
Table of Contents

Chapter 9. Working with Files and Programs... 1
Running Programs with exec... 1
The file Command.. 5
Cross-Platform File Naming... 8
Manipulating Files and Directories... 11
File Attributes... 14
Input/Output Command Summary... 17
Opening Files for I/O.. 18
Reading and Writing.. 22
The Current Directory — cd and pwd.. 26
Matching File Names with glob.. 26
The exit and pid Commands.. 28
Environment Variables... 29
The registry Command.. 30

Chapter 9. Working with Files and Programs

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 9. Working with Files and Programs
685

This chapter describes how to run programs, examine the file system, and access
environment variables through the env array. Tcl commands described are: exec, file,
open, close, read, write, puts, gets, flush, seek, tell, glob, pwd, cd, exit, pid,
and registry.
1249985
This chapter describes how to run programs and access the file system from Tcl. These
commands were designed for UNIX. In Tcl 7.5 they were implemented in the Tcl ports to
Windows and Macintosh. There are facilities for naming files and manipulating file names in
a platform-independent way, so you can write scripts that are portable across systems. These
capabilities enable your Tcl script to be a general-purpose glue that assembles other
programs into a tool that is customized for your needs. Tcl 8.4 added support for 64-bit file
systems, where available.
1249985

Running Programs with exec
621961

1249985
The exec command runs programs from your Tcl script.[*] For example:
1249985

[*] Unlike other UNIX shell exec commands, the Tcl exec does not replace the current process with the new one. Instead, the Tcl library forks first and executes the program
as a child process.

set d [exec date]

The standard output of the program is returned as the value of the exec command. However,
if the program writes to its standard error channel or exits with a nonzero status code, then
exec raises an error. If you do not care about the exit status, or you use a program that insists
on writing to standard error, then you can use catch to mask the errors:
1249985

Chapter 9. Working with Files and Programs Page 1 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

catch {exec
program arg arg
} result

The exec command supports a full set of I/O redirection and pipeline syntax. Each process
normally has three I/O channels associated with it: standard input, standard output, and
standard error. With I/O redirection, you can divert these I/O channels to files or to I/O
channels you have opened with the Tcl open command. A pipeline is a chain of processes
that have the standard output of one command hooked up to the standard input of the next
command in the pipeline. Any number of programs can be linked together into a pipeline.
1249985

Example 9-1. Using exec on a process pipeline

set n [exec sort < /etc/passwd | uniq | wc -l 2> /dev/null]

Example 9-1 uses exec to run three programs in a pipeline. The first program is sort, which
takes its input from the file /etc/passwd. The output of sort is piped into uniq, which
suppresses duplicate lines. The output of uniq is piped into wc, which counts the lines. The
error output of the command is diverted to the null device to suppress any error messages.
Table 9-1 provides a summary of the syntax understood by the exec command.
1249985

Table 9-1. Summary of the exec syntax for I/O redirection

-keepnewline
1249985

(First argument.) Do not discard trailing newline from the result.
1249985

|
1249985

Pipes standard output from one process into another.
1249985

|&
1249985

Pipes both standard output and standard error output.
1249985

< fileName
1249985

Takes input from the named file.
1249985

<@ fileId
1249985

Takes input from the I/O channel identified by fileId.
1249985

<< value
1249985

Takes input from the given value.
1249985

> fileName
1249985

Overwrites fileName with standard output.
1249985

2> fileName Overwrites fileName with standard error output.

Chapter 9. Working with Files and Programs Page 2 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

>& fileName
1249985

Overwrites fileName with both standard error and standard out.
1249985

>> fileName
1249985

Appends standard output to the named file.
1249985

2>> fileName
1249985

Appends standard error to the named file.
1249985

>>& fileName
1249985

Appends both standard error and standard output to the named file.
1249985

>@ fileId
1249985

Directs standard output to the I/O channel identified by fileId.
1249985

2>@ fileId
1249985

Directs standard error to the I/O channel identified by fileId.
1249985

>&@ fileId
1249985

Directs both standard error and standard output to the I/O channel.
1249985

&
1249985

As the last argument, indicates pipeline should run in background.
1249985

A trailing & causes the program to run in the background. In this case, the process identifier
is returned by the exec command. Otherwise, the exec command blocks during execution
of the program, and the standard output of the program is the return value of exec. The
trailing newline in the output is trimmed off, unless you specify -keepnewline as the first
argument to exec.
1249985
If you look closely at the I/O redirection syntax, you'll see that it is built up from a few basic
building blocks. The basic idea is that | stands for pipeline, > for output, and < for input. The
standard error is joined to the standard output by &. Standard error is diverted separately by
using 2>. You can use your own I/O channels by using @.
1249985

The auto_noexec Variable
628024
The Tcl shell programs are set up during interactive use to attempt to execute unknown Tcl
commands as programs. For example, you can get a directory listing by typing:
1249985

ls

Chapter 9. Working with Files and Programs Page 3 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

instead of:
1249985

exec ls

This is handy if you are using the Tcl interpreter as a general shell. It can also cause unexpected
behavior when you are just playing around. To turn this off, define the auto_noexec
variable:
1249985

set auto_noexec
anything

Limitations of exec on Windows
628024
Windows 3.1 has an unfortunate combination of special cases that stem from console-mode
programs, 16-bit programs, and 32-bit programs. In addition, pipes are really just simulated
by writing output from one process to a temporary file and then having the next process
read from that file. If exec or a process pipeline fails, it is because of a fundamental limitation
of Windows. The good news is that Windows 98 and Windows NT cleaned up most of the
problems with exec. Windows NT, Window 2000, and Windows XP are pretty robust.
1249985
Tcl 8.0p2 was the last release to officially support Windows 3.1. That release includes
Tcl1680.dll, which is necessary to work with the win32s subsystem. If you copy that file
into the same directory as the other Tcl DLLs, you may be able to use some later releases of
Tcl on Windows 3.1. However, Tcl 8.3 completely removed support for win32s while adding
support for Windows XP-64.
1249985

AppleScript on Macintosh
628024
The exec command is not provided on the Macintosh. Tcl ships with an AppleScript
extension that lets you control other Macintosh applications. You can find documentation
in the AppleScript.html that goes with the distribution. You must use package
require to load the AppleScript command:
1249985

package require Tclapplescript
AppleScript junk
=> bad option "junk": must be compile, decompile, delete, execute, info, load, run, or store.

Chapter 9. Working with Files and Programs Page 4 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The file Command
621961
The file command provides several ways to check the status of files in the file system. For
example, you can find out if a file exists, what type of file it is, and other file attributes. There
are facilities for manipulating files in a platform-independent manner. Table 9-2 provides a
summary of the various forms of the file command. They are described in more detail later.
Note that several operations have been added since the introduction of the file command;
the table indicates the version of Tcl in which they were added.
1249985

Table 9-2. The file command options

file atime name ?time?
1249985

Returns access time as a decimal string. If time
is specified, the access time of the file is set.
1249985

file attributes name ?
option? ?value? ...
1249985

Queries or sets file attributes. (Tcl 8.0)
1249985

file channels ?pattern?
1249985

Returns the open channels in this interpreter,
optionally filtered by the glob-style pattern.
(Tcl 8.3)
1249985

file copy ?-force? source
destination
1249985

Copies file source to file destination. The
source and destination can be directories.
(Tcl 7.6)
1249985

file delete ?-force? name
1249985

Deletes the named file. (Tcl 7.6)
1249985

file dirname name
1249985

Returns parent directory of file name.
1249985

file executable name
1249985

Returns 1 if name has execute permission, else 0.
1249985

file exists name
1249985

Returns 1 if name exists, else 0.
1249985

Chapter 9. Working with Files and Programs Page 5 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file extension name
1249985

Returns the part of name from the last dot
(i.e., .) to the end. The dot is included in the
return value.
1249985

file isdirectory name
1249985

Returns 1 if name is a directory, else 0.
1249985

file isfile name
1249985

Returns 1 if name is not a directory, symbolic link,
or device, else 0.
1249985

file join path path...
1249985

Joins pathname components into a new
pathname. (Tcl 7.5)
1249985

file link ?-type? name ?
target?
1249985

Returns the link pointed to by name, or creates
a link to target if it is specified. type can be -
hard or -symbolic. (Tcl 8.4)
1249985

file lstat name var
1249985

Places attributes of the link name into var.
1249985

file mkdir name
1249985

Creates directory name. (Tcl 7.6)
1249985

file mtime name ?time?
1249985

Returns modify time of name as a decimal string.
If time is specified, the modify time of the file is
set.
1249985

file nativename name
1249985

Returns the platform-native version of name. (Tk
8.0).
1249985

file normalize name
1249985

Returns a unique, absolute, path for name while
eliminating extra /, /., and /.. components.
(Tcl 8.4)
1249985

file owned name
1249985

Returns 1 if current user owns the file name, else
0.
1249985

Chapter 9. Working with Files and Programs Page 6 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file pathtype name
1249985

relative, absolute, or volumerelative.
(Tcl 7.5)
1249985

file readable name
1249985

Returns 1 if name has read permission, else 0.
1249985

file readlink name
1249985

Returns the contents of the symbolic link name.

1249985

file rename ?-force? old new
1249985

Changes the name of old to new. (Tcl 7.6)
1249985

file rootname name
1249985

Returns all but the extension of name (i.e., up to
but not including the last . in name).
1249985

file separator ?name?
1249985

Returns the default file separator character on
this file system, or the separator character for
name if it is specified. (Tcl 8.4)
1249985

file size name
1249985

Returns the number of bytes in name.
1249985

file split name
1249985

Splits name into its pathname components. (Tcl
7.5)
1249985

file stat name var
1249985

Places attributes of name into array var. The
elements defined for var are listed in Table
9-3.
1249985

file system name
1249985

Returns a tuple of the filesystem for name (e.g.
native or vfs) and the platform-specific type
for name (e.g NTFS or FAT32). (Tcl 8.4)
1249985

file tail name
1249985

Returns the last pathname component of
name.
1249985

Chapter 9. Working with Files and Programs Page 7 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

file type name
1249985

Returns type identifier, which is one of: file,
directory, characterSpecial,
blockSpecial, fifo, link, or socket.

file volumes name
1249985

Returns the available file volumes on this
computer. On Unix, this always returns /. On
Windows, this would be a list like {a:/ c:/}.
(Tcl 8.3)
1249985

file writable name
1249985

Returns 1 if name has write permission, else 0.
1249985

Cross-Platform File Naming
621961

1249985
Files are named differently on UNIX, Windows, and Macintosh. UNIX separates file name
components with a forward slash (/), Macintosh separates components with a colon (:), and
Windows separates components with a backslash (\). In addition, the way that absolute and
relative names are distinguished is different. For example, these are absolute pathnames for
the Tcl script library (i.e., $tcl_library) on Macintosh, Windows, and UNIX, respectively:
1249985

Disk:System Folder:Extensions:Tool Command Language:tcl7.6
c:\Program Files\Tcl\lib\Tcl7.6
/usr/local/tcl/lib/tcl7.6

The good news is that Tcl provides operations that let you deal with file pathnames in a
platform-independent manner. The file operations described in this chapter allow either
native format or the UNIX naming convention. The backslash used in Windows pathnames
is especially awkward because the backslash is special to Tcl. Happily, you can use forward
slashes instead:
1249985

c:/Program Files/Tcl/lib/Tcl7.6

There are some ambiguous cases that can be specified only with native pathnames. On my
Macintosh, Tcl and Tk are installed in a directory that has a slash in it. You can name it only
with the native Macintosh name:
1249985

Disk:Applications:Tcl/Tk 4.2

Chapter 9. Working with Files and Programs Page 8 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Another construct to watch out for is a leading // in a file name. This is the Windows syntax
for network names that reference files on other computers. You can avoid accidentally
constructing a network name by using the file join command described next. Of course,
you can use network names to access remote files.
1249985
If you must communicate with external programs, you may need to construct a file name in
the native syntax for the current platform. You can construct these names with file
join described later. You can also convert a UNIX-like name to a native name with file
nativename.
1249985
Several of the file operations operate on pathnames as opposed to returning information
about the file itself. You can use the dirname, extension, join, normalize,
pathtype, rootname, split, and tail operations on any string; there is no requirement
that the pathnames refer to an existing file.
1249985

Building up Pathnames: file join
628024
You can get into trouble if you try to construct file names by simply joining components with
a slash. If part of the name is in native format, joining things with slashes will result in incorrect
pathnames on Macintosh and Windows. The same problem arises when you accept user
input. The user is likely to provide file names in native format. For example, this construct
will not create a valid pathname on the Macintosh because $tcl_library is in native
format:
1249985

set file $tcl_library/init.tcl

Use file join to construct file names.
1249985

The platform-independent way to construct file names is with file join. The following
command returns the name of the init.tcl file in native format:
1249985

set file [file join $tcl_library init.tcl]

Chapter 9. Working with Files and Programs Page 9 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The file join operation can join any number of pathname
components. In addition, it has the feature that an absolute pathname
overrides any previous components. For example (on UNIX), /b/c is an
absolute pathname, so it overrides any paths that come before it in the
arguments to file join:
1249985

file join a b/c d
=> a/b/c/d

file join a /b/c d
=> /b/c/d

On Macintosh, a relative pathname starts with a colon, and an absolute pathname does not.
To specify an absolute path, you put a trailing colon on the first component so that it is
interpreted as a volume specifier. These relative components are joined into a relative
pathname:
1249985

file join a :b:c d
=> :a:b:c:d

In the next case, b:c is an absolute pathname with b: as the volume specifier. The absolute
name overrides the previous relative name:
1249985

file join a b:c d
=> b:c:d

The file join operation converts UNIX-style pathnames to native format. For example, on
Macintosh you get this:
1249985

file join /usr/local/lib
=> usr:local:lib

Chopping Pathnames: split, dirname, tail
628024
The file split command divides a pathname into components. It is the inverse of file
join. The split operation detects automatically if the input is in native or UNIX format.

Chapter 9. Working with Files and Programs Page 10 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The results of file split may contain some syntax to help resolve ambiguous cases when
the results are passed back to file join. For example, on Macintosh a UNIX-style
pathname is split on slash separators. The Macintosh syntax for a volume specifier (Disk:)
is returned on the leading component:
1249985

file split "/Disk/System Folder/Extensions"
=> Disk: {System Folder} Extensions

A common reason to split up pathnames is to divide a pathname into the directory part and
the file part. This task is handled directly by the dirname and tail operations. The
dirname operation returns the parent directory of a pathname, while tail returns the
trailing component of the pathname:
1249985

file dirname /a/b/c
=> /a/b

file tail /a/b/c
=> c

For a pathname with a single component, the dirname option returns ".", on UNIX and
Windows, or ":" on Macintosh. This is the name of the current directory.
1249985
The extension and root options are also complementary. The extension option returns
everything from the last period in the name to the end (i.e., the file suffix including the period.)
The root option returns everything up to, but not including, the last period in the pathname:
1249985

file root /a/b.c
=> /a/b

file extension /a/b.c
=> .c

Manipulating Files and Directories
621961

1249985
Tcl 7.6 added file operations to copy files, delete files, rename files, and create directories. In
earlier versions it was necessary to exec other programs to do these things, except on

Chapter 9. Working with Files and Programs Page 11 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Macintosh, where cp, rm, mv, mkdir, and rmdir were built in. These commands are no
longer supported on the Macintosh. Your scripts should use the file command operations
described below to manipulate files in a platform-independent way.
1249985
File name patterns are not directly supported by the file operations. Instead, you can use
the glob command described on page 122 to get a list of file names that match a pattern.
1249985

Copying Files
628024
The file copy operation copies files and directories. The following example copies
file1 to file2. If file2 already exists, the operation raises an error unless the -force
option is specified:
1249985

file copy ?-force?
file1 file2

Several files can be copied into a destination directory. The names of the source files are
preserved. The -force option indicates that files under directory can be replaced:
1249985

file copy ?-force?
file1 file2 ... directory

Directories can be recursively copied. The -force option indicates that files under dir2
can be replaced:
1249985

file copy ?-force?
dir1 dir2

Creating Directories
628024
The file mkdir operation creates one or more directories:
1249985

file mkdir
dir dir
 ...

Chapter 9. Working with Files and Programs Page 12 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

It is not an error if the directory already exists. Furthermore, intermediate directories are
created if needed. This means that you can always make sure a directory exists with a single
mkdir operation. Suppose /tmp has no subdirectories at all. The following command
creates /tmp/sub1 and /tmp/sub1/sub2:
1249985

file mkdir /tmp/sub1/sub2

The -force option is not understood by file mkdir, so the following command
accidentally creates a folder named -force, as well as one named oops.
1249985

file mkdir -force oops

Symbolic and Hard Links
628024
The file link operation allows the user to manipulate links. Hard links are directory entries
that directly reference an existing file or directory. Symbolic (i.e., soft) links are files that
contain the name of another file or directory. Generally, opening a link opens the file
referenced by the link. Operating system support for links varies. Unix supports both types
of links. Classic Macintosh only supports symbolic links (i.e., aliases). Windows 95/98/ME do
not support links at all, while Windows NT/2000/XP support symbolic links to directories and
hard links to files.
1249985
With only a single argument, file link returns the value of a symbolic link, or raises an
error if the file is not a symbolic link. With two pathname arguments, the first is the name of
the link, and the second is the name of the file referenced by the link. If you leave out the -
hard or -symbolic, the appropriate link type is created for the current platform:
1249985

file link
the_link the_existing_file

Deleting Files
628024
The file delete operation deletes files and directories. It is not an error if the files do not
exist. A non-empty directory is not deleted unless the -force option is specified, in which
case it is recursively deleted:
1249985

file delete ?-force?
name name

Chapter 9. Working with Files and Programs Page 13 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 ...

To delete a file or directory named -force, you must specify a nonexistent file before the
-force to prevent it from being interpreted as a flag (-force -force won't work):
1249985

file delete xyzzy -force

Renaming Files and Directories
628024
The file rename operation changes a file's name from old to new. The -force option
causes new to be replaced if it already exists.
1249985

file rename ?-force?
old new

Using file rename is the best way to update an existing file. First, generate the new version
of the file in a temporary file. Then, use file rename to replace the old version with the
new version. This ensures that any other programs that access the file will not see the new
version until it is complete.
1249985

File Attributes
621961

1249985
There are several file operations that return specific file attributes: atime, executable,
exists, isdirectory, isfile, mtime, owned, readable, readlink, size and
type. Refer to Table 9-2 on page 108 for their function. The following command uses file
mtime to compare the modify times of two files. If you have ever resorted to piping the
results of ls -l into awk in order to derive this information in other shell scripts, you will
appreciate this example:
1249985

Example 9-2. Comparing file modify times

proc newer { file1 file2 } {
 if {![file exists $file2]} {
 return 1
 } else {
 # Assume file1 exists

Chapter 9. Working with Files and Programs Page 14 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 expr {[file mtime $file1] > [file mtime $file2]}
 }
}

You can use the optional time argument to mtime and atime to set the file's time attributes,
like the Unix touch command. The stat and lstat operations return a collection of file
attributes. They take a third argument that is the name of an array variable, and they initialize
that array with elements that contain the file attributes. If the file is a symbolic link, then the
lstat operation returns information about the link itself and the stat operation returns
information about the target of the link.
1249985

Table 9-3. Array elements defined by file stat

atime
1249985

The last access time, in seconds.
1249985

ctime
1249985

The last change time (not the create time), in seconds.
1249985

dev
1249985

The device identifier, an integer.
1249985

gid
1249985

The group owner, an integer.
1249985

ino
1249985

The file number (i.e., inode number), an integer.
1249985

mode
1249985

The permission bits.
1249985

mtime
1249985

The last modify time, in seconds.
1249985

nlink
1249985

The number of links, or directory references, to the file.
1249985

size
1249985

The number of bytes in the file.
1249985

type
1249985

file, directory, characterSpecial, blockSpecial, fifo, link, or
socket.
1249985

uid
1249985

The owner's user ID, an integer.
1249985

Chapter 9. Working with Files and Programs Page 15 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The array elements are listed in Table 9-3. All the element values are decimal strings, except
for type, which can have the values returned by the type option. The element names are
based on the UNIX stat system call. Use the file attributes command described later to get
other platform-specific attributes.
1249985
Example 9-3 uses the device (dev) and inode (ino) attributes of a file to determine whether
two pathnames reference the same file. These attributes are UNIX specific; they are not well
defined on Windows and Macintosh.
1249985

Example 9-3. Determining whether pathnames reference the same file

proc fileeq { path1 path2 } {

 file stat $path1 stat1
 file stat $path2 stat2
 expr {$stat1(ino) == $stat2(ino) && \
 $stat1(dev) == $stat2(dev)}
}

The file attributes operation was added in Tcl 8.0 to provide access to platform-
specific attributes. The attributes operation lets you set and query attributes. The
interface uses option-value pairs. With no options, all the current values are returned.
1249985

file attributes book.doc
=> -creator FRAM -hidden 0 -readonly 0 -type MAKR

These Macintosh attributes are explained in Table 9-4. The four-character type codes used
on Macintosh are illustrated on page 600. With a single option, only that value is returned:
1249985

file attributes book.doc -readonly
=> 0

The attributes are modified by specifying one or more option–value pairs. Setting attributes
can raise an error if you do not have the right permissions:
1249985

file attributes book.doc -readonly 1 -hidden 0

Chapter 9. Working with Files and Programs Page 16 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 9-4. Platform-specific file attributes

-permissions mode
1249985

File permission bits. mode is an octal number or symbolic
representation (e.g. a+x) with bits defined by the chmod system
call, or a simplified ls-style string of the form rwxrwxrwx (must
be 9 characters). (UNIX)
1249985

-group ID
1249985

The group owner of the file. (UNIX)
1249985

-owner ID
1249985

The owner of the file. (UNIX)
1249985

-archive bool
1249985

The archive bit, which is set by backup programs. (Windows)
1249985

-system bool
1249985

If set, then you cannot remove the file. (Windows)
1249985

-longname
1249985

The long (expanded) version of the pathname. Read-only.
(Windows)
1249985

-shortname
1249985

The short (8.3) version of the pathname. Read-only. (Windows)
1249985

-hidden bool
1249985

If set, then the file does not appear in listings. (Windows,
Macintosh)
1249985

-readonly bool
1249985

If set, then you cannot write the file. (Windows, Macintosh)
1249985

-creator type
1249985

type is 4-character code of creating application. (Macintosh)
1249985

-type type
1249985

type is 4-character type code. (Macintosh)
1249985

Input/Output Command Summary
621961

1249985

Chapter 9. Working with Files and Programs Page 17 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The following sections describe how to open, read, and write files. The basic model is that
you open a file, read or write it, then close the file. Network sockets also use the commands
described here. Socket programming is discussed in Chapter 17, and more advanced event-
driven I/O is described in Chapter 16. Table 9-5 lists the basic commands associated with file
I/O:
1249985

Table 9-5. Tcl commands used for file access

open what ?access? ?permissions?
1249985

Returns channel ID for a file or pipeline.
1249985

puts ?-nonewline? ?channel?
string
1249985

Writes a string.
1249985

gets channel ?varname?
1249985

Reads a line.
1249985

read channel ?numBytes?
1249985

Reads numBytes bytes, or all data.
1249985

read -nonewline channel
1249985

Reads all bytes and discard the last \n.
1249985

tell channel
1249985

Returns the seek offset.
1249985

seek channel offset ?origin?
1249985

Sets the seek offset. origin is one of
start, current, or end.
1249985

eof channel
1249985

Queries end-of-file status.
1249985

flush channel
1249985

Writes buffers of a channel.
1249985

close channel
1249985

Closes an I/O channel.
1249985

Opening Files for I/O
621961

1249985

Chapter 9. Working with Files and Programs Page 18 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The open command sets up an I/O channel to either a file or a pipeline of processes. The
return value of open is an identifier for the I/O channel. Store the result of open in a variable
and use the variable as you used the stdout, stdin, and stderr identifiers in the examples
so far. The basic syntax is:
1249985

open
what ?access? ?permissions?

The what argument is either a file name or a pipeline specification similar to that used by
the exec command. The access argument can take two forms, either a short character
sequence that is compatible with the fopen library routine, or a list of POSIX access flags.
Table 9-6 summarizes the first form, while Table 9-7 summarizes the POSIX flags. If access
is not specified, it defaults to read.
1249985

Example 9-4. Opening a file for writing

set fileId [open /tmp/foo w 0600]
puts $fileId "Hello, foo!"
close $fileId

The permissions argument is a value used for the permission bits on a newly created file.
UNIX uses three bits each for the owner, group, and everyone else. The bits specify read,
write, and execute permission. These bits are usually specified with an octal number, which
has a leading zero, so that there is one octal digit for each set of bits. The default permission
bits are 0666, which grant read/write access to everybody. Example 9-4 specifies 0600 so
that the file is readable and writable only by the owner. 0775 would grant read, write, and
execute permissions to the owner and group, and read and execute permissions to everyone
else. You can set other special properties with additional high-order bits. Consult the UNIX
manual page on chmod command for more details.
1249985

Table 9-6. Summary of the open access arguments

r
1249985

Opens for reading. The file must exist.
1249985

r+
1249985

Opens for reading and writing. The file must exist.
1249985

w
1249985

Opens for writing. Truncate if it exists. Create if it does not exist.
1249985

w+ Opens for reading and writing. Truncate or create.

Chapter 9. Working with Files and Programs Page 19 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

a
1249985

Opens for writing. Data is appended to the file.
1249985

a+
1249985

Opens for reading and writing. Data is appended.
1249985

Table 9-7. Summary of POSIX flags for the access argument

RDONLY
1249985

Opens for reading.
1249985

WRONLY
1249985

Opens for writing.
1249985

RDWR
1249985

Opens for reading and writing.
1249985

APPEND
1249985

Opens for append.
1249985

CREAT
1249985

Creates the file if it does not exist.
1249985

EXCL
1249985

If CREAT is also specified, then the file cannot already exist.
1249985

NOCTTY
1249985

Prevents terminal devices from becoming the controlling terminal.
1249985

NONBLOCK
1249985

Does not block during the open.
1249985

TRUNC
1249985

Truncates the file if it exists.
1249985

The following example illustrates how to use a list of POSIX access flags to open a file for
reading and writing, creating it if needed, and not truncating it. This is something you cannot
do with the simpler form of the access argument:
1249985

set fileId [open /tmp/bar {RDWR CREAT}]

Chapter 9. Working with Files and Programs Page 20 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Catch errors from open.
1249985

In general, you should check for errors when opening files. The following example illustrates
a catch phrase used to open files. Recall that catch returns 1 if it catches an error; otherwise,
it returns zero. It treats its second argument as the name of a variable. In the error case, it
puts the error message into the variable. In the normal case, it puts the result of the command
into the variable:
1249985

Example 9-5. A more careful use of open

if [catch {open /tmp/data r} fileId] {
 puts stderr "Cannot open /tmp/data: $fileId"
} else {
 # Read and process the file, then...
 close $fileId
}

Opening a Process Pipeline
628024
You can open a process pipeline by specifying the pipe character, |, as the first character of
the first argument. The remainder of the pipeline specification is interpreted just as with the
exec command, including input and output redirection. The second argument determines
which end of the pipeline open returns. The following example runs the UNIX sort program
on the password file, and it uses the split command to separate the output lines into list
elements:
1249985

Example 9-6. Opening a process pipeline

set input [open "|sort /etc/passwd" r]
set contents [split [read $input] \n]
close $input

You can open a pipeline for both read and write by specifying the r+ access mode. In this
case, you need to worry about buffering. After a puts, the data may still be in a buffer in the
Tcl library. Use the flush command to force the data out to the spawned processes before
you try to read any output from the pipeline. You can also use the fconfigure command
described on page 233 to force line buffering. Remember that read-write pipes will not work
at all with Windows 3.1 because pipes are simulated with files. Event-driven I/O is also very

Chapter 9. Working with Files and Programs Page 21 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

useful with pipes. It means you can do other processing while the pipeline executes, and
simply respond when the pipe generates data. This is described in Chapter 16.
1249985

Expect
628024
If you are trying to do sophisticated things with an external application, you will find that the
Expect extension provides a much more powerful interface than a process pipeline. Expect
adds Tcl commands that are used to control interactive applications. It is extremely useful
for automating a variety of applications such as ssh, Telnet, and programs under test. Tcl is
able to handle simple FTP sessions, telnet and many command line controllable applications,
but Expect has extra control at the tty level that is essential for certain applications. It comes
on some systems as a specially built Tcl shell named expect, and it is also available as an
extension that you can dynamically load into Tcl shells with:
1249985

package require Expect

Expect was created by Don Libes at the National Institute of Standards and Technology (NIST).
Expect is described in Exploring Expect (Libes, O'Reilly & Associates, Inc., 1995). You can find
the software on the CD and on the web at:
1249985

http://expect.nist.gov/

Reading and Writing
621961
The standard I/O channels are already open for you. There is a standard input channel, a
standard output channel, and a standard error output channel. These channels are identified
by stdin, stdout, and stderr, respectively. Other I/O channels are returned by the
open command, and by the socket command described on page 239.
1249985
There may be cases when the standard I/O channels are not available. The wish shells on
Windows and Macintosh have no standard I/O channels. Some UNIX window managers close
the standard I/O channels when you start programs from window manager menus. You can
also close the standard I/O channels with close.
1249985

Chapter 9. Working with Files and Programs Page 22 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://expect.nist.gov/

The puts and gets Commands
628024
The puts command writes a string and a newline to the output channel. There are a couple
of details about the puts command that we have not yet used. It takes a -nonewline
argument that prevents the newline character that is normally appended to the output
channel. This is used in the prompt example below. The second feature is that the channel
identifier is optional, defaulting to stdout if not specified. Note that you must use flush
to force output of a partial line. This is illustrated in Example 9-7.
1249985

Example 9-7. Prompting for input

puts -nonewline "Enter value: "
flush stdout ;# Necessary to get partial line output
set answer [gets stdin]

The gets command reads a line of input, and it has two forms. In the previous example, with
just a single argument, gets returns the line read from the specified I/O channel. It discards
the trailing newline from the return value. If end of file is reached, an empty string is returned.
You must use the eof command to tell the difference between a blank line and end-of-file.
eof returns 1 if there is end of file. Given a second varName argument, gets stores the line
into a named variable and returns the number of bytes read. It discards the trailing newline,
which is not counted. A -1 is returned if the channel has reached the end of file.
1249985

Example 9-8. A read loop using gets

while {[gets $channel line] >= 0} {
 # Process line
}
close $channel

The read Command
628024
The read command reads blocks of data, and this capability is often more efficient. There
are two forms for read: You can specify the -nonewline argument or the numBytes
argument, but not both. Without numBytes, the whole file (or what is left in the I/O channel)
is read and returned. The -nonewline argument causes the trailing newline to be discarded.
Given a byte count argument, read returns that amount, or less if there is not enough data
in the channel. The trailing newline is not discarded in this case.
1249985

Chapter 9. Working with Files and Programs Page 23 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 9-9. A read loop using read and split

foreach line [split [read $channel] \n] {

 # Process line
}
close $channel

For moderate-sized files, it is about 10 percent faster to loop over the lines in a file using the
read loop in the second example. In this case, read returns the whole file, and split chops
the file into list elements, one for each line. For small files (less than 1K) it doesn't really matter.
For large files (megabytes) you might induce paging with this approach.
1249985

Platform-Specific End of Line Characters
628024
Tcl automatically detects different end of line conventions. On UNIX, text lines are ended
with a newline character (\n). On Macintosh, they are terminated with a carriage return
(\r). On Windows, they are terminated with a carriage return, newline sequence (\r\n). Tcl
accepts any of these, and the line terminator can even change within a file. All these different
conventions are converted to the UNIX style so that once read, text lines are always
terminated with a newline character (\n). Both the read and gets commands do this
conversion.
1249985
During output, text lines are generated in the platform-native format. The automatic
handling of line formats means that it is easy to convert a file to native format. You just need
to read it in and write it out:
1249985

puts -nonewline $out [read $in]

To suppress conversions, use the fconfigure command, which is described in more detail on
page 234.
1249985
Example 9-10 demonstrates a File_Copy procedure that translates files to native format.
It is complicated because it handles directories.
1249985

Example 9-10. Copy a file and translate to native format

proc File_Copy {src dest} {
 if {[file isdirectory $src]} {
 file mkdir $dest
 foreach f [glob -nocomplain [file join $src *]] {
 File_Copy $f [file join $dest [file tail $f]]
 }

Chapter 9. Working with Files and Programs Page 24 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 return
 }
 if {[file isdirectory $dest]} {
 set dest [file join $dest [file tail $src]]
 }
 set in [open $src]
 set out [open $dest w]
 puts -nonewline $out [read $in]
 close $out ; close $in
}

Random Access I/O
628024
The seek and tell commands provide random access to I/O channels. Each channel has a
current position called the seek offset. Each read or write operation updates the seek offset
by the number of bytes transferred. The current value of the offset is returned by the tell
command. The seek command sets the seek offset by an amount, which can be positive or
negative, from an origin which is either start, current, or end. If you are dealing with files
greater than 2GB in size, you will need Tcl 8.4 for its 64-bit file system support.
1249985

Closing I/O Channels
628024
The close command is just as important as the others because it frees operating system
resources associated with the I/O channel. If you forget to close a channel, it will be closed
when your process exits. However, if you have a long-running program, like a Tk script, you
might exhaust some operating system resources if you forget to close your I/O channels.
1249985

The close command can raise an error.
1249985

If the channel was a process pipeline and any of the processes wrote to their standard error
channel, then Tcl believes this is an error. The error is raised when the channel to the pipeline
is finally closed. Similarly, if any of the processes in the pipeline exit with a nonzero status,
close raises an error.
1249985

Chapter 9. Working with Files and Programs Page 25 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Current Directory — cd and pwd
621961
Every process has a current directory that is used as the starting point when resolving a
relative pathname. The pwd command returns the current directory, and the cd command
changes the current directory. Example 9-11 uses these commands.
1249985

Matching File Names with glob
621961

1249985
The glob command expands a pattern into the set of matching file names. The general form
of the glob command is:
1249985

glob ?
options
?
pattern
 ?
pattern
? ...

The pattern syntax is similar to the string match patterns:
1249985

• * matches zero or more characters.

• ? matches a single character.

• [abc] matches a set of characters.

• {a,b,c} matches any of a, b, or c.

• All other characters must match themselves.

Table 9-8 lists the options for the glob command.
1249985

Table 9-8. glob command options

-directory dir
1249985

Search for files in the directory dir. (Tcl 8.3)
1249985

-join
1249985

The remaining pattern arguments are treated as a single pattern
obtained by joining them with directory separators. (Tcl 8.3)
1249985

Chapter 9. Working with Files and Programs Page 26 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

-nocomplain
1249985

Causes glob to return an empty list if no files match. Otherwise an
error is raised.
1249985

-path path
1249985

Search for files in the given path prefix path. Allows you to search in
areas that may contain glob-sensitive characters. (Tcl 8.3)
1249985

-tails
1249985

Only return the part of each file found that follows the last directory
named in the -directory or -path argument. (Tcl 8.4)
1249985

-types types
1249985

Only return files matching the types specified.
1249985

--
1249985

Signifies the end of flags. Must be used if pattern begins with a -.
1249985

Unlike the glob matching in csh, the Tcl glob command matches only the names of existing
files. In csh, the {a,b} construct can match nonexistent names. In addition, the results of
glob are not sorted. Use the lsort command to sort its result if you find it important.
1249985
Example 9-11 shows the FindFile procedure, which traverses the file system hierarchy
using recursion. At each iteration it saves its current directory and then attempts to change
to the next subdirectory. A catch guards against bogus names. The glob command
matches file names:
1249985

Example 9-11. Finding a file by name

proc FindFile { startDir namePat } {
 set pwd [pwd]
 if {[catch {cd $startDir} err]} {
 puts stderr $err
 return
 }
 foreach match [glob -nocomplain -- $namePat] {
 puts stdout [file join $startDir $match]
 }
 foreach file {[glob -nocomplain *]} {
 if [file isdirectory $file] {
 FindFile [file join $startDir $file] $namePat
 }
 }
 cd $pwd
}

The -types option allows for special filtered matching similar to the UNIX find command.
The first form is like the -type option of find: b (block special file), c (character special file),
d (directory), f (plain file), l (symbolic link), p (named pipe), or s (socket), where multiple

Chapter 9. Working with Files and Programs Page 27 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

types may be specified in the list. Glob will return all files which match at least one of the
types given.
1249985
The second form specifies types where all the types given must match. These are r (readable),
w (writable) and x (executable) as file permissions, and readonly and hidden as special
cases. On the Macintosh, MacOS types and creators are also supported, where any item which
is four characters long is assumed to be a MacOS type (e.g. TEXT). Items which are of the
form {macintosh type XXXX} or {macintosh creator XXXX} will match types or
creators respectively. Unrecognized types, or specifications of multiple MacOS types/
creators will signal an error.
1249985
The two forms may be mixed, so -types {d f r w} will find all regular files OR directories
that have both read AND write permissions.
1249985

Expanding Tilde in File Names
628024
The glob command also expands a leading tilde (~) in filenames. There are two cases:
1249985

• ~/ expands to the current user's home directory.

• ~user expands to the home directory of user.

If you have a file that starts with a literal tilde, you can avoid the tilde expansion by adding a
leading ./ (e.g., ./~foobar).
1249985

The exit and pid Commands
621961
The exit command terminates your script. Note that exit causes termination of the whole
process that was running the script. If you supply an integer-valued argument to exit, then
that becomes the exit status of the process.
1249985
The pid command returns the process ID of the current process. This can be useful as the
seed for a random number generator because it changes each time you run your script. It is
also common to embed the process ID in the name of temporary files.
1249985
You can also find out the process IDs associated with a process pipeline with pid:
1249985

set pipe [open "|

Chapter 9. Working with Files and Programs Page 28 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

command
"]
set pids [pid $pipe]

There is no built-in mechanism to control processes in the Tcl core. On UNIX systems you can
exec the kill program to terminate a process:
1249985

exec kill $pid

Environment Variables
621961

1249985
Environment variables are a collection of string-valued variables associated with each
process. The process's environment variables are available through the global array env. The
name of the environment variable is the index, (e.g., env(PATH)), and the array element
contains the current value of the environment variable. If assignments are made to env, they
result in changes to the corresponding environment variable. Environment variables are
inherited by child processes, so programs run with the exec command inherit the
environment of the Tcl script. The following example prints the values of environment
variables.
1249985

Example 9-12. Printing environment variable values

proc printenv { args } {
 global env
 set maxl 0
 if {[llength $args] == 0} {
 set args [lsort [array names env]]
 }
 foreach x $args {
 if {[string length $x] > $maxl} {
 set maxl [string length $x]
 }
 }
 incr maxl 2
 foreach x $args {
 puts stdout [format "%*s = %s" $maxl $x $env($x)]
 }
}
printenv USER SHELL TERM
=>

USER = welch

SHELL = /bin/csh

TERM = tx

Chapter 9. Working with Files and Programs Page 29 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Note: Environment variables can be initialized for Macintosh applications by editing a
resource of type STR# whose name is Tcl Environment Variables. This resource is
part of the tclsh and wish applications. Follow the directions on page 28 for using ResEdit.
The format of the resource values is NAME=VALUE.

The registry Command
621961
Windows uses the registry to store various system configuration information. The Windows
tool to browse and edit the registry is called regedit. Tcl provides a registry command. It
is a loadable package that you must load by using:
1249985

package require registry

The registry structure has keys, value names, and typed data. The value names are stored
under a key, and each value name has data associated with it. The keys are organized into a
hierarchical naming system, so another way to think of the value names is as an extra level
in the hierarchy. The main point is that you need to specify both a key name and a value
name in order to get something out of the registry. The key names have one of the following
formats:
1249985

\\
hostname
\
rootname
\
keypath

rootname
\
keypath

rootname

The rootname is one of HKEY_LOCAL_MACHINE, HKEY_PERFORMANCE_DATA,
HKEY_USERS, HKEY_CLASSES_ROOT, HKEY_CURRENT_USER,
HKEY_CURRENT_CONFIG, or HKEY_DYN_DATA. Tables 9-9 and 9-10 summarize the
registry command and data types:
1249985

Chapter 9. Working with Files and Programs Page 30 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 9-9. The registry command

registry delete key ?valueName?
1249985

Deletes the key and the named value, or it
deletes all values under the key if
valueName is not specified.
1249985

registry get key valueName
1249985

Returns the value associated with
valueName under key.
1249985

registry keys key ?pat?
1249985

Returns the list of keys or value names under
key that match pat, which is a string
match pattern.
1249985

registry set key
1249985

Creates key.
1249985

registry set key valueName
data ?type?
1249985

Creates valueName under key with value
data of the given type. Types are listed in
Table 9-10.
1249985

registry type key valueName
1249985

Returns the type of valueName under key.
1249985

registry values key ?pat?
1249985

Returns the names of the values stored under
key that match pat, which is a string
match pattern.
1249985

Table 9-10. The registry data types

binary
1249985

Arbitrary binary data.
1249985

none
1249985

Arbitrary binary data.
1249985

expand_sz
1249985

A string that contains references to environment variables with the
%VARNAME% syntax.
1249985

dword A 32-bit integer.

Chapter 9. Working with Files and Programs Page 31 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

dword_big_endian
1249985

A 32-bit integer in the other byte order. It is represented in Tcl as a
decimal string.
1249985

link
1249985

A symbolic link.
1249985

multi_sz
1249985

An array of strings, which are represented as a Tcl list.
1249985

resource_list
1249985

A device driver resource list.
1249985

Chapter 9. Working with Files and Programs Page 32 Return to Table of Contents

Chapter 9. Working with Files and Programs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

