
Table of Contents

Chapter 6. Debugging286... 1
Hack 51. Find Compilation Errors Fast621961.. 1
Hack 52. Make Invisible Characters Apparent621961... 3
Hack 53. Debug with Test Cases621961... 6
Hack 54. Debug with Comments621961... 8
Hack 55. Show Source Code on Errors621961... 12
Hack 56. Deparse Anonymous Functions621961.. 15
Hack 57. Name Your Anonymous Subroutines621961... 17
Hack 58. Find a Subroutine's Source621961... 20
Hack 59. Customize the Debugger621961.. 21

Chapter 6. Debugging

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 6. Debugging
286

Hacks 51-59
1249985
Not all programs work the first time. Even if you use test-driven development and know
exactly what you need to write and how to write it, you will eventually encounter code that
you don't understand and which doesn't quite work right. One frequent (and frequently bad)
problem-solving technique is voodoo programming, where you change a line or character
here and there, hoping to stumble upon the correct incantation.
1249985
You can do better! Mastering a few Perl tricks and understanding a few tips can help you
wrestle unwieldy code into submission. Amaze your coworkers. Save precious time. Find and
fix failures faster! Here's how.
1249985

Hack 51. Find Compilation Errors Fast
621961

1249985
Trace problem code as quickly as possible.
1249985
As helpful as Perl is, sometimes a missing semicolon, parenthesis, or closing quotation mark
send it into a morass of confusion. Error messages clutter your logs or your console window
and, try as hard as you might, you can't see what's not there or what's just a little bit wrong.
1249985
When trouble strikes, try a simple technique to zoom in on the error as quickly as possible.
1249985

Chapter 6. Debugging Page 1 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

The Hack
628024
When your program really goes kablooey, the best thing to do is not to let Perl try to run it,
even through your test programs. If things are going that badly wrong, take a tip from the
Haskell world and convince yourself that if it at least compiles, it has to be fairly okay.[1] Just
make it compile already!
1249985

[1] I kid because I like.

Go to the command line and tell Perl to compile the program with warnings and then stop.
If your program is what_went_wrong.pl, use:
1249985

$ perl -wc what_went_wrong.pl

If there's no error, Perl will report a happy okay message. Great! Go on to making your tests
pass. Otherwise, grab the first error message and figure out how to solve it.
1249985

Binary searching for bugs
621961
What if that error message makes no sense? Perl does its best to figure out the offending line,
but because of the flexible syntax that allows you to span multiple lines and use postfix
conditional expressions, sometimes the best it can say is "something's wrong". In that case,
narrow down your search time considerably with a binary search.
1249985
Pick a place somewhere in the middle of the file, preferably between subroutines or methods.
Add the __END__ token at the start of a line. Effectively this turns the rest of the code into
data, so Perl will ignore it. Run perl -wc again. If the error message occurs, the error is in
the first half of the file. If the error disappears, the error is in the second half of the file. Move
the __END__ token appropriately halfway between whichever end of the file has the error
and your current position and try again.
1249985
Sometimes you can't move the token without breaking up a block, which definitely causes
compilation errors. In that case, use a pair of =cut POD directives to comment out the
offending code. Within a handful of iterations, you'll zero in on the problem and you should
have an easier time deciding how to fix it.
1249985

Chapter 6. Debugging Page 2 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
This technique also works decently for figuring out where an error occurs, especially if you
don't have logging or tracing statements in the code. Instead of commenting out code
selectively, dump appropriate data with YAML or another serialization module at appropriate
places to narrow down the error.
1249985
This approach often works, but it can fail when you do odd things, such as using a source
filter. Beware.
1249985

Hack 52. Make Invisible Characters Apparent
621961

1249985
See what your variables really contain.
1249985
Perl has a handful of good debugging techniques. For example, you can fire up the debugger
[Hack #59] or write test cases [Hack #53]. If you're just experimenting, or need a quick-and-
dirty answer right now, sometimes the easiest technique is to add a few print()
statements here and there.
1249985
This has its drawbacks, though, especially when the printed output looks correct but
obviously isn't. Before you flip through the debugger documentation and rejig your
debugging statements into test cases, consider a few tricks to make the invisible differences
that your computer sees visible to you too. (Then make your test cases, use the debugger,
and smarten your comments.)
1249985

Bracket Your Variables
628024
A very common mistake is to forget to chomp() data read from external sources. Suppose
that you're processing a list of files read from another file:
1249985

while (<$file_list>)
{
 warn "Processing $_";
 next unless -e $_;

Chapter 6. Debugging Page 3 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 process_file($_);
}

All of the files look correct in the warn() output, but the process_file() code never
occurs.
1249985

warn() is better than print() because it goes to STDERR by default,
which makes it redirectable separately.
1249985

Change the debugging line to make the filename more visible:
1249985

while (<$file_list>)
{
 warn "Processing '$_'";
 next unless -e $_;
 process_file($_);
}

Adding single quotes (or any other visible character) around the filename will likely reveal
that all of the filenames within the loop have newlines at the end (or whatever the current
input record separator, $/, contains). The solution is obvious:
1249985

while (<$file_list>)
{
 chomp;
 next unless -e $_;
 process_file($_);
}

Bracket Interpolated Lists
628024
The previous technique only works well on scalar variables. Lists and arrays are more tricky.
Fortunately, the special punctuation variable $" controls the separator used when
interpolating a list into a string.
1249985
Suppose that you're writing a ranking system for a table-tennis league. You've come to the
end of the program and you want to display the top ten players:
1249985

my @ranked;

for my $rank (1 .. 10)
{

Chapter 6. Debugging Page 4 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 $ranked[$rank] = get_player_by_rank($rank);
}

Of course, players may tie—leaving two players at the third rank and no players at the fourth
rank. The naïve approach of assuming the array contains exactly ten entries may fail,
especially if get_player_by_rank() always only returns a single player or potentially
returns an array reference of multiple players.
1249985
Printing the array may be no help:
1249985

for my $rank (1 .. 10)
{
 $ranked[$rank] = get_player_by_rank($rank);
}

warn "Ranks: [@ranked]\\n";

Everything interpolates into a single string, leaving you to count to see which is missing.
1249985
Instead, set $" to a nice, visible string:
1249985

local $" = '] [';
warn "Ranks: [@ranked]\\n";

This puts the delimiters between the entries, making it much easier to see which slot is empty.
1249985

If only you could override stringification on that particular array and print
the index as well as the element at that index...roll on, Perl 6!
1249985

Serialize Your Data
628024
If this is too much for you to handle manually, bring in the big guns of a serialization module
to do your debugging for you. Data::Dumper has enjoyed a long reign as a nice debugging
aid, but YAML provides even more readability and conciseness. To see a nested data structure
(or even a scalar, array, or hash without having to worry about the right delimiters), use the
Dump() function:
1249985

my $user = User->load(id => 54272);
warn Dump($user);

Chapter 6. Debugging Page 5 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

This prints a nice, compact representation of the data in the $user object without the
excessive indentation and indirection that Data::Dumper can often provide.
1249985
Another good, if complex option, is using Devel::Peek to see exactly what Perl thinks of
your variable. When you need it, you really need it. The rest of the time, take a breath, and
then spend two minutes writing the test case.
1249985

Hack 53. Debug with Test Cases
621961

1249985
Make exploratory code reusable.
1249985
Many programmers have subdirectories full of little test snippets; it's common to write a
few programs to explore a feature of the language or a new library. It's also common to do
this with false laziness, eyeballing output and tweaking an idea here or there.
1249985
Usually that's okay, but occasionally you know you wrote code to explore something you
need to know right now—if only you could find it and decipher what you were thinking.
1249985
If you know how to write test cases with Perl's standard testing tools, you can end this
madness and make even your experiments reusable and maintainable.
1249985

The Hack
628024
Suppose you've just learned that Perl's default sorting algorithm changed from unstable to
stable for Perl 5.8.0. The Internet reveals that, with a stable sorting algorithm, elements that
have the same position in the sorting order will retain the positions relative to each other
that they had in the input.
1249985

Writing test code
621961
What does that really mean in practice? It's time to write some code:
1249985

Chapter 6. Debugging Page 6 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

my @elements =
(
 [2, 2], [2, 1], [2, 0],
 [1, 0], [1, 1], [1, 2],
);

my @sorted = sort { $a->[0] <=> $b->[0] } @elements;

local $" = ', ';
print "[@$_]\\n" for @sorted;

A stable sorting algorithm should produce the output:
1249985

[1, 0]
[1, 1]
[1, 2]
[2, 2]
[2, 1]
[2, 0]

Because the algorithm sorts only on the first element, all of the ones should come before the
twos. Because the algorithm is stable, all of the second values of the ones should increase
and all of the second values of the twos should decrease.
1249985

From test code to test cases
621961
Of course, six months later that code may be somewhat impenetrable. It has decent variable
names, but it's quick and dirty and likely uncommented. What does it prove? Why? Even
worse, the first time it ran it has no debugging information—it's easy to misread the output
when flipping back and forth between it and the code to recreate the algorithm in your head.
1249985
That's the point of test cases: removing tedium and making expectations clear, unambiguous,
and automatable. Here's the same file rewritten as executable tests:
1249985

use Test::More tests => 4;

my @elements =
(
 [2, 2], [2, 1], [2, 0],
 [1, 0], [1, 1], [1, 2],
);
my @sorted = sort { $a->[0] <=> $b->[0] } @elements;

is($sorted[0][0], 1, 'numeric sort should put 1 before 2');
is($sorted[0][1], 0, '... keeping stability of original list');
is($sorted[2][1], 2, '... through all elements');
is($sorted[3][1], 2, '... not accidentally sorting them');

With a little more work up front, your expectations are clearer. If there's a failure, you see
where it fails without having to trace the algorithm in your head again. You can also see

Chapter 6. Debugging Page 7 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

which part of your assumptions (or code) failed in detail as fine-grained as you care to test.
Even better, you can add more tests to check further behavior, such as mingling the definition
of the ones and twos further.
1249985
In case an upgrade changes the behavior of your production code, you can also run the test
cases to narrow down the problem.
1249985

Hacking the Hack
628024
Ideally, someone's already tested this sort of code—the Perl 5 porters. If you have access to
the source code of Perl (in this case) or the library you're testing, you can skim the test suite
for examples to borrow and modify or learn from outright. In this case, code in t/op/sort.t
tests Perl's stable sort. Even just skimming the test descriptions can reveal a lot of information
about the ideas behind the implementation.
1249985

Hack 54. Debug with Comments
621961

1249985
Let your documentation help you remove bugs.
1249985
There are two types of people who debug code: those who fire up Perl's built-in debugger
and those who sprinkle print statements through their code. If you're in the second group,
you probably know that one big problem with debugging by hand is that, once you remove
the bugs, you have to go through and remove all the debugging statements as well.
1249985
What if you could safely leave them in the code? After all, if you needed them once, you'll
probably need them again, when the next bug appears.
1249985

The Hack
628024
"Something left in the code, but ignored" is pretty much the definition of a comment, so it's
no surprise that you can use comments to turn off debugging statements. There's a much
more interesting alternative, however: using comments to turn on debugging statements.

Chapter 6. Debugging Page 8 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Smart::Comments CPAN module does just that: it turns comments into debugging
statements.
1249985

Displaying variables
621961
When you use Smart::Comments, any subsequent comment with three or more
leading #s becomes a debugging statement and prints whatever the comment says to
STDERR. For example, if you can't work out why your @play_calls variable is getting more
elements than you expected:
1249985

my $call = "26, 17, 22, hut!";
my @play_calls = split /\\s*,?\\s*/, $call;

insert some smart comments to report what's happening:
1249985

make '###' magical...
use Smart::Comments;

my $call = "26, 17, 22, hut!";

$call

my @play_calls = split /\\s*,?\\s*/, $call;

@play_calls

When you run that code, Smart::Comments will find the triple-# comments and print out
whatever they contain:
1249985

$ perl play_book.pl

$call: '26, 17, 22, hut!'

@play_calls: [
'2',
'6',
'1',
'7',
'2',
'2',
'h',
'u',
't',
'!'
]

$

Chapter 6. Debugging Page 9 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Immediately you can see that the split is splitting your text at every single character
(because your splitting pattern, /\\s*,?\\s*/, matches an empty string so split splits
everywhere).
1249985
The real smartness comes in, however, when you write more structured comments:
1249985

use Smart::Comments;

my $call = "26, 17, 22, hut!";

input: $call

my @play_calls = split /\\s*,?\\s*/, $call;

split to: @play_calls

which produces the output:
1249985

$ perl play_book.pl

input: '26, 17, 22, hut!'

split to: [
'2',
'6',
'1',
'7',
'2',
'2',
'h',
'u',
't',
'!'
]

$

Making Assertions
621961
Even more useful, the module also allows you to write comments that act like assertions:
1249985

use Smart::Comments;

my $call = "26, 17, 22, hut!";

my @play_calls = split /\\s*,?\\s*/, $call;

require: @play_calls = = 4

Assertion comments like this only produce a report (and an exception!) if the assertion fails.
In that case, the smartness really shows through, because the smart comments not only

Chapter 6. Debugging Page 10 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

report the failure, but they also automatically report all the variables used in the test, so you
can see why the assertion failed:
1249985

$ perl play_book_with_assertion.pl

@play_calls = = 4 was not true at play_book_with_assertion.pl line 7.
@play_calls was: [
'2',
'6',
'1',
'7',
'2',
'2',
'h',
'u',
't',
'!'
]

$

Best of all, when you finish debugging, you can switch off all the debugging statements
simply by removing—or just commenting out—the use Smart::Comments statement:
1249985

use Smart::Comments;

my $call = "26, 17, 22, hut!";

input: $call

my @play_calls = split /\\s*,?\\s*/, $call;

split to: @play_calls

Because the code no longer loads the module, triple-# comments are no longer special. They
remain ordinary comments, and Perl consequently ignores them:
1249985

$ perl play_book.pl

$

Configuring smartness levels
621961
By the way, you might have noticed that the require: assertion in the third example used
instead of ### as its comment introducer. Using differing numbers of #s allows you to
be selective about turning smart comments on and off. If you load the module and explicitly
tell it which comment introducers are smart, then it will only activate comments with those
particular introducers. For example:
1249985

Chapter 6. Debugging Page 11 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

use Smart::Comments '####'; # Only ####... comments are "smart"
 # Any ###... comments are ignored

my $call = "26, 17, 22, hut!";

$call

my @play_calls = split /\\s*,?\\s*/, $call;

@play_calls

require: @play_calls = = 4

This final example turns off the debugging statements, leaving only the assertion active.
1249985
If editing your source code to enable and disable Smart::Comments is too onerous,
consider making a shell alias [Hack #4] to load the module and execute a named program.
The appropriate command line to run a program with Smart::Comments enabled is:
1249985

$ perl -MSmart::Comments split_test.pl

To activate only specific comment introducers, as in the earlier example, write:
1249985

$ perl -MSmart::Comments="" split_test.pl

with the appropriate number of # characters in the quotes.
1249985

Hack 55. Show Source Code on Errors
621961

1249985
Don't guess which line is the problem—see it!
1249985
Debugging errors and warning messages isn't often fun. Instead, it can be tedious. Often
even finding the problem takes too long.
1249985
Perl can reveal the line number of warnings and errors (with warn and die and the
warnings pragma in effect); why can't it show the source code of the affected line?
1249985

Chapter 6. Debugging Page 12 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Hack
628024
The code to do this is pretty easy, if unsubtle:
1249985

package SourceCarp;

use strict;
use warnings;

sub import
{
 my ($class, %args) = @_;

 $SIG{__DIE__} = sub { report(shift, 2); exit } if $args{fatal};
 $SIG{__WARN__} = \\&report if $args{warnings};
}

sub report
{
 my ($message, $level) = @_;
 $level ||= 1;
 my ($filename, $line) = (caller($level - 1))[1, 2];
 warn $message, show_source($filename, $line);
}

sub show_source
{
 my ($filename, $line) = @_;
 return '' unless open(my $fh, $filename);

 my $start = $line - 2;
 my $end = $line + 2;

 local $.;
 my @text;
 while (<$fh>)
 {
 next unless $. >= $start;
 last if $. > $end;
 my $highlight = $. = = $line ? '*' : ' ';
 push @text, sprintf("%s%04d: %s", $highlight, $., $_);
 }

 return join('', @text, "\\n");
}

1;

The magic here is in three places. report() looks at the call stack leading to its current
position, extracting the name of the file and the line number of the calling code. It's possible
to call this function directly with a message to display (and an optional level of calls to ignore).
1249985
show_source() simply reads the named file and returns a string containing two lines
before and after the numbered line, if possible. It also highlights the specific line with an

Chapter 6. Debugging Page 13 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

asterisk in the left column. Note the localization and use of the $. magic variable to count
the current line in the file.
1249985
import() adds global handlers for warnings and exceptions, if requested from the calling
module. The difference between the handlers is that when Perl issues a lexical warning, it
doesn't affect the call stack in the same way that it does when it throws an exception.
1249985

Running the Hack
628024
This short program shows all three ways of invoking SourceCarp:
1249985

#!/usr/bin/perl

use strict;
use warnings;

use lib 'lib';
use SourceCarp fatal => 1, warnings => 1;

throw warning
open my $fh, '<', '/no/file';
print {$fh}...

report from subroutine
report_with_level();

sub report_with_level
{
 SourceCarp::report("report caller, not self\\n", 2);
}

throw error
die "Oops!";

Hacking the Hack
628024
There's no reason to limit your error and warning reporting to showing the file context around
the calling line. caller() offers much more information, including the variables passed
to each function in certain circumstances.[2] It's possible to provide and present this
information in a much more useful manner.
1249985

[2] See perldoc -f caller.

Overriding the global __WARN__ and __DIE__ handlers is serious business as it can interfere
with large programs. A more robust implementation of this hack might work nicely with

Chapter 6. Debugging Page 14 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Carp, not only because it is more widely compatible, but also because that module offers
more features. Another possibility is to integrate this code somehow with
Log::Log4perl.
1249985

Hack 56. Deparse Anonymous Functions
621961

1249985
Inspect the code of anonymous subroutines.
1249985
Perl makes it really easy to generate anonymous subroutines on the fly. It's very handy when
you need a bunch of oh-so similar behaviors which merely differ on small points.
Unfortunately, slinging a bunch of anonymous subroutines around quickly becomes a
headache when things go awry.
1249985
When an anonymous sub isn't doing what you expect, how do you know what it is? It's
anonymous, fer cryin' out loud. Yet Perl knows what it is—and you can ask it.
1249985

The Hack
628024
Suppose that you've written a simple filter subroutine which returns all of the lines from
a file handle that match your filter criteria.
1249985

sub filter
{
 my ($filter) = @_;

 if ('Regexp' eq ref $filter)
 {
 return sub
 {
 my $fh = shift;
 return grep { /$filter/ } <$fh>;
 };
 }
 else
 {
 return sub
 {
 my $fh = shift;
 return grep { 0 <= index $_, $filter } <$fh>;
 };

Chapter 6. Debugging Page 15 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 }
}

Using the subroutine is simple. Pass it a precompiled regex and it will return lines which
match the regular expression. Pass it a string and it will return lines which contain that string
as a substring.
1249985
Unfortunately, later on you wonder why the following code returns every line from the file
handle instead of just the lines which contain a digit:
1249985

my $filter = filter(/\\d/);
my @lines = $filter->($file_handle);

Data::Dumper is of no use here:
1249985

use Data::Dumper;
print Dumper($filter);

This results in:
1249985

$VAR1 = sub { "DUMMY" };

Running the Hack
628024
Using the Data::Dump::Streamer serialization module allows you to see inside that
subroutine:
1249985

use Data::Dump::Streamer;
Dump($filter);

Now you can see the body of the subroutine more or less as Perl sees it.
1249985

my ($filter);
$filter = undef;
$CODE1 = sub {
 my $fh = shift @_;
 return grep({0 <= index($_, $filter);} <$fh>);
 };

From there, it's pretty apparent that Perl didn't recognize that you were trying to pass in a
regular expression and the bug is trivial to fix:
1249985

my $filter = filter(qr/\\d/);
my @lines = $filter->($file_handle);

Chapter 6. Debugging Page 16 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Hacking the Hack
628024
Behind the scenes, Data::Dump::Streamer uses the core module B::Deparse. In
essence it does the following:
1249985

use B::Deparse;
my $deparse = B::Deparse->new();
print $deparse->coderef2text($filter);

which outputs:
1249985

{
 my $fh = shift @_;
 return grep({0 <= index($_, $filter);} <$fh>);
}

The primary difference is that Data::Dump::Streamer also shows the values of any
variables that the subroutine has closed over. See "Peek Inside Closures" [Hack #76] for more
details. This technique is also good for displaying diagnostics when you eval code into
existence or receive a subroutine reference as an argument and something goes wrong when
you try to execute it.
1249985
The B::Deparse documentation gives more information about the arguments that you
can pass to its constructor for even better control over the output.
1249985

Hack 57. Name Your Anonymous Subroutines
621961

1249985
Trade a little anonymity for expressivity.
1249985
Despite the apparently oxymoronic name, "named anonymous subroutines" are an
undocumented feature of Perl. Originally described by "ysth" on Perl Monks, these are a
wonderful feature.
1249985
Suppose your program merrily runs along with a carefree attitude—but then dies an ugly
death:
1249985

Chapter 6. Debugging Page 17 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Denominator must not be zero! at anon_subs.pl line 11
 main::__ANON__(0) called at anon_subs.pl line 17

What the heck is main::__ANON__(0)? The answer may be somewhere in code such as:
1249985

use Carp;

sub divide_by
{
 my $numerator = shift;
 return sub
 {
 my $denominator = shift;
 croak "Denominator must not be zero!" unless $denominator;
 return $numerator / $denominator;
 };
}

my $seven_divided_by = divide_by(7);
my $answer = $seven_divided_by->(0);

In this toy example, it's easy to see the problem. However, what if you're generating a ton of
those divide_by subroutines and sending them all throughout your code? What if you
have a bunch of subroutines all generating subroutines (for example, if you've breathed too
deeply the heady fumes of Mark Jason Dominus' Higher Order Perl book)? Having a bunch of
subroutines named __ANON__ is very difficult to debug.
1249985

$seven_divided_by is effectively a curried version of divide_by
(). That is, it's a function that already has one of multiple arguments
bound to it. There's a piece of random functional programming jargon
to use to impress people.
1249985

The Hack
628024
Creating an anonymous subroutine creates a glob named *__ANON__ in the current
package. When caller() and the rest of Perl's guts look for names for anonymous
subroutines, they look there. Using carp and croak will quickly reveal this.
1249985
The solution is therefore to override this name temporarily. The easy way is to have the parent
subroutine name the anonymous one:
1249985

sub divide_by
{

Chapter 6. Debugging Page 18 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 my $numerator = shift;
 my $name = (caller(0))[3];
 return sub
 {
 local *__ANON__ = "__ANON__$name";
 my $denominator = shift;
 croak "Denominator must not be zero!" unless $denominator;
 return $numerator / $denominator;
 };
}

Running the program now produces the output:
1249985

Denominator must not be zero! at anon_subs.pl line 12
 __ANON__main::divide_by(0) called at anon_subs.pl line 18

Hacking the Hack
628024
While that's better and it may fit your needs, it's not the most flexible solution. If you create
several anonymous subroutines, they will all have the same name. It's more powerful to name
the anonymous subroutines by passing the creator subroutine a name—or taking it from an
argument, as appropriate.
1249985

use Carp;

sub divide_by
{
 my ($name, $numerator) = @_;
 return sub
 {
 local *__ANON__ = "__ANON__$name";
 my $denominator = shift;
 croak "Denominator must not be zero!" unless $denominator;
 return $numerator / $denominator;
 };
}

my $three_divided_by = divide_by('divide_by_three', 3);
my $answer = $three_divided_by->(0);

The output looks like you expect:
1249985

Denominator must not be zero! at anon_subs.pl line 12
 __ANON__main::divide_by_three(0) called at anon_subs.pl line 18

Chapter 6. Debugging Page 19 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note that this code as written does not work under the debugger. The
solution is to disable a debugger flag before Perl compiles the
anonymous subroutines:
1249985

my $old_p;
BEGIN { $old_p = $^P; $^P &= ~0x200; }

sub divide_by
{
 # ...
}

BEGIN { $^P = $old_p; }

See perldoc perlvar for an explanation of $^P.
1249985

Hack 58. Find a Subroutine's Source
621961

1249985
Find out where subroutines come from.
1249985
There are few things more annoying than finding a misbehaving subroutine and not being
able to figure out where it came from. Some modules export subroutines automatically.
Sometimes someone will have imported absolutely everything by using the :all tag in the
use line.
1249985
Whatever the cause, the first step in fixing an errant subroutine is locating it.
1249985

The Hack
628024
You could muck around in your symbol table [Hack #72] and use introspection to find the CV
and check its STASH information [Hack #78], but Rafael Garcia-Suarez's Sub::Identify
does this for you (using the invaluable B backend module internally).
1249985

Chapter 6. Debugging Page 20 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The B module is uncommon, but very handy when necessary. It
effectively allows you to explore Perl's inner workings. In this example,
svref_2object() takes a code reference and returns an object
blessed into the B::CV class. You won't actually find this class declared
anywhere, but it's part of the B module internally.
1249985

Running the Hack
628024
Just use the stash_name() function:
1249985

package My::Package;

use Sub::Identify ':all';
use HTML::Entities 'encode_entities';
print stash_name(\\&encode_entities);

Run this code; it will print HTML::Entities. Even if another module has re-exported
&encode_entities into your namespace, Sub::Identify will still report
HTML::Entities as the source of the subroutine.
1249985
For descriptions of the class hierarchy of these objects and the methods that you can call on
them, see OVERVIEW OF CLASSES and SV-RELATED CLASSES in perldoc B.
Unfortunately, much of the documentation is rather sparse and reading the source code of
this module and the header files of the various Perl data structures, as well as pestering P5P
with questions, is often the best way to figure out what you're doing. See also Chapter 8.
1249985

Hack 59. Customize the Debugger
621961

1249985
Write your own debugger commands.
1249985
Adding a command to the debugger (or modifying an existing one) by editing the debugger
is a difficult job; to do this, you have to patch the debugger source in perl5db.pl and replace

Chapter 6. Debugging Page 21 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

it. Sometimes you don't have the necessary privileges to do this, and given the complexity
of the debugger, it's a difficult job—especially because you can't debug the debugger.
1249985
Yet modifying your tools the way you want them is important. Fortunately,
Devel::Command module makes this much simpler. With Devel::Command, you write
simple modules to define your commands, and the debugger finds them and loads them for
you automatically.
1249985

The Hack
628024
Writing a command is simple. There are only a few things to remember:
1249985

Input and output
The debugger reads input from DB::IN and writes to DB::OUT. If you want your command to work just like a native debugger
command, you need to use these filehandles for input and output. Generally, you'll only need to print to DB::OUT.

Debugger context versus program context
To evaluate an expression in the context of the program that's being debugged (for example, you want to pass the value of a
variable in the program to your command), call the subroutine &eval on it. To evaluate something in the debugger's context,
use plain old eval.

A "hello, world" command looks like:
1249985

package Devel::Command::HelloWorld;
use base 'Devel::Command';

sub command
{
 print DB::OUT "Hello world!\\n";
 1;
}

1;

Devel::Command defaults to using the command() as the actual command code. Run
this by putting it somewhere in your @INC and then start the debugger:
1249985

flatbox ~ $ perl -de0
Default die handler restored.
Patching with Devel::Command::DBSub::DB_5_8

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Enter h or \Qh h' for help, or \Qman perldebug' for more help.

main::(-e:1): 0
 DB<1> cmds

Chapter 6. Debugging Page 22 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

cmds
helloworld
 DB<2> helloworld
Hello world!
 DB<3> q
flatbox ~ $

The message that begins Patching with... lets you know that Devel::Command has
successfully activated. cmds lists the commands and typing helloworld runs your
command.
1249985

Overriding a debugger command
621961
Overriding a command is simple: just return true if your command routine wants to handle
the command or false if you don't.
1249985

package Devel::Command::X;

use base 'Devel::Command';

sub command
{
 my ($cmd) = @_;

 if ($cmd =~ /x marks/)
 {
 print DB::OUT "Arrrrr....\\n";
 return 1;
 }
 else
 {
 return 0;
 }
}

1;

Now the x command knows to be piratical when it sees a command beginning with x
marks.
1249985

flatbox ~ $ perl -de0
Default die handler restored.
Patching with Devel::Command::DBSub::DB_5_8

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Enter h or \Qh h' for help, or \Qman perldebug' for more help.

main::(-e:1): 0
 DB<1> $x = [1,2,3]

Chapter 6. Debugging Page 23 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 DB<2> x $x
0 ARRAY(0x804e2f4)
 0 1
 1 2
 2 3
 DB<3> x marks the spot
Arrrrr....
 DB<4> q
flatbox ~ $

Running the Hack
628024
Create a module in the Devel::Command:: namespace. Install Devel::Command from
CPAN, and then tell the debugger to load it by adding one line to your debugger initialization
file, .perldb (or perldb.ini, for non-Unix systems):
1249985

use Devel::Command;

That's it. This makes the debugger automatically search @INC for modules in the
Devel::Command:: namespace, load them, and install them as commands. By default, it
picks a name for the command by downcasing the last namespace qualifier (so, for example,
Devel::Command::My::DoStuff ends up as the dostuff command).
1249985
Devel::Command also installs its own cmds command, which lists all commands that it
found and loaded, and dynamically patches the debugger's command processing
subroutine with a modified version which knows how to find the commands installed by
Devel::Command.
1249985

Hacking the Hack
628024
To develop tests while using the debugger, try the Devel::Command::Tdump module on
CPAN. This module loads Test::More for you and lets you actually write tests and save
them from the debugger.
1249985
If you want to see drawings of your data structure in the debugger,
Devel::Command::Viz and the graphviz package will let you do it. Install those, then
use the viz command on a variable:
1249985

flatbox ~ $ perl5.8.5 -de0
Patching with Devel::Command::DBSub::DB_5_8_5

Loading DB routines from perl5db.pl version 1.27
Editor support available.

Chapter 6. Debugging Page 24 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Enter h or \Qh h' for help, or \Qman perldebug' for more help.

main::(-e:1): 0
 DB<1> use WWW::Mechanize

 DB<2> $m = WWW::Mechanize->new()

 DB<3> viz $m

You'll see a graphical depiction of the WWW::Mechanize object in a pop-up window.
1249985

Chapter 6. Debugging Page 25 Return to Table of Contents

Chapter 6. Debugging
Perl Hacks By , Damian Conway, Curtis "Ovid" Poe ISBN: 0596526741 Publisher: O'Reilly Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 5/1/2006 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

