
Table of Contents

Chapter 16. Event-Driven Programming.. 1
The Tcl Event Loop.. 1
The after Command... 2
The fileevent Command... 3
The vwait Command.. 5
The fconfigure Command.. 6

Chapter 16. Event-Driven Programming

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 16. Event-Driven Programming
821

1249985
This chapter describes event-driven programming using timers and asynchronous I/O
facilities. The after command causes Tcl commands to occur at a time in the future, and
the fileevent command registers a command to occur in response to file input/output (I/
O). Tcl commands discussed are: after, fblocked, fconfigure, fileevent, and
vwait.
1249985
Event-driven programming is used in long-running programs like network servers and
graphical user interfaces. This chapter introduces event-driven programming in Tcl. Tcl
provides an easy model in which you register Tcl commands, and the system then calls those
commands when a particular event occurs. The after command is used to execute Tcl
commands at a later time, and the fileevent command is used to execute Tcl commands
when the system is ready for I/O. The vwait command is used to wait for events. During the
wait, Tcl automatically calls Tcl commands that are associated with different events.
1249985
The event model is also used when programming user interfaces using Tk. Originally, event
processing was associated only with Tk. The event loop moved from Tk to Tcl in the Tcl 7.5/
Tk 4.1 release.
1249985

The Tcl Event Loop
621961

1249985
An event loop is built into Tcl, which checks for events and calls out to handlers that have
been registered for different types of events. Some of the events are processed internally to
Tcl. You can register Tcl commands to be called in response to events. There are also C APIs
for the event loop, which are described on page 781. Event processing is active all the time

Chapter 16. Event-Driven Programming Page 1 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

in Tk applications. If you do not use Tk, you can start the event loop with the vwait command
as shown in Example 16-2 on page 230. The four event classes are handled in the following
order:
1249985

• Window events. These include keystrokes and button clicks. Handlers are set up for these
automatically by the Tk widgets, and you can register window event handlers with the
bind command described in Chapter 29.

• File and socket I/O events. The fileevent command registers handlers for these
events.

• Timer events. The after command registers commands to occur at specific times.
• Idle events. These events are processed when there is nothing else to do. The Tk widgets

use idle events to display themselves. The after idle command registers a command
to run at the next idle time.

The after Command
621961

1249985
The after command sets up commands to happen in the future. In its simplest form, it
pauses the application for a specified time, in milliseconds. The example below waits for half
a second:
1249985

after 500

During this time, the application does not process events. You can use the vwait command
as shown on page 230 to keep the Tcl event loop active during the waiting period. The
after command can register a Tcl command to occur after a period of time, in milliseconds:
1249985

after
milliseconds cmd arg arg
...

The after command treats its arguments like eval; if you give it extra arguments, it
concatenates them to form a single command. If your argument structure is important, use
list to build the command. The following example always works, no matter what the value
of myvariable is:
1249985

after 500 [list puts $myvariable]

Chapter 16. Event-Driven Programming Page 2 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The return value of after is an identifier for the registered command. You can cancel this
command with the after cancel operation. You specify either the identifier returned
from after, or the command string. In the latter case, the event that matches the command
string exactly is canceled.
1249985
Table 16-1 summarizes the after command:
1249985

Table 16-1. The after command

after milliseconds
1249985

Pauses for milliseconds.
1249985

after ms arg ?arg...?
1249985

Concatenates the args into a command and executes it after
ms milliseconds. Immediately returns an ID.
1249985

after cancel id
1249985

Cancels the command registered under id.
1249985

after cancel command
1249985

Cancels the registered command.
1249985

after idle command
1249985

Runs command at the next idle moment.
1249985

after info ?id?
1249985

Returns a list of IDs for outstanding after events, or the
command associated with id.
1249985

The fileevent Command
621961

1249985
The fileevent command registers a procedure that is called when an I/O channel is ready
for read or write events. For example, you can open a pipeline or network socket for reading,
and then process the data from the pipeline or socket using a command registered with
fileevent. The advantage of this approach is that your application can do other things,
like update the user interface, while waiting for data from the pipeline or socket. Network
servers use fileevent to manage connections to many clients. You can use fileevent
on stdin and stdout, too. Using network sockets is described in Chapter 17.
1249985

Chapter 16. Event-Driven Programming Page 3 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The command registered with fileevent uses the regular Tcl commands to read or write
data on the I/O channel. For example, if the pipeline generates line-oriented output, you
should use gets to read a line of input. If you try and read more data than is available, your
application may block waiting for more input. For this reason, you should read one line in
your fileevent handler, assuming the data is line-oriented. If you know the pipeline will
generate data in fixed-sized blocks, then you can use the read command to read one block.

1249985
The fconfigure command, which is described on page 232, can put a channel into
nonblocking mode. This is not strictly necessary when using fileevent. The pros and cons
of nonblocking I/O are discussed later.
1249985

End of file makes a channel readable.
1249985

You should check for end of file in your read handler because it will be called when end of
file occurs. It is important to close the channel inside the handler because closing the channel
automatically unregisters the handler. If you forget to close the channel, your read event
handler will be called repeatedly.
1249985
Example 16-1 shows a read event handler. A pipeline is opened for reading and its command
executes in the background. The Reader command is invoked when data is available on the
pipe. When end of file is detected a variable is set, which signals the application waiting with
vwait. Otherwise, a single line of input is read and processed. The vwait command is
described on the next page. Example 24-1 on page 378 also uses fileevent to read from
a pipeline.
1249985

Example 16-1. A read event file handler

proc Reader { pipe } {
 global done
 if {[eof $pipe]} {
 catch {close $pipe}
 set done 1
 return
 }
 gets $pipe line
 # Process the line here...
}
set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
vwait done

Chapter 16. Event-Driven Programming Page 4 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

There can be at most one read handler and one write handler for an I/O channel. If you register
a handler and one is already registered, then the old registration is removed. If you call
fileevent without a command argument, it returns the currently registered command, or
it returns the empty string if there is none. If you register the empty string, it deletes the
current file handler. Table 16-2 summarizes the fileevent command.
1249985

Table 16-2. The fileevent command

fileevent fileId readable ?
command?
1249985

Queries or registers command to be called
when fileId is readable.
1249985

fileevent fileId writable ?
command?
1249985

Queries or registers command to be called
when fileId is writable.
1249985

The vwait Command
621961

1249985
The vwait command waits until a variable is modified. For example, you can set variable
x at a future time, and then wait for that variable to be set with vwait.
1249985

set x 0
after 500 {set x 1}
vwait x

Waiting with vwait causes Tcl to enter the event loop. Tcl will process events until the
variable x is modified. The vwait command completes when some Tcl code runs in response
to an event and modifies the variable. In this case the event is a timer event, and the Tcl code
is simply:
1249985

set x 1

In some cases vwait is used only to start the event loop. Example 16-2 sets up a file event
handler for stdin that will read and execute commands. Once this is set up, vwait is used
to enter the event loop and process commands until the input channel is closed. The process
exits at that point, so the vwait variable Stdin(wait) is not used:
1249985

Chapter 16. Event-Driven Programming Page 5 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 16-2. Using vwait to activate the event loop

proc Stdin_Start {prompt} {
 global Stdin
 set Stdin(line) ""
 puts -nonewline $prompt
 flush stdout
 fileevent stdin readable [list StdinRead $prompt]
 vwait Stdin(wait)
}
proc StdinRead {prompt} {
 global Stdin
 if {[eof stdin]} {
 exit
 }
 append Stdin(line) [gets stdin]
 if {[info complete $Stdin(line)]} {
 catch {uplevel #0 $Stdin(line)} result
 puts $result
 puts -nonewline $prompt
 flush stdout
 set Stdin(line) {}
 } else {
 append Stdin(line) \n
 }
}

The fconfigure Command
621961
The fconfigure command sets and queries several properties of I/O channels. The default
settings for channels are suitable for most cases. If you do event-driven I/O you may want to
set your channel into nonblocking mode. If you handle binary data, you should turn off end
of line and character set translations. You can query the channel parameters like this:
1249985

fconfigure stdin
=> -blocking 1 -buffering none -buffersize 4096 -encoding iso8859-1 -eofchar {}

-
translation lf

Table 16-3 summarizes the properties controlled by fconfigure, not including properties
for serial lines.
1249985

Table 16-3. I/O channel properties controlled by fconfigure

-blocking
1249985

Blocks until I/O channel is ready: 0 or 1.

Chapter 16. Event-Driven Programming Page 6 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

-buffering
1249985

Buffer mode: none, line, or full.

-buffersize
1249985

Number of characters in the buffer.
1249985

-encoding
1249985

The character set encoding.
1249985

-eofchar
1249985

Special end of file character. Control-z (\x1a) for DOS. Null otherwise.
1249985

-lasterror
1249985

Returns the last POSIX error message associated with a channel.
1249985

-translation
1249985

End of line translation: auto, lf, cr, crlf, binary.

-peername
1249985

Sockets only. IP address of remote host.
1249985

-peerport
1249985

Sockets only. Port number of remote host.
1249985

Serial lines have many additional properties. Before Tcl 8.4, you could only control the baud
rate, parity and number of bits using the -mode property. Many new properties for serial line
control were added in Tcl 8.4. Table 16-4 lists the serial line properties set by fconfigure.
1249985

Table 16-4. Serial line properties controlled by fconfigure

-mode
1249985

Format: baud,parity,data,stop.

-queue
1249985

Returns a list of two integers representing the current number of bytes
in the input and output queues. Tcl 8.4.
1249985

-timeout
1249985

Specifies the timeout in milliseconds for blocking reads. Tcl 8.4.
1249985

-ttycontrol
1249985

Sets up the handshake output lines. Tcl 8.4.
1249985

-ttystatus
1249985

Returns the current serial line status. Tcl 8.4.
1249985

Chapter 16. Event-Driven Programming Page 7 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

-xchar
1249985

Specifies the software handshake characters. Tcl 8.4.
1249985

-handshake
1249985

Specifies one of rtscts, xonxoff or (Windows only) dtrdsr. Tcl 8.4.
1249985

-pollinterval
1249985

Sets the maximum time for polling of fileevents (Windows only.) Tcl 8.4.
1249985

-sysbuffer
1249985

Specifies the size of system buffers for a serial channel. (Windows only.)
Tcl 8.4.
1249985

Nonblocking I/O
628024
By default, I/O channels are blocking. A gets or read will wait until data is available before
returning. A puts may also wait if the I/O channel is not ready to accept data. This behavior
is all right if you are using disk files, which are essentially always ready. If you use pipelines
or network sockets, however, the blocking behavior can hang up your application.
1249985
The fconfigure command can set a channel into nonblocking mode. A gets or read
command may return immediately with no data. This occurs when there is no data available
on a socket or pipeline. A puts to a nonblocking channel will accept all the data and buffer
it internally. When the underlying device (i.e., a pipeline or socket) is ready, then Tcl
automatically writes out the buffered data. Nonblocking channels are useful because your
application can do something else while waiting for the I/O channel. You can also manage
several nonblocking I/O channels at once. Nonblocking channels should be used with the
fileevent command described earlier. The following command puts a channel into
nonblocking mode:
1249985

fconfigure
fileID
 -blocking 0

It is not strictly necessary to put a channel into nonblocking mode if you use fileevent.
However, if the channel is in blocking mode, then it is still possible for the gets or read
done by your fileevent procedure to block. For example, an I/O channel might have some
data ready, but not a complete line. In this case, a gets would block, unless the channel is
nonblocking. Perhaps the best motivation for a nonblocking channel is the buffering
behavior of a nonblocking puts. You can even close a channel that has buffered data, and
Tcl will automatically write out the buffers as the channel becomes ready. For these reasons,
it is common to use a nonblocking channel with fileevent. Example 16-3 shows a

Chapter 16. Event-Driven Programming Page 8 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

fileevent handler for a nonblocking channel. As described above, the gets may not find
a complete line, in which case it doesn't read anything and returns -1.
1249985

Example 16-3. A read event file handler for a nonblocking channel

set pipe [open "|some command"]
fileevent $pipe readable [list Reader $pipe]
fconfigure $pipe -blocking 0
proc Reader { pipe } {
 global done
 if {[eof $pipe]} {
 catch {close $pipe}
 set done 1
 return
 }

if {[gets $pipe line] < 0} {

 # We blocked anyway because only part of a line
 # was available for input
 } else {
 # Process one line
 }
}
vwait done

The fblocked Command
628024
The fblocked command returns 1 if a channel does not have data ready. Normally the
fileevent command takes care of waiting for data, so I have seen fblocked useful only
in testing channel implementations.
1249985

Buffering
628024
By default, Tcl buffers data, so I/O is more efficient. The underlying device is accessed less
frequently, so there is less overhead. In some cases you may want data to be visible
immediately and buffering gets in the way. The following turns off all buffering:
1249985

fconfigure
fileID
 -buffering none

Full buffering means that output data is accumulated until a buffer fills; then a write is
performed. For reading, Tcl attempts to read a whole buffer each time more data is needed.
The read-ahead for buffering will not block. The -buffersize parameter controls the
buffer size:
1249985

Chapter 16. Event-Driven Programming Page 9 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

fconfigure
fileID
 -buffering full -buffersize 8192

Line buffering is used by default on stdin and stdout. Each newline in an output channel
causes a write operation. Read buffering is the same as full buffering. The following command
turns on line buffering:
1249985

fconfigure
fileID
 -buffering line

End of Line Translations
628024
On UNIX, text lines end with a newline character (\n). On Macintosh they end with a carriage
return (\r). On Windows they end with a carriage return, newline sequence (\r\n). Network
sockets also use the carriage return, newline sequence. By default, Tcl accepts any of these,
and the line terminator can even change within a channel. All of these different conventions
are converted to the UNIX style so that once read, text lines always end with a newline
character (\n). Both the read and gets commands do this conversion. By default, text lines
are generated in the platform-native format during output.
1249985
The default behavior is almost always what you want, but you can control the translation
with fconfigure. Table 16-5 shows settings for -translation:
1249985

Table 16-5. End of line translation modes

binary
1249985

No translation at all.
1249985

lf
1249985

UNIX-style, which also means no translations.
1249985

cr
1249985

Macintosh style. On input, carriage returns are converted to newlines. On output,
newlines are converted to carriage returns.
1249985

crlf
1249985

Windows and Network style. On input, carriage return, newline is converted to a
newline. On output, a newline is converted to a carriage return, newline.
1249985

auto
1249985

The default behavior. On input, all end of line conventions are converted to a
newline. Output is in native format.

Chapter 16. Event-Driven Programming Page 10 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

End of File Character
628024
In DOS file systems, there may be a Control-z character (\x1a) at the end of a text file. By
default, this character is ignored on the Windows platform if it occurs at the end of the file,
and this character is output when you close the file. You can turn this off by specifying an
empty string for the end of file character:
1249985

fconfigure fileID -eofchar {}

In Tcl 8.4 the end-of-file character trick is used by Tcl_EvalFile and source to allow
Tclkit and other tools to append non-script data to script files. This is enabled by default, and
should not normally interfere with your scripts.
1249985

Serial Devices
628024
The -mode attribute specifies the baud rate, parity mode, the number of data bits, and the
number of stop bits:
1249985

set tty [open /dev/ttya]
fconfigure $tty -mode
=> 9600,0,8,2

Tcl 8.4 added the enhanced control of serial channels for Windows and Unix systems. The
options are listed in Table 16-4.
1249985
Windows has some special device names that always connect you to the serial line devices
when you use open. They are com1 through com9. To access com devices above 9, use this
form: {\\.\comXX}. The Windows system console is named con. The Windows null device
is nul.
1249985
UNIX has names for serial devices in /dev. The serial devices are /dev/ttya, /dev/
ttyb, and so on. The system console is /dev/console. The current terminal is /dev/
tty. The null device is /dev/null.
1249985

Chapter 16. Event-Driven Programming Page 11 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Macintosh needs a special command to open serial devices. This is provided by a third-party
extension that you can find at the Tcl Resource Center under:
1249985

http://www.tcl.tk/resource/software/extensions/macintosh/

Character Set Encodings
628024
Tcl automatically converts various character set encodings into Unicode internally. It cannot
automatically detect the encoding for a file or network socket, however, so you need to use
fconfigure -encoding if you are reading data that is not in the system's default
encoding. Character set issues are explained in more detail in Chapter 15.
1249985

Configuring Read-Write Channels
628024
If you have a channel that is used for both input and output, you can set the channel
parameters independently for input and output. In this case, you can specify a two-element
list for the parameter value. The first element is for the input side of the channel, and the
second element is for the output side of the channel. If you specify only a single element, it
applies to both input and output. For example, the following command forces output end
of line translations to be crlf mode, leaves the input channel on automatic, and sets the
buffer size for both input and output:
1249985

fconfigure
pipe
 -translation {auto crlf} -buffersize 4096

Chapter 16. Event-Driven Programming Page 12 Return to Table of Contents

Chapter 16. Event-Driven Programming
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.tcl.tk/resource/software/extensions/macintosh/

