
Table of Contents

Chapter 2. User Interaction... 1
Hack 12. Use $EDITOR As Your UI.. 1
Hack 13. Interact Correctly on the Command Line.. 2
Hack 14. Simplify Your Terminal Interactions.. 5
Hack 15. Alert Your Mac.. 9
Hack 16. Interactive Graphical Apps.. 12
Hack 17. Collect Configuration Information... 17
Hack 18. Rewrite the Web... 20

Chapter 2. User Interaction

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Chapter 2. User Interaction
818
Hacks 12-18
1249985

Without users, there'd be few reasons to write programs. Without users—and this includes you—there'd be few bugs reported for weird error
messages, strange behaviors, and classic "What were you thinking and why did it do that?" moments.
1249985

Your programs don't have to be that way. You can make your users happy, make your code work where it has to work, and even make pretty
graphics with Perl, all by mastering a few tricks and tips. When your program has to interact with a real person somewhere, do it with style.
People may not notice when your code just stays out of their way, but you'll know by their happy glows of productivity.
1249985

Hack 12. Use $EDITOR As Your UI
621961

1249985

Nothing beats your favorite editor for editing text.
1249985

If you live on the command line and have a reputation for turning your favorite beverage[1] into code, you're likely pretty handy on the keyboard.
If you're a relentless automator, you probably have dozens of little programs and aliases to make your life easier.
1249985

[1] Your author recommends peppermint tea.

Sometimes they need arguments. Yet beyond a certain point, prompting for arguments every time or inventing more and more command-line
options just doesn't work anymore. Before you resign yourself to the fate of writing a little GUI or a web frontend, consider using a more
comfortable user interface instead—your preferred text editor.
1249985

The Hack
628024

Suppose you have a series of little programs for updating your web site. Your workflow is to create a small YAML file with a new posting,
then run that data through a template, update the index, and copy those pages to your server. Instead of copying a blank YAML file (or trying
to recreate the necessary fields and formatting by hand), just launch an editor.
1249985

For example, a simple news site might have entries that need only a title, the date of posting, and a multiline block of text to run through some
formatter. Easy:
1249985

use YAML 'DumpFile';
use POSIX 'strftime';

local $YAML::UseBlock = 1;

exit 1 unless -d 'posts';

Chapter 2. User Interaction Page 1 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Copyright Safari Books Online #628024

my @posts = <posts/*.yaml>;
my $file = 'posts/' . (@posts + 1) . '.yaml';

my $fields =
{
 title => '',
 date => strftime('%d %B %Y', localtime()),
 text => "\\n\\n",
};

DumpFile($file, $fields);

system($ENV{EDITOR}, $file) = = 0
 or die "Error launching $ENV{EDITOR}: $!\\n";

Assuming you have the EDITOR environment variable set to your preferred editor, this program creates a new blank post in the posts/
subdirectory with the appropriate id (monotonically increasing, of course), then drops you in your editor to edit the YAML file. It has already
populated the date field with the current date in the proper format. Additionally, setting $YAML::UseBlock to a true value makes YAML
treat the multiline text string as a YAML heredoc, making it much easier to edit.
1249985

Running the Hack
628024

From the proper directory, just run the program. It will launch a new editor on the file. When you've finished editing, save and quit, and the
program will continue.
1249985

This may work very differently on non-Unix systems.
1249985

Hacking the Hack
628024

You don't have to give up on error checking even without a formal GUI. If you can't read in the YAML file or don't have all of the right fields
filled in, you can rewrite the file with as much or as little information as you like, prompting the user to try again. You can even add comments
or special fields to the file explaining the error.
1249985

To read in the file, just call LoadFile with the filename—then continue as normal, as if the user hadn't had to create the file.
1249985

Hack 13. Interact Correctly on the Command Line
621961

1249985

Chapter 2. User Interaction Page 2 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Be kind to other programs.
1249985

Command-line programs that expect input from the keyboard are easy, right? Certainly they're easier than writing good GUI applications,
right? Not necessarily. The Unix command line is flexible and powerful, but that flexibility can break naively written programs.
1249985

Prompting for interactive input in Perl typically looks like:
1249985

print "> ";
while (my $next_cmd = <>)
{
 chomp $next_cmd;
 process($next_cmd);
 print "> ";
}

If your program needs to handle noninteractive situations as well, things get a whole lot more complicated. The usual solution is something
like:
1249985

print "> " if -t *ARGV && -t select;
while (my $next_cmd = <>)
{
 chomp $next_cmd;
 process($next_cmd);
 print "> " if -t *ARGV && -t select;
}

The -t test checks whether its filehandle argument is connected to a terminal. To handle interactive cases correctly, you need to check both
that you're reading from a terminal (-t *ARGV) and that you're writing to one (-t select). It's a common mistake to mess those tests up,
and write instead:
1249985

print "> " if -t *STDIN && -t *STDOUT;

The problem is that the <> operator doesn't read from STDIN; it reads from ARGV. If there are filenames specified on the command line, those
two filehandles aren't the same. Likewise, although print usually writes to STDOUT, it won't if you've explicitly select-ed some other
destination. You need to call select with no arguments to get the filehandle which each print will currently target.
1249985

Worse, still, even the correct version:
1249985

print "> " if -t *ARGV && -t select;

doesn't always work correctly. That's because the ARGV filehandle is magically self-opening, but only magically self-opens during the first
read operation on it. If you haven't already done at least one <> before you start prompting for input, then the ARGV handle won't be open yet,
so the first -t *ARGV test (the one before the while loop) won't be true, and the first prompt won't print.
1249985

To accurately test if an application is running interactively in all possible circumstances, you need an elaborate nightmare:
1249985

use Scalar::Util qw(openhandle);

sub is_interactive
{
 # Not interactive if output is not to terminal...
 return 0 if not -t select;

 # If *ARGV is opened, we're interactive if...

Chapter 2. User Interaction Page 3 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 if (openhandle *ARGV)
 {
 # ...it's currently opened to the magic '-' file
 # and the standard input is interactive...
 return -t *STDIN if defined $ARGV && $ARGV eq '-';

 # ...or it's at end-of-file and the next file
 # is the magic '-' file...
 return @ARGV>0 && $ARGV[0] eq '-' && -t *STDIN if eof *ARGV;

 # ...or it's directly attached to the terminal
 return -t *ARGV;
 }

 # If *ARGV isn't opened, it will be interactive if *STDIN is
 # attached to a terminal and either there are no files specified
 # on the command line or if there are files and the first is the
 # magic '-' file...
 else
 {
 return -t *STDIN && (@ARGV= =0 || $ARGV[0] eq '-');
 }
}

The Hack
628024

Of course, no one wants to reinvent that for each project, so there's a CPAN module that does it for you:
1249985

use IO::Interactive qw(is_interactive);

print "> " if is_interactive;
while (my $next_cmd = <>)
{
 chomp $next_cmd;
 process($next_cmd);
 print "> " if is_interactive;
}

The Hack
628024

The module has a second interface that's even Lazier. Instead of an explicit interactivity test, it can provide you with a writable filehandle that
implicitly tests for interactivity:
1249985

use IO::Interactive qw(interactive);

print {interactive} "> ";
while (my $next_cmd = <>)
{
 chomp $next_cmd;
 process($next_cmd);
 print {interactive} "> ";
}

Chapter 2. User Interaction Page 4 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Hack 14. Simplify Your Terminal Interactions
621961

1249985

Read data from users correctly, effectively, and without thinking about it.
1249985

Even when you know the right way to handle interactive I/O [Hack #13], the resulting code can still be frustratingly messy:
1249985

my $offset;
print "Enter an offset: " if is_interactive;
GET_OFFSET:
while (<>)
{
 chomp;
 if (m/\\A [+-] \\d+ \\z/x)
 {
 $offset = $_;
 last GET_OFFSET;
 }
 print "Enter an offset (please enter an integer): "
 if is_interactive;
}

You can achieve exactly the same effect (and much more) with the prompt() subroutine provided by the IO::Prompt CPAN module.
Instead of all the above infrastructure code, just write:
1249985

use IO::Prompt;

my $offset = prompt("Enter an offset: ", -integer);

prompt() prints the string you give it, reads a line from standard input, chomps it, and then tests the input value against any constraint you
specify (for example, -integer). If the constraint is not satisfied, the prompt repeats, along with a clarification of what was wrong. When
the user finally enters an acceptable value, prompt() returns it.
1249985

Most importantly, prompt() is smart enough not to bother writing out any prompts if the application isn't running interactively, so you
don't have to code explicitly for that case.
1249985

Infrastructure code is code that doesn't actually contribute to solving your problem, but merely exists to hold
your program together. Typically this kind of code implements standard low-level tasks that probably ought to
have built-ins dedicated to them. Many modules in the standard library and on CPAN exist solely to provide
cleaner alternatives to continually rewriting your own infrastructure code. Discovering and using them can
significantly decrease both the size and cruftiness of your code.
1249985

Chapter 2. User Interaction Page 5 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Train -req
628024

prompt() has a general mechanism for telling it what kind of input you need and how to ask for that input. For example:
1249985

my $hex_num = prompt("Enter a hex number> ",
 -req => { "A *hex* number please!> " => qr/^[0-9A-F]+$/i }
);

print "That's ", hex($hex_num), " in base 10\\n";

When this code executes, you will see something like:
1249985

Enter a hex number> 2B|!2B
A *hex* number please!> C3P0
A *hex* number please!> 124C1
That's 74945 in base 10

The -req argument takes a hash reference, in which each value is something to test the input against, and each key is a secondary prompt to
print when the test fails. The tests can be regexes (which the input must match) or subroutines (which receive the input as $_ and should return
true if that input satisfies the constraint). For example:
1249985

my $factor = prompt("Enter a prime: ",
 -req => { "Try again: " => sub { is_prime($_) } }
);

Yea or Nay
628024

One particularly useful constraint that prompt() supports is a mode that accepts only the letters y or n as input:
1249985

if (prompt -YESNO, "Quit? ")
{
 save_changes($changes)
 if $changes && prompt -yes, "Save changes? ";
 print "Changes: $changes\\n";
 exit;
}

The first call to prompt() requires the user to type a word beginning with Y or N. It will ignore anything else and return the prompt with
an explanation. If the input is Y, the call will return true; if N, it will return false. On the other hand, the second call (with the -yes argument)
actually accepts any input. If that string starts with a y or Y, prompt() returns true; for any other input, it returns false. For example:
1249985

Quit? q
Quit? (Please enter 'Y' or 'N') Y
Save changes? n
Changes: not saved

These different combinations of -YES/-yes/-no/-NO allow for varying degrees of punctiliousness in obtaining the user's consent. In
particular, using -YESNO forces users to hit Shift and one of only two possible keys, which often provides enough of a pause to prevent
unthinking responses that they'll deeply regret about 0.1 seconds after hitting Enter.
1249985

Chapter 2. User Interaction Page 6 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

At the Touch of a Button
628024

On the other hand, sometimes it's immensely annoying to have to press Enter at all. Sometimes you want to hit a single key and just let the
application get on with things. Thus prompt() provides a single character mode:
1249985

for my $file (@matching_files)
{
 next unless prompt -one_char, -yes, "Copy $file? ";
 copy($file, "$backup_dir/$file");
}

With -one_char in effect, the first typed character completes the entire input operation. In this case, prompt() returns true only if that
character was y or Y.
1249985

Of course, single character mode can accept more than just y and n. For example, the following call allows the user to select a drive instantly,
simply by typing its single character name (in upper- or lowercase):
1249985

my $drive = uc prompt "Select a drive: ",
 -one_char,
 -req => { "Please select A-F: " => qr/[A-F]/i };

Engage Cloaking Device
628024

You can tell prompt() not to echo input (good for passwords):
1249985

my $passwd = prompt("First password: ", -echo=>"");

or to echo something different in place of what you actually type (also good for passwords):
1249985

my $passwd = prompt("Second password: ", -echo=>"*");

This allows you to produce interfaces like:
1249985

First password:
Second password: ********

What's On the Menu?
628024

Often you can't rely on users to type in the right responses; it's easier to list them and ask the user to choose. This is menu-driven interaction,
and prompt() supports various forms of it. The simplest is just to give the subroutine a list of possible responses in an array:
1249985

Chapter 2. User Interaction Page 7 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

my $device = prompt 'Activate which device?',
 -menu =>
 [
 'Sharks with "laser" beams',
 'Disinhibiter gas grenades',
 'Death ray',
 'Mirror ball',
];

print "Activating $device in 10:00 and counting...\\n";

This produces the request:
1249985

Activate which device?
 a. Sharks with "laser" beams
 b. Disinhibiter gas grenades
 c. Death ray
 d. Mirror ball
> q
(Please enter a-d) > d
Activating Mirror ball in 10:00 and counting...

The menu call to prompt only accepts characters in the range displayed, and returns the value corresponding to the character entered.
1249985

You can also pass the -menu option a hash reference:
1249985

my $device = prompt 'Initiate which master plan?',
 -menu =>
 {
 Cousteau => 'Sharks with "laser" beams',
 Libido => 'Disinhibiter gas grenades',
 Friar => 'Death ray',
 Shiny => 'Mirror ball',
 };

print "Activating $device in 10:00 and counting...\\n";

in which case it will show the list of keys and return the value corresponding to the key selected:
1249985

Initiate which master plan?
 a. Cousteau
 b. Friar
 c. Libido
 d. Shiny
> d
Activating Mirror ball in 10:00 and counting...

You can even nest hashes and arrays:
1249985

my $device = prompt 'Select your platform:',
 -menu =>
 {
 Windows => ['WinCE', 'WinME', 'WinNT'],
 MacOS => {
 'MacOS 9' => 'Mac (Classic)',
 'MacOS X' => 'Mac (New Age)',

Chapter 2. User Interaction Page 8 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 },
 Linux => 'Linux',
 };

to create hierarchical menus:
1249985

Select your platform:
 a. Linux
 b. MacOS
 c. Windows
> b

MacOS:
 a. MacOS 9
 b. Mac OS X
> b

Compiling for Mac (New Age)...

Hack 15. Alert Your Mac
621961

1249985

Schedule GUI alerts from the command line.
1249985

Growl (http://www.growl.info/) is a small utility for Mac OS X that allows any application to send notifications to the user. The notifications
pop up as a small box in a corner of the screen, overlayed on the current active window (as shown in Figure 2-1).
1249985

Figure 2-1. A simple Growl notification

The Hack
628024

You can send Growl notifications from Perl, thanks to Chris Nandor's Mac::Growl. The first thing you have to do is tell Growl that your
script wants to send notifications. The following code registers a script named growlalert and tells Growl that it sends alert notifications:
1249985

use Mac::Growl;

Chapter 2. User Interaction Page 9 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.growl.info/

Mac::Growl::RegisterNotifications(
 'growlalert', # application name
 ['alert'], # notifications this app sends
 ['alert'], # enable these notifications
);

Growl displays a notification to let you know the script has registered successfully (Figure 2-2). You need only register an application once
on each machine that uses it.
1249985

Figure 2-2. A newly registered application

When you want to send a notification, call PostNotification(), passing the name of the script, the kind of notification to send, a title,
and a description:
1249985

Mac::Growl::PostNotification(
 'growlalert', # application name
 'alert', # type of notification
 "This is a title",
 "This is a description.",
);

This will pop up a notification window (Figure 2-3) and fade it out again after a few seconds.
1249985

Figure 2-3. Notification with title and description

Running the Hack
628024

You might want a small script that sends you an alert after a time delay. The following command-line utility takes a time period to delay and
a message to display in the alert. It calculates the time when the alert should appear, then forks to return control of the terminal window to the
user. The forked child sleeps the requested amount of time, and then posts a Growl notification with the message as the title and no description.
1249985

Chapter 2. User Interaction Page 10 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

my %seconds_per =
(
 's' => 1,
 'm' => 60,
 'h' => 60*60,
);

my ($period, @message) = @ARGV;
my ($number, $unit) = ($period =~ m/^([\\.\\d]+)(.*)$/)
 or die "usage: ga number[smh] message\\n";
$unit ||= 's';

my $growl_time = $number * $seconds_per{$unit};

my $pid = fork;
die "fork failed ($!)\\n" unless defined $pid;

unless ($pid)
{
 require Mac::Growl;
 sleep $growl_time;

 Mac::Growl::PostNotification(
 'growlalert', # application name
 'alert', # type of notification
 "@message", # title
 "", # no description
 1, # notification is sticky
);
}

The additional argument passed to PostNotification tells Growl that the notification should stay on the screen until the user clicks it,
instead of fading after a few seconds.
1249985

Some common uses of this program are:
1249985

$ ga 5m coffee
$ ga 2.5h 'oxford soon - get off the train'

Hacking the Hack
628024

For Unix systems running the X Window system, use the xmessage command instead of Mac::Growl:
1249985

unless ($pid)
{
 sleep $growl_time;
 system('xmessage', @message);
}

You can get creative there, popping up the window near the cursor or automatically fading out after a specified period of time.
1249985

On Windows systems running the messenger service, the proper invocation is something like:
1249985

Chapter 2. User Interaction Page 11 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

unless ($pid)
{
 sleep $growl_time;
 system(qw(cmd net send localhost), @message);
}

Hack 16. Interactive Graphical Apps
621961

1249985

Paint pretty pictures with Perl.
1249985

People often see Perl as a general-purpose language: you start by using it to write short scripts, do administrative tasks, or text processing.
If you happen to appreciate it, you end up enjoying its flexibility and power to perform almost anything that doesn't require the speed of
compiled binaries.
1249985

Consider instead the number one requirement of games. Unless you're exclusively a fan of card games, you'd say "CPU power." Fortunately
a crazy guy named David J. Goehrig had the mysterious idea to bind the functions of the C low-level graphical library SDL for the Perl
language. The result is an object-oriented approach to SDL called sdlperl.
1249985

Blitting with SDL Perl
628024

With SDL you will manipulate surfaces. These are rectangular images, and the most common operation is to copy one onto another; this is
blitting.[2] To implement a basic image loader with SDL Perl in just four non-comment lines of code, write:
1249985

[2] A blit is the action of copying a series of bits between memory addresses. The main goal of this operation is to perform the copy as fast as possible.

use SDL::App;

open a 640x480 window for your application
our $app = SDL::App->new(-width => 640, -height => 480);

create a surface out of an image file specified on the command-line
our $img = SDL::Surface->new(-name => $ARGV[0]);

blit the surface onto the window of your application
$img->blit(undef, $app, undef);

flush all pending screen updates
$app->flip();

sleep for 3 seconds to let the user view the image
sleep 3;

You might wonder how to perform positioning and cropping during a blit. In the previous code, replace the two undef parameter values with
instances of SDL::Rect, the first one specifying the rectangle to copy from the source surface, and the second specifying the rectangle
where to blit on the destination surface. When you use undef instead, SDL uses top-left positioning and full sizing. Here's a blit replacement
that specifies a 100x100 area in the source surface at a horizontal offset of 200 pixels:

Chapter 2. User Interaction Page 12 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

1249985

$img->blit(SDL::Rect->new(
 -width => 100, -height => 100, -x => 200, -y => 0
), $app, undef);

Animating with SDL Perl
628024

You're already closer than you think to being able to write a full-fledged game with SDL Perl. The previous example opened the application,
created a surface from an image file, and showed it onscreen. Add sound and input handling, and you're (mostly) done! Sound is too easy to
use to show here; input handling requires the proper monitoring of events reported by an instance of SDL::Event.
1249985

The simplest option for input handling is to loop waiting for new events. This is fine if you have no animated sprites on screen (movement
will block while you wait on the loop), but if you need to handle animations, you need a main loop that performs more steps:
1249985

• Erase all sprites at their current position.
• Check events to see if user interaction changes anything in the game.
• Move sprites and update game states.
• Draw all sprites at their new position.
• Tell SDL Perl to display any changes on screen.
• Synchronize the animation by sleeping for a short amount of time, corresponding to the target animation speed.

Iterate forever through these steps, and you have the core of a game engine.
1249985

You might wonder if any visual artifacts (flickers) are visible between the moment you erase all sprites and the
moment you draw them at their new positions. This will not happen, because windowing systems use back
buffers, synchronizing them only when the program explicitely asks for a screen update.
1249985

A Working Animation
628024

To illustrate everything, here's a short example program animating a colored rectangle and its fading tail (as shown in Figure 2-4). It first
creates the needed series of surfaces, with a fading color and transparency, then implements the above main loop, animating the sprites along
a periodic path. Monitoring events allows the user to temporarily stop the animation by pressing any key and to exit by hitting the escape key
or by closing the application window. Read through this example for extensive details about its implementation.
1249985

Chapter 2. User Interaction Page 13 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Figure 2-4. An animation with SDL Perl

use SDL;
use SDL::App;
use strict;

specify the target animation speed here, in milliseconds between two
frames; for 50 frames per second, this is 20 ms
our $TARGET_ANIM_SPEED = 20;

define an array where to store all the rectangles changed between two
frames; this allows faster screen updates than using SDL::App#flip
our @update_rects;

initialize the background surface to an image file if user specified one
on the commandline, to blank otherwise

our $background = SDL::Surface->new(-f $ARGV[0] ? (-name => $ARGV[0])
 : (-width => 640,
 -height => 480));
open a 640x480 window for the application
our $app = SDL::App->new(-width => 640, -height => 480);

copy the whole background surface to the application window
$background->blit(undef, $app, undef);

update the application window
$app->flip;

define an array where to store all the surfaces representing
the colored sprites with all the levels of color and transparency
our @imgs = map
{
 # create a 30x20 surface for one sprite
 my $surface = SDL::Surface->new(
 -width => 30, -height => 20, -depth => 32
);

 # fill the surface with a solid color; let it fade from
 # blue to white while the mapped int value is iterated over
 $surface->fill(undef,
 SDL::Color->new(-r => 128+$_*255/45, -g => 128+$_*255/45, -b => 255)
);

Chapter 2. User Interaction Page 14 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 # set the transparency of the surface (more and more transparent)
 $surface->set_alpha(SDL_SRCALPHA, (15-$_)*255/15);

 # convert the surface to the display format, to allow faster blits
 # to the application window
 $surface->display_format();

} (1..15);

define a helper function to blit a surface at a given position on the
application window, adding the rectangle involved to the array of needed
updates

sub blit_at
{
 my ($surface, $x, $y) = @_;
 my $dest_rect = SDL::Rect->new(
 -width => $surface->width(), -height => $surface->height(),
 -x => $x, '-y' => $y
);
 $surface->blit(undef, $app, $dest_rect);
 push @update_rects, $dest_rect;
}

define a helper function to blit the portion of background similar to the
area of a surface at a given position on the application window, adding
the rectangle involved to the array of needed updates; this actually
"erases" the surface previously blitted there
sub erase_at
{
 my ($surface, $x, $y) = @_;
 my $dest_rect = SDL::Rect->new(
 -width => $surface->width(), -height => $surface->height(),
 -x => $x, '-y' => $y
);
 $background->blit($dest_rect, $app, $dest_rect);
 push @update_rects, $dest_rect;
}

define an array to store the positions of the sprites, a counter to
calculate new positions of the sprite while it's animated, and a boolean
to know if the animation has stopped or not
our (@pos, $counter, $stopped);

define an instance of SDL::Event for event monitoring
our $event = SDL::Event->new();

start the main loop here
while (1)
{
 # store the current value of the sdlperl milliseconds counter; the end
 # of the mainloop uses it for animation synchronization
 my $synchro_ticks = $app->ticks();

 # erase all sprites at their current positions (stored by @pos)
 for (my $i = 0; $i < @pos; $i++)
 {
 erase_at($imgs[$i], $pos[$i]{'x'}, $pos[$i]{'y'});
 }

 # ask for new events

Chapter 2. User Interaction Page 15 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 $event->pump();

 if ($event->poll != 0)
 {
 # if the event is a key press, stop the animation
 if ($event->type() = = SDL_KEYDOWN)
 {
 $stopped = 1;
 }

 # if the event is a key release, resume the animation
 if ($event->type() = = SDL_KEYUP)
 {
 $stopped = 0;
 }

 # if we receive a "QUIT" event (user clicked the "close" icon of the
 # application window) or the user hit the Escape key, exit program
 if ($event->type = = SDL_QUIT ||
 $event->type = = SDL_KEYDOWN && $event->key_sym = = SDLK_ESCAPE)
 {
 die "quit\\n";
 }
 }

 # if the animation is not stopped, increase the counter
 $stopped or $counter++;

 # insert a new position in top of @pos; let positions be a sine-based
 # smooth curve
 unshift @pos,
 {
 'x' => 320 + 200 * sin($counter/30),
 'y' => 240 + 80 * cos($counter/25),
 };

 # remove the superfluous positions
 @pos > 15 and pop @pos;

 # draw all sprites at their new positions
 for (my $i = @pos - 1; $i >= 0; $i--)
 {
 blit_at($imgs[$i], $pos[$i]{'x'}, $pos[$i]{'y'});
 }

 # tell sdlperl to flush all updates in the specified rectangles
 $app->update(@update_rects);

 # empty the array of rectangles needing an update
 @update_rects = ();

 # wait the time necessary for this frame to last the target number of
 # milliseconds of a frame. This allows the animation to look smooth
 my $to_wait = $TARGET_ANIM_SPEED - ($app->ticks - $synchro_ticks);

 $to_wait > 0 and $app->delay($to_wait);
}

Chapter 2. User Interaction Page 16 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Hack 17. Collect Configuration Information
621961

1249985

Save and re-use configuration information.
1249985

Some code you write needs configuration information when you build and install it. For example, consider a program that can use any of
several optional and conflicting plug-ins. The user must decide what to use when she builds the module, especially if some of the dependencies
themselves have dependencies.
1249985

When you run your tests and the code in general, having this information available in one spot is very valuable—you can avoid expensive and
tricky checks if you hide everything behind a single, consistent interface.
1249985

How do you collect and store this information? Ask the user, and then write it into a simple configuration module!
1249985

The Hack
628024

Both Module::Build and ExtUtils::MakeMaker provide user prompting features to ask questions and get answers. The benefit of
this is that they silently accept the defaults during automated installations. Users at the keyboard can still answer a prompt, while users who
just want the software to install won't launch the installer, turn away, and return an hour later to find that another prompt has halted the process
in the meantime.
1249985

Module::Build is easier to extend, so here's a simple subclass that allows you to specify questions, default values, and configuration keys
before writing out a standard module containing this information:
1249985

package Module::Build::Configurator;

use strict;
use warnings;

use base 'Module::Build';

use SUPER;
use File::Path;
use Data::Dumper;
use File::Spec::Functions;

sub new
{
 my ($class, %args) = @_;
 my $self = super();
 my $config = $self->notes('config_data') || { };

 for my $question (@{ $args{config_questions} })
 {
 my ($q, $name, $default) = map { defined $_ ? $_ : '' } @$question;
 $config->{$name} = $self->prompt($q, $default);
 }

 $self->notes('config_module', $args{config_module});

Chapter 2. User Interaction Page 17 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 $self->notes('config_data', $config);
 return $self;
}

sub ACTION_build
{
 $_[0]->write_config();
 super();
}

sub write_config
{
 my $self = shift;
 my $file = $self->notes('config_module');
 my $data = $self->notes('config_data');
 my $dump = Data::Dumper->new([$data], ['config_data'])->Dump;
 my $file_path = catfile('lib', split(/::/, $file . '.pm'));

 my $path = (splitpath($file_path))[1];
 mkpath($path) unless -d $path;

 my $package = <<END_MODULE;
 package $file;

 my $dump

 sub get_value
 {
 my (\\$class, \\$key) = \\@_;

 return unless exists \\$config_data->{ \\$key };
 return \\$config_data->{ \\$key };
 }

 1;
END_MODULE

 $package =~ s/^\\t//gm;

 open(my $fh, '>', $file_path)
 or die "Cannot write config file '$path': $!\\n";
 print $fh $package;
 close $fh;
}

1;

The module itself is a straightforward subclass of Module::Build. It overrides new() to collect the config_module argument
(containing the name of the configuration module to write) and to loop over every configuration question (specified with
config_questions). The latter argument is an array reference of array references containing the name of the question to ask, the name
of the value as stored in the configuration module, and the default value of the question, if any. In an unattended installation, the prompt
() method will return the default value rather than interrupt the process.
1249985

The module also overrides ACTION_build(), the method that perl ./Build runs, to write the configuration file. The write_config
() method takes the hash of configuration data created in new() (and stored with Module::Build's handy notes() mechanism),
serializes it with Data::Dumper, and writes it and a module skeleton to the necessary path under lib/.
1249985

Chapter 2. User Interaction Page 18 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Note the use of File::Spec::Functions and File::Path to improve file handling and to make sure
that the destination directory exists for the configuration module.
1249985

Using the Hack
628024

To use the hack, write a Build.PL file as normal:
1249985

use Module::Build::Configurator;

my $build = Module::Build::Configurator->new(
 module_name => 'User::IrisScan',
 config_module => 'User::IrisScan::Config',
 config_questions =>
 [
 ['What is your name?', 'name', 'Anouska'],
 ['Rate yourself as a spy from 1 to 10.', 'rating', '10'],
 ['What is your eye color?', 'eye_color', 'blue'],
],
);

$build->create_build_script();

This file builds a distribution for the User::IrisScan module. Run it to see the prompts:
1249985

$ perl Build.PL
What is your name? [Anouska] Faye
Rate yourself as a spy from 1 to 10. [10] 8
What is your eye color? [blue] blue
Deleting Build
Removed previous script 'Build'
Creating new 'Build' script for 'User-IrisScan' version '1.28'
$

Now look at lib/User/IrisScan/Config.pm:
1249985

package User::IrisScan::Config;

my $config_data = {
 'eye_color' => 'blue',
 'name' => 'Faye',
 'rating' => '8'
 };

sub get_value
{
 my ($class, $key) = @_;

 return unless exists $config_data->{ $key };

Chapter 2. User Interaction Page 19 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

 return $config_data->{ $key };
}

1;

You can use this configuration module within your tests or within the program now as normal. If you're clever, you can even check for this
module when upgrading your software. If it exists, use the configured values there for the defaults. Your users will love you.
1249985

Hack 18. Rewrite the Web
621961

1249985

Use the power of Perl to rewrite the web.
1249985

The Greasemonkey extension for Mozilla Firefox and related browsers is a powerful way to modify web pages to your liking. In fact, the
Mozilla family projects are customizable in many ways—as long as you like writing C++, JavaScript, or XUL.
1249985

If your network doesn't run only Firefox, or if you just prefer to customize the Web with Perl instead of any other language,
HTTP::Proxy can help.
1249985

The Hack
628024

For whatever reason (registrar greed, mostly), plenty of useful sites such as Perl Monks have .com and .org domain names. One visitor might
use http://www.perlmonks.com/, while the truly blessed saints prefer http://perlmonks.org/. That's all well and good except for the cases where
you have logged in to the site through one domain name but not the others. Your HTTP cookie uses the specific domain name for identification.
1249985

Thus you may follow a link from somewhere that leads to the correct site with the incorrect domain name. How annoying!
1249985

Fixing this with HTTP::Proxy is easy though:
1249985

use strict;
use warnings;

use HTTP::Proxy ':log';
use HTTP::Proxy::HeaderFilter::simple;

start the proxy with the given command-line parameters
my $proxy = HTTP::Proxy->new(@ARGV);

for my $redirect (<DATA>)
{
 chomp $redirect;

 my ($pattern, $destination) = split(/\\|/, $redirect);
 my $filter = get_filter($destination);

 $proxy->push_filter(host => $pattern, request => $filter);

Chapter 2. User Interaction Page 20 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.perlmonks.com/
http://perlmonks.org/

}

$proxy->start();

my %filters;

sub get_filter
{
 my $site = shift;

 return $filters{ $site } ||= HTTP::Proxy::HeaderFilter::simple->new(
 sub
 {
 my ($self, $headers, $message) = @_;

 # modify the host part of the request only
 $message->uri()->host($site);

 # create a new redirect response
 my $res = HTTP::Response->new(
 301,
 "Moved to $site",
 [Location => $message->uri()]
);

 # and make the proxy send it back to the client
 $self->proxy()->response($res);
 }
);
}

__DATA__
perlmonks.com|perlmonks.org
www.perlmonks.org|perlmonks.org

The program creates a new HTTP::Proxy object, then reads all of the data at the end of the program to create header filters. When a request
comes in, the proxy runs all header filters that match the request. These filters can manipulate the request as appropriate.
1249985

In this example, if the host of a request matches perlmonks.com, the filter sends back an HTTP 301 status code redirecting the request to
perlmonks.org. A well-behaved client will repeat the request with the new host (this time, sending along the proper cookie).
1249985

The use of the %filters lexical is the Orcish Maneuver. Read the line in get_filter() as "return the
cached object or cache a new one".
1249985

Running the Hack
628024

Run the program from the command line. If necessary, pass in arguments, perhaps to run on a different port:
1249985

$ perl memoryproxy.pl port 5000

Chapter 2. User Interaction Page 21 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Configure your browser to use this proxy and try to visit http://perlmonks.com/). You'll end up at http://perlmonks.org/.
1249985

Hacking the Hack
628024

There are countless uses for HTTP::Proxy, even beyond rewriting both request and response headers and bodies. Try:
1249985

• Restricting a browsing session to no more than ten minutes at a time during working hours.
• Maintaining a list (or graph or tree) of relationships between sites.
• Forbidding yourself from wasting time reading certain sites during working hours.
• Creating shortcuts for URLs [Hack #1] across multiple browsers without manipulating local DNS records.

Chapter 2. User Interaction Page 22 Return to Table of Contents

Chapter 2. User Interaction
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe
ISBN: 0596526741 Publisher: O'Reilly Print Publication Date: 5/1/2006
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://perlmonks.com/
http://perlmonks.org/

