
Table of Contents

Chapter 8. Know Thy Code... 1
Hack 70. Understand What Happens When.. 1
Hack 71. Inspect Your Data Structures.. 5
Hack 72. Find Functions Safely... 7
Hack 73. Know What's Core and When... 10
Hack 74. Trace All Used Modules.. 12
Hack 75. Find All Symbols in a Package... 15
Hack 76. Peek Inside Closures.. 18
Hack 77. Find All Global Variables.. 21
Hack 78. Introspect Your Subroutines... 23
Hack 79. Find Imported Functions... 27
Hack 80. Profile Your Program Size.. 29
Hack 81. Reuse Perl Processes.. 32
Hack 82. Trace Your Ops.. 33
Hack 83. Write Your Own Warnings.. 36

Chapter 8. Know Thy Code

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 8. Know Thy Code
155

Hacks 70-83
1249985
Introspection isn't just a self-help exercise. It's a way of asking Perl what it thinks about your
program.
1249985
Why does that matter? There are plenty of advanced techniques that, properly applied, will
save you much time, effort, and trouble. That word "properly" is the sticky one though—
unless you know what's proper and what's not, you'll have difficulty mastering advanced
Perl.
1249985
Despite all the rich nooks and crannies and hidden corners of the core, there are only a few
techniques you absolutely must understand. Study well the hacks here and you'll absorb
higher lore and unlock secrets that will help you customize Perl, the language, for your
specific needs.
1249985

Hack 70. Understand What Happens When
621961

1249985
Tell compile time from runtime.
1249985
Dynamic languages are flexible, neither requiring you to know all of the code you're ever
going to run in a program at compile time nor necessarily failing if it's not there at runtime.
Perl can live with some ambiguity about seeing functions you haven't defined yet (if ever)
and referring to variables that don't necessarily have any values yet.
1249985

Chapter 8. Know Thy Code Page 1 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

That doesn't always make life easier for programmers. While Perl's pretty good about
knowing what happens when, reading the source code doesn't always make it clear. While
it may seem obvious to you that program execution happens top to bottom that's not always
how it works.
1249985

The Hack
628024
Here's what actually happens.
1249985

Compilation
621961
When you first run your program, Perl reads the file and starts compiling from top to bottom.
At this point, it looks for symbols (variables and subroutines), registers them appropriately,
and converts the text of the program into an internal representation that it can execute. If it
encounters syntax errors, it aborts and reports an error message.
1249985
Of course, some constructs aren't syntax errors in normal use:
1249985

#!/usr/bin/perl

my $age = 10;
print $aeg;

Perl will only complain about an undeclared variable $aeg when running under the
strict pragma. However, the question of how this works is less obvious when you consider
that Perl reports this error before running the code. Consider:
1249985

#!/usr/bin/perl
use strict;

my $age = 10;
print $aeg;

The secret is that use internally becomes:
1249985

BEGIN
{
 require 'strict';
 strict->import() if strict->can('import');
}

Perl then loads the strict module, if it can, and starts compiling that, returning to the main
program when it finishes.
1249985

Chapter 8. Know Thy Code Page 2 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Whenever Perl encounters a BEGIN block, it executes its contents immediately, just as it
encounters them. Of course, it doesn't execute code outside of the block that a programmer
might think is important to the block:
1249985

my $name = 'Spot';

BEGIN { print "Hello, $name!\\n" }

Though the BEGIN block executes as soon as Perl encounters it, and though Perl has already
associated $name with the appropriate storage spot inside and outside of the block, the
assignment will not happen until runtime; the BEGIN block executes before the assignment
happens, even if it comes later in the file.
1249985
Even though it may seem correct that this would work if it were part of a module loaded from
the main program (at least with use), the internal BEGIN will still execute before the rest of
the code in the file.
1249985

Initialization
621961
As soon as Perl finishes compiling, it runs any CHECK blocks found—but in reverse order of
their declaration. For example:
1249985

#!/usr/bin/perl

BEGIN { print "First!\\n" }
CHECK { print "Third!\\n" }
CHECK { print "Second!\\n" }

prints:
1249985

First!
Second!
Third!

INIT blocks run after all CHECK blocks in order of their appearance:
1249985

#!/usr/bin/perl

BEGIN { print "First!\\n" }
INIT { print "Fourth!\\n" }
CHECK { print "Third!\\n" }
CHECK { print "Second!\\n" }
INIT { print "Fifth!\\n" }

prints:
1249985

First!
Second!

Chapter 8. Know Thy Code Page 3 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Third!
Fourth!
 Fifth!

Runtime
621961
When running, execution order happens as you might expect. There aren't any surprises
unless you do something tricky (as per most of the rest of the book). One change is that
running code by evaling a string—after runtime starts—will only execute any BEGIN blocks
found as a result of that operation, not CHECK or INIT blocks.[1] This program:
1249985

[1] This is why Attribute::Handlers and persistent interpreters such as mod_perl do not get along by default.

#!/usr/bin/perl

 BEGIN { print "First!\\n" }
 INIT { print "Fourth!\\n" }
 CHECK { print "Third!\\n" }
 CHECK { print "Second!\\n" }
 INIT { print "Fifth!\\n" }

 eval <<END_EVAL;
 BEGIN { print "BEGIN in eval\\n!" }
 CHECK { print "CHECK in eval\\n!" }
 INIT { print "INIT in eval\\n!" }
 END_EVAL

prints:
1249985

First!
Second!
Third!
Fourth!
Fifth!
BEGIN in eval!

Cleanup
621961
Finally, when it comes time for the program to exit (but not with a compilation error), Perl
runs all END blocks in reverse order of their appearance:
1249985

#!/usr/bin/perl

 BEGIN { print "First!\\n" }
 INIT { print "Fourth!\\n" }
 CHECK { print "Third!\\n" }
 CHECK { print "Second!\\n" }
 INIT { print "Fifth!\\n" }

 eval <<END_EVAL;
 BEGIN { print "BEGIN in eval\\n!" }
 CHECK { print "CHECK in eval\\n!" }
 INIT { print "INIT in eval\\n!" }

Chapter 8. Know Thy Code Page 4 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 END { print "Sixth!\\n" }
 END_EVAL
 END { print "Seventh!\\n" }
 END { print "Eighth!\\n" }

prints:
1249985

First!
Second!
Third!
Fourth!
Fifth!
BEGIN in eval!
Sixth!
 Seventh!
 Eighth!

Why did the END block in the eval execute first? Although it's an END block and Perl
encountered the string first, it executes that block at runtime, so it's the final END block
compiled and, thus, the first to execute.
1249985
See perlmod for more details.
1249985

Hack 71. Inspect Your Data Structures
621961

1249985
Peek into a reference and see how far down it goes.
1249985
How do you know the structure of a Perl reference? Is the reference to a hash, an array, an
object, a scalar, or something else? Many people suggest the use of Data::Dumper. This
module has a method that dumps the data structure as a text string. It works very well, but
its main purpose is to serialize a data structure into a string you can eval to recreate the
reference and its data.
1249985
Most of the time I don't want to save state or eval anything. I just want to see a text
representation of the reference. I really like the representation of a data structure that using
the x command within the Perl debugger provides.
1249985

Chapter 8. Know Thy Code Page 5 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Dumping References Outside the Debugger
628024
Is it possible to produce this from a Perl program without using the debugger? Yes!
1249985

use strict;
use Dumpvalue;

my $d = Dumpvalue->new();
my $hash =
{
 first_name => 'Tim',
 last_name => 'Allwine',
 friends => ['Jon','Nat','Joe'],
};
$d->dumpValue(\\$hash);

This produces the output:
1249985

-> HASH(0x80a190)
 'first_name' => 'Tim'
 'friends' => ARRAY(0x800368)
 0 'Jon'
 1 'Nat'
 2 'Joe'
 'last_name' => 'Allwine'

This is the same output that the debugger produces. The HASH line says that $hash is a hash
reference. The next level of indentation shows the keys of the hash and their corresponding
values. first_name for example points to the string Tim but friends points to an array
reference. The contents of that array appear, one at a time, indented one step further with
their indices within the array and their values.
1249985
This technique is handy when you have to maintain code written by other people. Suppose
that you're editing a web program with over 2,000 lines of code. Deep in the code, you find
a reference named $someref and you want to see its contents. At the top of the file, add
the lines:
1249985

use Dumpvalue;
my $d = Dumpvalue->new();

Then while $d and $someref are in scope, add the line:
1249985

$d->dumpValue(\\$someref);

When you run it, the code will dump $someref.
1249985

Chapter 8. Know Thy Code Page 6 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Printing to a File
628024
One complaint with this technique is where dumpValue() prints. It usually prints to
STDOUT, by default, but actually it prints to the currently selected output filehandle. That's
a hint. Add a couple of lines to change the filehandle:
1249985

open my $fh, '>dump.out';
my $old_fh = select($fh);
$d->dumpValue(\\$ref);
close $fh;
select($old_fh);

Now when you run the program, the dump string will end up in a file called dump.out.
1249985

Output in CGI or mod_perl Programs
628024
Dumping the output in CGI or mod_perl programs is more complex. Often you don't want
to print to a filehandle at all, as it may change the rendering of the output drastically. Instead,
use IO::Scalar to create a filehandle to a string and select that filehandle. Then,
undirected print or dumpValue() calls will go to this new filehandle. Select the old
filehandle and carry on with your program, printing $dump_str when you want.
1249985

use IO::Scalar;

my $dump_str;
my $io = IO::Scalar->new(\\$dump_str);
my $oio = select($io);

print '<pre>',"\\n"; # goes to $dump_str
$d->dumpvalue(\\$someref); # as does this
print '</pre>'; # and this too

select($oio); # old filehandle
print $dump_str; # stdout again when you want it to

Hack 72. Find Functions Safely
621961

1249985
Look for code to execute without risking explosions.
1249985

Chapter 8. Know Thy Code Page 7 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The ultimate goal of designing reusable code is genericity—being able to write useful pieces
of code that allow future expansion without (much) difficulty or modification. Complete
genericity is difficult, as your code has to make some assumptions somewhere.
1249985
Perl's very flexible about how you interact with other code. You can fold, spindle, mutilate,
and mangle symbols in any package you want at almost any time. Although this flexibility
makes it possible to find code in other packages, sometimes it makes it difficult to know if
the function you want is really there, at least safely and without digging through symbol
tables.
1249985
You can do it, though.
1249985

The Hack
628024
If you can avoid the problem, avoid it.
1249985
One of the most common ways to interact with other code is to provide an interface you
expect it to fulfill. This may be through suggesting that all plug-ins inherit from a base class
that provides default methods to overload or through documenting that your code will
always call plug-in methods and pass specified arguments.
1249985
Subclassing can be fragile, though, especially in Perl where your implementation choices
affect everyone else who writes code. (See the implementation of HTTP::Daemon and how
it stores instance data, for example.)
1249985
If you only need to know that plug-ins or extensions conform to an interface, consider using
a Perl 6-ish module such as Class::Roles or Class::Trait. Though there's a little bit
of theory to learn before you understand the code, you can make your code more flexible
and generic without enforcing more on the extensions than you really need to enforce.
1249985

Get cozy with can()
621961
If you can't entirely force a separate interface, as in the case where you want to make some
methods publicly callable from user requests on a web site and other methods private to the
world, consider namespacing them. For example, imagine a web program that performs
mathematical operations based on the contents of the action parameter:
1249985

sub dispatch_request
{
 my ($self, $q) = @_;

Chapter 8. Know Thy Code Page 8 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my $action = $q->param('action');
 $self->$action();
}

This technique isn't quite as bad as invoking $action directly as a symbolic reference, but
it provides little safety. An attacker could provide an invalid action, at best crashing the
program as Perl tries to invoke an unknown method, or provide the name of a private method
somewhere that he really shouldn't call, revealing sensitive data or causing unexpected
havoc.
1249985
To verify that the method exists somewhere, use the can() method (provided by the
UNIVERSAL ancestor of all classes):
1249985

sub dispatch_request
{
 my ($self, $q) = @_;
 my $action = $q->param('action');
 return unless $self->can($action);
 $self->$action();
}

That prevents attackers from calling undefined methods, but it's little advantage over
wrapping the whole dispatch in an eval block. If you change the names of all valid methods
to start (or end) with a known token, you can prevent calling private methods:
1249985

sub dispatch_request
{
 my ($self, $q) = @_;
 my $action = 'action_' . $q->param('action');
 return unless $self->can($action);
 $self->$action();
}

Now when the user selects the login action, the request dispatches to the method
action_login. For even further protection, see "Control Access to Remote Objects" [Hack
#48].
1249985

Find functions, not methods!
621961
That works for methods, but what about functions? Perl 5 at least makes very few internal
distinctions between methods and subroutines. can() works just as well on package
names to find subroutines as it does class names to find methods. If you know you've loaded
a plug-in called Logger and want to know if it can register(), try:
1249985

my $register_subref = Logger->can('register ');
$register_subref->() if $register_subref;

can() returns a reference to the found function if it exists and undef otherwise.
1249985

Chapter 8. Know Thy Code Page 9 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This also works if you have the package name in a variable:
1249985

my $register_subref = $plugin->can('register ');
$register_subref->() if $register_subref;

If you don't know for sure that $plugin contains a valid package name, wrap the can()
method call in an eval block:[2]

1249985

[2] Some people recommend calling UNIVERSAL::can() as a function, not a method. That's silly; what if the package overrides can()? You'll get the wrong answer!

my $register_subref = eval { $plugin->can('register ') };
$register_subref->() if $register_subref;

If the eval fails, $register_subref will be false.
1249985

Hack 73. Know What's Core and When
621961

1249985
Keep track of the core modules you're using and not using.
1249985
Not every Perl installation is fortunate enough to be able to install the latest released version
of the core as soon as it is available or to install the freshest modules off of the CPAN as soon
as they hit the index. Some developers on legacy systems have to be very careful to avoid
the wrath of their system administrators for whom stability is a way of life, not just a goal.
1249985
Though Perl 5's standard library has always provided a lot of features, it has grown over time.
What's standard and usable everywhere as of Perl 5.8.7 isn't the same as what existed as of
Perl 5.004. How can you know, though, without either digging through release notes or
watching your carefully constructed code break when put on the testing machine?
1249985
Use Module::CoreList.
1249985

The Hack
628024
Suppose you've read perldoc perlport and have resolved never to write unportable,
hardcoded file paths anymore. You've browsed the documentation of File::Spec and
realize that a few careful calls can make your code more likely to work on platforms as exotic
as Windows (or even VMS, but that's scary).

Chapter 8. Know Thy Code Page 10 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Unfortunately for your good intentions, your development platform is a box that shipped
with Perl 5.004 from way back when the network really was the computer. Before replacing
all of your join('/', @path, $filename) code with calls to shiny catfile(),
your sense of duty and due diligence causes you to ask "Wait, when did File::Spec enter
the core?"
1249985
Install Module::CoreList from the CPAN, and then bring up a command line:
1249985

$ perl -MModule::CoreList -e 'print Module::CoreList->first_release(
 "File::Spec"), "\\n"'
5.005

Good thing you checked. Now you have three choices: submit the paperwork to upgrade
Perl on that machine to something released this millennium,[3] bribe the sysadmin to install
File::Spec on that machine, or sadly give up on the idea that this code will work
unmodified on Mac OS classic.
1249985

[3] Perl 5.004_05 released in April 1999.

Checking by version
621961
Maybe knowing the first occurrence of the module isn't good enough. Consider the case of
poor Test::Simple. Though the first versions were useful and good, it wasn't until release
0.30 and the introduction of Test::Builder that the golden age of Perl testing began. If
you haven't upgraded Perl in a couple of years and rely on the universal Perl testing backend,
what's the minimum version of Perl you can use without having to install a newer
Test::Simple?
1249985
Pass an optional second value to first_release(), the version number of the package:
1249985

$ perl -MModule::CoreList -e 'print Module::CoreList->first_release(
 "Test::Simple", '0.30'), "\\n"'
5.007003

Anything released after Perl 5.7.3 contains Test::Builder. Of course, note that this
doesn't mean that releases of Perl with lower numbers don't contain Test::Builder—
Perl 5.6.2, released after Perl 5.7.3, contains Test::Simple 0.47.
1249985
If you're really curious, and especially if you end up with information about development
releases of Perl, browse through the data structures at the end of Module::CoreList by hand
[Hack #2] for more detailed information.
1249985

Chapter 8. Know Thy Code Page 11 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

When did Module::CoreList make it in the core? Perl 5.9.2.
1249985

Hack 74. Trace All Used Modules
621961

1249985
See what modules your program uses—and what modules those modules use!
1249985
Perhaps the most useful feature of Perl 5 is module support, allowing the use of existing,
pre-written code. With thousands of modules on the CPAN available for free, it's likely that
any code you write will use at least a few other pieces of code.
1249985
Of course, all of the modules you use optionally use a few modules of their own, and so on.
You could find yourself loading dozens of pieces of code for what looks like a simple program.
Alternately, you may just be curious to see the relationships within your code.
1249985
Wouldn't it be nice to see which modules your code loaded from where? Now you can.
1249985

The Hack
628024
The easiest way to gather the information on what Perl modules any piece of code loads is
a little-known feature of @INC, the magic variable that governs where Perl looks to load
modules. If @INC contains a code reference, it will execute that reference when attempting
to load a module. This is a great place to store code to manage library paths, as PAR and
The::Net (http://www.perlmonks.org/?node_id=92473, not on the CPAN) do. It also works
well to collect interesting statistics:
1249985

package Devel::TraceUse;

use Time::HiRes qw(gettimeofday tv_interval);

BEGIN
{
 unshift @INC, \\&trace_use unless grep { "$_" eq \\&trace_use . '' } @INC;
}

sub trace_use
{
 my ($code, $module) = @_;
 (my $mod_name = $module) =~ s{/}{::}g;
 $mod_name =~ s/\\.pm$//;
 my ($package, $filename, $line) = caller();
 my $elapsed = 0;

Chapter 8. Know Thy Code Page 12 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.perlmonks.org/?node_id=92473

 {
 local *INC = [@INC[1..$#INC]];
 my $start_time = [gettimeofday()];
 eval "package $package; require '$mod_name';";
 $elapsed = tv_interval($start_time);
 }
 $package = $filename if $package eq 'main';
 push @used,
 {
 'file' => $package,
 'line' => $line,
 'time' => $elapsed,
 'module' => $mod_name,
 };

 return;
}

END
{
 my $first = $used[0];
 my %seen = ($first->{file} => 1);
 my $pos = 1;

 warn "Modules used from $first->{file}:\\n";

 for my $mod (@used)
 {
 my $message = '';

 if (exists $seen{$mod->{file}})
 {
 $pos = $seen{$mod->{file}};
 }
 else
 {
 $seen{$mod->{file}} = ++$pos;
 }

 my $indent = ' ' x $pos;
 $message .= "$indent$mod->{module}, line $mod->{line}";
 $message .= " ($mod->{time})" if $mod->{time};
 warn "$message\\n";
 }
}

1;

The code begins by storing a reference to trace_use() at the head of @ISA. Whenever
Perl encounters a use or require statement for a module it hasn't previously loaded, it will
loop through each entry in @ISA, trying to load the module from there. As the first entry is
a subroutine reference, Perl will call the subroutine with the name of the module to load (at
least, translated into a Unix-style file path).
1249985
Devel::TraceUse translates the path name back into a module name, looks up the call
stack to find the name of the package and file containing the use or require statement as
well as the line number of the statement, and then redispatches the lookup, taking itself
temporarily out of @INC. This redispatch allows the module to collect information on how
long it took to load the module.
1249985

Chapter 8. Know Thy Code Page 13 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This time isn't absolute; the string eval statement as well as the calls to
Time::HiRes take up a near-constant amount of time. However, it's
likely consistent, so comparing times to each other is sensible.
1249985

The code uses the filename of the caller if there's no explicit package given, stores all of the
available information, and pushes that structure into an array of modules used.
1249985
At the end of the program, the module prints a report of the modules loaded in the order in
which Perl encountered them.
1249985

Running the Hack
628024
Perhaps the prove utility from Test::Harness has captured your attention and you want
to know what modules it loads. With Devel::TraceUse in your path somewhere, run the
command:
1249985

$ perl -MDevel::TraceUse /usr/bin/prove
Modules used from /usr/bin/prove:
 Test::Harness, line 8 (0.000544)
 Test::Harness::Straps, line 6 (0.000442)
 Test::Harness::Assert, line 9 (0.000464)
 Test::Harness::Iterator, line 10 (0.000581)
 Test::Harness::Point, line 11 (0.000437)
 POSIX, line 313 (0.000483)
 XSLoader, line 9 (0.000425)
 Benchmark, line 9 (0.000497)
 Exporter::Heavy, line 17 (0.000502)
 Getopt::Long, line 9 (0.000495)
 constant, line 221 (0.000475)
 Pod::Usage, line 10 (0.000486)
 File::Spec, line 405 (0.000464)
 File::Spec::Unix, line 21 (0.000432)
 Pod::Text, line 411 (0.000471)
 Pod::ParseLink, line 30 (0.000475)
 Pod::Select, line 31 (0.000447)
 Pod::Parser, line 242 (0.000461)
 Pod::InputObjects, line 205 (0.000444)
 Symbol, line 210 (0.000469)
 File::Glob, line 82 (0.000521)

Thus prove uses Test::Harness, Getopt::Long, Pod::Usage, and File::Glob
directly, each of which uses several other modules. If you were adding features to prove
and wanted to know if using POSIX would add significantly to the resource footprint, you
would now know that you already pay the price for it, so you might as well use it.
1249985

Chapter 8. Know Thy Code Page 14 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
What could make this module more useful? Right now, it doesn't report the use of
Time::HiRes, because it uses that internally. Making timing information optional would
be nice. Furthermore, the report always goes to STDERR, which may mingle badly with other
program output.
1249985
Perhaps you want to filter out certain packages selectively, or trace all of the uses of
require and use. In lieu of reloading every module every time some piece of code wants
to use it, Perl tracks loaded modules by caching their filenames in %INC. To have
Devel::TraceUse track every attempt to load a module, whether Perl has loaded it, keep
the delegation, but clear out %INC. (Be sure to keep your own cache, though, to prevent
subroutine redefinitions and initialization code from running over and over again.)
1249985

Hack 75. Find All Symbols in a Package
621961

1249985
Explore symbol tables without soft references.
1249985
One of the earliest temptations for novice programmers is to use the contents of one variable
as part of the name of another variable. After making one too many costly mistakes or
showing such code to a more experienced programmer, novices start to use the strict
pragma to warn them about dubious constructs.
1249985
However, several advanced features of Perl, such as the implementation of the Exporter
module, are only possible by reading from and writing to the symbol table at run time.
Normally strict forbids this—but it's possible to access global symbols at run time with
strict enabled.
1249985
This is an easy way to find out if a symbol—such as a scalar, array, hash, subroutine, or
filehandle—exists.
1249985

Chapter 8. Know Thy Code Page 15 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Hack
628024
Suppose you want to check whether a specific type of variable is present in a given
namespace. You need to know the name of the package, the name of the variable, and the
type of the variable.
1249985
Defining the following subroutine in the UNIVERSAL package makes the class method
contains_symbol available to any package:[4]

1249985

[4] Er...class.

my %types =
(
 '$' => 'SCALAR',
 '@' => 'ARRAY',
 '%' => 'HASH',
 '*' => 'IO',
 '&' => 'CODE',
);

sub UNIVERSAL::contains_symbol
{
 my ($namespace, $symbol) = @_;
 my @keys = split(/::/, $namespace);
 my $type = $types{ substr($symbol, 0, 1, '') }
 || 'SCALAR';

 my $table = \\%main::;

 for my $key (@keys)
 {
 $key .= '::';
 return 0 unless exists $table->{$key};
 $table = $table->{$key};
 }

 return 0 unless exists $table->{$symbol};
 return *{ $table->{$symbol} }{ $type } ? 1 : 0;
}

To see if a symbol exists, for example to test that contains_symbol exists in the
UNIVERSAL package, call the method like:
1249985

print "Found it!\\n" if UNIVERSAL->contains_symbol('&contains_symbol');

How does it work?
621961
Perl uses the same data structure for hashes as it does for symbol tables. The same operations
—storing and retrieving values by key; iterating over keys, values, or both; and checking the
existence of a key—work on both. The secret is knowing how to access the symbol table.
1249985

Chapter 8. Know Thy Code Page 16 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The main symbol table is always available as the hash named %main::. Every other symbol
table has an entry starting there. For example, strict's symbols are available in $main::
{'strict::'}, while CGI::Application's symbols are in $main::{'CGI::'}
{'Application::'}. Each level is a new hash reference.
1249985

The quotes are important to identify the name with the colons
appropriately.
1249985

Within a symbol table, all leaf entries (values that aren't themselves symbol tables) contain
typeglobs. A typeglob is similar to a hash, but it cannot contain arbitrary keys—it has a fixed
set of keys, as shown in the %types array.[5]

1249985

[5] There are other keys, but they're less common and rarely worth mentioning.

Because a typeglob isn't a hash, you can't access its members as you would a hash. Instead,
you must dereference it with the leading * glob identifier, then subscript it with the name
of the slot to check.
1249985

Running the Hack
628024
Once you have the glob, you can assign references to it to fill in its slots. For example, to
create a new subroutine growl() in Games::ScaryHouse::Monster, find the symbol
table for Games::ScaryHouse::Monster and the glob named growl. Then assign a
reference to a subroutine to the glob and you will be able to call it as
Games::ScaryHouse::Monster::growl(). Similar techniques work for anything
else to which you can take a reference.
1249985
This trick offers some benefits over other ways of querying for a symbol, such as using soft
references, calling can() on subroutines (which may run afoul of inheritance), and
wrapping potentially harmful accesses in eval blocks. However do note that an optimization
[6] automatically created a scalar entry in every new glob. Thus if you have a package global
hash named %compatriots, contains_symbol() will claim that $compatriots also
exists.
1249985

[6] Removed as of Perl 5.9.3.

Chapter 8. Know Thy Code Page 17 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This technique does not work on lexical variables; they don't live in
symbol tables!
1249985

Hack 76. Peek Inside Closures
621961

1249985
Violate closure-based encapsulation when you really need to.
1249985
Very few rules in Perl are inviolate—not even the rule that lexicals are inaccessible outside
their scopes. For closures to work (and even lexicals in general), Perl has to be able to access
them somehow. If you could use the same mechanism, you could read from and write to
these variables.
1249985
This is very useful for debugging closures and closure-based objects [Hack #43]. It's scary and
wrong, but sometimes it's just what you need.
1249985

The Hack
628024
Robin Houston's PadWalker module helpfully encapsulates the necessary dark magic in a
single place that, most importantly, you don't have to understand to use. Suppose you have
a misbehaving counter closure:[7]

1249985

[7] The erroneous operator is ==. There are actually two bugs, though.

sub make_counter
{
 my ($start, $end, $step) = @_;

 return sub
 {
 return if $start == $end;
 $start += $step;
 };
}

Chapter 8. Know Thy Code Page 18 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

One way to debug this is to throw test case after test case at it [Hack #53] until it fails and you
can deduce and reproduce why. An easier approach is to show all of the enclosed values
when you have a misbehaving counter.
1249985
Once you have a counter, use PadWalker's closed_over() function to retrieve a hash
of all closed-over variables, keyed on the name of the variable:
1249985

use Data::Dumper;
use PadWalker 'closed_over';

my $hundred_by_nines = make_counter(0, 100, 9);

while (my $item = $hundred_by_nines->())
{
 my $vars = closed_over($hundred_by_nines);
 warn Dumper($vars);
}

Running the Hack
628024
Running this reveals that $start, the current value of the counter, quickly exceeds 100.
1249985

$VAR1 = {
 '$start' => \\9,
 '$step' => \\9,
 '$end' => \\100
 };
$VAR1 = {
 '$start' => \\18,
 '$step' => \\9,
 '$end' => \\100
 };

...

$VAR1 = {
 '$start' => \\6966,
 '$step' => \\9,
 '$end' => \\100
 };

...

$step and $end are okay, but because $start never actually equals$end, the closure
never returns its end marker.
1249985
Changing the misbehaving operator to >= fixes this.[8]

1249985

[8] Consider if the $step is negative, however.

Chapter 8. Know Thy Code Page 19 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
One good turn of scary encapsulation-violation deserves another. The hash that
closed_over() returns actually contains references to the closed-over variables as its
values. If you dereference them, you can assign to them. Here's one way to debug the idea
that the comparision operator is incorrect:
1249985

while (my $item = $hundred_by_nines->())
{
 my $vars = closed_over($hundred_by_nines);
 my $start = $vars->{'$start'};
 my $end = $vars->{'$start'};
 my $step = $vars->{'$step'};

 if ($$start > $$step)
 {
 $$start = $$end - $$step;
 }
}

PadWalker is good for accessing all sorts of lexicals. If you have a subroutine reference of
any kind, you can see the names of the lexicals within that subroutine—not just any lexicals
it closes over. You can't always get the values, though. They're only active if you're in
something that that subroutine actually called somewhere.
1249985
Be careful, though; just because you can look in someone's closet doesn't mean that you
should.
1249985

The CPAN module Data::Dump::Streamer can do similar magic,
except that it also deparses the closure. This is useful in other
circumstances. The code:
1249985

use Data::Dump::Streamer;
my $hundred_by_nines = make_counter(0, 100, 9);
1 while 100 > $hundred_by_nines->();
Dump($hundred_by_nines);

produces the result:
1249985

my ($end,$start,$step);
$end = 100;
$start = 108;
$step = 9;
$CODE1 = sub {
 return if $start = = $end;
 $start += $step;

 };

Chapter 8. Know Thy Code Page 20 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 77. Find All Global Variables
621961

1249985
Track down global variables so you can replace them.
1249985
Perl 5's roots in Perl 1 show through sometimes. This is especially evident in the fact that
variables are global by default and lexical only by declaration. The strict pragma helps,
but adding that to a large program that's only grown over time (in the sense that kudzu
grows) can make programs difficult to manage.
1249985
One problem of refactoring such a program is that it's difficult to tell by reading whether a
particular variable is global or lexical, especially when any declaration may have come
hundreds or thousands of lines earlier. Your friends and co-workers may claim that you can't
run a program to analyze your program and find these global variables, but you can!
1249985

The Hack
628024
Perl 5 has several core modules in the B::* namespace referred to as the backend compiler
collection. These modules let you work with the internal form of a program as Perl has
compiled and is running it. To see a representation of a program as Perl sees it, use the
B::Concise module. Here's a short program that uses both lexical and global variables:
1249985

use vars qw($frog $toad);

sub wear_bunny_costume
{
 my $bunny = shift;
 $frog = $bunny;
 print "\\$bunny is $bunny\\n\\$frog is $frog\\n\\$toad is $toad";
}

$frog and $toad are global variables.[9]$bunny is a lexical variable. Unless you notice the
my or use vars lines, it's not obvious to the reader which is which. Perl knows, though:
1249985

[9] They're also friends.

$ perl -MO=Concise,wear_bunny_costume friendly_animals.pl
examples/friendly_animals.pl syntax OK
main::wear_bunny_costume:
n <1> leavesub[1 ref] K/REFC,1 ->(end)
- <@> lineseq KP ->n

Chapter 8. Know Thy Code Page 21 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1 <;> nextstate(main 35 friendly_animals.pl:5) v ->2
6 <2> sassign vKS/2 ->7
4 <1> shift sK/1 ->5
3 <1> rv2av[t2] sKRM/1 ->4
2 <$> gv(*_) s ->3
5 <0> padsv[$bunny:35,36] sRM*/LVINTRO -6
7 <;> nextstate(main 36 friendly_animals.pl:6) v ->8
a <2> sassign vKS/2 ->b
8 <0> padsv[$bunny:35,36] s ->9
- <1> ex-rv2sv sKRM*/1 ->a
9 <$> gvsv(*frog) s -a
b <;> nextstate(main 36 friendly_animals.pl:7) v ->c
m <@> print sK ->n
c <0> pushmark s ->d
- <1> ex-stringify sK/1 ->m
- <0> ex-pushmark s ->d
l <2> concat[t6] sKS/2 ->m
j <2> concat[t5] sKS/2 ->k
h <2> concat[t4] sKS/2 ->i
f <2> concat[t3] sK/2 ->g
d <$> const(PV "$bunny is ") s ->e
e <0> padsv[$bunny:35,36] s -f
g <$> const(PV "\\n$frog is ") s ->h
- <1> ex-rv2sv sK/1 ->j
i <$> gvsv(*frog) s -j
k <$> const(PV "\\n") s ->l

That's a lot of potentially confusing output, but it's reasonably straightforward. This is a
textual representation of the optree representing the wear_bunny_costume()
subroutine. The emboldened lines represent variable accesses. As you can see, there are two
different opcodes used to fetch values from a variable. padsv fetches the value of a named
lexical from a lexical pad, while gvsv fetches the value of a scalar from a typeglob.
1249985

Running the Hack
628024
Knowing this, you can search for all gvsv ops within a compiled program and find the global
variables! B::XPath is a backend module that allows you to search a given tree with XPath
expressions. To look for a gvsv node in the optree, use the XPath expression //gvsv:
1249985

use B::XPath;

my $node = B::XPath->fetch_root(\\&wear_bunny_costume);

for my $global ($node->match('//gvsv'))
{
 my $location = $global->find_nextstate();
 printf("Global %s found at %s:%d\\n",
 $global->NAME(), $location->file(), $location->line());
}

fetch_root() gets the root opcode for a given subroutine. To search the entire program,
use B::XPath::fetch_main_root(). match() applies an XPath expression to the
optree starting at the given $node, returning a list of matching nodes.
1249985
As each node returned should be a gvsv op (blessed into B::XPath::SVOP), the NAME
() method retrieves the name of the glob. The find_nextstate() method finds the

Chapter 8. Know Thy Code Page 22 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

nearest parent control op (or COP) which contains the name of the file and the line number
on which the variable appeared.[10] The results are:
1249985

[10] It uses a heuristic, so it may not always be exact.

$ perl friendly_animals.pl
Global frog found at friendly_animals.pl:8
Global frog found at friendly_animals.pl:9

Hacking the Hack
628024
If you want to find only globals named $toad, change the XPath expression and
parameterize it by a node attribute:
1249985

$node->match('//gvsv[@NAME="toad"]'))

There's no limit to the types of opcodes you can search for in a program beyond what
B::XPath supports and the XPath expressions you can write. As long as you can dump a
snippet of code into an optree list, you can eventually turn that into an XPath expression.
From there, just grab the node information you need and you're on your way.
1249985
See also the built-in B::Xref module. It produces a cross reference of variables and
subroutines in your code.
1249985

Hack 78. Introspect Your Subroutines
621961

1249985
Trace any subroutine to its source.
1249985
You can name anonymous subroutines [Hack #57] and deparse them [Hack #56]. You can
even peek at their closed-over lexical variables [Hack #76]. There are still more wonders in
the world.
1249985
Someday you'll have to debug a running program and figure out exactly where package A
picked up subroutine B. One option is to trace all import() calls, but that's even less fun
than it sounds. Another option is to pull out the scariest and most powerful toolkit in the Perl
hacker's toolbox: the B::* modules.
1249985

Chapter 8. Know Thy Code Page 23 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Hack
628024
Finding a misbehaving function means you need to know two of three things:
1249985

• The original package of the function

• The name of the file containing the function

• The line number in the file corresponding to the function

From there, your debugging should be somewhat easier. Perl stores all of this information
for every CV[11] it compiles. You just need a way to get to it.
1249985

[11] The internal representation of all subroutines and methods.

The usual entry point is through the B module and its svref_2object() function, which
takes a normal Perl data structure, grabs the underlying C representation, and wraps it in
hairy-scary objects that allow you to peek (though not usually poke) at its guts.
1249985
It's surprisingly easy to report a subroutine's vital information:
1249985

use B;

sub introspect_sub
{
 my $sub = shift;
 my $cv = B::svref_2object($sub);

 return join(':',
 $cv->STASH->NAME(), $cv->FILE(), $cv->GV->LINE() . "\\n"
);
}

introspect_sub() takes one argument, a reference to a subroutine. After passing it to
svref_2object(), it receives back a B::CV object. The STASH() method returns the
typeglob representing the package's namespace—calling NAME() on this returns the
package name. The FILE() method returns the name of the file containing this subroutine.
The GV() method returns the particular symbol table entry for this subroutine, in which
the LINE() method returns the line of the file corresponding to the start of this subroutine.
1249985

Okay, using Devel::Peek::CvGV on a subroutine reference is easier.
1249985

use Devel::Peek 'CvGV';
sub Foo::bar { }
print CvGV(\\&Foo::bar);

Chapter 8. Know Thy Code Page 24 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Of course, that prints the name of the glob containing the
subroutine...but it's a quick way to find even that much information. Now
you know two ways to do it!
1249985

Running the Hack
628024
Pass in any subroutine reference and print the result somehow to see all of this wonderful
data:
1249985

use Data::Dumper;

package Foo;

sub foo { }

package Bar;

sub bar { }
*foo = \\&Foo::foo;

package main;

warn introspect_sub(\\&Foo::foo);
warn introspect_sub(\\&Bar::bar);
warn introspect_sub(\\&Bar::foo);
warn introspect_sub(\\&Dumper);

introspect_sub() as before...

Run the file as normal:
1249985

$ perl introspect.pl
Foo:examples/introspect.pl:14
Bar:examples/introspect.pl:18
Foo:examples/introspect.pl:14
Data::Dumper:/usr/lib/perl5/site_perl/5.8.7/powerpc-linux/Data/Dumper.pm:495

As you can see, aliasing Bar::foo() to Foo::foo() didn't fool the introspector, nor
did importing Dumper() from Data::Dumper.
1249985

Hacking the Hack
628024
That's not all though. You can also see any lexical variables declared within a subroutine.
Every CV holds a special array[12] called a padlist. This padlist itself contains two arrays, one
holding the name of lexical variables and the other containing an array of arrays holding the
values for subsequent recursive invocations of the subroutine.[13]

Chapter 8. Know Thy Code Page 25 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

[12] In an AV data structure that represents arrays.

[13] At least, it's something like that; it gets complex quickly.

Grabbing a list of all lexical variables declared in that scope is as simple as walking the
appropriate array in the padlist:
1249985

sub introspect_sub
{
 my $sub = shift;
 my $cv = B::svref_2object($sub);
 my ($names) = $cv->PADLIST->ARRAY();
 my $report = join(':',
 $cv->STASH->NAME(), $cv->FILE(), $cv->GV->LINE() . "\\n"
);

 my @lexicals = map { $_->can('PV') ? $_->PV() : () } $names->ARRAY();
 return $report unless @lexicals;
 $report .= "\\t(" . join(', ', @lexicals) . ")\\n";
 return $report;
}

There's one trick and that's that the array containing the names of the lexicals doesn't only
contain their names. However, knowing that the B::OP-derived objects holding the names
will always have a PV() method that returns a string representing the appropriate value of
the scalar, the code filters out everything else. It works nicely, too:
1249985

use Data::Dumper;

package Foo;

sub foo
{
 my ($foo, $bar, $baz) = @_;
 }

package Bar;

sub bar { }
*foo = \\&Foo::foo;

package main;

warn introspect_sub(\\&Foo::foo);
warn introspect_sub(\\&Bar::bar);
warn introspect_sub(\\&Bar::foo);
warn introspect_sub(\\&Dumper);

introspect_sub() as modified...

This outputs:
1249985

$ perl introspect_lexicals.pl
Foo:examples/introspect.pl:14
 ($foo, $bar, $baz)
Bar:examples/introspect.pl:18
Foo:examples/introspect.pl:14
 ($foo, $bar, $baz)
Data::Dumper:/usr/lib/perl5/site_perl/5.8.7/powerpc-linux/Data/Dumper.pm:495

Chapter 8. Know Thy Code Page 26 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Easy...at least once you've trawled through perldoc B and perhaps the Perl source code
(cv.h and pad.c, if you really need details).
1249985

Hack 79. Find Imported Functions
621961

1249985
Keep an eye on your namespace.
1249985
Importing functions is a mixed blessing. Having functions available from another namespace
without having to type their full names is convenient. However, the chance for name
collisions and confusion increases with the number of imported symbols.
1249985
There are multiple ways to tell the original package of a function, but many of them involve
lots of deep magic and, in cases of generated functions, may not tell the whole story. If you
really want to know what you've imported and when, the shortest and simplest approach is
to use the Devel::Symdump module.
1249985

The Hack
628024
To get a list of functions from a package, create a new Devel::Symdump object and use
the functions() method on it:
1249985

use Devel::Symdump;
my $symbols = Devel::Symdump->new('main');
my @functions = $symbols->functions();

That gives you a list of fully-qualified function names as of the time of the call. Load and
import from the other modules you need, and then create and query a new
Devel::Symdump object to get a longer list of functions.
1249985

Running the Hack
628024
Suppose you want to know what File::Spec::Functions imports.[14] If you can wedge
the code to create and query the first Devel::Symdump object before the use line executes
[Hack #70], all you have to do is perform an array intersection to remove duplicate elements.

Chapter 8. Know Thy Code Page 27 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

[14] Sure, you could read the documentation, but your system administrator compressed the documentation and broke it.

use Devel::Symdump;

my %existing;

BEGIN
{
 my $symbols = Devel::Symdump->new('main');
 @existing{ $symbols->functions() } = ();
}

use File::Spec::Functions;

BEGIN
{
 my $symbols = Devel::Symdump->new('main');
 my @new_funcs =
 map { s/main:://; $_ }
 grep { not exists $existing{ $_ } } $symbols->functions();
 local $" = "\\n ";
 warn qq|Imported:$"@new_funcs\\n|;
}

As of Perl 5.8.7, this prints:
1249985

$ perl show_fsf_symbols.pl
Imported:
 catfile
 curdir
 updir
 path
 file_name_is_absolute
 no_upwards
 canonpath
 catdir
 rootdir
$

Are you worried that this won't account for user-defined functions?
Don't—by the time the BEGIN blocks run, Perl hasn't seen any yet. You're
safe.
1249985

Hacking the Hack
628024
Devel::Symdump works on more than just functions. You can find all exported scalars,
arrays, hashes, and file and directory handles, as well as all other symbol tables beneath the
named one. Beware, though, that all new symbols have a scalar created by default (at least
in Perl prior to 5.9.3), so searching for those isn't as useful as you might think.
1249985

Chapter 8. Know Thy Code Page 28 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

It would be easy to register a list of all exported functions with the using package, to allow
more introspection and runtime. You could even write a module that does this and re-exports
them to your package.
1249985

Hack 80. Profile Your Program Size
621961

1249985
Find out how much memory your program takes, and then trim it!
1249985
The difference between a Perl program and a natively compiled binary is far more than just
program convenience. Although the Perl program can do far more with less source code, in
memory, Perl's data structures and bookkeeping can take up more space than you might
think. Size matters sometimes—even if you have plenty of memory (if you're not trying to
optimize for shared memory in a child-forking application, for example), a program with good
algorithms and not tied to IO or incoming requests can still run faster if it has fewer operations
to perform.
1249985
One of the best optimizations of Perl programs is trimming the number of operations it has
to perform. The less work it has to do, the better.
1249985
This isn't an argument for obfuscated or golfed code—just good profiling to find and trim
the few fat spots left in a program.
1249985

The Hack
628024
When Perl compiles a program, it builds an internal representation called the optree. This
represents every single discrete operation in a program. Thus knowing how many opcodes
there are in a program (or module) and the size of each opcode is necessary to know where
to start optimizing.
1249985
The B::TerseSize module is useful in this case.[15] It adds a size() method to all ops.
More importantly, it gives you detailed information about the size of all symbols in a package
if you call package_size().
1249985

[15] It's more useful when used with mod_perl and Apache::Status; see http://modperlbook.org/html/ch09_04.html.

Chapter 8. Know Thy Code Page 29 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://modperlbook.org/html/ch09_04.html

To find the largest subroutine in a package and report on its opcodes, use code something
like:
1249985

use B::TerseSize;

sub report_largest_sub
{
 my $package = shift;
 my ($symbols, $count, $size) = B::TerseSize::package_size($package);
 my ($largest) =
 sort { $symbols->{$b}{size} <=> $symbols->{$a}{size} }
 grep { exists $symbols->{$_}{count} }
 keys %$symbols;

 print "Total size for $package is $size in $count ops.\\n";
 print "Reporting $largest.\\n";
 B::TerseSize::CV_walk('root', $package . '::' . $largest);
}

package_size() returns three items: a reference to a hash where the key is the name of
a symbol and the value is a hash reference with the count of opcodes for that symbol and
the total size of the symbol, the total count of opcodes for the package, and the total size of
the package.
1249985
report_largest_sub() takes the name of a loaded package, finds the largest
subroutine in that package (where the heuristic is that only subroutines have a count key
in the second-level hash of the symbol information), prints some summary information about
the package, and then calls CV_walk() which prints a lot of information about the selected
subroutine.
1249985

Running the Hack
628024
The real meat of the hack is in interpreting the output. B::TerseSize displays statistics for
every significant line of code in a subroutine. Thus, calling report_largest_sub() on
Text::WikiFormat will print pages of output for find_list():
1249985

Total size for Text::WikiFormat is 92078 in 1970 ops.
Reporting find_list.
UNOP leavesub 0x10291e88 {28 bytes} [targ 1 - $line]
 LISTOP lineseq 0x10290050 {32 bytes}

--
 COP nextstate 0x10290010 {24 bytes}
 BINOP aassign 0x1028ffe8 {32 bytes} [targ 6 - undef]
 UNOP null 0x1028fd38 {28 bytes} [list]
 OP pushmark 0x1028ffc8 {24 bytes}
 UNOP rv2av 0x1028ffa8 {28 bytes} [targ 5 - undef]
 SVOP gv 0x1028ff88 {96 bytes} GV *_
 UNOP null 0x1028d660 {28 bytes} [list]
 OP pushmark 0x1028fec0 {24 bytes}
 OP padsv 0x1028fe68 {24 bytes} [targ 1 - $line]
 OP padsv 0x1028fea0 {24 bytes} [targ 2 -
 $list_types]

Chapter 8. Know Thy Code Page 30 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 OP padsv 0x1028fee0 {24 bytes} [targ 3 - $tags]
 OP padsv 0x1028ff10 {24 bytes} [targ 4 - $opts]

[line 317 size: 380 bytes]

--

(snip 234 more lines)

The final line gives the key to interpreting the output; it represents line 317 of the file defining
this package:
1249985

315: sub find_list
316: {
317: my ($line, $list_types, $tags, $opts) = @_;
318:
319: for my $list (@$list_types)

This single line costs twelve opcodes and around 380 bytes[16] of memory. If this were worth
optimizing, perhaps removing an unused variable would help.
1249985

[16] Give or take; B::TerseSize can only guess sometimes.

The previous lines list each op on this line in tree order. That is, the root of the branch is the
nextstate control op. It has a sibling, the leaveloop binary op. You can ignore the
memory address, but the size of the op in curly braces can be useful. Finally, some ops have
additional information in square brackets—especially those referring to lexical variables.
1249985
The real use of this information is when you can compare two different implementations of
an algorithm to each other to optimize for memory usage or number of ops. Sometimes the
code with the fewest number of lines really isn't slimmer.
1249985

Hacking the Hack
628024
Do you absolutely hate the output from CV_walk()? Write your callback and use
B::walkoptree_slow() or B::walkoptree_exec() to call it. Don't forget to use
B::TerseSize to make the size() method available on ops. You can get package and
line number information from nextstate ops.
1249985
Unfortunately, doing this effectively probably means stealing the code from
B::TerseSize. At least it's reasonably small and self-contained. Look for the methods
declared in the B:: namespace.
1249985

Chapter 8. Know Thy Code Page 31 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 81. Reuse Perl Processes
621961

1249985
Spend CPU time running programs, not recompiling them.
1249985
As nice as it is to be able to type and run a Perl program, compiled programs sometimes
have a few advantages. Quickly running processes might spend most of their time launching,
not running.
1249985
If you have a program you might want to run all the time, but it takes significant time to load
the appropriate modules and get ready to run and you just can't spare that time on something
that should execute immediately and get out of the way or that might have to run dozens
of times per second under high load, trade a little memory for speed with PPerl.
1249985

The Hack
628024
Matt Sergeant's PPerl module provides a mod_perl-like environment for normal Perl
programs. A well-written program can run under PPerl with no modifications.
1249985
Suppose you use Chia-liang Kao's amazingly useful SVK distributed revision control system,
written in Perl.[17] You're continually making lots of little checkins, and you've started to notice
a bit of a lag as launching the program continually recompiles a handful of complex modules.
1249985

[17] If you don't use it already, try it.

Make a copy of the svk program in your path where your shell will find it before the system
version. Edit the file and change the first line from:
1249985

#!/usr/bin/perl -w

... to:
1249985

#!/usr/bin/pperl -w

That's it!
1249985

Chapter 8. Know Thy Code Page 32 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Running the Hack
628024
The first time you launch svk, it will take just about as long as normal. Subsequent launches
will run much more quickly, as PPerl reuses the launched process—avoiding the repeated
hit of compilation.
1249985
This works well for other processes too—mail filters written with Mail::Audit or
Mail::Filter, SpamAssassin, and any Perl program that can run multiple times
idempotently but usually takes little time to run.
1249985

Hacking the Hack
628024
As an administrator, to make a persistent svk to share between every developer on the box,
create an alias (or equivalent shell script) to launch svk with the --anyuser flag:
1249985

alias svk='/usr/bin/pperl -- --anyuser /usr/bin/svk'

Other useful flags include --prefork to tune the number of persistent processes to launch
and --maxclients to set the maximum number of requests any child will serve before
exiting. (This helps keep down memory usage, as multiple requests unshare more and more
pages.)
1249985

One feature PPerl currently lacks is to shut down the persistent process
after it goes unused for a period of time.
1249985

Hack 82. Trace Your Ops
621961

1249985
Watch Perl execute individual instructions.
1249985
Unlike so-called natively compiled programs, Perl programs are instructions for the Perl
virtual machine. When Perl compiles a program, it reduces it to a tree of opcodes, such as

Chapter 8. Know Thy Code Page 33 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

"fetch this lexical variable" and "add the attached constant." If you want to see what your
program is doing, the best[18] way is to examine each individual opcode.
1249985

[18] Though not necessarily the easiest.

The B::* modules—the compiler backend to Perl—give you some flexibility in examining
compiled code from Perl. They don't give you many opportunities to play with ops as Perl
runs them, however. Fortunately, Runops::Trace does.
1249985

The Hack
628024
Runops::Trace replaces Perl's standard runloop with an alternate runloop that calls back
to Perl code, passing the B::* object representing the next op that will run. This allows you
to request and log any data from that op.
1249985

Perl's standard runloop executes the current op, fetches the next op after
that, dispatches any signals that have arrived, and repeats.
1249985

For example, to count the number of accesses to global symbols within a program, write a
callback logger:
1249985

package TraceGlobals;

use strict;
use warnings;

use Runops::Trace \\&trace_globals;

my %globals;

sub trace_globals
{
 return unless $_[0]->isa('B::SVOP') && $_[0]->name() eq 'gv';
 my $gv = shift->gv();
 my $data = $globals{ $gv->SAFENAME() } ||= { };
 my $key = $gv->FILE() . ':' . $gv->LINE();
 $data->{$key}++;
}

END
{
 Runops::Trace->unimport();

 for my $gv (sort keys %globals)
 {
 my $gv_data = $globals{ $gv };
 my @counts = keys %$gv_data;

 for my $line (sort { $gv_data->{$b} <=> $gv_data->{$a} } @counts)

Chapter 8. Know Thy Code Page 34 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 {
 printf "%04d %s %-> s\\n", $gv_data->{$line}, $gv, $line;

 }
 }
}

1;

The important work is in trace_globals(). The subroutine first examines its only
argument, throwing out all non-SV opcodes and all non-GV opcodes. (These are opcodes
that access typeglobs, or GVs, as the Perl internals call them.) Then it fetches the GV object
attached to the op, logging the name of the GV (SAFENAME()) and the file (FILE()) and
line (LINE()) where the symbol occurs.
1249985
The END block formats and reports this data nicely. The call to Runops::Trace-
>unimport() at the start prevents the tracing module from accidentally trying to trace
itself at the end of the program.
1249985

Running the Hack
628024
Because of the way Runops::Trace installs its tracing runloop, you must load a tracing
module before the code you want to trace. The easiest way to do this is from the command
line, perhaps on the program from "Find All Symbols in a Package" [Hack #75]:
1249985

$ perl -MTraceGlobals find_package_symbols.pl
Foo:find_package_symbols.pl:14
 ($foo, $bar, $baz)
Bar:find_package_symbols.pl:18
Foo:find_package_symbols.pl:14
 ($foo, $bar, $baz)
Data::Dumper:/usr/lib/perl5/site_perl/5.8.7/powerpc-linux/Data/Dumper.pm:484
0001 AddrRef -> /usr/lib/perl5/5.8.7/overload.pm:94
0054 Bits -> /usr/lib/perl5/5.8.7/warnings.pm:189
0003 Cache -> /usr/lib/perl5/5.8.7/Exporter.pm:13
0002 DeadBits -> /usr/lib/perl5/5.8.7/warnings.pm:239
0001 Dumper -> /usr/lib/perl5/5.8.7/Exporter.pm:65
0001 EXPORT -> /usr/lib/perl5/site_perl/5.8.7/powerpc-linux/Data/Dumper.pm:24
0001 EXPORT_OK -> /usr/lib/perl5/site_perl/5.8.7/powerpc-linux/
 Data/Dumper.pm:25
0001 ISA -> /usr/lib/perl5/site_perl/5.8.7/powerpc-linux/Data/Dumper.pm:23
0002 Offsets -> /usr/lib/perl5/5.8.7/warnings.pm:136
0003 SIG -> /usr/lib/perl5/5.8.7/Exporter.pm:62
0001 StrVal -> /usr/lib/perl5/site_perl/5.8.7/powerpc-linux/
 Data/Dumper.pm:104
0037 _ -> :0
<...>

The first part of the output is the normal program output, as the program runs as normal.
The second half of the output shows the number of accesses, the name of the symbol, and
the file and line of the definition of the symbol. The final line is interesting—it shows the
requests made for the glob named _, usually accessed as @_ and not defined in a package
or a file.

Chapter 8. Know Thy Code Page 35 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Hacking the Hack
628024
Finding all of the global symbols is interesting, especially if you want to explore a certain
code path where static analysis isn't helpful [Hack #77]. You can do much, much more with
a tracing runloop. Consider that the callback function is basically the entry point into an
event-driven state machine. Find the type of ops you want to query and perform your
behavior based on that.
1249985
For example, to measure the amount of time you spend in one package over another, look
for the B::COP objects that represent the nextstate op and keep timing information. To
see when a variable changes, look for B::SVOP objects accessing that particular variable.
1249985
A future enhancement to Runops::Trace may allow you to change the next op, declining
to handle dangerous or indelicate operations, or even redirecting to different ops. To learn
more, read the documentation for B and become familiar with optrees with B::Concise
and B::Terse.
1249985

Hack 83. Write Your Own Warnings
621961

1249985
Improve static code checking.
1249985
You have strict under control. You know why you use warnings. Maybe you even
use B::Lint to find problems. Are they truly enough for you? If you've ever wished that
you could make strict stricter or make warnings preachier, you're in luck.
1249985

Perl::Critic is a similarly excellent tool that audits your code based
on Damian Conway's Perl Best Practices (O'Reilly).
1249985

Chapter 8. Know Thy Code Page 36 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Hack
628024
It's impossible to override some built-in functions[19] [Hack #91] like print() and printf
(). Usually print() succeeds because it writes to an internal buffer—but occasionally
Perl has to flush the buffer. print() might fail if you write to a file on a full file system, to
a closed handle, or for any of several other reasons. If you don't check print() and close
() for success, you might lose data without knowing about it.
1249985

[19] Run perl -MB::Keywords -le 'eval{ prototype $_ } or print for @B::Keywords::Functions' after installing B::Keywords to see a complete
list.

The best you can do for unoverridable functions is to create new warnings for unsafe code.
1249985
Here's bad_style.pl, a short program that opens a file and writes something to it. It has three
misfeatures: ignoring the results of print() and close() and a terribly non-descriptive
variable name:
1249985

open my $fh, '>>', 'bad_style.txt'
 or die "Can't open bad_style.txt for appending: $!\\n";
print {$fh} 'Hello!';
close $fh;

You could review every line of code in your system to find these errors. Better yet, teach
B::Lint how to find them for you:
1249985

package B::Lint::VoidSyscalls;

use strict;
use warnings;

use B 'OPf_WANT_VOID';
use B::Lint;

Make B::Lint accept plugins if it doesn't already.
use if ! B::Lint->can('register_plugin'),
 'B::Lint::Pluggable';

Register this plugin.
B::Lint->register_plugin(__PACKAGE__, ['void_syscall']);

Check these opcodes
my $SYSCALL = qr/ ^ (?: open | print | close) $ /msx;

Also look for things that are right at the end of a subroutine
sub foo { return print() }
my $TERM = qr/ ^ (?: leavesub) $/msx;

sub match
{
 my ($op, $checks) = @_;

 if ($checks->{void_syscall}
 and $op->name() =~ m/$SYSCALL/msx)
 {
 if ($op->flags() & OPf_WANT_VOID)

Chapter 8. Know Thy Code Page 37 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 {
 warn "Unchecked " . $op->name() . " system call "
 . "at " . B::Lint->file() . " on line "
 . B::Lint->line() . "\\n";
 }
 elsif ($op->next->name() =~ m/$TERM/msx)
 {
 warn "Potentially unchecked " . $op->name() . " system call "
 . "at " . B::Lint->file() . " on line "
 . B::Lint->line() . "\\n";
 }
 }
}

As of Perl 5.9.3, B::Lint supports plugins. Earlier versions don't, so this
code checks the version and loads a fallback if necessary.
1249985

This module also checks for system calls made in potentially void context at the end of
functions—that is, where the next opcode is leavesub.
1249985

Running the Hack
628024
Checking bad_style.pl with B::Lint::VoidSyscalls is easy:
1249985

$ perl -MB::Lint::VoidSyscalls -MO=Lint bad_style.pl
Unchecked print system call at bad_style.pl on line 3
Unchecked close system call at bad_style.pl on line 4
bad_style.pl syntax OK

Hacking the Hack
628024
The idea is pretty general: find bad stuff in the optree ("Find All Global Variables" [Hack
#77] shows how to mine the optree) and tell the user about it. There are plenty of possibilities
to add more strictness to your OO code—checking that a class actually exists for class method
calls, that the methods being called on those classes exist, and even that the methods being
called are appropriate methods for certain classes. Here's an alternate match() subroutine
that does just that:
1249985

sub match
{
 my $op = shift;

 if ($op->name() eq 'entersub')
 {
 my $class = eval { $op->first->sibling ->sv->PV };
 my $method = eval { $op->first->sibling->sibling->sv->PV };

Chapter 8. Know Thy Code Page 38 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 if (defined $class)
 {
 no strict 'refs';

 # check strict classes
 if (not %{ $class . '::' })
 {
 B::Lint::warning "Class $class doesn't exist";
 }
 # check strict class methods
 elsif (defined $method and not $class->can($method))
 {
 B::Lint::warning "Class $class can't do method $method";
 }
 }
 elsif (defined $method
 and not grep { $_->can($method) } classes(B::Lint->file()))
 {
 B::Lint::warning "Object can't do method $method";
 }
 }
}

use File::Slurp 'read_file';

my %classes;
sub classes
{
 my $file = shift;
 $classes{$file} ||= scalar {
 map { $_ => 1 }
 grep { defined %{ $_ . '::' } }
 read_file($file) =~ m/(\\w+ (?: (?:::|')\\w+)*)/msxg
 };
 return keys %{ $classes{$file} };
}

Chapter 8. Know Thy Code Page 39 Return to Table of Contents

Chapter 8. Know Thy Code
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

