
Table of Contents

Chapter 6. Control Structure Commands.. 1
If Then Else.. 2
Switch.. 3
While.. 6
Foreach.. 6
For.. 9
Break and Continue... 10
Catch.. 10
Error... 12
Return.. 13

Chapter 6. Control Structure Commands

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 6. Control Structure Commands
54

1249985
This chapter describes the Tcl commands that implement control structures: if, switch,
foreach, while, for, break, continue, catch, error, and return.
1249985
Control structure in Tcl is achieved with commands, just like everything else. There are looping
commands: while, foreach, and for. There are conditional commands: if and switch.
There is an error handling command: catch. Finally, there are some commands to fine-tune control
structures: break, continue, return, and error.
1249985
A control structure command often has a command body that is executed later, either conditionally
or in a loop. In this case, it is important to group the command body with curly braces to avoid
substitutions at the time the control structure command is invoked. Group with braces, and let the
control structure command trigger evaluation at the proper time. A control structure command
returns the value of the last command it chose to execute.
1249985
Another pleasant property of curly braces is that they group things together while including
newlines. The examples use braces in a way that is both readable and convenient for extending the
control structure commands across multiple lines.
1249985
Commands like if, for, and while involve boolean expressions. They use the expr command
internally, so there is no need for you to invoke expr explicitly to evaluate their boolean test
expressions.
1249985

Chapter 6. Control Structure Commands Page 1 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

If Then Else
621961
The if command is the basic conditional command. If an expression is true, then execute one
command body; otherwise, execute another command body. The second command body (the
else clause) is optional. The syntax of the command is:
1249985

if expression ?then? body1 ?else? ?body2?

The then and else keywords are optional. In practice, I omit then but use else as illustrated
in the next example. I always use braces around the command bodies, even in the simplest cases:
1249985

Example 6-1. A conditional if then else command

if {$x == 0} {
 puts stderr "Divide by zero!"
} else {
 set slope [expr $y/$x]
}

Curly brace positioning is important.
1249985

The style of this example takes advantage of the way the Tcl interpreter parses commands. Recall
that newlines are command terminators, except when the interpreter is in the middle of a group
defined by braces or double quotes. The stylized placement of the opening curly brace at the end
of the first and third lines exploits this property to extend the if command over multiple lines.
1249985
The first argument to if is a boolean expression. As a matter of style this expression is grouped
with curly braces. The expression evaluator performs variable and command substitution on the
expression. Using curly braces ensures that these substitutions are performed at the proper time. It
is possible to be lax in this regard, with constructs such as:
1249985

if $x break continue

This is a sloppy, albeit legitimate, if command that will either break out of a loop or continue with
the next iteration depending on the value of variable x. This style is fragile and error prone. Instead,

Chapter 6. Control Structure Commands Page 2 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

always use braces around the command bodies to avoid trouble later when you modify the
command. The following is much better (use then if it suits your taste):
1249985

if {$x} {
 break
} else {
 continue
}

When you are testing the result of a command, you can get away without using curly braces around
the command, like this:
1249985

if [command] body1

However, it turns out that you can execute the if statement more efficiently if you always group
the expression with braces, like this:
1249985

if {[command]} body1

You can create chained conditionals by using the elseif keyword. Again, note the careful
placement of curly braces that create a single if command:
1249985

Example 6-2. Chained conditional with elseif

if {$key < 0} {
 incr range 1
} elseif {$key == 0} {
 return $range
} else {
 incr range -1
}

Any number of conditionals can be chained in this manner. However, the switch command
provides a more powerful way to test multiple conditions.
1249985

Switch
621961
The switch command is used to branch to one of many command bodies depending on the value
of an expression. The choice can be made on the basis of pattern matching as well as simple
comparisons. Pattern matching is discussed in more detail in Chapter 4 and Chapter 11. The general
form of the command is:

Chapter 6. Control Structure Commands Page 3 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
switch flags value pat1 body1 pat2 body2 ...

Any number of pattern-body pairs can be specified. If multiple patterns match, only the body of
the first matching pattern is evaluated. You can also group all the pattern-body pairs into one
argument:
1249985

switch flags value { pat1 body1 pat2 body2 ... }

The first form allows substitutions on the patterns but will require backslashes to continue the
command onto multiple lines. This is shown in Example 6-4 on page 78. The second form groups
all the patterns and bodies into one argument. This makes it easy to group the whole command
without worrying about newlines, but it suppresses any substitutions on the patterns. This is shown
in Example 6-3. In either case, you should always group the command bodies with curly braces so
that substitution occurs only on the body with the pattern that matches the value.
1249985
There are four possible flags that determine how value is matched.
1249985

-exact
1249985

Matches the value exactly to one of the patterns. This is the default.
1249985

-glob
1249985

Uses glob-style pattern matching. See page 53.
1249985

-regexp
1249985

Uses regular expression pattern matching. See page 144.
1249985

--
1249985

No flag (or end of flags). Necessary when value can begin with -.
1249985

The switch command raises an error if any other flag is specified or if the value begins with
-. In practice I always use the -- flag before value so that I don't have to worry about that problem.
1249985
If the pattern associated with the last body is default, then this command body is executed if no
other patterns match. The default keyword works only on the last pattern-body pair. If you use
the default pattern on an earlier body, it will be treated as a pattern to match the literal string
default:
1249985

Example 6-3. Using switch for an exact match

switch -exact -- $value {
 foo { doFoo; incr count(foo) }
 bar { doBar; return $count(foo)}
 default { incr count(other) }
}

Chapter 6. Control Structure Commands Page 4 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If you have variable references or backslash sequences in the patterns, then you cannot use braces
around all the pattern-body pairs. You must use backslashes to escape the newlines in the command:
1249985

Example 6-4. Using switch with substitutions in the patterns

switch -regexp -- $value \
 ^$key { body1 }\
 \t### { body2 }\
 {[0-9]*} { body3 }

In this example, the first and second patterns have substitutions performed to replace $key with
its value and \t with a tab character. The third pattern is quoted with curly braces to prevent
command substitution; square brackets are part of the regular expression syntax, too. (See page
Chapter 11.)
1249985
If the body associated with a pattern is just a dash, -, then the switch command “falls through”
to the body associated with the next pattern. You can tie together any number of patterns in this
manner.
1249985

Example 6-5. A switch with "fall through" cases

switch -glob -- $value {
 X* -
 Y* { takeXorYaction $value }
}

Comments in switch Commands
628024

A comment can occur only where the Tcl parser expects a command to begin.
This restricts the location of comments in a switch command. You must put
them inside the command body associated with a pattern, as shown in Example
6-6. If you put a comment at the same level as the patterns, the switch
command will try to interpret the comment as one or more pattern-body pairs.
1249985

Example 6-6. Comments in switch commands

switch -- $value {
 # this comment confuses switch
 pattern { # this comment is ok }
}

Chapter 6. Control Structure Commands Page 5 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

While
621961
The while command takes two arguments, a test and a command body:
1249985

while booleanExpr body

The while command repeatedly tests the boolean expression and then executes the body if the
expression is true (nonzero). Because the test expression is evaluated again before each iteration
of the loop, it is crucial to protect the expression from any substitutions before the while command
is invoked. The following is an infinite loop (see also Example 1-13 on page 12):
1249985

set i 0 ; while $i<10 {incr i}

The following behaves as expected:
1249985

set i 0 ; while {$i<10} {incr i}

It is also possible to put nested commands in the boolean expression. The following example uses
gets to read standard input. The gets command returns the number of characters read, returning
-1 upon end of file. Each time through the loop, the variable line contains the next line in the file:
1249985

Example 6-7. A while loop to read standard input

set numLines 0 ; set numChars 0
while {[gets stdin line] >= 0} {
 incr numLines
 incr numChars [string length $line]
}

Foreach
621961
The foreach command loops over a command body assigning one or more loop variables to each
of the values in one or more lists. Multiple loop variables, which were introduced in Tcl 7.5, are a
very useful feature. The syntax for the simple case of a single variable and a single list is:
1249985

Chapter 6. Control Structure Commands Page 6 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

foreach loopVar valueList commandBody

The first argument is the name of a variable, and the command body is executed once for each
element in the list with the loop variable taking on successive values in the list. The list can be
entered explicitly, as in the next example:
1249985

Example 6-8. Looping with foreach

set i 1
foreach value {1 3 5 7 11 13 17 19 23} {
 set i [expr $i*$value]
}
set i
=> 111546435

It is also common to use a list-valued variable or command result instead of a static list value. The
next example loops through command-line arguments. The variable argv is set by the Tcl
interpreter to be a list of the command-line arguments given when the interpreter was started:
1249985

Example 6-9. Parsing command-line arguments

argv is set by the Tcl shells
possible flags are:
-max integer
-force
-verbose
set state flag
set force 0
set verbose 0
set max 10
foreach arg $argv {
 switch -- $state {
 flag {
 switch -glob -- $arg {
 -f* {set force 1}
 -v* {set verbose 1}
 -max {set state max}
 default {error "unknown flag $arg"}
 }
 }
 max {
 set max $arg
 set state flag
 }
 }
}

The loop uses the state variable to keep track of what is expected next, which in this example is
either a flag or the integer value for -max. The -- flag to switch is required in this example
because the switch command complains about a bad flag if the pattern begins with a - character.
The -glob option lets the user abbreviate the -force and -verbose options.
1249985

Chapter 6. Control Structure Commands Page 7 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If the list of values is to contain variable values or command results, then the
list command should be used to form the list. Avoid double quotes because
if any values or command results contain spaces or braces, the list structure will
be reparsed, which can lead to errors or unexpected results.
1249985

Example 6-10. Using list with foreach

foreach x [list $a $b [foo]] {
 puts stdout "x = $x"
}

The loop variable x will take on the value of a, the value of b, and the result of the foo command,
regardless of any special characters or whitespace in those values.
1249985

Multiple Loop Variables
628024
You can have more than one loop variable with foreach. Suppose you have two loop variables
x and y. In the first iteration of the loop, x gets the first value from the value list and y gets the
second value. In the second iteration, x gets the third value and y gets the fourth value. This
continues until there are no more values. If there are not enough values to assign to all the loop
variables, the extra variables get the empty string as their value.
1249985

Example 6-11. Multiple loop variables with foreach

foreach {key value} {orange 55 blue 72 red 24 green} {
 puts "$key: $value"
}
orange: 55
 blue: 72
 red: 24
 green:

If you have a command that returns a short list of values, then you can abuse the foreach command
to assign the results of the commands to several variables all at once. For example, suppose the
command MinMax returns two values as a list: the minimum and maximum values. Here is one
way to get the values:
1249985

set result [MinMax $list]
set min [lindex $result 0]
set max [lindex $result 1]

Chapter 6. Control Structure Commands Page 8 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The foreach command lets us do this much more compactly:
1249985

foreach {min max} [MinMax $list] {break}

The break in the body of the foreach loop guards against the case where the command returns
more values than we expected. This trick is encapsulated into the lassign procedure in Example
10-4 on page 139.
1249985

Multiple Value Lists
628024
The foreach command has the ability to loop over multiple value lists in parallel. In this case,
each value list can also have one or more variables. The foreach command keeps iterating until
all values are used from all value lists. If a value list runs out of values before the last iteration of
the loop, its corresponding loop variables just get the empty string for their value.
1249985

Example 6-12. Multiple value lists with foreach

foreach {k1 k2} {orange blue red green black} value {55 72 24} {
 puts "$k1 $k2: $value"
}
orange blue: 55
 red green: 72
 black : 24

For
621961
The for command is similar to the C for statement. It takes four arguments:
1249985

for initial test final body

The first argument is a command to initialize the loop. The second argument is a boolean expression
that determines whether the loop body will execute. The third argument is a command to execute
after the loop body:
1249985

Example 6-13. A for loop

for {set i 0} {$i < 10} {incr i 3} {
 lappend aList $i

Chapter 6. Control Structure Commands Page 9 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

}
set aList
=> 0 3 6 9

You could use for to iterate over a list, but you should really use foreach instead. Code like the
following is slow and cluttered:
1249985

for {set i 0} {$i < [llength $list]} {incr i} {
 set value [lindex $list $i]
}

This is the same as:
1249985

foreach value $list {
}

Break and Continue
621961
You can control loop execution with the break and continue commands. The break command
causes immediate exit from a loop, while the continue command causes the loop to continue
with the next iteration. There is no goto command in Tcl.
1249985

Catch
621961
Until now we have ignored the possibility of errors. In practice, however, a command will raise an
error if it is called with the wrong number of arguments, or if it detects some error condition
particular to its implementation. An uncaught error aborts execution of a script.[*] The catch
command is used to trap such errors. It takes two arguments:
1249985

[*] More precisely, the Tcl script unwinds and the current Tcl_Eval procedure in the C runtime library returns TCL_ERROR. There are three cases. In interactive use, the Tcl shell
prints the error message. In Tk, errors that arise during event handling trigger a call to bgerror, a Tcl procedure you can implement in your application. In your own C code, you
should check the result of Tcl_Eval and take appropriate action in the case of an error.

catch command ?resultVar?

The first argument to catch is a command body. The second argument is the name of a variable
that will contain the result of the command, or an error message if the command raises an error.
catch returns zero if there was no error caught, or a nonzero error code if it did catch an error.

Chapter 6. Control Structure Commands Page 10 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
You should use curly braces to group the command instead of double quotes because catch
invokes the full Tcl interpreter on the command. If double quotes are used, an extra round of
substitutions occurs before catch is even called. The simplest use of catch looks like the
following:
1249985

catch { command }

A more careful catch phrase saves the result and prints an error message:
1249985

Example 6-14. A standard catch phrase

if {[catch { command arg1 arg2 ... } result]} {
 puts stderr $result
} else {
 # command was ok, result contains the return value
}

A more general catch phrase is shown in the next example. Multiple commands are grouped into
a command body. The errorInfo variable is set by the Tcl interpreter after an error to reflect
the stack trace from the point of the error:
1249985

Example 6-15. A longer catch phrase

if {[catch {
 command1
 command2
 command3
} result]} {
 global errorInfo
 puts stderr $result
 puts stderr "*** Tcl TRACE ***"
 puts stderr $errorInfo
} else {
 # command body ok, result of last command is in result
}

These examples have not grouped the call to catch with curly braces. This is acceptable because
catch always returns an integer, so the if command will parse correctly. However, if we had
used while instead of if, then curly braces would be necessary to ensure that the catch phrase
was evaluated repeatedly.
1249985

Chapter 6. Control Structure Commands Page 11 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Catching More Than Errors
628024
The catch command catches more than just errors. If the command body contains return,
break, or continue commands, these terminate the command body and are reflected by
catch as nonzero return codes. You need to be aware of this if you try to isolate troublesome code
with a catch phrase. An innocent looking return command will cause the catch to signal an
apparent error. The next example uses switch to find out exactly what catch returns. Nonerror
cases are passed up to the surrounding code by invoking return, break, or continue:
1249985

Example 6-16. There are several possible return values from catch

switch [catch {
 command1
 command2
 ...
} result] {
 0 { # Normal completion }
 1 { # Error case }
 2 { return $result ;# return from procedure}
 3 { break ;# break out of the loop}
 4 { continue ;# continue loop}
 default { # User-defined error codes }
}

Error
621961
The error command raises an error condition that terminates a script unless it is trapped with the
catch command. The command takes up to three arguments:
1249985

error message ?info? ?code?

The message becomes the error message stored in the result variable of the catch command.
1249985
If the info argument is provided, then the Tcl interpreter uses this to initialize the errorInfo
global variable. That variable is used to collect a stack trace from the point of the error. If the
info argument is not provided, then the error command itself is used to initialize the
errorInfo trace.
1249985

Chapter 6. Control Structure Commands Page 12 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 6-17. Raising an error

proc foo {} {
 error bogus
}
foo
=> bogus
set errorInfo
=> bogus
 while executing
 "error bogus"
 (procedure "foo" line 2)
 invoked from within
 "foo"

In the previous example, the error command itself appears in the trace. One common use of the
info argument is to preserve the errorInfo that is available after a catch. In the next example,
the information from the original error is preserved:
1249985

Example 6-18. Preserving errorInfo when calling error

if {[catch {foo} result]} {
 global errorInfo
 set savedInfo $errorInfo
 # Attempt to handle the error here, but cannot...
 error $result $savedInfo
}

The code argument specifies a concise, machine-readable description of the error. It is stored into
the global errorCode variable. It defaults to NONE. Many of the file system commands return
an errorCode that has three elements: POSIX, the error name (e.g., ENOENT), and the associated
error message:
1249985

POSIX ENOENT {No such file or directory}

In addition, your application can define error codes of its own. Catch phrases can examine the code
in the global errorCode variable and decide how to respond to the error.
1249985

Return
621961
The return command is used to return from a procedure. It is needed if return is to occur before
the end of the procedure body, or if a constant value needs to be returned. As a matter of style, I
also use return at the end of a procedure, even though a procedure returns the value of the last
command executed in the body.
1249985

Chapter 6. Control Structure Commands Page 13 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Exceptional return conditions can be specified with some optional arguments to return. The
complete syntax is:
1249985

return ?-code c? ?-errorinfo i? ?-errorcode ec? string

The -code option value is one of ok, error, return, break, continue, or an integer. ok
is the default if -code is not specified.
1249985
The -code error option makes return behave much like the error command. The -
errorcode option sets the global errorCode variable, and the -errorinfo option initializes
the errorInfo global variable. When you use return -code error, there is no error
command in the stack trace. Compare Example 6-17 with Example 6-19:
1249985

Example 6-19. Raising an error with return

proc bar {} {
 return -code error bogus
}
catch {bar} result
=> 1
set result
=> bogus
set errorInfo
=> bogus
 while executing
 "bar"

The return, break, and continue code options take effect in the caller of the procedure doing
the exceptional return. If -code return is specified, then the calling procedure returns. If -
code break is specified, then the calling procedure breaks out of a loop, and if -code
continue is specified, then the calling procedure continues to the next iteration of the loop. These
-code options to return enable the construction of new control structures entirely in Tcl. The
following example implements the break command with a Tcl procedure:
1249985

proc break {} {
 return -code break
}

You can return integer-valued codes of your own with return -code, and trap them with
catch in order to create your own control structures. There are also a number of exception
packages available on the net that provide Java-like try-catch-except structures for Tcl,
although the Tcl exception mechanism strikes a nice balance between simplicity and power.
1249985

Chapter 6. Control Structure Commands Page 14 Return to Table of Contents

Chapter 6. Control Structure Commands
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

