
Table of Contents

org.w3c.dom.. 1
Package org.w3c.dom.. 1
Attr... 2
CDATASection... 3
CharacterData... 4
Comment... 4
Document.. 5
DocumentFragment.. 6
DocumentType.. 7
DOMConfiguration... 8
DOMError... 9
DOMErrorHandler.. 9
DOMException.. 10
DOMImplementation.. 10
DOMImplementationList.. 11
DOMImplementationSource... 12
DOMLocator.. 12
DOMStringList.. 13
Element.. 13
Entity.. 15
EntityReference... 15
NamedNodeMap... 16
NameList.. 17
Node... 18
NodeList... 21
Notation... 21
ProcessingInstruction... 22
Text.. 23
TypeInfo.. 24
UserDataHandler.. 24

Chapter 21. org.w3c.dom

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 21. org.w3c.dom

Package org.w3c.dom

Java 1.4

This package defines the Java binding to the core and XML modules of the DOM API
defined by the World Wide Web Consortium (W3C). DOM stands for Document Object
Model, and the DOM API defines a way to represent an XML document as a tree of nodes.
Java 1.4 supports the Level 2 DOM, and Java 5.0 adds support for Level 3.

This package includes methods that allow document trees to be traversed, examined,
modified, and built from scratch. Node is the central interface of the package. All nodes in
a document tree implement this interface, and it defines the basic methods for traversing
and modifying the tree of nodes. Most of the other interfaces in the package are extensions
of Node that represent specific types of XML content. The most important and commonly
used of these subinterfaces are Document, Element, and Text. A Document object serves
as the root of the document tree and defines methods for searching the tree for elements
with a specified tag name or ID attribute. The Element interface represents an XML
element or tag and has methods for manipulating the element's attributes. The Text
interface represents a run of plain text within an Element and has methods for querying
or altering that text. NodeList and DOMImplementation do not extend Node but are
also important interfaces.

This package is an endorsed standard, which means that it is defined outside of Sun
Microsystems and the Java Community Process but has been adopted as part of the Java
platform. Full documentation is available at http://www.w3.org/TR/DOM-Level-3-
Core/. Note that Java 5.0 also adopts the bootstrap, events, and ls (load/save)
subpackages. Those subpackages are not documented in this book because they are only
tangentially used by the rest of the Java platform.

Interfaces

public interface Attr extends Node;
public interface CDATASection extends Text;
public interface CharacterData extends Node;
public interface Comment extends CharacterData;
public interface Document extends Node;
public interface DocumentFragment extends Node;

Chapter 21. org.w3c.dom Page 1 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://www.w3.org/TR/DOM-Level-3-Core/
http://www.w3.org/TR/DOM-Level-3-Core/

public interface DocumentType extends Node;
public interface DOMConfiguration;
public interface DOMError;
public interface DOMErrorHandler;
public interface DOMImplementation;
public interface DOMImplementationList;
public interface DOMImplementationSource;
public interface DOMLocator;
public interface DOMStringList;
public interface Element extends Node;
public interface Entity extends Node;
public interface EntityReference extends Node;
public interface NamedNodeMap;
public interface NameList;
public interface Node;
public interface NodeList;
public interface Notation extends Node;
public interface ProcessingInstruction extends Node;
public interface Text extends CharacterData;
public interface TypeInfo;
public interface UserDataHandler;

Exceptions

public class DOMException extends RuntimeException;

Attr org.w3c.dom

Java 1.4

An Attr object represents an attribute of an Element node. Attr objects are associated
with Element nodes, but are not directly part of the document tree: the
getParentNode() method of an Attr object always returns null. Use
getOwnerElement() to deterine which Element an Attr is part of. You can obtain
an Attr object by calling the getAttributeNode() method of Element, or you can
obtain a NamedNodeMap of all Attr objects for an element with the
getAttributes() method of Node.

getName() returns the name of the attribute. getValue() returns the attribute value
as a string. getSpecified() returns true if the attribute was explicitly specified in
the source document through a call to setValue(), and returns false if the attribute
represents a default obtained from a DTD or other schema.

XML allows attributes to contain text and entity references. The getValue() method
returns the attribute value as a single string. If you want to know the precise composition
of the attribute however, you can examine the children of the Attr node: they may consist
of Text and/or EntityReference nodes.

Chapter 21. org.w3c.dom Page 2 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In most cases the easiest way to work with attributes is with the getAttribute() and
setAttribute() methods of the Element interface. These methods avoid the use of
Attr nodes altogether.

Figure 21-1. org.w3c.dom.Attr

public interface Attr extends Node {
// Public Instance Methods
 String getName();
 Element getOwnerElement();
5.0 TypeInfo getSchemaTypeInfo();
 boolean getSpecified();
 String getValue();
5.0 boolean isId();
 void setValue(String value) throws DOMException;
}

Passed To

Element.{removeAttributeNode(), setAttributeNode(),
setAttributeNodeNS(), setIdAttributeNode()}
Returned By

Document.{createAttribute(), createAttributeNS()}, Element.
{getAttributeNode(), getAttributeNodeNS(), removeAttributeNode(),
setAttributeNode(), setAttributeNodeNS()}

CDATASection org.w3c.dom

Java 1.4

This interface represents a CDATA section in an XML document. CDATASection is a
subinterface of Text and does not define any methods of its own. The content of the
CDATA section is available through the getNodeValue() method inherited from Node,
or through the getData() method inherited from CharacterData. Although
CDATASection nodes can often be treated in the same way as Text nodes, note that the
Node.normalize() method does not merge adjacent CDATA sections.

Figure 21-2. org.w3c.dom.CDATASection

public interface CDATASection extends Text {
}

Chapter 21. org.w3c.dom Page 3 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

Document.createCDATASection()

CharacterData org.w3c.dom

Java 1.4

This interface is a generic one that is extended by Text, CDATASection (which extends
Text) and Comment. Any node in a document tree that implements CharacterData also
implements one of these more specific types. This interface exists simply to group the string
manipulation methods that these text-related node types all share.

The CharacterData interface defines a mutable string. getData() returns the
"character data" as a String object, and setData() allows it to be set from a
String object. getLength() returns the number of characters of character data, and
substringData() returns just the specified portion of the data as a string. The
appendData(), deleteData(), insertData(), and replaceData() methods
mutate the data by appending a string to the end, deleting region, inserting a string at the
specified location, and replacing a region with a specified string.

Figure 21-3. org.w3c.dom.CharacterData

public interface CharacterData extends Node {
// Public Instance Methods
 void appendData(String arg) throws DOMException;
 void deleteData(int offset, int count) throws DOMException;
 String getData() throws DOMException;
 int getLength();
 void insertData(int offset, String arg) throws DOMException;
 void replaceData(int offset, int count, String arg) throws DOMException;
 void setData(String data) throws DOMException;
 String substringData(int offset, int count) throws DOMException;
}

Implementations

Comment, Text

Comment org.w3c.dom

Java 1.4

Chapter 21. org.w3c.dom Page 4 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A Comment node represents a comment in an XML document. The content of the comment
(i.e. the text between <!-- and -->) is available with the getData() method inherited
from CharacterData, or through the getNodeValue() method inherited from
Node. This content may be manipulated using the various methods inherited from
CharacterData

Figure 21-4. org.w3c.dom.Comment

public interface Comment extends CharacterData {
}

Returned By

Document.createComment()

Document org.w3c.dom

Java 1.4

This interface represents a DOM document, and an object that implements this interface
serves as the root of a DOM document tree. Most of the methods defined by the Document
interface are "factory methods" that are used to create various types of nodes that can be
inserted into this document. Note that there are two versions of the methods for creating
attributes and elements. The methods with "NS" in their name are namespace-aware and
require the attribute or element name to be specified as a combination of a namespace
URI and a local name. You'll notice that throughout the DOM API, methods with "NS" in
their names are namespace-aware. Other important methods include the following:

getElementsByTagName() and its namespace-aware variant
getElementsByTagNameNS() search the document tree for Element nodes that have
the specified tag name and return a NodeList containing those matching nodes. The
Element interface defines methods by the same names that search only within the subtree
defined by an Element.

getElementById() is a related method that searches the document tree for a single
element with the specified unique value for an ID attribute. This is useful when you use
an ID attribute to uniquely identify certain tags within an XML document. Note that this
method does not search for attributes that are named "id" or "ID". It searches for attributes
whose XML type (as declared in the document's DTD) is ID. Such attributes are often
named "id", but this is not required.

Chapter 21. org.w3c.dom Page 5 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An XML document must have a single root element. getDocumentElement() returns
this Element object. Note, however that this does not mean that a Document node has
only one child. It must have exactly one child that is an Element, but it can also have other
children such as Comment and ProcessingInstruction nodes. The
getDoctype() method returns the DocumentType object (or null if there isn't one)
that represents the document's DTD. getImplementation() returns the the
DOMImplementation object that represents the DOM implementation that created this
document tree.

Figure 21-5. org.w3c.dom.Document

public interface Document extends Node {
// Public Instance Methods
5.0 Node adoptNode(Node source) throws DOMException;
 Attr createAttribute(String name) throws DOMException;
 Attr createAttributeNS(String namespaceURI, String qualifiedName)
 throws DOMException;
 CDATASection createCDATASection(String data) throws DOMException;
 Comment createComment(String data);
 DocumentFragment createDocumentFragment();
 Element createElement(String tagName) throws DOMException;
 Element createElementNS(String namespaceURI, String qualifiedName)
 throws DOMException;
 EntityReference createEntityReference(String name) throws DOMException;
 ProcessingInstruction createProcessingInstruction(String target,
 String data) throws DOMException;
 Text createTextNode(String data);
 DocumentType getDoctype();
 Element getDocumentElement();
5.0 String getDocumentURI();
5.0 DOMConfiguration getDomConfig();
 Element getElementById(String elementId);
 NodeList getElementsByTagName(String tagname);
 NodeList getElementsByTagNameNS(String namespaceURI, String localName);
 DOMImplementation getImplementation();
5.0 String getInputEncoding();
5.0 boolean getStrictErrorChecking();
5.0 String getXmlEncoding();
5.0 boolean getXmlStandalone();
5.0 String getXmlVersion();
 Node importNode(Node importedNode, boolean deep) throws DOMException;
5.0 void normalizeDocument();
5.0 Node renameNode(Node n, String namespaceURI, String qualifiedName)
 throws DOMException;
5.0 void setDocumentURI(String documentURI);
5.0 void setStrictErrorChecking(boolean strictErrorChecking);
5.0 void setXmlStandalone(boolean xmlStandalone) throws DOMException;
5.0 void setXmlVersion(String xmlVersion) throws DOMException;
}

Returned By

javax.xml.parsers.DocumentBuilder.{newDocument(), parse()},
DOMImplementation.createDocument(), Node.getOwnerDocument()

Chapter 21. org.w3c.dom Page 6 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

DocumentFragment org.w3c.dom

Java 1.4

The DocumentFragment interface represents a portion—or fragment—of a document.
More specifically, it represents one or more adjacent document nodes, and all of the
descendants of each. DocumentFragment nodes are never part of a document tree, and
getParentNode() always returns null. Although a DocumentFragment does not
have a parent, it can have children, and you can use the inherited Node methods to add
child nodes (or delete or replace them) to a DocumentFragment.

DocumentFragment nodes exhibit a special behavior that makes them quite useful: when
a request is made to insert a DocumentFragment into a document tree, it is not the
DocumentFragment node itself that is inserted, but each of the children of the
DocumentFragment instead. This makes DocumentFragment useful as a temporary
placeholder for a sequence of nodes that you wish to insert, all at once, into a document.

You can create a new, empty, DocumentFragment to work with by calling the
createDocumentFragment() method of the desired Document.

Figure 21-6. org.w3c.dom.DocumentFragment

public interface DocumentFragment extends Node {
}

Returned By

Document.createDocumentFragment()

DocumentType org.w3c.dom

Java 1.4

This interface represents the Document Type Declaration, or DTD of a document. Because
the DTD is not part of the document itself, a DocumentType object is not part of DOM
document tree, even though it extends the Node interface. If a Document has a DTD, then
you may obtain the DocumentType object that represents it by calling the
getDoctype() method of the Document object.

Chapter 21. org.w3c.dom Page 7 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

getName(), getPublicId(), getSystemId(), and getInternalSubset() all
return strings (or null) that contain the name, public identifier, system identifier, and
internal subset of the document type. getEntities() returns a read-only
NamedNodeMap that represents the a name-to-value mapping for all internal and external
general entities declared by the DTD. You can use this NamedNodeMap to lookup an
Entity object by name. Similarly, getNotations() returns a read-only
NamedNodeMap that allows you to look up a Notation object declared in the DTD by
name.

DocumentType does not provide access to the bulk of a DTD, which usually consists of
element and attribute delcarations. Future versions of the DOM API may provide more
details.

Figure 21-7. org.w3c.dom.DocumentType

public interface DocumentType extends Node {
// Public Instance Methods
 NamedNodeMap getEntities();
 String getInternalSubset();
 String getName();
 NamedNodeMap getNotations();
 String getPublicId();
 String getSystemId();
}

Passed To

DOMImplementation.createDocument()
Returned By

Document.getDoctype(), DOMImplementation.createDocumentType()

DOMConfiguration org.w3c.dom

Java 5.0

This Level 3 interface defines methods for querying and setting the values of named
parameters. The DOMConfiguration object obtained with the
Document.getDomConfig() method allows you to specify parameters that affect the
behavior of the Document.normalizeDocument() method. You can also obtain a
DOMConfiguration object from the LSParser and LSSerializer interfaces of the
org.w3c.dom.ls package. Those configuration objects affect the way documents are
loaded and saved, but the package is beyond the scope of this book. See the DOM
specification for details on the available parameters.

Chapter 21. org.w3c.dom Page 8 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface DOMConfiguration {
// Public Instance Methods
 boolean canSetParameter(String name, Object value);
 Object getParameter(String name) throws DOMException;
 DOMStringList getParameterNames();
 void setParameter(String name, Object value) throws DOMException;
}

Returned By

Document.getDomConfig()

DOMError org.w3c.dom

Java 5.0

This Level 3 interface describes an error that occurs while processing a document (such
as when loading, saving, validating or normalizing it). An object that implements this
interface is passed to the registered DOMErrorHandler, if any. The constants defined by
this interface represent error severity levels.

Note that this interface is unrelated to DOMException class or to the
java.lang.Error and java.lang.Exception classes.

public interface DOMError {
// Public Constants
 public static final short SEVERITY_ERROR; =2
 public static final short SEVERITY_FATAL_ERROR; =3
 public static final short SEVERITY_WARNING; =1
// Public Instance Methods
 org.w3c.dom.DOMLocator getLocation();
 String getMessage();
 Object getRelatedData();
 Object getRelatedException();
 short getSeverity();
 String getType();
}

Passed To

DOMErrorHandler.handleError()

DOMErrorHandler org.w3c.dom

Java 5.0

This Level 3 interface defines a handler for DOMError objects that represent errors while
processing an XML document. Register an object that implements this interface by setting
it as the value of the "error-handler" property through the DOMConfiguration interface.

Chapter 21. org.w3c.dom Page 9 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface DOMErrorHandler {
// Public Instance Methods
 boolean handleError(DOMError error);
}

DOMException org.w3c.dom

Java 1.4 serializable unchecked

An instance of this class is thrown whenever an exception is raised by the DOM API. Unlike
many Java APIs, the DOM API does not define specialized subclasses to define different
categories of exceptions. Instead, a more specific exception type is specified by the public
field code. The value of this field will be one of the constants defined by this class, which
have the following meanings:

Figure 21-8. org.w3c.dom.DOMException

public class DOMException extends RuntimeException {
// Public Constructors
 public DOMException(short code, String message);
// Public Constants
 public static final short DOMSTRING_SIZE_ERR; =2
 public static final short HIERARCHY_REQUEST_ERR; =3
 public static final short INDEX_SIZE_ERR; =1
 public static final short INUSE_ATTRIBUTE_ERR; =10
 public static final short INVALID_ACCESS_ERR; =15
 public static final short INVALID_CHARACTER_ERR; =5
 public static final short INVALID_MODIFICATION_ERR; =13
 public static final short INVALID_STATE_ERR; =11
 public static final short NAMESPACE_ERR; =14
 public static final short NO_DATA_ALLOWED_ERR; =6
 public static final short NO_MODIFICATION_ALLOWED_ERR; =7
 public static final short NOT_FOUND_ERR; =8
 public static final short NOT_SUPPORTED_ERR; =9
 public static final short SYNTAX_ERR; =12
5.0 public static final short TYPE_MISMATCH_ERR; =17
5.0 public static final short VALIDATION_ERR; =16
 public static final short WRONG_DOCUMENT_ERR; =4
// Public Instance Fields
 public short code;
}

Thrown By

Too many methods to list.

DOMImplementation org.w3c.dom

Chapter 21. org.w3c.dom Page 10 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

This interface defines methods that are global to an implementation of the DOM rather
than specific to a particular Document object. Obtain a reference to the
DOMImplementation object that represents your implementation by calling the
getImplementation() method of any Document object. createDocument()
returns a new, empty Document object which you can populate with nodes that you create
using the create methods defined by the Document interface.

hasFeature() allows you to test whether your DOM implementation supports a
specified version of a named feature, or module, of the DOM standard. This method should
return true when you pass the feature name "core" and the verion "1.0", or when you pass
the feature names "core" or "xml" and the version "2.0". The DOM standard includes a
number of optional modules, but the Java platform has not adopted the subpackages of
this package that define the API for those optional modules, and therefore the DOM
implementation bundled with a Java implementation is not likely to support those
modules.

The javax.xml.parsers.DocumentBuilder class provides another way to obtain the
DOMImplementation object by calling its getDOMImplementation() object. It also
defines a shortcut newDocument() method for creating empty Document objects to
populate.

public interface DOMImplementation {
// Public Instance Methods
 Document createDocument(String namespaceURI, String qualifiedName,
 DocumentType doctype) throws DOMException;
 DocumentType createDocumentType(String qualifiedName, String publicId,
 String systemId) throws DOMException;
5.0 Object getFeature(String feature, String version);
 boolean hasFeature(String feature, String version);
}

Returned By

javax.xml.parsers.DocumentBuilder.getDOMImplementation(),
Document.getImplementation(), DOMImplementationList.item(),
DOMImplementationSource.getDOMImplementation()

DOMImplementationList org.w3c.dom

Java 5.0

Chapter 21. org.w3c.dom Page 11 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This Level 3 interface represents a fixed-size, read-only list (or array) of
DOMImplementation objects. getLength() returns the list length, and item()
returns the DOMImplementation at the specified index.

public interface DOMImplementationList {
// Public Instance Methods
 int getLength();
 DOMImplementation item(int index);
}

Returned By

DOMImplementationSource.getDOMImplementationList()

DOMImplementationSource org.w3c.dom

Java 5.0

This Level 3 interface is designed for use by DOM implementors. It is also used in the
org.w3c.dom.bootstrap package, which is beyond the scope of this book.

public interface DOMImplementationSource {
// Public Instance Methods
 DOMImplementation getDOMImplementation(String features);
 DOMImplementationList getDOMImplementationList(String features);
}

DOMLocator org.w3c.dom

Java 5.0

This Level 3 interface represents the location at which a DOMError occurred. The methods
return the location of the error as measured by various metrics (byte offset, line and column
number, etc.) and return -1 or null if location information is not available.

public interface DOMLocator {
// Public Instance Methods
 int getByteOffset();
 int getColumnNumber();
 int getLineNumber();
 Node getRelatedNode();
 String getUri();
 int getUtf16Offset();
}

Returned By

DOMError.getLocation()

Chapter 21. org.w3c.dom Page 12 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

DOMStringList org.w3c.dom

Java 5.0

This Level 3 interface represents a fixed-size, read-only list of strings. getLength()
returns the length of the list, and item() returns the String at the specified index.
contains() tests whether the specified String is contained in the list. An object of
this type is returned by DOMConfiguration.getParameterNames().

public interface DOMStringList {
// Public Instance Methods
 boolean contains(String str);
 int getLength();
 String item(int index);
}

Returned By

DOMConfiguration.getParameterNames()

Element org.w3c.dom

Java 1.4

This interface represents an element (or tag) in an XML document. getTagName()
returns the tagname of the element, including the namespace prefix if there is one. When
working with namespaces, you will probably prefer to use the namespace-aware methods
defined by the Node interface. Use getNamespaceURI() to get the namespace URI of
the element, and use getLocalName() to the local name of the element within that
namespace. You can also use getPrefix() to query the namespace prefix, or
setPrefix() to change the namespace prefix (this does not change the namespace
URI).

Element defines a getElementsByTagName() method and a corresponding
namespace-aware getElementsByTagNameNS() method, which behave just like the
methods of the same names on the Document object, except that they search for named
elements only within the subtree rooted at this Element.

The remaining methods of the Element interface are for querying and setting attribute
values, testing the existence of an attribute, and removing an attribute from the
Element. There are a confusing number of methods to perform these four basic attribute

Chapter 21. org.w3c.dom Page 13 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

operations. If an attribute-related method has "NS" in its name, then it is namespace-
aware. If it has "Node" in its name, then it works with Attr objects rather than with the
simpler string representation of the attribute value. Attributes in XML documents may
contain entity references. If your document may include entity references in attribute
values, then you may need to use the Attr interface because the expansion of such an
entity reference can result in a subtree of nodes beneath the Attr object. Whenver
possible, however, it is much easier to work with the methods that treat attribute values
as plain strings. Note also that in addition to the attribute methods defined by the
Element interface you can also obtain a NamedNodeMap of Attr objects with the
getAttributes() method of the Node interface.

Finally, note also that getAttribute() and related methods and
hasAttribute() and related methods return the value of or test for the existance of
both explicitly specified attributes, and also attributes for which a default value is specified
in the document DTD. If you need to determine whether an attribute was explicitly
specified in the document, obtain its Attr object, and use its getSpecified() method.

Figure 21-9. org.w3c.dom.Element

public interface Element extends Node {
// Public Instance Methods
 String getAttribute(String name);
 Attr getAttributeNode(String name);
 Attr getAttributeNodeNS(String namespaceURI, String localName)
 throws DOMException;
 String getAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 NodeList getElementsByTagName(String name);
 NodeList getElementsByTagNameNS(String namespaceURI, String localName)
 throws DOMException;
5.0 TypeInfo getSchemaTypeInfo();
 String getTagName();
 boolean hasAttribute(String name);
 boolean hasAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 void removeAttribute(String name) throws DOMException;
 Attr removeAttributeNode(Attr oldAttr) throws DOMException;
 void removeAttributeNS(String namespaceURI, String localName)
 throws DOMException;
 void setAttribute(String name, String value) throws DOMException;
 Attr setAttributeNode(Attr newAttr) throws DOMException;
 Attr setAttributeNodeNS(Attr newAttr) throws DOMException;
 void setAttributeNS(String namespaceURI, String qualifiedName, String value)
 throws DOMException;
5.0 void setIdAttribute(String name, boolean isId) throws DOMException;
5.0 void setIdAttributeNode(Attr idAttr, boolean isId) throws DOMException;
5.0 void setIdAttributeNS(String namespaceURI, String localName, boolean isId)
 throws DOMException;
}

Chapter 21. org.w3c.dom Page 14 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

Attr.getOwnerElement(), Document.{createElement(),
createElementNS(), getDocumentElement(), getElementById()}

Entity org.w3c.dom

Java 1.4

This interface represents an entity defined in an XML DTD. The name of the entity is
specified by the getNodeName() method inherited from the Node interface. The entity
content is represented by the child nodes of the Entity node. The methods defined by
this interface return the public identifier and system identifier for external entities, and
the notation name for unparsed entities. Note that Entity nodes and their children are
not part of the document tree (and the getParentNode() method of an Entity always
returns null). Instead a document may contain one or more references to an entity: see
the EntityReference interface.

Entities are defined in the DTD (document type definition) of a document, either as part
of an external DTD file, or as part of an "internal subset" that defines local entities that are
specific to the current document. The DocumentType interface has a
getEntities() method that returns a NamedNodeMap mapping entity names to
Entity nodes. This is the only way to obtain an Entity object: because they are part of
the DTD, Entity nodes never appear within the document tree itself. Entity nodes and
all descendants of an Entity node are read-only and cannot be edited or modified in any
way.

Figure 21-10. org.w3c.dom.Entity

public interface Entity extends Node {
// Public Instance Methods
5.0 String getInputEncoding();
 String getNotationName();
 String getPublicId();
 String getSystemId();
5.0 String getXmlEncoding();
5.0 String getXmlVersion();
}

EntityReference org.w3c.dom

Chapter 21. org.w3c.dom Page 15 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

This interface represents a reference from an XML document to an entity defined in the
document's DTD. Character entities and predefined entities such as < are always
expanded in XML documents and do not create EntityReference nodes. Note also that
some XML parsers expand all entity references. Documents created by such parsers do
not contain EntityReference nodes.

This interface defines no methods of its own. The getNodeName() method of the
Node interface provides the name of the referenced entity. The getEntities() method
of the DocumentType interface provides a way to look up the Entity object associated
with that name. Note however, that the DocumentType may not contain an Entity with
the specified name (because, for example, nonvalidating XML parsers are not required to
parse the external subset of the DTD.) In this case, the EntityReference is a reference
to a named entity whose content is not known, and it has no children. On the other hand,
if the DocumentType does contain an Entity node with the specified name, then the
child nodes of the EntityReference are a copy of the child nodes of the Entity, and
represent the expansion of the entity. (The children of an EntityReference may not be
an exact copy of the children of an Entity if the entity's expansion includes namespace
prefixes that are not bound to namespace URIs.)

Like Entity nodes, EntityReference nodes and their descendants are read-only and
cannot be edited or modified.

Figure 21-11. org.w3c.dom.EntityReference

public interface EntityReference extends Node {
}

Returned By

Document.createEntityReference()

NamedNodeMap org.w3c.dom

Java 1.4

The NamedNodeMap interface defines a collection of nodes that may be looked up by name
or by namespace URI and local name. It is unrelated to the java.util.Map interface.

Chapter 21. org.w3c.dom Page 16 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Use getNamedItem() to look for and return a node whose getNodeName() method
returns the specified value. Use getNamedItemNS() to look for and return a node whose
getNamespaceURI() and getLocalName() methods return the specified values. A
NamedNodeMap is a mapping from names to nodes, and does not order the nodes in any
particular way. Nevertheless, it does impose an arbitrary ordering on the nodes and allow
them to be looked up by index. Use getLength() to find out how many nodes are
contained in the NamedNodeMap, and use item() to obtain the Node object at a specified
index.

If a NamedNodeMap is not read-only, you can use removeNamedItem() and
removeNamedItemNS() to remove a named node from the map, and you can use
setNamedItem() and setNamedItemNS() to add a node to the map, mapping to it
from its name or its namespace URI and local name.

NamedNodeMap objects are "live," which means that they immediately reflect any changes
to the document tree. For example, if you obtain a NamedNodeMap that represents the
attributes of an element, and then add a new attribute to that element, the new attribute
is automatically available through the NamedNodeMap: you do not need to obtain a new
NamedNodeMap to get the modified set of attributes.

NamedNodeMap is returned only by relatively obscure methods of the DOM API. The most
notable use is as the return value of the getAttributes() method of Node. It is usually
easier to work with attributes through the methods of the Element interface, however.
Two methods of DocumentType also return read-only NamedNodeMap objects.

public interface NamedNodeMap {
// Public Instance Methods
 int getLength();
 Node getNamedItem(String name);
 Node getNamedItemNS(String namespaceURI, String localName) throws DOMException;
 Node item(int index);
 Node removeNamedItem(String name) throws DOMException;
 Node removeNamedItemNS(String namespaceURI, String localName) throws DOMException;
 Node setNamedItem(Node arg) throws DOMException;
 Node setNamedItemNS(Node arg) throws DOMException;
}

Returned By

DocumentType.{getEntities(), getNotations()},
Node.getAttributes()

NameList org.w3c.dom

Java 5.0

Chapter 21. org.w3c.dom Page 17 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This Level 3 interface represnts a fixed-size, read-only list of element or attribute names
and their namespace URI. getLength() returns the length of the list. getName() and
getNamespaceURI() return the name and namespace at the specified index.
contains() and containsNS() test for membership in the list.

This interface is unused within the org.w3c.dom package.

public interface NameList {
// Public Instance Methods
 boolean contains(String str);
 boolean containsNS(String namespaceURI, String name);
 int getLength();
 String getName(int index);
 String getNamespaceURI(int index);
}

Node org.w3c.dom

Java 1.4

All objects in a DOM document tree (including the Document object itself) implement the
Node interface, which provides basic methods for traversing and manipulating the tree.

getParentNode() and getChildNodes() allow you to traverse up and down the
document tree. You can enumerate the children of a given node by looping through the
elements of the NodeList returned by getChildNodes(), or by using
getFirstChild() and getNextSibling() (or getLastChild() and
getPreviousSibling() to loop backwards). It is sometimes useful to call
hasChildNodes() to determine whether a node has children or not.
getOwnerDocument() returns the Document node of which the node is a descendant
or with which it is associated. It provides a quick way to jump to the root of the document
tree.

Several methods allow you to add children to a tree or alter the list of children.
appendChild() adds a new child node at the end of this nodes list of children.
insertChild() inserts a node into this nodes list of children, placing it immediately
before a specified child node. removeChild() removes the specified node from this
node's list of children. replaceChild() replaces one child node of this node with
another node. For all of these methods, if the node to be appended or inserted is already
part of the document tree, it is first removed from its current parent. Use
cloneNode() to produce a copy of this node. Pass true if you want all descendants of
this node to be cloned as well.

Chapter 21. org.w3c.dom Page 18 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Every object in a document tree implements the Node interface, but also implements a
more specialized subinterface, such as Element or Text. The getNodeType() method
provides an easy way to determine which subinterface a node implements: the return value
is one of the _NODE constants defined by this class. You might use the return value of
getNodeType() in a switch statement, for exmaple, to determine how to process a
node of unknown type.

getNodeName() and getNodeValue() provide additional information about a node,
but the interpretation of the strings they return depends on the node type as shown in the
table below. Note that subinterfaces typically define specialized methods (such as the
getTagName() method of Element and the getData() method of Text) for
obtaining this same information. Note also that unless a node is read-only, you can use
setNodeValue() to alter the value associated with the node.

Node type Node name Node value
ELEMENT_NODE The element s tag name null
ATTRIBUTE_NODE The attribute name The attribute value
TEXT_NODE #text The text of the node
CDATA_SECTION_NODE #cdata-section The text of the node
ENTITY_REFERENCE_NODE The name of the referenced entity null
ENTITY_NODE The entity name null
PROCESSING_INSTRUCTION_NODE The target of the PI The remainder of the PI
COMMENT_NODE #comment The text of the comment
DOCUMENT_NODE #document null
DOCUMENT_TYPE_NODE The document type name null
DOCUMENT_FRAGMENT_NODE #document-fragment null
NOTATION_NODE The notation name null

In documents that use namespaces, the getNodeName() method of a Element or
Attr node returns the qualified node name, which may include a namespace prefix. In
documents that use namespaces, you may prefer to use the namespace-aware methods
getNamespaceURI(), getLocalName() and getPrefix().

Element nodes may have a list of attributes, and the Element interface defines a number
of methods for working with these attributes. In addition, however, Node defines the
hasAttributes() method to determine if a node has any attributes. If it does, they can
be retrieved with getAttributes().

Text content in an XML document is represented by Text nodes, which have methods for
manipulating that textual content. The Node interface defines a normalize() method
which has the specialized purpose of normalizing all descendants of a node by deleting
empty Text nodes and coalescing adjacent Text nodes into a single combined node.

Chapter 21. org.w3c.dom Page 19 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Document trees usually start off in this normalized form, but modifications to the tree may
result in non-normalized documents.

Most of the other interfaces in this package extend Node. Document, Element and
Text are the most commonly used.

public interface Node {
// Public Constants
 public static final short ATTRIBUTE_NODE; =2
 public static final short CDATA_SECTION_NODE; =4
 public static final short COMMENT_NODE; =8
 public static final short DOCUMENT_FRAGMENT_NODE; =11
 public static final short DOCUMENT_NODE; =9
5.0 public static final short DOCUMENT_POSITION_CONTAINED_BY; =16
5.0 public static final short DOCUMENT_POSITION_CONTAINS; =8
5.0 public static final short DOCUMENT_POSITION_DISCONNECTED; =1
5.0 public static final short DOCUMENT_POSITION_FOLLOWING; =4
5.0 public static final short DOCUMENT_POSITION_IMPLEMENTATION_SPECIFIC; =32
5.0 public static final short DOCUMENT_POSITION_PRECEDING; =2
 public static final short DOCUMENT_TYPE_NODE; =10
 public static final short ELEMENT_NODE; =1
 public static final short ENTITY_NODE; =6
 public static final short ENTITY_REFERENCE_NODE; =5
 public static final short NOTATION_NODE; =12
 public static final short PROCESSING_INSTRUCTION_NODE; =7
 public static final short TEXT_NODE; =3
// Public Instance Methods
 Node appendChild(Node newChild) throws DOMException;
 Node cloneNode(boolean deep);
5.0 short compareDocumentPosition(Node other) throws DOMException;
 NamedNodeMap getAttributes();
5.0 String getBaseURI();
 NodeList getChildNodes();
5.0 Object getFeature(String feature, String version);
 Node getFirstChild();
 Node getLastChild();
 String getLocalName();
 String getNamespaceURI();
 Node getNextSibling();
 String getNodeName();
 short getNodeType();
 String getNodeValue() throws DOMException;
 Document getOwnerDocument();
 Node getParentNode();
 String getPrefix();
 Node getPreviousSibling();
5.0 String getTextContent() throws DOMException;
5.0 Object getUserData(String key);
 boolean hasAttributes();
 boolean hasChildNodes();
 Node insertBefore(Node newChild, Node refChild) throws DOMException;
5.0 boolean isDefaultNamespace(String namespaceURI);
5.0 boolean isEqualNode(Node arg);
5.0 boolean isSameNode(Node other);
 boolean isSupported(String feature, String version);
5.0 String lookupNamespaceURI(String prefix);
5.0 String lookupPrefix(String namespaceURI);
 void normalize();
 Node removeChild(Node oldChild) throws DOMException;
 Node replaceChild(Node newChild, Node oldChild) throws DOMException;
 void setNodeValue(String nodeValue) throws DOMException;
 void setPrefix(String prefix) throws DOMException;
5.0 void setTextContent(String textContent) throws DOMException;
5.0 Object setUserData(String key, Object data, UserDataHandler handler);
}

Chapter 21. org.w3c.dom Page 20 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

Attr, CharacterData, Document, DocumentFragment, DocumentType, Element,
Entity, EntityReference, Notation, ProcessingInstruction
Passed To

Too many methods to list.
Returned By

Too many methods to list.

NodeList org.w3c.dom

Java 1.4

This interface represents a read-only ordered collection of nodes that can be interated
through. getLength() returns the number of nodes in the list, and item() returns
the Node at a specified index in the list (the index of the first node is 0). The elements of
a NodeList are always valid Node objects: a NodeList never contains null elements.

Note that NodeList objects are "live"—they are not static but immediately reflect changes
to the document tree. For example, if you have a NodeList that represents the children
of a specific node, and you then delete one of those children, the child will be removed
from your NodeList. Be careful when looping through the elements of a NodeList if the
body of your loop makes changes to the document tree (such as deleting nodes) that may
affect the contents of the NodeList!

public interface NodeList {
// Public Instance Methods
 int getLength();
 Node item(int index);
}

Returned By

Document.{getElementsByTagName(), getElementsByTagNameNS()},
Element.{getElementsByTagName(), getElementsByTagNameNS()},
Node.getChildNodes()

Notation org.w3c.dom

Java 1.4

Chapter 21. org.w3c.dom Page 21 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This interface represents a notation declared in the DTD of an XML document. In XML
notations are used to specify the format of an unparsed entity or to formally declare a
processing instruction target.

The getNodeName() method of the Node interface returns the name of the notation.
getSystemId() and getPublicId() return the system identifier and the public
identifier specified in the notation declaration. The getNotations() method of the
DocumentType interface returns a NamedNodeMap of Notation objects declared in the
DTD and provides a way to look up Notation objects by notation name.

Because notations appear in the DTD and not the document itself, Notation nodes are
never part of the document tree, and the getParentNode() method always returns
null. Similarly, since XML notation declarations never have any content, a Notation
node never has children and getChildNodes() always returns null. Notation objects
are read-only and cannot be modified in any way.

Figure 21-12. org.w3c.dom.Notation

public interface Notation extends Node {
// Public Instance Methods
 String getPublicId();
 String getSystemId();
}

ProcessingInstruction org.w3c.dom

Java 1.4

This interface represents an XML processing instruction (or PI) which specifies an
arbitrary string of data to a named target processor. The getTarget() and
getData() methods return the target and data portions of a PI, and these values can
also be obtained using the getNodeName() and getNodeValue() methods of the
Node interface. You can alter the data portion of a PI with setData() or with the
setNodeValue() method of Node. ProcessingInstruction nodes never have
children.

Figure 21-13. org.w3c.dom.ProcessingInstruction

Chapter 21. org.w3c.dom Page 22 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface ProcessingInstruction extends Node {
// Public Instance Methods
 String getData();
 String getTarget();
 void setData(String data) throws DOMException;
}

Returned By

Document.createProcessingInstruction()

Text org.w3c.dom

Java 1.4

A Text node represents a run of plain text that does not contain any XML markup. Plain
text appears within XML elements and attributes, and Text nodes typically appear as
children of Element and Attr nodes. Text nodes inherit from CharacterData, and
the textual content of a Text node is available through the getData() method inherited
from CharacterData or through the getNodeValue() method inherited from
Node.

Text nodes may be manipulated using any of the methods inherited from
CharacterData. The Text interface defines one method of its own: splitText()
splits a Text node at the specified character position. The method changes the original
node so that it contains only the text up to the specified position. Then it creates a new
Text node that contains the text from the specified position on and inserts that new node
into the document tree immediately after the original one. The Node.normalize()
method reverses this process by deleting emty Text nodes and merging adjacent Text
nodes into a single node.

Text nodes never have children.

Figure 21-14. org.w3c.dom.Text

public interface Text extends CharacterData {
// Public Instance Methods
5.0 String getWholeText();
5.0 boolean isElementContentWhitespace();
5.0 Text replaceWholeText(String content) throws DOMException;
 Text splitText(int offset) throws DOMException;
}

Chapter 21. org.w3c.dom Page 23 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementations

CDATASection
Returned By

Document.createTextNode()

TypeInfo org.w3c.dom

Java 5.0

This Level 3 interface represents information about the type of an Element or Attr node.
Obtain a TypeInfo object by calling the getSchemaTypeInfo() method of an
Element or Attr. Note that TypeInfo information is only available if the document has
been validated against a W3C XML Schema.

The methods of TypeInfo return the name and namespace of the element or attribute
type. isDerivedFrom() determines if the type is a derivative of another named type.
The constants defined by the interface specify different derivation techniques for types.

See also java.xml.validation.TypeInfoProvider.

public interface TypeInfo {
// Public Constants
 public static final int DERIVATION_EXTENSION; =2
 public static final int DERIVATION_LIST; =8
 public static final int DERIVATION_RESTRICTION; =1
 public static final int DERIVATION_UNION; =4
// Public Instance Methods
 String getTypeName();
 String getTypeNamespace();
 boolean isDerivedFrom(String typeNamespaceArg, String typeNameArg, int derivationMethod);
}

Returned By

javax.xml.validation.TypeInfoProvider.{getAttributeTypeInfo(),
getElementTypeInfo()}, Attr.getSchemaTypeInfo(),
Element.getSchemaTypeInfo()

UserDataHandler org.w3c.dom

Java 5.0

This Level 3 interface defines a handler that is invoked when a node on which user-
specified data has been registered is adopted, cloned, deleted, imported or renamed.
Register an object that implements this interface in the call to Node.setUserData().

Chapter 21. org.w3c.dom Page 24 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public interface UserDataHandler {
// Public Constants
 public static final short NODE_ADOPTED; =5
 public static final short NODE_CLONED; =1
 public static final short NODE_DELETED; =3
 public static final short NODE_IMPORTED; =2
 public static final short NODE_RENAMED; =4
// Public Instance Methods
 void handle(short operation, String key, Object data, Node src, Node dst);
}

Passed To

Node.setUserData()

Chapter 21. org.w3c.dom Page 25 Return to Table of Contents

Chapter 21. org.w3c.dom
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	org.w3c.dom
	Package org.w3c.dom
	Attr
	CDATASection
	CharacterData
	Comment
	Document
	DocumentFragment
	DocumentType
	DOMConfiguration
	DOMError
	DOMErrorHandler
	DOMException
	DOMImplementation
	DOMImplementationList
	DOMImplementationSource
	DOMLocator
	DOMStringList
	Element
	Entity
	EntityReference
	NamedNodeMap
	NameList
	Node
	NodeList
	Notation
	ProcessingInstruction
	Text
	TypeInfo
	UserDataHandler

