
Table of Contents

Chapter 7. Developer Tricks524... 1
Hack 60. Rebuild Your Distributions621961.. 1
Hack 61. Test with Specifications621961.. 3
Hack 62. Segregate Developer and User Tests621961.. 7
Hack 63. Run Tests Automatically621961... 10
Hack 64. See Test Failure Diagnostics — in Color!621961... 12
Hack 65. Test Live Code621961.. 14
Hack 66. Cheat on Benchmarks621961.. 18
Hack 67. Build Your Own Perl621961... 19
Hack 68. Run Test Suites Persistently621961... 22
Hack 69. Simulate Hostile Environments in Your Tests621961... 27

Chapter 7. Developer Tricks

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 7. Developer Tricks
524

Hacks 60-69
1249985
Surviving software development and enjoying it are two very different things. Do you know
what your code is doing? Can you look at any piece and know where it belongs and what it
means? Do you trust your code? Do you trust your coworkers? What can you do to take back
control of your projects, code-wise?
1249985
Obviously reducing the friction of writing code will make your life easier, but what about the
friction of designing and maintaining code? Comprehensive testing and collective code
standards help. Here are a few ideas to bring up in your next developer meeting that will
make you a hero.
1249985

Hack 60. Rebuild Your Distributions
621961

1249985
Rebuild your distributions with ease.
1249985
If you work with Perl modules built in the standard CPAN format (and you should, as the
many available tools make your life easier this way), you generally will have a Makefile.PL or
Build.PL file, lib/ and t/ directories, manifests, and so on. If the module uses
ExtUtils::MakeMaker, you change your tests, update the module and rebuild the
distribution again with a command such as:
1249985

$ make realclean && perl Makefile.PL && make && make test

Modules that use Module::Build require instead:

Chapter 7. Developer Tricks Page 1 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

1249985

$./Build realclean && perl Build.PL && perl ./Build && perl ./Build test

It gets annoying typing this over and over again. Worse, if you do this for patches you send
to others, you might forget and assume you have a Makefile when using Module::Build
or a Build file when using ExtUtils::MakeMaker. This is tiresome.
1249985

The Hack
628024
Instead, put this rebuild script in your path and set the appropriate permissions:
1249985

#!/bin/bash

if [-f Build.PL]; then
 makeprog=Build
 makecommand="perl ./Build"
elif [-f Makefile.PL]; then
 makeprog=Makefile
 makecommand=make
else
 echo Nothing to reload!
 exit 1
fi

if [-f $makeprog]; then
 $makecommand realclean
fi
perl $makeprog.PL && $makecommand && $makecommand test

Running the Hack
628024
Whenever you want to rebuild your project, type rebuild at the command line in the parent
directory of the project and don't worry about whether you're using Module::Build or
ExtUtils::MakeMaker.
1249985

Hacking the Hack
628024
If you really want to get carried away, bash scripts put their command line arguments in
variables named $1, $2, and so on. It's trivial to add extra commands to build your
distribution, your manifest, or whatever else you like:
1249985

Chapter 7. Developer Tricks Page 2 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if ["$1" = dist]; then
 $makecommand dist
fi

Hack 61. Test with Specifications
621961

1249985
Let the computer write your tests.
1249985
Writing tests is a great way to gain confidence in your code. Each test you write makes a tiny
claim about what your code ought to do. When it passes, you have clear evidence to support
the claim. If you write enough tests to make a cohesive suite, the tiny claims within the suite
combine to imply a general claim that your code works properly.
1249985
There are times, however, when writing a suite of tests is the hard way to make a general
claim. Sometimes, the claim you want to make seems so simple, yet the tests you have to
write seem so voluminous. For these times, it would be nice to be able to turn the process
around. Instead of writing tests to make a claim, why not make the claim outright and let the
computer write the tests for you? That's the idea behind specification-based testing. The
Test::LectroTest family of modules brings this idea to Perl.
1249985

The Hack
628024
To make claims about your code, you define properties that say that your code must behave
in particular ways for a general spectrum of conditions. Then LectroTest automatically
gathers evidence to support or refute your claims by executing large, random test suites that
it generates on the fly. When it finishes, it prints the results in standard TAP format, just as
the other Perl testing tools do.
1249985
Suppose you need to test Perl's sqrt function, which you expect to compute the square
root of its argument. The first step is to figure out what sqrt ought to do. From your school
days, you recall that the square root of a number x is the number that when multiplied by
itself (that is, squared) gives you back x. For example, the square root of 9 is 3 because 3 times
3 is 9.
1249985
The square root function undoes the effect of squaring. You could consider this the defining
property of the function. Putting it more formally, you might say: "For all numbers x, the

Chapter 7. Developer Tricks Page 3 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

square root of xx x should equal x." To test this claim, all you need to do is restate it as a
LectroTest property:
1249985

loads and activates LectroTest
use Test::LectroTest;

Property
{
 ##[x <- Float]## # first part
 sqrt($x * $x) == $x; # second part
}, name => "sqrt is inverse of square"; # third part

This is a complete Perl program that you can run. It tests a single property, specified in three
parts. The first part (in the funny brackets) specifies the domain over which the property's
claim should hold. Read it as saying, "For all floating-point numbers x..."
1249985

LectroTest actually offers a tiny language for declaring more complex
domains, but it's not necessary here.
1249985

The second part is a snippet of Perl code that checks the property's claim for a given value
of x. If the claim holds, the code must return a true value; otherwise, it must return a false
value. In this property, read the code as saying, "...the square root of xx x should equal x." For
convenience, LectroTest makes the variables mentioned in the first part of the property
available in the second part as lexical variables—$x, here.
1249985

Because of the imperfections of floating-point arithmetic, a more robust
way of testing this claim would be to check whether the difference
between $x and sqrt($x * $x) is within an acceptably small range.
For simplicity, however, I've used a straight equality test, which could
result in a false negative test result.
1249985

The third part gives the property a name. It's optional but adds a lot of documentation value,
so give your properties meaningful names.
1249985

Chapter 7. Developer Tricks Page 4 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Running the Hack
628024
To test whether your claims hold, just execute the program that contains your properties. In
this case, you have only one property, so the program's output might look like:
1249985

1..1
not ok 1 - 'sqrt is inverse of square' falsified in 3 attempts
Counterexample:
$x = "-1.61625080606365";

Here, LectroTest says that, for some value of x, it was able to prove your property's claim false.
It provides the troublesome value of x as a counterexample that you can use to figure out
what went wrong.
1249985

Refining your claims
621961
In this case, what went wrong is that the property made an overly broad claim. The square
root function only applies to non-negative numbers (ignore imaginary numbers for this
hack), and yet the property made its claim about all floating-point numbers, which includes
those less than zero.
1249985
This illustrates an important benefit of the specification-based approach to testing: because
it forces you to make your claims explicit, it can reveal hidden assumptions and holes in your
thinking. Now you must consider what sqrt should do when given a negative number. For
Perl, it probably ought to result in an error, so you might revise your property:
1249985

helper: returns true if calling the given function
results in an error; returns false otherwise

sub gives_error(&)
{
 ! eval { shift->() } and $@ ne "";
}

Property
{
 ##[x <- Float]##
 $x < 0 ? gives_error { sqrt($x) }
 : sqrt($x * $x) = = $x
}, name => "sqrt is inverse of square and dies on negatives";

You also could make sqrt's split personality more obvious by writing two properties that
together define its behavior:
1249985

Chapter 7. Developer Tricks Page 5 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Property
{
 ##[x <- Float]##
 $tcon->retry() if $x < 0; # only test non-negatives
 sqrt($x * $x) = = $x;
}, name => "sqrt is inverse of square";

Property
{
 ##[x <- Float]##
 $tcon->retry() unless $x < 0; # only test negatives
 gives_error { sqrt($x) };
}, name => "sqrt of negative numbers gives error";

Calling $tcon->retry() tells LectroTest to retry a test case you don't like, starting over
with a brand new, random case. Use this call in your properties to subject only sensible cases
to your tests. In the first property, for instance, the conditional call to $tcon->retry()
ensures that LectroTest subjects only non-negative values of x to the sqrt-is-the-inverse-
of-squaring test.
1249985

The LectroTest-provided $tcon object lets you talk to the underlying
test controller to do all sorts of interesting things. See the LectroTest
documentation to learn more.
1249985

You now have two properties. The first claims, "For all non-negative floating-point numbers
x, the square root of xx x should equal x." The second claims, "For all negative floating-point
numbers x, attempting to take the square root of x should result in an error." With practice,
it becomes easy to convert LectroTest property specifications into written claims and vice
versa. These two claims seem to cover all of the bases, and so it's time to put them to the test.
1249985

Interpreting test output
621961
When you run the two-property suite, you get the results:
1249985

1..2
ok 1 - 'sqrt is inverse of square' (1000 attempts)
ok 2 - 'sqrt of negative numbers gives error' (1000 attempts)

Good news! LectroTest subjected each claim to 1,000 random test cases and was unable to
find any problems. Still, this happy outcome doesn't prove that sqrt works as expected. It
merely gives you evidence to support that conclusion. Certainly, the evidence is persuasive
—you would think that 2,000 tests ought to be enough to flush out any obvious problems
—but it's important not to lose sight of the limitations of testing.

Chapter 7. Developer Tricks Page 6 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
In light of the evidence, though, there is probably no need to test further. The existing results
argue persuasively in favor of sqrt, and there's no reason to think there are special
circumstances that might make the current degree of testing inadequate. The only corner
case in sight is the negative-number case, and you have that covered. At this point, you can
probably rest satisfied that sqrt does the right thing.
1249985

Taking advantage of specification-based testing
621961
With the specification-based approach, a little testing code goes a long way. It only took
about fifteen lines of code to test sqrt fairly rigorously.
1249985
Another strength of the approach is that the claims embodied in your testing code are easy
to see—just read the properties. These claims are useful beyond their testing value, serving
as formal documentation of what you expect your software to do.
1249985
Because of these strengths, specification-based tests make a great complement to hand-
written tests. When one approach to testing seems difficult, the other is often easy, and
combining the approaches makes many complicated testing problems easier. For this
reason, you ought to have both approaches in your toolbox.
1249985
Specification-based testing is a deep and interesting topic, and this hack only scratches its
surface. To learn more, including how to use it with more-traditional Perl testing tools, the
documentation for Test::LectroTest is a good starting point.
1249985

Hack 62. Segregate Developer and User Tests
621961

1249985
Run only the tests you need when you need them.
1249985
In general, the more tests you have for a system the better. In specific, the more tests you
have, the more time it takes to test your code. In very specific, some tests are more valuable
than others. You may reach 95% confidence by running a few test files (user tests) and that
may be good enough for day-to-day operations. You may also have a few deeper tests
(developer tests) that use external resources or take a long time to explore all of the potential

Chapter 7. Developer Tricks Page 7 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

possibilities for failure—and you don't necessarily want to make everyone run them all at
once.
1249985
If your project uses Perl's standard module-building tools (at least, Module::Build, which
comes very highly recommended), you can segregate developer and user tests very easily,
running the time-consuming tests only when you need to, perhaps right before a release.
1249985

The Hack
628024
To customize Module::Build's behavior, almost all you have to know is to define your
own subclass and override the appropriate ACTION_* method. How about running only the
user tests with the normal perl ./Build test invocation and all tests with perl ./
Build disttest?
1249985
It's helpful to skim the source of Module::Build::Base [Hack #2] when overriding an action.
That's where you can learn that the next method to override is find_test_files(). The
ACTION_test() method calls this to figure out which tests to run. Override the test finder
method to filter out developer tests. Easy!
1249985
Don't celebrate just yet, though: ACTION_disttest() launches another Perl process to
run Build.PL and, eventually, perl ./Build test. Because this is another process, there's
no easy way to set a flag or a Perl variable to tell the second invocation of ACTION_test
() to run all tests. Fortunately, you can set an environment variable, perhaps
PERL_RUN_ALL_TESTS, that both the parent and child can see.
1249985
All that's left is to decide where the developer tests are; how about in t/developer/*.t? That's
enough to write a Module::Build subclass:
1249985

package Module::Build::FilterTests;

use base 'Module::Build';

use SUPER;
use File::Spec::Functions;

sub ACTION_disttest
{
 local $ENV{PERL_RUN_ALL_TESTS} = 1;
 super();
}

sub find_test_files
{
 my $self = shift;
 my $tests = super();

Chapter 7. Developer Tricks Page 8 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 return $tests unless $ENV{PERL_RUN_ALL_TESTS};

 my $test_pattern = catfile(qw(t developer *.t));
 push @$tests, <$test_pattern>;
 return $tests;
}

1;

The SUPER module makes calling the parent implementations of overridden methods a little
cleaner syntactically. The only other notable feature of the test is the use of the glob operator
to find all tests in the t/developer/ directory.
1249985

Running the Hack
628024
In your own Build.PL file, load and instantiate a Module::Build::FilterTests object
instead of a Module::Build object. Everything else should proceed as normal.
1249985

The easiest way to distribute a custom Module::Build subclass is to
distribute it by storing it in build_lib/ or another directory and to use it
from Build.PL with a use lib line.
1249985

$ perl Build.PL
Checking whether your kit is complete...
Looks good
Deleting Build
Removed previous script 'Build'
Creating new 'Build' script for 'SomeModule ' version '1.28'
$ perl ./Build
$ perl ./Build test
... user tests run ...

To run the developer tests, either set the PERL_RUN_ALL_TESTS environment variable
before running perl ./Build test or run the distribution tests with perl ./Build
disttests.
1249985

Hacking the Hack
628024
Could you do the same by checking for the presence of the environment variable in each
test file? Absolutely—but consider that adding a new developer test is as easy as putting it

Chapter 7. Developer Tricks Page 9 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

in the t/developer/ directory without adding any extra magic to the test file. Also you get the
test and disttest targets to behave correctly almost for free.
1249985
You can further customize the tests, running specific subsets for different test targets.
perl ./Build networktests could try to connect to a server, for example. See the
Module::Build documentation for more information.
1249985
The author particularly recommends that CPAN authors who want to raise their Kwalitee
scores skip the POD tests for non-developers.
1249985

In theory, you can achieve the same effect with
ExtUtils::MakeMaker. Yet every time the author spelunks into the
module's documentation, or worse—code, he wakes up fully clothed
and shivering in the shower several hours later.
1249985

Hack 63. Run Tests Automatically
621961

1249985
See what's broken right after you break it!
1249985
The idea behind test-driven development is that rapid feedback based on comprehensive
test coverage helps you write sane, clean code that never regresses. Once you know how to
write tests, the next step is getting sufficient feedback as soon as possible.
1249985
What if you could run your tests immediately after you write a file? That's fast feedback that
can help you see if you've broken anything. Best of all, you don't have to switch from your
most beloved editor!
1249985

The Hack
628024
The heart of this hack is the onchange program:
1249985

Chapter 7. Developer Tricks Page 10 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

#!/usr/bin/perl

onchange file1 file2 ... fileN command

use strict;
use warnings;

use File::Find;
use Digest::MD5;

my $Command = pop @ARGV;
my $Files = [@ARGV];
my $Last_digest = '';

sub has_changed
{
 my $files = shift;
 my $ctx = Digest::MD5->new();

 find(sub { $ctx->add($File::Find::name, (stat($_))[9]) },
 grep { -e $_ } @$files);

 my $digest = $ctx->digest();
 my $has_changed = $digest ne $Last_digest;
 $Last_digest = $digest;

 return $has_changed;
}

while (1)
{
 system($Command) if has_changed($Files);
 sleep 1;
}

This takes a list of files or directories to monitor and a command to run when they change.
Of course, using File::Find means that this processes directories recursively.
1249985

Running the Hack
628024
For a Perl application that uses the standard CPAN module structure (modules in lib/, tests
in t/, and either a Makefile.PL or Build.PL to control everything), running is easy. Open a new
terminal, change to your build directory, and run the command:
1249985

$ onchange Build.PL lib t 'clear; ./Build test'

Then every time either a test or a module file changes such that its MD5 signature changes,
onchange will rebuild the project and run its tests again.
1249985

Chapter 7. Developer Tricks Page 11 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
MD5 signatures aren't the best way to tell if a file has changed. Even changing whitespace
can make files look different (though sometimes it can be significant). You could use
PPI::Signature, at least on pure-Perl code, to examine files and see if there are any
syntactically significant changes.
1249985
You don't have to run all of the tests every time a module changes; it might be sufficient to
run the user tests and the module-specific unit tests—but onchange needs to change to
make this happen. If you had some way of correlating module files to their tests, you could
even do this automatically.
1249985

Hack 64. See Test Failure Diagnostics — in Color!
621961

1249985
Highlight the unexpected.
1249985
If you follow good development practices and write comprehensive unit tests for your
programs, you'll be able to develop faster and more reliably. You'll also eventually run into
the problem of too many successes hiding the failures—that is, if you keep your tests always
succeeding, you only need to know about the tests that fail.
1249985
Why not make them stand out?
1249985
Perl's standard testing harness, Test::Harness is actually a nice wrapper around
Test::Harness::Straps, which is a parser for the TAP format that standard tests follow.
If and when the report that Test::Harness writes isn't sufficient, use
Test::Harness::Straps to write your own.
1249985

The Hack
628024
There are two barriers to this approach. First, the default behavior of Perl's standard testing
tools is to write diagnostic output to STDERR. Test::Harness doesn't capture this. Second,

Chapter 7. Developer Tricks Page 12 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Test::Harness goes to a bit of trouble to set up the appropriate command line paths to
run tests appropriately.
1249985
The first problem is tractable, at least if you can use a module such as IPC::Open3 to capture
STDERR and STDOUT. The second problem is a little trickier. The current version of
Test::Harness::Straps, which ships with Test::Harness 2.48, doesn't quite provide
everything publicly that you need to run tests well. Hopefully a future version will correct
this, but for now, the hack is to use a private method, _command_line(), to generate the
appropriate command for running the test.
1249985
Adding color is very easy, at least on platforms where Term::ANSIColor works. The code
can be as simple as:
1249985

#!/usr/bin/perl

use strict;
use warnings;

use IPC::Open3;
use Term::ANSIColor;
use Test::Harness::Straps;

my $strap = Test::Harness::Straps->new();

for my $file (@ARGV)
{
 next unless -f $file;

 my $output;

 my $command = $strap->_command_line($file);
 my $pid = open3(undef, $output, $output, $command);
 my %results = $strap->analyze($file, $output);

 print $_->{output} for @{ process_results($file, \\%results) };
}

sub process_results
{
 my ($file, $results) = @_;
 my $count = 0;

 my @results;
 for my $test (@{ $results->{details} })
 {
 $count++;
 next if $test->{ok};

 push @results =>
 {
 test => $test,
 output => create_test_result(
 $test->{ok}, $count, @{$test}{qw(name reason diagnostics)}
)

Chapter 7. Developer Tricks Page 13 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 };
 }

 return \\@results;
}

sub create_test_result
{
 my ($ok, $number, $name, $reason, $diag) = @_;

 $ok = $ok ? 'ok' : 'not ok';
 $reason ||= '';
 $reason = " ($reason)" if $reason;
 $diag ||= '';

 return color('bold red') .
 sprintf "%6s %4d %s%s\\n%s\\n", $ok, $number, $name, $reason,
 color('clear yellow') . $diag . color('reset');
}

The code loops through every test file given on the command line, running it through
IPC::Open3::open3() to collect the output from both STDERR and STDOUT into
$output. It uses Test::Harness::Straps's analyze() method to turn the TAP
output into a data structure representing the tests, and then processes each result.
1249985
Passing tests are uninteresting; only failures with diagnostics are useful, so the
process_results() function filters out everything else. Test numbers and names print
out in bold red and test diagnostics print in clear yellow.
1249985

Hacking the Hack
628024
Test::Harness::Straps actually provides much more information, such as the number
of total tests expected and actually run, as well as special information about TODO and SKIP
tests. It's easy to provide a Test::Harness-style summary of each test file run as well as
the total tests.
1249985
It's also possible to write a harness that collects output over a network or from other sources.
Perl Testing: A Developer's Notebook (O'Reilly, 2005) has other examples and suggestions.
1249985

Hack 65. Test Live Code
621961

1249985

Chapter 7. Developer Tricks Page 14 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Verify your code against actual use...with little penalty.
1249985
Perl culture widely acknowledges automated testing as one step in verifying quality. Most
CPAN modules and many large applications, not to mention Perl distributions themselves,
have comprehensive test suites that run before installation to show what works and,
occasionally, what doesn't work.
1249985
In theory, that's enough. In practice, it can be difficult to predict exactly how your code will
react to production systems, live customers, and their actual data. Testing against this
scenario would be incredibly valuable, but it's much more complex—not to mention
probably much slower. If your automated tests are effective, they'll match the behavior of
most customer requests.
1249985
Fortunately, it's possible to embed tests in production code that test against live data, non-
destructively, but that don't generate too much data nor slow down your system.
1249985

The Hack
628024
Imagine you have a web application that allows employees to manage their user data stored
in a backend LDAP database. Abstraction is the key to a good system. You've created a
User object and you've tested that the system vets and verifies all sorts of names and
addresses that you could think of. You don't know how the system will react to the messy
real world, though.
1249985
Instead of hard-coding the creation of the User object, create a factory object that returns
a User object or equivalent.
1249985

package UserFactory;

use User;
use UserProxy;

my $count = 0;

sub create
{
 my $self = shift;
 my $class = $count++ % 100 ? 'User' : 'UserProxy';
 return $class->new(id => $count, @_);
}

1;

Chapter 7. Developer Tricks Page 15 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Every hundred requests, the factory will create a UserProxy object instead of a User object.
As long as UserProxy implements the same interface as User (and actually behaves
similarly), the rest of the code should see no difference. UserProxy is a bit more complex:
1249985

package UserProxy;

use strict;
use warnings;

use User;
use Test::Builder;

sub new
{
 my ($class, %args) = @_;
 my $proxied = User->new(%args);
 my $Test = Test::Builder->create();
 $Test->output(time() . '_' . $proxied->id() . '.tap');
 $Test->plan('no_plan');
 bless { proxied => $proxied, test => $Test }, $class;
}

sub proxied
{
 my $self = shift;
 return $self->{proxied};
}

sub test
{
 my $self = shift;
 return $self->{test};
}

sub can
{
 my ($self, $method) = @_;
 my $proxied = $self->proxied();
 return $proxied->can($method);
}

sub verify_name
{
 my ($self, $name) = @_;
 my $proxied = $self->proxied():
 my $test = $self->test();
 $test->ok($proxied->verify_name($name), "verify_name() for '$name'")
 || $test->diag($proxied->verification_error());
}

...

1;

When UserFactory creates a UserProxy, the proxy class creates an actual User object
with the same arguments. It also wraps some calls to normal User methods with its own
methods to run tests. The example verify_name() method wraps the call to User-

Chapter 7. Developer Tricks Page 16 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

>verify_name() in a test case, expecting it to pass but logging it with a test diagnostic
containing the error if it does not.
1249985
Apart from the factory/proxy design, the other part that makes this hack work is the use of
Test::Builder in UserProxy->new(). Each UserProxy object contains its own
Test::Builder object and sends its output to a unique file with a name based on the
current time and the number of the request. From there, use a cron job to run prove or some
other Test::Harness-related program to analyze the tests and notify the proper people
if things fail.
1249985

Be sure to use Test::Builder 0.60 or newer to have access to create
().
1249985

Hacking the Hack
628024
The more data you can keep about failing requests, the better—you can use this data in your
automated tests as you add test cases and fix the bugs.
1249985
Test::Builder provides only a few methods. You may want to write your own test library
atop Test::Builder based on your needs. An alternate approach is to use
Test::Class within your proxy. Though you need to find some way to manage the test
output and counter on a per-object basis, the module will handle much of the setup code
for you. It will also be very valuable if you want to test multiple types of objects that inherit
from common ancestors.
1249985
Sampling one out of every hundred requests may be the wrong frequency. There's a whole
field of statistical analysis devoted to sample and defect rates. This is a decent place to start,
and it's likely an improvement over only automated testing, but it's not perfect for every
need.
1249985
It may be worth serializing the proxied object and storing it somewhere useful in case of
failure. Whether you use Storable or YAML or just save the relevant data somewhere else,
having the exact information available to recreate the appropriate customer request will aid
debugging.
1249985

Chapter 7. Developer Tricks Page 17 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 66. Cheat on Benchmarks
621961

1249985
Add optimizations where they really matter.
1249985
A well-known fact among programmers is that the true sign of superiority of a language is
its performance executing various meaningless and artificial benchmarks. One such
impractical benchmark is the Ackermann function, which really exercises an
implementation's speed of recursion. It's easy to write the function but it's difficult for the
computer to calculate and optimize.
1249985

Of course, benchmarks are rarely useful. Yet sometimes they can teach
you about good optimization techniques.
1249985

If you love Perl, cheat. It's easy.
1249985
A fairly fast but maintainable Perl 5 implementation of this function is:
1249985

use strict;
use warnings;

no warnings 'recursion';

sub ackermann
{
 my ($m, $n) = @_;
 return $n + 1 if $m = = 0;
 return ackermann($m - 1, 1) if $n = = 0;
 return ackermann($m - 1, ackermann($m, $n - 1));
}

print ackermann(3, 10), "\\n";

Analyzing the function reveals that it takes a long, long time to calculate the value for any
interesting positive integers. That's why the code disables the warning for deep recursion.
1249985
So, cheat. Add two lines of code to the program before calling ackermann() with the seed
values to speed it up substantially:
1249985

Chapter 7. Developer Tricks Page 18 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use Memoize;
memoize('ackermann');

Don't run this with arguments greater than (4, 2) if you plan to use your
computer before it finishes computing.
1249985

Calculating for (3, 10) with the memoized version took just under 1.4 seconds on the author's
computer. The author interrupted the unmemoized version after a minute, then felt bad and
restarted. It ran to completion in just over five minutes. These are not scientific results, but
the difference in timing is dramatic.
1249985
Is this really cheating? A hypothetically complex Perl compiler could notice that ackermann
() has no side effects and mathematically must return the same output for any two given
inputs, so it could perform this optimization itself. You're just helping it along with a core
module.
1249985
See the Memoize documentation for information on how this works and legitimate uses of
memoization. See the http://en.wikipedia.org/wiki/Ackermann_function Wikipedia entry for
more about the Ackermann function.
1249985

Hack 67. Build Your Own Perl
621961

1249985
Compile Perl just the way you like it.
1249985
Perl has so many features that no single binary can do everything everyone wants. If you're
debugging XS code, you might want to enable debugging. If you like to experiment, you
might want to enable threads. If you need to run Perl on an odd platform where memory or
disk space are low, you might want to disable certain features and core modules. You might
even want an experimental patch that adds type information (autobox on the CPAN) or the
defined-or operator (dor on the CPAN). You might also want to patch Perl yourself or help
test out a development release.
1249985
Whatever the case, building your own Perl is reasonably easy.
1249985

Chapter 7. Developer Tricks Page 19 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://en.wikipedia.org/wiki/Ackermann_function

The Hack
628024
Before you start, you need a working C development environment with a compiler, system
headers, and a Make utility.
1249985
First, download Perl. The latest version is always available from the CPAN at http://
www.cpan.org/src/. Stable versions have even minor version numbers (Perl 5.6.x, Perl 5.8.x,
Perl 5.10.x) while development versions have odd minor numbers (Perl 5.7.x, Perl 5.9.x). Unless
you are ready to report and possibly debug bugs, choose a stable version.
1249985
After you have downloaded and unpacked the distribution, change to the new directory. To
configure the default build, simply run the Configure file:
1249985

$ sh Configure -de

You don't have to use the -de flag, but the configuration will prompt you for multitudinous
options that few people care about and fewer still all understand. However, some options
are useful.
1249985
To install Perl to a different root directory, use the -Dprefix option. For example, if you
want to test Perl 5.9.3 and install it to /usr/local/bleadperl-5.9.3, use the flag -Dprefix=/
usr/local/bleadperl-5.9.3.
1249985

If you already have a system Perl installed, some of the OS utilities might
rely on it. In this case, build and install a parallel Perl rather than overwrite
an installed version.
1249985

To build a development release, pass the -Dusedevel flag.
1249985
To enable threads, use the -Dusethreads flag.
1249985
To enable debugging of the perl binary itself, pass the -Doptimize='g' flag.
1249985
To see the other configuration options, run:
1249985

$ sh Configure -h

Chapter 7. Developer Tricks Page 20 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.cpan.org/src/
http://safari.bvdep.com/http://www.cpan.org/src/

Running the Hack
628024
Now you have Perl configured and can build it. Building is as simple as running your Make
utility, usually make but sometimes gmake:
1249985

$ make

If everything goes well, you will have a perl binary in a few minutes, along with compiled
versions of the necessary core libraries in lib/. Then, run the core tests:
1249985

$ make test

Everything should pass. If not, check the appropriate README.* file for your platform to see
if there are any expected failures.
1249985
If there are failures, or if you're building a development release, consider using the
perlbug utility built with this Perl to report the failures:
1249985

$./perlbug -nok

Use the -ok flag instead to report success of a development release.
1249985

If you can't send mail from this system, send the output to a file with the -f switch:
1249985

$./perlbug -nok -f build.failure

Then mail the file to perlbug@perl.org.
1249985
If everything is to your expectation, install your new Perl with:
1249985

$ make install

Switch to the root user or use sudo as necessary, depending on your installation prefix.
1249985

Chapter 7. Developer Tricks Page 21 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
The INSTALL file in the source distribution contains the most information about building and
installing Perl, as well as reporting any bugs to the Perl 5 Porters. If you run into trouble, read
that file for answers. The numerous README.* files contain platform-specific information that
affects how Perl builds and runs (read them with perldoc or your favorite pager).
1249985
To hack on Perl itself, start by reading pod/perlhack.pod in the source directory. This also gives
the rsync command used to access the very latest sources, as well as instructions on sending
patches.
1249985

Hack 68. Run Test Suites Persistently
621961

1249985
Speed up your tests.
1249985
Large Perl applications with many interconnected modules can take a long time to start up.
Perl needs to load, compile, and initialize all of the modules before it can start running your
application.
1249985
Tests for a large system can be particularly slow. A test suite typically contains lots of small
short-lived scripts, each of which pulls in lots of module code at start up. A few seconds of
delay per script can add up to a lot of time spent waiting for your test suite to finish.
1249985
The cure for long startup times within web-based applications is to run under a persistent
environment such as mod_perl or PersistentPerl. PersistentPerl works for
command-line programs as well. It's usually as simple as changing the shebang line from
#!/usr/bin/perl to #!/usr/bin/perperl.
1249985
Running your test suite persistently is slightly more complicated, and doesn't work for every
test, but the benefit is a huge speed increase for most of your tests. Running your test suite
persistently can speed up your tests by a factor of five on a slow machine.
1249985

Chapter 7. Developer Tricks Page 22 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Hack
628024
The first step of the hack is to make Test::Builder-based scripts compatible with
PersistentPerl. There are several parts to this:
1249985

• The script has to reset the Test::Builder counter on startup.

• The script needs to prevent Test::Builder from duplicating STDOUT and STDERR, as this seems to be incompatible with
PersistentPerl.

• Scripts with no_plan have to register a PersistentPerl cleanup handler to display the final 1..X line.

Test::PerPerlHelper does all of this for you:
1249985

package Test::PerPerlHelper;

use strict;
use warnings;

use base 'Test::Builder';

require Test::More;

sub import
{
 my $class = shift;

 if (eval {require PersistentPerl} && PersistentPerl->i_am_perperl())
 {
 # rebless the Test::Builder singleton into our class
 # so that we can override the plan and _dup_stdhandles methods
 my $Test = Test::Builder->new();
 bless $Test, __PACKAGE__;
 }

 $class->plan(@_);
}

sub plan
{
 my $class = shift;
 return unless @_;

 my $Test = Test::Builder->new();

 if (eval {require PersistentPerl} && PersistentPerl->i_am_perperl())
 {
 $Test->reset();

 Test::Builder::_autoflush(*STDOUT);
 Test::Builder::_autoflush(*STDERR);

 $Test->output(*STDOUT);
 $Test->failure_output(*STDERR);
 $Test->todo_output(*STDOUT);

Chapter 7. Developer Tricks Page 23 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 $Test->no_ending(1);
 my $pp = PersistentPerl->new();
 $pp->register_cleanup(sub { $Test->_ending });
 }
 $Test->SUPER::plan(@_);
}

Duplicating STDERR and STDOUT doesn't work under perperl
so override it with a no-op
sub _dup_stdhandles { }

1;

Under the hood, Test::Builder uses a singleton $Test object to maintain state. No
matter how many times you call Test::Builder->new(), it always returns a reference
to the same $Test object. It does this so that all the various CPAN test modules can all share
the same test state (especially the test counter).
1249985
Test::PerPerlHelper makes itself a subclass of Test::Builder, and then sneakily
reblesses the Test::Builder singleton so that it is a Test::PerPerlHelper instead
of a Test::Builder. In this way Test::PerPerlHelper can make itself compatible
with all of the CPAN Test::* modules by customizing the singleton $Test object.
1249985
Test::PerPerlHelper only does this and other PersistentPerl-related
compatibility tricks if the test script is running under PersistentPerl, so you can safely
run the same test script normally as well.
1249985
The only change that you should have to make to your test scripts is make them end in a true
value:
1249985

use Test::More 'no_plan';

ok(1);
ok(2);
ok(3);

1; # persistent tests need to end in a true value!

Creating a wrapper around prove
621961
Next you need to make all of your test scripts run in the same shared PersistentPerl
interpreter.
1249985
Normally when you run a program under PersistentPerl, the Perl interpreter stays
running in the background after your program terminates. The next time you run the
program, PersistentPerl will reuse the same backend interpreter. Typically, each
program gets its own private interpreter.

Chapter 7. Developer Tricks Page 24 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
However, for test suites, this policy of one interpreter per program causes a problem. When
you use Test::Harness's prove program to run your tests, you don't want to make
prove itself persistent; you want to make all of your test scripts persistent—and you want
them all to share a single interpreter.
1249985
The first step is to create a wrapper script called perperl-runscript which you will use
to run every test script:
1249985

#!/usr/bin/perperl -- -M1

use strict;
use Test::PerPerlHelper;

my $script;
while (my $arg = shift)
{
 # if the arg is a -I switch, add the directory to @INC
 # unless it already exists
 if ($arg =~ /^-I(.*)/ and -d $1)
 {
 unshift @INC, $1 unless grep { $_ eq $1 } @INC;
 }
 else
 {
 $script = $arg;
 }
}

do $script or die $@;

Place perperl-runscript somewhere in your $PATH.
1249985

Running the Hack
628024
Set the HARNESS_PERL environment variable to perperl-runscript to cause
Test::Harness to run every test through this script instead of through Perl. Because the
name of this script never changes, PersistentPerl will always use the same backend
interpreter to run every test. The -M1 switch on the shebang line tells perperl to only spawn
one backend interpreter.
1249985
You can set HARNESS_PERL on the same line as prove:
1249985

$ HARNESS_PERL=perperl-runscript prove -Ilib t/

Better still, create a wrapper script around prove called perperl-prove:

Chapter 7. Developer Tricks Page 25 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

#!/bin/sh

export HARNESS_PERL=perperl-runscript

prove $*

Now you have the choice of running your test suite persistently or non-persistently:
1249985

$ perperl-prove -Ilib t/
$ prove -Ilib t/

To "restart" PersistentPerl, you must kill its backend processes:
1249985

$ killall perperl_backend

You have to restart PersistentPerl if any code outside of the test script itself has
changed. However you don't have to restart PersistentPerl if only the test script has
changed.
1249985

Hacking the Hack
628024
There are some limitations with running tests persistently. In particular:
1249985

• Scripts that muck about with STDIN, STDOUT, or STDERR will have problems.

• The usual persistent environment caveats apply: be careful with redefined subs, global variables, and so on; required code
only gets loaded on the first request, and so forth.

• Test scripts have to end in a true value.

Expect some scripts to cause problems. When you find a script that does not play nicely with
PersistentPerl, you can configure the script to skip all its tests when run persistently:
1249985

use Test::More;
use Test::PerPerlHelper;
if (eval { require PersistentPerl } and PersistentPerl->i_am_perperl())
{
 Test::PerPerlHelper->plan(
 'skip_all',
 'Redirecting STDIN doesn't work under perperl');
}
else
{
 plan "no_plan";
}

Chapter 7. Developer Tricks Page 26 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

You can also use the "Reload Modified Modules" [Hack #30] hack to reload modules without
restarting PersistentPerl.
1249985
Add the following lines to your test script:
1249985

use Module::Reloader;
Module::Reloader::reload() if $ENV{'RELOAD_MODULES'};

Now you can reload modules by setting the RELOAD_MODULES environment variable to a
true value:
1249985

$ RELOAD_MODULES=1 perperl-prove t/

If you don't set the environment variable, then the modules will not be reloaded:
1249985

$ perperl-prove t/

Note that for some reason Module::Reloader doesn't work on the first run of a script; it
only starts working on the second run. The first run fails with an error, Too late to run
INIT block.
1249985

Hack 69. Simulate Hostile Environments in Your Tests
621961

1249985
Test devastating failures with aplomb.
1249985
When you publish a CPAN module that depends on other modules, you list the prerequisite
modules in your Makefile.PL or Build.PL script.
1249985
Using Build.PL:
1249985

my $builder = Module::Build->new(
 # ... other Build.PL options ...
 requires =>
 {
 'Test::More' => 0,
 'CGI' => 2.0,

Chapter 7. Developer Tricks Page 27 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 }
);

Using Makefile.PL:
1249985

WriteMakefile(
 # ... other Makefile.PL options ...
 'PREREQ_PM' =>
 {
 'Test::More' => 0,
 'CGI' => 2.0,
 }
);

However, there are a few ways that this standard prerequisite checking can be insufficient.
First, you may have optional prerequisites. For instance, your module will use Foo::Bar if
it happens to be installed, but should fail gracefully when Foo::Bar is absent.
1249985
Second, if the behavior of a module changed between two versions, you may still want to
support both versions. For example, CGI changed how it handles PATH_INFO in version
3.11. Your CGI::Super_Path_Info module probably wants to be compatible with both
CGI version 3.11 and also with earlier (and later) versions.
1249985
Finally, occasionally a user will install your module by hand to bypass the prerequisite check,
hoping to use an older version of Foo::Bar than the one you require. Sometimes your
module works fine (maybe with some feature limitations), but your test suite breaks because
your tests assumed the presence of a new feature.
1249985
For each of these cases. you can make your module and tests more robust. For example, you
can skip tests that are incompatible with an older version of a module:
1249985

use Test::More;
use CGI;

if ($CGI->VERSION >= 3.11)
{
 plan skip_all => 'skipping compatibility tests for old CGI.pm';
}
else
{
 plan 'tests' => 17;
}

You can also skip tests that require the presence of a particular optional module:
1249985

eval 'require URI;';
if ($@)
{
 plan skip_all => 'optional module URI not installed';

Chapter 7. Developer Tricks Page 28 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

}
else
{
 plan 'tests' => 10;
}

Now your tests are (hopefully) more robust, but how do you make sure that they will actually
work on a system that is missing some modules and has older versions of others?
1249985
Ideally, you want to run your test suite against a few different sets of installed modules. Each
set will be different from what you have installed in the main Perl site_lib of your
development machine. It's way too much work to uninstall and reinstall ten different modules
every time you make a new CPAN release.
1249985

The Hack
628024
There are three possibilities: the user has an old version of the module installed, the user does
not have the module installed, and the user has some combination of both for multiple
modules.
1249985

Simulating old versions of modules
621961
Create custom Perl library directories and include these directories when you use prove to
run your tests. For instance, to run the tests against an old version of CGI:
1249985

$ mkdir t/prereq_lib
$ mkdir t/prereq_lib/CGI
$ cp CGI-3.10.pm t/prereq_lib/CGI.pm
$ prove -Ilib -It/prereq_lib t/

Including t/prereq_lib on the command line to prove puts at the start of @INC, so Perl will
load any modules you put in this directory before modules installed in your system's Perl
lib directories.
1249985

Simulating missing modules
621961
That works for older versions of modules, but how do you install the absence of a module in
a custom library directory so that it takes precedence over a copy already installed on your
system?
1249985

Chapter 7. Developer Tricks Page 29 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The solution is to create a zero-length file with the same name as the module. This works
because in order for a module to load successfully (via require or use) it has to end in a
true value, such as (from actual CPAN modules):[1]

1249985

[1] The more boring the line of code, the better the opportunity for creativity.

1;
666;
"false";
"Steve Peters, Master Of True Value Finding, was here.";

A zero-length file doesn't end in a true value, and consequently require fails. It doesn't fail
with the same error message as a missing module fails with, but it still fails.
1249985
For example, to run the tests in an environment missing URI:
1249985

$ mkdir -p t/skip_lib
$ touch t/skip_lib/URI.pm
$ prove -Ilib -It/skip_lib t/

Running multiple scenarios
621961
You can create multiple different library directories, each containing a different combination
of missing and/or old modules:
1249985

$ mkdir -p t/prereq_scenarios/missing_uri
$ touch t/prereq_scenarios/missing_uri/URI.pm
$ mkdir -p t/prereq_scenarios/old_cgi
$ cp CGI-3.10.pm t/prereq_scenarios/old_cgi/CGI.pm
$ mkdir -p t/prereq_scenarios/new_cgi
$ cp CGI-3.15.pm t/prereq_scenarios/new_cgi/CGI.pm

Then run all of these scenarios at once:
1249985

$ for lib in t/prereq_scenarios/*; do prove -Ilib -I$lib t/; done

However this one-liner stops at the first error and doesn't provide any summary information.
Here's a more complete version:
1249985

#!/usr/bin/perl

use strict;
use File::Find;

Chapter 7. Developer Tricks Page 30 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if (@ARGV < 2)
{
 die "Usage: $0 [prereq_scenarios_dir] [args to prove]\\n";
}

my $scenarios_dir = shift;

my %scenario_modules;
my $errors;

my @scenarios = grep { -d } <$scenarios_dir/*>;

for my $lib_dir (@scenarios)
{
 unless (-d $lib_dir)
 {
 $errors = 1;
 warn "lib dir does not exist: $lib_dir\\n";
 next;
 }
 my @modules;

 find(sub
 {
 return unless -f;

 my $dir = "$File::Find::dir/$_";
 $dir =~ s/^\\Q$lib_dir\\E//;
 $dir =~ s/\\.pm$//;
 $dir =~ s{^/}{ };
 $dir =~ s{/}{::}g;

 push @modules, $dir;
 }, $lib_dir);

 $scenario_modules{$lib_dir} = \\@modules;
}

die "Terminating." if $errors;

for my $lib_dir (@scenarios)
{
 my $modules = join ', ', sort @{ $scenario_modules{$lib_dir} };
 $modules ||= 'none';
 print "\\n" . '#' x 62 . "\\n";
 print "Running tests. Old (or absent) modules in this scenario:\\n";
 print "$modules\\n";

 my @prove_command = ('prove', "-I$lib_dir", @ARGV);

 system(@prove_command) && do
 {
 die <<EOF;
##
One or more tests failed in scenario $lib_dir.
The old or absent modules were:
 $modules

The command was:
 @prove_command

Chapter 7. Developer Tricks Page 31 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Terminating.
##
EOF
 };
}

Save this as prove-prereqs and run it as:
1249985

$ prove-prereqs t/prereq_scenarios -Ilib t/

Hacking the Hack
628024
PITA, the Perl Image Testing Architecture (http://search.cpan.org/dist/PITA) project, goes
much further than this hack does. PITA will be able to test your Perl modules under different
versions of Perl and even on different operating systems (possibly running within virtual
machines on a single computer). It will allow you to automate the testing process and collect
the results generated from several testing environments.
1249985

Chapter 7. Developer Tricks Page 32 Return to Table of Contents

Chapter 7. Developer Tricks
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://search.cpan.org/dist/PITA

