safety violation occurs. Without generics, a ClassCastException can be thrown
far from the actual source of the error.

Just as methods can have any number of arguments, classes can have more than one type
variable. The java.util.Map interface is an example. A Map is a mapping from key
objects to value objects. The Map interface declares one type variable to represent the type
of the keys and one variable to represent the type of the values. As an example, suppose
you want to map from String objects to Integer objects:

public static void main(String[] args) {
 // A map from strings to their position in the args[] array
 Map<String,Integer> map = new HashMap<String,Integer>();

 // Note that we use autoboxing to wrap i in an Integer object.
 for(int i=0; i < args.length; i++) map.put(args[i], i);

 // Find the array index of a word. Note no cast is required!
 Integer position = map.get("hello");

 // We can also rely on autounboxing to convert directly to an int,
 // but this throws a NullPointerException if the key does not exist
 // in the map
 int pos = map.get("world");
}

A parameterized type like List<String> is itself a type and can be used as the value of
a type parameter for some other type. You might see code like this:

// Look at all those nested angle brackets!
Map<String, List<List<int[]>>> map = getWeirdMap();

// The compiler knows all the types and we can write expressions
// like this without casting. We might still get NullPointerException
// or ArrayIndexOutOfBounds at runtime, of course.
int value = map.get(key).get(0).get(0)[0];

// Here's how we break that expression down step by step.
List<List<int[]>> listOfLists = map.get(key);
List<int[]> listOfIntArrays = listOfLists.get(0);
int[] array = listOfIntArrays.get(0);
int element = array[0];

In the code above, the get() methods of java.util.List<E> and
java.util.Map<K,V> return a list or map element of type E and V respectively. Note,
however, that generic types can use their variables in more sophisticated ways. Look up

Chapter 4. Java 5.0 Language Features Page 4 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

List<E> in the reference section of this book, and you'll find that its iterator()
method is declared to return an Iterator<E>. That is, the method returns an instance
of a parameterized type whose actual type parameter is the same as the actual type
parameter of the list. To illustrate this concretely, here is a way to obtain the first element
of a List<String> without calling get(0).

List<String> words = // ...initialized elsewhere...
Iterator<String> iterator = words.iterator();
String firstword = iterator.next();

4.1.2. Understanding Generic Types
This section delves deeper into the details of generic type usage, explaining the following
topics:

• The consequences of using generic types without type parameters
• The parameterized type hierarchy
• A hole in the compile-time type safety of generic types and a patch to ensure runtime

type safety
• Why arrays of parameterized types are not typesafe

4.1.2.1. Raw types and unchecked warnings
Even though the Java collection classes have been modified to take advantage of generics,
you are not required to specify type parameters to use them. A generic type used without
type parameters is known as a raw type. Existing pre-5.0 code continues to work: you
simply write all the casts that you're already used to writing, and you put up with some
pestering from the compiler. Consider the following code that stores objects of mixed types
into a raw List:

List l = new ArrayList();
l.add("hello");
l.add(new Integer(123));
Object o = l.get(0);

This code works fine in Java 1.4. If we compile it using Java 5.0, however, javac compiles
the code but prints this complaint:

Note: Test.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

When we recompile with the -Xlint option as suggested, we see these warnings:

Test.java:6: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add("hello");
 ^
Test.java:7: warning: [unchecked]
 unchecked call to add(E) as a member of the raw type java.util.List
 l.add(new Integer(123));
 ^

Chapter 4. Java 5.0 Language Features Page 5 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The compiler warns us about the add() calls because it cannot ensure that the values
being added to the list have the correct types. It is letting us know that because we've used
a raw type, it cannot verify that our code is typesafe. Note that the call to get() is okay
because it is extracting an element that is already safely in the list.

If you get unchecked warnings on files that do not use any of the new Java 5.0 features,
you can simply compile them with the -source 1.4 flag, and the compiler won't
complain. If you can't do that, you can ignore the warnings, suppress them with an
@SuppressWarnings("unchecked") annotation (see Section 4.3 later in this chapter)
or upgrade your code to specify a type parameter.[2] The following code, for example,
compiles with no warnings and still allows you to add objects of mixed types to the list:

[2] At the time of this writing, javac does not yet honor the @SuppressWarnings annotation. It is expected to do so in Java 5.1.

List<Object> l = new ArrayList<Object>();
l.add("hello");
l.add(123); // autoboxing
Object o = l.get(0);

4.1.2.2. The parameterized type hierarchy
Parameterized types form a type hierarchy, just as normal types do. The hierarchy is based
on the base type, however, and not on the type of the parameters. Here are some
experiments you can try:

ArrayList<Integer> l = new ArrayList<Integer>();
List<Integer> m = l; // okay
Collection<Integer> n = l; // okay
ArrayList<Number> o = l; // error
Collection<Object> p = (Collection<Object>)l; // error, even with cast

A List<Integer> is a Collection<Integer>, but it is not a List<Object>. This is
nonintuitive, and it is important to understand why generics work this way. Consider this
code:

List<Integer> li = new ArrayList<Integer>();
li.add(123);

// The line below will not compile. But for the purposes of this
// thought-experiment, assume that it does compile and see how much
// trouble we get ourselves into.
List<Object> lo = li;

// Now we can retrieve elements of the list as Object instead of Integer
Object number = lo.get(0);

// But what about this?
lo.add("hello world");

// If the line above is allowed then the line below throws ClassCastException
Integer i = li.get(1); // Can't cast a String to Integer!

Chapter 4. Java 5.0 Language Features Page 6 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This then is the reason that a List<Integer> is not a List<Object>, even though all
elements of a List<Integer> are in fact instances of Object. If the conversion to
List<Object> were allowed, non-Integer objects could be added to the list.

4.1.2.3. Runtime type safety
As we've seen, a List<X> cannot be converted to a List<Y>, even when X can be
converted to Y. A List<X> can be converted to a List, however, so that you can pass it
to a legacy method that expects an argument of that type and has not been updated for
generics.

This ability to convert parameterized types to nonparameterized types is essential for
backward compatibility, but it does open up a hole in the type safety system that generics
offer:

// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// It is legal to assign a parameterized type to a nonparameterized variable
List l = li;

// This line is a bug, but it compiles and runs.
// The Java 5.0 compiler will issue an unchecked warning about it.
// If it appeared as part of a legacy class compiled with Java 1.4, however,
// then we'd never even get the warning.
l.add("hello");

// This line compiles without warning but throws ClassCastException at runtime.
// Note that the failure can occur far away from the actual bug.
Integer i = li.get(0);

Generics provide compile-time type safety only. If you compile all your code with the Java
5.0 compiler and do not get any unchecked warnings, these compile-time checks are
enough to ensure that your code is also typesafe at runtime. But if you have unchecked
warnings or are working with legacy code that manipulates your collections as raw types,
you may want to take additional steps to ensure type safety at runtime. You can do this
with methods like checkedList() and checkedMap() of
java.util.Collections. These methods enclose your collection in a wrapper
collection that performs runtime type checks to ensure that only values of the correct type
are added to the collection. For example, we could prevent the type safety hole shown above
like this:

// Here's a basic parameterized list.
List<Integer> li = new ArrayList<Integer>();

// Wrap it for runtime type safety
List<Integer> cli = Collections.checkedList(li, Integer.class);

// Now widen the checked list to the raw type
List l = cli;

// This line compiles but fails at runtime with a ClassCastException.
// The exception occurs exactly where the bug is, rather than far away
l.add("hello");

Chapter 4. Java 5.0 Language Features Page 7 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4.1.2.4. Arrays of parameterized type
Arrays require special consideration when working with generic types. Recall that an array
of type S[] is also of type T[], if T is a superclass (or interface) of S. Because of this, the
Java interpreter must perform a runtime check every time you store an object in an array
to ensure that the runtime type of the object and of the array are compatible. For example,
the following code fails this runtime check and throws an ArrayStoreException:

String[] words = new String[10];
Object[] objs = words;
objs[0] = 1; // 1 autoboxed to an Integer, throws ArrayStoreException

Although the compile-time type of objs is Object[], its runtime type is String[],
and it is not legal to store an Integer in it.

When we work with generic types, the runtime check for array store exceptions is no longer
sufficient because a check performed at runtime does not have access to the compile-time
type parameter information. Consider this (hypothetical) code:

List<String>[] wordlists = new ArrayList<String>[10];
ArrayList<Integer> ali = new ArrayList<Integer>();
ali.add(123);
Object[] objs = wordlists;
objs[0] = ali; // No ArrayStoreException
String s = wordlists[0].get(0); // ClassCastException!

If the code above were allowed, the runtime array store check would succeed: without
compile-time type parameters, the code simply stores an ArrayList into an ArrayList
[] array, which is perfectly legal. Since the compiler can't prevent you from defeating type
safety in this way, it instead prevents you from creating any array of parameterized type.
The scenario above can never occur because the compiler will refuse to compile the first
line.

Note that this is not a blanket restriction on using arrays with generics; it is just a restriction
on creating arrays of parameterized type. We'll return to this issue when we look at how
to write generic methods.

4.1.3. Type Parameter Wildcards
Suppose we want to write a method to display the elements of a List.[3] Before List was
a generic type, we'd just write code like this:

[3] The three printList() methods shown in this section ignore the fact that the List implementations classes in java.util all provide working toString()
methods. Notice also that the methods assume that the List implements RandomAccess and provides very poor performance on LinkedList instances.

public static void printList(PrintWriter out, List list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());

Chapter 4. Java 5.0 Language Features Page 8 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 }
}

In Java 5.0, List is a generic type, and, if we try to compile this method, we'll get
unchecked warnings. In order to get rid of those warnings, you might be tempted to modify
the method as follows:

public static void printList(PrintWriter out, List<Object> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 out.print(list.get(i).toString());
 }
}

This code compiles without warnings but isn't very useful because the only lists that can
be passed to it are lists explicitly declared of type List<Object>. Remember that
List<String> and List<Integer> (for example) cannot be widened or cast to
List<Object>. What we really want is a typesafe printList() method to which we
can pass any List, regardless of how it has been parameterized. The solution is to use a
wildcard as the type parameter. The method would then be written like this:

public static void printList(PrintWriter out, List<?> list) {
 for(int i=0, n=list.size(); i < n; i++) {
 if (i > 0) out.print(", ");
 Object o = list.get(i);
 out.print(o.toString());
 }
}

This version of the method compiles without warnings and can be used the way we want
it to be used. The ? wildcard represents an unknown type, and the type List<?> is read
as "List of unknown."

As a general rule, if a type is generic and you don't know or don't care about the value of
the type variable, you should always use a ? wildcard instead of using a raw type. Raw types
are allowed only for backward compatibility and should be used only in legacy code. Note,
however, that you cannot use a wildcard when invoking a constructor. The following code
is not legal:

List<?> l = new ArrayList<?>();

There is no sense in creating a List of unknown type. If you are creating it, you should
know what kind of elements it will hold. You may later want to pass such a list to a method
that does not care about its element type, but you need to specify an element type when
you create it. If what you really want is a List that can hold any type of object, do this:

List<Object> l = new ArrayList<Object>();

Chapter 4. Java 5.0 Language Features Page 9 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It should be clear from the printList() variants above that a List<?> is not the same
thing as a List<Object> and that neither is the same thing as a raw List. A List<?>
has two important properties that result from the use of a wildcard. First, consider methods
like get() that are declared to return a value of the same type as the type parameter. In
this case, that type is unknown, so these methods return an Object. Since all we need to
do with the object is invoke its toString() method, this is fine for our needs.

Second, consider List methods such as add() that are declared to accept an argument
whose type is specified by the type parameter. This is the more surprising case: when the
type parameter is unknown, the compiler does not let you invoke any methods that have
a parameter of the unknown type because it cannot check that you are passing an
appropriate value. A List<?> is effectively read-only since the compiler does not allow
us to invoke methods like add(), set(), and addAll().

4.1.3.1. Bounded wildcards
Let's continue now with a slightly more complex variant of our original example. Suppose
that we want to write a sumList() method to compute the sum of a list of Number objects.
As before, we could use a raw List, but we would give up type safety and have to deal with
unchecked warnings from the compiler. Or we could use a List<Number>, but then we
wouldn't be able to call the method for a List<Integer> or List<Double>, types we
are more likely to use in practice. But if we use a wildcard, we don't actually get the type
safety that we want because we have to trust that our method will be called with a List
whose type parameter is actually Number or a subclass and not, say, a String. Here's
what such a method might look like:

public static double sumList(List<?> list) {
 double total = 0.0;
 for(Object o : list) {
 Number n = (Number) o; // A cast is required and may fail
 total += n.doubleValue();
 }
 return total;
}

To fix this method and make it truly typesafe, we need to use a bounded wildcard that
states that the type parameter of the List is an unknown type that is either Number or a
subclass of Number. The following code does just what we want:

public static double sumList(List<? extends Number> list) {
 double total = 0.0;
 for(Number n : list) total += n.doubleValue();
 return total;
}

The type List<? extends Number> could be read as "List of unknown descendant of
Number." It is important to understand that, in this context, Number is considered a
descendant of itself.

Chapter 4. Java 5.0 Language Features Page 10 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that the cast is no longer required. We don't know the type of the elements of the list,
but we know that they have an "upper bound" of Number so we can extract them from the
list as Number objects. The use of a for/in loop obscures the process of extracting
elements from a list somewhat. The general rule is that when you use a bounded wildcard
with an upper bound, methods (like the get() method of List) that return a value of the
type parameter use the upper bound. So if we called list.get() instead of using a
for/in loop, we'd also get a Number. The prohibition on calling methods like list.add
() that have arguments of the type parameter type still stands: if the compiler allowed
us to call those methods we could add an Integer to a list that was declared to hold only
Short values, for example.

It is also possible to specify a lower-bounded wildcard using the keyword super instead
of extends. This technique has a different impact on what methods can be called. Lower-
bounded wildcards are much less commonly used than upper-bounded wildcards, and we
discuss them later in the chapter.

4.1.4. Writing Generic Types and Methods
Creating a simple generic type is straightforward. First, declare your type variables by
enclosing a comma-separated list of their names within angle brackets after the name of
the class or interface. You can use those type variables anywhere a type is required in any
instance fields or methods of the class. Remember, though, that type variables exist only
at compile time, so you can't use a type variable with the runtime operators
instanceof and new.

We begin this section with a simple generic type, which we will subsequently refine. This
code defines a Tree data structure that uses the type variable V to represent the type of
the value held in each node of the tree:

import java.util.*;

/**
 * A tree is a data structure that holds values of type V.
 * Each tree has a single value of type V and can have any number of
 * branches, each of which is itself a Tree.
 */
public class Tree<V> {
 // The value of the tree is of type V.
 V value;

 // A Tree<V> can have branches, each of which is also a Tree<V>
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 // Here's the constructor. Note the use of the type variable V.
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating the node value and branches.
 // Note the use of the type variable V in the arguments or return types.
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }

Chapter 4. Java 5.0 Language Features Page 11 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 void addBranch(Tree<V> branch) { branches.add(branch); }
}

As you've probably noticed, the naming convention for type variables is to use a single
capital letter. The use of a single letter distinguishes these variables from the names of
actual types since real-world types always have longer, more descriptive names. The use
of a capital letter is consistent with type naming conventions and distinguishes type
variables from local variables, method parameters, and fields, which are sometimes
written with a single lowercase letter. Collection classes like those in java.util often
use the type variable E for "Element type." When a type variable can represent absolutely
anything, T (for Type) and S are used as the most generic type variable names possible
(like using i and j as loop variables).

Notice that the type variables declared by a generic type can be used only by the instance
fields and methods (and nested types) of the type and not by static fields and methods.
The reason, of course, is that it is instances of generic types that are parameterized. Static
members are shared by all instances and parameterizations of the class, so static members
do not have type parameters associated with them. Methods, including static methods, can
declare and use their own type parameters, however, and each invocation of such a method
can be parameterized differently. We'll cover this later in the chapter.

4.1.4.1. Type variable bounds
The type variable V in the declaration above of the Tree<V> class is unconstrained:
Tree can be parameterized with absolutely any type. Often we want to place some
constraints on the type that can be used: we might want to enforce that a type parameter
implements one or more interfaces, or that it is a subclass of a specified class. This can be
done by specifying a bound for the type variable. We've already seen upper bounds for
wildcards, and upper bounds can also be specified for type variables using a similar syntax.
The following code is the Tree example rewritten to make Tree objects
Serializable and Comparable. In order to do this, the example uses a type variable
bound to ensure that its value type is also Serializable and Comparable. Note how
the addition of the Comparable bound on V enables us to write the compareTo() method
Tree by guaranteeing the existence of a compareTo() method on V.[4]

[4] The bound shown here requires that the value type V is comparable to itself, in other words, that it implements the Comparable interface directly. This rules out
the use of types that inherit the Comparable interface from a superclass. We'll consider the Comparable interface in much more detail at the end of this section and
present an alternative there.

import java.io.Serializable;
import java.util.*;

public class Tree<V extends Serializable & Comparable<V>>
 implements Serializable, Comparable<Tree<V>>
{
 V value;
 List<Tree<V>> branches = new ArrayList<Tree<V>>();

 public Tree(V value) { this.value = value; }

Chapter 4. Java 5.0 Language Features Page 12 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 // Instance methods
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<V> branch) { branches.add(branch); }

 // This method is a nonrecursive implementation of Comparable<Tree<V>>
 // It only compares the value of this node and ignores branches.
 public int compareTo(Tree<V> that) {
 if (this.value == null && that.value == null) return 0;
 if (this.value == null) return -1;
 if (that.value == null) return 1;
 return this.value.compareTo(that.value);
 }

 // javac -Xlint warns us if we omit this field in a Serializable class
 private static final long serialVersionUID = 833546143621133467L;
}

The bounds of a type variable are expressed by following the name of the variable with the
word extends and a list of types (which may themselves be parameterized, as
Comparable is). Note that with more than one bound, as in this case, the bound types are
separated with an ampersand rather than a comma. Commas are used to separate type
variables and would be ambiguous if used to separate type variable bounds as well. A type
variable can have any number of bounds, including any number of interfaces and at most
one class.

4.1.4.2. Wildcards in generic types
Earlier in the chapter we saw examples using wildcards and bounded wildcards in methods
that manipulated parameterized types. They are also useful in generic types. Our current
design of the Tree class requires the value object of every node to have exactly the same
type, V. Perhaps this is too strict, and we should allow branches of a tree to have values
that are a subtype of V instead of requiring V itself. This version of the Tree class (minus
the Comparable and Serializable implementation) is more flexible:

public class Tree<V> {
 // These fields hold the value and the branches
 V value;
 List<Tree<? extends V>> branches = new ArrayList<Tree<? extends V>>();

 // Here's a constructor
 public Tree(V value) { this.value = value; }

 // These are instance methods for manipulating value and branches
 V getValue() { return value; }
 void setValue(V value) { this.value = value; }
 int getNumBranches() { return branches.size(); }
 Tree<? extends V> getBranch(int n) { return branches.get(n); }
 void addBranch(Tree<? extends V> branch) { branches.add(branch); }
}

The use of bounded wildcards for the branch type allow us to add a Tree<Integer>, for
example, as a branch of a Tree<Number>:

Chapter 4. Java 5.0 Language Features Page 13 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tree<Number> t = new Tree<Number>(0); // Note autoboxing
t.addBranch(new Tree<Integer>(1)); // int 1 autoboxed to Integer

If we query the branch with the getBranch() method, the value type of the returned
branch is unknown, and we must use a wildcard to express this. The next two lines are
legal, but the third is not:

Tree<? extends Number> b = t.getBranch(0);
Tree<?> b2 = t.getBranch(0);
Tree<Number> b3 = t.getBranch(0); // compilation error

When we query a branch like this, we don't know the precise type of the value, but we do
still have an upper bound on the value type, so we can do this:

Tree<? extends Number> b = t.getBranch(0);
Number value = b.getValue();

What we cannot do, however, is set the value of the branch, or add a new branch to that
branch. As explained earlier in the chapter, the existence of the upper bound does not
change the fact that the value type is unknown. The compiler does not have enough
information to allow us to safely pass a value to setValue() or a new branch (which
includes a value type) to addBranch(). Both of these lines of code are illegal:

b.setValue(3.0); // Illegal, value type is unknown
b.addBranch(new Tree<Double>(Math.PI));

This example has illustrated a typical trade-off in the design of a generic type: using a
bounded wildcard made the data structure more flexible but reduced our ability to safely
use some of its methods. Whether or not this was a good design is probably a matter of
context. In general, generic types are more difficult to design well. Fortunately, most of us
will use the preexisting generic types in the java.util package much more frequently
than we will have to create our own.

4.1.4.3. Generic methods
As noted earlier, the type variables of a generic type can be used only in the instance
members of the type, not in the static members. Like instance methods, however, static
methods can use wildcards. And although static methods cannot use the type variables of
their containing class, they can declare their own type variables. When a method declares
its own type variable, it is called a generic method.

Here is a static method that could be added to the Tree class. It is not a generic method
but uses a bounded wildcard much like the sumList() method we saw earlier in the
chapter:

/** Recursively compute the sum of the values of all nodes on the tree */
public static double sum(Tree<? extends Number> t) {
 double total = t.value.doubleValue();
 for(Tree<? extends Number> b : t.branches) total += sum(b);

Chapter 4. Java 5.0 Language Features Page 14 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 return total;
}

This method could also be rewritten as a generic method by declaring a type variable to
express the upper bound imposed by the wildcard:

public static <N extends Number> double sum(Tree<N> t) {
 N value = t.value;
 double total = value.doubleValue();
 for(Tree<? extends N> b : t.branches) total += sum(b);
 return total;
}

The generic version of sum() is no simpler than the wildcard version and the declaration
of the type variable does not gain us anything. In a case like this, the wildcard solution is
typically preferred over the generic solution. Generic methods are required where a single
type variable is used to express a relationship between two parameters or between a
parameter and a return value. The following method is an example:

// This method returns the largest of two trees, where tree size
// is computed by the sum() method. The type variable ensures that
// both trees have the same value type and that both can be passed to sum().
public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {
 double ts = sum(t);
 double us = sum(u);
 if (ts > us) return t;
 else return u;
}

This method uses the type variable N to express the constraint that both arguments and
the return value have the same type parameter and that that type parameter is Number or
a subclass.

It could be argued that constraining both arguments to have the same value type is too
restrictive and that we should be allowed to call the max() method on a
Tree<Integer> and a Tree<Double>. One way to express this is to use two unrelated
type variables to represent the two unrelated value types. Note, however, that we cannot
use either variable in the return type of the method and must use a wildcard there:

public static <N extends Number, M extends Number>
 Tree<? extends Number> max(Tree<N> t, Tree<M> u) {...}

Since the two type variables N and M have no relation to each other, and since each is used
in only a single place in the signature, they offer no advantage over bounded wildcards.
The method is better written this way:

public static Tree<? extends Number> max(Tree<? extends Number> t,
 Tree<? extends Number> u) {...}

All the examples of generic methods shown here have been static methods. This is not
a requirement: instance methods can declare their own type variables as well.

Chapter 4. Java 5.0 Language Features Page 15 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4.1.4.4. Invoking generic methods
When you use a generic type, you must specify the actual type parameters to be substituted
for its type variables. The same is not generally true for generic methods: the compiler can
almost always figure out the correct parameterization of a generic method based on the
arguments you pass to the method. Consider the max() method defined above, for
instance:

public static <N extends Number> Tree<N> max(Tree<N> t, Tree<N> u) {...}

You need not specify N when you invoke this method because N is implicitly specified in
the values of the method arguments t and u. In the following code, for example, the
compiler determines that N is Integer:

Tree<Integer> x = new Tree<Integer>(1);
Tree<Integer> y = new Tree<Integer>(2);
Tree<Integer> z = Tree.max(x, y);

The process the compiler uses to determine the type parameters for a generic method is
called type inference. Type inference is relatively intuitive to understand, but the actual
algorithm the compiler must use is surprisingly complex and is well beyond the scope of
this book. Complete details are in Chapter 15 of The Java Language Specification, Third
Edition.

Let's look at a slightly more complex version of type inference. Consider this method:
public class Util {
 /** Set all elements of a to the value v; return a. */
 public static <T> T[] fill(T[] a, T v) {
 for(int i = 0; i < a.length; i++) a[i] = v;
 return a;
 }
}

Here are two invocations of the method:
Boolean[] booleans = Util.fill(new Boolean[100], Boolean.TRUE);
Object o = Util.fill(new Number[5], new Integer(42));

In the first invocation, the compiler can easily determine that T is Boolean. In the second
invocation, the compiler determines that T is Number.

In very rare circumstances you may need to explicitly specify the type parameters for a
generic method. This is sometimes necessary, for example, when a generic method expects
no arguments. Consider the java.util.Collections.emptySet() method: it
returns a set with no elements, but unlike the Collections.singleton() method
(you can look these up in the reference section), it takes no arguments that would specify

Chapter 4. Java 5.0 Language Features Page 16 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the type parameter for the returned set. You can specify the type parameter explicitly by
placing it in angle brackets before the method name:

Set<String> empty = Collections.<String>emptySet();

Type parameters cannot be used with an unqualified method name: they must follow a dot
or come after the keyword new or before the keyword this or super used in a constructor.

It turns out that if you assign the return value of Collections.emptySet() to a
variable, as we did above the type inference mechanism is able to infer the type parameter
based on the variable type. Although the explicit type parameter specification in the code
above can be a helpful clarification, it is not necessary and the line could be rewritten as:

Set<String> empty = Collections.emptySet();

An explicit type parameter is necessary when you use the return value of the emptySet
() method within a method invocation expression. For example, suppose you want to
call a method named printWords() that expects a single argument of type
Set<String>. If you want to pass an empty set to this method, you could use this code:

printWords(Collections.<String>emptySet());

In this case, the explicit specification of the type parameter String is required.

4.1.4.5. Generic methods and arrays
Earlier in the chapter we saw that the compiler does not allow you to create an array whose
type is parameterized. This is not, however, a restriction on all uses of arrays with generics.
Consider the Util.fill() method defined above, for example. Its first argument and
its return value are both of type T[]. The body of the method does not have to create an
array whose element type is T, so the method is perfectly legal.

If you write a method that uses varargs (see Section 2.6.4 in Chapter 2) and a type variable,
remember that invoking a varargs method performs an implicit array creation. Consider
this method:

/** Return the largest of the specified values or null if there are none */
public static <T extends Comparable<T>> T max(T... values) { ... }

You can invoke this method with parameters of type Integer because the compiler can
insert the necessary array creation code for you when you call it. But you cannot call the
method if you've cast the same arguments to be type Comparable<Integer> because it
is not legal to create an array of type Comparable<Integer>[].

Chapter 4. Java 5.0 Language Features Page 17 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-6#javanut5-CHP-2-SECT-6.4

4.1.4.6. Parameterized exceptions
Exceptions are thrown and caught at runtime, and there is no way for the compiler to
perform type checking to ensure that an exception of unknown origin matches type
parameters specified in a catch clause. For this reason, catch clauses may not include
type variables or wildcards. Since it is not possible to catch an exception at runtime with
compile-time type parameters intact, you are not allowed to make any subclass of
Throwable generic. Parameterized exceptions are simply not allowed.

You can, however, use a type variable in the throws clause of a method signature. Consider
this code, for example:

public interface Command<X extends Exception> {
 public void doit(String arg) throws X;
}

This interface represents a "command": a block of code with a single string argument and
no return value. The code may throw an exception represented by the type parameter X.
Here is an example that uses a parameterization of this interface:

Command<IOException> save = new Command<IOException>() {
 public void doit(String filename) throws IOException {
 PrintWriter out = new PrintWriter(new FileWriter(filename));
 out.println("hello world");
 out.close();
 }
};

try { save.doit("/tmp/foo"); }
catch(IOException e) { System.out.println(e); }

4.1.5. Generics Case Study: Comparable and Enum
The new generics features in Java 5.0 are used in the Java 5.0 APIs, most notably in
java.util but also in java.lang, java.lang.reflect, and
java.util.concurrent. These APIs were carefully created or reviewed by the
inventors of generic types, and we can learn a lot about the good design of generic types
and methods through the study of these APIs.

The generic types of java.util are relatively easy: for the most part they are collections
classes, and type variables are used to represent the element type of the collection. Several
important generic types in java.lang are more difficult. They are not collections, and it
is not immediately apparent why they have been made generic. Studying these difficult
generic types gives us a deeper understanding of how generics work and introduces some
concepts that we have not yet covered in this chapter. Specifically, we'll examine the
Comparable interface and the Enum class (the supertype of enumerated types, described
later in this chapter) and will learn about an important but infrequently used feature of
generics known as lower-bounded wildcards.

Chapter 4. Java 5.0 Language Features Page 18 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In Java 5.0, the Comparable interface has been made generic, with a type variable that
specifies what a class is comparable to. Most classes that implement Comparable
implement it on themselves. Consider Integer:

public final class Integer extends Number implements Comparable<Integer>

The raw Comparable interface is problematic from a type-safety standpoint. It is possible
to have two Comparable objects that cannot be meaningfully compared to each other.
Prior to Java 5.0, the nongeneric Comparable interface was useful but not fully
satisfactory. The generic version of this interface, however, captures exactly the
information we want: it tells us that a type is comparable and tells us what we can compare
it to.

Now consider subclasses of comparable classes. Integer is final and cannot be
subclassed, so let's look at java.math.BigInteger instead:

public class BigInteger extends Number implements Comparable<BigInteger>

If we implement a BiggerInteger subclass of BigInteger, it inherits the
Comparable interface from its superclass. But note that it inherits
Comparable<BigInteger> and not Comparable<BiggerInteger>. This means
that BigInteger and BiggerInteger objects are mutually comparable, which is
usually a good thing. BiggerInteger can override the compareTo() method of its
superclass, but it is not allowed to implement a different parameterization of
Comparable. That is, BiggerInteger cannot both extend BigInteger and implement
Comparable<BiggerInteger>. (In general, a class is not allowed to implement two
different parameterizations of the same interface: we cannot define a type that implements
both Comparable<Integer> and Comparable<String>, for example.)

When you're working with comparable objects (as you do when writing sorting algorithms,
for example), remember two things. First, it is not sufficient to use Comparable as a raw
type: for type safety, you must also specify what it is comparable to. Second, types are not
always comparable to themselves: sometimes they're comparable to one of their ancestors.
To make this concrete, consider the java.util.Collections.max() method:

public static <T extends Comparable<? super T>> T max(Collection<? extends T> c)

This is a long, complex generic method signature. Let's walk through it:

• The method has a type variable T with complicated bounds that we'll return to later.
• The method returns a value of type T.
• The name of the method is max().

Chapter 4. Java 5.0 Language Features Page 19 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• The method's argument is a Collection. The element type of the collection is specified
with a bounded wildcard. We don't know the exact type of the collection's elements,
but we know that they have an upper bound of T. That is, we know that the elements
of the collection are type T or a subclass of T. Any element of the collection could
therefore be used as the return value of the method.

That much is relatively straightforward. We've seen upper-bounded wildcards elsewhere
in this section. Now let's look again at the type variable declaration used by the max()
method:

<T extends Comparable<? super T>>

This says first that the type T must implement Comparable. (Generics syntax uses the
keyword extends for all type variable bounds, whether classes or interfaces.) This is
expected since the purpose of the method is to find the "maximum" object in a collection.
But look at the parameterization of the Comparable interface. This is a wildcard, but it
is bounded with the keyword super instead of the keyword extends. This is a lower-
bounded wildcard. ? extends T is the familiar upper bound: it means T or a
subclass. ? super T is less commonly used: it means T or a superclass.

To summarize, then, the type variable declaration states "T is a type that is comparable to
itself or to some superclass of itself." The Collections.min() and
Collections.binarySearch() methods have similar signatures.

For other examples of lower-bounded wildcards (that have nothing to do with
Comparable), consider the addAll(), copy(), and fill() methods of
Collections. Here is the signature for addAll():

public static <T> boolean addAll(Collection<? super T> c, T... a)

This is a varargs method that accepts any number of arguments of type T and passes them
as a T[] named a. It adds all the elements of a to the collection c. The element type of
the collection is unknown but has a lower bound: the elements are all of type T or a
superclass of T. Whatever the type is, we are assured that the elements of the array are
instances of that type, and so it is always legal to add those array elements to the collection.

Recall from our earlier discussion of upper-bounded wildcards that if you have a collection
whose element type is an upper-bounded wildcard, it is effectively read-only. Consider
List<? extends Serializable>. We know that all elements are Serializable, so
methods like get() return a value of type Serializable. The compiler won't let us call
methods like add() because the actual element type of the list is unknown. You can't add

Chapter 4. Java 5.0 Language Features Page 20 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

arbitrary serializable objects to the list because their implementing class may not be of the
correct type.

Since upper-bounded wildcards result in read-only collections, you might expect lower-
bounded wildcards to result in write-only collections. This isn't actually the case, however.
Suppose we have a List<? super Integer>. The actual element type is unknown, but
the only possibilities are Integer or its ancestors Number and Object. Whatever the
actual type is, it is safe to add Integer objects (but not Number or Object objects) to
the list. And, whatever the actual element type is, all elements of the list are instances of
Object, so List methods like get() return Object in this case.

Finally, let's turn our attention to the java.lang.Enum class. Enum serves as the
supertype of all enumerated types (described later). It implements the Comparable
interface but has a confusing generic signature:

public class Enum<E extends Enum<E>> implements Comparable<E>, Serializable

At first glance, the declaration of the type variable E appears circular. Take a closer look
though: what this signature really says is that Enum must be parameterized by a type that
is itself an Enum. The reason for this seemingly circular type variable declaration becomes
apparent if we look at the implements clause of the signature. As we've seen,
Comparable classes are usually defined to be comparable to themselves. And subclasses
of those classes are comparable to their superclass instead. Enum, on the other hand,
implements the Comparable interface not for itself but for a subclass E of itself!

4.2. Enumerated Types
In previous chapters, we've seen the class keyword used to define class types, and the
interface keyword used to define interface types. This section introduces the enum
keyword, which is used to define an enumerated type (informally called an enum).
Enumerated types are new in Java 5.0, and the features described here cannot be used
(although they can be partially simulated) prior to that release.

We begin with the basics: how to define and use an enumerated type, including common
programming idioms involving enumerated types and values. Next, we discuss the more
advanced features of enums and show how to simulate enums prior to Java 5.0.

4.2.1. Enumerated Types Basics
An enumerated type is a reference type with a finite (usually small) set of possible values,
each of which is individually listed, or enumerated. Here is a simple enumerated type
defined in Java:

public enum DownloadStatus { CONNECTING, READING, DONE, ERROR }

Chapter 4. Java 5.0 Language Features Page 21 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Like class and interface, the enum keyword defines a new reference type. The single
line of Java code above defines an enumerated type named DownloadStatus. The body
of this type is simply a comma-separated list of the four values of the type. These values
are like static final fields (which is why their names are capitalized), and you refer
to them with names like DownloadStatus.CONNECTING,
DownloadStatus.READING, and so on. A variable of type DownloadStatus can be
assigned one of these four values or null but nothing else. The values of an enumerated
type are called enumerated values and are sometimes also referred to as enum
constants .

It is possible to define more complex enumerated types than the one shown here, and we
describe the complete enum syntax later in this chapter. For now, however, you can define
simple, but very useful, enumerated types with this basic syntax.

4.2.1.1. Enumerated types are classes
Prior to the introduction of enumerated types in Java 5.0, the DownloadStatus values
would probably have been implemented as integer constants with lines like the following
in a class or interface:

public static final int CONNECTING = 1;
public static final int READING = 2;
public static final int DONE = 3;
public static final int ERROR = 4;

The use of integer constants has a number of shortcomings, the most important of which
is its lack of type safety. If a method expects a download status constant value, for example,
no error checking prevents me from passing an illegal value. The compiler can't tell me
that I've used the constant UploadStatus.DONE when I should have used
DownloadStatus.DONE.

Fortunately, enumerated types in Java are not simple integer constants. The type defined
by an enum keyword is actually a class and its enumerated values are instances of that
class. This provides type safety: if I try to pass a DownloadStatus value to a method that
expects an UploadStatus, the compiler issues an error. Enumerated types do not have
a public constructor, so a program cannot create a new undefined instance of the type. If
a method expects a DownloadStatus, it can be confident that it will not be passed some
unknown instance of the type.

If you are accustomed to writing code using integer constants instead of true enumerated
types, you have probably already made a list of pragmatic advantages of integers over
objects for enumerated values. Hold your judgment, however: the sections that follow
illustrate common enumerated type programming idioms and demonstrate that anything

Chapter 4. Java 5.0 Language Features Page 22 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you can do with integer constants can be done elegantly, efficiently, and more safely with
enums. First, however, we consider the basic features of all enumerated types.

4.2.1.2. Features of enumerated types
The following list describes the basic facts about enumerated types. These are the features
of enums that you need to know to understand and use them effectively:

• Enumerated types have no public constructor. The only instances of an enumerated
type are those declared by the enum.

• Enums are not Cloneable, so copies of the existing instances cannot be created.
• Enums implement java.io.Serializable so they can be serialized, but the Java

serialization mechanism handles them specially to ensure that no new instances are
ever created.

• Instances of an enumerated type are immutable: each enum value retains its identity.
(We'll see later in this chapter that you can add your own fields and methods to an
enumerated type, which means that you can create enumerated values that have
mutable portions. This is not recommended, but does not affect the basic identity of
each value.)

• Instances of an enumerated type are stored in public static final fields of the
type itself. Because these fields are final, they cannot be overwritten with
inappropriate values: you can't assign the DownloadStatus.ERROR value to the
DownloadStatus.DONE field, for example.

• By convention, the values of enumerated types are written using all capital letters, just
as other static final fields are.

• Because there is a strictly limited set of distinct enumerated values, it is always safe
to compare enum values using the = = operator instead of calling the equals()
method.

• Enumerated types do have a working equals() method, however. The method uses
= = internally and is final so that it cannot be overridden. This working equals
() method allows enumerated values to be used as members of collections such as
Set, List, and Map.

• Enumerated types have a working hashCode() method consistent with their
equals() method. Like equals(), hashCode() is final. It allows enumerated
values to be used with classes like java.util.HashMap.

• Enumerated types implement java.lang.Comparable, and the compareTo()
method orders enumerated values in the order in which they appear in the enum
declaration.

• Enumerated types include a working toString() method that returns the name
of the enumerated value. For example, DownloadStatus.DONE.toString()
returns the string "DONE" by default. This method is not final, and enum types can
provide a custom implementation if they choose.

Chapter 4. Java 5.0 Language Features Page 23 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Enumerated types provide a static valueOf() method that does the opposite of the
default toString() method. For example, DownloadStatus.valueOf
("DONE") would return DownloadStatus.DONE.

• Enumerated types define a final instance method named ordinal() that returns
an integer for each enumerated value. The ordinal of an enumerated value represents
its position (starting at zero) in the list of value names in the enum declaration. You
do not typically need to use the ordinal() method, but it is used by a number of
enum-related facilities, as described later in the chapter.

• Each enumerated type defines a static method named values() that returns an
array of enumerated values of that type. This array contains the complete set of values,
in the order they were declared, and is useful for iterating through the complete set
of possible values. Because arrays are mutable, the values() method always
returns a newly created and initialized array.

• Enumerated types are subclasses of java.lang.Enum, which is new in Java 5.0.
(Enum is not itself an enumerated type.) You cannot produce an enumerated type by
manually extending the Enum class, and it is a compilation error to attempt this. The
only way to define an enumerated type is with the enum keyword.

• It is not possible to extend an enumerated type. Enumerated types are effectively
final, but the final keyword is neither required nor permitted in their declarations.
Because enums are effectively final, they may not be abstract. (We'll return to
this point later in the chapter.)

• Like classes, enumerated types may implement interfaces. (We'll see how enumerated
types may define methods later in the chapter.)

4.2.2. Using Enumerated Types
The following sections illustrate common idioms for working with enumerated types. They
demonstrate the use of the switch statement with enumerated types and introduce the
important new EnumSet and EnumMap collections.

4.2.2.1. Enums and the switch statement
In Java 1.4 and earlier, the switch statement works only with int, short, char, and
byte values. Because enumerated types have a finite set of values, they are ideally suited
for use with the switch statement, and this statement has been extended in Java 5.0 to
support the use of enumerated types. If the compile-time type of the switch expression
is an enumerated type, the case labels must all be unqualified names of instances of that
type. The following hypothetical code shows a switch statement used with the
DownloadStatus enumerated type.

DownloadStatus status = imageLoader.getStatus();
switch(status) {
case CONNECTING:

Chapter 4. Java 5.0 Language Features Page 24 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 imageLoader.waitForConnection();
 imageLoader.startReading();
 break;
case READING:
 break;
case DONE:
 return imageLoader.getImage();
case ERROR:
 throw new IOException(imageLoader.getError());
}

Note that the case labels are just the constant name: the syntax of the switch statement
does not allow the class name DownloadStatus to appear here. The ability to omit the
class name is very convenient since it would otherwise appear in every single case.
However the requirement that the class name be omitted is surprising since (in the absence
of an import static declaration) the class name is required in every other context.

If the switch expression (status in the code above) evaluates to null, a
NullPointerException is thrown. It is not legal to use null as the value of a case
label.

If you use the switch statement on an enumerated type and do not include either a
default: label or a case label for each enumerated value, the compiler will most likely
issue an -Xlint warning letting you know that you have not written code to handle all
possible values of the enumerated type.[5] Even when you do write a case for each
enumerated value, you may still want to include a default: clause; this covers the
possibility that a new value is added to the enumerated type after your switch statement
has been compiled. The following default clause, for example, could be added to the
switch statement shown earlier:

[5] At the time of this writing, this warning is expected to appear in Java 5.1.

default: throw new AssertionError("Unexpected enumerated value: " + status);

4.2.2.2. EnumMap
A common programming technique when using integer constants instead of true
enumerated values is to use those constants as array indexes. For example, if the
DownloadStatus values are defined as integers between 0 and 3, we can write code like
this:

String[] statusLineMessages = new String[] {
 "Connecting...", // CONNECTING
 "Loading...", // READING
 "Done.", // DONE
 "Download Failed." // ERROR
};

int status = getStatus();
String message = statusLineMessages[status];

Chapter 4. Java 5.0 Language Features Page 25 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In the big picture, this technique creates a mapping from enumerated integer constants
to strings. We can't use Java's enumerated values as array indexes, but we can use them
as keys in a java.util.Map. Because this is a common thing to do, Java 5.0 defines a
new java.util.EnumMap class that is optimized for exactly this case. EnumMap requires
an enumerated type as its key, and, relying on the fact the number of possible keys is finite,
it uses an array to hold the corresponding values. This implementation means that
EnumMap is more efficient than HashMap. The EnumMap equivalent of the code above is:

EnumMap<DownloadStatus,String> messages =
 new EnumMap<DownloadStatus,String>(DownloadStatus.class);
messages.put(DownloadStatus.CONNECTING, "Connecting...");
messages.put(DownloadStatus.READING, "Loading...");
messages.put(DownloadStatus.DONE, "Done.");
messages.put(DownloadStatus.ERROR, "Download Failed.");

DownloadStatus status = getStatus();
String message = messages.get(status);

Like other collection classes in Java 5.0, EnumMap is a generic type that accepts type
parameters.

The use of an EnumMap to associate a value with each instance of an enumerated type is
appropriate when you're working with an enum defined elsewhere. If you defined the enum
value yourself, you can create the necessary associations as part of the enum definition
itself. We'll see how to do this later in the chapter.

4.2.2.3. EnumSet
Another common programming idiom when using integer-based constants instead of an
enumerated type is to define all the constants as powers of two so that a set of those
constants can be compactly represented as bit-flags in an integer. Consider the following
flags that describe options that can apply to an American-style espresso drink:

public static final int SHORT = 0x01; // 8 ounces
public static final int TALL = 0x02; // 12 ounces
public static final int GRANDE = 0x04; // 16 ounces
public static final int DOUBLE = 0x08; // 2 shots of espresso
public static final int SKINNY = 0x10; // made with nonfat milk
public static final int WITH_ROOM = 0x20; // leave room for cream
public static final int SPLIT_SHOT = 0x40; // half decaffeinated
public static final int DECAF = 0x80; // fully decaffeinated

These power-of-two constants can be combined with the bitwise OR operator (|) to create
a compact set of constants that is easy to work with:

int drinkflags = DOUBLE | SHORT | WITH_ROOM;

The bitwise AND operator (&) can be used to test for the presence or absence of bits:

boolean isBig = (drinkflags & (TALL | GRANDE)) != 0;

Chapter 4. Java 5.0 Language Features Page 26 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If we step back from the binary representation of these bit flags and the boolean operators
that manipulate them, we can see that integer bit flags are simply compact sets of values.
For reference types such as Java's enumerated values, we can use a java.util.Set
instead. Since this is an important and common thing to do with enumerated values, Java
5.0 provides the special-purpose java.util.EnumSet class. Like EnumMap, EnumSet
is optimized for enumerated types. It requires that its members be values of the same
enumerated type and uses a compact and fast representation of the set based on bit flags
that correspond to the ordinal() of each enumerated value.

The espresso drink code above could be rewritten as follows using an enum and
EnumSet:

public enum DrinkFlags {
 SHORT, TALL, GRANDE, DOUBLE, SKINNY, WITH_ROOM, SPLIT_SHOT, DECAF
}

EnumSet<DrinkFlags> drinkflags =
 EnumSet.of(DrinkFlags.DOUBLE, DrinkFlags.SHORT, DrinkFlags.WITH_ROOM);

boolean isbig =
 drinkflags.contains(DrinkFlags.TALL) ||
 drinkflags.contains(DrinkFlags.GRANDE);

Note that the code above can be made as compact as the integer-based code with a simple
static import:

// Import all static DrinkFlag enum constants
import static com.davidflanagan.coffee.DrinkFlags.*;

See Section 2.10 in Chapter 2 for details on the import static declaration.

EnumSet defines a number of useful factory methods for initializing sets of enumerated
values. The of() method shown above is overloaded: several versions of the method take
different fixed numbers of arguments. A varargs (see Chapter 2) form that can accept any
number of arguments is also defined. Here are some other ways that you can use of()
and related EnumSet factories:

// Make the following examples fit on the page better
import static com.davidflanagan.coffee.DrinkFlags.*;

// We can remove individual members or sets of members from a set.
// Start with a set that includes all enumerated values, then remove a subset:
EnumSet<DrinkFlags> fullCaffeine = EnumSet.allOf(DrinkFlags.class);
fullCaffeine.removeAll(EnumSet.of(DECAF, SPLIT_SHOT));

// Here's another technique to achieve the same result:
EnumSet<DrinkFlags> fullCaffeine =
 EnumSet.complementOf(EnumSet.of(DECAF,SPLIT_SHOT));

// Here's an empty set if you ever need one
// Note that since we don't specify a value, we must specify the element type
EnumSet<DrinkFlags> plainDrink = EnumSet.noneOf(DrinkFlags.class);

// You can also easily describe a contiguous subset of values:
EnumSet<DrinkFlags> drinkSizes = EnumSet.range(SHORT, GRANDE);

Chapter 4. Java 5.0 Language Features Page 27 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-2-SECT-10#javanut5-CHP-2-SECT-10
http://safari.oreilly.com/0596007736/javanut5-CHP-2#javanut5-CHP-2

// EnumSet is Iterable, and its iterator returns values in ordinal() order,
// so it is easy to loop through the elements of an EnumSet.
for(DrinkFlag size : drinkSizes) System.out.println(size);

The example code shown here demonstrates the use and capabilities of the EnumSet class.
Note, however, that an EnumSet<DrinkFlags> is not really an appropriate
representation for the description of an espresso drink. An EnumSet<DrinkFlags>
might be overspecified, including both SHORT and GRANDE, for example, or it might be
underspecified and include no drink size at all.

At the root, the problem is that the DrinkFlag type is a naive translation of the integer
bit flags we began this section with. A better and more complete representation is captured
by the following interface, which requires one value from each of five different enumerated
types and a set of values from a sixth enum. The enums are defined as nested types within
the interface itself (see Chapter 3). This example highlights the type safety provided by
enumerated types. It is not possible (as it would be with integer constants) to specify a
drink strength where a drink size is required, for example.

public interface Espresso {
 enum Drink { LATTE, MOCHA, AMERICANO, CAPPUCCINO, ESPRESSO }
 enum Size { SHORT, TALL, GRANDE }
 enum Strength { SINGLE, DOUBLE, TRIPLE, QUAD }
 enum Milk { SKINNY, ONE_PERCENT, TWO_PERCENT, WHOLE, SOY }
 enum Caffeine { REGULAR, SPLIT_SHOT, DECAF }
 enum Flags { WITH_ROOM, EXTRA_HOT, DRY }

 Drink getDrink();
 Size getSize();
 Strength getStrength();
 Milk getMilk();
 Caffeine getCaffeine();
 java.util.Set<Flags> getFlags();
}

4.2.3. Advanced Enum Syntax
The examples shown so far have all used the simplest enum syntax in which the body of
the enum simply consists of a comma-separated list of value names. The full enum syntax
actually provides quite a bit more power and flexibility:

• You can define your own fields, methods, and constructors for the enumerated type.
• If you define one or more constructors, you can invoke a constructor for each

enumerated value by following the value name with constructor arguments in
parentheses.

• Although an enum may not extend anything, it may implement one or more
interfaces.

• Most esoterically, individual enumerated values can have their own class bodies that
override methods defined by the type.

Chapter 4. Java 5.0 Language Features Page 28 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-3#javanut5-CHP-3

Rather than formally specifying the syntax for each of these advanced enum declarations,
we'll demonstrate the syntax in the examples that follow.

4.2.3.1. The class body of an enumerated type
Consider the type Prefix, defined below. It is an enum that includes a regular class body
following the list of enumerated values. It defines two instance fields and accessor methods
for those fields. It defines a custom constructor that initializes the instance field. Each
named value of the enumerated type is followed by constructor arguments in parentheses:

public enum Prefix {
 // These are the values of this enumerated type.
 // Each one is followed by constructor arguments in parentheses.
 // The values are separated from each other by commas, and the
 // list of values is terminated with a semicolon to separate it from
 // the class body that follows.
 MILLI("m", .001),
 CENTI("c", .01),
 DECI("d", .1),
 DECA("D", 10.0),
 HECTA("h", 100.0),
 KILO("k", 1000.0); // Note semicolon

 // This is the constructor invoked for each value above.
 Prefix(String abbrev, double multiplier) {
 this.abbrev = abbrev;
 this.multiplier = multiplier;
 }

 // These are the private fields set by the constructor
 private String abbrev;
 private double multiplier;

 // These are accessor methods for the fields. They are instance methods
 // of each value of the enumerated type.
 public String abbrev() { return abbrev; }
 public double multiplier() { return multiplier; }
}

Note that enum syntax requires a semicolon after the last enumerated value if that value
is followed by a class body. This semicolon may be omitted in the simple case where there
is no class body. It is also worth noting that enum syntax allows a comma following the last
enumerated value. A trailing comma looks somewhat odd but prevents syntax errors if in
the future you add new enumerated values or rearrange existing ones.

4.2.3.2. Implementing an interface
An enum cannot be declared to extend a class or enumerated type. It is perfectly legal,
however, for an enumerated type to implement one or more interfaces. Suppose, for
example, that you defined a new enumerated type Unit with an abbrev() method like
Prefix has. In this case, you might define an interface Abbrevable for any objects that
have abbreviations. Your code might look like this:

public interface Abbrevable {
 String abbrev();
}

Chapter 4. Java 5.0 Language Features Page 29 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public enum Prefix implements Abbrevable {
 // the body of this enum type remains the same as above.
}

4.2.3.3. Value-specific class bodies
In addition to defining a class body for the enumerated type itself, you can also provide
a class body for individual enumerated values within the type. We've seen above that we
can add fields to an enumerated type and use a constructor to initialize those fields. This
gives us value-specific data. The ability to define class bodies for each enumerated value
means that we can write methods for each one: this gives us value-specific behavior. Value-
specific behavior is useful when defining an enumerated type that represents an operator
in an expression parser or an opcode in a virtual machine of some sort. The
Operator.ADD constant might have a compute() method that behaves differently than
the Operator.SUBTRACT constant, for example.

To define a class body for an individual enumerated value, simply follow the value name
and its constructor arguments with the class body in curly braces. Individual values must
still be separated from each other with commas, and the last value in the list must be
separated from the type's class body with a semicolon: it can be easy to forget about this
required punctuation with the presence of curly braces for class and method bodies.

Each value-specific class body you write results in the creation of an anonymous subclass
of the enumerated type and makes the enumerated value a singleton instance of that
anonymous subclass. (Enumerated types can not be extended, but they are not strictly
final in the sense that final classes are since they can have these anonymous
subclasses.) Because these subclasses are anonymous, you cannot refer to them in your
code: the compile-time type of each enumerated value is the enumerated type, not the
anonymous subclass specific to that value. Therefore, the only useful thing you can do in
value-specific class bodies is override methods defined by the type itself. If you define a
new public field or method, you will not be able to refer to or invoke it. (It is perfectly
legitimate, of course, to define helper methods or fields that you invoke or use from the
overriding methods.)

A common pattern is to define default behavior in a method of the type-specific class body.
Then, each enumerated value that requires behavior other than the default can override
that method in its value-specific class body. A very useful variant of this pattern is to declare
the method in the type-specific class body abstract and to define a value-specific
implementation of the method for every enumerated value. If the type-specific method is
abstract, the compiler forces you to implement that method for every enumerated value
in the type: it is not possible to accidentally omit an implementation. Note that even though
the type-specific class body contains an abstract method, the enumerated type as a
whole is not abstract (and may not be declared abstract) since each value-specific
class body implements the method.

Chapter 4. Java 5.0 Language Features Page 30 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The following code is an excerpt from a larger example that uses an enumerated type to
represent the opcodes of a simulated stack-based CPU. The Opcode enumerated type
defines an abstract method perform(), which is then implemented by the class body
of each value of the type. The type includes a constructor to illustrate the full syntax for
each enumerated value: name, constructor arguments, and class body. enum syntax
requires the enumerated values and their class bodies to appear first. The code is easiest
to understand, however, if you skip past the values and read the type-specific class body
first:

// These are the opcodes that our stack machine can execute.
public enum Opcode {
 // Push the single operand onto the stack
 PUSH(1) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(operands[0]);
 }
 }, // Remember to separate enum values with commas

 // Add the top two values on the stack and push the result
 ADD(0) {
 public void perform(StackMachine machine, int[] operands) {
 machine.push(machine.pop() + machine.pop());
 }
 },

 /* Other opcode values have been omitted for brevity */

 // Branch if Equal to Zero
 BEZ(1) {
 public void perform(StackMachine machine, int[] operands) {
 if (machine.top() == 0) machine.setPC(operands[0]);
 }
 }; // Remember the required semicolon before the class body

 // This is the constructor for the type.
 Opcode(int numOperands) { this.numOperands = numOperands; }

 int numOperands; // how many integer operands does it expect?

 // Each opcode constant must implement this abstract method in a
 // value-specific class body to perform the operation it represents.
 public abstract void perform(StackMachine machine, int[] operands);
}

4.2.3.3.1. When to use value-specific class bodies
Value-specific class bodies are an extremely powerful language feature when each
enumerated value must perform a unique computation of some sort. Keep in mind,
however, that value-specific class bodies are an advanced feature that is not commonly
used and may be confusing to less experienced programmers. Before you decide to use this
feature, be sure that it is necessary.

Before using value-specific class bodies, ensure that your design is neither too simple nor
too complex for the feature. First, check that you do indeed require value-specific behavior
and not simply value-specific data. Value-specific data can be encoded in constructor
arguments as was shown in the Prefix example earlier. It would be unnecessary and

Chapter 4. Java 5.0 Language Features Page 31 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

inappropriate to rewrite that example to use value-specific versions of the abbrev()
method, for example.

Next, think about whether an enumerated type is sufficient for your needs. If your design
requires value-specific methods with complex implementations or requires more than a
few methods for each value, you may find it unwieldy to code everything within a single
type. Instead, consider defining your own custom type hierarchy using traditional
class and interface declarations and whatever singleton instances are necessary.

If value-specific behavior is indeed required within the framework of an enumerated type,
value-specific class bodies are appropriate. Whether value-specific bodies are truly elegant
or simply confusing is a matter of opinion, and some programmers prefer to avoid them
when possible. An alternative that appeals to some is to encode the value-specific behavior
in a type-specific method that uses a switch statement to treat each value as a separate
case. The compute() method of the following enum is an example. The simplicity of
this enumerated type makes a switch statement a compelling alternative to value-specific
class bodies:

public enum ArithmeticOperator {
 // The enumerated values
 ADD, SUBTRACT, MULTIPLY, DIVIDE;

 // Value-specific behavior using a switch statement
 public double compute(double x, double y) {
 switch(this) {
 case ADD: return x + y;
 case SUBTRACT: return x - y;
 case MULTIPLY: return x * y;
 case DIVIDE: return x / y;
 default: throw new AssertionError(this);
 }
 }

 // Test case for using this enum
 public static void main(String args[]) {
 double x = Double.parseDouble(args[0]);
 double y = Double.parseDouble(args[1]);
 for(ArithmeticOperator op : ArithmeticOperator.values())
 System.out.printf("%f %s %f = %f%n", x, op, y, op.compute(x,y));
 }
}

A shortcoming to the switch approach is that each time you add a new enumerated value,
you must remember to add a corresponding case to the switch statement. And if there
is more than one method that uses a switch statement, you'll have to maintain their
switch statements in parallel. Forgetting to implement value-specific behavior using a
switch statement leads to a runtime AssertionError. With a value-specific class body
overriding an abstract method in the type-specific class body, the same omission leads
to a compilation error and can be corrected sooner.

Chapter 4. Java 5.0 Language Features Page 32 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The performance of value-specific methods and switch statements in a type-specific
method are quite similar. The overhead of virtual method invocation in one case is
balanced by the overhead of the switch statement in the other. Value-specific class bodies
result in the generation of additional class files, each of which has overhead in terms of
storage space and loading time.

4.2.3.4. Restrictions on enum types
Java places a few restrictions on the code that can appear in an enumerated type. You won't
encounter these restrictions that often in practice, but you should still be aware of them.

When you define an enumerated type, the compiler does a lot of work behind the scenes:
it creates a class that extends java.lang.Enum and it generates the values() and
valueOf() methods as well as the static fields that hold the enumerated values. If you
include a class body for the type, you should not include members whose names conflict
with the automatically generated members or with the final methods inherited from
Enum.

enum types may not be declared final. Enumerated types are effectively final, and the
compiler does not allow you to extend an enum. The class file generated for an enum is not
technically declared final if the enum contains value-specific class bodies, however.

Types in Java may not be both final and abstract. Since enumerated types are
effectively final, they may not be declared abstract. If the type-specific class body of
an enum declaration contains an abstract method, the compiler requires that each enum
value have a value-specific class body that includes an implementation of that
abstract method. Considered as a self-contained whole, the enumerated type defined
this way is not abstract.

The constructor, instance field initializers, and instance initializer blocks of an
enumerated type are subject to a sweeping but obscure restriction: they may not use the
static fields of the type (including the enumerated values themselves). The reason for this
is that static initialization of enumerated types (and of all types) proceeds from top to
bottom. The enumerated values are static fields that appear at the top of the type and are
initialized first. Since they are self-typed fields, they invoke the constructor and any other
instance initializer code of the type. This means that the instance initialization code is
invoked before the static initialization of the class is complete. Since the static fields have
not been initialized yet, the compiler does not allow them to be used. The only exception
is static fields whose values are compile-time constant expressions (such as integers and
strings) that the compiler resolves.

If you define a constructor for an enumerated type, it may not use the super() keyword
to invoke the superclass constructor. This is because the compiler automatically inserts

Chapter 4. Java 5.0 Language Features Page 33 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

hidden name and ordinal arguments into any constructor you define. If you define more
than one constructor for the type, it is okay to use this() to invoke one constructor from
the other. Remember that the class bodies of individual enumerated values (if you define
any) are anonymous, which means that they cannot have any constructors at all.

4.2.4. The Typesafe Enum Pattern
For a deeper understanding of how the enum keyword works, or to be able to simulate
enumerated types prior to Java 5.0, it is useful to understand the Typesafe Enum
Pattern. This pattern is described definitively by Joshua Bloch[6] in his book Effective Java
Programming Language Guide (Addison Wesley); we do not cover all the nuances here.

[6] Josh was cochair of the the JSR 201 committee that developed many of the new language features of Java 5.0. He is the creator of and the driving force behind
enumerated types.

If you want to use the enumerated type Prefix (from earlier in the chapter) prior to Java
5.0, you could approximate it with a class like the following one. Note, however, that
instances of this class won't work with the switch statement or with the EnumSet and
EnumMap classes. Also, the code shown here does not include the values() or valueOf
() methods that the compiler generates automatically for true enum types. A class like
this does not have special serialization support like an enum type does, so if you make it
Serializable, you must provide a readResolve() method to prevent deserialization
from creating multiple instances of the enumerated values.

public final class Prefix {
 // These are the self-typed constants
 public static final Prefix MILLI = new Prefix("m", .001);
 public static final Prefix CENTI = new Prefix("c", .01);
 public static final Prefix DECI = new Prefix("d", .1);
 public static final Prefix DECA = new Prefix("D", 10.0);
 public static final Prefix HECTA = new Prefix("h", 100.0);
 public static final Prefix KILO = new Prefix("k", 1000.0);

 // Keep the fields private so the instances are immutable
 private String name;
 private double multiplier;

 // The constructor is private so no instances can be created except
 // for the ones above.
 private Prefix(String name, double multiplier) {
 this.name = name;
 this.multiplier = multiplier;
 }

 // These accessor methods are public
 public String toString() { return name; }
 public double getMultiplier() { return multiplier; }
}

4.3. Annotations
Annotations provide a way to associate arbitrary information or metadata with program
elements. Syntactically, annotations are used like modifiers and can be applied to the

Chapter 4. Java 5.0 Language Features Page 34 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

declarations of packages, types, constructors, methods, fields, parameters, and local
variables. The information stored in an annotation takes the form of name=value pairs,
whose type is specified by the annotation type. The annotation type is a kind of interface
that also serves to provide access to the annotation through the Java Reflection API.

Annotations can be used to associate any kind of information you want with a program
element. The only fundamental rule is that an annotation cannot affect the way the
program runs: the code must run identically even if you add or remove annotations.
Another way to say this is that the Java interpreter ignores annotations (although it does
make "runtime-visible" annotations available for reflective access through the Java
Reflection API). Since the Java VM ignores annotations, an annotation type is not useful
unless accompanied by a tool that can do something with the information stored in
annotations of that type. In this chapter we'll cover standard annotation and meta-
annotation types like Override and Target. The tool that accompanies these types is
the Java compiler, which must process them in certain ways (as we'll describe later in this
section).

It is easy to imagine any number of other uses for annotations.[7] A local variable might be
annotated with a type named NonNull, as an assertion that the variable would never have
a null value. An associated (hypothetical) code-analysis tool could then parse the code
and attempt to verify the assertion. The JDK includes a tool named apt (for Annotation
Processing Tool) that provides a framework for annotation processing tools: it scans source
code for annotations and invokes specially written annotation processor classes that you
provide. See Chapter 8 for more on apt. Annotations will probably find their widest use in
enterprise programming where they may replace tools such as XDoclet, which processes
metadata embedded in ad-hoc javadoc comments.

[7] We won't have to imagine these uses for long. At the time of this writing, JSR 250 is making its way through the Java Community Process to define a standard set
of common annotations for J2SE and J2EE.

This section begins with an introduction to annotation-related terminology. We then cover
the standard annotation types introduced in Java 5.0, annotations supported by javac that
you can use in your programs right away. Next, we describe the syntax for writing arbitrary
annotations and briefly cover the use of the Java Reflection API for querying annotations
at runtime. At this point, we move on to more esoteric material on defining new annotation
types, a task that few programmers will ever need to do. This final part of the chapter also
discusses meta-annotations.

4.3.1. Annotation Concepts and Terminology
The key concept to understand about annotations is that an annotation simply associates
information or metadata with a program element. Annotations never affect the way a
Java program runs, but they may affect things like compiler warnings or the behavior of
auxiliary tools such as documentation generators, stub generators, and so forth.

Chapter 4. Java 5.0 Language Features Page 35 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-8#javanut5-CHP-8

The following terms are used frequently when discussing annotations. Of particular
importance is the distinction between annotation and annotation type.

annotation

An annotation associates arbitrary information or metadata with a Java program
element. Annotations use new syntax introduced in Java 5.0 and behave like modifiers
such as public or final. Each annotation has a name and zero or more members.
Each member has a name and a value, and it is these name=value pairs that carry
the annotation's information.

annotation type

The name of an annotation as well as the names, types, and default values of its
members are defined by the annotation type. An annotation type is essentially a Java
interface with some restrictions on its members and some new syntax used in its
declaration. When you query an annotation using the Java Reflection API, the
returned value is an object that implements the annotation type interface and allows
individual annotation members to be queried. Java 5.0 includes three standard
annotation types in the java.lang package. We'll see these annotations in Section
4.3.2 later in this chapter.

annotation member

The members of an annotation are declared in an annotation type as no-argument
methods. The method name and return type define the name and type of the member.
A special default syntax allows the declaration of a default value for any annotation
member. An annotation appearing on a program element includes name=value pairs
that define values for all annotation members that do not have default values and may
also include values that override the defaults of other members.

marker annotation

An annotation type that defines no members is called a marker annotation. An
annotation of this type carries information simply by its presence or absence.

meta-annotation

A meta-annotation is an annotation applied to the declaration of an annotation type.
Java 5.0 includes several standard meta-annotation types in the
java.lang.annotation package. They are used to specify things like which
program elements the annotation can be applied to.

Chapter 4. Java 5.0 Language Features Page 36 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

target

The target of an annotation is the program element that is annotated. Annotations
can be applied to packages, types (classes, interfaces, enumerated types, and even
annotation types), type members (methods, constructors, fields, and enumerated
values), method parameters, and local variables (including loop variables and
catch parameters). The declaration of an annotation type may include a meta-
annotation that restricts the allowable targets for that type of annotation.

retention

The retention of an annotation specifies how long the information contained in the
annotation is retained. Some annotations are discarded by the compiler and appear
only in source code. Others are compiled into the class file. Of those that are compiled
into the class file, some are ignored by the virtual machine, and others are read by the
virtual machine when the class that contains them is loaded. The declaration of an
annotation type can use a meta-annotation to specify the retention for annotations
of that type. Annotations that are loaded by the VM are runtime-visible and can be
queried by the reflective APIs of java.lang.reflect.

metadata

When discussing annotations, the term metadata commonly refers to the information
carried by an annotation or to the annotation itself. Because this term is used in many
different ways in computer programming literature, I have avoided using it in this
chapter.

4.3.2. Using Standard Annotations
Java 5.0 defines three standard annotation types in the java.lang package. The
following sections describe these annotation types and explain how to use them to annotate
your code.

4.3.2.1. Override
java.lang.Override is a marker annotation type that can be used to annotate methods
but no other program element. An annotation of this type serves as an assertion that the
annotated method overrides a method of a superclass. If you use this annotation on a
method that does not override a superclass method, the compiler issues a compilation
error to alert you to this fact.

Chapter 4. Java 5.0 Language Features Page 37 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This annotation is intended to address a common category of programming errors that
result when you attempt to override a superclass method but get the method name or
signature wrong. In this case, you may have overloaded the method name but not actually
overridden the method, and your code never gets invoked.

To use this annotation type, simply include @Override in the modifiers of the desired
method. By convention, @Override comes before other modifiers. Also by convention,
there is no space between the @ character and the name Override, even though it is
technically allowed. Note that because the java.lang package is always automatically
imported, you never need to include the package name to use this annotation type. Here
is an example in which the @Override annotation is used on a method that fails to
correctly override the toString() method of its superclass.

@Override
public String toSting() { // Oops. Note the misspelling here!
 // Simply put square brackets around our superclass's output
 return "[" + super.toString() + "]";
}

Without the annotation, the typo might go unnoticed and we'd have a puzzling bug: why
isn't the toString() method working correctly? But with the annotation, the compiler
gives us the answer: the toString() method does not work as expected because it is not
actually overridden.

Note that the @Override annotation applies only to methods that are intended to override
a superclass method and not to methods that are intended to implement a method defined
in an interface. The compiler already produces an error if you fail to correctly implement
an interface method.

4.3.2.2. Deprecated
java.lang.Deprecated is a marker annotation that is similar to the @deprecated
javadoc tag. (See Chapter 7 for details on writing Java documentation comments.) If you
annotate a type or type member with @Deprecated, it tells the compiler that use of the
annotated element is discouraged. If you use (or extend or override) a deprecated type or
member from code that is not itself declared @Deprecated, the compiler issues a warning.

Note that the @Deprecated annotation type does not deprecate the @deprecated
javadoc tag. The @Deprecated annotation is intended for the Java compiler. The javadoc
tag, on the other hand, is intended for the javadoc tool and serves as documentation: it
may include a description of why the program element has been deprecated and what it
has been superseded by or replaced with.

In Java 5.0, the compiler continues to look for @deprecated javadoc tags and uses them
to generate warnings as it always has. This behavior may be phased out, however, and you

Chapter 4. Java 5.0 Language Features Page 38 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596007736/javanut5-CHP-7#javanut5-CHP-7

should begin to use the @Deprecated annotation in addition to the @deprecated
javadoc tag.

Here is an example that uses both the annotation and the javadoc tag:
/**
 * The Sony Betamax video cassette format.
 * @deprecated No one has players for this format any more. Use VHS instead.
 */
@Deprecated public class Betamax { ... }

4.3.2.3. SuppressWarnings
The @SuppressWarnings annotation is used to selectively turn off compiler warnings
for classes, methods, or field and variable initializers.[8] In Java 5.0, Sun's javac compiler
has a powerful -Xlint option that causes it to issue warnings about "lint" in your program
—code that is legal but is likely to represent a programming error. These warnings include
the "unchecked warning" that appears when you use a generic collection class without
specifying a value for its type parameters, for example, or the warning that appears if a
case in a switch statement does not end with a break, return, or throw and allows
control to "fall through" to the next case.

[8] The javac compiler did not yet support the @SuppressWarnings annotation when this chapter was written. Full support is expected in Java 5.1.

Typically, when you see one of these lint warnings from the compiler, you should
investigate the code that caused it. If it truly represents an error, you then correct it. If it
simply represents sloppy programming, you may be able to rewrite your code so that the
warning is no longer necessary. For example, if the warning tells you that you have not
covered all possible cases in a switch statement on an enumerated type, you can avoid
the warning by adding a defensive default case to the switch statement, even if you are
sure that it will never be invoked.

On the other hand, sometimes there is nothing you can do to avoid the error. For example,
if you use a generic collection class in code that must interact with nongeneric legacy code,
you cannot avoid an unchecked warning. This is where @SuppressWarnings comes in:
add this annotation to the nearest relevant set of modifiers (typically on method modifiers)
to tell the compiler that you're aware of the issue and that it should stop pestering you
about it.

Unlike Override and Deprecated, SuppressWarnings is not a marker annotation. It
has a single member named value whose type is String[]. The value of this member
is the names of the warnings to be suppressed. The SuppressWarnings annotation does
not define what warning names are allowed: this is an issue for compiler implementors.
For the javac compiler, the warning names accepted by the -Xlint option are also legal
for the @SuppressWarnings annotation. It is legal to specify any warning names you
want: compilers ignore (but may warn about) warning names they do not recognize.

Chapter 4. Java 5.0 Language Features Page 39 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

So, to suppress warnings named unchecked and fallthrough, you could use an
annotation that looks like the following. Annotation syntax follows the name of the
annotation type with a parenthesized, comma-separated list of name=value pairs. In this
case, the SuppressWarnings annotation type defines only a single member, so there is
only a single pair within parentheses. Since the member value is an array, curly braces are
used to delimit array elements:

@SuppressWarnings(value={"unchecked","fallthrough"})
public void lintTrap() { /* sloppy method body omitted */ }

We can abbreviate this annotation somewhat. When an annotation has a single member
and that member is named "value", you are allowed (and encouraged) to omit the "value="
in the annotation. So the annotation above should be rewritten as:

@SuppressWarnings({"unchecked","fallthrough"})

Hopefully you will not often have more than one unresolvable lint warning in any particular
method and will need to suppress only a single named warning. In this case, another
annotation abbreviation is possible. When writing an array value that contains only a single
member, you are allowed to omit the curly braces. In this case we might have an annotation
like this:

@SuppressWarnings("unchecked")

4.3.3. Annotation Syntax
In the descriptions of the standard annotation types, we've seen the syntax for writing
marker annotations and the syntax for writing single-member annotations, including the
shortcut allowed when the single member is named "value" and the shortcut allowed when
an array-typed member has only a single array element. This section describes the
complete syntax for writing annotations.

An annotation consists of the @ character followed by the name of the annotation type
(which may include a package name) followed by a parenthesized, comma-separated list
of name=value pairs for each of the members defined by the annotation type. Members
may appear in any order and may be omitted if the annotation type defines a default value
for that member. Each value must be a literal or compile-time constant, a nested
annotation, or an array.

Near the end of this chapter, we define an annotation type named Reviews that has a
single member that is an array of @Review annotations. The Review annotation type has
three members: "reviewer" is a String, "comment" is an optional String with a default
value, and "grade" is a value of the nested enumerated type Review.Grade. Assuming
that the Reviews and Review types are properly imported, an annotation using these

Chapter 4. Java 5.0 Language Features Page 40 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

types might look like this (note the use of nested annotations, enumerated types, and arrays
in this annotation):

@Reviews({ // Single-value annotation, so "value=" is omitted here
 @Review(grade=Review.Grade.EXCELLENT,
 reviewer="df"),
 @Review(grade=Review.Grade.UNSATISFACTORY,
 reviewer="eg",
 comment="This method needs an @Override annotation")
})

Another important rule of annotation syntax is that no program element may have more
than one instance of the same annotation. It is not legal, for example, to simply place
multiple @Review annotations on a class. This is why the @Reviews annotation is defined
to allow an array of @Review annotations.

4.3.3.1. Annotation member types and values
The values of annotation members must be non-null compile-time constant expressions
that are assignment-compatible with the declared type of the member. Allowed member
types are the primitive types, String, Class, enumerated types, annotation types, and
arrays of any of the above types (but not an array of arrays). For example, the expressions
2*Math.PI and "hello"+"world" are legal values for members of type double and
String, respectively.

Near the end of the chapter, we define an annotation type named
UncheckedExceptions whose sole member is an array of classes that extend
RuntimeException. An annotation of this type might look like this:

@UncheckedExceptions({
 IllegalArgumentException.class, StringIndexOutOfBoundsException.class
})

4.3.3.2. Annotation targets
Annotations are most commonly placed on type definitions (such as classes) and their
members (such as methods and fields). Annotations may also appear on packages,
parameters, and local variables. This section provides more information about these less
common annotation targets.

A package annotation appears before the package declaration in a file named package-
info.java. This file should not contain any type declarations ("package-info" is not a legal
Java identifier, so it cannot contain any public type definitions). Instead, it should contain
an optional javadoc comment, zero or more annotations, and a package declaration. For
example:

/**
 * This package holds my custom annotation types.
 */

Chapter 4. Java 5.0 Language Features Page 41 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

@com.davidflanagan.annotations.Author("David Flanagan")
package com.davidflanagan.annotations;

When the package-info.java file is compiled, it produces a class file named package-
info.class that contains a synthetic interface declaration. This interface has no members,
and its name, package-info, is not a legal Java identifier, so it cannot be used in Java
source code. It exists simply as a placeholder for package annotations with class or runtime
retention.

Note that package annotations appear outside the scope of any package or import
declaration. This means that package annotations should always include the package name
of the annotation type (unless the package is java.lang).

Annotations on method parameters, catch clause parameters, and local variables simply
appear as part of the modifier list for those program elements. The Java class file format
has no provision for storing annotations on local variables or catch clause parameters, so
those annotations always have source retention. Method parameter annotations can be
retained in the class file, however, and may have class or runtime retention.

Finally, note that the syntax for enumerated type definitions does not allow any modifiers
to be specified for enumerated values. It does, however, allow annotations on any of the
values.

4.3.3.3. Annotations and defaults
Annotations must include a value for every member that does not have a default value
defined by the annotation type. Annotations may, of course, include values for other
members as well.

There is one important detail to understand about how default values are handled. Default
values are stored in the class file of the annotation type and are not compiled into
annotations themselves. If you modify an annotation type so that the default value of one
of its members changes, that change affects all annotations of that type that do not specify
an explicit value for that member. Already-compiled annotations are affected, even if they
are never recompiled after the change to the type.

4.3.4. Annotations and Reflection
The Reflection API of java.lang.reflect has been extended in Java 5.0 to support
reading of runtime-visible annotations. (Remember that an annotation is only visible at
runtime if its annotation type is specified to have runtime retention, that is, if the
annotation is both stored in the class file and read by the Java VM when the class file is
loaded.) This section briefly covers the new reflective capabilities. For full details, look up
the interface java.lang.reflect.AnnotatedElement in the reference section.

Chapter 4. Java 5.0 Language Features Page 42 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

AnnotatedElement represents a program element that can be queried for annotations.
It is implemented by java.lang.Package, java.lang.Class, and indirectly
implemented by the Method, Constructor, and Field classes of
java.lang.reflect. Annotations on method parameters can be queried with the
getParameterAnnotations() method of the Method or Constructor class.

The following code uses the isAnnotationPresent() method of
AnnotatedElement to determine whether a method is unstable by checking for an
@Unstable annotation. It assumes that the Unstable annotation type, which we'll define
later in the chapter, has runtime retention. Note that this code uses class literals to specify
both the class to be checked and the annotation to check for:

import java.lang.reflect.*;

Class c = WhizzBangClass.class;
Method m = c.getMethod("whizzy", int.class, int.class);
boolean unstable = m.isAnnotationPresent(Unstable.class);

isAnnotationPresent() is useful for marker annotations. When working with
annotations that have members, though, we typically want to know the value of those
members. For this, we use the getAnnotation() method. And here we see the beauty
of the Java annotation system: if the specified annotation exists, the object returned by
this method implements the annotation type interface, and you can query the value of any
member simply by invoking the annotation type method that defines that member.
Consider the @Reviews annotation that appeared earlier in the chapter, for example. If
the annotation type was declared with runtime retention, you could query it as follows:

AnnotatedElement target = WhizzBangClass.class; // the type to query
// Ask for the @Reviews annotation as an object that implements Reviews
Reviews annotation = target.getAnnotation(Reviews.class);
// Reviews has a single member named "value" that is an array of reviews
Review[] reviews = annotation.value();
// Loop through the reviews
for(Review r : reviews) {
 Review.Grade grade = r.grade();
 String reviewer = r.reviewer();
 String comment = r.comment();
 System.out.printf("%s assigned a grade of %s and comment '%s'%n",
 reviewer, grade, comment);
}

Note that these reflective methods correctly resolve default annotation values for you. If
an annotation does not include a value for a member with a default value, the default value
is looked up within the annotation type itself.

4.3.5. Defining Annotation Types
An annotation type is an interface, but it is not a normal one. An annotation type differs
from a normal interface in the following ways:

Chapter 4. Java 5.0 Language Features Page 43 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• An annotation type is defined with the keyword @interface rather than with
interface. An @interface declaration implicitly extends the interface
java.lang.annotation.Annotation and may not have an explicit extends
clause of its own.

• The methods of an annotation type must be declared with no arguments and may not
throw exceptions. These methods define annotation members: the method name
becomes the member name, and the method return type becomes the member type.

• The return value of annotation methods may be a primitive type, a String, a
Class, an enumerated type, another annotation type, or a single-dimensional array
of one of those types.

• Any method of an annotation type may be followed by the keyword default and a
value compatible with the return type of the method. This strange new syntax specifies
the default value of the annotation member that corresponds to the method. The
syntax for default values is the same as the syntax used to specify member values when
writing an annotation. null is never a legal default value.

• Annotation types and their methods may not have type parameters—annotation types
and members cannot be made generic. The only valid use of generics in annotation
types is for methods whose return type is Class. These methods may use a bounded
wildcard to specify a constraint on the returned class.

In other ways, annotation types declared with @interface are just like regular interfaces.
They may include constant definitions and static member types such as enumerated type
definitions. Annotation types may also be implemented or extended just as normal
interfaces are. (The classes and interfaces that result from doing this are not themselves
annotation types, however: annotation types can be created only with an @interface
declaration.)

We now define the annotation types used in our examples. These examples illustrate the
syntax of annotation type declarations and demonstrate many of the differences between
@interface and interface. We start with the simple marker annotation type
Unstable. Because we used this type earlier in the chapter in a reflection example, its
definition includes a meta-annotation that gives it runtime retention and makes it
accessible to the reflection API. Meta-annotations are covered below.

package com.davidflanagan.annotations;
import java.lang.annotation.*;

/**
 * Specifies that the annotated element is unstable and its API is
 * subject to change.
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Unstable {}

Chapter 4. Java 5.0 Language Features Page 44 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The next annotation type defines a single member. By naming the member value, we
enable a syntactic shortcut for anyone using the annotation:

/**
 * Specifies the author of a program element.
 */
public @interface Author {
 /** Return the name of the author */
 String value();
}

The next example is more complex. The Reviews annotation type has a single member,
but the type of the member is complex: it is an array of Review annotations. The
Review annotation type has three members, one of which has an enumerated type defined
as a member of the Review type itself, and another of which has a default value. Because
the Reviews annotation type is used in a reflection example, we've given it runtime
retention with a meta-annotation:

import java.lang.annotation.*;

/**
 * An annotation of this type specifies the results of one or more
 * code reviews for the annotated element
 */
@Retention(RetentionPolicy.RUNTIME)
public @interface Reviews {
 Review[] value();
}

/**
 * An annotation of this type represents a single code review of the
 * annotated element. Every review must specify the name of the reviewer
 * and the grade assigned to the code. Optionally, reviews may also include
 * a comment string.
 */
public @interface Review {
 // Nested enumerated type
 public static enum Grade { EXCELLENT, SATISFACTORY, UNSATISFACTORY };

 // These methods define the annotation members
 Grade grade(); // member named "grade" with type Grade
 String reviewer();
 String comment() default ""; // Note default value here.
}

Finally, suppose we wanted to annotate methods to list the unchecked exceptions (but not
errors) that they might throw. Our annotation type would have a single member of array
type. Each element of the array would be the Class of an exception. In order to enforce
the requirement that only unchecked exceptions are used, we use a bounded wildcard on
Class:

public @interface UncheckedExceptions {
 Class<? extends RuntimeException>[] value();
}

Chapter 4. Java 5.0 Language Features Page 45 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4.3.6. Meta-Annotations
Annotation types can themselves be annotated. Java 5.0 defines four standard meta-
annotation types that provide information about the use and meaning of other annotation
types. These types and their supporting classes are in the java.lang.annotation
package, and you can find complete details in the quick-reference section of the book.

4.3.6.1. Target
The Target meta-annotation type specifies the "targets" for an annotation type. That is,
it specifies which program elements may have annotations of that type. If an annotation
type does not have a Target meta-annotation, it can be used with any of the program
elements described earlier. Some annotation types, however, make sense only when
applied to certain program elements. Override is one example: it is only meaningful
when applied to a method. An @Target meta-annotation applied to the declaration of the
Override type makes this explicit and allows the compiler to reject an @Override when
it appears in an inappropriate context.

The Target meta-annotation type has a single member named value. The type of this
member is java.lang.annotation.ElementType[]. ElementType is an
enumerated type whose enumerated values represent program elements that can be
annotated.

4.3.6.2. Retention
We discussed annotation retention earlier in the chapter. It specifies whether an
annotation is discarded by the compiler or retained in the class file, and, if it is retained in
the class file, whether it is read by the VM when the class file is loaded. By default,
annotations are stored in the class file but not available for runtime reflective access. The
three possible retention values (source, class, and runtime) are described by the
enumerated type java.lang.annotation.RetentionPolicy.

The Retention meta-annotation type has a single member named value whose type is
RetentionPolicy.

4.3.6.3. Documented
Documented is a meta-annotation type used to specify that annotations of some other
type should be considered part of the public API of the annotated program element and
should therefore be documented by tools like javadoc. Documented is a marker
annotation: it has no members.

Chapter 4. Java 5.0 Language Features Page 46 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4.3.6.4. Inherited
The @Inherited meta-annotation is a marker annotation that specifies that the
annotated type is an inherited one. That is, if an annotation type @Inherited is used to
annotate a class, the annotation applies to subclasses of that class as well.

Note that @Inherited annotation types are inherited only by subclasses of an annotated
class. Classes do not inherit annotations from interfaces they implement, and methods do
not inherit annotations from methods they override.

The Reflection API enforces the inheritance if the @Inherited annotation type is also
annotated @Retention(RetentionPolicy.RUNTIME). If you use
java.lang.reflect to query a class for an annotation of an @Inherited type, the
reflection code checks the specified class and each of its ancestors until an annotation of
the specified type is found or the top of the class hierarchy is reached.

Chapter 4. Java 5.0 Language Features Page 47 Return to Table of Contents

Chapter 4. Java 5.0 Language Features
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Java 5.0 Language Features
	Generic Types
	Enumerated Types
	Annotations

