
Table of Contents

Chapter 14. Namespaces.. 1
Using Namespaces.. 1
Namespace Variables.. 3
Command Lookup.. 5
Nested Namespaces.. 6
Importing and Exporting Procedures... 8
Callbacks and Namespaces.. 9
Introspection.. 11
The namespace Command.. 11
Converting Existing Packages to use Namespaces.. 13
[incr Tcl] Object System... 14
xotcl Object System... 15
Notes.. 15

Chapter 14. Namespaces

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 14. Namespaces
714

1249985
Namespaces group procedures and variables into separate name spaces. Namespaces were
added in Tcl 8.0. This chapter describes the namespace and variable commands.
1249985
Namespaces provide new scopes for procedures and global variables. Originally Tcl had one
global scope for shared variables, local scopes within procedures, and one global namespace
for procedures. The single global scope for procedures and global variables can become
unmanageable as your Tcl application grows. I describe some simple naming conventions
on page 181 that I have used successfully in large programs. The namespace facility is a more
elegant solution that partitions the global scope for procedure names and global variables.
1249985
Namespaces help structure large Tcl applications, but they add complexity. In particular,
command callbacks may have to be handled specially so that they execute in the proper
namespace. You choose whether or not you need the extra structure and learning curve of
namespaces. If your applications are small, then you can ignore the namespace facility. If you
are developing library packages that others will use, you should pick a namespace for your
procedures and data so that they will not conflict with the applications in which they are
used.
1249985

Using Namespaces
621961

1249985
Namespaces add new syntax to procedure and variable names. A double colon, ::, separates
the namespace name from the variable or procedure name. You use this syntax to reference
procedures and variables in a different namespace. The namespace import command
lets you name things in other namespaces without the extra syntax. Namespaces can be

Chapter 14. Namespaces Page 1 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

nested, so you can create a hierarchy of scopes. These concepts are explained in more detail
in the rest of this chapter.
1249985
One feature not provided by namespaces is any sort of protection, or a way to enforce access
controls between different namespaces. This sort of thing is awkward, if not impossible, to
provide in a dynamic language like Tcl. For example, you are always free to use namespace
eval to reach into any other namespace. Instead of providing strict controls, namespaces
are meant to provide structure that enables large scale programming.
1249985
The package facility described in Chapter 12 was designed before namespaces. This chapter
illustrates a style that ties the two facilities together, but they are not strictly related. It is
possible to create a package named A that implements a namespace B, or to use a package
without namespaces, or a namespace without a package. However, it makes sense to use
the facilities together.
1249985
Example 14-1 repeats the random number generator from Example 7-4 on page 91 using
namespaces. The standard naming style conventions for namespaces use lowercase:
1249985

Example 14-1. Random number generator using namespaces

package provide random 1.0

namespace eval random {
 # Create a variable inside the namespace
 variable seed [clock seconds]

 # Make the procedures visible to namespace import
 namespace export init random range

 # Create procedures inside the namespace
 proc init { value } {
 variable seed
 set seed $value
 }
 proc random {} {
 variable seed
 set seed [expr {($seed*9301 + 49297) % 233280}]
 return [expr {$seed/double(233280)}]
 }
 proc range { range } {
 expr {int([random]*$range)}
 }
}

Example 14-1 defines three procedures and a variable inside the namespace random. From
inside the namespace, you can use these procedures and variables directly. From outside the
namespace, you use the :: syntax for namespace qualifiers. For example, the state variable
is just seed within the namespace, but you use random::seed to refer to the variable from
outside the namespace. Using the procedures looks like this:
1249985

Chapter 14. Namespaces Page 2 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

random::random
=> 0.3993355624142661

random::range 10
=> 4

If you use a package a lot you can import its procedures. A namespace declares what
procedures can be imported with the namespace export command. Once you import a
procedure, you can use it without a qualified name:
1249985

namespace import random::random
random
=> 0.54342849794238679

Importing and exporting are described in more detail later.
1249985

Namespace Variables
621961

1249985
The variable command defines a variable inside a namespace. It is like the set command
because it can define a value for the variable. You can declare several namespace variables
with one variable command. The general form is:
1249985

variable
name
 ?
value
? ?
name value
? ...

If you have an array, do not assign a value in the variable command. Instead, use regular
Tcl commands after you declare the variable. You can put any commands inside a
namespace block:
1249985

namespace eval foo {
 variable arr
 array set arr {
name value name2 value2
}
}

Chapter 14. Namespaces Page 3 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

A namespace variable is similar to a global variable because it is outside the scope of any
procedures. Procedures use the variable command or qualified names to reference
namespace variables. For example, the random procedure has a variable command that
brings the namespace variable into the current scope:
1249985

variable seed

If a procedure has a variable command that names a new variable, it is created in the
namespace when it is first set.
1249985

Watch out for conflicts with global variables.
1249985

You need to be careful when you use variables inside a namespace block. If you declare them
with a variable command, they are clearly namespace variables. However, if you forget
to declare them, then they will either become namespace variables, or latch onto an existing
global variable by the same name. Consider the following code:
1249985

namespace eval foo {
 variable table
 for {set i 1} {$i <= 256} {incr i} {
 set table($i) [format %c $i]
 }
}

If there is already a global variable i, then the for loop will use that variable. Otherwise, it
will create the foo::i variable. I found this behavior surprising, but it does make it easier
to access global variables like env without first declaring them with global inside the
namespace block.
1249985

Qualified Names
628024
A fully qualified name begins with ::, which is the name for the global namespace. A fully
qualified name unambiguously names a procedure or a variable. The fully qualified name
works anywhere. If you use a fully qualified variable name, it is not necessary to use a
global command. For example, suppose namespace foo has a namespace variable x, and
there is also a global variable x. The global variable x can be named with this:
1249985

Chapter 14. Namespaces Page 4 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

::x

The :: syntax does not affect variable substitutions. You can get the value of the global
variable x with $::x. Name the namespace variable x with this:
1249985

::foo::x

A partially qualified name does not have a leading ::. In this case the name is resolved from
the current namespace. For example, the following also names the namespace variable x:
1249985

foo::x

You can use qualified names with global. Once you do this, you can access the variable
with its short name:
1249985

global ::foo::x
set x 5

Declaring variables is more efficient than using qualified names.
1249985

The Tcl byte-code compiler generates faster code when you declare namespace and global
variables. Each procedure context has its own table of variables. The table can be accessed
by a direct slot index, or by a hash table lookup of the variable name. The hash table lookup
is slower than the direct slot access. When you use the variable or global command,
then the compiler can use a direct slot access. If you use qualified names, the compiler uses
the more general hash table lookup.
1249985

Command Lookup
621961

1249985
A command is looked up first in the current name space. If it is not found there, then it is
looked up in the global namespace. This means that you can use all the built-in Tcl commands
inside a namespace with no special effort.
1249985

Chapter 14. Namespaces Page 5 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

You can play games by redefining commands within a namespace. For example, a
namespace could define a procedure named set. To get the built-in set you could
use ::set, while set referred to the set defined inside namespace. Obviously you need
to be quite careful when you do this.
1249985
You can use qualified names when defining procedures. This eliminates the need to put the
proc commands inside a namespace block. However, you still need to use namespace
eval to create the namespace before you can create procedures inside it. Example 14-2
repeats the random number generator using qualified names. random::init does not
need a variable command because it uses a qualified name for seed:
1249985

Example 14-2. Random number generator using qualified names

namespace eval random {
 # Create a variable inside the namespace
 variable seed [clock seconds]
}
Create procedures inside the namespace
proc random::init { seed } {
 set ::random::seed $seed
}
proc random::random {} {
 variable seed
 set seed [expr {($seed*9301 + 49297) % 233280}]
 return [expr {$seed/double(233280)}]
}
proc random::range { range } {
 expr {int([random]*$range)}
}

Nested Namespaces
621961

1249985
Namespaces can be nested inside other namespaces. Example 14-3 shows three namespaces
that have their own specific variable x. The fully qualified names for these variables
are ::foo::x, ::bar::x, and ::bar::foo::x.
1249985

Example 14-3. Nested namespaces

namespace eval foo {
 variable x 1 ;# ::foo::x
}
namespace eval bar {
 variable x 2 ;# ::bar::x
 namespace eval foo {

Chapter 14. Namespaces Page 6 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 variable x 3 ;# ::bar::foo::x
 }
 puts $foo::x ;# prints 3
}
puts $foo::x ;# prints 1

Partially qualified names can refer to two different objects.
1249985

In Example 14-3 the partially qualified name foo::x can reference one of two variables
depending on the current namespace. From the global scope the name foo::x refers to
the namespace variable x inside ::foo. From the ::bar namespace, foo::x refers to the
variable x inside ::bar::foo.
1249985
If you want to unambiguously name a variable in the current namespace, you have two
choices. The simplest is to bring the variable into scope with the variable command:
1249985

variable x
set x something

If you need to give out the name of the variable, then you have two choices. The most general
solution is to use the namespace current command to create a fully qualified name:
1249985

trace variable [namespace current]::x r \
 [namespace current]::traceproc

However, it is simpler to just explicitly write out the namespace as in:
1249985

trace variable ::
myname
::x r ::
myname
::traceproc

The drawback of this approach is that it litters your code with references to ::myname::,
which might be subject to change during program development.
1249985

Chapter 14. Namespaces Page 7 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Importing and Exporting Procedures
621961

1249985
Commands can be imported from namespaces to make it easier to name them. An imported
command can be used without its namespace qualifier. Each namespace specifies exported
procedures that can be the target of an import. Variables cannot be imported. Note that
importing is only a convenience; you can always use qualified names to access any procedure.
As a matter of style, I avoid importing names, so I know what package a command belongs
to when I'm reading code.
1249985
The namespace export command goes inside the namespace block, and it specifies what
procedures a namespace exports. The specification is a list of string match patterns that
are compared against the set of commands defined in a namespace. The export list can be
defined before the procedures being exported. You can do more than one namespace
export to add more procedures, or patterns, to the export list for a namespace. Use the -
clear flag if you need to reset the export list.
1249985

namespace export ?-clear? ?
pat
? ?
pat
? ...

Only exported names appear in package indexes.
1249985

When you create the pkgIndex.tcl package index file with pkg_mkIndex, which is
described Chapter 12, you should be aware that only exported names appear in the index.
Because of this, I often resort to exporting everything. I never plan to import the names, but
I do rely on automatic code loading based on the index files. This exports everything:
1249985

namespace export *

The namespace import command makes commands in another namespace visible in the
current namespace. An import can cause conflicts with commands in the current
namespace. The namespace import command raises an error if there is a conflict. You can
override this with the -force option. The general form of the command is:

Chapter 14. Namespaces Page 8 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

namespace import ?-force?
namespace
::
pat
 ?
namespace
::
pat
?...

The pat is a string match type pattern that is matched against exported commands
defined in namespace. You cannot use patterns to match namespace. The namespace
can be a fully or partially qualified name of a namespace.
1249985
If you are lazy, you can import all procedures from a namespace:
1249985

namespace import random::*

The drawback of this approach is that random exports an init procedure, which might
conflict with another module you import in the same way. It is safer to import just the
procedures you plan on using:
1249985

namespace import random::random random::range

A namespace import takes a snapshot.
1249985

If the set of procedures in a namespace changes, or if its export list changes, then this has no
effect on any imports that have already occurred from that namespace.
1249985

Callbacks and Namespaces
621961

1249985
Commands like after, bind, and button take arguments that are Tcl scripts that are
evaluated later. These callback commands execute later in the global scope by default. If you
want a callback to be evaluated in a particular namespace, you can construct the callback

Chapter 14. Namespaces Page 9 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

with namespace code. This command does not execute the callback. Instead, it generates
a Tcl command that will execute in the current namespace scope when it is evaluated later.
For example, suppose ::current is the current namespace. The namespace code
command determines the current scope and adds that to the namespace inscope
command it generates:
1249985

set callback [namespace code {set x 1}]
=> namespace inscope ::current {set x 1}

sometime later ...
eval $callback

When you evaluate $callback later, it executes in the ::current namespace because of
the namespace inscope command. In particular, if there is a namespace
variable ::current::x, then that variable is modified. An alternative to using namespace
code is to name the variable with a qualified name:
1249985

set callback {set ::current::x 1}

The drawback of this approach is that it makes it tedious to move the code to a different
namespace.
1249985
If you need substitutions to occur on the command when you define it, use list to construct
it. Using list is discussed in more detail on pages 131 and 455. Example 14-4 wraps up the
list and the namespace inscope into the code procedure, which is handy because you
almost always want to use list when constructing callbacks. The uplevel in code ensures
that the correct namespace is captured; you can use code anywhere:
1249985

Example 14-4. The code procedure to wrap callbacks

proc code {args} {
 set namespace [uplevel {namespace current}]
 return [list namespace inscope $namespace $args]
}
namespace eval foo {
 variable y "y value" x {}
 set callback [code set x $y]

=> namespace inscope ::foo {set x {y value}}

}

The example defines a callback that will set ::foo::x to y value. If you want to set x to
the value that y has at the time of the callback, then you do not want to do any substitutions.
In that case, the original namespace code is what you want:
1249985

set callback [namespace code {set x $y}]

Chapter 14. Namespaces Page 10 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

=> namespace inscope ::foo {set x $y}

If the callback has additional arguments added by the caller, namespace inscope
correctly adds them. For example, the scrollbar protocol described on page 501 adds
parameters to the callback that controls a scrollbar.
1249985

Introspection
621961

1249985
The info commands operation returns all the commands that are currently visible. It is
described in more detail on page 190. You can limit the information returned with a string
match pattern. You can also include a namespace specifier in the pattern to see what is
visible in a namespace. Remember that global commands and imported commands are
visible, so info commands returns more than just what is defined by the namespace.
Example 14-5 uses namespace origin, which returns the original name of imported
commands, to sort out the commands that are really defined in a namespace:
1249985

Example 14-5. Listing commands defined by a namespace

proc Namespace_List {{namespace {}}} {
 if {[string length $namespace] == 0} {
 # Determine the namespace of our caller
 set namespace [uplevel {namespace current}]
 }
 set result {}
 foreach cmd [info commands ${namespace}::*] {
 if {[namespace origin $cmd] == $cmd} {
 lappend result $cmd
 }
 }
 return [lsort $result]
}

The namespace Command
621961
Table 14-1 summarizes the namespace operations:
1249985

Chapter 14. Namespaces Page 11 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 14-1. The namespace command

namespace current
1249985

Returns the current namespace.
1249985

namespace children ?name? ?pat?
1249985

Returns names of nested namespaces.
name defaults to current namespace. pat is
a string match pattern that limits what is
returned.
1249985

namespace code script
1249985

Generates a namespace inscope
command that will eval script in the
current namespace.
1249985

namespace delete name ?name? ...
1249985

Deletes the variables and commands from
the specified namespaces.
1249985

namespace eval name cmd ?
args? ...
1249985

Concatenates args, if present, onto cmd and
evaluates it in name namespace.
1249985

namespace exists name
1249985

Returns 1 if namespace name exists, 0
otherwise. (Tcl 8.4)
1249985

namespace export ?-clear? ?
pat? ?pat? ...
1249985

Adds patterns to the export list for current
namespace. Returns export list if no patterns.
1249985

namespace forget pat ?pat? ...
1249985

Undoes the import of names matching
patterns.
1249985

namespace import ?-force? pat ?
pat? ...
1249985

Adds the names matching the patterns to
the current namespace.
1249985

namespace inscope name cmd ?
args? ...
1249985

Appends args, if present, onto cmd as list
elements and evaluates it in name
namespace.
1249985

namespace origin cmd Returns the original name of cmd.

Chapter 14. Namespaces Page 12 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

namespace parent ?name?
1249985

Returns the parent namespace of name, or of
the current namespace.
1249985

namespace qualifiers name
1249985

Returns the part of name up to the last :: in
it.
1249985

namespace which ?flag? name
1249985

Returns the fully qualified version of name.
The flag is one of -command, -
variable, or -namespace.
1249985

namespace tail name
1249985

Returns the last component of name.
1249985

Converting Existing Packages to use Namespaces
621961

1249985
Suppose you have an existing set of Tcl procedures that you want to wrap in a namespace.
Obviously, you start by surrounding your existing code in a namespace eval block.
However, you need to consider three things: global variables, exported procedures, and
callbacks.
1249985

• Global variables remain global until you change your code to use variable instead of global. Some variables may make
sense to leave at the global scope. Remember that the variables that Tcl defines are global, including env, tcl_platform,
and the others listed in Table 2-2 on page 31. If you use the upvar #0 trick described on page 92, you can adapt this to
namespaces by doing this instead:

upvar #0 [namespace current]::$instance state
• Exporting procedures makes it more convenient for users of your package. It is not strictly necessary because they can always

use qualified names to reference your procedures. An export list is a good hint about which procedures are expected to be
used by other packages. Remember that the export list determines what procedures are visible in the index created by
pkg_mkIndex.

• Callbacks execute at the global scope. If you use variable traces and variables associated with Tk widgets, these are also treated
as global variables. If you want a callback to invoke a namespace procedure, or if you give out the name of a namespace
variable, then you must construct fully qualified variable and procedure names. You can hardwire the current namespace:

button .foo -command ::
myname
::
callback

Chapter 14. Namespaces Page 13 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 \
 -textvariable ::
myname
::
textvar

or you can use namespace current:

button .foo -command [namespace current]::
callback
 \
 -textvariable [namespace current]::
textvar

[incr Tcl] Object System
621961

1249985
The Tcl namespace facility does not provide classes and inheritance. It just provides new
scopes and a way to hide procedures and variables inside a scope. There are Tcl C APIs that
support hooks in variable name and command lookup for object systems so that they can
implement classes and inheritance. By exploiting these interfaces, various object systems
can be added to Tcl as shared libraries.
1249985
The Tcl namespace facility was proposed by Michael McLennan based on his experiences
with [incr Tcl], which is the most widely used object-oriented extension for Tcl. [incr Tcl]
provides classes, inheritance, and protected variables and commands. If you are familiar with
C++, [incr Tcl] should feel similar. A complete treatment of [incr Tcl] is not made in this book.
[incr Tcl] From The Ground Up (Chad Smith, Osborn-McGraw Hill, 1999) is an excellent source
of information. You can find a version of [incr Tcl] on the CD-ROM. The [incr Tcl] home page
is:
1249985

http://www.tcltk.com/itcl/

The [incr Tcl] sources are maintained on SourceForge:
1249985

http://incrtcl.sourceforge.net/

Chapter 14. Namespaces Page 14 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.tcltk.com/itcl/
http://safari.bvdep.com/http://incrtcl.sourceforge.net/

xotcl Object System
621961
Xotcl is a more recently developed object-oriented extension that blends object-orientation
and scripting in a way that preserves the benefits of both. It includes features such as dynamic
object aggregation, per-object mixins, filters, dynamic component loading and more. The
xotcl home page is:
1249985

http://www.xotcl.org/

Notes
621961
The final section of this chapter touches on a variety of features of the namespace facility.
1249985

Names for Widgets, Images, and Interpreters
628024
There are a number of Tcl extensions that are not affected by the namespaces described in
this chapter, which apply only to commands and variable names. For example, when you
create a Tk widget, a Tcl command is also created that corresponds to the Tk widget. This
command is always created in the global command namespace even when you create the
Tk widget from inside a namespace eval block. Other examples include Tcl interpreters,
which are described in Chapter 19, and Tk images, which are described in Chapter 41.
1249985

The variable command at the global scope
628024
It turns out that you can use variable like the global command if your procedures are
not inside a namespace. This is consistent because it means "this variable belongs to the
current namespace," which might be the global namespace.
1249985

Auto Loading and auto_import
628024
The following sequence of commands can be used to import commands from the foo
package:

Chapter 14. Namespaces Page 15 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.xotcl.org/

1249985

package require foo
namespace import foo::*

However, because of the default behavior of packages, there may not be anything that
matches foo::* after the package require. Instead, there are entries in the
auto_index array that will be used to load those procedures when you first use them. The
auto loading mechanism is described in Chapter 12. To account for this, Tcl calls out to a hook
procedure called auto_import. This default implementation of this procedure searches
auto_index and forcibly loads any pending procedures that match the import pattern.
Packages like [incr Tcl] exploit this hook to implement more elaborate schemes. The
auto_import hook was first introduced in Tcl 8.0.3.
1249985

Namespaces and uplevel
628024
Namespaces affect the Tcl call frames just like procedures do. If you walk the call stack with
info level, the namespace frames are visible. This means that you can get access to all
variables with uplevel and upvar. Level #0 is still the absolute global scope, outside any
namespace or procedure. Try out Call_Trace from Example 13-5 on page 190 on your
code that uses namespaces to see the effect.
1249985

Naming Quirks
628024
When you name a namespace, you are allowed to have extra colons at the end. You can also
have two or more colons as the separator between namespace name components. These
rules make it easier to assemble names by adding to the value returned from namespace
current. These all name the same namespace:
1249985

::foo::bar
::foo::bar::
::foo:::::::bar

The name of the global namespace can be either :: or the empty string. This follows from
the treatment of :: in namespace names.
1249985
When you name a variable or command, a trailing :: is significant. In the following command
a variable inside the ::foo::bar namespace is modified. The variable has an empty string
for its name!
1249985

Chapter 14. Namespaces Page 16 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

set ::foo::bar:: 3
namespace eval ::foo::bar { set {} }
=> 3

If you want to embed a reference to a variable just before two colons, use a backslash to turn
off the variable name parsing before the colons:
1249985

set x xval
set y $x\::foo
=> xval::foo

Miscellaneous
628024
You can remove names you have imported:
1249985

namespace forget random::init

You can rename imported procedures to modify their names:
1249985

rename range Range

You can even move a procedure into another namespace with rename:
1249985

rename random::init
myspace
::init

Chapter 14. Namespaces Page 17 Return to Table of Contents

Chapter 14. Namespaces
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

