
Table of Contents

Chapter 5. Object Hacks326... 1
Hack 43. Turn Your Objects Inside Out621961... 1
Hack 44. Serialize Objects (Mostly) for Free621961... 4
Hack 45. Add Information with Attributes621961... 6
Hack 46. Make Methods Really Private621961... 9
Hack 47. Autodeclare Method Arguments621961... 13
Hack 48. Control Access to Remote Objects621961... 16
Hack 49. Make Your Objects Truly Polymorphic621961... 19
Hack 50. Autogenerate Your Accessors621961.. 22

Chapter 5. Object Hacks

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 5. Object Hacks
326

Hacks 43-50
1249985
Perl has objects, you bet! Beyond the oddity of bless, the repurposing of subroutines,
packages, and references, OO Perl has a lot of power and tremendous flexibility. Maybe
you've only blessed hash references because you need record objects—but have you
considered the benefits of stronger encapsulation, automatic serialization, and enforced
access control?
1249985
The more you know about Perl, the more options you have for creating and using higher-
level abstractions. The next time your coworkers have a nasty problem they just can't solve,
look in your bag of OO tricks and smile and say, "Don't worry. We can do anything with Perl."
1249985

Hack 43. Turn Your Objects Inside Out
621961

1249985
Encapsulate your attributes strongly.
1249985
Perl 5's object orientation is minimalistic. It gives you enough to get the job done while not
preventing you from doing clever things. Of course, the default approach is usually the
simplest one (or the cleverest), not the cleanest or most maintainable.
1249985
Most objects are blessed hashes, because they're easy to understand and to use.
Unfortunately, they can be difficult to debug and they don't really provide any encapsulation,
thus tying you to specific implementation schemes.[1]

1249985

[1] See "Seven Sins of Perl OO Programming" in The Perl Review 2.1, Winter 2005.

Chapter 5. Object Hacks Page 1 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Fortunately, fixing that is easy.
1249985

The Hack
628024
An object in Perl needs two things, a place to store its instance data and a class in which to
find its methods. A blessed hash (or array, or scalar, or subroutine, or typeglob, or...) stores
its data within the object you pass around. If you dereference the reference, you can read
and write that data from anywhere, even outside the class.
1249985
An inside out object stores its data elsewhere, often in a lexical variable scoped to the class.
From outside the lexical scope, you can't (usually—see "Peek Inside Closures" [Hack #76])
access that data without using the object's accessors.
1249985

Damian Conway's first book, Object Oriented Perl (Manning, 2000)
showed various ways to use closure-based encapsulation. His recent Perl
Best Practices (O'Reilly, 2005) recommended using them as a best
practice. The Perl hacker known simply as Abigail has also touted the
virtues of inside out objects for several years. See the documentation of
Class::Std for a fuller treatment of the issue.
1249985

Running the Hack
628024
A simple, naïve inside out object implementation for a record class might be:
1249985

create a new scope for the lexicals
{
 package InsideOut::User;

 use Scalar::Util 'refaddr';

 # lexicals used to hold instance data
 my %names;
 my %addresses;

 sub new
 {
 my ($class, $data) = @_;

 # bless a new scalar to get this object's id
 bless \\(my $self), $class;

Chapter 5. Object Hacks Page 2 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 # store the instance data
 my $id = refaddr($self);
 $names{ $id } = $data->{name};
 $addresses{ $id } = $data->{address};

 return $self;
 }

 # accessors, as $self->{name} and $self->{address} don't work
 sub get_name
 {
 my $self = shift;
 return $names{ refaddr($self) };
 }

 sub get_address
 {
 my $self = shift;
 return $addresses{ refaddr($self) };
 }

 # many people forget this part
 sub DESTROY
 {
 my $self = shift;
 my $id = refaddr($self);
 delete $names{ $id };
 delete $addresses{ $id };
 }
}

1;

That's a little more typing, but it's definitely a lot cleaner. Now you can subclass or
reimplement InsideOut::User without having to use a blessed hash—just follow the
interface this defines and your code will work.
1249985
Of course, the more complex the object, the more typing you have to do. Wouldn't it be nice
to automate this?
1249985

Hacking the Hack
628024
Class::Std, Class::InsideOut, and Object::InsideOut are three current
modules on the CPAN that take some of the work out of inside out objects for you. They all
have various tricks and features. Class::Std is nice in that it automatically creates
accessors and mutators, calls better constructors and destructors, and uses a declarative
attribute-based syntax [Hack #45].
1249985
The same class using Class::Std is:
1249985

Chapter 5. Object Hacks Page 3 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

{
 package InsideOut::User;

 use Class::Std;

 my %names :ATTR(:get<name> :init_arg<name>);
 my %addresses :ATTR(:get<address> :init_arg<address>);
}

This code automatically generates the get_name() and get_address() accessors as
well as a constructor that pulls the initial values for the objects out of a hash reference with
the appropriate keys. The syntax isn't quite as nice as that of Perl 6, but it's much, much shorter
than the naïve Perl 5 version—and provides all of the same features.
1249985

Hack 44. Serialize Objects (Mostly) for Free
621961

1249985
Store object data without mess, confusion, or big blobs of binary data.
1249985
Some programs really need persistent data, and sometimes mapping between objects and
multiple tables in a fully-relational database is just too much work. This is especially true in
cases where being able to edit data quickly and easily is important—there's no interface more
comfortable than your favorite text editor [Hack #12].
1249985
Instead of hard-coding configuration in a program, wasting your precious youth creating the
perfect database schema, or doing XML sit-ups, why not serialize your important object data
to YAML?
1249985

The Hack
628024
If you use hash-based objects, it's very easy to serialize the data—just make a copy of the
hash and serialize it:
1249985

use YAML 'DumpFile';

sub serialize
{
 my ($object, $file) = @_;
 my %data = %$object;

Chapter 5. Object Hacks Page 4 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 DumpFile($file, \\%data);
}

This assumes, of course, that $object is the object you want to serialize and $file is the
path and file to which to save the object.
1249985
If you use inside out objects [Hack #43], you have a bit more work to do:
1249985

package Graphics::Drawable;
{
 use Class::Std;

 my %coords_of :ATTR(:get<coords> :init_arg<coords>);
 my %velocities_of :ATTR(:get<velocity> :init_arg<velocity>);
 my %shapes_of :ATTR(:get<shape> :init_arg<shape>);

 sub get_serializable_data
 {
 my $self = shift;

 my %data;

 for my $attribute (qw(coords velocity shape))
 {
 my $method = 'get_' . $attribute;
 $data{ $attribute } = $self->$method();
 }

 return \\%data;
 }
}

Now your serialize() function can avoid breaking encapsulation and call
get_serializable_data() instead. An object at the origin (coordinates of (0, 0,
0)) with a velocity of one unit per time unit along the X axis ((1, 0, 0)) and a Circle
shape serializes to:
1249985

coords:
 - 0
 - 0
 - 0
shape: Circle
velocity:
 - 1
 - 0
 - 0

If you want to make more objects, copy the file to a new location and modify it. Just be careful
to keep the code valid YAML.[2]

1249985

[2] A task much easier than writing valid XML by hand...

Chapter 5. Object Hacks Page 5 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Restoring objects is easy; just use YAML's LoadFile() method:
1249985

use YAML 'LoadFile';

sub deserialize
{
 my ($class, $file) = @_;
 my $data = LoadFile($file);
 return $class->new($data);
}

Assuming your class constructor takes a hash reference keyed on attribute names (as
Class::Std does), you're all set. Of course, this all presumes some sort of object factory
that can manage instances, map files and paths to classes, and store and retrieve objects, let
alone handle errors. Class::StorageFactory on the CPAN handles this.
1249985
If you have all of this—and only need data from an object's public interface (both constructor
attributes and data accessible through accessors) to recreate the object—serializing to YAML
or another simple plain-text format (JSON?) is fast, easy, flexible, and almost free.
1249985

Hack 45. Add Information with Attributes
621961

1249985
Give your variables and subroutines a little extra information.
1249985
Subroutines and variables are straighforward. Sure, you can pass around references to them
or make them anonymous and do weird things with them, but you have few options to
change what Perl does with them.
1249985
Your best option is to give them attributes. Attributes are little pieces of data that attach to
variables or subroutines. In return, Perl runs any code you like. This has many, many
possibilities.
1249985

The Hack
628024
Suppose that you have a class and want to document the purpose of each method. Some
languages support docstrings—comments that you can introspect by calling class methods.

Chapter 5. Object Hacks Page 6 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Perl's comments are pretty boring, but you can achieve almost the same effect by annotating
methods with subroutine attributes.
1249985
Consider a Counter class, intended to provide a default constructor that counts the number
of objects created. If there's a Doc attribute provided by the Attribute::Docstring
module, the class may resemble:
1249985

package Counter;

use strict;
use warnings;

use Attribute::Docstring;

our $counter :Doc('a count of all new Foo objects');

sub new :Doc('the constructor for Foo')
{
 $counter++;
 bless { }, shift;
}

sub get_count :Doc('returns the count for all foo objects')
{
 return $counter;
}

1;

The prototype comes after the name of the subroutine and has a preceding colon. Otherwise,
it looks like a function call. The documentation string is the (single) argument to the attribute.
1249985

Running the Hack
628024
The easiest way to create and use attributes is with the Attribute::Handlers module.
This allows you to write subroutines named after the attributes you want to declare. The
implementation of Attribute::Docstring is:
1249985

package Attribute::Docstring;

use strict;
use warnings;

use Scalar::Util 'blessed';
use Attribute::Handlers;

my %doc;

sub UNIVERSAL::Doc :ATTR
{

Chapter 5. Object Hacks Page 7 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my ($package, $symbol, $referent, $attr, $data, $phase) = @_;
 return if $symbol eq 'LEXICAL';

 my $name = *{$symbol}{NAME};
 $doc{ $package }{ $name } = $data;
}

sub UNIVERSAL::doc
{
 my ($self, $name) = @_;
 my $package = blessed($self) || $self;

 return unless exists $doc{ $package }{ $name };
 return $doc{ $package }{ $name };
}

1;

To make the Doc attribute available everywhere, the module defines a subroutine called
UNIVERSAL::Doc. This subroutine itself has an attribute, :ATTR, which identifies it as an
attribute handler.
1249985
For any subroutine or variable that declares a Doc attribute, the subroutine receives several
pieces of information. Here, the important ones are the package containing the subroutine,
the symbol—from which the typeglob access can retrieve the name, and the data provided
to the attribute. In the Counter class, the attribute handler receives a package name of
Counter and the typeglob with the name new for the symbol when Perl finishes compiling
the new() method. It then stores the attribute data (the docstring itself) in a hash keyed
first on the name of the package and then on the name of the symbol.
1249985
Because of the difference between how Perl treats lexical and global variables, the handler
can't do much if it receives a lexical symbol (that is, when $symbol is LEXICAL). Then again,
these are private to the package so they're not worth documenting in this way anyway.
1249985
The similarly named doc() method works on any class or object, so that calling Counter-
>doc('new') or $counter->doc('get_count') both return the docstring for
the appropriate method. It simply looks up the docstring in the appropriate package for the
given name and returns it.
1249985

Hacking the Hack
628024
One potential enhancement is to add the appropriate sigil to the name, so that the docstrings
for a variable named $count and a method named count() will not overwrite each other.
That would require a change to UNIVERSAL::doc() so that $name contains the sigil (or,
with no sigil, defaults to the method).
1249985

Chapter 5. Object Hacks Page 8 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Another possibility is to take UNIVERSAL::Doc() out of UNIVERSAL, instead importing
it into any package that uses this module. That unclutters UNIVERSAL somewhat at the
expense of cluttering calling classes. That may or may not be a useful tradeoff.
1249985
Attributes may span lines, but you cannot use heredocs, unfortunately.
1249985

Hack 46. Make Methods Really Private
621961

1249985
Enforce encapsulation with a little more flair.
1249985
Perl's object orientation is powerful in many ways, allowing the creation and emulation of
almost any kind of object or class system. It's also very permissive, enforcing no access control
by default. Any code can poke and prod methods and parents into any class at any time and
can call even ostensibly private methods regardless of the intent of the code's original author.
1249985
By convention, the Perl community considers methods with a leading underscore as private
methods that you shouldn't override or call outside of the class or rely on any specific
semantics or workings. That's usually a good policy, but there's little enforcement and it's
only a convention. It's still possible to call the wrong method accidentally or even on purpose.
1249985
Fortunately, there are better (or at least scarier) ways to hide methods.
1249985

The Hack
628024
One easy way to manipulate subroutines and methods at compile time is with subroutine
attributes [Hack #45]. The Class::HideMethods module adds an attribute to methods
named Hide that makes them unavailable and mostly uncallable from outside the program:
1249985

package Class::HideMethods;

use strict;
use warnings;
use Attribute::Handlers;

my %prefixes;

sub import

Chapter 5. Object Hacks Page 9 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

{
 my ($self, $ref) = @_;
 my $package = caller();
 $prefixes{ $package } = $ref;
}

sub gen_prefix
{
 my $invalid_chars = "\\0\\r\\n\\f\\b";

 my $prefix;

 for (1 .. 5)
 {
 my $char_pos = int(rand(length($invalid_chars)));
 $prefix .= substr($invalid_chars, $char_pos, 1);
 }

 return $prefix;
}

package UNIVERSAL;

sub Private :ATTR
{
 my ($package, $symbol, $referent, $attr, $data, $phase) = @_;

 my $name = *{ $symbol }{NAME};
 my $newname = Class::HideMethods::gen_prefix($package) . $name;
 my @refs = map { *$symbol{ $_ } } qw(HASH SCALAR ARRAY GLOB);
 *$symbol = do { local *symbol };

 no strict 'refs';
 *{ $package . '::' . $newname } = $referent;
 *{ $package . '::' . $name } = $_ for @refs;
 $prefixes{ $package }{ $name } = $newname;
}

1;

To hide the method, the code replaces the method's symbol with a new,
empty typeglob. This would also delete any variables with the same
name, so the code copies them out of the symbol first, and then back
into the new, empty symbol. Now you know how to "delete" from a
typeglob.
1249985

Running the Hack
628024
Using this module is easy; within your class, declare a lexical hash to hold the secret new
method names. Pass it to the line that uses Class::HideMethods:

Chapter 5. Object Hacks Page 10 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

package SecretClass;

my %methods;
use Class::HideMethods \\%methods;

sub new { bless { }, shift }
sub hello :Private { return 'hello' }
sub goodbye { return 'goodbye' }

sub public_hello
{
 my $self = shift;
 my $hello = $methods{hello};
 $self->$hello();
}

1;

Remember to call all private methods with the $invocant->$method_name syntax,
looking up the hidden method name instead.
1249985
To prove that it works, try a few tests from outside the code.
1249985

use Test::More tests => 6;

my $sc = SecretClass->new();
isa_ok($sc, 'SecretClass');

ok(! $sc->can('hello'), 'hello() should be hidden');
ok($sc->can('public_hello'), 'public_hello() should be available');
is($sc->public_hello(),
 'hello', '... and should be able to call hello()');
ok($sc->can('goodbye'), 'goodbye() should be available');
is($sc->goodbye(), 'goodbye', '... and should be callable');

Not even subclasses can call the methods directly. They're fairly private!
1249985

Inside the hack
621961
Perl uses symbol tables internally to store everything with a name—variables, subroutines,
methods, classes, and packages. This is for the benefit of humans. By one theory, Perl doesn't
really care what the name of a method is; it's happy to call it by name, by reference, or by
loose description.
1249985
That's sort of true and sort of false. Only Perl's parser cares about names. Valid identifiers start
with an alphabetic character or an underscore and contain zero or more alphanumeric or
underscore characters. Once Perl has parsed the program, it looks up whatever symbols it

Chapter 5. Object Hacks Page 11 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

has in a manner similar to looking up values in a hash. If you can force Perl to look up a symbol
containing otherwise-invalid characters, it will happily do so.
1249985
Fortunately, there's more than one way to call a method. If you have a scalar containing the
name of the method (which you can define as a string containing any character, not just a
valid identifier) or a reference to the method itself, Perl will invoke the method on the
invocant. That's half of the trick.
1249985
The other magic is in removing the symbol from the symbol table under its unhidden name.
Without this, users could bypass the hidden name and call supposedly hidden methods
directly.
1249985
Without the real name being visible, the class itself needs some way to find the names of
private methods. That's the purpose of the lexical %methods, which is not normally visible
outside of the class itself (or at least its containing file).
1249985

Hacking the Hack
628024
A very clever version of this code could even do away with the need for %methods in the
class with hidden methods, perhaps by abusing the constant pragma to store method
names appropriately.
1249985
This approach isn't complete access control, at least in the sense that the language can enforce
it. It's still possible to get around this. For example, you can crawl a package's symbol table,
looking for defined code. One way to thwart this is to skip installing methods back in the
symbol table with mangled names. Instead, delete the method from the symbol table and
store the reference in the lexical cache of methods.
1249985
That'll keep out determined people. It won't keep out really determined people who know
that the PadWalker module from the CPAN lets them poke around in lexical variables
outside their normal scope [Hack #76]...but anyone who wants to go to that much trouble
could just as easily fake the loading of Class::HideMethods with something that doesn't
delete the symbol for hidden methods. Still, it's really difficult to call these methods by
accident or on purpose without some head-scratching, which is probably as good as it gets
in Perl 5.
1249985

Chapter 5. Object Hacks Page 12 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 47. Autodeclare Method Arguments
621961

1249985
You know who you are. Stop repeating your $self.
1249985
Perl's object orientation is very flexible, in part because of its simplicity and minimalism. At
times that's valuable: it allows hackers to build complex object systems from a few small
features. The rest of the time it can be painful to do simple things.
1249985
Though not everyone always calls the invocant in methods $self, everyone has to declare
and manage the invocant and other arguments. That's a bit of a drag—but it's fixable. Sure,
you could use a full-blown source filter [Hack #94] to remove the need to shift off $self and
process the rest of your argument list, but that's an unnecessarily large hammer to swing at
such a small annoyance. There's another way.
1249985

The Hack
628024
Solving this problem without source filters requires three ideas. First, there must be some
way to mark a subroutine as a method, because not all subroutines are methods. Second,
this should be compatible with strict, for good programming practices. Third, there
should be some way to add the proper operations to populate $self and the other
arguments.
1249985
The first is easy: how about a subroutine attribute [Hack #45] called Method? The third is also
possible with a little bit of B::Deparse [Hack #56] and eval magic. The second is trickier....
1249985
A surprisingly short module can do all of this:
1249985

package Attribute::Method;

use strict;
use warnings;

use B::Deparse;
use Attribute::Handlers;

my $deparse = B::Deparse->new();

sub import

Chapter 5. Object Hacks Page 13 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

{
 my ($class, @vars) = @_;
 my $package = caller();

 my %references =
 (
 '$' => \\undef,
 '@' => [],
 '%' => { },
);

 push @vars, '$self';

 for my $var (@vars)
 {
 my $reftype = substr($var, 0, 1, '');

 no strict 'refs';
 *{ $package . '::' . $var } = $references{$reftype};
 }
}

sub UNIVERSAL::Method :ATTR(RAWDATA)
{
 my ($package, $symbol, $referent, undef, $arglist) = @_;

 my $code = $deparse->coderef2text($referent);
 $code =~ s/{/sub {\\nmy (\\$self, $arglist) = \\@_;\\n/;

 no warnings 'redefine';
 *$symbol = eval "package $package; $code";
}

1;

All of the variables, including $self, have to be lexical within methods, lest bad things
happen when calling one method from another, such as accidentally overwriting a global
variable somewhere. The handler for the Method attribute takes the compiled code,
deparses it, and inserts the sub keyword and the argument handling line before the rest of
the code. All of the arguments to the attribute are the names of the lexical variables within
the method.
1249985
Compiling that with eval produces a new anonymous subroutine, which the code then
inserts into the symbol table after disabling the Subroutine %s redefined warnings.
1249985

Running the Hack
628024
From any class in which you tire of declaring and fetching the same arguments over and over
again, write instead:
1249985

Chapter 5. Object Hacks Page 14 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

package Easy::Class;

use strict;
use warnings;

use Attribute::Method qw($status);

sub new :Method
{
 bless { @_ }, $self;
}

sub set_status :Method($status)
{
 $self->{status} = $status;
}

sub get_status :Method
{
 return $self->{status};
}

1;

For every method marked with the :Method attribute, you get the $self invocant declared
for free. For every method with that attribute parameterized with a list of variable names,
you get those variables as well.
1249985
Notice the strange and deep magic in import() as well as the list of arguments passed to
it; this is what bypasses the strict checking. If you use instead only the refs and subs
strictures, you don't even have to pass the variables you want to Attribute::Method.
1249985

Hacking the Hack
628024
Is this better than source filters? It's certainly not as syntactically tidy. On the other hand,
attribute-based solutions are often less fragile than source filtering. In particular, they don't
prevent the use of other source filters or other attributes. It also almost never fails—if your
subroutines have errors, Perl will report them when compiling from the point of view of the
original code before even calling the attribute handler. This technique works best in classes
with several methods that take the same arguments.
1249985
Another possible way to accomplish this task is to rewrite the optree of the code reference
(with B::Generate and a lot of patience) to add the ops to assign the arguments to the
proper variables. Of course, you'll also have to insert the lexical variables into the pad
associated with the CV, but if you know what this means, you probably know how to do it.
1249985
Finding and fixing any lexicals that methods close over isn't as bad in comparison. See "Peek
Inside Closures" [Hack #76].

Chapter 5. Object Hacks Page 15 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

See Ricardo Signes's Sub::MicroSig for an alternate approach to the
same problem.
1249985

Hack 48. Control Access to Remote Objects
621961

1249985
Enforce access control to your objects.
1249985
Perl's idea of access control and privacy is politeness. Sometimes this is useful—you don't
have to spend a lot of time and energy figuring out what to hide and how. Sometimes you
need to rifle through someone else's code to get your job done quickly.
1249985
Other times, security is more important than ease of coding—especially when you have to
deal with the cold, hostile world at large. Though you may need to make your code accessible
to the wilds of the Internet, you don't want to let just anyone do anything.
1249985
Modules and frameworks such as SOAP::Lite make it easy to provide web service access
to plain old Perl objects. Here's one way to make them somewhat safer.
1249985

The Hack
628024
First, decide what kinds of operations you need to support on your object. Take a standard
web-enabled inventory system. You need to fetch an item, insert an item, update an item,
and delete an item. Then identify the types of access: creating, reading, writing, and deleting.
1249985
You could maintain a list in code or a configuration file somewhere mapping all the access
controls to all the methods of the objects in your system. That would be silly, though; this is
Perl! Instead, consider using a subroutine attribute [Hack #45].
1249985

package Proxy::AccessControl;

use strict;

Chapter 5. Object Hacks Page 16 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use warnings;

use Attribute::Handlers;

my %perms;

sub UNIVERSAL::perms
{
 my ($package, $symbol, $referent, $attr, $data) = @_;
 my $method = *{ $symbol }{NAME};

 for my $permission (split(/\\s+/, $data))
 {
 push @{ $perms{ $package }{ $method } }, $permission;
 }
}

sub dispatch
{
 my ($user, $class, $method, @args) = @_;

 return unless $perms{ $class }{ $method } and $class->can($method);

 for my $perm (@{ $perms{ $class }{ $method } })
 {
 die "Need permission '$perm\\n'" unless $user->has_permission($perm);
 }

 $class->$method(@args);
}

1;

Declaring permissions is easy:
1249985

package Inventory;

use Proxy::AccessControl;

sub insert :perms('create')
{
 my ($self, $attributes) = @_;
 # ...
}

sub delete :perms('delete')
{
 my ($self, $id) = @_;
 # ...
}

sub update :perms('write')
{
 my ($self, $id, $attributes) = @_;
 # ...
}

sub fetch :perms('read')
{

Chapter 5. Object Hacks Page 17 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my ($self, $id) = @_;
 # ...
}

You can also mix and match permissions:
1249985

sub clone :perms('read create')
{
 my ($self, $id, $attributes) = @_;
 # ...
}

Proxy::AccessControl provides an attribute handler perms that registers a space-
separated list of permissions for each marked method. It also provides a dispatch()
method—the barrier point into the system between the controller routing incoming
requests and the actual Perl objects handling the requests.
1249985
The only thing left to do (besides actually writing the business logic code) is to make your
controller run everything through Proxy::AccessControl::dispatch(). This
function takes three parameters. The first is a $user object that represents the access
capabilities of the external user somehow. (Your code needs to allow authentication and
creation of this object.) The $class and $method parameters identify the proper class and
method to call, if the user has permission to do so.
1249985

Hacking the Hack
628024
dispatch() is a coarsely-grained approach to proxying. Perhaps creating dedicated
proxies that speak web services or remote object protocols natively would be useful. Behind
the scenes, they could take only one extra parameter (the user object) and, for each proxied
method, provide their own implementation that performs the access checks before
delegating or denying the request as necessary.
1249985
There's no reason to limit access control to permissions alone, either. You could control access
to objects based on the number of concurrent accesses, the phase of the moon, the remote
operating system, the time of day, or whatever mechanism you desire. Anything you can
put in an attribute's data is fair game.
1249985

Chapter 5. Object Hacks Page 18 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 49. Make Your Objects Truly Polymorphic
621961

1249985
Build classes based on what they do, not how they inherit.
1249985
Many tutorials and books declare confidently that inheritance is a central feature of object-
oriented programming.
1249985
They're wrong.
1249985
Polymorphism is much, much more important. It matters that when you call log() on an
object that knows how to log its internal state it does so, not that it inherits from some abstract
Logger class somewhere or that it calculates a natural log. Perl 6 encourages this type of
design with roles. In Perl 5, you can either build it yourself or use Class::Trait to
decompose complex operations into natural, named groups of methods.
1249985
That sounds awfully abstract—but if you have a complex problem you can decompose
appropriately, you can write just a little bit of code and accomplish quite a bit.
1249985

The Hack
628024
Imagine that you're building an application with properly abstracted model, view, and
controller. You have multiple output types—standard XHTML, cut-down-XHTML for mobile
devices, and Ajax or JSON output for RESTful web services and user interface goodness.
1249985
Every possible view has a corresponding view class. So far the design makes sense. Yet as
your code handles an incoming request and decides what to do with it, how do you decide
which view to use? Worse, if you have multiple views, how do you build the appropriate
classes without going crazy for all of the combinations?
1249985
If you cheat a little bit and declare your views as traits, you can apply them to the model
objects and render the data appropriately.
1249985
Here's an example model from which the concrete Uncle and Nephew classes both inherit:
1249985

Chapter 5. Object Hacks Page 19 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

package Model;

sub new
{
 my ($class, %args) = @_;
 bless \\%args, $class;
}

sub get_data
{
 my $self = shift;
 my %data = map { $_ => $self->{$_} } qw(name occupation age);
 return \\%data;
}

1;

The views are pretty simple, too:
1249985

package View;

use Class::Trait 'base';

package TextView;

use base 'View';

sub render
{
 my $self = shift;
 printf("My name is %s. I am an %s and I am %d years old.\\n",
 @{ $self->get_data() }{qw(name occupation age)});
}

package YAMLView;

use YAML;
use base 'View';

sub render
{
 my $self = shift;
 print Dump $self->get_data();
}

1;

The text view displays a nicely formatted English string, while the YAML view spits out a
serialized version of the data structure. Now all the controller class has to do is to create the
appropriate model object and apply the appropriate view to it before calling render():
1249985

use model and view classes

create the appropriate model objects
my $uncle = Uncle->new(
 name => 'Bob', occupation => 'Uncle', age => 50
);

Chapter 5. Object Hacks Page 20 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

my $nephew = Nephew->new(
 name => 'Jacob', occupation => 'Agent of Chaos', age => 3
);

apply the appropriate views
Class::Trait->apply($uncle, 'TextView');
Class::Trait->apply($nephew, 'YAMLView');

display the results
$uncle->render();
$nephew->render();

Running the Hack
628024
The code produces:
1249985

My name is Bob. I am an Uncle and I am 50 years old.

age: 3
name: Jacob
occupation: Agent of Chaos

Hacking the Hack
628024
If that were all that traits and roles are, that would still be useful. There's more though!
Class::Trait also provides a does() method which you can use to query the
capabilities of an object. If you could possibly receive an object that already has a built-in
view (a debugging model, for example), call does to see if it does already do a view:
1249985

Class::Trait->apply($uncle, $view_type) unless $uncle->does('View');

You also don't have to have your traits inherit from a base trait. If all of the code that uses
objects and classes with traits checks does() instead of Perl's isa() method, you can
have traits that do the right thing without having any relationship, code- or inheritance-wise,
with any other traits.
1249985
This is especially useful for working with proxied, logged, or tested models and views.
1249985

Chapter 5. Object Hacks Page 21 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 50. Autogenerate Your Accessors
621961

1249985
Stop writing accessor methods by hand.
1249985
One of the Perl virtues is laziness. This doesn't mean not doing your work, it means doing
your work with as little effort as possible. When you find yourself typing the same code over
and over again, stop! Make the computer do the work.
1249985
Method accessors/mutators (getters/setters) are a case in point. Here's a simple object-
oriented module:
1249985

package My::Customer;

use strict;
use warnings;

sub new { bless { }, shift }

sub first_name
{
 my $self = shift;
 return $self->{first_name} unless @_;
 $self->{first_name} = shift;
 return $self;
}

sub last_name
{
 my $self = shift;
 return $self->{last_name} unless @_;
 $self->{last_name} = shift;
 return $self;
}

sub full_name
{
 my $self = shift;
 return join ' ', $self->first_name(), $self->last_name();
}

1;

and a small program to use it:
1249985

my $cust = My::Customer->new();
$cust->first_name('John');

Chapter 5. Object Hacks Page 22 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

$cust->last_name('Public');
print $cust->full_name();

That prints John Public.
1249985
Of course, if this is really is a customer object, it needs to do more. You might need to set a
customer's credit rating, the identity of a primary salesperson, and so on.
1249985
As you can see, the first_name and last_name methods are effectively duplicates of one
another. New accessors are likely to be the very similar. Can you automate this?
1249985

The Hack
628024
There are many modules on the CPAN which handle this, all in slightly different flavors. Here
are two—one of the most widespread and one of the least constraining.
1249985

Class::MethodMaker
621961
One of the oldest such module is Class::MethodMaker, originally released in 1996. It is
very feature rich, and although the documentation can seem a bit daunting, the module itself
is very easy to use. To convert the My::Customer code, write:
1249985

package My::Customer;

use strict;
use warnings;

use Class::MethodMaker[
 new => [qw(new)],
 scalar => [qw(first_name last_name)],];

sub full_name
{
 my $self = shift;
 return join ' ', $self->first_name(), $self->last_name();
}

The constructor is very straightforward, but what's up with first_name and
last_name? The arguments passed to Class::MethodMaker cause it to create two
getter/setters which contain scalar values. However, even though this code appears to
behave identically, it's actually much more powerful.
1249985
Do you want to check that no one ever set an object's first_name, as opposed to having
set it to an undefined value?

Chapter 5. Object Hacks Page 23 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

print $cust->first_name_isset() ? 'true' : 'false';

Even if you set first_name to undef, first_name_isset() will return true. Of course,
sometimes you will want to be unset, even after you've set it. That works, too:
1249985

$cust->first_name('Ozymandias');
print $cust->first_name_isset() ? 'true' : 'false'; # true
$cust->first_name_reset();
print $cust->first_name_isset() ? 'true' : 'false'; # false

Class::BuildMethods
621961
Class::MethodMaker also has built-in support for arrays, hashes, and many other useful
features. However, it requires you use a blessed hash for your objects. In fact, most of the
accessor builder modules on the CPAN make assumptions about your object's internals. One
exception to this is Class::BuildMethods.
1249985
Class::BuildMethods allows you to build accessors for your class regardless of whether
it's a blessed hash, arrayref, regular expression, or whatever. It does this by borrowing a trick
from inside out objects [Hack #43]. Typical code looks like:
1249985

package My::Customer;

use strict;
use warnings;

use Class::BuildMethods qw(
 first_name
 last_name
);

Note that you can use an array reference, if you prefer
sub new { bless [], shift }

sub full_name
{
 my $self = shift;
 return join ' ', $self->first_name(), $self->last_name();
}

1;

Use this class just like any other. Internally it indexes the accessor values by the address of
the object. It handles object destruction for you by default, but allows you to handle this
manually if you need special behavior on DESTROY (such as releasing locks).
1249985

Chapter 5. Object Hacks Page 24 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Class::BuildMethods is very simple, by design. Like most other accessor generators, it
provides some convenience features, but only in the form of default values and data
validation:
1249985

use Class::BuildMethods
 'name',
 gender => { default => 'male' },
 age => { validate => sub
 {
 my ($self, $age) = @_;
 carp 'You can't enlist if you're a minor'
 if ($age < 18 && ! $self->is_emancipated());
 }};

With this code, gender() will return male unless you set it to some other value. age()
shows how to provide flexible validation. Because the validate() method points to a
subroutine reference rather than providing special validation handlers, the author's
assumptions of how you should validate your code don't constrain you.
1249985
Class::BuildMethods always assumes that a setter takes a single value, so you must
pass references for arrays and hashes. It also does not provide class methods (a.k.a. static
methods). These limitations may mean this code doesn't fit your needs, but this module was
designed to be simple. You can read and understand the docs in one sitting.
1249985

Running the Hack
628024
Accessor generation, when it fits your needs, can remove a tremendous amount of grunt
work. This is hacking your brain. As a Perl programmer, true laziness means that you waste
less time on the fiddly bits so you can spend more time worrying about the hard stuff.
1249985

Chapter 5. Object Hacks Page 25 Return to Table of Contents

Chapter 5. Object Hacks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

