
Table of Contents

Chapter 5. Tcl Lists.. 1
Tcl Lists.. 1
Constructing Lists.. 3
Getting List Elements: llength, lindex, and lrange.. 6
Modifying Lists: linsert and lreplace... 7
Searching Lists: lsearch... 8
Sorting Lists: lsort.. 10
The split Command.. 11
The join Command... 13
Related Chapters... 13

Chapter 5. Tcl Lists

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 5. Tcl Lists
725

This chapter describes Tcl lists. Tcl commands described are: list, lindex, llength,
lrange, lappend, linsert, lreplace, lsearch, lset, lsort, concat, join, and
split.
1249985
Lists in Tcl have the same structure as Tcl commands. All the rules you learned about grouping
arguments in Chapter 1 apply to creating valid Tcl lists. However, when you work with Tcl lists,
it is best to think of lists in terms of operations instead of syntax. Tcl commands provide operations
to put values into a list, get elements from lists, count the elements of lists, replace elements of lists,
and so on. It is a good habit to use commands like list and lappend to construct lists, instead
of creating them by hand. Lists are used with commands such as foreach that take lists as
arguments. In addition, lists are important when you are building up a command to be evaluated
later. Delayed command evaluation with eval is described in Chapter 10, and similar issues with
Tk callback commands are described in Chapter 30.
1249985
However, Tcl lists are not often the right way to build complicated data structures in scripts. You
may find Tcl arrays more useful, and they are the topic of Chapter 8. List operations are also not
right for handling unstructured data such as user input. Use regular expressions instead, which are
described in Chapter 11.
1249985

Tcl Lists
621961
A Tcl list is a sequence of values. When you write out a list, it has the same syntax as a Tcl command.
A list has its elements separated by white space. Braces or quotes can be used to group words with
white space into a single list element. Because of the relationship between lists and commands, the
list-related commands described in this chapter are used often when constructing Tcl commands.
1249985

Chapter 5. Tcl Lists Page 1 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Since Tcl 8.0, lists are really 1-dimensional object arrays.
1249985

Early versions of Tcl represented all values as strings. Lists were just strings with special syntax
to group their elements. The string representation was parsed on each list access, so you could have
performance problems with large lists. The performance of lists was improved by the Tcl compiler
added in Tcl 8.0. The Tcl runtime now stores lists using an C array of pointers to each element.
(The Tcl_Obj type is described on page 694.) Tcl can access any element in the list with the same
cost. Appending new elements to a list is made efficient by over allocating the array so there is
room to grow. The internal format also records the number of list elements, so getting the length
of a list is cheap. However, you can still get into performance trouble if you use a big Tcl list like
a string, e.g., for output. Tcl will convert the list into a string representation if you print it to a file,
or manipulate it with string commands. Table 5-1 describes Tcl commands for lists.
1249985

Table 5-1. List-related commands

list arg1 arg2 ...
1249985

Creates a list out of all its arguments.
1249985

lindex list ?i ...?
1249985

Returns the ith element from list. Specifying multiple index
elements allows you to descend into nested lists easily.
1249985

llength list
1249985

Returns the number of elements in list.
1249985

lrange list i j
1249985

Returns the ith through jth elements from list.
1249985

lappend listVar arg ...
1249985

Appends elements to the value of listVar.
1249985

linsert list index arg arg ...
1249985

Inserts elements into list before the element at position index.
Returns a new list.
1249985

lreplace list i j arg arg ...
1249985

Replaces elements i through j of list with the args. Returns a new
list.
1249985

lsearch ?options? list value
1249985

Returns the index of the element in list that matches the value
according to the options. Glob matching is the default. Returns -1
if not found.
1249985

Chapter 5. Tcl Lists Page 2 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

lset listVar ?i ...? newValue
1249985

Set the ith element in variable listVar to newValue. (Tcl 8.4)
1249985

lsort ?switches? list
1249985

Sorts elements of the list according to the switches: -ascii, -
dictionary, -integer, -real, -increasing, -
decreasing, -index ix, -unique, -command command.
Returns a new list.

concat list list ...
1249985

Joins multiple lists together into one list.
1249985

join list joinString
1249985

Merges the elements of a list together by separating them with
joinString.
1249985

split string splitChars
1249985

Splits a string up into list elements, using the characters in
splitChars as boundaries between list elements.
1249985

Constructing Lists
621961

1249985
Constructing a list can be tricky if you try to write the proper list syntax by hand. The manual
approach works for simple cases. In more complex cases, however, you should use Tcl commands
that build lists. Using list commands eliminates the struggle to get the grouping and quoting right,
and the list is maintained in an efficient internal format. If you create lists by hand with quoting,
there is additional overhead to parse the string representation the first time you use the list.
1249985

The list command
628024
The list command constructs a list out of its arguments so that there is one list element for each
argument. The simple beauty of list is that any special characters in the list elements do not
matter. Spaces inside an element do not cause it to become more than one list element. The
list command is efficient, too. It doesn't matter if list is making a list of three single-character
values, or three 10 kilobyte values. The cost to make that three element list is the same in either
case. The most compelling uses of list involve making lists out of variables that could have arbitrary
values, as shown in Example 5-1.
1249985

Chapter 5. Tcl Lists Page 3 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 5-1. Constructing a list with the list command

set x {1 2}
=> 1 2
set y \$foo
=> $foo
set l1 [list $x "a b" $y]
=> {1 2} {a b} {$foo}
set l2 [list $l1 $x]
=> {{1 2} {a b} {$foo}}} {1 2}

The list command does automatic quoting.
1249985

The first list, l1, has three elements. The values of the elements do not affect the list structure. The
second list, l2, has two elements, the value of l1 and the value of x. Internally Tcl shares values
instead of making copies, so constructing lists out of other values is quite efficient.
1249985
When you first experiment with Tcl lists, the treatment of curly braces can be confusing. In the
assignment to x, for example, the curly braces disappear. However, they seem to come back again
when $x is put into a bigger list. Also, the double quotes around a b get changed into curly braces.
What's going on? There are three steps in the process. In the first step, the Tcl parser groups
arguments to the list command. In the grouping process, the braces and quotes are syntax that
define groups. These syntax characters get stripped off. The braces and quotes are not part of the
values being grouped. In the second step, the list command creates an internal list structure. This
is an array of references to each value. In the third step the value is printed out. This step requires
conversion of the list into a string representation. The string representation of the list uses curly
braces to group values back into list elements.
1249985

The lappend Command
628024
The lappend command is used to append elements to the end of a list. The first argument to
lappend is the name of a Tcl variable, and the rest of the arguments are added to the variable's
value as new list elements. Like list, lappend operates efficiently on the internal representation
of the list value. It is always more efficient to use lappend than to try and append elements by
hand.
1249985

Chapter 5. Tcl Lists Page 4 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 5-2. Using lappend to add elements to a list

lappend new 1 2
=> 1 2
lappend new 3 "4 5"
=> 1 2 3 {4 5}
set new
=> 1 2 3 {4 5}

The lappend command is unique among the list-related commands because its first argument is
the name of a list-valued variable, while all the other commands take list values as arguments. You
can call lappend with the name of an undefined variable and the variable will be created.
1249985

The lset Command
628024
The lset command was introduced in Tcl 8.4 to make it easier, and more efficient, to set one
element of a list or nested list. Like lappend, the first argument to lset is the name of a list
variable. The last argument is the value to set. The middle arguments, if any, specify which element
to set. If no index is specified, the whole variable is set to the new value. If the index is a single
integer, or end-integer, then that element of the list is set. If you have a nested list, then you
can specify several indices, and each one navigates into the nested list structure. This is illustrated
in Example 5-3. If you specify several indices they can be separate arguments, or grouped into a
list. Range checking in lset is strict and an error will be thrown for indices given outside of the
list or sublist range. The new value of the list in the variable is returned, although you rarely need
this because lset modifies the list variable directly.
1249985

Example 5-3. Using lset to set an element of a list

lset new "a b c"
=> a b c
lset new 1 "d e"
=> a {d e} c
lset new 1 0 "g h"
=> a {{g h} e} c

The concat Command
628024
The concat command is useful for splicing lists together. It works by concatenating its arguments,
separating them with spaces. This joins multiple lists into one list where the top-level list elements
in each input list become top-level list elements in the resulting list:
1249985

Chapter 5. Tcl Lists Page 5 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 5-4. Using concat to splice lists together

set x {4 5 6}
set y {2 3}
set z 1
concat $z $y $x
=> 1 2 3 4 5 6

Double quotes behave much like the concat command. In simple cases, double quotes behave
exactly like concat. However, the concat command trims extra white space from the end of its
arguments before joining them together with a single separating space character. Example 5-5
compares the use of list, concat, and double quotes:
1249985

Example 5-5. Double quotes compared to the concat and list commands

set x {1 2}
=> 1 2
set y "$x 3"
=> 1 2 3
set y [concat $x 3]
=> 1 2 3
set s { 2 }
=> 2
set y "1 $s 3"
=> 1 2 3
set y [concat 1 $s 3]
=> 1 2 3
set z [list $x $s 3]
=> {1 2} { 2 } 3

The distinction between list and concat becomes important when Tcl commands are built
dynamically. The basic rule is that list and lappend preserve list structure, while concat (or
double quotes) eliminates one level of list structure. The distinction can be subtle because there are
examples where list and concat return the same results. Unfortunately, this can lead to data-
dependent bugs. Throughout the examples of this book, you will see the list command used to
safely construct lists. This issue is discussed more in Chapter 10.
1249985

Getting List Elements: llength, lindex, and lrange
621961
The llength command returns the number of elements in a list.
1249985

llength {a b {c d} "e f g" h}
 => 5
llength {}

Chapter 5. Tcl Lists Page 6 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

=> 0

The lindex command returns a particular element of a list. It takes an index; list indices count
from zero.
1249985

set x {1 2 3}
lindex $x 1
 => 2

You can use the keyword end to specify the last element of a list, or the syntax end-N to count
back from the end of the list. The following commands are equivalent ways to get the element just
before the last element in a list.
1249985

lindex $list [expr {[llength $list] - 2}]
lindex $list end-1

The lrange command returns a range of list elements. It takes a list and two indices as arguments.
Again, end or end-N can be used as an index:
1249985

lrange {1 2 3 {4 5}} 2 end
 => 3 {4 5}

Modifying Lists: linsert and lreplace
621961

1249985
The linsert command inserts elements into a list value at a specified index. If the index is zero
or less, then the elements are added to the front. If the index is equal to or greater than the length
of the list, then the elements are appended to the end. Otherwise, the elements are inserted before
the element that is currently at the specified index. The following command adds to the front of a
list:
1249985

linsert {1 2} 0 new stuff
=> new stuff 1 2

lreplace replaces a range of list elements with new elements. If you don't specify any new
elements, you effectively delete elements from a list.
1249985

Chapter 5. Tcl Lists Page 7 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note: linsert and lreplace do not modify an existing list like the lappend and lset
commands. Instead, they return a new list value. In the Example 5-6, the lreplace command
does not change the value of x:

Example 5-6. Modifying lists with lreplace

set x [list a {b c} e d]
=> a {b c} e d
lreplace $x 1 2 B C
=> a B C d
lreplace $x 0 0
=> {b c} e d

Searching Lists: lsearch
621961

1249985
lsearch returns the index of a value in the list, or -1 if it is not present. lsearch supports pattern
matching in its search. Simple pattern matching is the default, and this can be disabled with the -
exact option. The glob pattern matching lsearch uses is described in more detail on page 53.
The -regexp option lets you specify the list value with a regular expression. Regular expressions
are described in Chapter 11.
1249985
In the following example, the glob pattern l* matches the value list, and lsearch returns the
index of that element in the input list:
1249985

lsearch {here is a list} l*
 => 3

Example 5-7 shows ldelete as a combination of lreplace and lsearch:
1249985

Example 5-7. Deleting a list element by value

proc ldelete { list value } {
 set ix [lsearch -exact $list $value]
 if {$ix >= 0} {
 return [lreplace $list $ix $ix]
 } else {
 return $list
 }
}

Chapter 5. Tcl Lists Page 8 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Tcl 8.4 added several features to lsearch, including typed searching, optimized searches for
sorted lists, and the ability to find all matching elements of a list. The lsearch typed searches
use the internal object representation for efficiency and speed. For example, if you have a list of
numbers, the -integer option tells lsearch to leave the values in their native integer format.
Otherwise it would convert them to strings as it did the search. If your list has been sorted, the -
sorted option tells lsearch to perform an efficient binary search. Sorting lists is described on
page 70.
1249985
The -inline option returns the list value instead of the index. This is most useful when you are
matching a pattern, and it works well with the -all option that returns all matching indices, or
values:
1249985

set foo {the quick brown fox jumped over a lazy dog}
lsearch -inline -all $foo *o*
=> brown fox over dog

The lsearch options are described in Table 5-2:
1249985

Table 5-2. Options to the lsearch command

-all
1249985

Search for all items that match and return a list of matching indices.
1249985

-ascii
1249985

The list elements are to be compared as ascii strings. Only meaningful when used with -exact
or -sorted.
1249985

-decreasing
1249985

Assume list elements are in decreasing order. Only meaningful when used with -sorted.
1249985

-dictionary
1249985

The list elements are to be compared using dictionary-style comparison. Only meaningful when
used with -exact or -sorted.
1249985

-exact
1249985

Do exact string matching. Mutually exclusive with -glob and -regexp.
1249985

-glob
1249985

Do glob-style pattern matching (default). Mutually exclusive with -exact and -regexp.
1249985

-increasing
1249985

Assume list elements are in increasing order. Only meaning when used with -sorted.
1249985

-inline
1249985

Return the actual matching element(s) instead of the index to the element. An empty string is
returned if no elements match.
1249985

Chapter 5. Tcl Lists Page 9 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

-integer
1249985

The list elements are to be compared as integers. Only meaning when used with -exact or -
sorted.
1249985

-not
1249985

Negate the sense of the match.
1249985

-real
1249985

Examine all elements as real (floating-point) values. Only meaning when used with -exact or
-sorted.
1249985

-regexp
1249985

Do regular expression pattern matching. Mutually exclusive with -exact and -glob. Regular
expressions are described in Chapter 11.
1249985

-sorted
1249985

Specifies that the list is presorted, so Tcl can do a faster binary search to find the pattern.
1249985

-start ix
1249985

Specify the start index in the list to begin searching.
1249985

Sorting Lists: lsort
621961
You can sort a list in a variety of ways with lsort. The list is not sorted in place. Instead, a new
list value is returned. The basic types of sorts are specified with the -ascii, -dictionary, -
integer, or -real options. The -increasing or -decreasing option indicate the sorting
order. The default option set is -ascii -increasing. An ASCII sort uses character codes, and
a dictionary sort folds together case and treats digits like numbers. For example:
1249985

lsort -ascii {a Z n2 n100}
=> Z a n100 n2
lsort -dictionary {a Z n2 n100}
=> a n2 n100 Z

You can provide your own sorting function for special-purpose sorting. For example, suppose you
have a list of names, where each element is itself a list containing the person's first name, middle
name (if any), and last name. The default sorts by everyone's first name. If you want to sort by their
last name, you need to supply a sorting command.
1249985

Chapter 5. Tcl Lists Page 10 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 5-8. Sorting a list using a comparison function

proc NameCompare {a b} {
 set alast [lindex $a end]
 set blast [lindex $b end]
 set res [string compare $alast $blast]
 if {$res != 0} {
 return $res
 } else {
 return [string compare $a $b]
 }
}
set list {{Brent B. Welch} {John Ousterhout} {Miles Davis}}
=> {Brent B. Welch} {John Ousterhout} {Miles Davis}
lsort -command NameCompare $list
=> {Miles Davis} {John Ousterhout} {Brent B. Welch}

The NameCompare procedure extracts the last element from each of its arguments and compares
those. If they are equal, then it just compares the whole of each argument.
1249985
Tcl 8.0 added a -index option to lsort that can be used to sort lists on an index. Instead of using
NameCompare, you could do this:
1249985

lsort -index end $list

Tcl 8.3 added a -unique option that removes duplicates during sort:
1249985

lsort -unique {a b a z c b}
 => a b c z

The split Command
621961
The split command takes a string and turns it into a list by breaking it at specified characters
and ensuring that the result has the proper list syntax. The split command provides a robust way
to turn input lines into proper Tcl lists:
1249985

set line {welch:*:28405:100:Brent Welch:/usr/welch:/bin/csh}
split $line :
=> welch * 28405 100 {Brent Welch} /usr/welch /bin/csh
lindex [split $line :] 4
=> Brent Welch

Chapter 5. Tcl Lists Page 11 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Do not use list operations on arbitrary data.
1249985

Even if your data has space-separated words, you should be careful when using list operators on
arbitrary input data. Otherwise, stray double quotes or curly braces in the input can result in invalid
list structure and errors in your script. Your code will work with simple test cases, but when invalid
list syntax appears in the input, your script will raise an error. The next example shows what happens
when input is not a valid list. The syntax error, an unmatched quote, occurs in the middle of the
list. However, you cannot access any of the list because the lindex command tries to convert the
value to a list before returning any part of it.
1249985

Example 5-9. Use split to turn input data into Tcl lists

set line {this is "not a tcl list}
lindex $line 1
=> unmatched open quote in list
lindex [split $line] 2
=> "not

The default separator character for split is white space, which contains spaces, tabs, and
newlines. If there are multiple separator characters in a row, these result in empty list elements; the
separators are not collapsed. The following command splits on commas, periods, spaces, and tabs.
The backslash–space sequence is used to include a space in the set of characters. You could also
group the argument to split with double quotes:
1249985

set line "\tHello, world."
split $line \ ,.\t
=> {} Hello {} world {}

A trick that splits each character into a list element is to specify an empty string as the split character.
This lets you get at individual characters with list operations:
1249985

split abc {}
=> a b c

However, if you write scripts that process data one character at a time, they may run slowly. Read
Chapter 11 about regular expressions for hints on really efficient string processing and using
regexp for a multi-character split routine.
1249985

Chapter 5. Tcl Lists Page 12 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The join Command
621961
The join command is the inverse of split. It takes a list value and reformats it with specified
characters separating the list elements. In doing so, it removes any curly braces from the string
representation of the list that are used to group the top-level elements. For example:
1249985

join {1 {2 3} {4 5 6}} :
=> 1:2 3:4 5 6

If the treatment of braces is puzzling, remember that the first value is parsed into a list. The braces
around element values disappear in the process. Example 5-10 shows a way to implement join in
a Tcl procedure, which may help to understand the process:
1249985

Example 5-10. Implementing join in Tcl

proc join {list sep} {
 set s {} ;# s is the current separator
 set result {}
 foreach x $list {
 append result $s $x
 set s $sep
 }
 return $result
}

Related Chapters
621961

• Arrays are the other main data structure in Tcl. They are described in Chapter 8.
• List operations are used when generating Tcl code dynamically. Chapter 10 describes these techniques when using the eval command.
• The foreach command loops over the values in a list. It is described on page 79 in Chapter 6.

Chapter 5. Tcl Lists Page 13 Return to Table of Contents

Chapter 5. Tcl Lists
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

