
Table of Contents

Chapter 4. Working with Modules539.. 1
Hack 28. Shorten Long Class Names621961.. 1
Hack 29. Manage Module Paths621961.. 3
Hack 30. Reload Modified Modules621961... 5
Hack 31. Create Personal Module Bundles621961... 7
Hack 32. Manage Module Installations621961.. 10
Hack 33. Presolve Module Paths621961... 12
Hack 34. Create a Standard Module Toolkit621961.. 15
Hack 35. Write Demos from Tutorials621961.. 18
Hack 36. Replace Bad Code from the Outside621961.. 20
Hack 37. Drink to the CPAN621961.. 22
Hack 38. Improve Exceptional Conditions621961... 24
Hack 39. Search CPAN Modules Locally621961... 27
Hack 40. Package Standalone Perl Applications621961... 30
Hack 41. Create Your Own Lexical Warnings621961.. 34
Hack 42. Find and Report Module Bugs621961.. 36

Chapter 4. Working with Modules

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 4. Working with Modules
539

Hacks 28-42
1249985
Perhaps the greatest invention of Perl 5 is the idea of modules. They allow people to modify
the language and reuse code far beyond what Larry and the Perl 5 porters ever envisioned.
(Who could have predicted CPAN or Acme::*, for example?)
1249985
If you're doing any serious work with Perl, you'll spend a lot of time working with modules:
installing them, upgrading them, loading them, working around weird and unhelpful
features, and even distributing them. It makes a lot of sense to understand how Perl and
modules interact and how to work with them effectively.
1249985
Here are several ideas that show off the varied ways that you can extend your programs.
CPAN is only an arm's length away. Be ready.
1249985

Hack 28. Shorten Long Class Names
621961

1249985
Type only what you need to type. You know what you mean.
1249985
Are you tired of using Perl classes with
Really::Long::Package::Names::You::Cant::Remember? Use aliased and
forget about them. This handy CPAN module creates short, easy-to-remember aliases for
long class names.
1249985

Chapter 4. Working with Modules Page 1 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

The Hack
628024
Given the hypothetical example just cited, use aliased to load the class and create an alias
all at once:
1249985

use aliased 'Really::Long::Package::Names::You::Cant::Remember';

my $rem = Remember->new();

When aliased loads a class, it automatically creates a constant subroutine, in the local name
space named after the final part of the package name. This subroutine returns the full package
name. Because it's a constant, it's actually very efficient; Perl will inline the package name, so
that by the time your code has compiled, Perl sees it as if you had actually typed:
1249985

use aliased 'Really::Long::Package::Names::You::Cant::Remember';

my $rem = Really::Long::Package::Names::You::Cant::Remember->new();

You gain simplicity and lose, well, nothing.
1249985

Resolve conflicts
621961
Sometimes you might want to alias two classes that have the same final portion of their
package names. In such cases, specify the alias that you want to use to disambiguate the two
classes:
1249985

use aliased 'My::App::Contact';
use aliased 'My::App::Type::Contact' => 'ContactType';

my $contact_type = ContactType->new();
my $contact = Contact->new({ type => $contact_type });

Importing with aliased
621961
Sometimes, even in object-oriented programming, you need to import symbols from a
module. aliased allows you to do so while still creating an alias. The only wrinkle is that
you must explicitly specify an alias. Why? Because then you pass in a list of import symbols,
and if you didn't specify an alias name, the first symbol would be the alias! Here's how it works:
1249985

use aliased 'My::App::Contact' => 'Contact', qw(EMAIL PHONE);

my $contact = Contact->new({

Chapter 4. Working with Modules Page 2 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 kind => EMAIL,
 value => 'perlhacks@oreilly.com',
});

If you hadn't put that 'Contact' there, then the alias would have been EMAIL and that
wouldn't do what you meant .
1249985

Hack 29. Manage Module Paths
621961

1249985
Keep your code where it makes sense to you, not just to Perl.
1249985
Perl's a flexible language and it tries to make few assumptions about your environment.
Perhaps you're a system administrator with root access and a compiler and can install
modules anywhere you want. Perhaps you only have shell access on a shared box and have
to submit a change request to have something installed. Perhaps you want to test one set
of modules against one program but not another.
1249985
Whatever the case, Perl gives you options to manage where it looks for modules. Suppose
you have a program in your ~/work directory that uses a module named Site::User. By
default, Perl will search all of the directories in the special @INC variable for a file named Site/
User.pm. That may not always include the directory you want (especially if, in this case, you
want ~/work/lib). What can you do?
1249985

Within Your Program
628024
The simplest and most self-contained way to change Perl's search path is within your program
by using the lib pragma. This happens at compile-time [Hack #70], as soon as perl
encounters the statement, so put it before any use line for the module you want to load. For
example:
1249985

use lib 'lib';
use Site::User;

adds the lib/ directory—relative to the current directory—to the front of Perl's search path
list. Similarly:
1249985

Chapter 4. Working with Modules Page 3 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

no lib 'badlib';
use Site::User;

removes the badlib/ directory from Perl's list of search paths. If you have two versions of
Site::User installed and want to make sure that Perl doesn't pick up the wrong version
from the wrong directory, exclude it.
1249985

From the Command Line
628024
Sometimes you don't have the option or the desire to modify a program, though, especially
when you're merely testing it. In that case, use the lib pragma from the command line when
invoking the program by using perl's -M switch:
1249985

$ perl -Mlib=lib show_users.pl

This is equivalent to use lib 'lib'. To exclude a path, prepend a hyphen to lib:
1249985

$ perl -M-lib=badlib show_users.pl

The -I flag also lets you include paths, but it does not let you exclude
them.
1249985

With an Environment Variable
628024
Of course, modifying every program or remembering to add a command-line switch to every
invocation is a tremendous hassle. Fortunately, there's a third option: set the PERL5LIB
environment variable to a colon-separated list of directories to add to the search path.
Depending on your shell, this may be:
1249985

$ export PERL5LIB=/home/user/work/lib:/home/user/work_test/lib:$PERL5LIB

% setenv PERL5LIB /home/user/work/lib:/home/user/work_test/lib:$PERL5LIB

There's no good and easy way to exclude a directory for the search path here; put the correct
directory at the front of the path.
1249985

Chapter 4. Working with Modules Page 4 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If you put the appropriate invocation in the appropriate startup file (such as /etc/profile or
the equivalent), users do not even have to know that this path is there. Of course, if they run
programs from cron or another environment without these variables, some paths may not
be present.
1249985
An easier option may be to write a simple shell script that sets the environment properly and
then launches the actual perl binary, passing along the command-line options
appropriately.
1249985

When Recompiling Perl
628024
Your final recourse is to set the appropriate paths when compiling Perl [Hack #67]. This isn't
as bad as it sounds, but it does take a little bit more dedication. Once you have downloaded
and unpacked Perl, run the Configure script. Answer all of the questions appropriately
until it asks:
1249985

Enter a colon-separated set of extra paths to include in perl's @INC
search path, or enter 'none' for no extra paths.

Colon-separated list of additional directories for perl to search? [none]

Type there the list of directories to add to Perl's built-in @INC. Note that perl will search this
directory after it searches its core directories, so if you want to load something in place of a
core module, you must manipulate the path with one of the other techniques.
1249985

Hack 30. Reload Modified Modules
621961

1249985
Update modules in a running program without restarting.
1249985
Developing a long-running program can be a tedious process, especially when starting and
stopping it can take several seconds or longer. This is most painful in cases where you just
need to make one or two little tweaks to see your results. The Ruby on Rails web programming
toolkit in development mode gets it right, automatically noticing when you change a library
and reloading it in the running server without you having to do anything.
1249985

Chapter 4. Working with Modules Page 5 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Perl can do that too.
1249985

The Hack
628024
All it takes is a simple module named Module::Reloader:
1249985

package Module::Reloader;

use strict;
use warnings;

my %module_times;

INIT
{
 while (my ($module, $path) = each %INC)
 {
 $module_times{ $module } = -M $path;
 }
}

sub reload
{
 while (my ($module, $time) = each %module_times)
 {
 my $mod_time = -M $INC{$module};
 next if $time = = $mod_time;

 no warnings 'redefine';
 require (delete $INC{ $module });
 $module_times{ $module } = $mod_time;
 }
}

1;

At the end of compile time [Hack #70], the module caches the name and modification time
of all currently loaded modules. Its reload() function checks the current modification
time of each module and reloads any that have changed since the last cache check.
1249985

Running the Hack
628024
Use the module as usual. Then, when you want to reload any loaded modules, call
Module::Reloader::reload(). In a long-running server process, such as a pure-Perl
web server running in development mode for a framework, this is easy to do right before
processing a new incoming request.
1249985

Chapter 4. Working with Modules Page 6 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Provided that the modules being modified don't keep around any weird state between
requests, the request will see the new behavior.
1249985

Hacking the Hack
628024
The module as written does attempt to avoid spurious warning messages by suppressing
Subroutine %s redefined at... error messages, but a compilation error in a module
may cause strange behavior and necessitate a server restart. This is for development
purposes only; it's very difficult to write code that behaves perfectly in a production
environment—too many things could go wrong.
1249985
Changing the definition of classes while you have active instances of those classes can do
scary things. It may be worthwhile to exclude certain modules, perhaps by specifying filters
for modules to include or to exclude.
1249985
This module currently does not erase the symbol tables of reloaded modules; that may be
useful in certain circumstances. (It may be hazardous in others, where multiple modules affect
symbols in a given package.)
1249985

Hack 31. Create Personal Module Bundles
621961

1249985
Create a personal bundle of your favorite modules.
1249985
It never fails. I'm working on a new computer, a friend's computer, or a work computer and
I've installed my favorite modules and written some code.
1249985

use My::Favorite::Module;
My::Favorite::Module->washes_the_dishes();

Then I run the program.
1249985

Can't locate My/Favorite/Module.pm in @INC (@INC contains ...

Chapter 4. Working with Modules Page 7 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

I did it again. I forgot to install the one module I really needed. Hopefully it's the last one. Of
course, even if you never forget to install your favorites, it's still a pain to laboriously install a
bunch of modules every time you have a new Perl installation.
1249985
That's where personal bundles come in.
1249985

The Hack
628024
A personal bundle is very easy to make. Just create a normal CPAN distribution. You don't
even need to write tests for it: the modules you list will (hopefully) test themselves.
1249985
Instead, create an empty package with the modules you want listed in your POD contents
section [Hack #32]. For example, suppose that you're a testing fanatic. You want to install
your favorite testing modules, so you decide to call your bundle Bundle::Personal::
Mine (where Mine is your PAUSE ID).
1249985

package Bundle::Personal::Mine;

$VERSION = '0.42';

1;

__END__

=head1 NAME

Bundle::Personal::Mine - My favorite testing modules

=head1 SYNOPSIS

perl -MCPAN -e 'install Bundle::Personal::Mine'

=head1 CONTENTS

Test::Class

Test::Differences

Test::Exception

Test::MockModule

Test::Pod

Test::Pod::Coverage

Test::WWW::Mechanize

=head1 DESCRIPTION

Chapter 4. Working with Modules Page 8 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

My favorite modules.

... rest of POD, if any ...

Then just package up your tarball and stow it in a safe place (or even upload it to the CPAN).
1249985

Running the Hack
628024
From then on, to install all of your favorite modules, just type cpanp i
Bundle::Personal::Mine for CPANPLUS, perl -MCPAN -e 'install
Bundle::Personal::Mine' for CPAN, or whatever your favorite module installation
incantation is.
1249985

Hacking the Hack
628024
When preparing a personal bundle, be selective about what you include. If you include a
module that routinely fails tests, the entire bundle installation might fail. If that happens, try
to install the errant module manually and return to installing the bundle. It's generally a bad
idea to force the installation of a module with failing tests until you understand why they fail.
This is especially true when working on a new machine.
1249985
Other uses for such bundles include software development kits, corporate bundles, and
application support modules. The CPAN already has bundles for Bundle::Test,
Bundle::BioPerl, Bundle::MiniVend, and so on. Go to your favorite CPAN mirror and
search for bundles. The bundle you want to create may already exist.
1249985

Should you really upload your own bundle to the CPAN? It depends. If
you maintain a redistributable application that requires several CPAN
modules, creating an installation bundle can help users install it and
packagers package it. If you're the only person using your bundle, it
probably won't do anyone else much good.
1249985

Chapter 4. Working with Modules Page 9 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 32. Manage Module Installations
621961

1249985
Bundle up required modules to make installations easier.
1249985
Embracing the Perl way means taking advantage of the CPAN when possible. There are
thousands of reusable, easily installable modules that do almost anything you can imagine
—including making your coding life much easier and simpler.
1249985
Some day you'll have to distribute your software, upgrade Perl, or do something else that
means that you can't rely on having all of your existing modules available. Never fear; just
create a bundle that the CPAN module can use to install all of the necessary modules for you!
1249985

The Hack
628024
The CPAN module doesn't only download and install modules. It can also give you a catalog
of what you have installed on your system. The autobundle command takes this list and
writes it to a bundle file—a very simple, mostly POD module that CPAN can use later (or
elsewhere) to install necessary modules.
1249985

If you only support one application, you can use a technique such as in
"Trace All Used Modules" [Hack #74] to figure out everything you need
to install.
1249985

All you have to do is launch the shell, issue the autobundle command, and note where it
creates the bundle file:
1249985

$ cpan

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> autobundle

time passes...

Chapter 4. Working with Modules Page 10 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Wrote bundle file
 /usr/src/.cpan/Bundle/Snapshot_2005_11_13_00.pm

Running the Hack
628024
Copy or move the bundle file from its current location. Then when you upgrade or reinstall
Perl, or when you move to another box, move the bundle file to the Bundle/ directory beneath
the CPAN module's working directory. Then, from the CPAN shell in the new machine or
installation:
1249985

$ cpan

cpan shell -- CPAN exploration and modules installation (v1.7601)
ReadLine support enabled

cpan> install Bundle::Snapshot_2005_11_13_00

time really passes...

It will go through the bundle list in order, intstalling all modules as necessary. At least, it will
try.
1249985

Hacking the Hack
628024
If you look at the bundle file, you might notice that it includes lots and lots of modules—
maybe more than you need and certainly plenty of core modules. Worse yet, depending on
how you've configured your CPAN and how well the modules you want to install mark their
dependencies, you may need to babysit the installation to get it to succeed. You may even
have to restart it a few times.
1249985
If possible, set CPAN to follow all prerequisites without asking when configuring it for the
first run. (You can always change it back later.) That will help. The next best thing to do is to
prune the module list. When possible, try to arrange dependencies appropriately. (Modules
change enough that it's unlikely you'll be able to do this perfectly.)
1249985
Finally, you can prune out all of the core modules by running the bundle file through
Module::CoreList [Hack #73]. That way, you have a somewhat smaller list of modules to install.
1249985

use Module::CoreList;

my ($bundle, $version) = @ARGV;
$version ||= $];
@ARGV = $bundle;

Chapter 4. Working with Modules Page 11 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

my $core_list = $Module::CoreList::version{ $version };
die "Unknown version $version\\n" unless $core_list;

find module list
while (<>)
{
 print;
 last if $_ eq "=head1 CONTENTS\\n";
}

print "\\n";

process only module/version lines
while (<>)
{
 if ($_ eq "=head1 CONFIGURATION\\n")
 {
 print;
 last;
 }

 chomp;
 next unless $_;

 my ($module, $version) = split(/\\s+/, $_);
 $version = 0 if $version eq 'undef';

 next if exists $core_list->{ $module }
 and $core_list->{ $module } >= $version;

 print "$module $version\\n\\n";
}

print everything else
print while <>;

Run this program, passing the name of the bundle file and, optionally, the version of Perl
against which to check. Redirect the output to a new bundle file:
1249985

$ perl prune_bundle.pl Snapshot_2005_11_03_00.pm > PrunedSnapshot.pm
$

Now you have an easier time deciding which modules you really need to install.
1249985

Hack 33. Presolve Module Paths
621961

1249985
Make programs on complex installations start more quickly.
1249985

Chapter 4. Working with Modules Page 12 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In certain circumstances, one of Perl's major strengths can be a weakness. Even though you
can manipulate where Perl looks for modules (@INC) at runtime according to your needs
[Hack #29], and even though you can use thousands of modules from the CPAN, your system
has to find and load these modules.
1249985
For a short-running, repeated program, this can be expensive, especially if you have many
paths in @INC from custom testing paths, sitewide paths, staging servers, business-wide
repositories, and the like. Fortunately, there's more than one way to solve this. One approach
is to resolve all of the paths just once, and then use your program as normal.
1249985

The Hack
628024
"Trace All Used Modules" [Hack #74] shows how putting a code reference into @INC allows
you to execute code every time you use or require a module. That works here, too.
1249985

package Devel::Presolve;

use strict;
use warnings;

my @track;

BEGIN { unshift @INC, \\&resolve_path }

sub resolve_path
{
 my ($code, $module) = @_;
 push @track, $module;
 return;
}

INIT
{
 print "BEGIN\\n{\\n";

 for my $tracked (@track)
 {
 print "\\trequire(\\$INC{'$tracked'} = '$INC{$tracked}');\\n";
 }

 print "}\\n1;\\n";
 exit;
}

1;

Devel::Presolve's resolve_path() captures every request to load a module, stores
the module name, and returns. Thus Perl attempts to load the module as normal. After the
entire program has finished compiling, but before it starts to run [Hack #70], it prints to

Chapter 4. Working with Modules Page 13 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

STDOUT a BEGIN block that loads all of the modules by absolute filepath then exits the
program.
1249985

Running the Hack
628024
Put Devel::Presolve somewhere in your path. Then run your slow-starting program
while loading the module. Redirect the output to a file of your choosing:
1249985

$ perl -MDevel::Preload slow_program.pl > preload.pm

preload.pm will contain something similar to:
1249985

BEGIN
{
 require($INC{'CGI.pm'} = '/usr/lib/perl5/5.8.7/CGI.pm');
 require($INC{'CGI/Util.pm'} = '/usr/lib/perl5/5.8.7/CGI/Util.pm');
 require($INC{'vars.pm'} = '/usr/lib/perl5/5.8.7/vars.pm');
 require($INC{'constant.pm'} = '/usr/lib/perl5/5.8.7/constant.pm');
 require($INC{'overload.pm'} = '/usr/lib/perl5/5.8.7/overload.pm');
}

1;

You can either include the contents of this file at the start of slow_program.pl or load it as the
first module. If you do the latter, put the file in a directory at the front of @INC, lest you erase
any performance gains.
1249985
Note that the trick of assigning to %INC within the require avoids a potentially nasty
module-reloading bug, where Perl doesn't see require '/usr/lib/perl5/5.8.7./
CGI.pm' as loading the same file as use CGI; does.
1249985

Hacking the Hack
628024
Pre-resolving paths likely won't help long-running programs. For short-running programs
where startup time can dwarf calculation time, it may, depending on how complex your
@INC is. Be especially careful that upgrading Perl or installing new versions of modules may
invalidate this cache—it is a cache—and cause strange errors. This technique may work
better only when you want to deploy a program to a production system, but likely not when
you're merely developing or testing.
1249985

Chapter 4. Working with Modules Page 14 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 34. Create a Standard Module Toolkit
621961

1249985
Curb your addiction to explicit use statements.
1249985
Most experienced Perl programmers rely on a core set of modules and subroutines that they
use in just about every application they create. For example, if you work with XML documents
on a daily basis (and you certainly have our deepest sympathy there), then you probably use
either XML::Parser or XML::SAX or
XML::We::Built::Our::Own::Damn::Solution all the time.
1249985
If those documents contain lists of files that you need to manipulate, then you probably use
File::Spec or File::Spec::Functions as well, and perhaps File::Find too.
Maybe you need to verify and manipulate dates and times on those files, so you regularly
pull in half a dozen of the DateTime modules.
1249985
If the application has an interactive component, you might continually need to use the
prompt() subroutine from IO::Prompt [Hack #14]. Likewise, you might frequently make use
of the efficient slurp() function from File::Slurp. You might also like to have
Smart::Comments instantly available [Hack #54] to simplify debugging. Of course, you always
specify use strict and use warnings, and probably use Carp as well.
1249985

A Mess of Modules
628024
This adds up to a tediously long list of standard modules, most of which you need to load
every time you write a new application:
1249985

#! /usr/bin/perl

use strict;
use warnings;
use Carp;
use Smart::Comments;
use XML::Parser;
use File::Spec;
use IO::Prompt qw(prompt);
use File::Spec::Functions;
use File::Slurp qw(slurp);
use DateTime;
use DateTime::Duration;

Chapter 4. Working with Modules Page 15 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use DateTime::TimeZone;
use DateTime::TimeZone::Antarctica::Mawson;
etc.
etc.

It would be great if you could shove all these usual suspects in a single file:
1249985

package Std::Modules;

use strict;
use warnings;
use Carp;
use Smart::Comments;
use XML::Parser;
use File::Spec;
use IO::Prompt qw(prompt);
use File::Spec::Functions;
use File::Slurp qw(slurp);
use DateTime;
use DateTime::Duration;
use DateTime::TimeZone;
use DateTime::TimeZone::Antarctica::Mawson;
etc.

1;

and just use that one module instead:
1249985

#! /usr/bin/perl

use Std::Modules;

Of course, that fails dismally. Using a module that uses other modules isn't the same as using
those other modules directly. In most cases, you'd be importing the components you need
into the wrong namespace (into Std::Modules instead of main) or into the wrong lexical
scope (for use strict and use warnings).
1249985

The Hack
628024
What you really need is a way to create a far more cunning module: one that cuts-and-pastes
any use statements inside it into any file that uses the module. The easiest way to accomplish
that kind of sneakiness is with the Filter::Macro CPAN module. As its name suggests,
this module is a source filter that converts what follows it into a macro. Perl then replaces
any subsequent use of that macro-ized module with the contents of the module. For
example:
1249985

package Std::Modules;
use Filter::Macro; # <-- The magic happens here

Chapter 4. Working with Modules Page 16 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use strict;
use warnings;
use Carp;
use Smart::Comments;
use XML::Parser;
use File::Spec;
use IO::Prompt qw(prompt);
use File::Spec::Functions;
use File::Slurp qw(slurp);
use DateTime;
use DateTime::Duration;
use DateTime::TimeZone;
use DateTime::TimeZone::Antarctica::Mawson;
etc.
etc.

1;

Now, whenever you write:
1249985

#! /usr/bin/perl

use Std::Modules;

all of those other use statements inside Std::Modules are pasted into your code, in place
of the use Std::Modules statement itself.
1249985

Hacking the Hack
628024
There's also a more modular and powerful variation on this idea available. The Toolkit
module (also on CPAN) allows you to specify a collection of standard module inclusions as
separate files in a standard directory structure. Once you have them set up, you can
automatically use them all just by writing:
1249985

#! /usr/bin/perl

use Toolkit;

The advantage of this approach is that you can also set up "conditional usages"—files that
tell Toolkit to import specific subroutines from specific modules, but only when something
actually uses those subroutines. For example, you can tell Toolkit not to always load:
1249985

use IO::Prompt qw(prompt);
use File::Slurp qw(slurp);

Chapter 4. Working with Modules Page 17 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

but only to load the IO::Prompt module if something actually uses the prompt()
subroutine, and likewise to defer loading File::Slurp for slurp() until actually
necessary.
1249985
That way, you can safely specify dozens of handy subroutines and modules in your standard
toolkit, but only pay the loading costs for those you actually use.
1249985

Hack 35. Write Demos from Tutorials
621961

1249985
Give tutorial readers example code to run, tweak, and examine.
1249985
Reading code is one thing. Running code is another. Example code is wonderfully useful,
but nothing beats playing with it—changing values, moving subroutines around, and seeing
what happens if you touch just one more thing.
1249985
You'll never escape writing documentation. You can escape having to explain the basics over
and over again if that documentation includes working, runnable code that people can
customize for their needs. If you've already realized that including pure-POD modules is a
great way to document programs, take the next step and make the tutorials themselves write
out their examples.
1249985

The Hack
628024
Writing a POD-only tutorial is easy. For example, the basic SDL::Tutorial shows how to
create a screen using Perl and the SDL bindings:
1249985

use SDL::App;

change these values as necessary
my $title = 'My SDL App';
my ($width, $height, $depth) = (640, 480, 16);

my $app = SDL::App->new(
 -width => $width,
 -height => $height,
 -depth => $depth,
 -title => $title,
);

Chapter 4. Working with Modules Page 18 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

your code here; remove the next line
sleep 2;

Running the Hack
628024
Better yet, if you run the tutorial from the command line, it writes out this program to a file
of your choosing:
1249985

$ perl -MSDL::Tutorial=sdl_demo.pl -e 1

Looking at the tutorial itself [Hack #2], it's only a use statement, a heredoc, and the
documentation. How does Pod::ToDemo know to write the file and exit? Further, what if
someone accidentally uses SDL::Tutorial as a module within a real program—will it write
or overwrite a file and throw an error?
1249985
Nope; that's part of the magic.
1249985

Inside the Hack
628024
Pod::ToDemo has two tricks. The first is writing code that will execute when you run the
demo file from the command line only. caller() isn't just for checking the calling
subroutine—it walks the entire call stack. The module's import() method has this code:
1249985

my @command = caller(3);

return if @command and $command[1] ne '-e';

That is, look three levels up the call stack. If the filename of that call frame is not -e (the correct
command-line invocation to write a demo file), then someone has accidentally used a demo
module in a real program, and the import() method returns without doing anything.
1249985

Why three levels? The previous level is the implicit BEGIN block
surrounding the use call in the demo module [Hack #70]. The next one
up is the load of the demo module itself (-M on the command line creates
its own block). The top level is the command-line invocation itself.
1249985

Chapter 4. Working with Modules Page 19 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The rest of the import() method itself merely installs another method into the demo
module, calling it import(). By the time the rest of the module finishes compiling, when
Perl goes to call that module's import(), it'll be there—and it can write the file as necessary.
1249985

Hacking the Hack
628024
This is the easy way to use Pod::ToDemo. There's also a more difficult way. Consider if you
already show the example code within the tutorial, perhaps in one large chunk and perhaps
not. Duplicating the code within the string to pass to Pod::ToDemo and the tutorial itself
would be a mistake. In that case, generate the code however you like, pulling it out of the
POD, and pass a subroutine reference to Pod::ToDemo. The module will call that instead,
when appropriate, letting you write the demo file as you like.
1249985
This trick would also work to parameterize the demo file based on command-line arguments.
1249985

Hack 36. Replace Bad Code from the Outside
621961

1249985
Patch buggy modules without touching their source code.
1249985
Until computers finally decide to do what we mean, not what we say, programs will have
bugs. Some you can work around. Others are severe enough that you have to modify source
code.
1249985
When the bugs are in code you don't maintain and you don't have a workaround, Perl's
dynamic nature can be an advantage. Instead of keeping local copies of externally managed
code, sometimes patching that code from the outside is the simplest way to make your code
work again.
1249985

The Hack
628024
Imagine that you're building a large application that uses a hypothetical Parser module
that, for whatever reason, calls exit(), not die(), when it fails. The relevant code might
look something like:

Chapter 4. Working with Modules Page 20 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

package Parser;

sub parse
{
 my ($class, $text) = @_;
 validate_text($shift);
 bless \\$text, $class;
}

sub validate_text
{
 my $text = shift;
 exit 1 unless $text =~ /^</;
}

1;

You might normally expect to use this module with code such as:
1249985

use Parser;

my $parser = eval { Parser->parse('some example text') };
die "Bad input to parser: $@\\n" if $@;

However because of the exit(), your program will end. It may be perfectly legitimate that
the text to parse in this example is invalid, so Parser can't handle it, but the exit() is just
wrong—it gives you no opportunity to alert the user or try to fix the problem. If
validate_text() were a method, you could subclass the module and override it, but
you don't have this option.
1249985
Fortunately, you can override the exit() keyword with a function of your own, if you do
it at the right time:
1249985

package Parser;
use subs 'exit';
package main;

use Parser;
sub Parser::exit{die shift;}

Before Perl can parse the Parser package, you must tell it to consider all occurrences of
exit() as calls to a user-defined function, not the built-in operator. That's the point of
switching packages and using the subs pragma.
1249985
Back in the main package, the odd-looking subroutine declaration merely declares the actual
implementation of that subroutine. Now instead of exiting, all code that calls exit() in
Parser will throw an exception instead.
1249985

Chapter 4. Working with Modules Page 21 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
If you don't really care about validation, if you prefer a sledgehammer solution, or if you don't
want to replace exit() in the entire package, you can replace the entire validate_text
() function:
1249985

use Parser;
local *Parser::validate_text;
*Parser::validate_text = sub
{
 my $text = shift;
 die "Invalid text '$text'\\n" unless $text =~ /^</;
};

Doing this in two steps avoids a warning about using a symbol name only once. Using
local replaces the code only in your current dynamic scope, so any code you call from this
scope will use this function instead of the old version.
1249985
To replace the subroutine globally, use Parser as normal, but remove the line that starts
with local. Replace it with no warnings 'redefine'; to avoid a different warning.
1249985
If you need to switch behavior, make the replacement validate_text() into a closure,
setting a lexical flag to determine which behavior to support. This variant technique is highly
useful in testing code.
1249985

Hack 37. Drink to the CPAN
621961

1249985
Play London.pm's CPAN Drinking Game—but responsibly.
1249985
The CPAN drinking game tests your knowledge of the CPAN. The goal of the game,
depending on who you ask, is either to prove that you have an incredibly deep knowledge
of the CPAN or to get incredibly drunk. An alternate goal is to learn about modules you never
even knew existed. Just try to remember them.
1249985

Chapter 4. Working with Modules Page 22 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Running the Hack
628024
The first player, Audrey, takes a drink and names a CPAN module: Devel::Cover. Play
passes to Barbie, who's sitting immediately to Audrey's right. Barbie needs to drink and then
come up with a released module which starts with C, the first letter of the last part of Audrey's
module. If he can't, he drinks and play passes to the next player.
1249985
If Barbie names a module with three parts, perhaps Crypt::SSLeay::X509, play skips
over chromatic, who's sitting to his right. The same applies if he managed to pull out a module
name with four, five, or more parts.
1249985
Domm picks up with X. He drinks and pulls out XML::XPath. Because the last part starts
with the same letter as the first part, the direction of play reverses and it's chromatic's turn.
1249985
chromatic drinks and, sadly, can't come up with anything and has to pass. He's now out of
the game. Audrey drinks and names XML::Simple. Play continues counterclockwise to
Domm, who needs to come up with something starting with S.
1249985
The winner is the last remaining player.
1249985

Hacking the Hack
628024
Try whiskey!
1249985
Seriously, as bar-rific as the game sounds, you don't have to drink alcohol. Try another
beverage—hot tea is good, root beer is good, and anything with caffeine can change the
rule for losing in interesting ways.
1249985
Some variants of the game require Barbie to drink until he can name a module. This can take
a while.
1249985
The author recommends never challenging Audrey to the CPAN drinking game.
1249985

Chapter 4. Working with Modules Page 23 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hack 38. Improve Exceptional Conditions
621961

1249985
Die with style when something goes wrong.
1249985
Perl's exception handling is sufficiently minimal. It's easy to recover when things go wrong
without having to declare every possible type of error you might possibly encounter. Yet
there are times when you know you can handle certain types of exceptions, if not others.
Fortunately, Perl's special exception variable $@ is more special than you might know—it can
hold objects.
1249985
If you can stick an object in there, you can do just about anything.
1249985

The Hack
628024
How would you like more context when you catch an exception? Sure, if someone uses the
Carp module you can sometimes get a stack trace. That's not enough if you want to know
exactly what went wrong.
1249985
For example, consider the canonical example of a system call gone awry. Try to open a file
you can't touch. Good style says you should die() with an exception there. Robust code
should catch that exception—but there's so much useful information that the exception
string could hold, why should you have to parse the message to figure out which file it was,
for example, or what the error was, or how the user tried to open the file?
1249985
Exception::Class lets you throw an exception as normal while making all of the
information available through instance methods.
1249985
Suppose you've factored out all of your file opening code into a single function:
1249985

use File::Exception;

sub open_file
{
 my ($name, $mode) = @_;

 open my $fh, $mode, $name or
 File::Exception->throw(file => $name, mode => $mode, error => $!);

Chapter 4. Working with Modules Page 24 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 return $fh;
}

Instead of calling die(), the function throw()s a new File::Exception object,
passing the file name, mode, and system error message. File::Exception subclasses
Exception::Class::Base to add two more fields and a friendlier error message:
1249985

package File::Exception;

use SUPER;
use Exception::Class;

use base 'Exception::Class::Base';

sub Fields
{
 my $self = shift;
 return super(), qw(file mode);
}

sub file { $_[0]->{file} }
sub mode { $_[0]->{mode} }

sub full_message
{
 my $self = shift;
 my $msg = $self->message();

 my $file = $self->file();
 my $mode = $self->mode();

 return "Exception '$msg' when opening file '$file' with mode '$mode'";
}

1;

The only curious piece of the code is the Fields() method.
Exception::Class::Base uses this to initialize the object with the proper attributes.
1249985
full_message() creates and returns the string used as the exception message. This is
what $@ would contain if this were a normal exception. As it is, Exception::Class::Base
overrides object stringification [Hack #99] so the objects appear as normal die() messages
to users who don't realize they're objects.
1249985

Running the Hack
628024
Call open_file() as usual—within an eval() block:
1249985

Chapter 4. Working with Modules Page 25 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

my $fh;
$fh = eval { open_file('/dev/null', '<') };
warn $@ if $@;

$fh = eval { open_file('/dev', '>') };
warn $@ if $@;

Reading from /dev/null is okay (at least on Unix-like systems), but writing to /dev or any other
directory is a problem:
1249985

Exception 'Is a directory' when opening file '/dev' with mode '>'
 at directory_whacker.pl line 10.

The real power comes when you treat the object as an object:
1249985

$fh = eval { open_file('/dev', '>') };

if (my $error = $@)
{
 warn sprintf "Tried to open %s '%s' as user %s at %s: %s\\n",
 $error->mode(), $error->file(), $error->uid(),
 scalar(localtime($error->time())),
 $error->error();
}

What are the other methods? They're methods available on all Exception::Class objects.
1249985

Make a copy of $@ as soon as possible, lest another eval() block
somewhere overwrite your object out from underneath you.
1249985

Now instead of having to parse the string for potentially useful information, you can debug
and, if possible, recover with better debugging information:
1249985

Tried to open > '/dev' as user 1000 at Tue Jan 17 21:58:00 2006:
 Is a directory

Hacking the Hack
628024
Exception::Class objects are objects—so they can have relationships with each other.
You can subclass them and make an entire hierarchy of exceptions, if your application needs
them. You can also catch and redispatch them based on their type or any other characteristic
you want.
1249985

Chapter 4. Working with Modules Page 26 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Best of all, if someone doesn't want to care that you're throwing objects, she doesn't have
to. They still behave just like normal exceptions.
1249985

Hack 39. Search CPAN Modules Locally
621961

1249985
Search the CPAN without leaving the command line.
1249985
Websites such as http://search.cpan.org/ are fantastic for finding the Perl module you need
from the CPAN, but firing up a web browser, navigating to the page, and waiting for the
results can be slow.
1249985
Similarly, running the CPAN or CPANPLUS shell and doing i search term is also slow.
Besides that, you might not even have a network connection.
1249985

The Hack
628024
The last time the CPAN or CPANPLUS shell connected to a CPAN mirror it downloaded a file
listing every single module—03modlist.data.gz. You can see the file at ftp://cpan.org/
modules/03modlist.data.gz. Because you have that local copy, you can parse it, check the
modules that match your search terms, and print the results.
1249985
Additionally you can check to see if any of them are installed already and highlight them.
1249985

#!perl -w

import merrily
use strict;
use IO::Zlib;
use Parse::CPAN::Modlist;

get the search pattern
my $pattern = shift || die "You must pass a pattern\\n";
my $pattern_re = qr/$pattern/;

munge our name
my $self = $0; $self =~ s!^.*[\\\\/]!!;

naughty user
die ("usage : $self <query>\\n") unless defined $pattern;

Chapter 4. Working with Modules Page 27 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://search.cpan.org/
http://safari.bvdep.com/ftp://cpan.org/modules/03modlist.data.gz
http://safari.bvdep.com/ftp://cpan.org/modules/03modlist.data.gz

get where the local modulelist is from CPAN(PLUS?)::Config
my $base;
eval { require CPANPLUS::Config; CPANPLUS::Config->import(); };
unless ($@)
{
 my $conf = CPANPLUS::Config->new();
 # different versions have the config in different places
 for (qw(conf _build))
 {
 $base = $conf->{$_}->{base} if exists $conf->{$_};
 }
}

goto SKIP if defined $base;

eval { require CPAN::Config; CPAN::Config->import() };

unless ($@)
{
 local $CPAN::Config;
 $base = $CPAN::Config->{'keep_source_where'}."/modules/";
}

goto SKIP if defined $base;

die "Couldn't find where you keep your CPAN Modlist\\n";

SKIP:
my $file = "${base}/03modlist.data.gz";

open the file and feed it to the mod list parser
my $fh = IO::Zlib->new($file, "rb") or die "Cannot open $file\\n";
my $ml = Parse::CPAN::Modlist->new(join "", <$fh>);

by default we want colour
my $colour = 1;

check to see if we have Term::ANSIColor installed
eval { require Term::ANSIColor };

but if we can't have it then we can't have it
$colour = 0 if $@;

now do the actual checking

my $first = 0;

check each module
for my $module (map { $ml->module($_) } $ml->modules())
{
 my $name = $module->name();
 my $desc = $module->description();

 # check to see if the pattern matches the name or desc
 next unless $name =~ /$pattern_re/i or $desc =~ /$pattern_re/i;

 # aesthetics
 print "\\n-- Results for '$pattern' --\\n\\n" unless $first++;

 # check to see if it's installed

Chapter 4. Working with Modules Page 28 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 eval "require $name";

 # print out the title - coloured if possible
 if ($colour && !$@)
 {
 print Term::ANSIColor::color('red'),
 "$name\\n",
 Term::ANSIColor::color('reset');
 }
 elsif (!$@)
 {
 print "!! $name\\n";
 }
 else
 {
 print "$name\\n";
 }

 # print out the name and description
 print "- $desc\\n\\n";
}

exit 0;

First, the code tries to find the local module list. This can be in several places. It initially checks
for CPANPLUS, assuming that anyone who has that installed will use it over the less featureful
CPAN. Different versions of CPANPLUS store the file in different locations, so the code checks
both.
1249985
If that fails, the program performs the same check for CPAN. If that doesn't work, the program
ends.
1249985
If the file is present, the code uncompresses it with IO::Zlib and passes it to
Parse::CPAN::Modlist to parse it.
1249985
The next part checks to see if Term::ANSIColor is available. If so, it can highlight installed
modules.
1249985
The Parse::CPAN::Modlist::modules() method returns only the names of
modules in the list, so the code must load the appropriate Module object to get at the other
metadata. Using map { } in the for loop is incredibly convenient.
1249985
For efficency, there's an early check if the name or description matches the input pattern.
Notice how the results banner (Results for '$pattern') only prints if there is at least
one result.
1249985
The code attempts to require the module to see if it is available. If so, the program must
highlight the name with color, if available, or exclamation marks otherwise. Finally, the
program prints the description and tries the next module.

Chapter 4. Working with Modules Page 29 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Hacking the Hack
628024
There are plenty of ways to improve this program.
1249985
Currently it assumes that the CPANPLUS module list is the most up to date. It should probably
check both CPANPLUS and CPAN if possible, look for the appropriate 03modlist.data.gz in
each case, and push it onto a list of potential candidates before using the most recently
modified version.
1249985
This hack also relies on 03modlist.data.gz being up to date. If you don't use the CPAN or
CPANPLUS shell regularly, this might not be the case.
1249985
There are several possible solutions.
1249985
First, the program could just die if the module list is too old. This is the simplest (and most
defeatist) solution.
1249985
Second, you could write a cron job that periodically updates the module list. This has the
advantage that even if you have no network currently available, you know it's still reasonably
fresh.
1249985
Finally, you could check to see whether the module list is older than a certain threshold. If
so, you could warn or force the chosen provider to download a newer one. This has the
disadvantage of not working if you cannot connect to your CPAN mirror.
1249985
Currently, the code checks both the name and the description—which can produce a lot of
useless results. It should be possible to build a more complicated query parser that gives
users finer-grained control over the results.
1249985
Finally, the code doesn't necessarily have to require modules to see if they exist. It could
use logic similar to perldoc -l [Hack #2] to find their locations.
1249985

Hack 40. Package Standalone Perl Applications
621961

Chapter 4. Working with Modules Page 30 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Distribute a full Perl application to users.
1249985
The three main ways to distribute an application are via an installer, via a standalone
executable, or via source. These choices vary a lot across platforms. Windows users prefer
installers, especially .msi files. Mac fans are quite happy with .app files, which usually come
in disk images. Most Linux variants use installers (.deb and .rpm) but others prefer source.
1249985
What if your application is a Perl program?
1249985
Perl may seem like an atypical GUI language, but it does have bindings for GUI toolkits
including Tk, wxWidgets, Qt, and GTK. Perl can be useful in the GUI realm as a rapid-
development foundation or simply to add a couple of dialogs to a mostly background
process. One great entry barrier, however, is that most platforms do not bundle these GUI
toolkits with Perl—and some platforms do not bundle Perl at all. Though there are packaged
distributions of Perl itself, the add-on modules that usually accompany any sophisticated
Perl project are typically source code. This poses a problem for most Windows users and
many Mac users for whom this is too low-level a task. Only the sysadmin-rich world of Linux
and Unix regularly tolerates sudo cpan install Foo commands.
1249985

The Hack
628024
The PAR project attempts to to create a solution to bundling the myriad files that usually
compose a Perl application into a manageable monolith. PAR files are simply ZIP files with
manifests. If you have PAR installed on your computer, you can write Perl code that looks
like:
1249985

#!perl -w

use PAR 'foo.par';
use Foo;
...

and if Foo.pm is inside the foo.par file, perl will load it as if it were a normal installed module.
Even more interestingly, you can write:
1249985

#!perl -w

use PAR 'http://www.example.com/foo.par';
use Foo;
...

which will download and cache the foo.par archive locally. How's that for a quick update?

Chapter 4. Working with Modules Page 31 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
You may have noticed the sticky phrase above "If you have PAR installed..." That is a catch-22
of sorts. PAR helps users to skip the software installation steps, but first they have to...install
software!
1249985
To get around this, PAR takes another page from the ZIP playbook: self-extracting
executables. The PAR distibution comes with a program called pp that allows a developer to
wrap the core of Perl and any additional project-specific Perl modules into a PAR file with a
main.pl and an executable header to bootstrap the whole thing. This produces something
like /usr/bin/perl with all of its modules embedded inside.
1249985

Running the Hack
628024
Consider a basic helloworld.pl application:
1249985

#!perl -w

use strict;
use Tk;

my $mw = MainWindow->new();

$mw->Label(-text => 'Hello, world!')->pack();
$mw->Button(-text => 'Quit', -command => sub { exit })->pack();

MainLoop();

To run this, you have to have Perl and Tk installed[1] and perhaps X11 running (via open /
Applications/Utilities/X11.app). Run perl helloworld.pl to see a window
like that in Figure 4-1.
1249985

[1] On my Mac OS X 10.4 box, I do this via fink install tk-pm586

Figure 4-1. "Hello, world" in Perl/Tk

Now suppose that you want to give this cool new application to other Mac users. Telling
them to first install Fink, Tk, and X11 just for "Hello, World!" is ludicrous. Instead, build an
executable with pp:

Chapter 4. Working with Modules Page 32 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

% pp -o helloworld helloworld.pl

That creates a 3 MB executable, helloworld, which includes the entirety of both Perl and Tk.
Send it to a friend who has a Mac (and X11, because this version of Tk isn't Aqua-friendly)
and she can run it. If you were to make a Windows version it would be even easier on end
users—on Windows, Tk binds directly to the native GUI, so X11 is not a prerequisite.
1249985
Aside from portability, another PAR benefit is version independence. The example
executable, though built against Perl 5.8.6 on Mac OS X 10.4, should also work well on 10.3
or 10.2, even though those OSes shipped with older versions of Perl. This is because PAR
included every part of 5.8.6 that the example needed in the executable.
1249985

Hacking the Hack
628024
If you download that executable, you can open it with any zip tool:
1249985

% zipinfo helloworld
Archive: helloworld 3013468 bytes 689 files
drwxr-xr-x 2.0 unx 0 b- stor 23-Oct-05 14:21 lib/
drwxr-xr-x 2.0 unx 0 b- stor 23-Oct-05 14:21 script/
-rw-r--r-- 2.0 unx 20016 b- defN 23-Oct-05 14:21 MANIFEST
-rw-r--r-- 2.0 unx 210 b- defN 23-Oct-05 14:21 META.yml
-rw-r--r-- 2.0 unx 4971 b- defN 23-Oct-05 14:21 lib/AutoLoader.pm
-rw-r--r-- 2.0 unx 4145 b- defN 23-Oct-05 14:21 lib/Carp.pm
... [snipped 679 lines] ...
-rw-r--r-- 2.0 unx 12966 b- defN 23-Oct-05 14:21 lib/warnings.pm
-rw-r--r-- 2.0 unx 787 b- defN 23-Oct-05 14:21 lib/warnings/register.pm
-rw-r--r-- 2.0 unx 186 t- defN 23-May-05 22:22 script/helloworld.pl
-rw-r--r-- 2.0 unx 262 b- defN 23-Oct-05 14:21 script/main.pl
689 files, 2742583 bytes uncompressed, 1078413 bytes compressed: 60.7%

You may see that the file sizes don't match. That's because the EXE also
contains the whole Perl interpreter outside of the ZIP portion. That adds
an extra 200% to file size in this case.
1249985

Is it fast? No. Perl must unzip the file prior to use (which happens automatically, of course).
Is it compact? No, 3 MB for Hello World is almost silly. Is it convenient? Yes—and that is often
the most important quality when shipping software to users.
1249985

Chapter 4. Working with Modules Page 33 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

An interesting consequence of this distribution model is that the executable contains all of
the source code. For some companies this may represent a problem (with some possible
solutions listed at http://par.perl.org/). On the other hand it is also a benefit in that you might
satisfy any GPL requirements without having to offer a separate source download.
1249985

An important note for Windows is that, thanks to ActiveState, you do
not need a C compiler to build Perl yourself. They provide an installable
package that includes Tk pre-built. See links on http://par.perl.org/ for
pre-compiled installers for PAR.
1249985

Hack 41. Create Your Own Lexical Warnings
621961

1249985
Add your own warnings to the warnings pragma.
1249985
Perl 5.6 added a useful pragma called warnings that expanded and enhanced upon the -
w and -W switches. This pragma introduced warnings scoped lexically. Within a lexical scope
you can enable and disable warnings as a whole or by particular class.
1249985
For example, within a say() function emulating the Perl 6 operator, you could respect the
current value of $, (the output field separator) and not throw useless warnings about its
definedness with:
1249985

use warnings;

... more code here...

sub say
{
 no warnings 'uninitialized';
 print join($,, @_), "\\n";
}

See perllexwarn for a list of all of the types of warnings you can enable and disable.
1249985
When you write your own module, you can even create your own warnings categories for
users of your code to enable and disable as they see fit. It's easy.

Chapter 4. Working with Modules Page 34 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://par.perl.org/
http://safari.bvdep.com/http://par.perl.org/

1249985

The Hack
628024
To create a warning, use the warnings::register pragma in your code. That's it. The
UNIVERSAL::can module[2] does this.
1249985

[2] Which detects, reports, and attempts to fix the anti-pattern of people calling UNIVERSAL::can() as a function, not a method.

Within the module, when it detects code that uses UNIVERSAL::can() as a function, it
checks that the calling code has enabled warnings, then uses warnings::warn() to
report the error:
1249985

if (warnings::enabled())
{
 warnings::warn("Called UNIVERSAL::can() as a function, not a method");
}

Running the Hack
628024
How does this look from code that merely uses the module? If the calling code doesn't use
warnings, nothing happens. Otherwise, it warns as normal. To enable or disable the specific
class of warning, use:
1249985

enable
use warnings 'UNIVERSAL::can';

disable
no warnings 'UNIVERSAL::can';

Hacking the Hack
628024
You can also re-use existing warnings categories. For example, if you want to mark a particular
interface as deprecated, write a wrapper for the new function that warns when users use the
old one:
1249985

sub yucky_function
{
 my ($package, $filename, $line) = caller();

 warnings::warnif('deprecated',

Chapter 4. Working with Modules Page 35 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 "yucky_function() is deprecated at $filename:$line\\n");

 goto &yummy_function;
}

This version of goto replaces the original call in the call stack by calling
the new function with the current contents of @_.
1249985

Now when users use the warnings pragma with no arguments (or enable deprecated
warnings), they'll receive a warning suggesting where and how to update their code.
1249985

Hack 42. Find and Report Module Bugs
621961

1249985
Fix problems in CPAN modules.
1249985
In an ideal world, all software is fully tested and bug free. Of course that's rarely the case.
1249985
Using Perl modules offers many advantages, including more thoroughly validated routines,
tested and optimized solutions, and the fact that someone has already done part of your job
for you. Sometimes, though, you may find that the shiny module that does exactly what you
need actually does something different than it should have.
1249985
Here's some code that creates a proxy object FooProxy. When you create an instance of
this proxy object, it should behave just like an instance of the original Foo object, but
FooProxy could modify specific behavior of the Foo object, perhaps to log method calls or
check access [Hack #48], without altering the Foo package itself:
1249985

package FooProxy;

sub new
{
 my $class = shift;
 my $foo = Foo->new(@_);
 bless \\$foo, $class;
}

sub can
{

Chapter 4. Working with Modules Page 36 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my $self = shift;
 return $$self->can(@_);
}

1;

Here's some code that instantiates a FooProxy object, and being paranoid, attempts to
double-check that the created object looks just like a Foo object:
1249985

Create a proxy object
my $proxy = FooProxy->new();

Make sure the proxy acts like a Foo
if ($proxy->isa('Foo'))
{
 print "Proxy is a Foo!\\n";
}
else
{
 die "Proxy isn't a Foo!";
}

When you run this script, you might notice a problem. When you call a Foo method on the
$fooproxy object, the method complains that the object isn't Foo. What's going on?
1249985
Instead of diving straight into the debugger or throwing print statements throughout the
code, step back and take a logical approach [Hack #53]. Here's the Foo definition:
1249985

package Foo;
use UNIVERSAL::isa;

sub new
{
 my $class = shift;
 bless \\my $foo, $class;
}

sub isa
{
 1;
}

1;

Foo uses the CPAN module UNIVERSAL::isa to protect itself against people calling the
method UNIVERSAL::isa() as a function.[3] When someone calls UNIVERSAL::isa
($some_foo, 'Class'), UNIVERSAL::isa should detect the isa() method of
the Foo object, and call that. In this case, though, isa() is executing in the context of
FooProxy. This looks like a problem with the UNIVERSAL::isa module; you should file
a bug report!
1249985

[3] Foo defines its own isa(), so you must call $some_foo->isa() instead.

Chapter 4. Working with Modules Page 37 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Write a Test
628024
Instead of just reporting the bug generically and leaving the author to diagnose, fix, and
verify, give the author an excellent head start by writing a test. Taking it one step further, you
can even add this test directly to the module's own collection of tests. After downloading
and unpacking UNIVERSAL-isa-0.05.tar.gz, look for its t/ subdirectory. Each .t file in this
directory represents a unit test with one to many subtests. Add a new test to the package by
creating a new .t file. UNIVERSAL::isa, however, already includes a bugs.t file, so you can
just add the new test there.
1249985
You could rewrite the example code and add it to bugs.t. Just don't forget to increment the
test count appropriately, because you're adding tests:
1249985

really delegates calls to Foo
{
 package FooProxy;

 sub new
 {
 my $class = shift;
 my $foo = Foo->new(@_);
 bless \\$foo, $class;
 }

 sub can
 {
 my $self = shift;
 return $$self->can(@_);
 }
}

my $proxy = FooProxy->new();
isa_ok($proxy, 'Foo');

Run the test and make sure it fails. If so, it's a good test; it demonstrates what you consider
to be a real bug.
1249985
Running the test is usually as simple as:
1249985

$ prove -lv t/bugs.t
test output here...

Chapter 4. Working with Modules Page 38 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Submitting a bug report
621961
Now you've done a lot of the work for the author. Not only have you narrowed the problem
down to a particular module, you have produced a test case that he or she can include with
the module to ensure that the bug gets fixed and stays fixed in future revisions. Instead of
submitting a bug report that merely explains what you think the problem is (or just the
symptom), you can provide an implemented test case that demonstrates the problem and
will prove that the ultimate fix really works.
1249985
It's helpful to have the Perl community review your findings to confirm your analysis. Perl
Monks (http://www.perlmonks.org/) is a free community for Perl programmers. Many of the
best-known names in the Perl community—authors, instructors, and even language
designers—frequent Perl Monks and dispense their wisdom freely. It's easy to be sure that
you've found a legitimate bug, only to find out that you misunderstood the expected
behavior. Further, you might get more useful feedback, such as a pointer that the module
you're using is outdated, and there's a much better replacement, or that another module
more closely meets your needs.
1249985
Once you have confirmation that this is a bug, submit your report to the CPAN Request
Tracker at http://rt.cpan.org/.[4] This site provides a simple interface to submit bug reports to
the appropriate package maintainer, and then check the status of the report. This site
supports user accounts (including your existing PAUSE ID) that are useful for tracking your
numerous bug reports, but you don't have to create an account. If you choose to continue
without an account, you may specify an email address with the bug report, and you'll receive
updates when the module maintainer updates your ticket.
1249985

[4] Of course, the author might prefer another means of reporting. Check the module's documentation to be sure.

On the site, first search for distributions. This will give you a form where you can enter the
package distribution name, UNIVERSAL::isa, and find a list of active bugs against it. From
here, you can report your new bug, assuming someone else hasn't already submitted it!
1249985
In the submission form, fill in the requested information. For the subject, please be specific
and concise. Instead of UNIVERSAL::isa is broken, consider isa() reports
incorrect package type (?). Choose an appropriate severity, and indicate the
module version or versions in which you observed the defect. There's a box to describe in
more detail what you observed and how this behavior differs from your expectation. Note
the comments on the submission page that suggest other useful information to include.
1249985
There is also a place to attach a file. Along with the basic bug report, you can submit a patch
to the module to add your test case. To create the patch, extract the package, creating a

Chapter 4. Working with Modules Page 39 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.perlmonks.org/
http://safari.bvdep.com/http://rt.cpan.org/

versioned directory with the pure downloaded form. Next, copy that package directory to
another directory without the version number:
1249985

$ cp -r UNIVERSAL-isa-0.05 UNIVERSAL-isa

Make your changes (incorporate the test script) to the files in UNIVERSAL-isa, and then make
a patch against the official release. First, in each package directory, do make clean to clean
up any build-related files. Now, in the directory above both package directories, run diff
with the unified and recursive flags, to make the file readable and to pick up all of the
changed files:
1249985

$ diff -ur UNIVERSAL-isa-0.05 UNIVERSAL-isa > isa_misbehaving.patch

This command will produce a patch that, when applied to the files in UNIVERSAL-isa-0.05/,
will reproduce the changes you made to the module's test file. Simply include this patch with
your bug report, and you'll give the package maintainer a huge head start on fixing the
problem.
1249985
Attach the patch you created, and submit the form.
1249985
Check your email or the site periodically for the status of your bug. Obviously, if there's a fix,
you will want to grab the new version quickly, but you also need to see if the author has
rejected your bug. If so, research the issue more to determine whether the issue is truly where
you thought it was, or if you need to debug your own code further.
1249985

Hacking the Hack
628024
You can do more than merely submitting a bug report. With a well-written test case in hand,
it's not as daunting a task to fix the bug yourself. Along with the patch that adds your unit
tests, you could even submit a patch against the entire package source. The package tests,
including the one you added, will verify that the code change is correct, so the maintainer
just has to review the changes and apply them.
1249985

As it turns out, the bug is that the particular version of
UNIVERSAL::isa called the method UNIVERSAL::can() as a
function, not a method. Oops.

Chapter 4. Working with Modules Page 40 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Regardless of whether you provide a fix to the package maintainer, submitting a good bug
report with effective unit tests adds value to CPAN for all its users.
1249985

Chapter 4. Working with Modules Page 41 Return to Table of Contents

Chapter 4. Working with Modules
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

