
Table of Contents

Chapter 1. Productivity Hacks.. 1
Hack 1. Add CPAN Shortcuts to Firefox.. 1
Hack 2. Put Perldoc to Work.. 3
Hack 3. Browse Perl Docs Online.. 6
Hack 4. Make the Most of Shell Aliases... 8
Hack 5. Autocomplete Perl Identifiers in Vim... 11
Hack 6. Use the Best Emacs Mode for Perl... 14
Hack 7. Enforce Local Style... 16
Hack 8. Don't Save Bad Perl.. 19
Hack 9. Automate Checkin Code Reviews.. 22
Hack 10. Run Tests from Within Vim... 24
Hack 11. Run Perl from Emacs.. 26

Chapter 1. Productivity Hacks

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Chapter 1. Productivity Hacks
820
Hacks 1-11
1249985

Everyone wants to be more productive. That's probably why you use Perl: to get more work done in less time with less work.
1249985

Productivity isn't all about saving time, though. Saving effort is even more important, whether you mean finding the information you want,
automating away repeated tasks, or finding ways not to have to think about things that you do all the time. In some ways, this is the notion of
relentless automation—finding every little niggling task that always interrupts your current project by being so annoying, difficult,
cumbersome, or different and then hiding it behind an alias, a shell script, a process, or whatever.
1249985

Here are a few ideas for ways to make your programming life easier and more productive. Try them, enjoy your new sense of free time, and
let yourself notice the new points of friction in your life. Then solve them, too!
1249985

Hack 1. Add CPAN Shortcuts to Firefox
621961

1249985

Keep module documentation and distributions mere keystrokes away.
1249985

If Perl has only one advantage over other programming languages, it's the number of modules on the CPAN (http://www.cpan.org/) that solve
so many problems effectively. That brings up a smaller problem, though—choosing an appropriate module for the job.
1249985

http://search.cpan.org/ helps, but if you visit the site many times a day, the steps to start a search through the web interface can become annoying.
Fortunately, the Mozilla family of web browsers, including Mozilla Firefox, let you set up shortcuts that make browsing much easier. These
shortcuts are just bookmarked URLs with substitutable sections and keywords, but they're very powerful and useful—almost command-line
aliases ("Make the Most of Shell Aliases" [Hack #4]) for your browser.
1249985

Here are three of the most useful.
1249985

Search for a Module
628024

The first technique is to find the module you want. Normally, you could visit the CPAN search site, type the appropriate words in the box,
submit the form, and browse through the results. That's too much work though!
1249985

Open the bookmark menu in your browser; this is Bookmarks→Manage Bookmarks in Mozilla Firefox. Create a new bookmark. For name,
put Search CPAN and for Keyword enter cpan. In the Location box, type:
1249985

http://search.cpan.org/search?mode=module;query=%s

Chapter 1. Productivity Hacks Page 1 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Copyright Safari Books Online #628024

http://www.cpan.org/
http://search.cpan.org/

Figure 1-1 shows the completed dialog box. Press OK, then go back to the browser. Clear the location bar, then type cpanAcme and hit Enter.
This will take you immediately to the first page of search results for modules with Acme in their names.
1249985

Figure 1-1. Creating a new keyword bookmark search

Read Module Documentation
628024

If you know exactly the name of the module you want, it's more convenient to jump straight to information about that module. Create a new
bookmark named Show Module Documentation, with the keyword of cpod and the location:
1249985

http://search.cpan.org/perldoc/%s

Press OK, then type cpod Test::Builder and press Enter. You'll see the latest version of the Test::Builder documentation.
1249985

This doesn't seem to work for POD-only modules, such as Test::Tutorial. Also, beware that the case
must match exactly.
1249985

Find Module Comments
628024

Sometimes it's more valuable to find advice from other people about a module, especially when you may have uncovered a bug or something
inexplicable in the documentation. The AnnoCPAN project (http://www.annocpan.org/) is a public site that allows users to annotate the
documentation of any CPAN module. This is a good way to share your hard-won knowledge about a module with the world.

Chapter 1. Productivity Hacks Page 2 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.annocpan.org/

1249985

Create a new bookmark yet again, with a name of AnnoCPAN Module Documentation and a keyword of apod. Set the location to:
1249985

http://www.annocpan.org/?mode=search;field=Module;latest=1;name=%s

Save the bookmark, then type apod GraphViz in the browser's location bar and press Enter. Scroll down a few pages and you should see
notes on various paragraphs of the documentation.
1249985

Hacking the Hack
628024

The keyword search feature of Firefox turns your browser's address bar into a command line. It's simple to write your own CGI script or
mod_perl handler to add a new command to the browser—all it has to do is take a query string and return information. You could easily write
code to implement a single command that aggregates different documentation sources (for example, you can search JavaScript and HTML
and Perl documentation with a single query).
1249985

The URL of the bookmark can be a javascript: URL that runs code in the browser. In essence you're creating a bookmarklet that you
trigger on the command line. You could use JavaScript to open the search results in a new window or tab or search for the currently selected
text.
1249985

Hack 2. Put Perldoc to Work
621961

1249985

Do more than just read the documentation.
1249985

Perl has a huge amount of documentation available through the perldoc utility—and not just from the command line. These docs cover
everything from the core language and tutorials through the standard library and any additional modules you install or even write.
perldoc can do more, though.
1249985

Here are a few switches and options to increase your productivity.
1249985

Find Operator Documentation
628024

The perlfunc document lists every built-in operator in the language in alphabetical order. If you need to know the order of arguments to
substr(), you could type perldoc perlfunc, and then search for the correct occurrence of substr.
1249985

Chapter 1. Productivity Hacks Page 3 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

In a decent pager, such as less on a Unix-like system, use the forward slash (/) to begin a search. Type the
rest of the name and hit Enter to begin searching. Press n to find the next occurrence and N to find the previous
one.
1249985

Why search yourself, though? perldoc's -f switch searches perlfunc for you, presenting only the documentation for the named operator.
Type instead:
1249985

$ perldoc -f substr

The program will launch your favorite pager, showing only the documentation for substr. Handy.
1249985

Answer a FAQ
628024

The Perl FAQ is a very useful piece of the core documentation, with a table of contents in perlfaq and nine other documents
(perlfaq1 through perlfaq9) full of frequently asked questions and their answers.
1249985

Searching every document for your question, however, is more tedious than searching perlfunc. (Do skim perlfaq once in a while to
see what questions there are, though.) Fortunately, the -q switch allows you to specify a search pattern for FAQ keywords.
1249985

If you remember that somewhere the FAQ explains how to shuffle an array, but you can't remember where, try:
1249985

$ perldoc -q shuffle

As with the -f switch, this will launch your favorite pager to view every question with the term shuffle in the title.
1249985

-q also handles regular expressions, so if you want to search for every mention of Perl 6, with or without that blessed space, try:
1249985

$ perldoc -q "Perl ?6"

The quotes prevent the shell from interpreting the space as an argument separator.
1249985

Webify It
628024

Maybe the command line isn't your thing. Maybe you work in a group of programmers who won't leave their comfortable IDEs long enough
to type a few commands—and who certainly won't read documentation from anywhere but the IDE or a web page.

Chapter 1. Productivity Hacks Page 4 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

1249985

That's okay. perldoc can produce HTML (or any other type of output for which you have a POD translator installed), too. Use the -o switch
with your preferred output format. To turn perltoc into HTML, use the command:
1249985

$ perldoc -oHTML -dperltoc.html perltoc

The -d switch specifies the destination filename.
1249985

Valid HTML formatters include any of Pod::Perldoc::HTML, Pod::Simple::HTML, and Pod::HTML. If you have another formatter
of the appropriate name installed, you can use it.
1249985

If you have multiple potential formatters for a type installed, use -Mfull_module_name instead of -o to
disambiguate.
1249985

Find that Module!
628024

Maybe you already know how to find, slice, and dice the documentation. Have you ever run a program that picked up the wrong version of
a module? Sure, you can modify the program to print %INC and @INC and crawl through the output to see what went wrong—but
perldoc has to be able to figure out where the module lives to show its documentation. Exploit it!
1249985

The -l switch tells perldoc to find the named module (or document) and print its location instead of formatting and displaying the text.
Here's where Test::Tutorial and perlunintro live on my system:
1249985

$ perldoc -l Test::Tutorial
/usr/lib/perl5/vendor_perl/5.8.7/Test/Tutorial.pod

$ perldoc -l perluniintro
/usr/lib/perl5/5.8.7/pod/perluniintro.pod

If you have multiple versions of Perl installed, be sure you use the correct version of perldoc; it uses the
@INC path in its own version of Perl.
1249985

This can be much faster than doing a locate or find and grep from the command line.
1249985

Chapter 1. Productivity Hacks Page 5 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Browse the Code
628024

perldoc -l is pretty useful, especially if you want to know where a module is, so that you can look inside it. One more switch makes that
even more useful, however. The -m option shows the plain, unrendered text of the named module or document in your favorite pager.
1249985

If you suspect that the author of Test::MockObject has hidden some useful methods from you,[1] browse the source of the module with:
1249985

[1] He hasn't.

$ perldoc -m Test::MockObject

You can't edit the text of the module from here, but being able to read it—or being able to read the raw POD of a module with POD errors
that cause its formatting to fail—can be very helpful.
1249985

Likewise, the -u option shows only the unformatted POD source, without the code.
1249985

Hack 3. Browse Perl Docs Online
621961

1249985

Host your own HTML documentation.
1249985

perldoc is a fine way to view the documentation for Perl and all your installed modules and to output them in the file format of your choice
("Put Perldoc to Work" [Hack #2]). perldoc's little brother, podwebserver, is an even handier way to browse documentation—and
bookmark it, and search it, and sometimes even hardcopy it, all through whatever web browser you're using this week.
1249985

The Hack
628024

podwebserver provides basically perldoc-as-HTML over HTTP. Sure, you could always just browse the documentation at http://
search.cpan.org/—but using podwebserver means that you'll be seeing the documentation for exactly your system's Perl version and module
versions.
1249985

podwebserver's HTML is compatible with fancy browsers as well as with more lightweight tools such as lynx, elinks, or even the
w3m browser in Emacs. In fact, there have been persistent rumors of some users adventurously accessing podwebserver via cell phones,
or even using something called "the Micro-Soft Internet Explorer." O'Reilly Media, Inc. can neither confirm nor deny these rumors.
1249985

If podwebserver isn't on your system, install the Pod::Webserver module from CPAN.
1249985

Chapter 1. Productivity Hacks Page 6 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://search.cpan.org/
http://search.cpan.org/

Running the Hack
628024

To run podwebserver, just start it from the command line. You don't need root access:
1249985

$ podwebserver

Then start a web browser and browse to http://localhost:8020/. You'll see the index of the installed documentation (Figure 1-2).
1249985

Figure 1-2. An index of your Perl documentation

If you don't want to bind the web server to localhost, or if you have something already running on port 8020, use the -H and -p arguments
to change the host and port.
1249985

$ podwebserver -H windwheel -p 8080

Hacking the Hack
628024

Running a program and switching to your web browser to view a bookmark is too much work when you just want to check some documentation.
Make your life easier with a little shell script ("Make the Most of Shell Aliases" [Hack #4]):
1249985

Chapter 1. Productivity Hacks Page 7 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://localhost:8020/

#!/bin/sh

podwebserver &
sleep 2
firefox -remote 'openurl(http://localhost:8020/, new-tab)'

Save the program as ~/bin/podweb, make it executable (chmod +x ~/bin/podweb), make sure ~/bin/podweb is in your $PATH, then run
it:
1249985

$ podweb

If you have Mozilla Firefox open, this will pop up the index page in a new tab. Other web browsers have similar invocation schemes.
1249985

Hack 4. Make the Most of Shell Aliases
621961

1249985

Make programming easier by programming your shell.
1249985

Perl is a language for people who type. It grew up from the shell to write all kinds of programs, but it still rewards people who don't mind
launching programs from the command line.
1249985

If you spend your time writing Perl from the command line (whether you write short scripts or full-blown programs), spending a few minutes
automating common tasks can save you lots of development time—and even more trouble.
1249985

Configuring Your Shell
628024

The single most useful shell trick is the realias command. Normally creating a persistent alias means adding something to your .bashrc
(or equivalent) file, starting a new shell, testing it, and then repeating the process until you get it right. Wouldn't it be nice to be able to edit
and test a new alias in a single process?
1249985

Edit your .bashrc file and add a single line:
1249985

source ~/.aliases

Then create the file ~/.aliases, containing:
1249985

alias realias='$EDITOR ~/.aliases; source ~/.aliases'

Chapter 1. Productivity Hacks Page 8 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

If you prefer tcsh, edit your .cshrc file. Then replace the = sign with a single space in all of the alias
declarations.
1249985

Launch a new shell. Type the command realias and your favorite editor (assuming you have the EDITOR environment variable set, and
if you don't something is weird) will open with your ~/.aliases file. Add a line and save and quit:
1249985

alias reperl='perl -de0'

Now type reperl [2] at the command line:
1249985

[2] A pronounceable version of REPL—Read, Evaluate, Print, and Loop.

$ reperl

Loading DB routines from perl5db.pl version 1.28
Editor support available.

Enter h or 'h h' for help, or 'man perldebug' for more help.

main::(-e:1): 0
 DB<1> q

Within a single shell session you've identified a useful command that may be difficult to remember, automated it, and have started to use it
productively. Nifty.
1249985

Useful Shell Aliases
628024

What makes a good shell alias for Perl programming? Obviously a command that's difficult to remember, such as the one to put the Perl
debugger into pseudo-interactive mode. Another good approach is to alias commands that are lengthy or otherwise difficult to type. One final
category is a series of chained commands you find yourself typing often.
1249985

Here are a few examples. Change the paths as necessary, of course, but have fun removing a little more of the tedium from your life every
time you notice yourself repeating something you could automate away. That's the Perl way.
1249985

Juggle multiple Perl versions
621961

Suppose you're in the midst of upgrading Perl versions while you still have to maintain an older installation. You might have multiple versions
of Perl installed. Instead of typing different paths all the time and instead of relying on tab completion to differentiate between
perl5.8.8 and perl5.6.2 and so on, make the names different at the start:
1249985

alias newperl='/usr/local/bin/perl5.8.8'
alias oldperl='/usr/local/bin/perl5.6.2'

Chapter 1. Productivity Hacks Page 9 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

This is especially handy if you have a system Perl installed and don't want to break things by overwriting it.
1249985

Juggle multiple module versions
621961

Suppose that you also must test your code against multiple versions of a module or library. For example, you need to know if your code works
against version 4.x and 5.x of a database. Alias away the different library paths:
1249985

alias newdbperl='perl -M/home/dev/newlib/'
alias olddbperl='perl -M/home/dev/oldlib/'

Don't forget multipart commands
621961

If you're a rigorous tester, you've likely encountered Devel::Cover. Though it's easy to use, it takes multiple steps to write a new report.
Alias that away!
1249985

alias testcover='cover -delete; ./Build testcover; cover'

Remember configuration options
621961

Suppose that you decide to test the Pugs project (http://www.pugscode.org/) and want to embed both Perl 5 and Parrot. Because Pugs undergoes
such rapid development, you might have to run its Makefile.PL several times a week. Why make yourself remember how to configure it with
the correct options every time? Alias it!
1249985

alias makepugs='PARROT_PATH="/home/chromatic/dev/parrot" \\
 PUGS_EMBED="perl 5 parrot" \\
 perl Makefile.PL && make'

Find a module's version
621961

Sometimes you really need to know the version of a module—especially when you're tracking down a bug across multiple machines or
pondering an upgrade. Typing out:
1249985

$ perl -MCGI::Application -le 'print CGI::Application->VERSION'
4.03

every time is too much work. Stick a function instead in your .bashrc:
1249985

function pmver () { perl -M$1 -le "print $1->VERSION"; }

You can also add more error checking and turn it into an alias:
1249985

Chapter 1. Productivity Hacks Page 10 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.pugscode.org/

alias pmver="perl -le '\\$m = shift; eval qq(require \\$m)
 or die qq(module \\"\\$m\\" is not installed\\\\n); print \\$m->VERSION'"

Either way, run it as pmver:
1249985

$ pmver CGI::Application
4.03

Change Unix paths to Windows paths and back
621961

These aliases work on Windows under Cygwin too. Even though it's still Windows on one side and Unix on the other, there's no reason you
can't make it work correctly. Here's an alias that translates a Unix path to a Windows path and executes the Windows version of gvim on the
file:
1249985

alias gvim='perl -we "exec q{/cygdrive/c/Progra~1/Vim/vim63/gvim.exe},
 map { s/^(.*)$/(-f \\$1)?qx{cygpath -aw \\"\\$1\\"}:\\$1/e; chomp; \\$_; }
 (@ARGV); "'

Launching general Windows programs from bash requires a similar hack:
1249985

alias winrun='exec 'cmd', "/c", ((split '/',$0)[-1], map {
 s/^(.*)$/(-f $1)?qx{cygpath -w "$1"}:$1/e;chomp;$_; } (@ARGV));'

Now you can launch non-Cygwin programs with arguments.
1249985

Hack 5. Autocomplete Perl Identifiers in Vim
621961

1249985

Why type a full identifier if your editor can do it for you?
1249985

Good variable and function names are a great boon to productivity and maintainability, but brevity and clarity are often at odds. Instead of
wearing out your keys, fingertips, and memory, consider making your text editor do the typing for you.
1249985

The Hack
628024

If you use Vim, you have access to a handy autocompletion mechanism. In insert mode, type one or more letters of an identifier, then hit
CTRL-N. The editor will complete your identifier using the first identifier in the same file that starts with the same letter(s). Hitting CTRL-N
again gives you the second matching identifier, and so on.
1249985

This can be a real timesaver if you use long variable or subroutine names. As long as you've already typed an identifier once in a file, you can
autocomplete it ever after, just by typing the first few letters and then CTRL-Ning to the right name:
1249985

Chapter 1. Productivity Hacks Page 11 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

sub find_the_factorial_of
{
 my ($the_number_whose_factorial_I_want) = @_;

 return 1 if $the_n<CTRL-N> <= 1;

 return $the_n<CTRL-N> * find<CTRL-N>($the_n<CTRL-N> - 1);
}

Unfortunately, Vim's idea of an identifier (in Vim-speak, a "keyword") isn't as broad as Perl's. Specifically, the editor doesn't recognize the
colon character as a valid part of an identifier, which is annoying if you happen to like multipart class names, or qualified package variables.
1249985

However, it's easy to teach Vim that those intervening double-colons are valid parts of the identifiers. Add them to the editor's list of keyword
characters by adding the line to your .vimrc file:
1249985

set iskeyword+=:

Then the following works too:
1249985

use Sub::Normal;

my $sub = Sub<CTRL-N>->new(); # Expands to: Sub::Normal->new()

Finding Identifiers Automatically
628024

Of course, you still have to type the full name of Sub::Normal once, as part of the initial use statement. That really isn't as Lazy as it could
be. It would be much better if Vim just magically knew about all the Perl modules you have installed and could cleverly autocomplete their
names from the very first time you used them.
1249985

As it happens, that's easy to arrange as well. You just need a file that lists every module you have installed. Then tell Vim (in .vimrc again) to
use all the identifiers in that file as a second source of keyword completions:
1249985

set complete+=k~/.vim_extras/file_that_lists_every_installed_Perl_module

The complete+=k tells Vim you're adding to the existing sources of completions for keywords. The path name that follows specifies the
file containing the additional completions.
1249985

All you need is a simple Perl script to generate that file for you:
1249985

use File::Find 'find';

Where to create this list...
my $LIST_DIR = "$ENV{HOME}/.vim_extras/"
my $LIST_FILE = "file_that_lists_every_installed_Perl_module";

Make sure the directory is available...
unless (-e $LIST_DIR)
{
 mkdir $LIST_DIR
 or die "Couldn't create directory $LIST_DIR ($!)\\n";
}

Chapter 1. Productivity Hacks Page 12 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

(Re)create the file...
open my $fh, '>', "$LIST_DIR$LIST_FILE"
 or die "Couldn't create file '$LIST_FILE' ($!)\\n";

Only report each module once (the first time it's seen)...
my %already_seen;

Walk through the module include directories, finding .pm files...
for my $incl_dir (@INC)
{
 find
 {
 wanted => sub
 {
 my $file = $_;

 # They have to end in .pm...
 return unless $file =~ /\\.pm\\z/;

 # Convert the path name to a module name...
 $file =~ s{^\\Q$incl_dir/\\E}{ };
 $file =~ s{/}{::}g;
 $file =~ s{\\.pm\\z}{ };

 # Handle standard subdirectories (like site_perl/ or 5.8.6/)...
 $file =~ s{^.*\\b[a-z_0-9]+::}{ };
 $file =~ s{^\\d+\\.\\d+\\.\\d+::(?:[a-z_][a-z_0-9]*::)?}{ };
 return if $file =~ m{^::};

 # Print the module's name (once)...
 print {$fh} $file, "\\n" unless $already_seen{$file}++;
 },
 no_chdir => 1,
 }, $incl_dir;
}

Of course, you don't have to call the file . vim_extras/file_that_lists_every_installed_Perl_module. Just change the $LIST_DIR and
$LIST_FILE variables to something saner.
1249985

Hacking the Hack
628024

It's a natural next step to automate the generation of this file via cron. Beyond that, though, consider using Vim auto-commands to update
the module list when you load and save files. To get information on auto-commands, type :help autocmd-intro within Vim. You could
also check in and check out these module lists from a central repository to ensure that your editor knows about the class your coworker just
added.
1249985

For a final coup-de-grace, consider extracting variable and subroutine names from the files as well. This will let you complete method names
and exported variables. You could do this with regular expressions as heuristics, or through modules such as Parse::Perl.
1249985

Chapter 1. Productivity Hacks Page 13 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Emacs users take heart. You can usually find equivalents by searching the web for taskname cperl-mode. Here's an autocompletion
minor mode to add to your ~/.emacs file:
1249985

(defadvice cperl-indent-command
 (around cperl-indent-or-complete)
 "Changes \\\\[cperl-indent-command] so it autocompletes when at the end of a word."
 (if (looking-at "\\>")
 (dabbrev-expand nil)
 ad-do-it))
 (eval-after-load "cperl-mode"
 '(progn (require 'dabbrev) (ad-activate 'cperl-indent-command)))

Hack 6. Use the Best Emacs Mode for Perl
621961

1249985

Configure Emacs for easy Perl coding.
1249985

While perl-mode is the classic Perl-editing mode that Emacs uses for Perl files by default, most Perl programmers prefer the newer cperl-
mode. (The "c" in the name is because its early versions borrowed code from c-mode. It's not actually written in C, nor meant for C.) Enabling
it is easy.
1249985

The Hack
628024

cperl-mode is probably already included in your version of Emacs, but you can get an up-to-date version from http://math.berkeley.edu/~ilya/
software/emacs/. Save it to an Emacs library directory. Then enable it for .pl and .pm files by adding nine lines to your ~/.emacs file:
1249985

(load-library "cperl-mode")
 (add-to-list 'auto-mode-alist '("\\\\.[Pp][LlMm][Cc]?$" . cperl-mode))
 (while (let ((orig (rassoc 'perl-mode auto-mode-alist)))
 (if orig (setcdr orig 'cperl-mode))))
 (while (let ((orig (rassoc 'perl-mode interpreter-mode-alist)))
 (if orig (setcdr orig 'cperl-mode))))
 (dolist (interpreter '("perl" "perl5" "miniperl" "pugs"))
 (unless (assoc interpreter interpreter-mode-alist)
 (add-to-list 'interpreter-mode-alist (cons interpreter 'cperl-mode))))

What can you do with it?
1249985

Chapter 1. Productivity Hacks Page 14 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://math.berkeley.edu/~ilya/software/emacs/
http://math.berkeley.edu/~ilya/software/emacs/

Put Perldoc at your fingertips
621961

cperl-mode provides a handy function for calling perldoc, but does not associate it with any key by default. To put it at your fingertips, add
one line to your .emacs file:
1249985

(global-set-key "\\M-p" 'cperl-perldoc) ; alt-p

If you want to use Pod::Webserver [Hack #3], use one of the various in-Emacs web browsers:
1249985

(global-set-key "\\M-p" '(lambda () (interactive)
 (require 'w3m)
 (w3m-goto-url "http://localhost:8020/")
))

If you prefer your normal web browser, just set some particular key to start it up on the Pod::Webserver page:
1249985

(global-set-key "\\M-p"
 '(lambda () (interactive) (start-process "" nil
 "firefox" "http://localhost:8020/"
 ; Or however you launch your favorite browser, like:
 ; "gnome-terminal" "-e" "lynx http://localhost:8020/"
 ; "xterm" "-e" "elinks http://localhost:8020/"
)))

Use a special mode just for Pod
621961

One problem with both cperl-mode and perl-mode is that they both treat Pod the same: they just ignore it. To get better syntax highlighting
for Pod, switch to the pod-mode. It probably isn't part of your Emacs distribution, so you download the latest version from http://www.cpan.org/
authors/id/S/SC/SCHWIGON/pod-mode/.
1249985

Once installed, enable it in your .emacs file with:
1249985

(require 'pod-mode)
(add-to-list 'auto-mode-alist
 '("\\\\.pod$" . pod-mode))

; You might appreciate turning on these
; features by default for Pod:

(add-hook 'pod-mode-hook '(lambda () (progn
 (font-lock-mode) ; =syntax highlighting
 (auto-fill-mode 1) ; =wordwrap
 (flyspell-mode 1) ; =spellchecking

)))

Chapter 1. Productivity Hacks Page 15 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.cpan.org/authors/id/S/SC/SCHWIGON/pod-mode/
http://www.cpan.org/authors/id/S/SC/SCHWIGON/pod-mode/

Hack 7. Enforce Local Style
621961

1249985

Keep your code clean without editing it by hand.
1249985

One of the first barriers to understanding code written by others is that their formatting style may not match yours. This is especially true if
you find yourself maintaining code that, at best, has grown with little direction over the years. Whether you work with other developers and
want to maintain a consistent set of coding guidelines, or you want to find some structure in a big ball of mud, perltidy can help untangle
and bring consistency to even the scariest code.
1249985

The Hack
628024

Install the CPAN module Perl::Tidy. This will also install the perltidy utility. Now you can use it!
1249985

From the command line
621961

Run perltidy on a Perl program or module and it will write out a tidied version of that file with a .tdy suffix. For example, given
poorly_written_script.pl, perltidy will, if possible, reformat the code and write the new version to poorly_written_script.pl.tdy. You can
then run tests against the new code to verify that it performs just as did the previous version (even if it is much easier to read).
1249985

This command reformats the contents of some_ugly_code.pl so that it's no longer, well, ugly. How effective is it? The Perltidy docs offer an
example. Before:
1249985

$_= <<'EOL';
 $url = URI::URL->new("http://www/"); die if $url eq "xXx";
EOL
LOOP:{print(" digits"),redo LOOP if/\\G\\d+\\b[,.;]?\\s*/gc;print(" lowercase"),
redo LOOP if/\\G[a-z]+\\b[,.;]?\\s*/gc;print(" UPPERCASE"),redo LOOP
if/\\G[A-Z]+\\b[,.;]?\\s*/gc;print(" Capitalized"),
redo LOOP if/\\G[A-Z][a-z]+\\b[,.;]?\\s*/gc;
print(" MiXeD"),redo LOOP if/\\G[A-Za-z]+\\b[,.;]?\\s*/gc;print(
" alphanumeric"),redo LOOP if/\\G[A-Za-z0-9]+\\b[,.;]?\\s*/gc;print(" line-noise"
),redo LOOP if/\\G[^A-Za-z0-9]+/gc;print". That's all!\\n";}

After:
1249985

$_ = <<'EOL';
 $url = URI::URL->new("http://www/"); die if $url eq "xXx";
EOL
LOOP: {
 print(" digits"), redo LOOP if /\\G\\d+\\b[,.;]?\\s*/gc;
 print(" lowercase"), redo LOOP if /\\G[a-z]+\\b[,.;]?\\s*/gc;
 print(" UPPERCASE"), redo LOOP if /\\G[A-Z]+\\b[,.;]?\\s*/gc;
 print(" Capitalized"), redo LOOP if /\\G[A-Z][a-z]+\\b[,.;]?\\s*/gc;
 print(" MiXeD"), redo LOOP if /\\G[A-Za-z]+\\b[,.;]?\\s*/gc;

Chapter 1. Productivity Hacks Page 16 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 print(" alphanumeric"), redo LOOP if /\\G[A-Za-z0-9]+\\b[,.;]?\\s*/gc;
 print(" line-noise"), redo LOOP if /\\G[^A-Za-z0-9]+/gc;
 print ". That's all!\\n";
}

Big difference!
1249985

Perltidy is of course great for enforcing a particular coding style as you work, but it's also a lifesaver when the task of maintaining someone
else's spaghetti code suddenly falls on you.
1249985

The default is good for the paranoid. For the adventurous, use the -b flag, which modifies the files in place and writes the originals to backup
files. For example running perltidy -b scary_script.pl will produce a tidied scary_script.pl, if possible, and a
scary_script.pl.bak.
1249985

This operation is not idempotent—perltidy will overwrite an existing backup file of the same name, if it
exists.
1249985

The default formatting options may be inappropriate for your use. Perl::Tidy looks for a .perltidyrc file, first in your current directory,
next in your home directory, and then in system-wide directories. The contents of this file are simple; they're the same command line switches
that perltidy uses. For example, the author's preferred .perltidyrc file contains:
1249985

-ci=4 # indent 4 spaces when breaking a long line
-et=4 # replace 4 leading spaces with a tab
-bl # place opening braces on newlines

See man perltidy for a complete list of formatting options.
1249985

Within Vim
621961

The perltidy program is also useful from within text editors that can call external programs. This makes it possible to tidy code within an
editor, without saving and opening external files—it's great for figuring out what poorly indented code does. From Vim, run it on the entirety
of the current buffer with the ex command %! perltidy. It also makes a great Vim map—add to your .vimrc file something like:
1249985

map ,pt <Esc>:%! perltidy<CR>
map ,ptv <Esc>:'<,'>! perltidy<CR>

Then in edit mode, type ,pt and perltidy will reformat the contents of the current buffer. Select a region and ,ptv will format its contents.
1249985

If you have a coding style that differs from the default values, add the command-line options to the maps.
1249985

Chapter 1. Productivity Hacks Page 17 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Within Emacs
621961

If you use Emacs to edit your Perl code, you can be virtuously lazy when it comes to reformatting your code. Just drop a bit of code into your
~/.emacs file and restart Emacs:
1249985

(defmacro mark-active ()
 "Xemacs/emacs compatibility macro"
 (if (boundp 'mark-active)
 'mark-active
 '(mark)))
(defun perltidy ()
 "Run perltidy on the current region or buffer."
 (interactive)
 ; Inexplicably, save-excursion doesn't work here.
 (let ((orig-point (point)))
 (unless (mark-active) (mark-defun))
 (shell-command-on-region (point) (mark) "perltidy -q" nil t)
 (goto-char orig-point)))
(global-set-key "\\C-ct" 'perltidy)

Then the next time you open up a file full of spaghetti Perl, just hit C-c t and watch as the "paragraph" of nearby code magically becomes
legible! Better yet, if you want to reformat the entire file, hit M-x mark-whole-buffer and then C-c t.
1249985

To make Emacs tidy your code automatically when you save it, add this snippet of code:
1249985

(defvar perltidy-mode nil
 "Automatically 'perltidy' when saving.")
 (make-variable-buffer-local 'perltidy-mode)
 (defun perltidy-write-hook ()
 "Perltidys a buffer during 'write-file-hooks' for 'perltidy-mode'"
 (if perltidy-mode
 (save-excursion
 (widen)
 (mark-whole-buffer)
 (not (perltidy)))
 nil))
 (defun perltidy-mode (&optional arg)
 "Perltidy minor mode."
 (interactive "P")
 (setq perltidy-mode
 (if (null arg)
 (not perltidy-mode)
 (> (prefix-numeric-value arg) 0)))
 (make-local-hook 'write-file-hooks)
 (if perltidy-mode
 (add-hook 'write-file-hooks 'perltidy-write-hook)
 (remove-hook 'write-file-hooks 'perltidy-write-hook)))
 (if (not (assq 'perltidy-mode minor-mode-alist))
 (setq minor-mode-alist
 (cons '(perltidy-mode " Perltidy")
 minor-mode-alist)))
 (eval-after-load "cperl-mode"
 '(add-hook 'cperl-mode-hook 'perltidy-mode))

Run M-x perltidy-mode to disable or re-enable the automatic code tidying.
1249985

Chapter 1. Productivity Hacks Page 18 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Hack 8. Don't Save Bad Perl
621961

1249985

Don't even write out your file if the Perl isn't valid!
1249985

Perl tests tend to start by checking that your code compiles. Even if the tests don't check, you'll know it pretty quickly as all your code collapses
in a string of compiler errors. Then you have to fire up your editor again and track down the problem. It's simple, though, to tell Vim that if
your Perl code won't compile, it shouldn't even write it to disk.
1249985

Even better, you can load Perl's error messages back into Vim to jump right to the problem spots.
1249985

The Hack
628024

Vim supports filetype plug-ins that alter its behavior based on the type of file being edited. Enable these by adding a line to your .vimrc:
1249985

filetype plugin on

Now you can put files in ~/.vim/ftplugin (My Documents_vimfiles\\ftplugin on Windows) and Vim will load them when it needs them. Perl
plug-ins start with perl_, so save the following file as perl_synwrite.vim:
1249985

" perl_synwrite.vim: check syntax of Perl before writing
" latest version at: http://www.vim.org/scripts/script.php?script_id=896

"" abort if b:did_perl_synwrite is true: already loaded or user pref
if exists("b:did_perl_synwrite")
 finish
endif
let b:did_perl_synwrite = 1

"" set buffer :au pref: if defined globally, inherit; otherwise, false
if (exists("perl_synwrite_au") && !exists("b:perl_synwrite_au"))
 let b:perl_synwrite_au = perl_synwrite_au
elseif !exists("b:perl_synwrite_au")
 let b:perl_synwrite_au = 0
endif

"" set buffer quickfix pref: if defined globally, inherit; otherwise, false
if (exists("perl_synwrite_qf") && !exists("b:perl_synwrite_qf"))
 let b:perl_synwrite_qf = perl_synwrite_qf
elseif !exists("b:perl_synwrite_qf")
 let b:perl_synwrite_qf = 0
endif

"" execute the given do_command if the buffer is syntactically correct perl
"" -- or if do_anyway is true
function! s:PerlSynDo(do_anyway,do_command)
 let command = "!perl -c"

 if (b:perl_synwrite_qf)

Chapter 1. Productivity Hacks Page 19 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 " this env var tells Vi::QuickFix to replace "-" with actual filename
 let $VI_QUICKFIX_SOURCEFILE=expand("%")
 let command = command . " -MVi::QuickFix"
 endif

 " respect taint checking
 if (match(getline(1), "^#!.\\\\+perl.\\\\+-T") = = 0)
 let command = command . " -T"
 endif

 exec "write" command

 silent! cgetfile " try to read the error file
 if !v:shell_error || a:do_anyway
 exec a:do_command
 set nomod
 endif
endfunction

"" set up the autocommand, if b:perl_synwrite_au is true
if (b:perl_synwrite_au > 0)
 let b:undo_ftplugin = "au! perl_synwrite * " . expand("%")

 augroup perl_synwrite
 exec "au BufWriteCmd,FileWriteCmd " . expand("%") .
 " call s:PerlSynDo(0,\\"write <afile>\\")"
 augroup END
endif

"" the :Write command
command -buffer -nargs=* -complete=file -range=% -bang Write call \\
 s:PerlSynDo("<bang>"= ="!","<line1>,<line2>write<bang> <args>")

Running the Hack
628024

When you edit a Perl file, use :W instead of :w to write the file. If the file fails to compile with perl -c, Vim will refuse to write the file to
disk. You can always fall back to :w, or use :W! to check, but write out the file even if it has bad syntax.
1249985

Hacking the Hack
628024

The plug-in has two configurable options that you can set in your .vimrc. The first is perl_synwrite_au, which hooks the :W command's
logic onto an autocommand that fires when you use :w. This will let you use :w for any sort of file, but still enjoy the syntax error catching
of the plug-in. It's a little twitchy, though, when you start passing arguments to :w, so you're probably best off just using :W.
1249985

The second is perl_synwrite_qf, which lets the plug-in use the Vi::QuickFix module to parse perl's errors into a format that Vim
can use to jump to problems. With this option set, perl will write errors to error.err, which Vim will read when you use its QuickFix
commands. :help quickfix lists all of the commands, but the two most useful are :cf to jump to the first syntax error and :copen to
open a new window listing all your errors. In that new window, you can move to the error that interests you, hit Enter, and jump to the error
in your buffer.
1249985

Vi::QuickFix relies on tying the standard error stream, which isn't possible in Perl 5.6, so if you use perl_synwrite.vim in more than one
development environment, you might want to set the perl_synwrite_qf option dynamically:

Chapter 1. Productivity Hacks Page 20 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

1249985

silent call system("perl -e0 -MVi::QuickFix")
let perl_synwrite_qf = ! v:shell_error

In other words, if Perl can't use the Vi::QuickFix module, don't try using it for the plug-in.
1249985

By default, Vim thinks that *.t files are Tads, or maybe Nroff, files. It's easy to fix; create a file in ~/.vim/
ftdetect containing:
1249985

au BufRead,BufNewFile *.t
 set ft=perl

Now when you edit 00-load.t, Vim will know it's Perl and not your latest interactive fiction masterpiece.
1249985

Emacs users, you can use a minor mode to run a Perl syntax check before saving the file. Whenever perl -c fails, Emacs will not save your
file. To save files anyway, toggle the mode off with M-x perl-syntax-mode. See "Enforce Local Style" [Hack #7] for a related tip on
automatically tidying your code when saving.
1249985

(defvar perl-syntax-bin "perl"
 "The perl binary used to check syntax.")
 (defun perl-syntax-check-only ()
 "Returns a either nil or t depending on whether \\
 the current buffer passes perl's syntax check."
 (interactive)
 (let ((buf (get-buffer-create "*Perl syntax check*")))
 (let ((syntax-ok (= 0 (save-excursion
 (widen)
 (call-process-region
 (point-min) (point-max) perl-syntax-bin nil buf nil "-c")))))
 (if syntax-ok (kill-buffer buf)
 (display-buffer buf))
 syntax-ok)))
 (defvar perl-syntax-mode nil
 "Check perl syntax before saving.")
 (make-variable-buffer-local 'perl-syntax-mode)
 (defun perl-syntax-write-hook ()
 "Check perl syntax during 'write-file-hooks' for 'perl-syntax-mode'"
 (if perl-syntax-mode
 (save-excursion
 (widen)
 (mark-whole-buffer)
 (not (perl-syntax-check-only)))
 nil))
 (defun perl-syntax-mode (&optional arg)
 "Perl syntax checking minor mode."
 (interactive "P")
 (setq perl-syntax-mode
 (if (null arg)
 (not perl-syntax-mode)
 (> (prefix-numeric-value arg) 0)))
 (make-local-hook 'write-file-hooks)
 (if perl-syntax-mode
 (add-hook 'write-file-hooks 'perl-syntax-write-hook)

Chapter 1. Productivity Hacks Page 21 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 (remove-hook 'write-file-hooks 'perl-syntax-write-hook)))
 (if (not (assq 'perl-syntax-mode minor-mode-alist))
 (setq minor-mode-alist
 (cons '(perl-syntax-mode " Perl Syntax")
 minor-mode-alist)))
 (eval-after-load "cperl-mode"
 '(add-hook 'cperl-mode-hook 'perl-syntax-mode))

Hack 9. Automate Checkin Code Reviews
621961

1249985

Let Perl::Tidy be your first code review—on every Subversion checkin!
1249985

In a multideveloper project, relying on developers to follow the coding standards without fail and to run perltidy against all of their code
("Enforce Local Style" [Hack #7]) before every checkin is unrealistic, especially because this is tedious work. Fortunately, this is an automatable
process. If you use Subversion (or Svk), it's easy to write a hook that checks code for tidiness, however you define it.
1249985

The Hack
628024

For various reasons, it's not possible to manipulate the committed files with a pre-commit hook in Subversion.
That's why this is a hack.
1249985

Within your Subversion repository, copy the hooks/post-commit.tmpl file to hooks/post-commit—unless you already have the file. Remove
all code that runs other commands (again, unless you're already using it). Add a single line:
1249985

perl /usr/local/bin/check_tidy_file.pl "$REPOS" "$REV"

Adjust the file path appropriately. Make the hooks/post-commit file executable with chmod +x on Unix.
1249985

Finally, save the check_tidy_file.pl program to the path you used in the file. The program is:
1249985

#!/usr/bin/perl

use strict;
use warnings;

use Perl::Tidy;

use File::Temp;
use File::Spec::Functions;

Chapter 1. Productivity Hacks Page 22 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

my $svnlook = '/usr/bin/svnlook';
my $diff = '/usr/bin/diff -u';

eat the arguments so as not to confuse Perl::Tidy
my ($repo, $rev) = @ARGV;
@ARGV = ();

my @diffs;

for my $changed_file (get_changed_perl_files($repo, $rev))
{
 my $source = get_revision($repo, $rev, $changed_file);
 Perl::Tidy::perltidy(source => \\$source, destination => \\(my $dest));
 push @diffs, get_diff($changed_file, $source, $dest);
}

report_diffs(@diffs);

sub get_changed_perl_files
{
 my ($repo, $rev) = @_;

 my @files;

 for my $change (\Q$svnlook changed $repo -r $rev\Q)
 {
 my ($status, $file) = split(/\\s+/, $change);
 next unless $file =~ /\\.p[lm]\\z/;
 push @files, $file;
 }

 return @files;
}

sub get_revision
{
 my ($repo, $rev, $file) = @_;
 return scalar \Q$svnlook cat $repo -r $rev $file\Q;
}

sub get_diff
{
 my $filename = shift;
 return if $_[0] eq $_[1];

 my $dir = File::Temp::tempdir();
 my @files = map { catdir($dir, $filename . $_) } qw(.orig .tidy);

 for my $file (@files)
 {
 open(my $out, '>', $file) or die "Couldn't write $file: $!\\n";
 print $out shift;
 close $out;
 }

 return scalar \Q$diff @files\Q;
}

sub report_diffs
{

Chapter 1. Productivity Hacks Page 23 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 for my $diff (@_)
 {
 warn "Error:\\n$diff\\n";
 }
}

When Subversion finishes committing a checkin to the repository, it calls the hooks/post-commit script, which itself launches other programs,
passing the repository path and the number of the just-committed revision. This program uses the svnlook command to find the modified
files, skipping everything that's not a Perl program or module (files ending in .pl or .pm).
1249985

For each of these files, it grabs the entire contents from the just-completed revision and runs it through Perl::Tidy (the actual engine of
the perltidy utility). If the resulting file is the same as the revision, everything is fine. Otherwise, it runs a diff utility to see the changes
necessary to make the file tidy. From there, report_diffs() receives a list of these differences.
1249985

Hacking the Hack
628024

As it is now, the program is only useful when run directly with the path to the repository and a revision number. It could instead write the
differences to a file, automatically check in the revised versions in a new checkin, or e-mail the diffs to a list of programmers.
1249985

To use a .perltidyrc file with the tidier program, add the perltidy => $rcfile_path arguments to the perltidy() call, where
$rcfile_path contains the path to the .perltidyrc file to use.
1249985

Hack 10. Run Tests from Within Vim
621961

1249985

Run your tests from your editor.
1249985

One of the nice things about Perl is the "tweak, run, tweak, run" development cycle. There's no separate compile phase to slow you down.
However, you likely find yourself frequently writing tests and madly switching back and forth between the tests and the code. When you run
the tests, you may exit the editor or type something like !perl -Ilib/ t/test_program.t in vi's command mode. This breaks the
"tweak, run" rhythm.
1249985

The Hack
628024

Perl programmers don't like to slow things down. Instead, consider binding keys in your editor to the chicken-bone voodoo you use to run
your test suite.
1249985

Chapter 1. Productivity Hacks Page 24 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Binding keys
621961

By running the tests from within the editor, you no longer have to remember how to execute the tests or edit the editor. Just tweak and run.
Add the following line to your .vimrc file to run the currently edited test file by typing ,t (comma, tee):
1249985

map ,t <Esc>:!prove -vl %<CR>

This technique uses the prove program to run your tests. prove is a handy little program distributed with and designed to run your tests
through Test::Harness. The switches are v (vee), which tells prove to run in "verbose" mode and show all of the test output, and l (ell),
which tells prove to add lib/ to @INC.
1249985

If lib/ is not where you typically do your development, use the I switch to add a different path to @INC.
1249985

map ,t <Esc>:!prove -Iwork/ -v %<CR>

Seeing failures
621961

If it's a long test and you get a few failures, it can be difficult to see where the failures were. If that's the case, use ,T (comma capital tee) to
pipe the results through your favorite pager.
1249985

map ,T <Esc>:!prove -lv % \\| less<CR>

Of course, make sure your editor does not have those keys already mapped to something else. This hack does
not recommend breaking existing mappings in your editor.
1249985

Managing paths
621961

These techniques do tend to require that you edit your tests in the "standard" way. If you have your tests organized in subdirectories, switching
to the t/customer/ directory and editing save.t may cause problems when trying to tell prove which directories to use. If you habitually do
this, don't tell prove which paths to add to @INC.
1249985

map ,t <Esc>:!prove -v %<CR>

Instead, have your tests add paths to @INC:
1249985

use lib '../../lib';

That can get a bit clumsy and it can make it rather tough to reorganize your tests, but it works.
1249985

Chapter 1. Productivity Hacks Page 25 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Here's a little alisp for Emacs users to put into your ~/.emacs file to get the same thing. It binds to C-c t, but
you can change to whatever you prefer:
1249985

(eval-after-load "cperl-mode"
 '(add-hook 'cperl-mode-hook
 (lambda () (local-set-key "\\C-ct" 'cperl-prove))))
 (defun cperl-prove ()
 "Run the current test."
 (interactive)
 (shell-command (concat "prove -v "
 (shell-quote-argument (buffer-file-name)))))

Hack 11. Run Perl from Emacs
621961

1249985

Make Perl and Elisp play nicely together.
1249985

Emacs's long and varied history happens to embody much of Perl's "There's More Than One Way To Do It" approach to things. This is
especially evident when you run a small bit of Perl code from within Emacs. Here's how to do just that.
1249985

The Hack
628024

Suppose you really need to know the higher bits of the current value of time(). In Perl, that's print time() 8>>;. You could use the
shell-command command (normally on Control-Alt-One), and enter:
1249985

perl -e 'print time() >> 8;'

Emacs will dutifully run that command line and then show the output. Note though that you have to remember to quote and/or backslash-
escape the Perl expression according to the rules of your default shell. This quickly becomes maddening if the expression itself contains quotes
and/or backslashes or even is several lines long.
1249985

An alternative is to start an "Emacs shell" in an Emacs subwindow, then start the Perl debugger in that shell. That is, type alt-x "
shell " Enter, and then perl -de1 Enter, and then enter the expression just as if you were running the debugger in a normal terminal
window:
1249985

% perl -de1

Loading DB routines from perl5db.pl version 1.27
Editor support available.

Chapter 1. Productivity Hacks Page 26 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Enter h or \Qh h' for help, or \Qman perldebug' for more help.

main::(-e:1): 1
 DB<1> p time() >> 8
4448317
 DB<2>

This means you don't have to escape the Perl expression as you would if you were sending it through a command line, but it does require you
to know at least a bit about the Perl debugger and the Emacs shell. It also becomes troublesome in its own way when your expression is several
lines long.
1249985

A simpler alternative is to save your snippet to a file named delme123.pl and to run that via a command line, but this is a very effective way
to fill every directory in reach with files named with the same variant of delme.
1249985

I prefer defining a new function just for running Perl code in the Region (what you have selected in Emacs, between the Point and the Mark):
1249985

(defun perl-eval (beg end)
 "Run selected region as Perl code"
 (interactive "r")
 (shell-command-on-region beg end "perl")
 ; feeds the region to perl on STDIN
)

I bind it to my CTRL-Alt-p key:
1249985

(global-set-key "\\M-\\C-p" 'perl-eval)

Then when I want to run some Perl expression in whatever buffer I happen to be in, I just set the mark, type the expression, and hit CTRL-
Alt-p. It requires no special escaping, nor are there any problems when the Perl code spans several lines.
1249985

Chapter 1. Productivity Hacks Page 27 Return to Table of Contents

Chapter 1. Productivity Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

