
Table of Contents

java.net.. 1
Package java.net.. 1
Authenticator.. 3
Authenticator.RequestorType... 4
BindException... 4
CacheRequest.. 5
CacheResponse.. 5
ConnectException... 6
ContentHandler.. 6
ContentHandlerFactory.. 7
CookieHandler... 7
DatagramPacket.. 8
DatagramSocket.. 9
DatagramSocketImpl... 11
DatagramSocketImplFactory.. 12
FileNameMap.. 13
HttpRetryException.. 13
HttpURLConnection... 14
Inet4Address.. 15
Inet6Address... 16
InetAddress.. 17
InetSocketAddress... 18
JarURLConnection.. 19
MalformedURLException... 20
MulticastSocket... 21
NetPermission... 22
NetworkInterface.. 22
NoRouteToHostException.. 23
PasswordAuthentication... 24
PortUnreachableException... 24
ProtocolException... 25
Proxy.. 25
Proxy.Type... 26
ProxySelector... 27
ResponseCache.. 27
SecureCacheResponse.. 28
ServerSocket.. 28
Socket.. 30
SocketAddress... 34
SocketException.. 34
SocketImpl... 35
SocketImplFactory.. 36
SocketOptions... 36
SocketPermission.. 37
SocketTimeoutException.. 38
UnknownHostException... 39
UnknownServiceException... 39
URI.. 40
URISyntaxException... 41
URL... 42
URLClassLoader... 44
URLConnection... 45
URLDecoder.. 48
URLEncoder.. 48

Chapter 12. java.net

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 12. java.net

Package java.net

Java 1.0

The java.net package provides a powerful and flexible infrastructure for networking.
This introduction describes the most commonly used classes in brief. Note that as of Java
1.4, the New I/O API of java.nio and java.nio.channels can be used for high-
performance nonblocking networking. See also the javax.net.ssl package for classes
for secure networking using SSL.

The URL class represents an Internet uniform resource locator (URL). It provides a very
simple interface to networking: the object referred to by the URL can be downloaded with
a single call, or streams may be opened to read from or write to the object. At a slightly
more complex level, a URLConnection object can be obtained from a given URL object.
The URLConnection class provides additional methods that allow you to work with URLs
in more sophisticated ways. Java 1.4 introduced the URI class; it provides a powerful API
for manipulating URI and URL strings but does not have any networking capabilities itself.
Java 5.0 defines APIs for defining and registering cache, cookie, and proxy handlers to be
used by built-in protocol handlers when network resources are requested through the
URL class. See RequestCache, CookieHandler, ProxySelector, and Proxy.

If you want to do more than simply download an object referenced by a URL, you can do
your own networking with the Socket class. This class allows you to connect to a specified
port on a specified Internet host and read and write data using the InputStream and
OutputStream classes of the java.io package. If you want to implement a server to
accept connections from clients, you can use the related ServerSocket class. Both
Socket and ServerSocket use the InetAddress address class, which represents an
Internet address. Added in Java 1.4, Inet4Address and Inet6Address are subclasses
that represent the addresses used by version 4 and version 6 of the IP protocol. Java 1.4
also introduced the SocketAddress class as a high-level representation of a network
address that is not tied to a specific networking protocol. An IP-specific
InetSocketAddress subclass encapsulates an InetAddress and a port number.

Chapter 12. java.net Page 1 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

The java.net package allows you to do low-level networking with DatagramPacket
objects, which may be sent and received over the network through a DatagramSocket
object. MulticastSocket extends DatagramSocket to support multicast networking.

Interfaces

public interface ContentHandlerFactory;
public interface DatagramSocketImplFactory;
public interface FileNameMap;
public interface SocketImplFactory;
public interface SocketOptions;
public interface URLStreamHandlerFactory;

Enumerated Types

public enum Authenticator.RequestorType;
public enum Proxy.Type;

Classes

public abstract class Authenticator;
public abstract class CacheRequest;
public abstract class CacheResponse;
 public abstract class SecureCacheResponse extends CacheResponse;
public abstract class ContentHandler;
public abstract class CookieHandler;
public final class DatagramPacket;
public class DatagramSocket;
 public class MulticastSocket extends DatagramSocket;
public abstract class DatagramSocketImpl implements SocketOptions;
public class InetAddress implements Serializable;
 public final class Inet4Address extends InetAddress;
 public final class Inet6Address extends InetAddress;
public final class NetPermission extends java.security.BasicPermission;
public final class NetworkInterface;
public final class PasswordAuthentication;
public class Proxy;
public abstract class ProxySelector;
public abstract class ResponseCache;
public class ServerSocket;
public class Socket;
public abstract class SocketAddress implements Serializable;
 public class InetSocketAddress extends SocketAddress;
public abstract class SocketImpl implements SocketOptions;
public final class SocketPermission extends java.security.Permission implements Serializable;
public final class URI implements Comparable<URI>, Serializable;
public final class URL implements Serializable;
public class URLClassLoader extends java.security.SecureClassLoader;
public abstract class URLConnection;
 public abstract class HttpURLConnection extends URLConnection;
 public abstract class JarURLConnection extends URLConnection;
public class URLDecoder;
public class URLEncoder;
public abstract class URLStreamHandler;

Exceptions

public class HttpRetryException extends java.io.IOException;
public class MalformedURLException extends java.io.IOException;
public class ProtocolException extends java.io.IOException;
public class SocketException extends java.io.IOException;
 public class BindException extends SocketException;
 public class ConnectException extends SocketException;
 public class NoRouteToHostException extends SocketException;
 public class PortUnreachableException extends SocketException;
public class SocketTimeoutException extends java.io.InterruptedIOException;
public class UnknownHostException extends java.io.IOException;

Chapter 12. java.net Page 2 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class UnknownServiceException extends java.io.IOException;
public class URISyntaxException extends Exception;

Authenticator java.net

Java 1.2

This abstract class defines a customizable mechanism for requesting and performing
password authentication when required in URL-based networking. The static
setDefault() method establishes the systemwide Authenticator. An
Authenticator implementation can obtain the required authentication information
from the user however it wants (e.g., through a text- or a GUI-based interface).
setDefault() can be called only once; subsequent calls are ignored. Calling
setDefault() requires an appropriate NetPermission.

When an application or the Java runtime system requires password authentication (to
read the contents of a specified URL, for example), it calls the static
requestPasswordAuthentication() method, passing arguments that specify the
host and port for which the password is required and a prompt that may be displayed to
the user. This method looks up the default Authenticator for the system and calls its
getPasswordAuthentication() method. Calling
requestPasswordAuthentication() requires an appropriate NetPermission.

Authenticator is an abstract class; its default implementation of
getPasswordAuthentication() always returns null. To create an
Authenticator, you must override this method so that it prompts the user to enter a
username and password and returns that information in the form of a
PasswordAuthentication object. Your implementation of
getPasswordAuthentication() may call the various getRequesting() methods
to find out who is requesting the password and what the recommended user prompt is.
Java 1.4 added a version of the static requestPasswordAuthentication() method
that allows specification of the requesting hostname. A corresponding
getRequestingHost() instance method was also added.

Java 5.0 adds yet another version of requestPasswordAuthentication(), and
corresponding methods to query the URL that requires the password and the
RequestorType of the request. RequestorType is a nested enum type that specifies
whether the request comes from an HTTP server or a proxy server.

public abstract class Authenticator {
// Public Constructors
 public Authenticator();

Chapter 12. java.net Page 3 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Nested Types
5.0 public enum RequestorType;
// Public Class Methods
 public static PasswordAuthentication requestPasswordAuthentication
(InetAddress addr, int port, String protocol,
String prompt, String scheme);
1.4 public static PasswordAuthentication requestPasswordAuthentication
(String host, InetAddress addr, int port, String protocol,
String prompt, String scheme);
5.0 public static PasswordAuthentication
 requestPasswordAuthentication(String host,
 InetAddress addr, int port, String protocol, String prompt,
 String scheme, URL url, Authenticator.RequestorType reqType);
 public static void setDefault(Authenticator a); synchronized
// Protected Instance Methods
 protected PasswordAuthentication getPasswordAuthentication(); constant
1.4 protected final String getRequestingHost();
 protected final int getRequestingPort();
 protected final String getRequestingPrompt();
 protected final String getRequestingProtocol();
 protected final String getRequestingScheme();
 protected final InetAddress getRequestingSite();
5.0 protected URL getRequestingURL();
5.0 protected Authenticator.RequestorType getRequestorType();
}

Authenticator.RequestorType java.net

Java 5.0 serializable comparable enum

The constants defined by this enumerated type specify whether an authentication request
comes from an HTTP origin server or a proxy server.

public enum Authenticator.RequestorType {
// Enumerated Constants
 PROXY,
 SERVER;
// Public Class Methods
 public static Authenticator.RequestorType valueOf(String name);
 public static final Authenticator.RequestorType[] values();
}

Passed To

Authenticator.requestPasswordAuthentication()
Returned By

Authenticator.getRequestorType()

BindException java.net

Java 1.1 serializable checked

Chapter 12. java.net Page 4 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Signals that a socket cannot be bound to a local address and port. This often means that
the port is already in use.

Figure 12-1. java.net.BindException

public class BindException extends SocketException {
// Public Constructors
 public BindException();
 public BindException(String msg);
}

CacheRequest java.net

Java 5.0

When a URLStreamHandler reads a network resource, it should call the put() method
of the currently installed ResponseCache, if there is one. If the cache wants to save a
local copy of the resource, it will return a CacheRequest object to the
URLStreamHandler. The handler should then write the resource to the
OutputStream returned by the getBody() method.

See also CacheResponse. This class is used by the implementors of
URLStreamHandler, not by casual users of the java.net package.

public abstract class CacheRequest {
// Public Constructors
 public CacheRequest();
// Public Instance Methods
 public abstract void abort();
 public abstract java.io.OutputStream getBody() throws java.io.IOException;
}

Returned By

ResponseCache.put()

CacheResponse java.net

Java 5.0

Chapter 12. java.net Page 5 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If a ResponseCache holds a local copy of a network resource, it returns a
CacheResponse object from the ResponseCache.get() method. The resource can
then be read from the java.io.InputStream returned by getBody(). The protocol
response headers are available in the form of java.util.Map from getHeaders().

See also SecureCacheResponse and CacheRequest. Note that this class is intended
for use in URLStreamHandler implementations, not by casual users of the java.net
package.

public abstract class CacheResponse {
// Public Constructors
 public CacheResponse();
// Public Instance Methods
 public abstract java.io.InputStream getBody() throws java.io.IOException;
 public abstract java.util.Map<String,java.util.List<String>> getHeaders()
 throws java.io.IOException;
}

Subclasses

SecureCacheResponse
Returned By

ResponseCache.get()

ConnectException java.net

Java 1.1 serializable checked

Signals that a socket cannot be connected to a remote address and port. This means that
the remote host can be reached, but is not responding, perhaps because there is no process
on that host that is listening on the specified port.

Figure 12-2. java.net.ConnectException

public class ConnectException extends SocketException {
// Public Constructors
 public ConnectException();
 public ConnectException(String msg);
}

ContentHandler java.net

Chapter 12. java.net Page 6 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.0

This abstract class defines a method that reads data from a URLConnection and returns
an object that represents that data. Each subclass that implements this method is
responsible for handling a different type of content (i.e., a different MIME type).
Applications never create ContentHandler objects directly; they are created, when
necessary, by the registered ContentHandlerFactory object. Applications should also
never call ContentHandler methods directly; they should call URL.getContent()
or URLConnection.getContent() instead. You need to subclass
ContentHandler only if you are writing a web browser or similar application that needs
to parse and understand some new content type.

public abstract class ContentHandler {
// Public Constructors
 public ContentHandler();
// Public Instance Methods
 public abstract Object getContent(URLConnection urlc)
throws java.io.IOException;
1.3 public Object getContent(URLConnection urlc, Class[] classes)
throws java.io.IOException;
}

Returned By

ContentHandlerFactory.createContentHandler()

ContentHandlerFactory java.net

Java 1.0

This interface defines a method that creates and returns an appropriate
ContentHandler object for a specified MIME type. A systemwide
ContentHandlerFactory interface may be specified using the
URLConnection.setContentHandlerFactory() method. Normal applications
never need to use or implement this interface.

public interface ContentHandlerFactory {
// Public Instance Methods
 java.net.ContentHandler createContentHandler(String mimetype);
}

Passed To

URLConnection.setContentHandlerFactory()

Chapter 12. java.net Page 7 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

CookieHandler java.net

Java 5.0

This abstract class defines an API to be implemented by an application that wants to
manage HTTP cookies for networking done via the URL class. Install an implementation
of this class with the setDefault() method. The default HTTP protocol handler uses
getDefault() to obtain the CookieHandler implementation. The protocol handler
then calls get() when it wants the CookieHandler to copy cookie values into HTTP
request headers and calls put() when it wants the CookieHandler to read a set of
response headers and store the cookies they contain.

This class is intended to be subclassed by advanced users of the package; it is not intended
for casual users.

public abstract class CookieHandler {
// Public Constructors
 public CookieHandler();
// Public Class Methods
 public static CookieHandler getDefault(); synchronized
 public static void setDefault(CookieHandler cHandler); synchronized
// Public Instance Methods
 public abstract java.util.Map<String,java.util.List<String>>
get(URI uri, java.util.Map<String,java.util.List<String>> requestHeaders)
throws java.io.IOException;
 public abstract void put(URI uri, java.util.Map<String,
java.util.List<String>> responseHeaders)
throws java.io.IOException;
}

DatagramPacket java.net

Java 1.0

This class implements a packet of data that may be sent or received over the network
through a DatagramSocket. Create a DatagramPacket to be sent over the network
with one of the consructor methods that includes a network address. Create a
DatagramPacket into which data can be received using one of the constructors that does
not include a network address argument. The receive() method of
DatagramSocket waits for data and stores it in a DatagramPacket created in this way.
The contents and sender of a received packet can be queried with the DatagramPacket
instance methods.

Chapter 12. java.net Page 8 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

New constructors and methods were added to this class in Java 1.4 to support the
SocketAddress abstraction of a network address.

public final class DatagramPacket {
// Public Constructors
 public DatagramPacket(byte[] buf, int length);
1.4 public DatagramPacket(byte[] buf, int length, SocketAddress address)
throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length);
 public DatagramPacket(byte[] buf, int length, InetAddress address,
 int port);
1.4 public DatagramPacket(byte[] buf, int offset, int length,
SocketAddress address) throws SocketException;
1.2 public DatagramPacket(byte[] buf, int offset, int length,
InetAddress address, int port);
// Public Instance Methods
 public InetAddress getAddress(); synchronized
 public byte[] getData(); synchronized
 public int getLength(); synchronized
1.2 public int getOffset(); synchronized
 public int getPort(); synchronized
1.4 public SocketAddress getSocketAddress(); synchronized
1.1 public void setAddress(InetAddress iaddr); synchronized
1.1 public void setData(byte[] buf); synchronized
1.2 public void setData(byte[] buf, int offset, int length); synchronized
1.1 public void setLength(int length); synchronized
1.1 public void setPort(int iport); synchronized
1.4 public void setSocketAddress(SocketAddress address); synchronized
}

Passed To

DatagramSocket.{receive(), send()}, DatagramSocketImpl.
{peekData(), receive(), send()}, MulticastSocket.send()

DatagramSocket java.net

Java 1.0

This class defines a socket that can receive and send unreliable datagram packets over the
network using the UDP protocol. A datagram is a very low-level networking interface: it
is simply an array of bytes sent over the network. A datagram does not implement any kind
of stream-based communication protocol, and there is no connection established between
the sender and the receiver. Datagram packets are called unreliable because the protocol
does not make any attempt to ensure they arrive or to resend them if they don't. Thus,
packets sent through a DatagramSocket are not guaranteed to arrive in the order sent
or even to arrive at all. On the other hand, this low-overhead protocol makes datagram
transmission very fast. See Socket and URL for higher-level interfaces to networking. This
class was introduced in Java 1.0, and was enhanced in Java 1.4 to allow local and remote
addresses to be specified using the protocol-independent SocketAddress class.

Chapter 12. java.net Page 9 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

send() sends a DatagramPacket through the socket. The packet must contain the
destination address to which it should be sent. receive() waits for data to arrive at the
socket and stores it, along with the address of the sender, in the specified
DatagramPacket. close() closes the socket and frees the local port for reuse. Once
close() has been called, the DatagramSocket should not be used again, except to call
the isClosed() method which returns true if the socket has been closed.

Each time a packet is sent or received, the system must perform a security check to ensure
that the calling code has permission to send data to or receive data from the specified host.
In Java 1.2 and later, if you are sending multiple packets to or receiving multiple packets
from a single host, use connect() to specify the host with which you are communicating.
This causes the security check to be done a single time, but does not allow the socket to
communicate with any other host until disconnect() is called. Use
getRemoteSocketAddress() or getInetAddress() and getPort() to obtain
the network address, if any, that the socket is connected to. Use isConnected() to
determine if the socket is currently connected in this way.

By default, a DatagramSocket sends data through a local address assigned by the system.
If desired, however, you can bind the socket to a specified local address. Do this by using
one of the constructors other than the no-arg constructor. Or, bind the
DatagramSocket to a local SocketAddress with the bind() method. You can
determine whether a DatagramSocket is bound with isBound() , and you can obtain
the local address of the socket with getLocalSocketAddress() or with
getLocalAddress() and getLocalPort().

This class defines a number of get/set method pairs for setting and querying a variety of
"socket options" for datagram transmission. setSoTimeout() specifies the number of
milliseconds that receive() waits for a packet to arrive before throwing an
InterruptedIOException. Specify 0 milliseconds to wait forever.
setSendBufferSize() and setReceiveBufferSize() set hints as to the
underlying size of the networking buffers. setBroadcast(),
setReuseAddress(), and setTrafficClass() set more complex socket options;
use of these options requires a sophisticated understanding of low-level network protocols,
and an explaination of them is beyond the scope of this reference.

In Java 1.4 and later, getChannel() returns a
java.nio.channels.DatagramChannel associated with this DatagramSocket.
Sockets created with one of the DatagramSocket() constructors always return null
from this method. getChannel() only returns a useful value for sockets that were
created by and belong to a DatagramChannel.

Chapter 12. java.net Page 10 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class DatagramSocket {
// Public Constructors
 public DatagramSocket() throws SocketException;
1.4 public DatagramSocket(SocketAddress bindaddr) throws SocketException;
 public DatagramSocket(int port) throws SocketException;
1.1 public DatagramSocket(int port, InetAddress laddr) throws SocketException;
// Protected Constructors
1.4 publicprotected DatagramSocket(DatagramSocketImpl impl);
// Public Class Methods
1.3 public static void setDatagramSocketImplFactory(DatagramSocketImplFactory
fac) throws java.io.IOException; synchronized
// Public Instance Methods
1.4 public void bind(SocketAddress addr) throws SocketException; synchronized
 public void close();
1.4 public void connect(SocketAddress addr) throws SocketException;
1.2 public void connect(InetAddress address, int port);
1.2 public void disconnect();
1.4 public boolean getBroadcast()
throws SocketException; synchronized default:true
1.4 public java.nio.channels.DatagramChannel getChannel();
 constant default:null
1.2 public InetAddress getInetAddress(); default:null
1.1 public InetAddress getLocalAddress(); default:Inet4Address
 public int getLocalPort(); default:32777
1.4 public SocketAddress getLocalSocketAddress(); default:InetSocketAddress
1.2 public int getPort(); default:-1
1.2 public int getReceiveBufferSize()
throws SocketException; synchronized default:32767
1.4 public SocketAddress getRemoteSocketAddress(); default:null
1.4 public boolean getReuseAddress()
throws SocketException; synchronized default:false
1.2 public int getSendBufferSize()
throws SocketException; synchronized default:32767
1.1 public int getSoTimeout() throws SocketException; synchronized default:0
1.4 public int getTrafficClass() throws SocketException; synchronized default:0
1.4 public boolean isBound(); default:true
1.4 public boolean isClosed(); default:false
1.4 public boolean isConnected(); default:false
 public void receive(DatagramPacket p) throws java.io.IOException; synchronized
 public void send(DatagramPacket p) throws java.io.IOException;
1.4 public void setBroadcast(boolean on) throws SocketException; synchronized
1.2 public void setReceiveBufferSize(int size) throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException; synchronized
1.2 public void setSendBufferSize(int size) throws SocketException; synchronized
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
1.4 public void setTrafficClass(int tc) throws SocketException; synchronized
}

Subclasses

MulticastSocket
Returned By

java.nio.channels.DatagramChannel.socket()

DatagramSocketImpl java.net

Java 1.1

This abstract class defines the methods necessary to implement communication through
datagram and multicast sockets. System programmers may create subclasses of this class
when they need to implement datagram or multicast sockets in a nonstandard network

Chapter 12. java.net Page 11 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

environment, such as behind a firewall or on a network that uses a nonstandard transport
protocol. Normal applications never need to use or subclass this class.

Figure 12-3. java.net.DatagramSocketImpl

public abstract class DatagramSocketImpl implements SocketOptions {
// Public Constructors
 public DatagramSocketImpl();
// Protected Instance Methods
 protected abstract void bind(int lport, InetAddress laddr)
throws SocketException;
 protected abstract void close();
1.4 protected void connect(InetAddress address, int port)
throws SocketException; empty
 protected abstract void create() throws SocketException;
1.4 protected void disconnect(); empty
 protected java.io.FileDescriptor getFileDescriptor();
 protected int getLocalPort();
1.2 protected abstract int getTimeToLive() throws java.io.IOException;
 protected abstract void join(InetAddress inetaddr)
throws java.io.IOException;
1.4 protected abstract void joinGroup(SocketAddress mcastaddr, NetworkInterface
netIf) throws java.io.IOException;
 protected abstract void leave(InetAddress inetaddr)
throws java.io.IOException;
1.4 protected abstract void leaveGroup(SocketAddress mcastaddr, NetworkInterface
netIf) throws java.io.IOException;
 protected abstract int peek(InetAddress i) throws java.io.IOException;
1.4 protected abstract int peekData(DatagramPacket p) throws java.io.IOException;
 protected abstract void receive(DatagramPacket p) throws java.io.IOException;
 protected abstract void send(DatagramPacket p) throws java.io.IOException;
1.2 protected abstract void setTimeToLive(int ttl) throws java.io.IOException;
// Protected Instance Fields
 protected java.io.FileDescriptor fd;
 protected int localPort;
// Deprecated Protected Methods
protected abstract byte getTTL() throws java.io.IOException;
protected abstract void setTTL(byte ttl) throws java.io.IOException;
}

Passed To

DatagramSocket.DatagramSocket()
Returned By

DatagramSocketImplFactory.createDatagramSocketImpl()

DatagramSocketImplFactory java.net

Java 1.3

This interface defines a method that creates DatagramSocketImpl objects. You can
register an instance of this factory interface with the static
setDatagramSocketImplFactory() method of DatagramSocket. Application-
level code never needs to use or implement this interface.

Chapter 12. java.net Page 12 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface DatagramSocketImplFactory {
// Public Instance Methods
 DatagramSocketImpl createDatagramSocketImpl();
}

Passed To

DatagramSocket.setDatagramSocketImplFactory()

FileNameMap java.net

Java 1.1

This interface defines a single method that is called to obtain the MIME type of a file based
on the name of the file. The fileNameMap field of the URLConnection class refers to an
object that implements this interface. The filename-to-file-type map it implements is used
by the static URLConnection.guessContentTypeFromName() method.

public interface FileNameMap {
// Public Instance Methods
 String getContentTypeFor(String fileName);
}

Passed To

URLConnection.setFileNameMap()
Returned By

URLConnection.getFileNameMap()

HttpRetryException java.net

Java 5.0 serializable checked

An exception of this type is thrown when an HTTP request needs to be retried (due to a
server redirect or authentication request, for example) but the protocol handler cannot
automatically retry it because the HttpURLConnection has been placed in streaming
mode. (See the setFixedLengthStreamingMode() and
setChunkedStreamingMode() methods of HttpURLConnection.) The methods of
the exception provide details about how the request should be retried.

Figure 12-4. java.net.HttpRetryException

Chapter 12. java.net Page 13 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public class HttpRetryException extends java.io.IOException {
// Public Constructors
 public HttpRetryException(String detail, int code);
 public HttpRetryException(String detail, int code, String location);
// Public Instance Methods
 public String getLocation();
 public String getReason();
 public int responseCode();
}

HttpURLConnection java.net

Java 1.1

This class is a specialization of URLConnection. An instance of this class is returned when
the openConnection() method is called for a URL object that uses the HTTP protocol.
The many constants defined by this class are the status codes returned by HTTP servers.
setRequestMethod() specifies what kind of HTTP request is made. The contents of
this request must be sent through the OutputStream returned by the
getOutputStream() method of the superclass. Once an HTTP request has been sent,
getResponseCode() returns the HTTP server's response code as an integer, and
getResponseMessage() returns the server's response message. The
disconnect() method closes the connection. The static setFollowRedirects()
specifies whether URL connections that use the HTTP protocol should automatically
follow redirect responses sent by HTTP servers. In order to successfully use this class, you
need to understand the details of the HTTP protocol.

Figure 12-5. java.net.HttpURLConnection

public abstract class HttpURLConnection extends URLConnection {
// Protected Constructors
 protected HttpURLConnection(URL u);
// Public Constants
 public static final int HTTP_ACCEPTED; =202
 public static final int HTTP_BAD_GATEWAY; =502
 public static final int HTTP_BAD_METHOD; =405
 public static final int HTTP_BAD_REQUEST; =400
 public static final int HTTP_CLIENT_TIMEOUT; =408
 public static final int HTTP_CONFLICT; =409
 public static final int HTTP_CREATED; =201
 public static final int HTTP_ENTITY_TOO_LARGE; =413
 public static final int HTTP_FORBIDDEN; =403
 public static final int HTTP_GATEWAY_TIMEOUT; =504
 public static final int HTTP_GONE; =410
 public static final int HTTP_INTERNAL_ERROR; =500
 public static final int HTTP_LENGTH_REQUIRED; =411
 public static final int HTTP_MOVED_PERM; =301
 public static final int HTTP_MOVED_TEMP; =302
 public static final int HTTP_MULT_CHOICE; =300

Chapter 12. java.net Page 14 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public static final int HTTP_NO_CONTENT; =204
 public static final int HTTP_NOT_ACCEPTABLE; =406
 public static final int HTTP_NOT_AUTHORITATIVE; =203
 public static final int HTTP_NOT_FOUND; =404
1.3 public static final int HTTP_NOT_IMPLEMENTED; =501
 public static final int HTTP_NOT_MODIFIED; =304
 public static final int HTTP_OK; =200
 public static final int HTTP_PARTIAL; =206
 public static final int HTTP_PAYMENT_REQUIRED; =402
 public static final int HTTP_PRECON_FAILED; =412
 public static final int HTTP_PROXY_AUTH; =407
 public static final int HTTP_REQ_TOO_LONG; =414
 public static final int HTTP_RESET; =205
 public static final int HTTP_SEE_OTHER; =303
 public static final int HTTP_UNAUTHORIZED; =401
 public static final int HTTP_UNAVAILABLE; =503
 public static final int HTTP_UNSUPPORTED_TYPE; =415
 public static final int HTTP_USE_PROXY; =305
 public static final int HTTP_VERSION; =505
// Public Class Methods
 public static boolean getFollowRedirects();
 public static void setFollowRedirects(boolean set);
// Public Instance Methods
 public abstract void disconnect();
1.2 public java.io.InputStream getErrorStream(); constant
1.3 public boolean getInstanceFollowRedirects();
 public String getRequestMethod();
 public int getResponseCode() throws java.io.IOException;
 public String getResponseMessage() throws java.io.IOException;
5.0 public void setChunkedStreamingMode(int chunklen);
5.0 public void setFixedLengthStreamingMode(int contentLength);
1.3 public void setInstanceFollowRedirects(boolean followRedirects);
 public void setRequestMethod(String method) throws ProtocolException;
 public abstract boolean usingProxy();
// Public Methods Overriding URLConnection
1.4 public String getHeaderField(int n); constant
1.3 public long getHeaderFieldDate(String name, long Default);
1.4 public String getHeaderFieldKey(int n); constant
1.2 public java.security.Permission getPermission()
throws java.io.IOException;
// Protected Instance Fields
5.0 protected int chunkLength;
5.0 protected int fixedContentLength;
1.3 protected boolean instanceFollowRedirects;
 protected String method;
 protected int responseCode;
 protected String responseMessage;
// Deprecated Public Fields
public static final int HTTP_SERVER_ERROR; =500
}

Subclasses

javax.net.ssl.HttpsURLConnection

Inet4Address java.net

Java 1.4 serializable

Inet4Address implements methods defined by its superclass to make them specific to
IPv4 (Internet Protocol version 4) internet addresses. Inet4Address does not have a

Chapter 12. java.net Page 15 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

constructor. Create instances with the static methods of InetAddress, which return
instances of Inet4Address or Inet6Address as appropriate.

Figure 12-6. java.net.Inet4Address

public final class Inet4Address extends InetAddress {
// No Constructor
// Public Methods Overriding InetAddress
 public boolean equals(Object obj);
 public byte[] getAddress();
 public String getHostAddress();
 public int hashCode();
 public boolean isAnyLocalAddress();
 public boolean isLinkLocalAddress();
 public boolean isLoopbackAddress();
 public boolean isMCGlobal();
 public boolean isMCLinkLocal();
 public boolean isMCNodeLocal(); constant
 public boolean isMCOrgLocal();
 public boolean isMCSiteLocal();
 public boolean isMulticastAddress();
 public boolean isSiteLocalAddress();
}

Inet6Address java.net

Java 1.4 serializable

Inet6Address implements methods defined by its superclass to make them specific to
IPv6 (Internet Protocol version 6) internet addresses. See RFC 2373 for complete details
about internet addresses of this type. Inet6Address does not have a constructor. Create
instances with the static methods of InetAddress, which return instances of
Inet4Address or Inet6Address as appropriate. In Java 5.0, you can also use the
getByAddress() factory methods of this class directly.

Figure 12-7. java.net.Inet6Address

public final class Inet6Address extends InetAddress {
// No Constructor
// Public Class Methods
5.0 public static Inet6Address getByAddress(String host,
byte[] addr, NetworkInterface nif) throws UnknownHostException;
5.0 public static Inet6Address getByAddress(String host,
byte[] addr, int scope_id) throws UnknownHostException;

Chapter 12. java.net Page 16 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

// Public Instance Methods
5.0 public NetworkInterface getScopedInterface();
5.0 public int getScopeId();
 public boolean isIPv4CompatibleAddress();
// Public Methods Overriding InetAddress
 public boolean equals(Object obj);
 public byte[] getAddress();
 public String getHostAddress();
 public int hashCode();
 public boolean isAnyLocalAddress();
 public boolean isLinkLocalAddress();
 public boolean isLoopbackAddress();
 public boolean isMCGlobal();
 public boolean isMCLinkLocal();
 public boolean isMCNodeLocal();
 public boolean isMCOrgLocal();
 public boolean isMCSiteLocal();
 public boolean isMulticastAddress();
 public boolean isSiteLocalAddress();
}

InetAddress java.net

Java 1.0 serializable

This class represents an Internet Protocol (IP) address. The class does not have a public
constructor but instead supports static factory methods for obtaining InetAddress
objects. getLocalHost() returns the InetAddress of the local computer.
getByName() returns the InetAddress of a host specified by name.
getAllByName() returns an array of InetAddress objects that represents all the
available addresses for a host specified by name. getByAddress() returns an
InetAddress that represents the IP address defined by the specified array of bytes.

Once you have obtained an InetAddress object, its instance methods provide various
sorts of information about it. Two of the most important are getHostName() , which
returns the hostname, and getAddress(), which returns the IP address as an array of
bytes, with the highest-order byte as the first element of the array.
getHostAddress() returns the IP address formatted as a string rather than as an array
of bytes. The various methods whose names begin with "is" determine whether the address
falls into any of the named categories. The "isMC" methods are all related to multicast
addresses.

This class was originally defined in Java 1.0, but many of its methods were added in Java
1.4. Java 1.4 also defined two subclasses, Inet4Address and Inet6Address
representing IPv4 and IPv6 (version 4 and version 6) addresses. Java 5.0 adds
isReachable() for testing whether the address describes a reachable (and responsive)
host.

Chapter 12. java.net Page 17 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-8. java.net.InetAddress

public class InetAddress implements Serializable {
// No Constructor
// Public Class Methods
 public static InetAddress[] getAllByName(String host) throws UnknownHostException;
1.4 public static InetAddress getByAddress(byte[] addr)
throws UnknownHostException;
1.4 public static InetAddress getByAddress(String host, byte[] addr) throws UnknownHostException;
 public static InetAddress getByName(String host) throws UnknownHostException;
 public static InetAddress getLocalHost() throws UnknownHostException;
// Public Instance Methods
 public byte[] getAddress(); constant
1.4 public String getCanonicalHostName();
 public String getHostAddress(); constant
 public String getHostName();
1.4 public boolean isAnyLocalAddress(); constant
1.4 public boolean isLinkLocalAddress(); constant
1.4 public boolean isLoopbackAddress(); constant
1.4 public boolean isMCGlobal(); constant
1.4 public boolean isMCLinkLocal(); constant
1.4 public boolean isMCNodeLocal(); constant
1.4 public boolean isMCOrgLocal(); constant
1.4 public boolean isMCSiteLocal(); constant
1.1 public boolean isMulticastAddress(); constant
5.0 public boolean isReachable(int timeout) throws java.io.IOException;
5.0 public boolean isReachable(NetworkInterface netif, int ttl, int timeout)
throws java.io.IOException;
1.4 public boolean isSiteLocalAddress(); constant
// Public Methods Overriding Object
 public boolean equals(Object obj); constant
 public int hashCode(); constant
 public String toString();
}

Subclasses

Inet4Address, Inet6Address
Passed To

Too many methods to list.
Returned By

Authenticator.getRequestingSite(), DatagramPacket.getAddress(),
DatagramSocket.{getInetAddress(), getLocalAddress()},
InetSocketAddress.getAddress(), MulticastSocket.getInterface(),
ServerSocket.getInetAddress(), Socket.{getInetAddress(),
getLocalAddress()}, SocketImpl.getInetAddress(),
URLStreamHandler.getHostAddress(),
javax.security.auth.kerberos.KerberosTicket.getClientAddresses()
Type Of

SocketImpl.address

InetSocketAddress java.net

Chapter 12. java.net Page 18 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable

InetSocketAddress represents an the combination of an IP (Internet Protocol)
address and a port number. The constructors allow you to specify the IP address as an
InetAddress or as a hostname, and they also allow you to omit the IP address, in which
case the wildcard address is used (this is useful for server sockets).

Figure 12-9. java.net.InetSocketAddress

public class InetSocketAddress extends SocketAddress {
// Public Constructors
 public InetSocketAddress(int port);
 public InetSocketAddress(InetAddress addr, int port);
 public InetSocketAddress(String hostname, int port);
// Public Class Methods
5.0 public static InetSocketAddress createUnresolved(String host, int port);
// Public Instance Methods
 public final InetAddress getAddress();
 public final String getHostName();
 public final int getPort();
 public final boolean isUnresolved();
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
}

JarURLConnection java.net

Java 1.2

This class is a specialized URLConnection that represents a connection to a jar: URL.
A jar: URL is a compound URL that includes the URL of a JAR archive and, optionally,
a reference to a file or directory within the JAR archive. The jar: URL syntax uses the !
character to separate the pathname of the JAR archive from the filename within the JAR
archive. Note that a jar: URL contains a subprotocol that specifies the protocol that
retrieves the JAR file itself. For example:

jar:http://my.jar.com/my.jar!/ // The whole archive
jar:file:/usr/java/lib/my.jar!/com/jar/ // A directory of the archive
jar:ftp://ftp.jar.com/pub/my.jar!/com/jar/Jar.class // A file in the archive

Chapter 12. java.net Page 19 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To obtain a JarURLConnection, define a URL object for a jar: URL, open a connection
to it with openConnection(), and cast the returned URLConnection object to a
JarURLConnection. The various methods defined by JarURLConnection allow you
to read the manifest file of the JAR archive and look up attributes from that manifest for
the archive as a whole or for individual entries in the archive. These methods make use of
various classes from the java.util.jar package.

Figure 12-10. java.net.JarURLConnection

public abstract class JarURLConnection extends URLConnection {
// Protected Constructors
 protected JarURLConnection(URL url) throws MalformedURLException;
// Public Instance Methods
 public java.util.jar.Attributes getAttributes() throws java.io.IOException;
 public java.security.cert.Certificate[] getCertificates()
throws java.io.IOException;
 public String getEntryName();
 public java.util.jar.JarEntry getJarEntry() throws java.io.IOException;
 public abstract java.util.jar.JarFile getJarFile()
throws java.io.IOException;
 public URL getJarFileURL();
 public java.util.jar.Attributes getMainAttributes()
throws java.io.IOException;
 public java.util.jar.Manifest getManifest() throws java.io.IOException;
// Protected Instance Fields
 protected URLConnection jarFileURLConnection;
}

MalformedURLException java.net

Java 1.0 serializable checked

Signals that an unparseable URL specification has been passed to a method.

Figure 12-11. java.net.MalformedURLException

public class MalformedURLException extends java.io.IOException {
// Public Constructors
 public MalformedURLException();
 public MalformedURLException(String msg);
}

Chapter 12. java.net Page 20 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thrown By

java.io.File.toURL(), JarURLConnection.JarURLConnection(),
URI.toURL(), URL.URL()

MulticastSocket java.net

Java 1.1

This subclass of DatagramSocket can send and receive multicast UDP packets. It extends
DatagramSocket by adding joinGroup() and leaveGroup() methods to join and
leave multicast groups. You do not have to join a group to send a packet to a multicast
address, but you must join the group to receive packets sent to that address. Note that the
use of a MulticastSocket is governed by a security manager.

Use setTimeToLive() to set a time-to-live value for any packets sent through a
MulticastSocket. This constrains the number of network hops a packet can take and
controls the scope of a multicast. Use setInterface() or
setNetworkInterface() to specify the InetAddress or the NetworkInterface
that outgoing multicast packets should use: this is useful for servers or other computers
that have more than one internet address or network interface. setLoopbackMode()
specifies whether a multicast packets sent through this socket should be send back to this
socket or not. This method should really be named "setLoopbackModeDisabled()":
passing an argument of true requests (but does not require) that the system disable
loopback packets.

Figure 12-12. java.net.MulticastSocket

public class MulticastSocket extends DatagramSocket {
// Public Constructors
 public MulticastSocket() throws java.io.IOException;
1.4 public MulticastSocket(SocketAddress bindaddr) throws java.io.IOException;
 public MulticastSocket(int port) throws java.io.IOException;
// Public Instance Methods
 public InetAddress getInterface()
throws SocketException; default:Inet4Address
1.4 public boolean getLoopbackMode() throws SocketException; default:false
1.4 public NetworkInterface getNetworkInterface() throws SocketException;
1.2 public int getTimeToLive() throws java.io.IOException; default:1
 public void joinGroup(InetAddress mcastaddr) throws java.io.IOException;
1.4 public void joinGroup(SocketAddress mcastaddr, NetworkInterface netIf)
throws java.io.IOException;
 public void leaveGroup(InetAddress mcastaddr)
throws java.io.IOException;
1.4 public void leaveGroup(SocketAddress mcastaddr, NetworkInterface netIf) throws java.io.IOException;
 public void setInterface(InetAddress inf) throws SocketException;
1.4 public void setLoopbackMode(boolean disable) throws SocketException;
1.4 public void setNetworkInterface(NetworkInterface netIf)

Chapter 12. java.net Page 21 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

throws SocketException;
1.2 public void setTimeToLive(int ttl) throws java.io.IOException;
// Deprecated Public Methods
public byte getTTL() throws java.io.IOException; default:1
public void send(DatagramPacket p, byte ttl) throws java.io.IOException;
public void setTTL(byte ttl) throws java.io.IOException;
}

NetPermission java.net

Java 1.2 serializable permission

This class is a java.security.Permission that represents various permissions
required for Java's URL-based networking system. See also SocketPermission, which
represents permissions to perform lower-level networking operations. A
NetPermission is defined solely by its name; no actions list is required or supported. As
of Java 1.2, there are three NetPermission targets defined: "setDefaultAuthenticator"
is required to call Authenticator.setDefault();
"requestPasswordAuthentication" to call
Authenticator.requestPasswordAuthentication(); and
"specifyStreamHandler" to explicitly pass a URLStreamHandler object to the URL()
constructor. The target "*" is a wildcard that represents all defined NetPermission
targets.

System administrators configuring security policies must be familiar with this class and
the permissions it represents. System programmers may use this class, but application
programmers never need to use it explicitly.

Figure 12-13. java.net.NetPermission

public final class NetPermission extends java.security.BasicPermission {
// Public Constructors
 public NetPermission(String name);
 public NetPermission(String name, String actions);
}

NetworkInterface java.net

Chapter 12. java.net Page 22 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

Instances of this class represent a network interface on the local machine. getName()
and getDisplayName() return the name of the interface, and
getInetAddresses() returns a java.util.Enumeration of the internet addresses
for the interface. Obtain a NetworkInterface object with one of the static methods
defined by this class. getNetworkInterfaces() returns an enumeration of all
interfaces for the local host. This class is typically only used in advanced networking
applications.

public final class NetworkInterface {
// No Constructor
// Public Class Methods
 public static NetworkInterface getByInetAddress(InetAddress addr)
throws SocketException;
 public static NetworkInterface getByName(String name) throws SocketException;
 public static java.util.Enumeration<NetworkInterface> getNetworkInterfaces()
throws SocketException;
// Public Instance Methods
 public String getDisplayName();
 public java.util.Enumeration<InetAddress> getInetAddresses();
 public String getName();
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode();
 public String toString();
}

Passed To

DatagramSocketImpl.{joinGroup(), leaveGroup()},
Inet6Address.getByAddress(), InetAddress.isReachable(),
MulticastSocket.{joinGroup(), leaveGroup(),
setNetworkInterface()}
Returned By

Inet6Address.getScopedInterface(),
MulticastSocket.getNetworkInterface()

NoRouteToHostException java.net

Java 1.1 serializable checked

This exception signals that a socket cannot be connected to a remote host because the host
cannot be contacted. Typically, this means that some link in the network between the local
machine and the remote host is down or that the host is behind a firewall.

Chapter 12. java.net Page 23 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-14. java.net.NoRouteToHostException

public class NoRouteToHostException extends SocketException {
// Public Constructors
 public NoRouteToHostException();
 public NoRouteToHostException(String msg);
}

PasswordAuthentication java.net

Java 1.2

This simple immutable class encapsulates a username and a password. The password is
stored as a character array rather than as a String object so that the caller can erase the
contents of the array after use for increased security. Note that the
PasswordAuthentication() constructor clones the specified password character
array, but getPassword() returns a reference to the object's internal array.

Application programmers defining an Authenticator object for their application need
to create and return a PasswordAuthentication object from the
getPasswordAuthentication() method of that object. System programmers
writing URLStreamHandler implementations or otherwise interacting with a network
server that requests password authentication may obtain a PasswordAutentication
object representing the user's name and password by calling the static
Authenticator.requestPasswordAuthentication() method.

public final class PasswordAuthentication {
// Public Constructors
 public PasswordAuthentication(String userName, char[] password);
// Public Instance Methods
 public char[] getPassword();
 public String getUserName();
}

Returned By

Authenticator.{getPasswordAuthentication(),
requestPasswordAuthentication()}

PortUnreachableException java.net

Chapter 12. java.net Page 24 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4 serializable checked

An exception of this type may be thrown by a send() or receive() call on a
DatagramSocket if the connect() method of that socket has been called, and if the
connection attempt resulted in an ICMP "port unreachable" message.

Figure 12-15. java.net.PortUnreachableException

public class PortUnreachableException extends SocketException {
// Public Constructors
 public PortUnreachableException();
 public PortUnreachableException(String msg);
}

ProtocolException java.net

Java 1.0 serializable checked

Signals a protocol error in the Socket class.

Figure 12-16. java.net.ProtocolException

public class ProtocolException extends java.io.IOException {
// Public Constructors
 public ProtocolException();
 public ProtocolException(String host);
}

Thrown By

HttpURLConnection.setRequestMethod()

Proxy java.net

Java 5.0

Chapter 12. java.net Page 25 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An instance of this class represents a set of proxy server settings: a network address and
a proxy server type. The NO_PROXY constant represents a Proxy.Type.DIRECT
connection. Proxy objects may be passed to the Socket() constructor or to the
URL.openConnection() method to connect through a specific proxy server. The
ProxySelector class provides a way to automate the selection of proxy servers based on
requested URLs.

public class Proxy {
// Public Constructors
 public Proxy(Proxy.Type type, SocketAddress sa);
// Public Constants
 public static final java.net.Proxy NO_PROXY;
// Nested Types
 public enum Type;
// Public Instance Methods
 public SocketAddress address();
 public Proxy.Type type();
// Public Methods Overriding Object
 public final boolean equals(Object obj);
 public final int hashCode();
 public String toString();
}

Passed To

Socket.Socket(), URL.openConnection(),
URLStreamHandler.openConnection()

Proxy.Type java.net

Java 5.0 serializable comparable enum

The constants of this enumerated type represent a type of proxy server. DIRECT indicates
a direct, nonproxied connection. HTTP represents a proxy server that understands high-
level protocols such as HTTP or FTP. And SOCKS represents a low-level SOCKS proxy
server.

public enum Proxy.Type {
// Enumerated Constants
 DIRECT,
 HTTP,
 SOCKS;
// Public Class Methods
 public static Proxy.Type valueOf(String name);
 public static final Proxy.Type[] values();
}

Passed To

java.net.Proxy.Proxy()
Returned By

java.net.Proxy.type()

Chapter 12. java.net Page 26 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ProxySelector java.net

Java 5.0

An implementation of this abstract class can be used to automatically select one or more
Proxy objects to use to connect to a specified URL. Install an implementation of this class
with the setDefault() method. URLConnection implementations use the installed
ProxySelector, if there is one, and call select() to obtain a list of suitable Proxy
objects for the connection. If a URLConnection cannot contact the proxy server specified
in a Proxy object, it calls the connectFailed() method to notify the
ProxySelector object of the failure.

This class is intended to be implemented by advanced users of java.net and is not for
casual use.

public abstract class ProxySelector {
// Public Constructors
 public ProxySelector();
// Public Class Methods
 public static ProxySelector getDefault();
 public static void setDefault(ProxySelector ps);
// Public Instance Methods
 public abstract void connectFailed(URI uri, SocketAddress sa,
java.io.IOException ioe);
 public abstract java.util.List<java.net.Proxy> select(URI uri);
}

ResponseCache java.net

Java 5.0

This abstract class defines an API for low-level caching of network resources retrieved
through the URL and URLConnection classes. This class is intended for use by
URLStreamHandler implementations, not by casual users of the java.net package.
Clients that wish to enable local caching should register a ResponseCache
implementation with setDefault() and enable caching with
URLConnection.setDefaultUseCaches().

The static getDefault() and setDefault() methods query and set a
ResponseCache for the system. If there is a ResponseCache installed, protocol
handlers should call put() to offer a network resource to the cache. If the cache is

Chapter 12. java.net Page 27 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

interested, it returns a CacheRequest object into which the URLStreamHandler can
write its data. A URLStreamHandler that wants to query the cache should call get().
If the ResponseCache holds a cached copy of the requested resource, it returns a
CacheResponse from which the URLStreamHandler can read the resource.

public abstract class ResponseCache {
// Public Constructors
 public ResponseCache();
// Public Class Methods
 public static ResponseCache getDefault(); synchronized
 public static void setDefault(ResponseCache responseCache); synchronized
// Public Instance Methods
 public abstract CacheResponse get(URI uri, String rqstMethod,
java.util.Map<String,java.util.List<String>> rqstHeaders)
 throws java.io.IOException;
 public abstract CacheRequest put(URI uri, URLConnection conn)
 throws java.io.IOException;
}

SecureCacheResponse java.net

Java 5.0

This subclass of CacheResponse represents a cached network resource that was retreived
through a secure protocol such as HTTPS. Its methods return certificates and other details
about the secure transfer. See also ResponseCache. This class is not intended for casual
users of the java.net package.

Figure 12-17. java.net.SecureCacheResponse

public abstract class SecureCacheResponse extends CacheResponse {
// Public Constructors
 public SecureCacheResponse();
// Public Instance Methods
 public abstract String getCipherSuite();
 public abstract java.util.List<java.security.cert.Certificate>
 getLocalCertificateChain();
 public abstract java.security.Principal getLocalPrincipal();
 public abstract java.security.Principal getPeerPrincipal()
 throws javax.net.ssl.SSLPeerUnverifiedException;
 public abstract java.util.List<java.security.cert.Certificate>
 getServerCertificateChain()
 throws javax.net.ssl.SSLPeerUnverifiedException;
}

ServerSocket java.net

Chapter 12. java.net Page 28 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.0

This class is used by servers to listen for connection requests from clients. Before you can
use a ServerSocket, it must be bound to the local network address that it is to listen on.
All of the ServerSocket() constructors except for the no-argument constructor create
a server socket and bind it to the specified local port, optionally specifying a "connection
backlog" value: this is the number of client connection attempts that may be queued up
before subsequent connection attempts are rejected.

In Java 1.4 and later, the no-argument ServerSocket() constructor allows you to
create an unbound socket. Doing this allows you to bind the socket using the bind()
method which uses a SocketAddress object rather than a port number. It also allows
you to call setReuseAddress(), which is only useful when done before the socket is
bound. Call isBound() to determine whether a server socket has been bound. If it has,
use getLocalSocketAddress() or getLocalPort() and
getInetAddress() to obtain the local address it is bound to.

Once a ServerSocket has been bound, you can call the accept() method to listen on
the specified port and block until the client requests a connection on the port. When this
happens, accept() accepts the connection, creating and returning a Socket the server
can use to communicate with the client. A typical server starts a new thread to handle the
communication with the client and calls accept() again to listen for another connection.

ServerSocket defines several methods for setting socket options that affect the socket's
behavior. setSoTimeout() specifies the number of milliseconds that accept()
should block before throwing an InterruptedIOException. A value of 0 means that it
should block forever. setReceiveBufferSize() is an advanced option that suggests
the desired size for the internal receive buffer of the Socket objects returned by
accept(). This is only a hint, and may be ignored by the system.
setReuseAddress() is another advanced option; it specifies that a bind() operation
should succeed even if the local bind address is still nominally in use by a socket that is in
the process of shutting down.

Like all sockets, a ServerSocket should be closed with the close() method when it
is no longer needed. Once closed, a ServerSocket should not be used, except to call the
isClosed() method which returns true if it has been closed.

The getChannel() method is a link between this ServerSocket class and the New
I/O java.nio.channels.ServerSocketChannel class. It returns the
ServerSocketChannel associated with this ServerSocket if there is one. Note,

Chapter 12. java.net Page 29 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

however, that this method always returns null for sockets created with any of the
ServerSocket() constructors. If you create a ServerSocketChannel object, and
obtain a ServerSocket from it, however, then the getChannel() method provides a
way to link back to the parent channel.

public class ServerSocket {
// Public Constructors
1.4 public ServerSocket() throws java.io.IOException;
 public ServerSocket(int port) throws java.io.IOException;
 public ServerSocket(int port, int backlog)
throws java.io.IOException;
1.1 public ServerSocket(int port, int backlog, InetAddress bindAddr) throws java.io.IOException;
// Public Class Methods
 public static void setSocketFactory(SocketImplFactory fac)
throws java.io.IOException; synchronized
// Public Instance Methods
 public Socket accept() throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint) throws java.io.IOException;
1.4 public void bind(SocketAddress endpoint, int backlog) throws java.io.IOException;
 public void close() throws java.io.IOException;
1.4 public java.nio.channels.ServerSocketChannel getChannel();
 constant default:null
 public InetAddress getInetAddress(); default:null
 public int getLocalPort(); default:-1
1.4 public SocketAddress getLocalSocketAddress(); default:null
1.4 public int getReceiveBufferSize() throws SocketException; synchronized default:43690
1.4 public boolean getReuseAddress() throws SocketException; default:true
1.1 public int getSoTimeout()
throws java.io.IOException; synchronized default:0
1.4 public boolean isBound(); default:false
1.4 public boolean isClosed(); default:false
5.0 public void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
1.4 public void setReceiveBufferSize(int size)
throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException;
1.1 public void setSoTimeout(int timeout) throws SocketException; synchronized
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
1.1 protected final void implAccept(Socket s) throws java.io.IOException;
}

Subclasses

javax.net.ssl.SSLServerSocket
Returned By

java.nio.channels.ServerSocketChannel.socket(),
javax.net.ServerSocketFactory.createServerSocket()

Socket java.net

Java 1.0

This class implements a socket for stream-based communication over the network. See
URL for a higher-level interface to networking and DatagramSocket for a lower-level
interface.

Chapter 12. java.net Page 30 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Before you can use a socket for communication, it must be bound to a local address and
connected to a remote address. Binding and connection are done automatically for you
when you call any of the Socket() constructors except the no-argument constructor.
These constructors allow you to specify either the name or the InetAddress of the
computer to connect to, and also require you to specify the port number to connect to. Two
of these constructors also allow you to specify the local InetAddress and port number
to bind the socket to. Most applications do not need to specify a local address, and can
simply use one of the two-argument versions of Socket() and can allow the constructor
to choose an ephemeral local port to bind the socket to.

The no-argument Socket() constructor is different from the others: it creates an
unbound and unconnected socket. In Java 1.4 and later, you can explicitly call bind()
and connect() to bind and connect the socket. It can be useful to do this when you want
to set a socket option (described below) that must be set before binding or connection.
bind() uses a SocketAddress object to describe the local address to bind to, and
connect() uses a SocketAddress to specify the remote address to connect to. There
is also a version of connect() that takes a timeout value in milliseconds: if the
connection attempt takes longer than the specified amount of time, connect() throws
an IOException. (See ServerSocket for a description of how to write server code that
accepts socket connection requests from client code.) Java 5.0 includes a constructor that
takes a Proxy object as its sole argument. Like the no-argument constructor, this creates
an unbound and unconnected socket. When you attempt to connect it, the connection will
be made through the specified Proxy.

Use isBound() and isConnected() to determine whether a Socket is bound and
connected. Use getInetAddress() and getPort() to determine the IP address and
port number that the socket is connected to. Or, in Java 1.4 and later, use
getRemoteSocketAddress() to obtain the remote address as a SocketAddress
object. Similarly, use getLocalAddress() and getLocalPort() or use
getLocalSocketAddress() to find out what address a socket is bound to.

Once you have a Socket object that is bound and connected, use
getInputStream() and getOutputStream() to obtain InputStream and
OutputStream objects you can use to communicate with the remote host. You can use
these streams just as you would use similar streams for file input and output. When you
are done with a Socket, use close() to close it. Once a socket has been closed, it is not
possible to call connect() again to reuse it, and you should not call any of its methods
except isClosed(). Because networking code can throw many exceptions, it is common
practice to close() a socket in the finally clause of a try/catch statement to ensure
that the socket always gets closed. Note, however, that the close() method itself can
throw an IOException, and you may need to put it in its own try block. In Java 1.3 and

Chapter 12. java.net Page 31 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

later shutdownInput() and shutdownOutput() allow you to close the input and
output communication channels individually without closing the entire socket. In Java 1.4
and later, isInputShutdown() and isOutputShutdown() allow you to test for
this.

The Socket class defines a number of methods that allow you to set (and query) "socket
options" that affect the low-level networking behavior of the socket.
setSendBufferSize() and setReceiveBufferSize() provide hints to the
underlying networking system about what buffer size is best to use with this socket.
setSoTimeout() specifies the number of milliseconds a read() call on the input
stream returned by getInputStream() waits for data before throwing an
InterruptedIOException. The default value of 0 specifies that the stream blocks
indefinitely. setSoLinger() specifies what to do when a socket is closed while there is
still data waiting to be transmitted. If lingering is turned on, the close() call blocks for
up to the specified number of seconds while attempting to transmit the remaining data.
Calling setTcpNoDelay() with an argument of true causes data to be sent through
the socket as soon as it is available, instead of waiting for the TCP packet to become more
full before sending it. In Java 1.3, use setKeepAlive() to enable or disable the periodic
exchange of control messages across an idle socket connection. The keepalive protocol
enables a client to determine if its server has crashed without closing the socket and vice
versa. In Java 1.4, pass true to setOOBInline() if you want to receive "out of band"
data sent to this socket "inline" on the input stream of the socket (by default such data is
simply discarded). This can be used to receive bytes sent with sendUrgentData(). Java
1.4 also adds setReuseAddress() which you can use before binding the socket to
specify that the socket should be allowed to bind to a port that is still nominally in use by
another socket that is in the process of shutting down. setTrafficClass() is also
new in Java 1.4; it sets the "traffic class" field for the socket, and requires an understanding
of the low-level details of the IP protocol.

The getChannel() method is a link between this Socket class and the New I/O
java.nio.channels.SocketChannel class. It returns the SocketChannel
associated with this Socket if there is one. Note, however, that this method always returns
null for sockets created with any of the Socket() constructors. If you create a
SocketChannel object, and obtain a Socket from it, then the getChannel() method
provides a way to link back to the parent channel.

public class Socket {
// Public Constructors
1.1 public Socket();
5.0 public Socket(java.net.Proxy proxy);
 public Socket(String host, int port)
throws UnknownHostException, java.io.IOException;
 public Socket(InetAddress address, int port) throws java.io.IOException;
public Socket(String host, int port, boolean stream)
throws java.io.IOException;
public Socket(InetAddress host, int port, boolean stream)

Chapter 12. java.net Page 32 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

throws java.io.IOException;
1.1 public Socket(String host, int port, InetAddress localAddr, int localPort)
throws java.io.IOException;
1.1 public Socket(InetAddress address, int port, InetAddress localAddr,
int localPort) throws java.io.IOException;
// Protected Constructors
1.1 protected Socket(SocketImpl impl) throws SocketException;
// Public Class Methods
 public static void setSocketImplFactory(SocketImplFactory fac)
throws java.io.IOException; synchronized
// Public Instance Methods
1.4 public void bind(SocketAddress bindpoint) throws java.io.IOException;
 public void close() throws java.io.IOException; synchronized
1.4 public void connect(SocketAddress endpoint) throws java.io.IOException;
1.4 public void connect(SocketAddress endpoint, int timeout)
throws java.io.IOException;
1.4 public java.nio.channels.SocketChannel getChannel(); constant default:null
 public InetAddress getInetAddress(); default:null
 public java.io.InputStream getInputStream() throws java.io.IOException;
1.3 public boolean getKeepAlive() throws SocketException; default:false
1.1 public InetAddress getLocalAddress(); default:Inet4Address
 public int getLocalPort(); default:-1
1.4 public SocketAddress getLocalSocketAddress(); default:null
1.4 public boolean getOOBInline() throws SocketException; default:false
 public java.io.OutputStream getOutputStream() throws java.io.IOException;
 public int getPort(); default:0
1.2 public int getReceiveBufferSize()
 throws SocketException; synchronized default:43690
1.4 public SocketAddress getRemoteSocketAddress(); default:null
1.4 public boolean getReuseAddress() throws SocketException; default:false
1.2 public int getSendBufferSize() throws SocketException;
 synchronized default:8192
1.1 public int getSoLinger() throws SocketException; default:-1
1.1 public int getSoTimeout() throws SocketException; synchronized default:0
1.1 public boolean getTcpNoDelay() throws SocketException; default:false
1.4 public int getTrafficClass() throws SocketException; default:0
1.4 public boolean isBound(); default:false
1.4 public boolean isClosed(); default:false
1.4 public boolean isConnected(); default:false
1.4 public boolean isInputShutdown(); default:false
1.4 public boolean isOutputShutdown(); default:false
1.4 public void sendUrgentData(int data) throws java.io.IOException;
1.3 public void setKeepAlive(boolean on) throws SocketException;
1.4 public void setOOBInline(boolean on) throws SocketException;
5.0 public void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
1.2 public void setReceiveBufferSize(int size)
throws SocketException; synchronized
1.4 public void setReuseAddress(boolean on) throws SocketException;
1.2 public void setSendBufferSize(int size)
 throws SocketException; synchronized
1.1 public void setSoLinger(boolean on, int linger) throws SocketException;
1.1 public void setSoTimeout(int timeout)
throws SocketException; synchronized
1.1 public void setTcpNoDelay(boolean on) throws SocketException;
1.4 public void setTrafficClass(int tc) throws SocketException;
1.3 public void shutdownInput() throws java.io.IOException;
1.3 public void shutdownOutput() throws java.io.IOException;
// Public Methods Overriding Object
 public String toString();
}

Subclasses

javax.net.ssl.SSLSocket
Passed To

ServerSocket.implAccept(),
javax.net.ssl.SSLSocketFactory.createSocket(),

Chapter 12. java.net Page 33 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

javax.net.ssl.X509KeyManager.{chooseClientAlias(),
chooseServerAlias()}
Returned By

ServerSocket.accept(), java.nio.channels.SocketChannel.socket(),
javax.net.SocketFactory.createSocket(),
javax.net.ssl.SSLSocketFactory.createSocket()

SocketAddress java.net

Java 1.4 serializable

Instances of this abstract class are opaque representations of network socket addresses.
The only concrete subclass in the core Java platform is InetSocketAddress which
represents an internet address and port number. See InetSocketAddress.

Figure 12-18. java.net.SocketAddress

public abstract class SocketAddress implements Serializable {
// Public Constructors
 public SocketAddress();
}

Subclasses

InetSocketAddress
Passed To

Too many methods to list.
Returned By

DatagramPacket.getSocketAddress(), DatagramSocket.
{getLocalSocketAddress(), getRemoteSocketAddress()},
java.net.Proxy.address(), ServerSocket.getLocalSocketAddress(),
Socket.{getLocalSocketAddress(), getRemoteSocketAddress()},
java.nio.channels.DatagramChannel.receive()

SocketException java.net

Java 1.0 serializable checked

Signals an exceptional condition while using a socket.

Chapter 12. java.net Page 34 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-19. java.net.SocketException

public class SocketException extends java.io.IOException {
// Public Constructors
 public SocketException();
 public SocketException(String msg);
}

Subclasses

BindException, ConnectException, NoRouteToHostException,
PortUnreachableException
Thrown By

Too many methods to list.

SocketImpl java.net

Java 1.0

This abstract class defines the methods necessary to implement communication through
sockets. Different subclasses of this class may provide different implementations suitable
in different environments (such as behind firewalls). These socket implementations are
used by the Socket and ServerSocket classes. Normal applications never need to use
or subclass this class.

Figure 12-20. java.net.SocketImpl

public abstract class SocketImpl implements SocketOptions {
// Public Constructors
 public SocketImpl();
// Public Methods Overriding Object
 public String toString();
// Protected Instance Methods
 protected abstract void accept(SocketImpl s) throws java.io.IOException;
 protected abstract int available() throws java.io.IOException;
 protected abstract void bind(InetAddress host, int port)
 throws java.io.IOException;
 protected abstract void close() throws java.io.IOException;
 protected abstract void connect(String host, int port)
throws java.io.IOException;
 protected abstract void connect(InetAddress address, int port)
throws java.io.IOException;
1.4 protected abstract void connect(SocketAddress address, int timeout)
throws java.io.IOException;
 protected abstract void create(boolean stream) throws java.io.IOException;
 protected java.io.FileDescriptor getFileDescriptor();
 protected InetAddress getInetAddress();
 protected abstract java.io.InputStream getInputStream()
 throws java.io.IOException;

Chapter 12. java.net Page 35 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected int getLocalPort();
 protected abstract java.io.OutputStream getOutputStream()
 throws java.io.IOException;
 protected int getPort();
 protected abstract void listen(int backlog) throws java.io.IOException;
1.4 protected abstract void sendUrgentData(int data) throws java.io.IOException;
5.0 protected void setPerformancePreferences(int connectionTime, int latency,
int bandwidth); empty
1.3 protected void shutdownInput() throws java.io.IOException;
1.3 protected void shutdownOutput() throws java.io.IOException;
1.4 protected boolean supportsUrgentData(); constant
// Protected Instance Fields
 protected InetAddress address;
 protected java.io.FileDescriptor fd;
 protected int localport;
 protected int port;
}

Passed To

Socket.Socket()
Returned By

SocketImplFactory.createSocketImpl()

SocketImplFactory java.net

Java 1.0

This interface defines a method that creates SocketImpl objects.
SocketImplFactory objects may be registered to create SocketImpl objects for the
Socket and ServerSocket classes. Normal applications never need to use or implement
this interface.

public interface SocketImplFactory {
// Public Instance Methods
 SocketImpl createSocketImpl();
}

Passed To

ServerSocket.setSocketFactory(), Socket.setSocketImplFactory()

SocketOptions java.net

Java 1.2

This interface defines constants that represent low-level BSD Unix-style socket options
and methods that set and query the value of those options. In Java 1.2, SocketImpl and
DatagramSocketImpl implement this interface. Any custom socket implementations

Chapter 12. java.net Page 36 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

you define should also provide meaningful implementations for the getOption() and
setOption() methods. Your implementation may support options other than those
defined here. Only custom socket implementations need to use this interface. All other
code can use methods defined by Socket, ServerSocket, DatagramSocket, and
MulticastSocket to set specific socket options for those socket types.

public interface SocketOptions {
// Public Constants
 public static final int IP_MULTICAST_IF; =16
1.4 public static final int IP_MULTICAST_IF2; =31
1.4 public static final int IP_MULTICAST_LOOP; =18
1.4 public static final int IP_TOS; =3
 public static final int SO_BINDADDR; =15
1.4 public static final int SO_BROADCAST; =32
1.3 public static final int SO_KEEPALIVE; =8
 public static final int SO_LINGER; =128
1.4 public static final int SO_OOBINLINE; =4099
 public static final int SO_RCVBUF; =4098
 public static final int SO_REUSEADDR; =4
 public static final int SO_SNDBUF; =4097
 public static final int SO_TIMEOUT; =4102
 public static final int TCP_NODELAY; =1
// Public Instance Methods
 Object getOption(int optID) throws SocketException;
 void setOption(int optID, Object value) throws SocketException;
}

Implementations

DatagramSocketImpl, SocketImpl

SocketPermission java.net

Java 1.2 serializable permission

This class is a java.security.Permission that governs all networking operations
performed with sockets. Like all permissions, a SocketPermission consists of a name,
or target, and a list of actions that may be performed on that target. The target of a
SocketPermission is the host and, optionally, the port or ports for which permission
is being granted or requested. The target consists of a hostname optionally followed by a
colon and a port specification. The host may be a DNS domain name, a numerical IP
address, or the string "localhost". If you specify a host domain name, you may use * as a
wildcard as the leftmost portion of the hostname. The port specification, if present, must
be a single port number or a range of port numbers in the form n1-n2. If n1 is omitted, it
is taken to be 0, and if n2 is omitted, it is taken to be 65535. If no port is specified, the
socket permission applies to all ports of the specified host. Here are some legal
SocketPermission targets:

java.sun.com:80
*.sun.com:1024-2000

Chapter 12. java.net Page 37 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

*:1024-
localhost:-1023

In addition to a target, each SocketPermission must have a comma-separated list of
actions, which specify the operations that may be performed on the specified host(s) and
port(s). The available actions are "connect", "accept", "listen", and "resolve". "connect"
represents permission to connect to the specified target. "accept" indicates permission to
accept connections from the specified target. "listen" represents permission to listen on
the specified ports for connection requests. This action is only valid when used for ports
on "localhost". Finally, the "resolve" action indicates permission to use the DNS name
service to resolve domain names into IP addresses. This action is required for and implied
by all other actions.

System administrators configuring security policies must be familiar with this class and
understand the risks of granting the various permissions it represents. System
programmers writing new low-level networking libraries or connecting to native code that
performs networking may need to use this class. Application programmers, however,
should never need to use it directly.

Figure 12-21. java.net.SocketPermission

public final class SocketPermission extends java.security.Permission
implements Serializable {
// Public Constructors
 public SocketPermission(String host, String action);
// Public Methods Overriding Permission
 public boolean equals(Object obj);
 public String getActions();
 public int hashCode();
 public boolean implies(java.security.Permission p);
 public java.security.PermissionCollection newPermissionCollection();
}

SocketTimeoutException java.net

Java 1.4 serializable checked

Signals that a timeout value was exceeded for a socket read or accept operation. See the
setSoTimeout() method of Socket.

Chapter 12. java.net Page 38 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-22. java.net.SocketTimeoutException

public class SocketTimeoutException extends java.io.InterruptedIOException {
// Public Constructors
 public SocketTimeoutException();
 public SocketTimeoutException(String msg);
}

UnknownHostException java.net

Java 1.0 serializable checked

Signals that the name of a specified host could not be resolved.

Figure 12-23. java.net.UnknownHostException

public class UnknownHostException extends java.io.IOException {
// Public Constructors
 public UnknownHostException();
 public UnknownHostException(String host);
}

Thrown By

Inet6Address.getByAddress(), InetAddress.{getAllByName(),
getByAddress(), getByName(), getLocalHost()}, Socket.Socket(),
javax.net.SocketFactory.createSocket(),
javax.net.ssl.SSLSocket.SSLSocket()

UnknownServiceException java.net

Java 1.0 serializable checked

Signals an attempt to use an unsupported service of a network connection.

Chapter 12. java.net Page 39 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-24. java.net.UnknownServiceException

public class UnknownServiceException extends java.io.IOException {
// Public Constructors
 public UnknownServiceException();
 public UnknownServiceException(String msg);
}

URI java.net

Java 1.4 serializable comparable

The URI class is an immutable representation of a Uniform Resource Identifier or URI. A
URI is a generalization of the URLs or Uniform Resource Locators used on the world wide
web. The URI supports parsing and textual manipulation of URI strings, but does not have
any direct networking capabilities the way that the URL class does. The advantages of the
URI class over the URL class are that it provides more general facilities for parsing and
manipulating URLs than the URL class, that it can can represent relative URIs which do
not include a scheme (or protocol), and that it can manipulate URIs that include
unsupported or even unknown schemes.

Obtain a URI with one of the constructors, which allow a URI to be parsed from a single
string, or allow the specification of the individual components of a URI. These constructors
can throw URISyntaxException, which is a checked exception. When using hard-coded
URIs (rather than URIs based on user input) you may prefer to use the static
create() method which does not throw any checked exceptions.

Once you have created a URI, object you can use the various get methods to query the
various portions of the URI. The getRaw() methods are like the get() methods except
that they do not decode hexadecimal escape sequences of the form %xx that appear in the
URI. normalize() returns a new URI object that has "." and unnecessary ".." sequences
removed from its path component. resolve() interprets its URI (or string) argument
relative to this URI and returns the result. relativize() performs the reverse
operation. It returns a new URI which represents the same resource as the specified URI
argument, but which is relative to this URI. Finally, the toURL() method converts an
absolute URI object to the equivalent URL. Since the URI class provides superior textual
manipulation capabilities for URLs, it can be useful to use the URI class to resolve relative

Chapter 12. java.net Page 40 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

URLs (for example) and then convert those URI objects to URL objects when they are ready
for networking.

Figure 12-25. java.net.URI

public final class URI implements Comparable<URI>, Serializable {
// Public Constructors
 public URI(String str) throws URISyntaxException;
 public URI(String scheme, String ssp, String fragment)
 throws URISyntaxException;
 public URI(String scheme, String host, String path, String fragment)
 throws URISyntaxException;
 public URI(String scheme, String authority, String path, String query,
 String fragment) throws URISyntaxException;
 public URI(String scheme, String userInfo, String host, int port,
 String path, String query, String fragment)
throws URISyntaxException;
// Public Class Methods
 public static URI create(String str);
// Public Instance Methods
 public String getAuthority();
 public String getFragment();
 public String getHost();
 public String getPath();
 public int getPort();
 public String getQuery();
 public String getRawAuthority();
 public String getRawFragment();
 public String getRawPath();
 public String getRawQuery();
 public String getRawSchemeSpecificPart();
 public String getRawUserInfo();
 public String getScheme();
 public String getSchemeSpecificPart();
 public String getUserInfo();
 public boolean isAbsolute();
 public boolean isOpaque();
 public URI normalize();
 public URI parseServerAuthority() throws URISyntaxException;
 public URI relativize(URI uri);
 public URI resolve(URI uri);
 public URI resolve(String str);
 public String toASCIIString();
 public URL toURL() throws MalformedURLException;
// Methods Implementing Comparable
5.0 public int compareTo(URI that);
// Public Methods Overriding Object
 public boolean equals(Object ob);
 public int hashCode();
 public String toString();
}

Passed To

java.io.File.File(), CookieHandler.{get(), put()}, ProxySelector.
{connectFailed(), select()}, ResponseCache.{get(), put()}
Returned By

java.io.File.toURI(), URL.toURI()

Chapter 12. java.net Page 41 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

URISyntaxException java.net

Java 1.4 serializable checked

Signals that a string could not be parsed as a valid URI. getInput() returns the string
that could not be parsed. getReason() returns an error message. getIndex() returns
the character position at which the syntax error occurred, if that information is available.
getMessage() returns a human-readable string that includes the information from
each of the other three methods.

This is a checked exception thrown by all the URI() constructors. If you are parsing a
hard-coded URI that you do not believe to contain any syntax errors, and wish to avoid
the checked exception, you can use the URI.create() factory method instead of the
one-argument version of the URI() constructor.

Figure 12-26. java.net.URISyntaxException

public class URISyntaxException extends Exception {
// Public Constructors
 public URISyntaxException(String input, String reason);
 public URISyntaxException(String input, String reason, int index);
// Public Instance Methods
 public int getIndex();
 public String getInput();
 public String getReason();
// Public Methods Overriding Throwable
 public String getMessage();
}

Thrown By

URI.{parseServerAuthority(), URI()}, URL.toURI()

URL java.net

Java 1.0 serializable

This class represents a uniform resource locator and allows the data referred to by the URL
to be downloaded. A URL can be specified as a single string or with separate protocol, host,
port, and file specifications. Relative URLs can also be specified with a String and the
URL object to which it is relative. getFile() , getHost(), getProtocol() and

Chapter 12. java.net Page 42 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

related methods return the various portions of the URL specified by a URL object.
sameFile() determines whether a URL object refers to the same file as this one.
getDefaultPort() returns the default port number for the protocol of the URL object;
it may differ from the number returned by getPort() . Use openConnection() to
obtain a URLConnection object with which you can download the content of the URL.
In Java 5.0, you can explicitly specify a Proxy object through which the connection should
be opened. For simple cases, however, the URL class defines shortcut methods that create
and invoke methods on a URLConnection internally. getContent() downloads the
URL data and parses it into an appropriate Java object (such as a string or image) if an
appropriate ContentHandler can be found. In Java 1.3 and later, you can pass an array
of Class objects that specify the type of objects that you are willing to accept as the return
value of this method. If you wish to parse the URL content yourself, call
openStream() to obtain an InputStream from which you can read the data.

Figure 12-27. java.net.URL

public final class URL implements Serializable {
// Public Constructors
 public URL(String spec) throws MalformedURLException;
 public URL(URL context, String spec) throws MalformedURLException;
1.2 public URL(URL context, String spec, URLStreamHandler handler)
 throws MalformedURLException;
 public URL(String protocol, String host, String file)
 throws MalformedURLException;
 public URL(String protocol, String host, int port, String file)
 throws MalformedURLException;
1.2 public URL(String protocol, String host, int port, String file,
 URLStreamHandler handler) throws MalformedURLException;
// Public Class Methods
 public static void setURLStreamHandlerFactory(URLStreamHandlerFactory fac);
// Public Instance Methods
1.3 public String getAuthority();
 public final Object getContent() throws java.io.IOException;
1.3 public final Object getContent(Class[] classes)
 throws java.io.IOException;
1.4 public int getDefaultPort();
 public String getFile();
 public String getHost();
1.3 public String getPath();
 public int getPort();
 public String getProtocol();
1.3 public String getQuery();
 public String getRef();
1.3 public String getUserInfo();
 public URLConnection openConnection() throws java.io.IOException;
5.0 public URLConnection openConnection(java.net.Proxy proxy)
 throws java.io.IOException;
 public final java.io.InputStream openStream() throws java.io.IOException;
 public boolean sameFile(URL other);
 public String toExternalForm();
5.0 public URI toURI() throws URISyntaxException;
// Public Methods Overriding Object
 public boolean equals(Object obj);
 public int hashCode(); synchronized
 public String toString();
// Protected Instance Methods
 protected void set(String protocol, String host, int port, String file,

Chapter 12. java.net Page 43 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

String ref);
1.3 protected void set(String protocol, String host, int port, String authority,
String userInfo, String path, String query,
String ref);
}

Passed To

Too many methods to list.
Returned By

java.io.File.toURL(), Class.getResource(), ClassLoader.
{findResource(), getResource(), getSystemResource()},
Authenticator.getRequestingURL(),
JarURLConnection.getJarFileURL(), URI.toURL(), URLClassLoader.
{findResource(), getURLs()}, URLConnection.getURL(),
java.security.CodeSource.getLocation()
Type Of

URLConnection.url

URLClassLoader java.net

Java 1.2

This ClassLoader provides a useful way to load untrusted Java code from a search path
of arbitrary URLs, where each URL represents a directory or JAR file to search. Use the
inherited loadClass() method to load a named class with a URLClassLoader. Classes
loaded by a URLClassLoader have whatever permissions are granted to their
java.security.CodeSource by the system java.security.Policy, plus they
have one additional permission that allows the class loader to read any resource files
associated with the class. If the class is loaded from a local file: URL that represents a
directory, the class is given permission to read all files and directories below that directory.
If the class is loaded from a local file: URL that represents a JAR file, the class is given
permission to read that JAR file. If the class is loaded from a URL that represents a resource
on another host, that class is given permission to connect to and accept network
connections from that host. Note, however, that loaded classes are not granted this
additional permission if the code that created the URLClassLoader in the first place
would not have had that permission.

You can obtain a URLClassLoader by calling one of the URLClassLoader()
constructors or one of the static newInstance() methods. If you call
newInstance(), the loadClass() method of the returned URLClassLoader
performs an additional check to ensure that the caller has permission to access the
specified package.

Chapter 12. java.net Page 44 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-28. java.net.URLClassLoader

public class URLClassLoader extends java.security.SecureClassLoader {
// Public Constructors
 public URLClassLoader(URL[] urls);
 public URLClassLoader(URL[] urls, ClassLoader parent);
 public URLClassLoader(URL[] urls, ClassLoader parent,
 URLStreamHandlerFactory factory);
// Public Class Methods
 public static URLClassLoader newInstance(URL[] urls);
 public static URLClassLoader newInstance(URL[] urls, ClassLoader parent);
// Public Instance Methods
 public URL[] getURLs();
// Protected Methods Overriding SecureClassLoader
 protected java.security.PermissionCollection getPermissions(java.security.
 CodeSource codesource);
// Public Methods Overriding ClassLoader
 public URL findResource(String name);
 public java.util.Enumeration<URL> findResources(String name)
 throws java.io.IOException;
// Protected Methods Overriding ClassLoader
 protected Class<?> findClass(String name) throws ClassNotFoundException;
// Protected Instance Methods
 protected void addURL(URL url);
 protected Package definePackage(String name, java.util.jar.Manifest man,
 URL url) throws IllegalArgumentException;
}

URLConnection java.net

Java 1.0

This abstract class defines a network connection to an object specified by a URL.
URL.openConnection() returns a URLConnection instance. You should use a
URLConnection object when you want more control over the downloading of data than
is available through the simpler URL methods. connect() actually establishes the
network connection. Some methods must be called before the connection is made, and
others depend on being connected. The methods that depend on being connected call
connect() themselves if no connection exists yet, so you never need to call this method
explicitly. The getContent() methods are just like the same-named methods of the
URL class: they download the data referred to by the URL and parse it into an appropriate
type of object (such as a string or an image). In Java 1.3 and later, there is a version of
getContent() that allows you to specify the types of parsed objects that you are willing
to accept by passing an array of Class objects. If you prefer to parse the URL content
yourself instead of calling getContent(), you can call getInputStream() (and

Chapter 12. java.net Page 45 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

getOutputStream() if the URL protocol supports writing) to obtain a stream through
which you can read (or write) data from (or to) the resource identified by the URL.

Before a connection is established, you may want to set request fields (such as HTTP
request headers) to refine the URL request. Use setRequestProperty() to set a new
value for a named header. In Java 1.4 and later, you can use
addRequestProperty() to add a new comma-separated item to an existing header.
Java 1.4 also added getRequestProperties(), a method that returns the current set
of request properties in the form of an unmodifiable Map object that maps request header
names to List objects that contain the string value or values for the named header.

Once a connection has been established, there are a number of methods you can call to
obtain information from the "response headers" of the URL. getContentLength(),
getContentType(), getContentEncoding(), getExpiration(),
getDate(), and getLastModified() return the appropriate information about the
object referred to by the URL, if that information can be determined (e.g., from HTTP
header fields). getHeaderField() returns an HTTP header field specified by name or
by number. getHeaderFieldInt() and getHeaderFieldDate() return the value
of a named header field parsed as an integer or a date. In Java 1.4 and later,
getHeaderFields() returns an unmodifiable Map object that maps response header
names to an unmodifiable List that contains the string value or values for the named
header.

There are a number of options you can specify to control how the URLConnection
behaves. These options are set with the various set() methods and may be queried with
corresponding get() methods. The options must be set before the connect() method
is called. setDoInput() and setDoOutput() allow you to specify whether you are
using the URLConnection for input and/or output (input-only by default).
setAllowUserInteraction() specifies whether user interaction (such as typing a
password) is allowed during the data transfer (false by default).
setDefaultAllowUserInteraction() is a class method that allows you to change
the default value for user interaction. setUseCaches() allows you to specify whether
a cached version of the URL can be used. You can set this to false to force a URL to be
reloaded. setDefaultUseCaches() sets the default value for setUseCaches().
setIfModifiedSince() allows you to specify that a URL should not be fetched unless
it has been modified since a specified time (if it is possible to determine its modification
date). In Java 5.0 and later, you can specify how long a URLConnection should wait while
connecting or reading data with setConnectTimeout() and
setReadTimeout().

public abstract class URLConnection {
// Protected Constructors

Chapter 12. java.net Page 46 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 protected URLConnection(URL url);
// Public Class Methods
 public static boolean getDefaultAllowUserInteraction();
1.1 public static FileNameMap getFileNameMap(); synchronized
 public static String guessContentTypeFromName(String fname);
 public static String guessContentTypeFromStream(java.io.InputStream is)
 throws java.io.IOException;
 public static void setContentHandlerFactory(ContentHandlerFactory
 fac); synchronized
 public static void setDefaultAllowUserInteraction(boolean
 defaultallowuserinteraction);
1.1 public static void setFileNameMap(FileNameMap map);
// Public Instance Methods
1.4 public void addRequestProperty(String key, String value);
 public abstract void connect() throws java.io.IOException;
 public boolean getAllowUserInteraction();
5.0 public int getConnectTimeout();
 public Object getContent() throws java.io.IOException;
1.3 public Object getContent(Class[] classes) throws java.io.IOException;
 public String getContentEncoding();
 public int getContentLength();
 public String getContentType();
 public long getDate();
 public boolean getDefaultUseCaches();
 public boolean getDoInput();
 public boolean getDoOutput();
 public long getExpiration();
 public String getHeaderField(int n); constant
 public String getHeaderField(String name); constant
 public long getHeaderFieldDate(String name, long Default);
 public int getHeaderFieldInt(String name, int Default);
 public String getHeaderFieldKey(int n); constant
1.4 public java.util.Map<String,java.util.List<String>> getHeaderFields();
 public long getIfModifiedSince();
 public java.io.InputStream getInputStream() throws java.io.IOException;
 public long getLastModified();
 public java.io.OutputStream getOutputStream() throws java.io.IOException;
1.2 public java.security.Permission getPermission()
 throws java.io.IOException;
5.0 public int getReadTimeout();
1.4 public java.util.Map<String,java.util.List<String>> getRequestProperties();
 public String getRequestProperty(String key);
 public URL getURL();
 public boolean getUseCaches();
 public void setAllowUserInteraction(boolean allowuserinteraction);
5.0 public void setConnectTimeout(int timeout);
 public void setDefaultUseCaches(boolean defaultusecaches);
 public void setDoInput(boolean doinput);
 public void setDoOutput(boolean dooutput);
 public void setIfModifiedSince(long ifmodifiedsince);
5.0 public void setReadTimeout(int timeout);
 public void setRequestProperty(String key, String value);
 public void setUseCaches(boolean usecaches);
// Public Methods Overriding Object
 public String toString();
// Protected Instance Fields
 protected boolean allowUserInteraction;
 protected boolean connected;
 protected boolean doInput;
 protected boolean doOutput;
 protected long ifModifiedSince;
 protected URL url;
 protected boolean useCaches;
// Deprecated Public Methods
public static String getDefaultRequestProperty(String key); constant
public static void setDefaultRequestProperty(String key,
 String value); empty
}

Chapter 12. java.net Page 47 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

HttpURLConnection, JarURLConnection
Passed To

java.net.ContentHandler.getContent(), ResponseCache.put()
Returned By

URL.openConnection(), URLStreamHandler.openConnection()
Type Of

JarURLConnection.jarFileURLConnection

URLDecoder java.net

Java 1.2

This class defines a static decode() method that reverses the encoding performed by
URLEncoder.encode(). It decodes 8-bit text with the MIME type "x-www-form-
urlencoded", which is a standard encoding used by web browsers to submit form contents
to CGI scripts and other server-side programs.

public class URLDecoder {
// Public Constructors
 public URLDecoder();
// Public Class Methods
1.4 public static String decode(String s, String enc)
throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods
public static String decode(String s);
}

URLEncoder java.net

Java 1.0

This class defines a single static method that converts a string to its URL-encoded form.
That is, spaces are converted to +, and nonalphanumeric characters other than underscore
are output as two hexadecimal digits following a percent sign. Note that this technique
works only for 8-bit characters. This method canonicalizes a URL specification so that it
uses only characters from an extremely portable subset of ASCII that can be correctly
handled by computers around the world.

public class URLEncoder {
// No Constructor
// Public Class Methods
1.4 public static String encode(String s, String enc)
throws java.io.UnsupportedEncodingException;
// Deprecated Public Methods

Chapter 12. java.net Page 48 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public static String encode(String s);
}

Chapter 12. java.net Page 49 Return to Table of Contents

Chapter 12. java.net
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	java.net
	Package java.net
	Authenticator
	Authenticator.RequestorType
	BindException
	CacheRequest
	CacheResponse
	ConnectException
	ContentHandler
	ContentHandlerFactory
	CookieHandler
	DatagramPacket
	DatagramSocket
	DatagramSocketImpl
	DatagramSocketImplFactory
	FileNameMap
	HttpRetryException
	HttpURLConnection
	Inet4Address
	Inet6Address
	InetAddress
	InetSocketAddress
	JarURLConnection
	MalformedURLException
	MulticastSocket
	NetPermission
	NetworkInterface
	NoRouteToHostException
	PasswordAuthentication
	PortUnreachableException
	ProtocolException
	Proxy
	Proxy.Type
	ProxySelector
	ResponseCache
	SecureCacheResponse
	ServerSocket
	Socket
	SocketAddress
	SocketException
	SocketImpl
	SocketImplFactory
	SocketOptions
	SocketPermission
	SocketTimeoutException
	UnknownHostException
	UnknownServiceException
	URI
	URISyntaxException
	URL
	URLClassLoader
	URLConnection
	URLDecoder
	URLEncoder

