
Table of Contents

Chapter 7. Procedures and Scope... 1
The proc Command... 1
Changing Command Names with rename... 3
Scope... 3
The global Command... 4
Call by Name Using upvar... 5
Variable Aliases with upvar.. 6

Chapter 7. Procedures and Scope

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 7. Procedures and Scope
54

1249985
Procedures encapsulate a set of commands, and they introduce a local scope for variables.
Commands described are: proc, global, and upvar.
1249985
Procedures parameterize a commonly used sequence of commands. In addition, each procedure has
a new local scope for variables. The scope of a variable is the range of commands over which it is
defined. Originally, Tcl had one global scope for shared variables, local scopes within procedures,
and one global scope for procedures. Tcl 8.0 added namespaces that provide new scopes for
procedures and global variables. For simple applications you can ignore namespaces and just use
the global scope. Namespaces are described in Chapter 14.
1249985

The proc Command
621961
A Tcl procedure is defined with the proc command. It takes three arguments:
1249985

proc name params body

The first argument is the procedure name, which is added to the set of commands understood by
the Tcl interpreter. The name is case sensitive and can contain any characters. Procedure names do
not conflict with variable names. The second argument is a list of parameter names. The last
argument is the body of the procedure.
1249985
Once defined, a Tcl procedure is used just like any other Tcl command. When it is called, each
argument is assigned to the corresponding parameter and the body is evaluated. The result of the
procedure is the result returned by the last command in the body. The return command can be
used to return a specific value.
1249985

Chapter 7. Procedures and Scope Page 1 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Procedures can have default parameters so that the caller can leave out some of the command
arguments. A default parameter is specified with its name and default value, as shown in the next
example:
1249985

Example 7-1. Default parameter values

proc P2 {a {b 7} {c -2} } {
 expr $a / $b + $c
}
P2 6 3
=> 0

Here the procedure P2 can be called with one, two, or three arguments. If it is called with only one
argument, then the parameters b and c take on the values specified in the proc command. If two
arguments are provided, then only c gets the default value, and the arguments are assigned to a
and b. At least one argument and no more than three arguments can be passed to P2.
1249985
A procedure can take a variable number of arguments by specifying the args keyword as the last
parameter. When the procedure is called, the args parameter is a list that contains all the remaining
values:
1249985

Example 7-2. Variable number of arguments

proc ArgTest {a {b foo} args} {
 foreach param {a b args} {
 puts stdout "\t$param = [set $param]"
 }
}
set x one
set y {two things}
set z \[special\$
ArgTest $x
=> a = one
 b = foo
 args =
ArgTest $y $z
=> a = two things
 b = [special$
 args =
ArgTest $x $y $z
=> a = one
 b = two things
 args = {[special$}
ArgTest $z $y $z $x
=> a = [special$
 b = two things
 args = {[special$} one

The effect of the list structure in args is illustrated by the treatment of variable z in Example
7-2. The value of z has special characters in it. When $z is passed as the value of parameter b, its
value comes through to the procedure unchanged. When $z is part of the optional parameters,

Chapter 7. Procedures and Scope Page 2 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

quoting is automatically added to create a valid Tcl list as the value of args. Example 10-3 on
page 136 illustrates a technique that uses eval to undo the effect of the added list structure.
1249985

Changing Command Names with rename
621961

1249985
The rename command changes the name of a command. There are two main uses for rename.
The first is to augment an existing procedure. Before you redefine it with proc, rename the existing
command:
1249985

rename foo foo.orig

From within the new implementation of foo you can invoke the original command as
foo.orig. Existing users of foo will transparently use the new version.
1249985
The other thing you can do with rename is completely remove a command by renaming it to the
empty string. For example, you might not want users to execute UNIX programs, so you could
disable exec with the following command:
1249985

rename exec {}

Command renaming and deletion can be traced with the trace command described in Chapter
13.
1249985

Scope
621961
By default there is a single, global scope for procedure names. This means that you can use a
procedure anywhere in your script. Variables defined outside any procedure are global variables.
However, as described below, global variables are not automatically visible inside procedures.
There is a different namespace for variables and procedures, so you could have a procedure and a
global variable with the same name without conflict. You can use the namespace facility described
in Chapter 7 to manage procedures and global variables.
1249985
Each procedure has a local scope for variables. That is, variables introduced in the procedure live
only for the duration of the procedure call. After the procedure returns, those variables are
undefined. Variables defined outside the procedure are not visible to a procedure unless the

Chapter 7. Procedures and Scope Page 3 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

upvar or global scope commands are used. You can also use qualified names to name variables
in a namespace scope. The global and upvar commands are described later in this chapter.
Qualified names are described on page 208. If the same variable name exists in an outer scope, it
is unaffected by the use of that variable name inside a procedure.
1249985
In Example 7-3, the variable a in the global scope is different from the parameter a to P1. Similarly,
the global variable b is different from the variable b inside P1:
1249985

Example 7-3. Variable scope and Tcl procedures

set a 5
set b -8
proc P1 {a} {
 set b 42
 if {$a < 0} {
 return $b
 } else {
 return $a
 }
}
P1 $b
=> 42
P1 [expr {$a*2}]
=> 10

The global Command
621961
Global scope is the toplevel scope. This scope is outside of any procedure. Variables defined at the
global scope must be made accessible to the commands inside a procedure by using the global
command. The syntax for global is:
1249985

global varName1 varName2 ...

The global command goes inside a procedure.
1249985

The global command adds a global variable to the current scope. A common mistake is to have
a single global command and expect that to apply to all procedures. However, a global
command in the global scope has no effect. Instead, you must put a global command in all

Chapter 7. Procedures and Scope Page 4 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

procedures that access the global variable. The variable can be undefined at the time the
global command is used. When the variable is defined, it becomes visible in the global scope.
1249985
Example 7-4 shows a random number generator. Before we look at the example, let me point out
that the best way to get random numbers in Tcl is to use the rand() math function:
1249985

expr rand()
=> .137287362934

The point of the example is to show a state variable, the seed, that has to persist between calls to
random, so it is kept in a global variable. The choice of randomSeed as the name of the global
variable associates it with the random number generator. It is important to pick names of global
variables carefully to avoid conflict with other parts of your program. For comparison, Example
14-1 on page 206 uses namespaces to hide the state variable:
1249985

Example 7-4. A random number generator.[*]

proc RandomInit { seed } {
 global randomSeed
 set randomSeed $seed
}
proc Random {} {
 global randomSeed
 set randomSeed [expr ($randomSeed*9301 + 49297) % 233280]
 return [expr $randomSeed/double(233280)]
}
proc RandomRange { range } {
 expr int([Random]*$range)
}
RandomInit [pid]
=> 5049
Random
=> 0.517686899863
Random
=> 0.217176783265
RandomRange 100
=> 17

[*] Adapted from Exploring Expect by Don Libes, O'Reilly & Associates, Inc., 1995, and from Numerical Recipes in C by Press et al., Cambridge University Press, 1988.

Call by Name Using upvar
621961

1249985
Use the upvar command when you need to pass the name of a variable, as opposed to its value,
into a procedure. The upvar command associates a local variable with a variable in a scope up
the Tcl call stack. The syntax of the upvar command is:

Chapter 7. Procedures and Scope Page 5 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
upvar ?level? varName localvar

The level argument is optional, and it defaults to 1, which means one level up the Tcl call stack.
You can specify some other number of frames to go up, or you can specify an absolute frame number
with a #number syntax. Level #0 is the global scope, so the global foo command is equivalent
to:
1249985

upvar #0 foo foo

The variable in the uplevel stack frame can be either a scalar variable, an array element, or an array
name. In the first two cases, the local variable is treated like a scalar variable. In the case of an array
name, then the local variable is treated like an array. The use of upvar and arrays is discussed
further in Chapter 8 on page 99. The following procedure uses upvar to print the value of a variable
given its name.
1249985

Example 7-5. Print variable by name

proc PrintByName { varName } {
 upvar 1 $varName var
 puts stdout "$varName = $var"
}

You can use upvar to fix the incr command. One drawback of the built-in incr is that it raises
an error if the variable does not exist. We can define a new version of incr that initializes the
variable if it does not already exist:
1249985

Example 7-6. Improved incr procedure

proc incr { varName {amount 1}} {
 upvar 1 $varName var
 if {[info exists var]} {
 set var [expr $var + $amount]
 } else {
 set var $amount
 }
 return $var
}

Variable Aliases with upvar
621961

Chapter 7. Procedures and Scope Page 6 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
The upvar command is useful in any situation where you have the name of a variable stored in
another variable. In Example 7-2 on page 88, the loop variable param holds the names of other
variables. Their value is obtained with this construct:
1249985

puts stdout "\t$param = [set $param]"

Another way to do this is to use upvar. It eliminates the need to use awkward constructs like
[set $param]. If the variable is in the same scope, use zero as the scope number with
upvar. The following is equivalent:
1249985

upvar 0 $param x
puts stdout "\t$param = $x"

Associating State with Data
628024
Suppose you have a program that maintains state about a set of objects like files, URLs, or people.
You can use the name of these objects as the name of a variable that keeps state about the object.
The upvar command makes this more convenient:
1249985

upvar #0 $name state

Using the name directly like this is somewhat risky. If there were an object named x, then this trick
might conflict with an unrelated variable named x elsewhere in your program. You can modify the
name to make this trick more robust:
1249985

upvar #0 state$name state

Your code can pass name around as a handle on an object, then use upvar to get access to the
data associated with the object. Your code is just written to use the state variable, which is an
alias to the state variable for the current object. This technique is illustrated in Example 17-7 on
page 245.
1249985

Namespaces and upvar
628024
You can use upvar to create aliases for namespace variables, too. Namespaces are described in
Chapter 14. For example, as an alternative to reserving all global variables beginning with
state, you can use a namespace to hide these variables:

Chapter 7. Procedures and Scope Page 7 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
upvar #0 state::$name state

Now state is an alias to the namespace variable. This upvar trick works from inside any
namespace.
1249985

Commands That Take Variable Names
628024
Several Tcl commands involve variable names. For example, the Tk widgets can be associated with
a global Tcl variable. The vwait and tkwait commands also take variable names as arguments.
1249985

Upvar aliases do not work with Tk widget text variables.
1249985

The aliases created with upvar do not work with these commands, nor do they work if you use
trace, which is described on page 193. Instead, you must use the actual name of the global
variable. To continue the above example where state is an alias, you cannot:
1249985

vwait state(foo)
button .b -textvariable state(foo)

Instead, you must
1249985

vwait state$name\(foo)
button .b -textvariable state$name\(foo)

The backslash turns off the array reference so Tcl does not try to access name as an array. You do
not need to worry about special characters in $name, except parentheses. Once the name has been
passed into the Tk widget it will be used directly as a variable name. Text variables for labels are
explained on page 490, and text variables for entry widgets are illustrated in Example 34-1 on page
508.
1249985

Chapter 7. Procedures and Scope Page 8 Return to Table of Contents

Chapter 7. Procedures and Scope
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

