
Table of Contents

javax.net and javax.net.ssl... 1
Package javax.net... 1
ServerSocketFactory.. 1
SocketFactory.. 2
Package javax.net.ssl... 3
CertPathTrustManagerParameters... 5
HandshakeCompletedEvent... 5
HandshakeCompletedListener... 6
HostnameVerifier.. 7
HttpsURLConnection... 8
KeyManager.. 9
KeyManagerFactory.. 9
KeyManagerFactorySpi... 10
KeyStoreBuilderParameters.. 11
ManagerFactoryParameters.. 11
SSLContext.. 12
SSLContextSpi... 13
SSLEngine.. 13
SSLEngineResult... 15
SSLEngineResult.HandshakeStatus... 16
SSLEngineResult.Status.. 17
SSLException... 17
SSLHandshakeException.. 18
SSLKeyException.. 18
SSLPeerUnverifiedException.. 18
SSLPermission... 19
SSLProtocolException.. 20
SSLServerSocket... 20
SSLServerSocketFactory... 21
SSLSession.. 22
SSLSessionBindingEvent.. 24
SSLSessionBindingListener.. 24
SSLSessionContext.. 25
SSLSocket.. 26
SSLSocketFactory... 28
TrustManager.. 29
TrustManagerFactory... 29
TrustManagerFactorySpi.. 30
X509ExtendedKeyManager.. 31
X509KeyManager.. 31
X509TrustManager... 32

Chapter 18. javax.net and javax.net.ssl

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 18. javax.net and javax.net.ssl
This chapter documents the javax.net package and, more importantly, its subpackage
javax.net.ssl. These packages were originally defined by the Java Secure Sockets
Extension (JSSE) before they were integrated into Java 1.4, which is why they have a
"javax" prefix.

javax.net is a small package that simply defines abstract factory classes for creating
network sockets and servers sockets. javax.net.ssl provides subclasses of these
factory classes that have the specific purpose of creating sockets and server sockets that
enable secure network communication through the SSL protocol and the closely-related
TLS protocol.

Package javax.net

Java 1.4

This small package defines factory classes for creating sockets and server sockets. These
factory classes can be used to create regular java.net.Socket and
java.net.ServerSocket objects. More importantly, however, these factory classes can
be subclassed to serve as factories for other types of sockets such as the SSL-enabled
sockets of the javax.net.ssl package.

Classes

public abstract class ServerSocketFactory;
public abstract class SocketFactory;

ServerSocketFactory javax.net

Java 1.4

This abstract class defines a factory API for creating server socket objects. Use the static
getDefault() method to obtain a default ServerSocketFactory object that is
suitable for creating regular java.net.ServerSocket sockets. Once you have a
ServerSocketFactory object, call one of the createServerSocket() methods to
create a new socket and optionally bind it to a local port and specify the allowed backlog

Chapter 18. javax.net and javax.net.ssl Page 1 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

of queued connections. See javax.net.ssl.SSLServerSocketFactory for a socket
factory that can create secure javax.net.ssl.SSLServerSocket objects.

public abstract class ServerSocketFactory {
// Protected Constructors
 protected ServerSocketFactory();
// Public Class Methods
 public static ServerSocketFactory getDefault();
// Public Instance Methods
 public java.net.ServerSocket createServerSocket() throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port)
 throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port,
 int backlog) throws java.io.IOException;
 public abstract java.net.ServerSocket createServerSocket(int port,
 int backlog, java.net.InetAddress ifAddress) throws java.io.IOException;
}

Subclasses

javax.net.ssl.SSLServerSocketFactory
Returned By

javax.net.ssl.SSLServerSocketFactory.getDefault()

SocketFactory javax.net

Java 1.4

This abstract class defines a factory API for creating socket objects. Use the static
getDefault() method to obtain a default SocketFactory object that is suitable for
creating regular java.net.Socket sockets. (This default SocketFactory is the one
used by the Socket() constructor, which usually provides an easier way to create normal
sockets.) Once you have a SocketFactory object, call one of the createSocket()
methods to create a new socket and optionally connect it to a remote host and optionally
bind it to a local address and port. See javax.net.ssl.SSLSocketFactory for a
socket factory that can create secure javax.net.ssl.SSLSocket objects.

public abstract class SocketFactory {
// Protected Constructors
 protected SocketFactory();
// Public Class Methods
 public static SocketFactory getDefault();
// Public Instance Methods
 public java.net.Socket createSocket() throws java.io.IOException;
 public abstract java.net.Socket createSocket(String host, int port)
 throws java.io.IOException, java.net.UnknownHostException;
 public abstract java.net.Socket createSocket(java.net.InetAddress host,
 int port) throws java.io.IOException;
 public abstract java.net.Socket createSocket(java.net.InetAddress address,
 int port, java.net.InetAddress localAddress,
 int localPort)
 throws java.io.IOException;
 public abstract java.net.Socket createSocket(String host, int port,
 java.net.InetAddress localHost, int localPort)
 throws java.io.IOException, java.net.UnknownHostException;
}

Chapter 18. javax.net and javax.net.ssl Page 2 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Subclasses

javax.net.ssl.SSLSocketFactory
Returned By

javax.net.ssl.SSLSocketFactory.getDefault()

Package javax.net.ssl

Java 1.4

This package defines an API for secure network sockets using the SSL (Secure Sockets
Layer) protocol, or the closely related TLS (Transport Layer Security) protocol. It defines
the SSLSocket and SSLServerSocket subclasses of the java.net socket and server
socket classes. And it defines SSLSocketFactory and SSLServerSocketFactory
subclasses of the javax.net factory classes to create those SSL-enabled sockets and
server sockets. Clients that want to perform simple SSL-enabled networking can create an
SSLSocket with code like the following:

SSLSocketFactory factory = SSLSocketFactory.getDefault();
SSLSocket securesock = (SSLSocket)factory.getSocket(hostname,
 443); // https port

Once an SSLSocket has been created, it can be used just like a normal
java.net.Socket. Once a connection is established over an SSLSocket, you can use
the getSession() method to obtain an SSLSession object that provides information
about the connection. Note that despite the name of this package and of its key classes, it
supports the TLS protocol in addition to the SSL. (The default provider in Sun's
implementation supports SSL 3.0 and TLS 1.0.) The TLS protocol is closely related to SSL,
and we'll simply use the term SSL here.

The SSLSocket class allows you to do arbitrary networking with an SSL-enabled peer.
The most common use of SSL today is with the https: protocol on the web. The addition
of this package to the core Java platform enables support for https: URLs in the
java.net.URL class, which allows you to securely transfer data over the web without
having to directly use this package at all. When you call openConnection() on a
https: URL, the URLConnection object that is returned can be cast to an
HttpsURLConnection object, which defines some SSL-specific methods. See
java.net.URL and java.net.URLConnection for more information about
networking with URLs.

Chapter 18. javax.net and javax.net.ssl Page 3 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Although the code shown above to create a SSLSocket is quite simple, this package is
much more complex because it exposes a lot of SSL infrastructure so that applications with
advanced networking needs can configure it as needed. Also, like all security-related
packages, this one is provider-based and algorithm-independent, which adds a layer of
complexity. If you want to explore this package beyond the two socket classes, the two
factory classes, and the HttpsURLConnection class, start with SSLContext. This class
is a factory for socket factories, and as such is the central class of the API. To customize
the way SSL networking is done, you create an SSLContext optionally specifing the
desired provider of the implementation. Next, you initialize the SSLContext by providing
a custom KeyManager as a source of authentication information to be supplied to the
remote host if required, a custom TrustManager as a verifier for the authentication
information (if any) presented by the remote host, and a custom
java.security.SecureRandom object as a source of randomness. Once the
SSLContext is initialized in this way, you can use it to create SSLSocketFactory and
SSLServerSocketFactory objects that use the KeyManager and TrustManager
objects you supplied.

In Java 5.0, the SSLContext can also be used to create an SSLEngine object, which
performs transport-independent SSL encryption of outbound packets and SSL decryption
of inbound packets. This enables the use of SSL with the nonblocking networking facilities
of the java.nio.channels package, for example.

Interfaces

public interface HandshakeCompletedListener extends java.util.EventListener;
public interface HostnameVerifier;
public interface KeyManager;
public interface ManagerFactoryParameters;
public interface SSLSession;
public interface SSLSessionBindingListener extends java.util.EventListener;
public interface SSLSessionContext;
public interface TrustManager;
public interface X509KeyManager extends KeyManager;
public interface X509TrustManager extends TrustManager;

Enumerated Types

public enum SSLEngineResult.HandshakeStatus;
public enum SSLEngineResult.Status;

Events

public class HandshakeCompletedEvent extends java.util.EventObject;
public class SSLSessionBindingEvent extends java.util.EventObject;

Other Classes

public class CertPathTrustManagerParameters implements ManagerFactoryParameters;
public abstract class HttpsURLConnection extends java.net.HttpURLConnection;
public class KeyManagerFactory;
public abstract class KeyManagerFactorySpi;
public class KeyStoreBuilderParameters implements ManagerFactoryParameters;
public class SSLContext;
public abstract class SSLContextSpi;
public abstract class SSLEngine;
public class SSLEngineResult;

Chapter 18. javax.net and javax.net.ssl Page 4 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public final class SSLPermission extends java.security.BasicPermission;
public abstract class SSLServerSocket extends java.net.ServerSocket;
public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory;
public abstract class SSLSocket extends java.net.Socket;
public abstract class SSLSocketFactory extends javax.net.SocketFactory;
public class TrustManagerFactory;
public abstract class TrustManagerFactorySpi;
public abstract class X509ExtendedKeyManager implements X509KeyManager;

Exceptions

public class SSLException extends java.io.IOException;
 public class SSLHandshakeException extends SSLException;
 public class SSLKeyException extends SSLException;
 public class SSLPeerUnverifiedException extends SSLException;
 public class SSLProtocolException extends SSLException;

CertPathTrustManagerParameters javax.net.ssl

Java 5.0

This class implements the ManagerFactoryParameters interface and wraps a
java.security.cert.CertPathParameters object used to initialize a
TrustManager based on a certificate path. See the init() method of
TrustManagerFactory.

Figure 18-1. javax.net.ssl.CertPathTrustManagerParameters

public class CertPathTrustManagerParameters implements ManagerFactoryParameters {
// Public Constructors
 public CertPathTrustManagerParameters(java.security.cert.CertPathParameters parameters);
// Public Instance Methods
 public java.security.cert.CertPathParameters getParameters();
}

HandshakeCompletedEvent javax.net.ssl

Java 1.4 serializable event

An instance of this class is passed to the handshakeCompleted() method of any
registered HandshakeCompletedListener objects by an SSLSocket when that socket
completes the handshake phase of establishing a connection. The various methods of a
HandshakeCompletedEvent return information (such as the name of the cipher suite

Chapter 18. javax.net and javax.net.ssl Page 5 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

in use and the certificate chain of the remote host) that was determined during that
handshake.

Note that the getPeerCertificateChain() method returns an object from the
javax.security.cert package, which is not documented in this book. The method
and package exist only for backward compatibility with earlier versions of the JSSE API,
and should be considered deprecated. Use getPeerCertificates(), which uses
java.security.cert instead.

Figure 18-2. javax.net.ssl.HandshakeCompletedEvent

public class HandshakeCompletedEvent extends java.util.EventObject {
// Public Constructors
 public HandshakeCompletedEvent(SSLSocket sock, SSLSession s);
// Public Instance Methods
 public String getCipherSuite();
 public java.security.cert.Certificate[] getLocalCertificates();
5.0 public java.security.Principal getLocalPrincipal();
 public javax.security.cert.X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException;
 public java.security.cert.Certificate[] getPeerCertificates()
 throws SSLPeerUnverifiedException;
5.0 public java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;
 public SSLSession getSession();
 public SSLSocket getSocket();
}

Passed To

HandshakeCompletedListener.handshakeCompleted()

HandshakeCompletedListener javax.net.ssl

Java 1.4 event listener

This interface is implemented by any class that wants to receive notifications (in the form
of a call to handshakeCompleted() method) when an SSLSocket completes the SSL
handshake. Register a HandshakeCompletedListener for an SSLSocket by passing
it to the addHandshakeCompletedListener() method of the socket. When the
socket completes the handshake phase of connection, it will call the
handshakeCompleted() method of all registered listeners, passing in a
HandshakeCompletedEvent object.

Chapter 18. javax.net and javax.net.ssl Page 6 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 18-3. javax.net.ssl.HandshakeCompletedListener

public interface HandshakeCompletedListener extends java.util.EventListener {
// Public Instance Methods
 void handshakeCompleted(HandshakeCompletedEvent event);
}

Passed To

SSLSocket.{addHandshakeCompletedListener(),
removeHandshakeCompletedListener()}

HostnameVerifier javax.net.ssl

Java 1.4

An object that implements this interface may be used with an HttpsURLConnection
object to handle the case in which the hostname that appears in the URL does not match
the hostname obtained during the SSL handshake with the server. This occurs, for
example, when a website uses the secure certificate of its parent web hosting company, for
example. In this situation, the verify() method of the HostnameVerifier is called
to determine whether the connection should proceed or not. verify() should return
true to allow the connection to proceed, and should return false to cause the connection
to fail. The hostname argument to verify() specifies the hostname that appeared in
the URL. The session argument specifies the SSLSession object that was established
during the handshake. Call getPeerHost() on this object to determine the hostname
reported during server authentication. If no HostnameVerifier is registered with a
HttpsURLConnection object, and no default verifier is registered with the
HttpsURLConnection class, then hostname mismatches will always cause the
connection to fail. In user-driven applications such as web browsers, a
HostnameVerifier can be used to ask the user whether to proceed or not.

public interface HostnameVerifier {
// Public Instance Methods
 boolean verify(String hostname, SSLSession session);
}

Passed To

HttpsURLConnection.{setDefaultHostnameVerifier(),
setHostnameVerifier()}
Returned By

HttpsURLConnection.{getDefaultHostnameVerifier(),
getHostnameVerifier()}

Chapter 18. javax.net and javax.net.ssl Page 7 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Type Of

HttpsURLConnection.hostnameVerifier

HttpsURLConnection javax.net.ssl

Java 1.4

This class is a java.net.URLConnection for a URL that uses the https: protocol. It
extends java.net.HttpURLConnection and, in addition to inheriting the methods of
its superclasses, it defines methods for specifying the SSLSocketFactory and
HostnameVerifier to use when establishing the connection. Static versions of these
methods allow you to specify a default factory and verifier objects for use with all
HttpsURLConnection objects. After the connection has been established, several other
methods exist to obtain information (such as the cipher suite and the server certificates)
about the connection itself.

Obtain a HttpsURLConnection object by calling the openConnection() method of
a URL that uses the https:// protocol specifier, and casting the returned value to this
type. The HttpsURLConnection object is unconnected at this point, and you can call
setHostnameVerifier() and setSSLSocketFactory() to customize the way the
connection is made. (If you do not specify a HostnameVerifier for the instance, or a
default one for the class, then hostname mismatches will always cause the connection to
fail. If you do not specify an SSLSocketFactory for the instance or class, then a default
one will be used.) To connect, call the inherited connect() method, and then call the
inherited getContent() to retrieve the content of the URL as an object, or use the
inherited getInputStream() to obtain a java.io.InputStream with which you can
read the content of the URL.

Figure 18-4. javax.net.ssl.HttpsURLConnection

public abstract class HttpsURLConnection extends java.net.HttpURLConnection {
// Protected Constructors
 protected HttpsURLConnection(java.net.URL url);
// Public Class Methods
 public static HostnameVerifier getDefaultHostnameVerifier();
 public static SSLSocketFactory getDefaultSSLSocketFactory();
 public static void setDefaultHostnameVerifier(HostnameVerifier v);
 public static void setDefaultSSLSocketFactory(SSLSocketFactory sf);
// Public Instance Methods
 public abstract String getCipherSuite();
 public HostnameVerifier getHostnameVerifier();
 public abstract java.security.cert.Certificate[] getLocalCertificates();
5.0 public java.security.Principal getLocalPrincipal();
5.0 public java.security.Principal getPeerPrincipal()
 throws SSLPeerUnverifiedException;

Chapter 18. javax.net and javax.net.ssl Page 8 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 public abstract java.security.cert.Certificate[] getServerCertificates()
 throws SSLPeerUnverifiedException;
 public SSLSocketFactory getSSLSocketFactory();
 public void setHostnameVerifier(HostnameVerifier v);
 public void setSSLSocketFactory(SSLSocketFactory sf);
// Protected Instance Fields
 protected HostnameVerifier hostnameVerifier;
}

KeyManager javax.net.ssl

Java 1.4

This is a marker interface to identify key manager objects. A key manager is responsible
for obtaining and managing authentication credentials (such as a certificate chain and an
associated private key) that the local host can use to authenticate itself to the remote host.
It is usually used on the server-side of an SSL connection, but can be used on the client-
side as well.

Use a KeyManagerFactory to obtain KeyManager objects. KeyManager objects
returned by a KeyManagerFactory can always be cast to a subinterface specific to a
particular type of authentication credentials. See X509KeyManager, for example.

public interface KeyManager {
}

Implementations

X509KeyManager
Passed To

SSLContext.init(), SSLContextSpi.engineInit()
Returned By

KeyManagerFactory.getKeyManagers(),
KeyManagerFactorySpi.engineGetKeyManagers()

KeyManagerFactory javax.net.ssl

Java 1.4

A KeyManagerFactory is responsible for creating KeyManager objects for a specific
key management algorithm. Obtain a KeyManagerFactory object by calling one of the
getInstance() methods and specifying the desired algorithm and, optionally, the
desired provider. In Java 1.4, the "SunX509" algorithm is the only one supported by the

Chapter 18. javax.net and javax.net.ssl Page 9 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

default "SunJSSE" provider. After calling getInstance(), you initialize the factory
object with init(). For the "SunX509" algorithm, you always use the two-argument
version of init() passing in a KeyStore object that contains the private keys and
certificates required by X509KeyManager objects, and also specifying the password used
to protect the private keys in that KeyStore. Once a KeyManagerFactory has been
created and initialized, use it to create a KeyManager by calling getKeyManagers().
This method returns an array of KeyManager objects because some key management
algorithms may handle more than one type of key. The "SunX509" algorithm manages
only X509 keys, and always returns an array with an X509KeyManager object as its single
element. This returned array is typically passed to the init() method of an
SSLContext object.

If a KeyStore and password are not passed to the init() method of the
KeyManagerFactory for the "SunX509" algorithm, then the factory uses attempts to
read a KeyStore from the file specified by the javax.net.ssl.keyStore system
property using the password specified by the javax.net.ssl.keyStorePassword.
The type of the keystore is specified by javax.net.ssl.keyStoreType.

public class KeyManagerFactory {
// Protected Constructors
 protected KeyManagerFactory(KeyManagerFactorySpi factorySpi,
 java.security.Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultAlgorithm();
 public static final KeyManagerFactory getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyManagerFactory getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
 public static final KeyManagerFactory getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final String getAlgorithm();
 public final KeyManager[] getKeyManagers();
 public final java.security.Provider getProvider();
 public final void init(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.KeyStore ks, char[] password)
 throws java.security.KeyStoreException,
 java.security.NoSuchAlgorithmException,
 java.security.UnrecoverableKeyException;
}

KeyManagerFactorySpi javax.net.ssl

Java 1.4

Chapter 18. javax.net and javax.net.ssl Page 10 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This abstract class defines the Service Provider Interface for KeyManagerFactory.
Security providers must implement this interface, but applications never need to use it.

public abstract class KeyManagerFactorySpi {
// Public Constructors
 public KeyManagerFactorySpi();
// Protected Instance Methods
 protected abstract KeyManager[] engineGetKeyManagers();
 protected abstract void engineInit(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 protected abstract void engineInit(java.security.KeyStore ks, char[] password)
throws java.security.KeyStoreException, java.security.NoSuchAlgorithmException,
 java.security.UnrecoverableKeyException;
}

Passed To

KeyManagerFactory.KeyManagerFactory()

KeyStoreBuilderParameters javax.net.ssl

Java 5.0

This class implements the ManagerFactoryParameters interface and encapsulates a
java.util.List of java.security.KeyStore.Builder object for use by an
X509KeyManager. See the init() method of KeyManagerFactory.

Figure 18-5. javax.net.ssl.KeyStoreBuilderParameters

public class KeyStoreBuilderParameters implements ManagerFactoryParameters {
// Public Constructors
 public KeyStoreBuilderParameters(java.util.List parameters);
 public KeyStoreBuilderParameters(java.security.KeyStore.Builder builder);
// Public Instance Methods
 public java.util.List getParameters();
}

ManagerFactoryParameters javax.net.ssl

Java 1.4

This marker interface identifies objects that provide algorithm-specific or provider-
specific initialization parameters for KeyManagerFactory and
TrustManagerFactory objects. In the default "SunJSSE" provider shiped by Sun, the

Chapter 18. javax.net and javax.net.ssl Page 11 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

only supported type for these factory classes is "SunX509". Factories of these types need
to be initialized with a KeyStore object but do not require any specialized
ManagerFactoryParameters object. Therefore, the javax.net.ssl package does
not define any subinterfaces of this interface, and it is never used with the default provider.
Third-party or future providers may use it, however.

public interface ManagerFactoryParameters {
}

Implementations

CertPathTrustManagerParameters, KeyStoreBuilderParameters
Passed To

KeyManagerFactory.init(), KeyManagerFactorySpi.engineInit(),
TrustManagerFactory.init(), TrustManagerFactorySpi.engineInit()

SSLContext javax.net.ssl

Java 1.4

This class is a factory for socket and server socket factories. Although most applications
do not need to use this class directly, it is the central class of the javax.net.ssl package.
Most applications use the default SSLSocketFactory and
SSLServerSocketFactory objects returned by the static getDefault() methods of
those classes. Applications that want to perform SSL networking using a security provider
other than the default provider, or that want to customize key management or trust
management for the SSL connection should use custom socket factories created from a
custom SSLContext. In Java 5.0, this class also includes createSSLEngine() factory
methods for creating SSLEngine objects.

Create an SSLContext by passing the name of the desired secure socket protocol and,
optionally, the desired provider to getInstance(). The default "SunJSSE" provider
supports protocol strings "SSL", "SSLv2", "SSLv3", "TLS", and "TLSv1". Once you have
created an SSLContext object, call its init() method to supply the KeyManager,
TrustManager, and SecureRandom objects it requires. If any of the init() arguments
is null, a default value will be used. Finally, obtain a SSLSocketFactory and
SSLServerSocketFactory by calling getSocketFactory() and
getServerSocketFactory().

public class SSLContext {
// Protected Constructors
 protected SSLContext(SSLContextSpi contextSpi, java.security.Provider provider,
 String protocol);
// Public Class Methods
 public static SSLContext getInstance(String protocol)

Chapter 18. javax.net and javax.net.ssl Page 12 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 throws java.security.NoSuchAlgorithmException;
 public static SSLContext getInstance(String protocol, String provider)
 throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
 public static SSLContext getInstance(String protocol, java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
// Public Instance Methods
5.0 public final SSLEngine createSSLEngine();
5.0 public final SSLEngine createSSLEngine(String peerHost, int peerPort);
 public final SSLSessionContext getClientSessionContext();
 public final String getProtocol();
 public final java.security.Provider getProvider();
 public final SSLSessionContext getServerSessionContext();
 public final SSLServerSocketFactory getServerSocketFactory();
 public final SSLSocketFactory getSocketFactory();
 public final void init(KeyManager[] km, TrustManager[] tm,
 java.security.SecureRandom random)
 throws java.security.KeyManagementException;
}

SSLContextSpi javax.net.ssl

Java 1.4

This abstract class defines the Service Provider Interface for SSLContext. Security
providers must implement this interface, but applications never need to use it.

public abstract class SSLContextSpi {
// Public Constructors
 public SSLContextSpi();
// Protected Instance Methods
5.0 protected abstract SSLEngine engineCreateSSLEngine();
5.0 protected abstract SSLEngine engineCreateSSLEngine(String host, int port);
 protected abstract SSLSessionContext engineGetClientSessionContext();
 protected abstract SSLSessionContext engineGetServerSessionContext();
 protected abstract SSLServerSocketFactory engineGetServerSocketFactory();
 protected abstract SSLSocketFactory engineGetSocketFactory();
 protected abstract void engineInit(KeyManager[] km, TrustManager[] tm,
 java.security.SecureRandom sr)
 throws java.security.KeyManagementException;
}

Passed To

SSLContext.SSLContext()

SSLEngine javax.net.ssl

Java 5.0

This class performs SSL handshaking, encryption and decryption, but does not send or
receive messages over the network. This leaves the network transport mechanism up to

Chapter 18. javax.net and javax.net.ssl Page 13 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the user of this class, and enables SSL communication using the nonblocking I/O
mechanisms of the java.nio package. The price of this flexibility is that your code must
follow a relatively complex protocol to use an SSLEngine correctly.

Create an SSLEngine with SSLContext.createSSLEngine(). Next, configure it
with the various setter methods to specify authentication requirements, encryption
algorithms, etc. After creating and configuring an engine, you use it to encrypt outbound
data from one ByteBuffer to another with wrap() and to decrypt inbound data from
one byte buffer to another with unwrap(). (Note that the wrap() and unwrap()
methods also come in gathering and scattering variants.) Both methods return an
SSLEngineResult.

The initial call or calls to wrap() produce outbound handshaking data without
consuming any of the source bytes in the buffer you provide. Initial calls to unwrap()
may consume inbound handshaking data without producing any result bytes. Monitor the
SSLEngineResult.HandshakeStatus value to ensure that handshaking is proceeding
as needed. When handshaking is complete, you can call getSession() to obtain the
SSLSession object that describes session details negotiated during handshaking.
Remember that either peer of an SSL connection may request a new handshake at any
time; this means that you must monitor the HandshakeStatus after every wrap() or
unwrap() call in case a new handshake has been requested. You can request a new
handshake yourself with beginHandshake().

As part of the handshaking protocol, the SSLEngine typically needs to use the
KeyManager or TrustManager of the originating SSLContext object. Rather than
blocking a wrap() or unwrap() method while these operations are performed, it
instead returns an SSLResult.HandshakeStatus, indicating that a task needs to be
performed. When this happens, you must call getDelegatedTask() repeatedly,
calling the run() methods of the Runnable objects it returns until it returns null to
indicate that all necessary tasks have been completed. (If it returns more than one
Runnable, it is safe to run them in parallel (with a
java.util.concurrent.ExecutorCompletionService, for example). Once all
such tasks have been run, the original call to wrap() or unwrap() should be repeated.

When you are done sending outbound data, call closeOutbound(), and then call
wrap() one or more times to flush any remaining data from the engine. Call wrap()
until the returned SSLEngineResult.Status indicates that the connection has closed.
Similarly, if you are done reading inbound data, call closeInbound() and final calls to
unwrap() until the connection is closed.

Chapter 18. javax.net and javax.net.ssl Page 14 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is safe for one thread to call wrap() while another thread is calling unwrap(). It is
not safe, however, for either method to be called by two threads at once.

public abstract class SSLEngine {
// Protected Constructors
 protected SSLEngine();
 protected SSLEngine(String peerHost, int peerPort);
// Public Instance Methods
 public abstract void beginHandshake() throws SSLException;
 public abstract void closeInbound() throws SSLException;
 public abstract void closeOutbound();
 public abstract Runnable getDelegatedTask();
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract SSLEngineResult.HandshakeStatus getHandshakeStatus();
 public abstract boolean getNeedClientAuth();
 public String getPeerHost();
 public int getPeerPort();
 public abstract SSLSession getSession();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract boolean isInboundDone();
 public abstract boolean isOutboundDone();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
 public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer dst) throws SSLException;
 public SSLEngineResult unwrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer[] dsts) throws SSLException;
 public abstract SSLEngineResult unwrap(java.nio.ByteBuffer src,
 java.nio.ByteBuffer[] dsts, int offset,
 int length) throws SSLException;
 public SSLEngineResult wrap(java.nio.ByteBuffer[] srcs, java.nio.
 ByteBuffer dst) throws SSLException;
 public SSLEngineResult wrap(java.nio.ByteBuffer src, java.nio.
 ByteBuffer dst) throws SSLException;
 public abstract SSLEngineResult wrap(java.nio.ByteBuffer[] srcs,
 int offset, int length,
 java.nio.ByteBuffer dst) throws SSLException;
}

Passed To

X509ExtendedKeyManager.{chooseEngineClientAlias(),
chooseEngineServerAlias()}
Returned By

SSLContext.createSSLEngine(),
SSLContextSpi.engineCreateSSLEngine()

SSLEngineResult javax.net.ssl

Java 5.0

Chapter 18. javax.net and javax.net.ssl Page 15 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An object of this type is returned by the wrap() and unwrap() methods of an
SSLEngine. Use the methods of this object to determine how much data was consumed
and produced and to obtain the Status of the operation and the HandshakeStatus of
the connection. These two nested enumerated types return important values. Correct
operation of an SSLEngine requires that your code respond correctly to the Status and
HandshakeStatus results.

public class SSLEngineResult {
// Public Constructors
 public SSLEngineResult(SSLEngineResult.Status status, SSLEngineResult.
 HandshakeStatus handshakeStatus,
 int bytesConsumed, int bytesProduced);
// Nested Types
 public enum HandshakeStatus;
 public enum Status;
// Public Instance Methods
 public final int bytesConsumed();
 public final int bytesProduced();
 public final SSLEngineResult.HandshakeStatus getHandshakeStatus();
 public final SSLEngineResult.Status getStatus();
// Public Methods Overriding Object
 public String toString();
}

Returned By

SSLEngine.{unwrap(), wrap()}

SSLEngineResult.HandshakeStatus javax.net.ssl

Java 5.0 serializable comparable enum

The constants defined by this enumerated type specify the handshake status of the
SSLEngine and often specify the action your code must take next in order to ensure
correct operation. The values are the following:

public enum SSLEngineResult.HandshakeStatus {
// Enumerated Constants
 NOT_HANDSHAKING,
 FINISHED,
 NEED_TASK,
 NEED_WRAP,
 NEED_UNWRAP;
// Public Class Methods
 public static SSLEngineResult.HandshakeStatus valueOf(String name);
 public static final SSLEngineResult.HandshakeStatus[] values();
}

Passed To

SSLEngineResult.SSLEngineResult()
Returned By

SSLEngine.getHandshakeStatus(),
SSLEngineResult.getHandshakeStatus()

Chapter 18. javax.net and javax.net.ssl Page 16 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SSLEngineResult.Status javax.net.ssl

Java 5.0 serializable comparable enum

The constants of this enumerated type indicate the status of a wrap() or
unwrap() operation:

public enum SSLEngineResult.Status {
// Enumerated Constants
 BUFFER_UNDERFLOW,
 BUFFER_OVERFLOW,
 OK,
 CLOSED;
// Public Class Methods
 public static SSLEngineResult.Status valueOf(String name);
 public static final SSLEngineResult.Status[] values();
}

Passed To

SSLEngineResult.SSLEngineResult()
Returned By

SSLEngineResult.getStatus()

SSLException javax.net.ssl

Java 1.4 serializable checked

Signals an SSL-related problem. This class serves as the common superclass of more
specific SSL exception subclasses.

Figure 18-6. javax.net.ssl.SSLException

public class SSLException extends java.io.IOException {
// Public Constructors
5.0 public SSLException(Throwable cause);
 public SSLException(String reason);
5.0 public SSLException(String message, Throwable cause);
}

Subclasses

SSLHandshakeException, SSLKeyException, SSLPeerUnverifiedException,
SSLProtocolException

Chapter 18. javax.net and javax.net.ssl Page 17 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thrown By

SSLEngine.{beginHandshake(), closeInbound(), unwrap(), wrap()}

SSLHandshakeException javax.net.ssl

Java 1.4 serializable checked

Signals that the SSL handshake failed for some reason other than failed authentication
(see SSLPeerUnverifiedException). For example, it may be thrown because the
client and server count not agree on a mutually-acceptable cipher suite. When this
exception is thrown, the SSLSocket object is no longer usable.

Figure 18-7. javax.net.ssl.SSLHandshakeException

public class SSLHandshakeException extends SSLException {
// Public Constructors
 public SSLHandshakeException(String reason);
}

SSLKeyException javax.net.ssl

Java 1.4 serializable checked

Signals a problem with the public key certificate and private key used by a server (or client)
for authentication.

Figure 18-8. javax.net.ssl.SSLKeyException

public class SSLKeyException extends SSLException {
// Public Constructors
 public SSLKeyException(String reason);
}

Chapter 18. javax.net and javax.net.ssl Page 18 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

SSLPeerUnverifiedException javax.net.ssl

Java 1.4 serializable checked

Signals that authentication of the remote host was not successfully completed.

Figure 18-9. javax.net.ssl.SSLPeerUnverifiedException

public class SSLPeerUnverifiedException extends SSLException {
// Public Constructors
 public SSLPeerUnverifiedException(String reason);
}

Thrown By

java.net.SecureCacheResponse.{getPeerPrincipal(),
getServerCertificateChain()}, HandshakeCompletedEvent.
{getPeerCertificateChain(), getPeerCertificates(),
getPeerPrincipal()}, HttpsURLConnection.{getPeerPrincipal(),
getServerCertificates()}, SSLSession.{getPeerCertificateChain(),
getPeerCertificates(), getPeerPrincipal()}

SSLPermission javax.net.ssl

Java 1.4 serializable permission

This Permission class controls access to sensitive methods in the javax.net.ssl
package. The two defined target names are "setHostnameVerifier" and
"getSSLSessionContext". The first is required in order to call
HttpURLConnection.setHostnameVerifier() and
HttpURLConnection.setDefaultHostnameVerifier(). The second permission
target is required in order to call SSLSession.getSessionContext().

Figure 18-10. javax.net.ssl.SSLPermission

Chapter 18. javax.net and javax.net.ssl Page 19 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

public final class SSLPermission extends java.security.BasicPermission {
// Public Constructors
 public SSLPermission(String name);
 public SSLPermission(String name, String actions);
}

SSLProtocolException javax.net.ssl

Java 1.4 serializable checked

Signals a problem at the SSL protocol level. An exception of this type usually indicates that
there is a bug in the SSL implementation being used locally or on the remote host.

Figure 18-11. javax.net.ssl.SSLProtocolException

public class SSLProtocolException extends SSLException {
// Public Constructors
 public SSLProtocolException(String reason);
}

SSLServerSocket javax.net.ssl

Java 1.4

This class is an SSL-enabled subclass of java.net.ServerSocket that is used to listen
for and accept connections from clients and to create SSLSocket objects for
communicating with those clients. Create an SSLServerSocket and bind it to a local
port by calling one of the inherited getServerSocket() methods of an
SSLServerSocketFactory. Once a SSLServerSocket is created, use it as you would
a regular ServerSocket: call the inherited accept() method to wait for and accept a
connection from a client, returning a Socket object. With SSLServerSocket, the
Socket returned by accept() can always be cast to an instance of SSLSocket.

SSLServerSocket defines methods for setting the enabled protocols and cipher suites,
and for querying the full set of supported protocols and suites. See SSLSocket, which has
methods with the same names, for details. If your server desires or requires authentication

Chapter 18. javax.net and javax.net.ssl Page 20 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

by its clients, call setWantClientAuth() or setNeedClientAuth(). These
methods cause the SSLSocket objects returned by accept() to be configured to request
or require client authentication.

In typical SSL networking scenarios, the client requires the server to provide
authentication information. When you create an SSLServerSocket using the default
SSLServerSocketFactory, the authentication information required is an X.509 public
key certificate and the corresponding private key. The default
SSLServerSocketFactory uses an X509KeyManager to obtain this information. The
default X509KeyManager attempts to read this information from the
java.security.KeyStore file specified by the system property
javax.net.ssl.keyStore. It uses the value of the the
javax.net.ssl.keyStorePassword as the keystore password, and uses the value of
the javax.net.ssl.keyStoreType system property to specify the keystore type. The
key store should only contain valid keys and certificate chains that identify the server; the
X509KeyManager automatically chooses a key and certificat chain that are appropriate
for the client.

Figure 18-12. javax.net.ssl.SSLServerSocket

public abstract class SSLServerSocket extends java.net.ServerSocket {
// Protected Constructors
 protected SSLServerSocket() throws java.io.IOException;
 protected SSLServerSocket(int port) throws java.io.IOException;
 protected SSLServerSocket(int port, int backlog) throws java.io.IOException;
 protected SSLServerSocket(int port, int backlog, java.net.InetAddress address)
 throws java.io.IOException;
// Public Instance Methods
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract boolean getNeedClientAuth();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
}

SSLServerSocketFactory javax.net.ssl

Chapter 18. javax.net and javax.net.ssl Page 21 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Java 1.4

This class is a javax.net.ServerSocketFactory for creating SSLServerSocket
objects. Most applications use the default SSLServerSocketFactory returned by the
static getDefault() method. Once this SSLServerSocketFactory has been
obtained, they use one of the inherited createServerSocket() methods to create and
optionally bind a new SSLServerSocket. The return value of the
createServerSocket() methods is a java.net.ServerSocket object, but you can
safely cast this object to a SSLServerSocket if you need to.

Applications that need to customize the SSL configuration and cannot use the default
server socket factory may obtain a custom SSLServerSocketFactory from an
SSLContext, which is essentially a factory for socket factories. See SSLContext for
details.

Figure 18-13. javax.net.ssl.SSLServerSocketFactory

public abstract class SSLServerSocketFactory extends javax.net.ServerSocketFactory {
// Protected Constructors
 protected SSLServerSocketFactory();
// Public Class Methods
 public static javax.net.ServerSocketFactory getDefault(); synchronized
// Public Instance Methods
 public abstract String[] getDefaultCipherSuites();
 public abstract String[] getSupportedCipherSuites();
}

Returned By

SSLContext.getServerSocketFactory(),
SSLContextSpi.engineGetServerSocketFactory()

SSLSession javax.net.ssl

Java 1.4

A SSLSession object contains information about the SSL connection established through
an SSLSocket. Use the the getSession() method of a SSLSocket to obtain the
SSLSession object for that socket. Many of the SSLSession methods return
information that was obtained during the handshake phase of the connection.
getProtocol() returns the specific version of the SSL or TLS protocol in use.
getCipherSuite() returns the name of the cipher suite negotiated for the connection.

Chapter 18. javax.net and javax.net.ssl Page 22 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

getPeerHost() returns the name of the remote host, and
getPeerCertificates() returns the certificate chain, if any, that was received from
the remote host during authentication. In Java 5.0 and later the peer's identity can also be
queried with getPeerPrincipal()

The invalidate() method ends the session. It does not affect any current connections,
but all future connections and any re-negotiations of existing connections will need to
establish a new SSLSession. isValid() determines whether a session is still valid.

Multiple SSL connections between two hosts may share the same SSLSession as long as
they are using the same protocol version and cipher suite. There is no way to enumerate
the SSLSocket objects that share a session, but these sockets can exchange information
by using putValue() to bind a shared object to some well-known name that can be
looked up by other sockets with getValue() . removeValue() removes such a
binding, and getValueNames() returns an array of all names that have objects bound
to them in this session. Objects bound and unbound with putValue() and
removeValue() may implement SSLSessionBindingListener to be notified when
they are bound and unbound.

Note that the getPeerCertificateChain() method returns an object from the
javax.security.cert package, which is not documented in this book. The method
and package exist only for backward compatibility with earlier versions of the JSSE API,
and should be considered deprecated. Use getPeerCertificates(), which uses
java.security.cert instead.

public interface SSLSession {
// Public Instance Methods
5.0 int getApplicationBufferSize();
 String getCipherSuite();
 long getCreationTime();
 byte[] getId();
 long getLastAccessedTime();
 java.security.cert.Certificate[] getLocalCertificates();
5.0 java.security.Principal getLocalPrincipal();
5.0 int getPacketBufferSize();
 javax.security.cert.X509Certificate[] getPeerCertificateChain()
 throws SSLPeerUnverifiedException;
 java.security.cert.Certificate[] getPeerCertificates()
 throws SSLPeerUnverifiedException;
 String getPeerHost();
5.0 int getPeerPort();
5.0 java.security.Principal getPeerPrincipal() throws SSLPeerUnverifiedException;
 String getProtocol();
 SSLSessionContext getSessionContext();
 Object getValue(String name);
 String[] getValueNames();
 void invalidate();
5.0 boolean isValid();
 void putValue(String name, Object value);
 void removeValue(String name);
}

Chapter 18. javax.net and javax.net.ssl Page 23 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

HandshakeCompletedEvent.HandshakeCompletedEvent(),
HostnameVerifier.verify(),
SSLSessionBindingEvent.SSLSessionBindingEvent()
Returned By

HandshakeCompletedEvent.getSession(), SSLEngine.getSession(),
SSLSessionBindingEvent.getSession(),
SSLSessionContext.getSession(), SSLSocket.getSession()

SSLSessionBindingEvent javax.net.ssl

Java 1.4 serializable event

An object of this type is passed to the valueBound() and valueUnbound() methods
of and object that implements SSLSessionBindingListener when that object is
bound or unbound in a SSLSession with the putValue() or removeValue()
methods of SSLSession. getName() returns the name to which the object was bound
or unbound, and getSession() returns the SSLSession object in which the binding
was created or removed.

Figure 18-14. javax.net.ssl.SSLSessionBindingEvent

public class SSLSessionBindingEvent extends java.util.EventObject {
// Public Constructors
 public SSLSessionBindingEvent(SSLSession session, String name);
// Public Instance Methods
 public String getName();
 public SSLSession getSession();
}

Passed To

SSLSessionBindingListener.{valueBound(), valueUnbound()}

SSLSessionBindingListener javax.net.ssl

Java 1.4 event listener

This interface is implemented by an object that want to be notified when it is bound or
unbound in an SSLSession object. If the object passed to the putValue() method of

Chapter 18. javax.net and javax.net.ssl Page 24 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a SSLSession implements this interface, then its valueBound() method will be called
by putValue(), and its valueUnbound() method will be called when that object is
removed from the SSLSession with removeValue() or when it is replaced with a new
object by putValue(). The argument to both methods of this interface is a
SSLSessionBindingEvent, which specifies both the name to which the object was
bound or unbound, and the SSLSession within which it was bound or unbound.

Figure 18-15. javax.net.ssl.SSLSessionBindingListener

public interface SSLSessionBindingListener extends java.util.EventListener {
// Public Instance Methods
 void valueBound(SSLSessionBindingEvent event);
 void valueUnbound(SSLSessionBindingEvent event);
}

SSLSessionContext javax.net.ssl

Java 1.4

A SSLSessionContext groups and controls SSLSession objects. It is a low-level
interface and is not commonly used in application code. getIds() returns an
Enumeration of session IDs, and getSession() returns the SSLSession object
associated with one of those IDs. setSessionCacheSize() specifies the total number
of concurrent sessions allowed in the group, and setSessionTimeout() specifies the
timeout length for those sessions. An SSLSessionContext can serve as a cache for
SSLSession objects, facilitating reuse of those objects for multiple connections between
the same two hosts.

Providers are not required to support this interface. Those that do return an implementing
object from the getSessionContext() method of an SSLSession object, and also
return implementing objects from the getClientSessionContext() and
getServerSessionContext() methods of an SSLContext object, providing
separate control over client and server SSL connections.

public interface SSLSessionContext {
// Public Instance Methods
 java.util.Enumeration getIds();
 SSLSession getSession(byte[] sessionId);
 int getSessionCacheSize();
 int getSessionTimeout();
 void setSessionCacheSize(int size) throws IllegalArgumentException;
 void setSessionTimeout(int seconds) throws IllegalArgumentException;
}

Chapter 18. javax.net and javax.net.ssl Page 25 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

SSLContext.{getClientSessionContext(),
getServerSessionContext()}, SSLContextSpi.
{engineGetClientSessionContext(),
engineGetServerSessionContext()}, SSLSession.getSessionContext()

SSLSocket javax.net.ssl

Java 1.4

An SSLSocket is a "secure socket" subclass of java.net.Socket that implements the
SSL or TLS protocols, which are commonly used to authenticate a server to a client and to
encrypt the data transferred between the two. Create a SSLSocket for connecting to a
SSL-enabled server by calling one of the createSocket() methods of a
SSLSocketFactory object. See SSLSocketFactory for details. If you are writing
server code, then you will obtain a SSLSocket for communicating with an SSL-enabled
client from the inherited accept() method of an SSLServerSocket. See
SSLServerSocket for details.

SSLSocket inherits all of the standard socket method of its superclass, and can be used
for networking just like an ordinary java.net.Socket object. In addition, however, it
also defines methods that control how the secure connection is established. These methods
may be called before the SSL "handshake" occurs. The handshake does not occur when the
socket is first created and connected, so that you can configure various SSL parameters
that control how the handshake occurs. Calling startHandshake(),
getSession(), or reading or writing data on the socket trigger a handshake, so you
must configure the socket before doing any of these things. If you want to be notified when
the handshake occurs, call addHandshakeCompletedListener() to register a
listener object to receive the notification.

getSupportedProtocols() returns a list of secure socket protocols that are
supported by the socket implementation. setEnabledProtocols() allows you to
specify the name or names of the supported protocols that you are willing to use for this
socket. getSupportedCipherSuite() returns the full set of cipher suites supported
by the underlying security provider. setEnabledCipherSuites() specifies a list of
one or more cipher suites that you are willing to use for the connection. Note that not all
supported cipher suites are enabled by default: only suites that provide encryption and
require the server to authenticate itself to the client are enabled. If you want to allow the

Chapter 18. javax.net and javax.net.ssl Page 26 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

server to remain anonymous, you can use setEnabledCipherSuites() to enable a
nonauthenticating suite. Specific protocols and cipher suites are not described here
because using them correctly requires a detailed understanding of cryptography, which is
beyond the scope of this reference. Most applications can simply rely on the default set of
enabled protocols and cipher suites.

If you are writing a server and have obtained an SSLSocket by accepting a connection on
an SSLServerSocket, then you may call setWantClientAuth() to request that the
client authenticate itself to you, and you may call setNeedClientAuth() to require
that the client authenticate itself during the handshake. Note, however, that it is usually
more efficient to request or require client authentication on the server socket than it is to
call these methods on each SSLSocket it creates.

The configuration methods described above must be called before the SSL handshake
occurs. Call getSession() to obtain an SSLSession object that you can query for for
information about the handshake, such as the protocol and cipher suite in use, and the
identity of the server. Note that a call to getSession() will cause the handshake to
occur if it has not already occurred, so you can call this method at any time.

Figure 18-16. javax.net.ssl.SSLSocket

public abstract class SSLSocket extends java.net.Socket {
// Protected Constructors
 protected SSLSocket();
 protected SSLSocket(String host, int port)
 throws java.io.IOException, java.net.UnknownHostException;
 protected SSLSocket(java.net.InetAddress address, int port)
 throws java.io.IOException;
 protected SSLSocket(String host, int port, java.net.InetAddress clientAddress,
 int clientPort) throws java.io.IOException,
 java.net.UnknownHostException;
 protected SSLSocket(java.net.InetAddress address, int port, java.net.InetAddress clientAddress,
 int clientPort) throws java.io.IOException;
// Event Registration Methods (by event name)
 public abstract void addHandshakeCompletedListener(HandshakeCompletedListener listener);
 public abstract void removeHandshakeCompletedListener(HandshakeCompletedListener listener);
// Public Instance Methods
 public abstract String[] getEnabledCipherSuites();
 public abstract String[] getEnabledProtocols();
 public abstract boolean getEnableSessionCreation();
 public abstract boolean getNeedClientAuth();
 public abstract SSLSession getSession();
 public abstract String[] getSupportedCipherSuites();
 public abstract String[] getSupportedProtocols();
 public abstract boolean getUseClientMode();
 public abstract boolean getWantClientAuth();
 public abstract void setEnabledCipherSuites(String[] suites);
 public abstract void setEnabledProtocols(String[] protocols);
 public abstract void setEnableSessionCreation(boolean flag);
 public abstract void setNeedClientAuth(boolean need);
 public abstract void setUseClientMode(boolean mode);
 public abstract void setWantClientAuth(boolean want);
 public abstract void startHandshake() throws java.io.IOException;
}

Chapter 18. javax.net and javax.net.ssl Page 27 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Passed To

HandshakeCompletedEvent.HandshakeCompletedEvent()
Returned By

HandshakeCompletedEvent.getSocket()

SSLSocketFactory javax.net.ssl

Java 1.4

This class is a javax.net.SocketFactory for creating SSLSocket objects. Most
applications use the default SSLSocketFactory returned by the static
getDefault() method. Once this SSLSocketFactory has been obtained, they use
one of the inherited createSocket() methods to create, and optionally connect and
bind, a new SSLSocket. The return value of the createSocket() methods is a
java.net.Socket object, but you can safely cast this object to a SSLSocket if you need
to. SSLSocketFactory defines one new version of createSocket() in addition to
the ones it inherits from its superclass. This version of the method creates an
SSLSocket that is layered over an existing Socket object rather than creating a new
socket entirely from scratch.

Applications that need to customize the SSL configuration and cannot use the default
socket factory may obtain a custom SSLSocketFactory from an SSLContext, which is
essentially a factory for socket factories. See SSLContext for details.

Figure 18-17. javax.net.ssl.SSLSocketFactory

public abstract class SSLSocketFactory extends javax.net.SocketFactory {
// Public Constructors
 public SSLSocketFactory();
// Public Class Methods
 public static javax.net.SocketFactory getDefault(); synchronized
// Public Instance Methods
 public abstract java.net.Socket createSocket(java.net.Socket s, String host,
 int port, boolean autoClose)
 throws java.io.IOException;
 public abstract String[] getDefaultCipherSuites();
 public abstract String[] getSupportedCipherSuites();
}

Passed To

HttpsURLConnection.{setDefaultSSLSocketFactory(),
setSSLSocketFactory()}

Chapter 18. javax.net and javax.net.ssl Page 28 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Returned By

HttpsURLConnection.{getDefaultSSLSocketFactory(),
getSSLSocketFactory()}, SSLContext.getSocketFactory(),
SSLContextSpi.engineGetSocketFactory()

TrustManager javax.net.ssl

Java 1.4

This is a marker interface to identify trust manager objects. A trust manager is responsible
for examining the authentication credentials (such as a certificate chain) presented by the
remote host and deciding whether to trust those credentials and accept them. A
TrustManager is usually used an SSL client to decide whether the SSL server is authentic,
but may also be used by an SSL server when client authentication is also required.

Use a TrustManagerFactory to obtain TrustManager objects. TrustManager
objects returned by a TrustManagerFactory can always be cast to a subinterface
specific to a specific type of keys. See X509TrustManager, for exmaple.

public interface TrustManager {
}

Implementations

X509TrustManager
Passed To

SSLContext.init(), SSLContextSpi.engineInit()
Returned By

TrustManagerFactory.getTrustManagers(),
TrustManagerFactorySpi.engineGetTrustManagers()

TrustManagerFactory javax.net.ssl

Java 1.4

A TrustManagerFactory is responsible for creating TrustManager objects for a
specific trust management algorithm. Obtain a TrustManagerFactory object by calling
one of the getInstance() methods and specifying the desired algorithm and,
optionally, the desired provider. In Java 1.4, the "SunX509" algorithm is the only one
supported by the default "SunJSSE" provider. After calling getInstance(), you
initialize the factory object with init(). For the "SunX509" algorithm, you pass a

Chapter 18. javax.net and javax.net.ssl Page 29 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

KeyStore object to init(). This KeyStore should contain the public keys of trusted
CAs (certification authorities). Once a TrustManagerFactory has been created and
initialized, use it to create a TrustManager by calling getTrustManagers(). This
method returns an array of TrustManager objects because some trust management
algorithms may handle more than one type of key or certificate. The "SunX509" algorithm
manages only X.509 keys, and always returns an array with an X509TrustManager
object as its single element. This returned array is typically passed to the init() method
of an SSLContext object.

If no KeyStore is passed to the init() method of the TrustManagerFactory for the
"SunX509" algorithm, then the factory uses a KeyStore created from the file named by
the system property javax.net.ssl.trustStore if that property is defined. (It also
uses the key store type and password specified by the properties
javax.net.ssl.trustStoreType and javax.net.ssl.trustStorePassword.)
Otherwise, it uses the file jre/lib/security/jssecacerts in the Java distribution, if it exists.
Otherwise it uses the file jre/lib/security/cacerts which is part of Sun's Java distribution.
Sun ships a default cacerts file that contains certificates for several well-known and
reputable CAs. You can use the keytool program to edit the cacerts keystore (the default
password is "changeit").

public class TrustManagerFactory {
// Protected Constructors
 protected TrustManagerFactory(TrustManagerFactorySpi factorySpi, java.security.
 Provider provider, String algorithm);
// Public Class Methods
 public static final String getDefaultAlgorithm();
 public static final TrustManagerFactory getInstance(String algorithm)
 throws java.security.NoSuchAlgorithmException;
 public static final TrustManagerFactory getInstance(String algorithm,
 java.security.Provider provider)
 throws java.security.NoSuchAlgorithmException;
 public static final TrustManagerFactory getInstance(String algorithm,
 String provider) throws java.security.NoSuchAlgorithmException,
 java.security.NoSuchProviderException;
// Public Instance Methods
 public final String getAlgorithm();
 public final java.security.Provider getProvider();
 public final TrustManager[] getTrustManagers();
 public final void init(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 public final void init(java.security.KeyStore ks)
 throws java.security.KeyStoreException;
}

TrustManagerFactorySpi javax.net.ssl

Java 1.4

Chapter 18. javax.net and javax.net.ssl Page 30 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This abstract class defines the Service Provider Interface for TrustManagerFactory.
Security providers must implement this interface, but applications never need to use it.

public abstract class TrustManagerFactorySpi {
// Public Constructors
 public TrustManagerFactorySpi();
// Protected Instance Methods
 protected abstract TrustManager[] engineGetTrustManagers();
 protected abstract void engineInit(ManagerFactoryParameters spec)
 throws java.security.InvalidAlgorithmParameterException;
 protected abstract void engineInit(java.security.KeyStore ks)
 throws java.security.KeyStoreException;
}

Passed To

TrustManagerFactory.TrustManagerFactory()

X509ExtendedKeyManager javax.net.ssl

Java 5.0

This class implements the X509KeyManager interface and extends it with two methods.

Figure 18-18. javax.net.ssl.X509ExtendedKeyManager

public abstract class X509ExtendedKeyManager implements X509KeyManager {
// Protected Constructors
 protected X509ExtendedKeyManager();
// Public Instance Methods
 public String chooseEngineClientAlias(String[] keyType,
 java.security.Principal[] issuers,
 SSLEngine engine); constant
 public String chooseEngineServerAlias(String keyType,
 java.security.Principal[] issuers,
 SSLEngine engine); constant
}

X509KeyManager javax.net.ssl

Java 1.4

This interface is a KeyManager for working with X.509 certificates. An
X509KeyManager is used during the SSL handshake by a peer that authenticates itself by

Chapter 18. javax.net and javax.net.ssl Page 31 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

providing an X.509 certificate chain to the remote host. This is usually done on the server
side of the SSL connection, and can be done on the client-side as well, although that is
uncommon. Obtain an X509KeyManager object either by implementing your own or from
a KeyManagerFactory created with an algorithm of "SunX509". Applications do not call
the methods of an X509KeyManager themselves. Instead, they simply supply an
appropriate X509KeyManager object to the SSLContext object that is responsible for
setting up SSL connections. When the system needs to authenticate itself during an SSL
handshake, it calls various methods of the key manager object to obtain the information
in needs.

An X509KeyManager retrieves keys and certificae chains from the KeyStore object that
was passed to the init() method of the KeyManagerFactory object from which it
was created. getPrivateKey() and getCertificateChain() return the private
key and the certificate chain for a specified alias. The other methods are called to list all
aliases in the keystore or to choose one alias from the keystore that matches the specified
keytype and certificate authority criteria. In this way, a X509KeyManager can choose a
certificate chain (and it corresponding key) based on the types of keys and the list of
certificate authorities recognized by the remote host.

Figure 18-19. javax.net.ssl.X509KeyManager

public interface X509KeyManager extends KeyManager {
// Public Instance Methods
 String chooseClientAlias(String[] keyType, java.security.Principal[] issuers,
 java.net.Socket socket);
 String chooseServerAlias(String keyType, java.security.Principal[] issuers,
 java.net.Socket socket);
 java.security.cert.X509Certificate[] getCertificateChain(String alias);
 String[] getClientAliases(String keyType, java.security.Principal[] issuers);
 java.security.PrivateKey getPrivateKey(String alias);
 String[] getServerAliases(String keyType, java.security.Principal[] issuers);
}

Implementations

X509ExtendedKeyManager

X509TrustManager javax.net.ssl

Java 1.4

This interface is a TrustManager for working with X.509 certificates. Trust managers
are used during the handshake phase of SSL connection to determine whether the
authentication credentials presented by the remote host are trusted. This is usually done

Chapter 18. javax.net and javax.net.ssl Page 32 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

on the client-side of an SSL connection, but may also be done on the server side. Obtain
an X509TrustManager either by implementing your own or from a
TrustManagerFactory that was created to use the "SunX509" algorithm. Applications
do call the methods of this interface themselves; instead, they simply provide an
appropriate X509TrustManager object to the SSLContext object that is responsible for
setting up SSL connections. When the system needs to determine whether the
authentication credentials presented by the remote host are trusted, it calls the methods
of the trust manager.

Figure 18-20. javax.net.ssl.X509TrustManager

public interface X509TrustManager extends TrustManager {
// Public Instance Methods
 void checkClientTrusted(java.security.cert.X509Certificate[] chain,
 String authType) throws java.security.cert.CertificateException;
 void checkServerTrusted(java.security.cert.X509Certificate[] chain,
 String authType) throws java.security.cert.CertificateException;
 java.security.cert.X509Certificate[] getAcceptedIssuers();
}

Chapter 18. javax.net and javax.net.ssl Page 33 Return to Table of Contents

Chapter 18. javax.net and javax.net.ssl
Java in a Nutshell, 5th Edition By David Flanagan ISBN: 0596007736 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2005/03/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	javax.net and javax.net.ssl
	Package javax.net
	ServerSocketFactory
	SocketFactory
	Package javax.net.ssl
	CertPathTrustManagerParameters
	HandshakeCompletedEvent
	HandshakeCompletedListener
	HostnameVerifier
	HttpsURLConnection
	KeyManager
	KeyManagerFactory
	KeyManagerFactorySpi
	KeyStoreBuilderParameters
	ManagerFactoryParameters
	SSLContext
	SSLContextSpi
	SSLEngine
	SSLEngineResult
	SSLEngineResult.HandshakeStatus
	SSLEngineResult.Status
	SSLException
	SSLHandshakeException
	SSLKeyException
	SSLPeerUnverifiedException
	SSLPermission
	SSLProtocolException
	SSLServerSocket
	SSLServerSocketFactory
	SSLSession
	SSLSessionBindingEvent
	SSLSessionBindingListener
	SSLSessionContext
	SSLSocket
	SSLSocketFactory
	TrustManager
	TrustManagerFactory
	TrustManagerFactorySpi
	X509ExtendedKeyManager
	X509KeyManager
	X509TrustManager

