
Table of Contents

Chapter 15. Internationalization... 1
Character Sets and Encodings.. 2
Message Catalogs... 7

Chapter 15. Internationalization

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 15. Internationalization
618

1249985
This chapter describes features that support text processing for different character sets such
as ASCII and Japanese. Tcl can read and write data in various character set encodings, but it
processes data in a standard character set called Unicode. Tcl has a message catalog that lets
you generate different versions of an application for different languages. Tcl commands
described are: encoding and msgcat.
1249985
Different languages use different alphabets, or character sets. An encoding is a standard way
to represent a character set. Tcl hides most of the issues associated with encodings and
character sets, but you need to be aware of them when you write applications that are used
in different countries. You can also write an application using a message catalog so that the
strings you display to users can be in the language of their choice. Using a message catalog
is more work, but Tcl makes it as easy as possible.
1249985
Most of the hard work in dealing with character set encodings is done “under the covers” by
the Tcl C library. The Tcl C library underwent substantial changes to support international
character sets. Instead of using 8-bit bytes to store characters, Tcl uses a 16-bit character set
called Unicode, which is large enough to encode the alphabets of all languages. There is also
plenty of room left over to represent special characters like and ⊗.
1249985
In spite of all the changes to support Unicode, there are few changes visible to the Tcl script
writer. Scripts written for Tcl 8.0 and earlier continue to work fine with Tcl 8.1 and later
versions. You only need to modify scripts if you want to take advantage of the features added
to support internationalization.
1249985
This chapter begins with a discussion of what a character set is and why different codings
are used to represent them. It concludes with a discussion of message catalogs.
1249985

Chapter 15. Internationalization Page 1 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Character Sets and Encodings
621961

1249985
If you are from the United States, you've probably never thought twice about character sets.
Most computers use the ASCII encoding, which has 127 characters. That is enough for the 26
letters in the English alphabet, upper case and lower case, plus numbers, various punctuation
characters, and control characters like tab and newline. ASCII fits easily in 8-bit characters,
which can represent 256 different values.
1249985
European alphabets include accented characters like è, ñ, and ä. The ISO Latin-1 encoding is
a superset of ASCII that encodes 256 characters. It shares the ASCII encoding in values 0
through 127 and uses the “high half” of the encoding space to represent accented characters
as well as special characters like ©. There are several ISO Latin encodings to handle different
alphabets, and these share the trick of encoding ASCII in the lower half and other characters
in the high half. You might see these encodings referred to as iso8859-1, iso8859-2, and
so on.
1249985
Asian character sets are simply too large to fit into 8-bit encodings. There are a number of
16-bit encodings for these languages. If you work with these, you are probably familiar with
the “Big 5” or ShiftJIS encodings.
1249985
Unicode is an international standard character set encoding. There are both 16-bit Unicode
and 32-bit Unicode standards, but Tcl and just about everyone else use the 16-bit standard.
Unicode has the important property that it can encode all the important character sets
without conflicts and overlap. By converting all characters to the Unicode encoding, Tcl can
work with different character sets simultaneously. As of 8.4, Tcl is compliant with Unicode
v3.1. For more information on Unicode, see http://www.unicode.org/
1249985

The System Encoding
628024
Computer systems are set up with a standard system encoding for their files. If you always
work with this encoding, then you can ignore character set issues. Tcl will read files and
automatically convert them from the system encoding to Unicode. When Tcl writes files, it
automatically converts from Unicode to the system encoding. If you are curious, you can find
out the system encoding with:
1249985

encoding system
=> cp1252

Chapter 15. Internationalization Page 2 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.unicode.org/

The “cp” is short for “code page,” the term that Windows uses to refer to different encodings.
On my Unix system, the system encoding is iso8859-1.
1249985

Do not change the system encoding.
1249985

You could also change the system encoding with:
1249985

encoding system
encoding

But this is not a good idea. It immediately changes how Tcl passes strings to your operating
system, and it is likely to leave Tcl in an unusable state. Tcl automatically determines the
system encoding for you. Don't bother trying to set it yourself.
1249985
The encoding names command lists all the encodings that Tcl knows about. The
encodings are kept in files stored in the encoding directory under the Tcl script library. They
are loaded automatically the first time you use an encoding.
1249985

lsort [encoding names]
=> ascii big5 cp1250 cp1251 cp1252 cp1253 cp1254 cp1255 cp1256 cp1257 cp1258 cp437 cp737
cp775 cp850 cp852 cp855 cp857 cp860 cp861 cp862 cp863 cp864 cp865 cp866 cp869 cp874 cp932
 cp936 cp949 cp950 dingbats euc-cn euc-jp euc-kr gb12345 gb1988 gb2312 identity iso2022
 iso2022-jp iso2022-kr iso8859-1 iso8859-2 iso8859-3 iso8859-4 iso8859-5 iso8859-6
 iso8859-7 iso8859-8 iso8859-9 jis0201 jis0208 jis0212 ksc5601 macCentEuro macCroatian
 macCyrillic macDingbats macGreek macIceland macJapan macRoman macRomania macThai
 macTurkish macUkraine shiftjis symbol unicode utf-8

The encoding names reflect their origin. The "cp" refers to the "code pages" that Windows
uses to manage encodings. The "mac" encodings come from the Macintosh. The "iso," "euc,"
"gb," and "jis" encodings come from various standards bodies.
1249985

File Encodings and fconfigure
628024
The conversion to Unicode happens automatically in the Tcl C library. When Tcl reads and
writes files, it translates from the current system encoding into Unicode. If you have files in

Chapter 15. Internationalization Page 3 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

different encodings, you can use the fconfigure command to set the encoding. For
example, to read a file in the standard Russian encoding (iso8859-7):
1249985

set in [open README.russian]
fconfigure $in -encoding iso8859-7

Example 15-1 shows a simple utility I use in exmh,[*] a MIME-aware mail reader. MIME has its
own convention for specifying the character set encoding of a mail message that differs
slightly from Tcl's naming convention. The procedure launders the name and then sets the
encoding. Exmh was already aware of MIME character sets, so it could choose fonts for
message display. Adding this procedure and adding two calls to it was all I had to do to adapt
exmh to Unicode.
1249985

[*] The exmh home page is http://www.beedub.com/exmh/. It is a wonderful tool that helps me manage tons of email. It is written in Tcl/Tk, of course, and relies on the MH
mail system, which limits it to UNIX.

Example 15-1. MIME character sets and file encodings

proc Mime_SetEncoding {file charset} {
 regsub -all {(iso|jis|us)-} $charset {\1} charset
 set charset [string tolower charset]
 regsub usascii $charset ascii charset
 fconfigure $file -encoding $charset
}

Scripts in Different Encodings
628024
If you have scripts that are not in the system encoding, then you cannot use source to load
them. However, it is easy to read the files yourself under the proper encoding and use
eval to process them. Example 15-2 adds a -encoding flag to the source command. This
is likely to become a built-in feature in future versions of Tcl so that commands like info
script will work properly:
1249985

Example 15-2. Using scripts in nonstandard encodings

proc Source {args} {
 set file [lindex $args end]
 if {[llength $args] == 3 &&
 [string equal -encoding [lindex $args 0]]} {
 set encoding [lindex $args 1]
 set in [open $file]
 fconfigure $in -encoding $encoding
 set script [read $in]
 close $in
 return [uplevel 1 $script]
 } elseif {[llength $args] == 1} {

Chapter 15. Internationalization Page 4 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.beedub.com/exmh/

 return [uplevel 1 [list source $file]]
 } else {
 return -code error \
 "Usage: Source ?-encoding encoding? file?"
 }
}

Unicode and UTF-8
628024
UTF-8 is an encoding for Unicode. While Unicode represents all characters with 16 bits, the
UTF-8 encoding uses either 8, 16, or 24 bits to represent one Unicode character. This variable-
width encoding is useful because it uses 8 bits to represent ASCII characters. This means that
a pure ASCII string, one with character codes all less than 128, is also a UTF-8 string. Tcl uses
UTF-8 internally to make the transition to Unicode easier. It allows interoperability with Tcl
extensions that have not been made Unicode-aware. They can continue to pass ASCII strings
to Tcl, and Tcl will interpret them correctly.
1249985
As a Tcl script writer, you can mostly ignore UTF-8 and just think of Tcl as being built on
Unicode (i.e., full 16-bit character set support). If you write Tcl extensions in C or C++, however,
the impact of UTF-8 and Unicode is quite visible. This is explained in more detail in Chapter
47.
1249985
Tcl lets you read and write files in UTF-8 encoding or directly in Unicode. This is useful if you
need to use the same file on systems that have different system encodings. These files might
be scripts, message catalogs, or documentation. Instead of using a particular native format,
you can use Unicode or UTF-8 and read the files the same way on any of your systems. Of
course, you will have to set the encoding properly by using fconfigure as shown earlier.
1249985

The Binary Encoding
628024
If you want to read a data file and suppress all character set transformations, use the
binary encoding:
1249985

fconfigure $in -encoding binary

Under the binary encoding, Tcl reads in each 8-bit byte and stores it into the lower half of a
16-bit Unicode character with the high half set to zero. During binary output, Tcl writes out
the lower byte of each Unicode character. You can see that reading in binary and then writing
it out doesn't change any bits. Watch out if you read something in one encoding and then
write it out in binary. Any information in the high byte of the Unicode character gets lost!

Chapter 15. Internationalization Page 5 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Tcl actually handles the binary encoding more efficiently than just described, but logically
the previous description is still accurate. As described in Chapter 47, Tcl can manage data in
several forms, not just strings. When you read a file in binary format, Tcl stores the data as a
ByteArray that is simply 8 bits of data in each byte. However, if you ask for this data as a
string (e.g., with the puts command), Tcl automatically converts from 8-bit bytes to 16-bit
Unicode characters by setting the high byte to all zeros.
1249985
The binary command also manipulates data in ByteArray format. If you read a file with
the binary encoding and then use the binary command to process the data, Tcl will keep
the data in an efficient form.
1249985
The string command also understands the ByteArray format, so you can do operations
like string length, string range, and string index on binary data without
suffering the conversion cost from a ByteArray to a UTF-8 string.
1249985

Conversions Between Encodings
628024
The encoding command lets you convert strings between encodings. The encoding
convertfrom command converts data in some other encoding into a Unicode string. The
encoding convertto command converts a Unicode string into some other encoding.
For example, the following two sequences of commands are equivalent. They both read data
from a file that is in Big5 encoding and convert it to Unicode:
1249985

fconfigure $input -encoding gb12345
set unicode [read $input]

or
1249985

fconfigure $input -encoding binary
set unicode [encoding convertfrom gb12345 [read $input]]

In general, you can lose information when you go from Unicode to any other encoding, so
you ought to be aware of the limitations of the encodings you are using. In particular, the
binary encoding may not preserve your data if it starts out from an arbitrary Unicode string.
Similarly, an encoding like iso8859-2 may simply not have a representation of a given
Unicode character.
1249985

Chapter 15. Internationalization Page 6 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The encoding Command
628024
Table 15-1 summarizes the encoding command:
1249985

Table 15-1. The encoding command

encoding convertfrom ?encoding?
data
1249985

Converts binary data from the specified
encoding, which defaults to the system
encoding, into Unicode.
1249985

encoding convertto ?encoding?
string
1249985

Converts string from Unicode into
data in the encoding format, which
defaults to the system encoding.
1249985

encoding names
1249985

Returns the names of known encodings.
1249985

encoding system ?encoding?
1249985

Queries or change the system encoding.
1249985

Message Catalogs
621961

1249985
A message catalog is a list of messages that your application will display. The main idea is that
you can maintain several catalogs, one for each language you support. Unfortunately, you
have to be explicit about using message catalogs. Everywhere you generate output or display
strings in Tk widgets, you need to change your code to go through a message catalog.
Fortunately, Tcl uses a nice trick to make this fairly easy and to keep your code readable.
Instead of using keys like “message42” to get messages out of the catalog, Tcl just uses the
strings you would use by default. For example, instead of this code:
1249985

puts "Hello, World!"

A version that uses message catalogs looks like this:
1249985

puts [msgcat::mc "Hello, World!"]

Chapter 15. Internationalization Page 7 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If you have not already loaded your message catalog, or if your catalog doesn't contain a
mapping for “Hello, World!”, then msgcat::mc just returns its argument. Actually, you can
define just what happens in the case of unknown inputs by defining your own
msgcat::mcunknown procedure, but the default behavior is quite good.
1249985
The message catalog is implemented in Tcl in the msgcat package. You need to use
package require to make it available to your scripts:
1249985

package require msgcat

In addition, all the procedures in the package begin with “mc,” so you can use namespace
import to shorten their names further. I am not a big fan of namespace import, but if
you use message catalogs, you will be calling the msgcat::mc function a lot, so it may be
worthwhile to import it:
1249985

namespace import msgcat::mc
puts [mc "Hello, World!"]

Specifying a Locale
628024
A locale identifies a language or language dialect to use in your output. A three-level scheme
is used in the locale identifier:
1249985

language_country_dialect

The language codes are defined by the ISO-3166 standard. For example, “en” is English and
“es” is Spanish. The country codes are defined by the ISO-639 standard. For example, US is
for the United States and UK is for the United Kingdom. The dialect is up to you. The country
and dialect parts are optional. Finally, the locale specifier is case insensitive. The following
examples are all valid locale specifiers:
1249985

es
en
en_US
en_us
en_UK
en_UK_Scottish
en_uk_scottish

Users can set their initial locale with the LANG and LOCALE environment variables. If there
is no locale information in the environment, then the “c” locale is used (i.e., the C

Chapter 15. Internationalization Page 8 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

programming language.) You can also set and query the locale with the
msgcat::mclocale procedure:
1249985

msgcat::mclocale
=> c

msgcat::mclocale en_US

The msgcat::mcpreferences procedure returns a list of the user's locale preferences
from most specific (i.e., including the dialect) to most general (i.e., only the language). For
example:
1249985

msgcat::mclocale en_UK_Scottish
msgcat::mcpreferences
=> en_UK_Scottish en_UK en

Managing Message Catalog Files
628024
A message catalog is simply a Tcl source file that contains a series of msgcat::mcset
commands that define entries in the catalog. The syntax of the msgcat::mcset procedure
is:
1249985

msgcat::mcset
locale src-string
 ?
dest-string
?

The locale is a locale description like es or en_US_Scottish. The src-string is the
string used as the key when calling msgcat::mc. The dest-string is the result of
msgcat::mc when the locale is in force.
1249985
The msgcat::mcload procedure should be used to load your message catalog files. It
expects the files to be named according to their locale (e.g., en_US_Scottish.msg), and
it binds the message catalog to the current namespace.
1249985
The msgcat::mcload procedure loads files that match the msgcat::mcpreferences
and have the .msg suffix. For example, with a locale of en_UK_Scottish,
msgcat::mcload would look for these files:
1249985

en_UK_Scottish.msg en_UK.msg en.msg

Chapter 15. Internationalization Page 9 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The standard place for message catalog files is in the msgs directory below the directory
containing a package. With this arrangement you can call msgcat::mcload as shown
below. The use of info script to find related files is explained on page 192.
1249985

msgcat::mcload [file join [file dirname [info script]] msgs]

The message catalog file is sourced, so it can contain any Tcl commands. You might find it
convenient to import the msgcat::mcset procedure. Be sure to use -force with
namespace import because that command might already have been imported as a result
of loading other message catalog files. Example 15-3 shows three trivial message catalog
files:
1249985

Example 15-3. Three sample message catalog files

en.msg
namespace import -force msgcat::mcset

mcset en Hello Hello_en
mcset en Goodbye Goodbye_en
mcset en String String_en
end of en.msg

en_US.msg
namespace import -force msgcat::mcset

mcset en_US Hello Hello_en_US
mcset en_US Goodbye Goodbye_en_US
end of en_US.msg

en_US_Texan.msg
namespace import -force msgcat::mcset

mcset en_US_Texan Hello Howdy!
end of en_US_Texan.msg

Assuming the files from Example 15-3 are all in the msgs directory below your script, you
can load all these files with these commands:
1249985

msgcat::mclocale en_US_Texan
msgcat::mcload [file join [file dirname [info script]] msgs]

The dialect has the highest priority:
1249985

msgcat::mc Hello
=> Howdy!

If the dialect does not specify a mapping, then the country mapping is checked:
1249985

msgcat::mc Goodbye

Chapter 15. Internationalization Page 10 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

=> Goodbye_en_US

Finally, the lowest priority is the language mapping:
1249985

msgcat::mc String
=> String_en

Message Catalogs and Namespaces
628024
What happens if two different library packages have conflicting message catalogs? Suppose
the foo package contains this call:
1249985

msgcat::set fr Hello Bonjour

But the bar package contains this conflicting definition:
1249985

msgcat::mcset fr Hello Ello

What happens is that msgcat::mcset and msgcat::mc are sensitive to the current Tcl
namespace. Namespaces are described in detail in Chapter 14. If the foo package loads its
message catalog while inside the foo namespace, then any calls to msgcat::mc from inside
the foo namespace will see those definitions. In fact, if you call msgcat::mc from inside
any namespace, it will find only message catalog definitions defined from within that
namespace.
1249985
If you want to share message catalogs between namespaces, you will need to implement
your own version of msgcat::mcunknown that looks in the shared location. Example
15-4 shows a version that looks in the global namespace before returning the default string.
1249985

Example 15-4. Using msgcat::mcunknown to share message catalogs

proc msgcat::mcunknown {local src} {
 variable insideUnknown
 if {![info exist insideUnknown]} {

 # Try the global namespace, being careful to note
 # that we are already inside this procedure.

 set insideUnknown true
 set result [namespace eval :: [list \
 msgcat::mc $src \

Chapter 15. Internationalization Page 11 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

]]
 unset insideUnknown
 return $result
 } else {

 # Being called because the message isn't found
 # in the global namespace

 return $src
 }
}

The msgcat package
628024
Table 15-2 summarizes the msgcat package.
1249985

Table 15-2. The msgcat package

msgcat::mc src
1249985

Returns the translation of src
according to the current locale and
namespace.
1249985

msgcat::mclocale ?locale?
1249985

Queries or set the current locale.
1249985

msgcat::mcmax ?src-string src-
string ...?
1249985

Returns the length of the longest src-
string after translation. (Tcl 8.3)
1249985

msgcat::mcpreferences
1249985

Returns a list of locale preferences
ordered from the most specific to the
most general.
1249985

msgcat::mcload directory
1249985

Loads message files for the current
locale from directory.
1249985

msgcat::mcset locale src translation

1249985

Defines a mapping for the src string
in locale to the translation
string. (Tcl 8.3)
1249985

Chapter 15. Internationalization Page 12 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

msgcat::mcmset src-trans-list
1249985

Define multiple src-translation
pairs in a single call.
1249985

msgcat::mcunknown locale src
1249985

This procedure is called to resolve
unknown translations. Applications
can provide their own
implementations.
1249985

Chapter 15. Internationalization Page 13 Return to Table of Contents

Chapter 15. Internationalization
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

