
Table of Contents

Chapter 3. Data Munging238.. 1
Hack 19. Treat a File As an Array621961.. 1
Hack 20. Read Files Backwards621961.. 3
Hack 21. Use Any Spreadsheet As a Data Source621961.. 5
Hack 22. Factor Out Database Code621961... 9
Hack 23. Build a SQL Library621961... 13
Hack 24. Query Databases Dynamically Without SQL621961.. 15
Hack 25. Bind Database Columns621961... 17
Hack 26. Iterate and Generate Expensive Data621961.. 18
Hack 27. Pull Multiple Values from an Iterator621961... 21

Chapter 3. Data Munging

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 3. Data Munging
238

Hacks 19-27
1249985
Perl has always been in love with data. No matter where you find it, Perl happily processes
and extracts and reports on files, databases, web pages, spreadsheets, other programs, and
anything that produces data. Perl's so happy to do this that it even overlooks brute-force,
rough manipulations. Hey, pragmatism works!
1249985
Perl can be gentle, too. A little subtlety, a little style and finesse, and you can write
maintainable, easy-to-understand code that's just as powerful as the wild-eyed forge-ahead-
at-all-costs just-do-the-job code. Why? It's often faster and more correct—as well as more
secure, more powerful, and shorter.
1249985
Sure, slinging data between sources sounds about as glamorous as slinging hash at the local
diner, but it doesn't have to be that way. Here are several ideas to munge that yummy data
with all of the elegance and style and power and clarity that you know you have.
1249985

Hack 19. Treat a File As an Array
621961

1249985
Pretend a big stream of data on disk is a nice, malleable Perl data structure.
1249985
One of the big disappointments in programming is realizing that, although you can think of
a text file as a long list of properly terminated lines, to the computer, it's just a big blob of
ones and zeroes. If all you need to do is read the lines of a file and process them in order,
you're fine. If you have a big file that you can't load into memory and can't process each line
in order...well, good luck.

Chapter 3. Data Munging Page 1 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

1249985
Fortunately, Mark Jason Dominus's Tie::File module exists, and is even in the core as of
Perl 5.8.0. What good is it?
1249985

The Hack
628024
Imagine you have a million-line CSV file of inventory data from a customer that's just not
quite right. You can't import it into a spreadsheet, because that's too much data. You need
to do some processing, inserting some lines and rearranging others. Importing the data into
a little SQLite database won't work either because trying to get the queries right is too
troublesome.
1249985
Tie::File won't help you write the rules for transforming lines, but it will take the pain
out of manipulating the lines of a file. Just:
1249985

use Tie::File;

tie my @csv_lines, 'Tie::File', 'big_file.csv'
 or die "Cannot open big_file.csv: !$\\n";

Running the Hack
628024
Suppose that your big CSV file contains a list of products and operations. That is, each line is
either a list of product data (product id, name, price, supplier, et cetera) or some operation
to perform on the previous n products. Operations take the form opname:number.
Obviously the file would be easier to process if the operations appeared before the data on
which to operate, but you can't always change customer data formats to something sane. In
fact, this might be the easiest way to clean the data for other processes.
1249985
Tie::File makes this almost trivial:
1249985

for my $i (0 .. $#csv_lines)
{
 next unless my ($op, $num) = $csv_lines[$i] =~ /^(\\w+):(\\d+)/;
 next unless my $op_sub = __PACKAGE__->can('op_' . $op);

 my $start = $i - $num;
 my $end = $i - 1;
 my @lines = @csv_lines[$start .. $end];
 my @newlines = $op_sub->(@lines);

 splice @csv_lines, $start, $num + 1, @newlines;
}

Chapter 3. Data Munging Page 2 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Okay, there is a bit of cleverness in finding the right range of lines to modify, but consider
how much trickier the code would have to be to do this while looping through the file a line
at a time.
1249985
Of course, you can use all of the standard array manipulation operations (push, pop,
shift, unshift, and splice) as necessary.
1249985

Hack 20. Read Files Backwards
621961

1249985
Process the most recent lines of a file first.
1249985
Perl's position in system administration is stable and secure, due in no small part to its fast
and flexible text-processing abilities. If you need to slice and dice log files, monitor services,
and send out messages, you could glue together the perfect combination of shell and
command-line utilities, or you could have Perl do it.
1249985
Of course, Perl is a general-purpose language and doesn't always provide every tool you
might need by default. For example, if you find yourself processing system logs often, you
might wish for a way to read files in reverse order, the most recent line first. Sure, you could
slurp all of the lines into an array and read the last one, but on a busy system with lots of huge
logs, that can be slow and memory-consuming.
1249985
Fortunately, there's more than one way to do it.
1249985

The Hack
628024
Yes, you could look up perldoc -F -X and find a file's size and read backwards until you
find the appropriate newline and then read forward...but just install
File::ReadBackwards from the CPAN instead.
1249985
Suppose you have a server process that continually writes its status to a file. You only care
about its current status (at least for now), not its historical data. If its status is up, everything
is happy. If its status is down, you need to panic and notify everyone, especially if it's 3 a.m.
on Boxing Day.

Chapter 3. Data Munging Page 3 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Simulate the program that writes its logs with:
1249985

#!/usr/bin/perl

use strict;
use warnings;

use Time::HiRes 'sleep';

local $| = 1;

for (1 .. 10000)
{
 my $status = $_ % 10 ? 'up' : 'down';
 print "$status\\n";
 sleep(0.1);
}

This program writes a status message to STDOUT ten times a second; nine of those are up
and the last is down. Run it and redirect it to a file such as status.log. In bash, this is:
1249985

$ perl write_fake_log.pl > status.log &

Running the Hack
628024
With status.log continually growing with newer information, finding the most recent status
is easy with File::ReadBackwards:
1249985

use FileReadBackwards;

my $bw = File::ReadBackwards->new('status.log')
 or die "Cannot read 'status.log': $!\\n";

exit(0) if $bw->readline() =~ /up/;

panic() ...

The program is straightforward. Create a File::ReadBackwards object by passing the
name of the file you want to read. Then, every time you call readline() on the object,
you'll receive the previous line of the file, starting with the last line and working backwards
to the first line.
1249985

Chapter 3. Data Munging Page 4 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
Note that the current version of the module (1.04) does not flock the file it reads, so you
may read a partial line. Also, you may get a partial line, depending on how large your
filesystem's buffers are and how much the process has written to it. If either is important to
you, the source code is short, full of good comments, and easy to modify—but if you just
need the last n lines of a file, this is the easy way.
1249985

Hack 21. Use Any Spreadsheet As a Data Source
621961

1249985
Make your data analysis independent of the spreadsheet program.
1249985
Spreadsheets are useful for holding structured data, usually based on columns and rows.
Most often part of the data is calculated data from other cells in the same spreadsheet.
1249985
If you want to work with that data, you face the problem of too many standards and programs.
Writing a script that has to read the data from the spreadsheet is more writing an interface
to the spreadsheet than actually working with the interesting data.
1249985

Accessing Cell Data
628024
The Spreadsheet::Read module gives you a single interface to the data of most
spreadsheet formats available, hiding all the troublesome work that deals with the parsers
and the portability stuff, yet being flexible enough to get to the guts of the spreadsheet.
1249985
It's easy to use:
1249985

use Spreadsheet::Read;

my $ref = ReadData('test.xls');
my $fval = $ref->[1]{A3};
my $uval = $ref->[1]{cell}[1][3];

Here $ref is a reference to a structure that represents the data from the spreadsheet
(test.xls). The reference points to a list (the worksheets) of hashes (the data).

Chapter 3. Data Munging Page 5 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Every cell has two representations: either access it by its name (A3), in which case the interface
gives you the formatted value, or the cell hash, in which case you get the unformatted
value of the cell.
1249985

Do I need Spreadsheet::Read for that?
621961
No you don't, but it makes life easier. Setting aside all the good things of the various user
interfaces for the available spreadsheets (95% probably Excel or OpenOffice.org), coding
access to the cell data in the available native parsers is not always as easy as it should be.
These interfaces try to give you full control, but you have no easy way to access the data.
1249985
Some examples for native equivalences of the previous code snippet are:
1249985

• Microsoft Excel

• OpenOffice.org

• Comma Separated Values

They all show you the contents of cell A3, where you can interpret the CSV file as a collection
of rows (the lines) and columns (the fields).
1249985
Spreadsheet::Read gives the same interface to all of these, but uses the native parser in
the background. The only thing you have to alter if you change spreadsheet formats is the
ReadData() call:
1249985

my $ref = ReadData('test.xls');

or
my $ref = ReadData('test.sxc');

or
my $ref = ReadData('test.csv');

which will make your code much more readable, maintainable, and portable. Your code won't
depend on the spreadsheet format used by the people shipping you the data.
1249985

Accessing a data column
621961
Accessing a single field is good if you know the field you need to access, but quite often, your
script has to analyze the data (structure) itself. For that you need a full set of data. Spreadsheet
user interfaces always refer to the data location as a (column, row) pair, where (Perl)
programmers more often use the (row, column) way of indexing. Perl starts indexing at

Chapter 3. Data Munging Page 6 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

0, where spreadsheets usually start with 1. Spreadsheet::Read starts with 1 for the data
and uses the zeroth field for internal control data. To fetch a complete column:
1249985

Fetch me column "B"
my @colB = @{ $ref->[1]{cell}[2] };
shift @colB;

or:
1249985

my @colB = @{$ref->[1]{cell}[2]}[1..$#{$ref->[1]{cell}[2]}];

Accessing a row of data
621961
Likewise for fetching a complete row:
1249985

Fetch me row 4
my @row4 = map { $ref->[1]{cell}[$_][4] } 1..$ref->[1]{maxcol};

Using programmer-style indexing
621961
If you need to go over and through the complete set of data and prefer to have the data in
a list of rows, instead of a list of columns, indexed from 0 not 1, Spreadsheet::Read offers
a function to convert that for you:
1249985

use Spreadsheet::Read qw(rows);

Get all data in a row oriented list
my @rows = rows($ref->[1]);

A3 is now in $rows[2][0]

Showing all data in a spreadsheet
621961
Want to show all of the data in a spreadsheet?
1249985

use Spreadsheet::Read;

my $file = 'test.xls';
my $spreadsheet = ReadData($file) or die "Cannot read $file\\n";
my $sheet_count = $spreadsheet->[0]{sheets} or die "No sheets in $file\\n";

for my $sheet_index (1 .. $sheet_count)
{
 # Skip empty worksheets

Chapter 3. Data Munging Page 7 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my $sheet = $spreadsheet->[$sheet_index] or next;

 printf("%s - %02d: [%-12s] %3d Cols, %5d Rows\\n", $file,
 $sheet_index, $sheet->{label}, $sheet->{maxcol}, $sheet->{maxrow});

 for my $row (1 .. $sheet->{maxrow})
 {
 print join "\\t" => map {
 $sheet->{cell}[$_][$row] // "-" } 1 .. $sheet->{maxcol};
 print "\\n";
 }
}

The output will be something like:
1249985

test.xls - 01: [Sheet1] 4 Cols, 4 Rows
A1 B1 - D1
A2 B2 - -
A3 - C3 D3
A4 B4 C4 -
test.xls - 02: [Second Sheet] 5 Cols, 3 Rows
x - x - x
- x - x
x x x

Note that the example uses the defined-or operator (//) from Perl 6. This is available as
a patch for Perl 5.8.x and will be available in Perl 5.10.
1249985
Empty cells are often undef values, which is not the same as an empty string "". If you use
the above code with strict and warnings, there will be a warning for every empty cell if
you do not use the defined-or. Showing empty fields as - is more visibly attractive than using
whitespace.
1249985
Written in more portable code, this is equivalent to:
1249985

print join "\\t" => map
{
 my $val = $sheet->{cell}[$_][$row];
 defined $val ? $val : "-";
} 1 .. $sheet->{maxcol};

How It Works
628024
Spreadsheet::Read does no parsing of the spreadsheets itself, instead using the native
parsers to do the hard work. For Microsoft Excel, it uses Spreadsheet::ParseExcel, for
OpenOffice.org, Spreadsheet::ReadSXC, and for CSV, Text::CSV_XS.
1249985

Chapter 3. Data Munging Page 8 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Using Spreadsheet::Read, you do not have to worry about spreadsheet internal
formats, or the way the native parser presents the data to the programmer. The interface is
the same and is independent of the spreadsheet you use. If you need to get to the guts for
anything this interface does not (yet) support, you can always fall back to the real parser,
because without it, Spreadsheet::Read does not work anyway.
1249985
Spreadsheet::Read tries to achieve a set of commonly supported features of all of the
parsers it can use and aims to extend that in the future to make the use of the native parsers
unnecessary (such as color attributes, display formats, font face and sizes, and character
encoding). All native parsers support that in a different way, if they support it at all. For
example, CSV does not have a defined way of identifying the character encoding of the data.
1249985

Hacking the Hack
628024
The more spreadsheet formats this module supports, the more value it gains in portability
and eventually for your script's maintainability.
1249985
Currently, the module supports a hook for Spreadsheet::Perl, but there is no parser
support for it yet. It would probably do this module well to isolate the conversions for the
different parsers in separate modules, such as Spreadsheet::Read::Excel, to avoid
cluttering the main interface.
1249985
The module comes with one conversion script: xlscat, which takes a file in any of the
supported spreadsheet formats and converts it to either readable ASCII or CSV. Use xlscat
-? to see the supported options. If you have useful scripts, they may be worth bundling with
this module.
1249985
The module does not die if any of the parsers is not installed, making it useful if you only use
OpenOffice.org and do not yet bother with Excel (or vice versa). It is quite easy and valuable
to add your own parser support and supply a patch to the author to include it in future
releases.
1249985

Hack 22. Factor Out Database Code
621961

1249985

Chapter 3. Data Munging Page 9 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Separate SQL and Perl to make your life easier.
1249985
Small scripts have a way of growing up into essential programs. Unfortunately, they don't
always mature design-wise. Far too often a business-critical program starts life as a quick-
and-dirty just-get-it-done script and evolves mostly by accretion, not the clear and
thoughtful hand of good design.
1249985
This is especially true in programs that work with data in various formats or which embed
other languages such as HTML or SQL. Fortunately, it only takes a little bit of discipline—if
no small amount of work—to clean up this mess and make your code somewhat easier to
maintain.
1249985

The Hack
628024
The only trick is to remove all SQL from within the code and to isolate it in its own module.
You don't have to abstract away or factor out all of the database access code or the various
means by which you fetch data or bind to parameters—just untangle the Perl and non-Perl
code.
1249985
Be strict. Store every instance of SQL in the module. For example, if you have a subroutine
such as:
1249985

sub install_nodemethods
{
 my $dbh = shift;

 my $sth = $dbh->prepare(<<'END_SQL');
SELECT
 types.title AS class, methods.title AS method, nodemethod.code AS code
FROM
 nodemethod
LEFT JOIN
 node AS types ON types.node_id = nodemethod.supports_nodetype
END_SQL

 $sth->execute();

 # ... do something with the data
}

store the SQL in the SQL module in its own subroutine:
1249985

package Lots::Of::SQL;

use base 'Exporter';
use vars '@EXPORT';

Chapter 3. Data Munging Page 10 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

@EXPORT = 'select_nodemethod_attributes';

sub select_nodemethod_attributes ()
{
 return <<'END_SQL';
 SELECT
 types.title AS class,
 methods.title AS method,
 nodemethod.code AS code
 FROM
 nodemethod
 LEFT JOIN
 node AS types ON types.node_id = nodemethod.supports_nodetype
 END_SQL
}

Running the Hack
628024
Now call the query from the refactored original subroutine:
1249985

use Lots::Of::SQL;

sub install_nodemethods
{
 my $dbh = shift;

 my $sth = $dbh->prepare(select_nodemethod_attributes());
 $sth->execute();

 # ... do something with the data
}

Putting the empty prototype on the SQL abstraction function tells Perl
that it can inline the (constant) return value whenever other code calls
this function. You get the benefit of hiding all that SQL behind a readable
name without paying a runtime price.
1249985

Hacking the Hack
628024
Of course, stuffing all of that code into one potentially huge module isn't exactly the end
result of refactoring—but with a bit more polish, it's a good step. Exporting all of the SQL
subroutines is overkill that doesn't really balance out the niceness of being able to maintain
the same SQL just once for any application that uses the database.

Chapter 3. Data Munging Page 11 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Why not export just what you need?
1249985
Consider that every operation on a table is its own exporter group, then create an exporter
tag for that operation. For example, if you have the tables users, stories, and
comments, group each type of SQL query into a tag:
1249985

package Lots::Of::SQL;

use base 'Exporter';
use vars qw(@EXPORT_OK %EXPORT_TAGS);

@EXPORT_OK = qw(
 select_user insert_user update_user
 select_story insert_story update_story
 select_comment insert_comment
 select_stories
 select_user_stories
 select_user_comments
);

%EXPORT_TAGS = (
 user =>
 [qw(
 select_user insert_user update_user select_user_stories
 select_user_comments
)],
 story =>
 [qw(
 select_story insert_story update_story select_user_stories
 select_stories
)],
 comment => [qw(select_comment insert_comment select_user_comments)],
);

Then a hypothetical User module can use Lots::Of::SQL ':user'; and receive only
the SQL it needs.
1249985
This isn't the end of the story. Suppose you want DBAs or non-Perl types to edit and reuse
the SQL. "Build a SQL Library" [Hack #23] has ideas.
1249985
Perhaps maintaining those export lists by hand is too much work. Using attributes [Hack
#45] could simplify your life.
1249985
Maybe static SQL written for a single database isn't your style. Try generating it with a
templating system or using an abstract, Perlish representation [Hack #24] instead. You might
even switch to a persistence or object-relational mapping module such as Class::DBI.
There are plenty of options, once you untangle SQL from Perl.
1249985

Chapter 3. Data Munging Page 12 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 23. Build a SQL Library
621961

1249985
Store queries where non-programmers can maintain them.
1249985
Most serious programmers know the dangers of mixing their user interface code (HTML, GUI,
text) with their business logic. When you have a designer making things pretty, it's too much
work for any programmer to integrate change after change to font size, placement, and color.
1249985
If you have a DBA, the same goes for your SQL.
1249985
Why not keep your queries where they don't clutter up your code and where your DBA can
modify and optimize them without worrying about a misplaced brace or semicolon breaking
your software? If you use SQL::Library with a plain text file under version control, you
can.
1249985

The Hack
628024
Install SQL::Library from the CPAN. Extract all of the SQL from your code into one place
[Hack #22], and then put it all in a plain text file in INI format:
1249985

[select_nodemethod_attributes]
SELECT types.title AS class,
 methods.title AS method,
 nodemethod.code AS code
FROM nodemethod
LEFT JOIN node AS types
ON types.node_id = nodemethod.supports_nodetype

The section title (the names in square brackets) is the name of the query and the rest is the
SQL. Save the file (for example, nodemethods.sql). Then from your code, create a
SQL::Library object:
1249985

use SQL::Library;

my $library = SQL::Library->new({ lib => 'nodemethods.sql' });

Chapter 3. Data Munging Page 13 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Running the Hack
628024
Whenever you need a query, retrieve it by name from the library:
1249985

my $sth = $dbh->prepare($library->retr('select_nodemethod_attributes'));

From there, treat it as normal.
1249985

Hacking the Hack
628024
This isn't very exciting until you get to more complex queries—where the order of joins is
important, where the exact nature of queries changes, or where there's lots of manipulation
and editing going on. Being able to modify the SQL without touching the code is very handy.
1249985
For example, consider a reporting application. Choose a filename to hold the queries. Write
a bit of code that processes the queries and feeds them to a library to produce graphs or
spreadsheets. (The trick with NAME_lc in "Bind Database Columns" [Hack #25] is very useful
here.) Then just loop through all of the queries in the library, preparing and executing them,
and processing the results:
1249985

use SQL::Library;

my $library = SQL::Library->new({ lib => 'daily_reports.sql' });

for my $query ($library->elements())
{
 my $sth = $dbh->prepare($query);
 my %columns;

 $sth->bind_columns(\\@columns{ @{ $sth->{NAME_lc} } });
 $sth->execute();

 process_report(\\%columns);
}

Now whenever your users want another query, just write it and store it in the appropriate
library file. You never have to touch the reporting program (as long as it can draw its pretty
graphs correctly)—and if you can teach your users to write their own queries, you can make
your job that much easier.
1249985

Chapter 3. Data Munging Page 14 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 24. Query Databases Dynamically Without SQL
621961

1249985
Write Perl, not SQL.
1249985
SQL is a mini-language with its own tricks and traps. Embedded SQL is the bane of many
programs, where readability and findability is a concern. Generated SQL isn't always the
answer either, with all of the quoting rules and weird options.
1249985
In cases where you don't have a series of fully baked SQL statements you always run—where
query parameters and even result field names come from user requests, for example—let
SQL::Abstract do it for you.
1249985

The Hack
628024
Create a new SQL::Abstract object, pass in some data, and go.
1249985
Suppose you have a reporting application with a nice interface that allows people to view
any list of columns from a set of tables in any order with almost any constraint. Assuming a
well-factored application, the model might have a method resembling:
1249985

use SQL::Abstract;

sub get_select_sth
{
 my ($self, $table, $columns, $where) = @_;

 my $sql = SQL::Abstract->new();
 my ($stmt, @bins) = $sql->select($table, $columns, $where);
 my $sth = $self->get_dbh()->prepare($stmt);

 $sth->execute();
 return $sth;
}

$table is a string containing the name of the table (or view, preferably) to query,
$columns is an array reference of names of columns to view, and $where is a hash reference
associating columns to values or ranges.
1249985

Chapter 3. Data Munging Page 15 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If a user wants to query the users table for login_name, last_accessed_on, and
email_address columns for all users whose signup_date is newer than 20050101, the
calling code might be equivalent to:
1249985

my $table = 'users';
my $columns = [qw(login_name last_accessed_on email_address)];
my $where = { signup_date => { '>=', '20050101' } };
my $sth = $model->get_select_sth($table, $columns, $where);

The returned $sth is a normal iterable DBI statement handle, suitable for passing to a
templating system or other user interface view component. This is very useful for selecting
only the interesting parts of a table or view.
1249985

Hacking the Hack
628024
There's no reason you have to let users select the kind of information they want to view.
Perhaps you have system administrators who should be able to see (and update) any non-
key column in the users table, managers who should be able to see and update most
personnel-related columns, and normal users who should only see demographic
information.
1249985
You can use the same underlying model to fetch information from the database—just add
a layer over it to exclude requested columns that the particular user of the system shouldn't
see. Assuming that you have an object representing the user type with a method that returns
the allowed columns for a particular table, call restrict_columns() before
get_select_sth():
1249985

sub restrict_columns
{
 my ($self, $user, $table, $columns) = @_;
 my $user_columns = $user->get_columns_for($table);
 return [grep { exists $user_columns->{ $_ } }] @$columns;
}

Instead of maintaining separate SQL queries for each type of user accessing the system, you
can maintain a list somewhere of appropriate view and update columns for each type of user,
reusing the query generator. If you keep the list of types and allowed columns in the database
or in a configuration file somewhere, you have data-driven programming and an easy-to-
maintain system.
1249985

Chapter 3. Data Munging Page 16 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 25. Bind Database Columns
621961

1249985
Use placeholders for data retrieved from the database, not just sent to it.
1249985
Experienced database programmers know the value of placeholders in queries.
(Inexperienced database programmers will soon find out why they're important, when
unquoted data breaks their programs.) When you execute a query and pass in values, the
database automatically quotes and inserts them into the prepared query, usually making for
faster, and always making for safer, code.
1249985
Perl's DBI module has a similar feature for retrieving data from the database. Instead of
copying column after column into variables, you can bind variables to a statement, so that
they will contain the appropriate values for each row fetch()ed.
1249985
Of course, this technique appears less flexible than retrieving hashes from the DBI, as it relies
on the order of data returned from a query and loads of scalar variables...or does it?
1249985

The Hack
628024
Suppose that you have a templating application that needs to retrieve some fields from a
table[1] and wants to contain the results in a hash. You could write a subroutine named
bind_hash():
1249985

[1] Or, better, a view or stored procedure....

sub bind_hash
{
 my ($dbh, $hash_ref, $table, @fields) = @_;

 my $sql = 'SELECT ' . join(', ', @fields) . " FROM $table";
 my $sth = $dbh->prepare($sql);

 $sth->execute();
 $sth->bind_columns(\\@$hash_ref{ @{ $sth->{NAME_lc} } });

 return sub { $sth->fetch() };
}

Chapter 3. Data Munging Page 17 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The only really tricky part of the code is using the reference operator (\\) on a hash slice.
When fed a list, this operator produces a list of references to the values in the list—and a hash
slice returns a list of the values, themselves scalars. The NAME_lc property of an active
statement handle contains an anonymous array of lowercased field names that the statement
will retrieve. This can improve portability.
1249985

Running the Hack
628024
Suppose that you have a users table[2] and you want to retrieve the names, birthdays, and
shoe sizes of all of the users, and print them nicely. That's easy:
1249985

[2] Or view or stored procedure....

assume you already have $dbh connected

my %user;

my $user_fetch = bind_hash($dbh, \\%user, qw(users name dob shoe_size));

while ($user_fetch->())
{
 print "$user{name}, born on $user{dob}, wears a size " .
 "$user{shoe_size} shoe\\n";
}

This hack only works well when you're fetching a row at a time. It's also not the right way to
build a quick and easy object-relational mapper, because by the time you need a new hash
for each row, you've already bound it. That's okay—it's still very fast and flexible and lends
itself well to the iterator technique [Hack #26].
1249985

Hack 26. Iterate and Generate Expensive Data
621961

1249985
Hide lists, streams, and expensive data structures behind a simple interface.
1249985
Perl's fundamental aggregate data types—hashes and arrays—are wonderfully flexible and
often just what you want. That's often, not always. Sometimes you really need to process
data that's expensive to calculate, part of a huge list that won't fit into memory, or just never
ends.

Chapter 3. Data Munging Page 18 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
When that happens, use a function reference as a data structure. Seriously.
1249985

The Hack
628024
Imagine that you've just taken a job as a network administrator, replacing someone who
completely failed to do any documentation. You know that you have all sorts of devices on
the network with static IP addresses and you have a rough idea of the network blocks, but
you don't know which addresses are in use.
1249985
Rather than finding every device, checking its settings, and reassigning things, you can write
a little program to loop through each address and try to contact the device. It's a good first
approximation. How do you check every netblock though? Use Net::Netmask to generate
a list of IP addresses.
1249985
That could get messy though—do you really want to loop over a list of potentially millions
of addresses? This is a good place to use a generator.
1249985

use Net::Netmask;

sub create_generator
{
 my @netmasks;

 for my $block (@_)
 {
 push @netmasks, Net::Netmask->new($block);
 }

 my $nth = 1;

 return sub
 {
 return unless @netmasks;
 my $next_ip = $netmasks[0]->nth($nth++);

 if ($next_ip eq $netmasks[0]->last())
 {
 shift @netmasks;
 $nth = 1;
 }

 return $next_ip;
 }
}

Chapter 3. Data Munging Page 19 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Running the Hack
628024
Pass create_generator() a list of IP network blocks and netmasks and it will return a
function reference that, when called, returns either the next address in the series or the
undefined value if you've exhausted everything. It does this by closing over two variables,
the list of Net::Netmask objects in @netmasks and a counter variable $nth. The latter
represents the current position in the list of available addresses for the current
Net::Netmask object.
1249985
To test an IP address for an active device, just pull a new address from the iterator by executing
it:
1249985

my $next_address = create_generator('192.168.1.0/8', '10.0.0.0/16');

while (my $address = $next_address->())
{
 # try to communicate with machine at $address
}

If you have a huge group of addresses to check, this is much more memory- and time-friendly
than generating a list of hundreds of thousands of addresses all at once.
1249985

Hacking the Hack
628024
With a generator as large as this one and the inevitable delay for network communication,
you might want a way to suspend and resume from a certain point. If you turned the
generator function reference into an object, you could add a serialize() or store
() method that saves the current state. Then you can resume from almost any point. All
you need to save is the base() and bits() information from each active
Net::Netmask object (presumably in the proper order) and the current value of $nth.
1249985
Of course, in a program that probably has network communication as its most significant
bottleneck, you may want to check several addresses in parallel. "Pull Multiple Values from
an Iterator" [Hack #27] can help.
1249985
Mark Jason Dominus's Higher Order Perl (Morgan Kaufmann, 2005) shows how to use
functional programming techniques in Perl, including iterators and generators. This book is
worth studying in detail.
1249985

Chapter 3. Data Munging Page 20 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 27. Pull Multiple Values from an Iterator
621961

1249985
Make your iterators and generators highly context-sensitive.
1249985
Iterators and generators are fantastically useful for data that takes too long to generate, may
never run out, or costs too much memory to keep around. Not every problem works when
reading one item at a time though, and finding a nice syntax for pulling only as many items
as you need can be tricky.
1249985
Perl's notion of context sets it apart from many other programming languages by doing what
you mean. When you want a single item, it will give you a single item. When you want nothing,
it can give you nothing. When you want a list, it will oblige. That power is yours through the
wantarray() operator, too.
1249985
Wouldn't it be nice if Perl could tell how many items you want from an iterator or generator
without you having to be explicit? Good news—it can.
1249985

Better Context than wantarray()
628024
Robin Houston's Want module extends and enhances wantarray() to give more details
about the calling context of a function. Besides distinguishing between void and scalar
context, Want's howmany() function can tell how many list items the calling context wants,
from one to infinity.
1249985

The Code
628024
Consider a simple generator that implements a counter. It takes the initial value, the
destination value, and an optional step size (which defaults to 1). When it reaches the
destination, it returns the undefined value.
1249985

sub counter
{
 my ($from, $to, $step) = @_;
 $step ||= 1;

Chapter 3. Data Munging Page 21 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 return sub
 {
 return if $from > $to;
 my $value = $from;
 $from += $step;
 return $value;
 };

}

Creating and using a counter, perhaps one that counts from 1 to 10 by threes, is easy:
1249985

my $counter = counter(1, 10, 3);
my $first = $counter->();

What if you want the next three steps though? You could call it in a loop, but wouldn't it be
nicer to call it with:
1249985

my ($first, $second, $third) = $iterator->();

That's where multi_iterator() comes in. Feed it an iterator or generator and it returns
a function that acts as a drop-in replacement for the iterator or generator but respects the
calling context:
1249985

use Want 'howmany';

sub multi_iterator
{
 my ($iterator) = @_;

 return sub
 {
 my $context = wantarray();

 return unless defined $context;
 return $iterator->() unless $context;
 return map { $iterator->() } 1 .. howmany();
 };
}

The multi-iterator first must check for void context (so it returns nothing and never kicks the
contained iterator), then scalar context (so it can kick the iterator once). Then it kicks the
iterator as many times as necessary to produce the number of expected values. Whatever
the behavior of the contained iterator or generator when it exhausts its possible values, the
multi-iterator will pass along to the caller.
1249985
This takes one more step than before, but the results speak for themselves:
1249985

my $counter = counter(1, 10, 3);
my $iterator = multi_iterator($counter);

Chapter 3. Data Munging Page 22 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

multiple variables, list context
my ($first, $second) = $iterator->();

void context
$iterator->();

single variable, scalar context
my $third = $iterator->();

single variable, list context
my ($fourth) = $iterator->();

$first contains the value 1 and $second the value 4. So far so good. $third contains 7
and $fourth 10. All subsequent accesses will contain undef.
1249985

Hacking the Hack
628024
Being able to iterate over multiple iterators in parallel would be very useful. That's doable
here.
1249985
This technique works outside of iterators as well; in any place you distinguish between list
and scalar context and may need to know more about one-element list context versus n-
element list context, howmany() is useful.
1249985
Want has many other interesting context-related features; it's worth exploring further on its
own. Fortunately, its documentation is very useful.
1249985
Be careful about assigning the results of the iterator call to an array, which effectively has
infinite elements. It may not do what you want if you have an infinite generator or iterator
(unless you want an infinitely large array consuming infinite amounts of memory and taking
infinite time to complete).
1249985

Chapter 3. Data Munging Page 23 Return to Table of Contents

Chapter 3. Data Munging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

