
Table of Contents

Chapter 1. Tcl Fundamentals.. 1
Tcl Commands... 1
Hello, World!.. 2
Variables.. 3
Command Substitution... 4
Math Expressions.. 4
Backslash Substitution... 6
Grouping with Braces and Double Quotes... 7
Procedures... 11
A Factorial Example... 12
More about Variables... 14
More about Math Expressions... 16
Comments.. 18
Substitution and Grouping Summary... 19
Fine Points... 19
Reference.. 20

Chapter 1. Tcl Fundamentals

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 1. Tcl Fundamentals
448

This chapter describes the basic syntax rules for the Tcl scripting language. It describes the basic
mechanisms used by the Tcl interpreter: substitution and grouping. It touches lightly on the
following Tcl commands: puts, format, set, expr, string, while, incr, and proc.
1249985
Tcl is a string-based command language. The language has only a few fundamental constructs and
relatively little syntax, which makes it easy to learn. The Tcl syntax is meant to be simple. Tcl is
designed to be a glue that assembles software building blocks into applications. A simpler glue
makes the job easier. In addition, Tcl is interpreted when the application runs. The interpreter makes
it easy to build and refine your application in an interactive manner. A great way to learn Tcl is to
try out commands interactively. If you are not sure how to run Tcl on your system, see Chapter 2
for instructions for starting Tcl on UNIX, Windows, and Macintosh systems.
1249985
This chapter takes you through the basics of the Tcl language syntax. Even if you are an expert
programmer, it is worth taking the time to read these few pages to make sure you understand the
fundamentals of Tcl. The basic mechanisms are all related to strings and string substitutions, so it
is fairly easy to visualize what is going on in the interpreter. The model is a little different from
some other programming languages with which you may already be familiar, so it is worth making
sure you understand the basic concepts.
1249985

Tcl Commands
621961
Tcl stands for Tool Command Language. A command does something for you, like output a string,
compute a math expression, or display a widget on the screen. Tcl casts everything into the mold
of a command, even programming constructs like variable assignment and procedure definition.
Tcl adds a tiny amount of syntax needed to properly invoke commands, and then it leaves all the
hard work up to the command implementation.
1249985
The basic syntax for a Tcl command is:

Chapter 1. Tcl Fundamentals Page 1 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

1249985
 command arg1 arg2 arg3 ...

The command is either the name of a built-in command or a Tcl procedure. White space (i.e.,
spaces or tabs) is used to separate the command name and its arguments, and a newline (i.e., the
end of line character) or semicolon is used to terminate a command. Tcl does not interpret the
arguments to the commands except to perform grouping, which allows multiple words in one
argument, and substitution, which is used with programming variables and nested command calls.
The behavior of the Tcl command processor can be summarized in three basic steps:
1249985

• Argument grouping.
• Value substitution of nested commands, variables, and backslash escapes.
• Command invocation. It is up to the command to interpret its arguments.

This model is described in detail in this Chapter.

Hello, World!
621961
Example 1-1. The "Hello, World!" example

puts stdout {Hello, World!}
=> Hello, World!

In this example, the command is puts, which takes two arguments: an I/O stream identifier and a
string. puts writes the string to the I/O stream along with a trailing newline character. There are
two points to emphasize:
1249985

• Arguments are interpreted by the command. In the example, stdout is used to identify the standard output stream. The use of
stdout as a name is a convention employed by puts and the other I/O commands. Also, stderr is used to identify the standard
error output, and stdin is used to identify the standard input. Chapter 9 describes how to open other files for I/O.

• Curly braces are used to group words together into a single argument. The puts command receives Hello, World! as its second
argument.

The braces are not part of the value.
1249985

Chapter 1. Tcl Fundamentals Page 2 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The braces are syntax for the interpreter, and they get stripped off before the value is passed to the
command. Braces group all characters, including newlines and nested braces, until a matching brace
is found. Tcl also uses double quotes for grouping. Grouping arguments will be described in more
detail later.
1249985

Variables
621961
The set command is used to assign a value to a variable. It takes two arguments: The first is the
name of the variable, and the second is the value. Variable names can be any length, and case is
significant. In fact, you can use any character in a variable name.
1249985

It is not necessary to declare Tcl variables before you use them.
1249985

The interpreter will create the variable when it is first assigned a value. The value of a variable is
obtained later with the dollar-sign syntax, illustrated in Example 1-2:
1249985

Example 1-2. Tcl variables

set var 5
 => 5
set b $var
=> 5

The second set command assigns to variable b the value of variable var. The use of the dollar
sign is our first example of substitution. You can imagine that the second set command gets
rewritten by substituting the value of var for $var to obtain a new command.
1249985

set b 5

The actual implementation of substitution is more efficient, which is important when the value is
large.
1249985

Chapter 1. Tcl Fundamentals Page 3 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Command Substitution
621961
The second form of substitution is command substitution. A nested command is delimited by square
brackets, []. The Tcl interpreter takes everything between the brackets and evaluates it as a
command. It rewrites the outer command by replacing the square brackets and everything between
them with the result of the nested command. This is similar to the use of backquotes in other shells,
except that it has the additional advantage of supporting arbitrary nesting of commands.
1249985

Example 1-3. Command substitution

set len [string length foobar]
=> 6

In Example 1-3, the nested command is:
1249985

string length foobar

This command returns the length of the string foobar. The string command is described in detail
starting on page 49. The nested command runs first. Then, command substitution causes the outer
command to be rewritten as if it were:
1249985

set len 6

If there are several cases of command substitution within a single command, the interpreter
processes them from left to right. As each right bracket is encountered, the command it delimits is
evaluated. This results in a sensible ordering in which nested commands are evaluated first so that
their result can be used in arguments to the outer command.
1249985

Math Expressions
621961
The Tcl interpreter itself does not evaluate math expressions. Tcl just does grouping, substitutions
and command invocations. The expr command is used to parse and evaluate math expressions.
1249985

Chapter 1. Tcl Fundamentals Page 4 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 1-4. Simple arithmetic

expr 7.2 / 4
=> 1.8

The math syntax supported by expr is the same as the C expression syntax. The expr command
deals with integer, floating point, and boolean values. Logical operations return either 0 (false) or
1 (true). Integer values are promoted to floating point values as needed. Octal values are indicated
by a leading zero (e.g., 033 is 27 decimal). Hexadecimal values are indicated by a leading 0x.
Scientific notation for floating point numbers is supported. A summary of the operator precedence
is given on page 20.
1249985
You can include variable references and nested commands in math expressions. The following
example uses expr to add the value of x to the length of the string foobar. As a result of the
innermost command substitution, the expr command sees 6 + 7, and len gets the value 13:
1249985

Example 1-5. Nested commands

set x 7
set len [expr [string length foobar] + $x]
=> 13

The expression evaluator supports a number of built-in math functions. (For a complete listing, see
page 21.) Example 1-6 computes the value of pi:
1249985

Example 1-6. Built-in math functions

set pi [expr 2*asin(1.0)]
=> 3.1415926535897931

The implementation of expr is careful to preserve accurate numeric values and avoid conversions
between numbers and strings. However, you can make expr operate more efficiently by grouping
the entire expression in curly braces. The explanation has to do with the byte code compiler that
Tcl uses internally, and its effects are explained in more detail on page 15. For now, you should be
aware that these expressions are all valid and run faster than the examples shown above:
1249985

Example 1-7. Grouping expressions with braces

expr {7.2 / 4}
set len [expr {[string length foobar] + $x}]
set pi [expr {2*asin(1.0)}]

Chapter 1. Tcl Fundamentals Page 5 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Backslash Substitution
621961
The final type of substitution done by the Tcl interpreter is backslash substitution. This is used to
quote characters that have special meaning to the interpreter. For example, you can specify a literal
dollar sign, brace, or bracket by quoting it with a backslash. As a rule, however, if you find yourself
using lots of backslashes, there is probably a simpler way to achieve the effect you are striving for.
In particular, the list command described on page 65 will do quoting for you automatically. In
Example 1-8 backslash is used to get a literal $:
1249985

Example 1-8. Quoting special characters with backslash

set dollar \$foo
=> $foo
set x $dollar
=> $foo

Only a single round of interpretation is done.
1249985

The second set command in the example illustrates an important property of Tcl. The value of
dollar does not affect the substitution performed in the assignment to x. In other words, the Tcl
parser does not care about the value of a variable when it does the substitution. In the example, the
value of x and dollar is the string $foo. In general, you do not have to worry about the value
of variables until you use eval, which is described in Chapter 10.
1249985
You can also use backslash sequences to specify characters with their Unicode, hexadecimal, or
octal value:
1249985

set escape \u001b
set escape \0x1b
set escape \033

The value of variable escape is the ASCII ESC character, which has character code 27. Table
1-1 on page 20 summarizes backslash substitutions.
1249985

Chapter 1. Tcl Fundamentals Page 6 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

A common use of backslashes is to continue long commands on multiple lines. This is necessary
because a newline terminates a command. The backslash in the next example is required; otherwise
the expr command gets terminated by the newline after the plus sign.
1249985

Example 1-9. Continuing long lines with backslashes

set totalLength [expr [string length $one] + \
 [string length $two]]

There are two fine points to escaping newlines. First, if you are grouping an argument as described
in the next section, then you do not need to escape newlines; the newlines are automatically part
of the group and do not terminate the command. Second, a backslash as the last character in a line
is converted into a space, and all the white space at the beginning of the next line is replaced by
this substitution. In other words, the backslash-newline sequence also consumes all the leading
white space on the next line.
1249985

Grouping with Braces and Double Quotes
621961
Double quotes and curly braces are used to group words together into one argument. The difference
between double quotes and curly braces is that quotes allow substitutions to occur in the group,
while curly braces prevent substitutions. This rule applies to command, variable, and backslash
substitutions.
1249985

Example 1-10. Grouping with double quotes vs. braces

set s Hello
=> Hello
puts stdout "The length of $s is [string length $s]."
=> The length of Hello is 5.
puts stdout {The length of $s is [string length $s].}
=> The length of $s is [string length $s].

In the second command of Example 1-10, the Tcl interpreter does variable and command
substitution on the second argument to puts. In the third command, substitutions are prevented,
so the string is printed as is.
1249985
In practice, grouping with curly braces is used when substitutions on the argument must be delayed
until a later time (or never done at all). Examples include loops, conditional statements, and
procedure declarations. Double quotes are useful in simple cases like the puts command
previously shown.

Chapter 1. Tcl Fundamentals Page 7 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
Another common use of quotes is with the format command. This is similar to the C printf
function. The first argument to format is a format specifier that often includes special characters
like newlines, tabs, and spaces. The easiest way to specify these characters is with backslash
sequences (e.g., \n for newline and \t for tab). The backslashes must be substituted before the
format command is called, so you need to use quotes to group the format specifier.
1249985

puts [format "Item: %s\t%5.3f" $name $value]

Here format is used to align a name and a value with a tab. The %s and %5.3f indicate how the
remaining arguments to format are to be formatted. Note that the trailing \n usually found in a
C printf call is not needed because puts provides one for us. For more information about the
format command, see page 56.
1249985

Square Brackets Do Not Group
628024
The square bracket syntax used for command substitution does not provide grouping. Instead, a
nested command is considered part of the current group. In the command below, the double quotes
group the last argument, and the nested command is just part of that group.
1249985

puts stdout "The length of $s is [string length $s]."

If an argument is made up of only a nested command, you do not need to group it with double-
quotes because the Tcl parser treats the whole nested command as part of the group.
1249985

puts stdout [string length $s]

The following is a redundant use of double quotes:
1249985

puts stdout "[expr $x + $y]"

Grouping before Substitution
628024
The Tcl parser makes a single pass through a command as it makes grouping decisions and performs
string substitutions. Grouping decisions are made before substitutions are performed, which is an
important property of Tcl. This means that the values being substituted do not affect grouping
because the grouping decisions have already been made.
1249985

Chapter 1. Tcl Fundamentals Page 8 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The following example demonstrates how nested command substitution affects grouping. A nested
command is treated as an unbroken sequence of characters, regardless of its internal structure. It is
included with the surrounding group of characters when collecting arguments for the main
command.
1249985

Example 1-11. Embedded command and variable substitution

set x 7; set y 9
puts stdout $x+$y=[expr $x + $y]
=> 7+9=16

In Example 1-11, the second argument to puts is:
1249985

$x+$y=[expr $x + $y]

The white space inside the nested command is ignored for the purposes of grouping the argument.
By the time Tcl encounters the left bracket, it has already done some variable substitutions to obtain:
1249985

7+9=

When the left bracket is encountered, the interpreter calls itself recursively to evaluate the nested
command. Again, the $x and $y are substituted before calling expr. Finally, the result of expr
is substituted for everything from the left bracket to the right bracket. The puts command gets the
following as its second argument:
1249985

7+9=16

Grouping before substitution.
1249985

The point of this example is that the grouping decision about puts's second argument is made
before the command substitution is done. Even if the result of the nested command contained spaces
or other special characters, they would be ignored for the purposes of grouping the arguments to
the outer command. Grouping and variable substitution interact the same as grouping and command
substitution. Spaces or special characters in variable values do not affect grouping decisions because
these decisions are made before the variable values are substituted.
1249985

Chapter 1. Tcl Fundamentals Page 9 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

If you want the output to look nicer in the example, with spaces around the + and =, then you must
use double quotes to explicitly group the argument to puts:
1249985

puts stdout "$x + $y = [expr $x + $y]"

The double quotes are used for grouping in this case to allow the variable and command substitution
on the argument to puts.
1249985

Grouping Math Expressions with Braces
628024
It turns out that expr does its own substitutions inside curly braces. This is explained in more detail
on page 15. This means you can write commands like the one below and the substitutions on the
variables in the expression still occur:
1249985

puts stdout "$x + $y = [expr {$x + $y}]"

More Substitution Examples
628024
If you have several substitutions with no white space between them, you can avoid grouping with
quotes. The following command sets concat to the value of variables a, b, and c all concatenated
together:
1249985

set concat ab$c

Again, if you want to add spaces, you'll need to use quotes:
1249985

set concat "$a $b $c"

In general, you can place a bracketed command or variable reference anywhere. The following
computes a command name:
1249985

[findCommand $x] arg arg

When you use Tk, you often use widget names as command names:
1249985

$text insert end "Hello, World!"

Chapter 1. Tcl Fundamentals Page 10 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Procedures
621961
Tcl uses the proc command to define procedures. Once defined, a Tcl procedure is used just like
any of the other built-in Tcl commands. The basic syntax to define a procedure is:
1249985

proc name arglist body

The first argument is the name of the procedure being defined. The second argument is a list of
parameters to the procedure. The third argument is a command body that is one or more Tcl
commands.
1249985
The procedure name is case sensitive, and in fact it can contain any characters. Procedure names
and variable names do not conflict with each other. As a convention, this book begins procedure
names with uppercase letters and it begins variable names with lowercase letters. Good
programming style is important as your Tcl scripts get larger. Tcl coding style is discussed in
Chapter 12.
1249985

Example 1-12. Defining a procedure

proc Diag {a b} {
 set c [expr {sqrt($a * $a + $b * $b)}]
 return $c
}
puts "The diagonal of a 3, 4 right triangle is [Diag 3 4]"
=> The diagonal of a 3, 4 right triangle is 5.0

The Diag procedure defined in the example computes the length of the diagonal side of a right
triangle given the lengths of the other two sides. The sqrt function is one of many math functions
supported by the expr command. The variable c is local to the procedure; it is defined only during
execution of Diag. Variable scope is discussed further in Chapter 7. It is not really necessary to
use the variable c in this example. The procedure can also be written as:
1249985

proc Diag {a b} {
 return [expr {sqrt($a * $a + $b * $b)}]
}

The return command is used to return the result of the procedure. The return command is
optional in this example because the Tcl interpreter returns the value of the last command in the
body as the value of the procedure. So, the procedure could be reduced to:
1249985

Chapter 1. Tcl Fundamentals Page 11 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

proc Diag {a b} {
 expr {sqrt($a * $a + $b * $b)}
}

Note the stylized use of curly braces in the example. The curly brace at the end of the first line starts
the third argument to proc, which is the command body. In this case, the Tcl interpreter sees the
opening left brace, causing it to ignore newline characters and scan the text until a matching right
brace is found. Double quotes have the same property. They group characters, including newlines,
until another double quote is found. The result of the grouping is that the third argument to proc
is a sequence of commands. When they are evaluated later, the embedded newlines will terminate
each command.
1249985
The other crucial effect of the curly braces around the procedure body is to delay any substitutions
in the body until the time the procedure is called. For example, the variables a, b, and c are not
defined until the procedure is called, so we do not want to do variable substitution at the time
Diag is defined.
1249985
The proc command supports additional features such as having variable numbers of arguments
and default values for arguments. These are described in detail in Chapter 7.
1249985

A Factorial Example
621961
To reinforce what we have learned so far, below is a longer example that uses a while loop to
compute the factorial function:
1249985

Example 1-13. A while loop to compute factorial

proc Factorial {x} {
 set i 1; set product 1
 while {$i <= $x} {
 set product [expr {$product * $i}]
 incr i
 }
 return $product
}
Factorial 10
=> 3628800

The semicolon is used on the first line to remind you that it is a command terminator just like the
newline character. The while loop is used to multiply all the numbers from one up to the value
of x. The first argument to while is a boolean expression, and its second argument is a command
body to execute. The while command and other control structures are described in Chapter 6.
1249985

Chapter 1. Tcl Fundamentals Page 12 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The same math expression evaluator used by the expr command is used by while to evaluate
the boolean expression. There is no need to explicitly use the expr command in the first argument
to while, even if you have a much more complex expression.
1249985
The loop body and the procedure body are grouped with curly braces in the same way. The opening
curly brace must be on the same line as proc and while. If you like to put opening curly braces
on the line after a while or if statement, you must escape the newline with a backslash:
1249985

while {$i < $x} \
{
 set product ...
}

Always group expressions and command bodies with curly braces.
1249985

Curly braces around the boolean expression are crucial because they delay variable substitution
until the while command implementation tests the expression. The following example is an
infinite loop:
1249985

set i 1; while $i<=10 {incr i}

The loop will run indefinitely.[*] The reason is that the Tcl interpreter will substitute for $i
before while is called, so while gets a constant expression 1<=10 that will always be true. You
can avoid these kinds of errors by adopting a consistent coding style that groups expressions with
curly braces:
1249985

[*] Ironically, Tcl 8.0 introduced a byte-code compiler, and the first releases of Tcl 8.0 had a bug in the compiler that caused this loop to terminate! This bug is fixed in the 8.0.5 patch
release.

set i 1; while {$i<=10} {incr i}

The incr command is used to increment the value of the loop variable i. This is a handy command
that saves us from the longer command:
1249985

set i [expr {$i + 1}]

The incr command can take an additional argument, a positive or negative integer by which to
change the value of the variable. Using this form, it is possible to eliminate the loop variable i and
just modify the parameter x. The loop body can be written like this:

Chapter 1. Tcl Fundamentals Page 13 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
while {$x > 1} {
 set product [expr {$product * $x}]
 incr x -1
}

Example 1-14 shows factorial again, this time using a recursive definition. A recursive function is
one that calls itself to complete its work. Each recursive call decrements x by one, and when x is
one, then the recursion stops.
1249985

Example 1-14. A recursive definition of factorial

proc Factorial {x} {
 if {$x <= 1} {
 return 1
 } else {
 return [expr {$x * [Factorial [expr {$x - 1}]]}]
 }
}

More about Variables
621961
The set command will return the value of a variable if it is only passed a single argument. It treats
that argument as a variable name and returns the current value of the variable. The dollar-sign syntax
used to get the value of a variable is really just an easy way to use the set command. Example
1-15 shows a trick you can play by putting the name of one variable into another variable:
1249985

Example 1-15. Using set to return a variable value

set var {the value of var}
=> the value of var
set name var
=> var
set name
=> var
set $name
=> the value of var

This is a somewhat tricky example. In the last command, $name gets substituted with var. Then,
the set command returns the value of var, which is the value of var. Nested set
commands provide another way to achieve a level of indirection. The last set command above
can be written as follows:
1249985

Chapter 1. Tcl Fundamentals Page 14 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

set [set name]
=> the value of var

Using a variable to store the name of another variable may seem overly complex. However, there
are some times when it is very useful. There is even a special command, upvar, that makes this
sort of trick easier. The upvar command is described in detail in Chapter 7.
1249985

Funny Variable Names
628024
The Tcl interpreter makes some assumptions about variable names that make it easy to embed
variable references into other strings. By default, it assumes that variable names contain only letters,
digits, and the underscore. The construct $foo.o represents a concatenation of the value of foo
and the literal ".o".
1249985
If the variable reference is not delimited by punctuation or white space, then you can use curly
braces to explicitly delimit the variable name (e.g., ${x}). You can also use this to reference
variables with funny characters in their name, although you probably do not want variables named
like that. If you find yourself using funny variable names, or computing the names of variables,
then you may want to use the upvar command.
1249985

Example 1-16. Embedded variable references

set foo filename
set object $foo.o
=> filename.o
set a AAA
set b abc${a}def
=> abcAAAdef
set .o yuk!
set x ${.o}y
=> yuk!y

The unset Command
628024
You can delete a variable with the unset command:
1249985

unset ?-nocomplain? ?--? varName varName2 ...

Chapter 1. Tcl Fundamentals Page 15 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Any number of variable names can be passed to the unset command. However, unset will raise
an error if a variable is not already defined, unless the -nocomplain is given. Use -- to
unset a variable named -nocomplain.
1249985

Using info to Find Out about Variables
628024
The existence of a variable can be tested with the info exists command. For example, because
incr requires that a variable exist, you might have to test for the existence of the variable first.
1249985

Example 1-17. Using info to determine if a variable exists

if {![info exists foobar]} {
 set foobar 0
} else {
 incr foobar
}

Example 7-6 on page 92 implements a version of incr which handles this case.
1249985

More about Math Expressions
621961
This section describes a few fine points about math in Tcl scripts. In Tcl 7.6 and earlier versions
math is not that efficient because of conversions between strings and numbers. The expr command
must convert its arguments from strings to numbers. It then does all its computations with double
precision floating point values. The result is formatted into a string that has, by default, 12 significant
digits. This number can be changed by setting the tcl_precision variable to the number of
significant digits desired. Seventeen digits of precision are enough to ensure that no information is
lost when converting back and forth between a string and an IEEE double precision number:
1249985

Example 1-18. Controlling precision with tcl_precision

expr 1 / 3
=> 0
expr 1 / 3.0
=> 0.333333333333
set tcl_precision 17
=> 17
expr 1 / 3.0
The trailing 1 is the IEEE rounding digit
=> 0.33333333333333331

Chapter 1. Tcl Fundamentals Page 16 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

In Tcl 8.0 and later versions, the overhead of conversions is eliminated in most cases by the built-
in compiler. Even so, Tcl was not designed to support math-intensive applications. You may want
to implement math-intensive code in a compiled language and register the function as a Tcl
command as described in Chapter 47.
1249985
There is support for string comparisons by expr, so you can test string values in if statements.
You must use quotes so that expr knows to do string comparisons:
1249985

if {$answer == "yes"} { ... }

However, the string compare and string equal commands described in Chapter 4 are
more reliable because expr may do conversions on strings that look like numbers. The issues with
string operations and expr are discussed on page 52. Tcl 8.4 introduced eq and ne expr
operators to allow strict string based comparison.
1249985
Expressions can include variable and command substitutions and still be grouped with curly braces.
This is because an argument to expr is subject to two rounds of substitution: one by the Tcl
interpreter, and a second by expr itself. Ordinarily this is not a problem because math values do
not contain the characters that are special to the Tcl interpreter. The second round of substitutions
is needed to support commands like while and if that use the expression evaluator internally.
1249985

Grouping expressions can make them run more efficiently.
1249985

You should always group expressions in curly braces and let expr do command and variable
substitutions. Otherwise, your values may suffer extra conversions from numbers to strings and
back to numbers. Not only is this process slow, but the conversions can lose precision in certain
circumstances. For example, suppose x is computed from a math function:
1249985

set x [expr {sqrt(2.0)}]

At this point the value of x is a double-precision floating point value, just as you would expect. If
you do this:
1249985

set two [expr $x * $x]

Chapter 1. Tcl Fundamentals Page 17 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

then you may or may not get 2.0 as the result! This is because Tcl will substitute $x and expr will
concatenate all its arguments into one string, and then parse the expression again. In contrast, if
you do this:
1249985

set two [expr {$x * $x}]

then expr will do the substitutions, and it will be careful to preserve the floating point value of
x. The expression will be more accurate and run more efficiently because no string conversions
will be done. The story behind Tcl values is described in more detail in Chapter 47 on C
programming and Tcl.
1249985

Comments
621961
Tcl uses the pound character, #, for comments. Unlike in many other languages, the # must occur
at the beginning of a command. A # that occurs elsewhere is not treated specially. An easy trick to
append a comment to the end of a command is to precede the # with a semicolon to terminate the
previous command:
1249985

Here are some parameters
set rate 7.0 ;# The interest rate
set months 60 ;# The loan term

One subtle effect to watch for is that a backslash effectively continues a comment line onto the next
line of the script. In addition, a semicolon inside a comment is not significant. Only a newline
terminates comments:
1249985

Here is the start of a Tcl comment \
and some more of it; still in the comment

The behavior of a backslash in comments is pretty obscure, but it can be exploited as shown in
Example 2-3 on page 27.
1249985
A surprising property of Tcl comments is that curly braces inside comments are still counted for
the purposes of finding matching brackets. The motivation for this odd feature was to keep the
original Tcl parser simpler. However, it means that the following will not work as expected to
comment out an alternate version of an if expression:
1249985

if {boolean expression1} {
if {boolean expression2} {
 some commands
}

Chapter 1. Tcl Fundamentals Page 18 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The previous sequence results in an extra left curly brace, and probably a complaint about a missing
close brace at the end of your script! A technique I use to comment out large chunks of code is to
put the code inside an if block that will never execute:
1249985

if {0} {
unused code here
}

Substitution and Grouping Summary
621961

1249985
The following rules summarize the fundamental mechanisms of grouping and substitution that are
performed by the Tcl interpreter before it invokes a command:
1249985

• Command arguments are separated by white space, unless arguments are grouped with curly braces or double quotes as described
below.

• Grouping with curly braces, { }, prevents substitutions. Braces nest. The interpreter includes all characters between the matching left
and right brace in the group, including newlines, semicolons, and nested braces. The enclosing (i.e., outermost) braces are not included
in the group's value.

• Grouping with double quotes, " ", allows substitutions. The interpreter groups everything until another double quote is found, including
newlines and semicolons. The enclosing quotes are not included in the group of characters. A double-quote character can be included
in the group by quoting it with a backslash, (e.g., \").

• Grouping decisions are made before substitutions are performed, which means that the values of variables or command results do not
affect grouping.

• A dollar sign, $, causes variable substitution. Variable names can be any length, and case is significant. If variable references are
embedded into other strings, or if they include characters other than letters, digits, and the underscore, they can be distinguished with
the ${varname} syntax.

• Square brackets, [], cause command substitution. Everything between the brackets is treated as a command, and everything including
the brackets is replaced with the result of the command. Nesting is allowed.

• The backslash character, \, is used to quote special characters. You can think of this as another form of substitution in which the
backslash and the next character or group of characters are replaced with a new character.

• Substitutions can occur anywhere unless prevented by curly brace grouping. Part of a group can be a constant string, and other parts
of it can be the result of substitutions. Even the command name can be affected by substitutions.

• A single round of substitutions is performed before command invocation. The result of a substitution is not interpreted a second time.
This rule is important if you have a variable value or a command result that contains special characters such as spaces, dollar signs,
square brackets, or braces. Because only a single round of substitution is done, you do not have to worry about special characters in
values causing extra substitutions.

Fine Points
621961

• A common error is to forget a space between arguments when grouping with braces or quotes. This is because white space is used as
the separator, while the braces or quotes only provide grouping. If you forget the space, you will get syntax errors about unexpected
characters after the closing brace or quote. The following is an error because of the missing space between } and {:

Chapter 1. Tcl Fundamentals Page 19 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if {$x > 1}{puts "x = $x"}
• A double quote is only used for grouping when it comes after white space. This means you can include a double quote in the middle

of a group without quoting it with a backslash. This requires that curly braces or white space delimit the group. I do not recommend
using this obscure feature, but this is what it looks like:

set silly a"b
• When double quotes are used for grouping, the special effect of curly braces is turned off. Substitutions occur everywhere inside a

group formed with double quotes. In the next command, the variables are still substituted:

set x xvalue
set y "foo {$x} bar"
=> foo {xvalue} bar

• When double quotes are used for grouping and a nested command is encountered, the nested command can use double quotes for
grouping, too.

puts "results [format "%f %f" $x $y]"
• Spaces are not required around the square brackets used for command substitution. For the purposes of grouping, the interpreter considers

everything between the square brackets as part of the current group. The following sets x to the concatenation of two command results
because there is no space between] and [.

set x [cmd1][cmd2]
• Newlines and semicolons are ignored when grouping with braces or double quotes. They get included in the group of characters just

like all the others. The following sets x to a string that contains newlines:

set x "This is line one.
This is line two.
This is line three."

• During command substitution, newlines and semicolons are significant as command terminators. If you have a long command that is
nested in square brackets, put a backslash before the newline if you want to continue the command on another line. This was illustrated
in Example 1-9 on page 8.

• A dollar sign followed by something other than a letter, digit, underscore, or left parenthesis is treated as a literal dollar sign. The
following sets x to the single character $.

set x $

Reference
621961

Backslash Sequences
628024

Table 1-1. Backslash sequences

\a
1249985

Bell. (0x7)
1249985

\b
1249985

Backspace. (0x8)
1249985

\f Form feed. (0xc)

Chapter 1. Tcl Fundamentals Page 20 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

\n
1249985

Newline. (0xa)
1249985

\r
1249985

Carriage return. (0xd)
1249985

\t
1249985

Tab. (0x9)
1249985

\v
1249985

Vertical tab. (0xb)
1249985

\<newline>
1249985

Replace the newline and the leading white space on the next line with a space.
1249985

\\
1249985

Backslash. ('\')
1249985

\ooo
1249985

Octal specification of character code. 1, 2, or 3 octal digits (0-7).
1249985

\xhh
1249985

Hexadecimal specification of character code. 1 or 2 hex digits. Be careful when using this in a string
of characters, because all hexadecimal characters following the \x will be consumed, but only the
last 2 will specify the value.
1249985

\uhhhh
1249985

Hexadecimal specification of a 16-bit Unicode character value. 4 hex digits.
1249985

\c
1249985

Replaced with literal c if c is not one of the cases listed above. In particular, \$, \", \{, \}, \],
and \[are used to obtain these characters.
1249985

Arithmetic Operators
628024

Table 1-2. Arithmetic operators from highest to lowest precedence

- ~ !
1249985

Unary minus, bitwise NOT, logical NOT.
1249985

* / %
1249985

Multiply, divide, remainder.
1249985

+ -
1249985

Add, subtract.
1249985

<< >>
1249985

Left shift, right shift.
1249985

Chapter 1. Tcl Fundamentals Page 21 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

< > <= >=
1249985

Comparison: less, greater, less or equal, greater or equal.
1249985

== != eq ne
1249985

Equal, not equal, string equal (Tcl 8.4), string not equal (Tcl 8.4).
1249985

&
1249985

Bitwise AND.
1249985

^
1249985

Bitwise XOR.
1249985

|
1249985

Bitwise OR.
1249985

&&
1249985

Logical AND.
1249985

||
1249985

Logical OR.
1249985

x?y:z
1249985

If x then y else z.
1249985

Built-in Math Functions
628024

Table 1-3. Built-in math functions

acos(x)
1249985

Arccosine of x.
1249985

asin(x)
1249985

Arcsine of x.
1249985

atan(x)
1249985

Arctangent of x.
1249985

atan2(y,x)
1249985

Rectangular (x,y) to polar (r,th). atan2 gives th.
1249985

ceil(x)
1249985

Least integral value greater than or equal to x.
1249985

cos(x)
1249985

Cosine of x.
1249985

cosh(x)
1249985

Hyperbolic cosine of x.
1249985

exp(x) Exponential, ex.

Chapter 1. Tcl Fundamentals Page 22 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

floor(x)
1249985

Greatest integral value less than or equal to x.
1249985

fmod(x,y)
1249985

Floating point remainder of x/y.
1249985

hypot(x,y)
1249985

Returns sqrt(x*x + y*y). r part of polar coordinates.
1249985

log(x)
1249985

Natural log of x.
1249985

log10(x)
1249985

Log base 10 of x.
1249985

pow(x,y)
1249985

x to the y power, xy.
1249985

sin(x)
1249985

Sine of x.
1249985

sinh(x)
1249985

Hyperbolic sine of x.
1249985

sqrt(x)
1249985

Square root of x.
1249985

tan(x)
1249985

Tangent of x.
1249985

tanh(x)
1249985

Hyperbolic tangent of x.
1249985

abs(x)
1249985

Absolute value of x.
1249985

double(x)
1249985

Promote x to floating point.
1249985

int(x)
1249985

Truncate x to an integer.
1249985

round(x)
1249985

Round x to an integer.
1249985

rand()
1249985

Return a random floating point value between 0.0 and 1.0.
1249985

srand(x)
1249985

Set the seed for the random number generator to the integer x.
1249985

wide(x)
1249985

Promote x to a wide (64-bit) integer. (Tcl 8.4)
1249985

Chapter 1. Tcl Fundamentals Page 23 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Core Tcl Commands
628024
The pages listed in Table 1-4 give the primary references for the command.
1249985

Table 1-4. Built-in Tcl commands

Command
1249985

Pg.
1249985

Description
1249985

after
1249985

228
1249985

Schedule a Tcl command for later execution.
1249985

append
1249985

56
1249985

Append arguments to a variable's value. No spaces added.
1249985

array
1249985

97
1249985

Query array state and search through elements.
1249985

binary
1249985

59
1249985

Convert between strings and binary data.
1249985

break
1249985

83
1249985

Exit loop prematurely.
1249985

catch
1249985

83
1249985

Trap errors.
1249985

cd
1249985

122
1249985

Change working directory.
1249985

clock
1249985

183
1249985

Get the time and format date strings.
1249985

close
1249985

121
1249985

Close an open I/O stream.
1249985

concat
1249985

65
1249985

Concatenate arguments with spaces between. Splices lists.
1249985

console
1249985

29
1249985

Control the console used to enter commands interactively.
1249985

continue
1249985

83
1249985

Continue with next loop iteration.
1249985

error
1249985

85
1249985

Raise an error.
1249985

eof
1249985

116
1249985

Check for end of file.
1249985

Chapter 1. Tcl Fundamentals Page 24 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Command
1249985

Pg.
1249985

Description
1249985

eval
1249985

130
1249985

Concatenate arguments and evaluate them as a command.
1249985

exec
1249985

105
1249985

Fork and execute a UNIX program.
1249985

exit
1249985

124
1249985

Terminate the process.
1249985

expr
1249985

6
1249985

Evaluate a math expression.
1249985

fblocked
1249985

233
1249985

Poll an I/O channel to see if data is ready.
1249985

fconfigure
1249985

231
1249985

Set and query I/O channel properties.
1249985

fcopy
1249985

250
1249985

Copy from one I/O channel to another.
1249985

file
1249985

108
1249985

Query the file system.
1249985

fileevent
1249985

229
1249985

Register callback for event-driven I/O.
1249985

flush
1249985

116
1249985

Flush output from an I/O stream's internal buffers.
1249985

for
1249985

82
1249985

Loop construct similar to C for statement.
1249985

foreach
1249985

79
1249985

Loop construct over a list, or lists, of values.
1249985

format
1249985

56
1249985

Format a string similar to C sprintf.
1249985

gets
1249985

119
1249985

Read a line of input from an I/O stream.
1249985

glob
1249985

122
1249985

Expand a pattern to matching file names.
1249985

global
1249985

90
1249985

Declare global variables.
1249985

history
1249985

196
1249985

Use command-line history.
1249985

if 76 Test a condition. Allows else and elseif clauses.

Chapter 1. Tcl Fundamentals Page 25 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Command
1249985

Pg.
1249985

Description
1249985

1249985 1249985 1249985

incr
1249985

12
1249985

Increment a variable by an integer amount.
1249985

info
1249985

186
1249985

Query the state of the Tcl interpreter.
1249985

interp
1249985

292
1249985

Create additional Tcl interpreters.
1249985

join
1249985

72
1249985

Concatenate list elements with a given separator string.
1249985

lappend
1249985

66
1249985

Add elements to the end of a list.
1249985

lindex
1249985

68
1249985

Fetch an element of a list.
1249985

linsert
1249985

68
1249985

Insert elements into a list.
1249985

list
1249985

65
1249985

Create a list out of the arguments.
1249985

llength
1249985

68
1249985

Return the number of elements in a list.
1249985

load
1249985

697
1249985

Load shared libraries that define Tcl commands.
1249985

lrange
1249985

68
1249985

Return a range of list elements.
1249985

lreplace
1249985

68
1249985

Replace elements of a list.
1249985

lsearch
1249985

69
1249985

Search for an element of a list that matches a pattern.
1249985

lset
1249985

62
1249985

Set an element in a list. (Tcl 8.4)
1249985

lsort
1249985

70
1249985

Sort a list.
1249985

namespace
1249985

213
1249985

Create and manipulate namespaces.
1249985

open
1249985

116
1249985

Open a file or process pipeline for I/O.
1249985

Chapter 1. Tcl Fundamentals Page 26 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Command
1249985

Pg.
1249985

Description
1249985

package
1249985

175
1249985

Provide or require code packages.
1249985

pid
1249985

124
1249985

Return the process ID.
1249985

proc
1249985

87
1249985

Define a Tcl procedure.
1249985

puts
1249985

119
1249985

Output a string to an I/O stream.
1249985

pwd
1249985

122
1249985

Return the current working directory.
1249985

read
1249985

120
1249985

Read blocks of characters from an I/O stream.
1249985

regexp
1249985

158
1249985

Match regular expressions.
1249985

regsub
1249985

162
1249985

Substitute based on regular expressions.
1249985

rename
1249985

88
1249985

Change the name of a Tcl command.
1249985

return
1249985

86
1249985

Return a value from a procedure.
1249985

scan
1249985

58
1249985

Parse a string according to a format specification.
1249985

seek
1249985

121
1249985

Set the seek offset of an I/O stream.
1249985

set
1249985

5
1249985

Assign a value to a variable.
1249985

socket
1249985

239
1249985

Open a TCP/IP network connection.
1249985

source
1249985

26
1249985

Evaluate the Tcl commands in a file.
1249985

split
1249985

71
1249985

Chop a string up into list elements.
1249985

string
1249985

49
1249985

Operate on strings.
1249985

subst 140 Substitute embedded commands and variable references.

Chapter 1. Tcl Fundamentals Page 27 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Command
1249985

Pg.
1249985

Description
1249985

1249985 1249985 1249985

switch
1249985

77
1249985

Test several conditions.
1249985

tell
1249985

121
1249985

Return the current seek offset of an I/O stream.
1249985

time
1249985

202
1249985

Measure the execution time of a command.
1249985

trace
1249985

193
1249985

Monitor variable assignments.
1249985

unknown
1249985

178
1249985

Handle unknown commands.
1249985

unset
1249985

13
1249985

Delete variables.
1249985

uplevel
1249985

138
1249985

Execute a command in a different scope.
1249985

upvar
1249985

91
1249985

Reference a variable in a different scope.
1249985

variable
1249985

207
1249985

Declare namespace variables.
1249985

vwait
1249985

230
1249985

Wait for a variable to be modified.
1249985

while
1249985

79
1249985

Loop until a boolean expression is false.
1249985

Chapter 1. Tcl Fundamentals Page 28 Return to Table of Contents

Chapter 1. Tcl Fundamentals
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

