
Table of Contents

Chapter 12. Script Libraries and Packages... 1
Locating Packages: The auto_path Variable... 2
Using Packages... 3
Summary of Package Loading... 6
The package Command... 7
Libraries Based on the tclIndex File... 8
The unknown Command.. 10
Interactive Conveniences... 11
Tcl Shell Library Environment.. 12
Coding Style... 14

Chapter 12. Script Libraries and Packages

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 12. Script Libraries and Packages
202

Collections of Tcl commands are kept in libraries and organized into packages. Tcl
automatically loads libraries as an application uses their commands. Tcl commands discussed
are: package, pkg_mkIndex, auto_mkindex, unknown, and tcl_findLibrary.
1249985
Libraries group useful sets of Tcl procedures so that they can be used by multiple applications.
For example, you could use any of the code examples that come with this book by creating
a script library and then directing your application to check in that library for missing
procedures. One way to structure a large application is to have a short main script and a
library of support scripts. The advantage of this approach is that not all the Tcl code needs
to be loaded to start the application. Applications start up quickly, and as new features are
accessed, the code that implements them is loaded automatically.
1249985
The Tcl package facility supports version numbers and has a provide/require model of use.
Typically, each file in a library provides one package with a particular version number.
Packages also work with shared object libraries that implement Tcl commands in compiled
code, which are described in Chapter 47. A package can be provided by a combination of
script files and object files. Applications specify which packages they require and the libraries
are loaded automatically. The package facility is an alternative to the auto loading scheme
used in earlier versions of Tcl. You can use either mechanism, and this chapter describes them
both.
1249985
If you create a package you may wish to use the namespace facility to avoid conflicts between
procedures and global variables used in different packages. Namespaces are the topic of
Chapter 14. Before Tcl 8.0 you had to use your own conventions to avoid conflicts. This
chapter explains a simple coding convention for large Tcl programs. I use this convention in
exmh, a mail user interface that has grown from about 2,000 to over 35,000 lines of Tcl code.
A majority of the code has been contributed by the exmh user community. Such growth
might not have been possible without coding conventions.
1249985

Chapter 12. Script Libraries and Packages Page 1 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Locating Packages: The auto_path Variable
621961

1249985
The package facility assumes that Tcl libraries are kept in well-known directories. The list of
well-known directories is kept in the auto_path Tcl variable. This is initialized by tclsh
and wish to include the Tcl script library directory, the Tk script library directory (for wish),
and the parent directory of the Tcl script library directory. For example, on my Macintosh
auto_path is a list of these three directories:
1249985

Disk:System Folder:Extensions:Tool Command Language:tcl8.4
Disk:System Folder:Extensions:Tool Command Language
Disk:System Folder:Extensions:Tool Command Language:tk8.4

On my Windows 95 machine the auto_path lists these directories:
1249985

c:\Program Files\Tcl\lib\Tcl8.4
c:\Program Files\Tcl\lib
c:\Program Files\Tcl\lib\Tk8.4

On my UNIX workstation the auto_path lists these directories:
1249985

/usr/local/tcl/lib/tcl8.4
/usr/local/tcl/lib
/usr/local/tcl/lib/tk8.4

The package facility searches these directories and their subdirectories for packages. The
easiest way to manage your own packages is to create a directory at the same level as the
Tcl library:
1249985

/usr/local/tcl/lib/welchbook

Packages in this location, for example, will be found automatically because the
auto_path list includes /usr/local/tcl/lib. You can also add directories to the
auto_path explicitly:
1249985

lappend auto_path
directory

One trick I often use is to put the directory containing the main script into the auto_path.
The following command sets this up:

Chapter 12. Script Libraries and Packages Page 2 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

lappend auto_path [file dirname [info script]]

If your code is split into bin and lib directories, then scripts in the bin directory can add
the adjacent lib directory to their auto_path with this command:
1249985

lappend auto_path \
 [file join [file dirname [info script]] ../lib]

Using Packages
621961
Each script file in a library declares what package it implements with the package
provide command:
1249985

package provide
name version

The name identifies the package, and the version has a major.minor format. The
convention is that the minor version number can change and the package implementation
will still be compatible. If the package changes in an incompatible way, then the major version
number should change. For example, Chapter 17 defines several procedures that use the
HTTP network protocol. These include http::geturl, http::wait, and
http::cleanup. The file that contains the procedures starts with this command:
1249985

package provide http 2.4

Case is significant in package names. In particular, the package that comes with Tcl is named
http — all lowercase.
1249985
More than one file can contribute to the same package simply by specifying the same
name and version. In addition, different versions of the same package can be kept in the
same directory but in different files.
1249985
An application specifies the packages it needs with the package require command:
1249985

package require
name
 ?
version
? ?-exact?

Chapter 12. Script Libraries and Packages Page 3 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If the version is left off, then the highest available version is loaded. Otherwise the highest
version with the same major number is loaded. For example, if the client requires version 1.1,
version 1.2 could be loaded if it exists, but versions 1.0 and 2.0 would not be loaded. You can
restrict the package to a specific version with the -exact flag. If no matching version can
be found, then the package require command raises an error.
1249985

Loading Packages Automatically
628024
The package require command depends on an index to record which files implement
which packages. The index must be maintained by you, your project librarian, or your system
administrator when packages change. The index is created by the pkg_mkIndex command,
which puts the index into a pkgIndex.tcl file in each library directory. The
pkg_mkIndex command takes the name of a directory and one or more glob patterns that
specify files within that directory. File name patterns are described on page 122. The syntax
is:
1249985

pkg_mkIndex ?
options
?
directory pattern
 ?
pattern
 ...?

For example:
1249985

pkg_mkIndex /usr/local/lib/welchbook *.tcl

pkg_mkIndex -lazy /usr/local/lib/Sybtcl *.so

The pkg_mkIndex command sources or loads all the files matched by the pattern, detects
what packages they provide, and computes the index. You should be aware of this behavior
because it works well only for libraries. If the pkg_mkIndex command hangs or starts
random applications, it is because it sourced an application file instead of a library file.
1249985
The package index, pkgIndex.tcl, is sourced in response to a package require
command. The index instructs the package loading mechanism how to define the package.
By default, source or load commands are specified so that packages are defined
immediately as a side effect of package require. This is called direct loading. However,
the original package index system used a deferred loading scheme layered on the
auto_load mechanism and the unknown command hook, which is described on page 178.
If you want deferred loading, use the -lazy option to pkg_mkIndex. The default behavior

Chapter 12. Script Libraries and Packages Page 4 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

of pkg_mkIndex switched from -lazy to -direct in Tcl 8.3. The pkg_mkIndex options
are summarized in Table 12-1.
1249985

Table 12-1. Options to the pkg_mkIndex command

-direct
1249985

Generates an index with source and load commands in it. This results
in packages being loaded directly as a result of package require.
This is the default starting with Tcl 8.3.
1249985

-lazy
1249985

Generates an index that populates the auto_index array for deferred
loading of commands. This behavior was the default prior to Tcl 8.3.
1249985

-load pattern
1249985

Dynamically loads packages that match pattern into the slave
interpreter used to compute the index. A common reason to need this
is with the tcbload package needed to load .tbc files compiled with
TclPro Compiler.
1249985

-verbose
1249985

Displays the name of each file processed and any errors that occur.
1249985

Packages Implemented in C Code
628024
The files in a library can be either script files that define Tcl procedures or binary files in shared
library format that define Tcl commands in compiled code (i.e., a Dynamic Link Library (DLL)).
Chapter 47 describes how to implement Tcl commands in C. There is a C API to the package
facility that you use to declare the package name for your commands. This is shown in
Example 47-1 on page 698. Chapter 37 also describes the Tcl load command that is used
instead of source to link in shared libraries. The pkg_mkIndex command also handles
shared libraries:
1249985

pkg_mkIndex
directory
 *.tcl *.so *.shlib *.dll

In this example, .so, .shlib, and .dll are file suffixes for shared libraries on UNIX,
Macintosh, and Windows systems, respectively. You can have packages that have some of
their commands implemented in C, and some implemented as Tcl procedures. The script
files and the shared library must simply declare that they implement the same package. The

Chapter 12. Script Libraries and Packages Page 5 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

pkg_mkIndex procedure will detect this and set up the auto_index, so some commands
are defined by sourcing scripts, and some are defined by loading shared libraries.
1249985
If your file servers support more than one machine architecture, such as Solaris and Linux
systems, you probably keep the shared library files in machine-specific directories. In this
case the auto_path should also list the machine-specific directory so that the shared
libraries there can be loaded automatically. If your system administrator configured the Tcl
installation properly, this should already be set up. If not, or you have your shared libraries
in a nonstandard place, you must append the location to the auto_path variable.
1249985

Summary of Package Loading
621961

1249985
The basic structure of package loading works like this:
1249985

• An application does a package require command. If the package is already loaded, the command just returns the version
number of the already loaded package. If is not loaded, the following steps occur.

• The package facility checks to see if it knows about the package. If it does, then it runs the Tcl scripts registered with the
package ifneeded command. These commands either load the package or set it up to be loaded automatically when its
commands are first used.

• If the package is unknown, the tclPkgUnknown procedure is called to find it. Actually, you can specify what procedure to
call to do the lookup with the package unknown command, but the standard one is tclPkgUnknown.

• The tclPkgUnknown procedure looks through the auto_path directories and their subdirectories for pkgIndex.tcl files.
It sources those to build an internal database of packages and version information. The pkgIndex.tcl files contain calls to
package ifneeded that specify what to do to define the package. You can use the pkg_mkIndex command to create your
pkgIndex.tcl files, or you can create them by hand.

• In the case of deferred package loading, the tclPkgSetup procedure defines the auto_index array to contain the correct
source or load commands to define each command in the package. Automatic loading and the auto_index array are
described in more detail later.

As you can see, there are several levels of processing involved in finding packages. The system
is flexible enough that you can change the way packages are located and how packages are
loaded. The -lazy scenario is complicated because it uses the delayed loading of source
code that is described in the next section. Using the -direct flag to pkg_mkIndex
simplifies the situation. In any case, it all boils down to three key steps:
1249985

• Use pkg_mkIndex to maintain your index files. Decide at this time whether or not to use direct or lazy
package loading.

• Put the appropriate package require and package provide commands in your code.
• Ensure that your library directories, or their parent directories, are listed in the auto_path variable.

Chapter 12. Script Libraries and Packages Page 6 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The package Command
621961
The package command has several operations that are used primarily by the
pkg_mkIndex procedure and the automatic loading facility. These operations are
summarized in Table 12-2.
1249985

Table 12-2. The package command

package forget package
1249985

Deletes registration information for
package.
1249985

package ifneeded package ?
command?
1249985

Queries or sets the command used to set up
automatic loading of a package.
1249985

package names
1249985

Returns the set of registered packages.
1249985

package provide package version
1249985

Declares that a script file defines commands
for package with the given version.
1249985

package present package ?
version? ?-exact?
1249985

Equivalent to package require, except
that no attempt to load the package is made
if it is not loaded.
1249985

package require package ?
version? ?-exact?
1249985

Declares that a script uses package. The -
exact flag specifies that the exact
version must be loaded. Otherwise, the
highest matching version is loaded.
1249985

package unknown ?command?
1249985

Queries or sets the command used to locate
packages.
1249985

package vcompare v1 v2
1249985

Compares version v1 and v2. Returns 0 if
they are equal, -1 if v1 is less than v2, or 1 if
v1 is greater than v2.

Chapter 12. Script Libraries and Packages Page 7 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

package versions package
1249985

Returns which versions of the package are
registered.
1249985

package vsatisfies v1 v2
1249985

Returns 1 if v1 is greater or equal to v2 and
still has the same major version number.
Otherwise returns 0.
1249985

Libraries Based on the tclIndex File
621961

1249985
You can create libraries without using the package command. The basic idea is that a
directory has a library of script files, and an index of the Tcl commands defined in the library
is kept in a tclIndex file. The drawback is that versions are not supported and you may
need to adjust the auto_path to list your library directory. The main advantage of this
approach is that this mechanism has been part of Tcl since the earliest versions. If you
currently maintain a library using tclIndex files, it will still work.
1249985
You must generate the index that records what procedures are defined in the library. The
auto_mkindex procedure creates the index, which is stored in a file named tclIndex that
is kept in the script library directory. (Watch out for the difference in capitalization between
auto_mkindex and pkg_mkIndex!) Suppose all the examples from this book are in the
directory /usr/local/tcl/welchbook. You can make the examples into a script library
by creating the tclIndex file:
1249985

auto_mkindex /usr/local/tcl/welchbook *.tcl

You will need to update the tclIndex file if you add procedures or change any of their
names. A conservative approach to this is shown in the next example. It is conservative
because it re-creates the index if anything in the library has changed since the tclIndex
file was last generated, whether or not the change added or removed a Tcl procedure.
1249985

Chapter 12. Script Libraries and Packages Page 8 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 12-1. Maintaining a tclIndex file

proc Library_UpdateIndex { libdir } {
 set index [file join $libdir tclIndex]
 if {![file exists $index]} {
 set doit 1
 } else {
 set age [file mtime $index]
 set doit 0
 # Changes to directory may mean files were deleted
 if {[file mtime $libdir] > $age} {
 set doit 1
 } else {
 # Check each file for modification
 foreach file [glob [file join $libdir *.tcl]] {
 if {[file mtime $file] > $age} {
 set doit 1
 break
 }
 }
 }
 }
 if { $doit } {
 auto_mkindex $libdir *.tcl
 }
}

The auto_path variable contains a list of directories to search for unknown commands. To
continue our example, you can make the procedures in the book examples available by
putting this command at the beginning of your scripts:
1249985

lappend auto_path /usr/local/tcl/welchbook

This has no effect if you have not created the tclIndex file. If you want to be extra careful,
you can call Library_UpdateIndex. This will update the index if you add new things to
the library.
1249985

lappend auto_path /usr/local/tcl/welchbook
Library_UpdateIndex /usr/local/tcl/welchbook

This will not work if there is no tclIndex file at all because Tcl won't be able to find the
implementation of Library_UpdateIndex. Once the tclIndex has been created for the
first time, then this will ensure that any new procedures added to the library will be installed
into tclIndex. In practice, if you want this sort of automatic update, it is wise to include
something like the Library_UpdateIndex procedure directly into your application as
opposed to loading it from the library it is supposed to be maintaining.
1249985

Chapter 12. Script Libraries and Packages Page 9 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The unknown Command
621961
The unknown command implements automatic loading of Tcl commands. Whenever the Tcl
interpreter encounters a command that it does not know about, it calls the unknown
command with the name of the missing command. The unknown command is implemented
in Tcl, so you are free to provide your own mechanism to handle unknown commands. This
chapter describes the behavior of the default implementation of unknown, which can be
found in the init.tcl file in the Tcl library. The info library command returns the
location of the library.
1249985

How Auto Loading Works
628024
The unknown command uses an array named auto_index. One element of the array is
defined for each procedure that can be automatically loaded. The auto_index array is
initialized by the package mechanism or by tclIndex files. The value of an auto_index
element is a command that defines the procedure. Typical commands are:
1249985

source [file join $dir bind_ui.tcl]
load [file join $dir mime.so] Mime

The $dir gets substituted with the name of the directory that contains the library file, so the
result is a source or load command that defines the missing Tcl command. The substitution
is done with eval, so you could initialize auto_index with any commands at all. Example
12-2 is a simplified version of the code that reads the tclIndex file.
1249985

Example 12-2. Loading a tclIndex file

This is a simplified part of the auto_load_index procedure.
Go through auto_path from back to front.
set i [expr [llength $auto_path]-1]
for {} {$i >= 0} {incr i -1} {
 set dir [lindex $auto_path $i]
 if [catch {open [file join $dir tclIndex]} f] {
 # No index
 continue
 }
 # eval the file as a script. Because eval is
 # used instead of source, an extra round of
 # substitutions is performed and $dir gets expanded
 # The real code checks for errors here.
 eval [read $f]
 close $f
}

Chapter 12. Script Libraries and Packages Page 10 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Disabling the Library Facility: auto_noload
628024
If you do not want the unknown procedure to try and load procedures, you can set the
auto_noload variable to disable the mechanism:
1249985

set auto_noload anything

Auto loading is quite fast. I use it regularly on applications both large and small. A large
application will start faster if you only need to load the code necessary to start it up. As you
access more features of your application, the code will load automatically. Even a small
application benefits from auto loading because it encourages you to keep commonly used
code in procedure libraries.
1249985

Interactive Conveniences
621961
The unknown command provides a few other conveniences. These are used only when you
are typing commands directly. They are disabled once execution enters a procedure or if the
Tcl shell is not being used interactively. The convenience features are automatic execution
of programs, command history, and command abbreviation. These options are tried, in order,
if a command implementation cannot be loaded from a script library.
1249985

Auto Execute
628024
The unknown procedure implements a second feature: automatic execution of external
programs. This makes a Tcl shell behave more like other UNIX shells that are used to execute
programs. The search for external programs is done using the standard PATH environment
variable that is used by other shells to find programs. If you want to disable the feature all
together, set the auto_noexec variable:
1249985

set auto_noexec anything

Chapter 12. Script Libraries and Packages Page 11 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

History
628024
The history facility described in Chapter 13 is implemented by the unknown procedure.
1249985

Abbreviations
628024
If you type a unique prefix of a command, unknown recognizes it and executes the matching
command for you. This is done after automatic program execution is attempted and history
substitutions are performed.
1249985

Tcl Shell Library Environment
621961

1249985
Tcl searches for its script library directory when it starts up. In early versions of Tcl you had
to compile in the correct location, set a Windows registry value, or set the TCL_LIBRARY
environment variable to the correct location. Recent versions of Tcl use a standard searching
scheme to locate the script library. The search understands the standard installation and
build environments for Tcl, and it should eliminate the need to use the TCL_LIBRARY
environment variable. On Windows the search for the library used to depend on registry
values, but this has also been discontinued in favor of a standard search. In summary, "it
should just work." However, this section explains how Tcl finds its script library so that you
can troubleshoot problems.
1249985

Locating the Tcl Script Library
628024
The default library location is defined when you configure the source distribution, which is
explained on page 732. At this time an initial value for the auto_path variable is defined.
(This default value appears in tcl_pkgPath, but changing this variable has no effect once
Tcl has started. I just pretend tcl_pkgPath does not exist.) These values are just hints; Tcl
may use other directories depending on what it finds in the file system.
1249985
When Tcl starts up, it searches for a directory that contains its init.tcl startup script. You
can short-circuit the search by defining the TCL_LIBRARY environment variable. If this is
defined, Tcl uses it only for its script library directory. However, you should not need to define

Chapter 12. Script Libraries and Packages Page 12 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

this with normal installations of Tcl 8.0.5 or later. In my environment I'm often using several
different versions of Tcl for various applications and testing purposes, so setting
TCL_LIBRARY is never correct for all possibilities. If I find myself setting this environment
variable, I know something is wrong with my Tcl installations!
1249985
The standard search starts with the default value that is compiled into Tcl (e.g., /usr/
local/lib/tcl8.4.) After that, the following directories are examined for an
init.tcl file. These example values assume Tcl version 8.4 and patch level 8.4.1:
1249985

../lib/tcl8.4

../../lib/tcl8.4

../library

../../tcl8.4.1/library

../../../tcl8.4.1/library

The first two directories correspond to the standard installation directories, while the last
three correspond to the standard build environment for Tcl or Tk. The first directory in the
list that contains a valid init.tcl file becomes the Tcl script library. This directory location
is saved in the tcl_library global variable, and it is also returned by the info
library command.
1249985
The primary thing defined by init.tcl is the implementation of the unknown procedure.
It also initializes auto_path to contain $tcl_library and the parent directory of
$tcl_library. There may be additional directories added to auto_path depending on
the compiled in value of tcl_pkgPath.
1249985

tcl_findLibrary
628024
A generalization of this search is implemented by tcl_findLibrary. This procedure is
designed for use by extensions like Tk and [incr Tcl]. Of course, Tcl cannot use
tcl_findLibrary itself because it is defined in init.tcl!
1249985
The tcl_findLibrary procedure searches relative to the location of the main program
(e.g., tclsh or wish) and assumes a standard installation or a standard build environment. It
also supports an override by an environment variable, and it takes care of sourcing an
initialization script. The usage of tcl_findLibrary is:
1249985

tcl_findLibrary
base version patch script enVar varName

Chapter 12. Script Libraries and Packages Page 13 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The base is the prefix of the script library directory name. The version is the main version
number (e.g., "8.0"). The patch is the full patch level (e.g., "8.0.3"). The script is the
initialization script to source from the directory. The enVar names an environment variable
that can be used to override the default search path. The varName is the name of a variable
to set to name of the directory found by tcl_findLibrary. A side effect of
tcl_findLibrary is to source the script from the directory. An example call is:
1249985

tcl_findLibrary tk 8.0 8.0.3 tk.tcl TK_LIBRARY tk_library

This call first checks to see whether TK_LIBRARY is defined in the environment. If so, it uses
its value. Otherwise, it searches the following directories for a file named tk.tcl. It sources
the script and sets the tk_library variable to the directory containing that file. The search
is relative to the value returned by info nameofexecutable:
1249985

../lib/tk8.0

../../lib/tk8.0

../library

../../tk8.0.3/library

../../../tk8.0.3/library

Tk also adds $tk_library to the end of auto_path, so the other script files in that
directory are available to the application:
1249985

lappend auto_path $tk_library

Coding Style
621961

1249985
If you supply a package, you need to follow some simple coding conventions to make your
library easier to use by other programmers. You can use the namespace facility introduced
in Tcl 8.0. You can also use conventions to avoid name conflicts with other library packages
and the main application. This section describes the conventions I developed before
namespaces were added to Tcl.
1249985

A Module Prefix for Procedure Names
628024
The first convention is to choose an identifying prefix for the procedures in your package.
For example, the preferences package in Chapter 45 uses Pref as its prefix. All the

Chapter 12. Script Libraries and Packages Page 14 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

procedures provided by the library begin with Pref. This convention is extended to
distinguish between private and exported procedures. An exported procedure has an
underscore after its prefix, and it is acceptable to call this procedure from the main application
or other library packages. Examples include Pref_Add, Pref_Init, and Pref_Dialog.
A private procedure is meant for use only by the other procedures in the same package. Its
name does not have the underscore. Examples include PrefDialogItem and
PrefXres.
1249985
This naming convention precludes casual names like doit, setup, layout, and so on.
Without using namespaces, there is no way to hide procedure names, so you must maintain
the naming convention for all procedures in a package.
1249985

A Global Array for State Variables
628024
You should use the same prefix on the global variables used by your package. You can alter
the capitalization; just keep the same prefix. I capitalize procedure names and use lowercase
letters for variables. By sticking with the same prefix you identify what variables belong to
the package and you avoid conflict with other packages.
1249985

Collect state in a global or namespaced array.
1249985

In general, I try to use a single global or namespaced array for a package (namespaces are
discussed in Chapter 14). The array provides a convenient place to collect a set of related
variables, much as a struct is used in C. For example, the preferences package uses the
pref array to hold all its state information. It is also a good idea to keep the use of the array
private. It is better coding practice to provide exported procedures than to let other modules
access your data structures directly. This makes it easier to change the implementation of
your package without affecting its clients. When choosing a namespace name, try to make
it significant to your application.
1249985
If you do need to export a few key variables from your module, use the underscore convention
to distinguish exported variables. If you need more than one global variable, just stick with
the prefix convention to avoid conflicts, or provide accessor functions instead.
1249985

Chapter 12. Script Libraries and Packages Page 15 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Official Tcl Style Guide
628024
John Ousterhout has published two programming style guides, one for C programming
known as The Engineering Manual and one for Tcl scripts known as The Style Guide. These
describe details about file structure as well as naming conventions for modules, procedures,
and variables. The Tcl Style Guide conventions use Tcl namespaces to separate packages.
Namespaces automatically provide a way to avoid conflict between procedure names.
Namespaces also support collections of variables without having to use arrays for grouping.
1249985
You can find these style guides on the CD-ROM and also in ftp://ftp.tcl.tk/pub/
tcl/doc. The Engineering Manual is distributed as a compressed tar file,
engManual.tar.Z, that contains sample files as well as the main document. The Style
Guide is distributed as styleGuide.ps (or .pdf).
1249985

Chapter 12. Script Libraries and Packages Page 16 Return to Table of Contents

Chapter 12. Script Libraries and Packages
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

