
Table of Contents

Chapter 4. String Processing in Tcl... 1
The string Command... 1
The append Command.. 10
The format Command.. 10
The scan Command... 14
The binary Command.. 14
Related Chapters... 18

Chapter 4. String Processing in Tcl

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 4. String Processing in Tcl
742

1249985
This chapter describes string manipulation and simple pattern matching. Tcl commands described
are: string, append, format, scan, and binary. The string command is a collection of
several useful string manipulation operations.
1249985
Strings are the basic data item in Tcl, so it should not be surprising that there are a large number of
commands to manipulate strings. A closely related topic is pattern matching, in which string
comparisons are made more powerful by matching a string against a pattern. This chapter describes
a simple pattern matching mechanism that is similar to that used in many other shell languages.
Chapter 11 describes a more complex and powerful regular expression pattern matching
mechanism.
1249985

The string Command
621961
The string command is really a collection of operations you can perform on strings. The
following example calculates the length of the value of a variable.
1249985

set name "Brent Welch"
string length $name
=> 11

The first argument to string determines the operation. You can ask string for valid operations
by giving it a bad one:
1249985

string junk
=> bad option "junk": should be bytelength, compare, equal, first, index, is, last, length

, map, match, range, repeat, replace, tolower, totitle, toupper, trim, trimleft, trimright,

Chapter 4. String Processing in Tcl Page 1 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

 wordend, or wordstart

This trick of feeding a Tcl command bad arguments to find out its usage is common across many
commands. Table 4-1 summarizes the string command.
1249985

Table 4-1. The string command

string bytelength str
1249985

Returns the number of bytes used to store a string, which
may be different from the character length returned by
string length because of UTF-8 encoding. See page
220 of Chapter 15 about Unicode and UTF-8.
1249985

string compare ?-nocase? ?-length
len? str1 str2
1249985

Compares strings lexicographically. Use -nocase for
case insensitive comparison. Use -length to limit the
comparison to the first len characters. Returns 0 if equal,
-1 if str1 sorts before str2, else 1.
1249985

string equal ?-nocase? str1 str2
1249985

Compares strings and returns 1 if they are the same. Use
-nocase for case insensitive comparison.
1249985

string first subString string ?
startIndex?
1249985

Returns the index in string of the first occurrence of
subString, or -1 if string is not found.
startIndex may be specified to start in the middle of
string.
1249985

string index string index
1249985

Returns the character at the specified index. An index
counts from zero. Use end for the last character.
1249985

string is class ?-strict? ?-failindex
varname? string
1249985

Returns 1 if string belongs to class. If -strict,
then empty strings never match, otherwise they always
match. If -failindex is specified, then varname is
assigned the index of the character in string that
prevented it from being a member of class. See Table
4-3 on page 54 for character class names.
1249985

string last subString string ?
startIndex?
1249985

Returns the index in string of the last occurrence of
subString, or -1 if subString is not found.
startIndex may be specified to start in the middle of
string.
1249985

string length string
1249985

Returns the number of characters in string.
1249985

Chapter 4. String Processing in Tcl Page 2 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

string map ?-nocase? charMap string
1249985

Returns a new string created by mapping characters in
string according to the input, output list in charMap.
See page 55.
1249985

string match ?-nocase? pattern str
1249985

Returns 1 if str matches the pattern, else 0. Glob-style
matching is used. See page 53.
1249985

string range str i j
1249985

Returns the range of characters in str from i to j.
1249985

string repeat str count
1249985

Returns str repeated count times.
1249985

string replace str first last ?newstr?

1249985

Returns a new string created by replacing characters
first through last with newstr, or nothing.
1249985

string tolower string ?first? ?last?
1249985

Returns string in lower case. first and last
determine the range of string on which to operate.
1249985

string totitle string ?first? ?last?
1249985

Capitalizes string by replacing its first character with
the Unicode title case, or upper case, and the rest with
lower case. first and last determine the range of
string on which to operate.
1249985

string toupper string ?first? ?last?
1249985

Returns string in upper case. first and last
determine the range of string on which to operate.
1249985

string trim string ?chars?
1249985

Trims the characters in chars from both ends of
string. chars defaults to whitespace.
1249985

string trimleft string ?chars?
1249985

Trims the characters in chars from the beginning of
string. chars defaults to whitespace.
1249985

string trimright string ?chars?
1249985

Trims the characters in chars from the end of string.
chars defaults to whitespace.
1249985

string wordend str ix
1249985

Returns the index in str of the character after the word
containing the character at index ix.
1249985

string wordstart str ix
1249985

Returns the index in str of the first character in the word
containing the character at index ix.
1249985

Chapter 4. String Processing in Tcl Page 3 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

These are the string operations I use most:
1249985

• The equal operation, which is shown in Example 4-2 on page 53.
• String match. This pattern matching operation is described on page 53.
• The tolower, totitle, and toupper operations convert case.
• The trim, trimright, and trimleft operations are handy for cleaning up strings.

These new operations were added in Tcl 8.1 (actually, they first appeared in the 8.1.1 patch release):
1249985

• The equal operation, which is simpler than using string compare.
• The is operation that test for kinds of strings. String classes are listed in Table 4-3 on page 54.
• The map operation that translates characters (e.g., like the Unix tr command.)
• The repeat and replace operations.
• The totitle operation, which is handy for capitalizing words.

String Indices
628024
Several of the string operations involve string indices that are positions within a string. Tcl counts
characters in strings starting with zero. The special index end is used to specify the last character
in a string:
1249985

string range abcd 2 end
=> cd

Tcl 8.1 added syntax for specifying an index relative to the end. Specify end-N to get the Nth
character before the end. For example, the following command returns a new string that drops the
first and last characters from the original:
1249985

string range $string 1 end-1

There are several operations that pick apart strings: first, last, wordstart, wordend,
index, and range. If you find yourself using combinations of these operations to pick apart data,
it may be faster if you can do it with the regular expression pattern matcher described in Chapter
11.
1249985

Strings and Expressions
628024
Strings can be compared with expr, if, and while using the comparison operators eq, ne,
==, !=, < and >. However, there are a number of subtle issues that can cause problems. First, you

Chapter 4. String Processing in Tcl Page 4 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

must quote the string value so that the expression parser can identify it as a string type. Then, you
must group the expression with curly braces to prevent the double quotes from being stripped off
by the main interpreter:
1249985

if {$x == "foo"} command

expr is only reliable for string comparison when using eq or ne.
1249985

Despite the quotes, the expression operators that work on numbers and strings first convert try
converting items to numbers if possible, and then converts them back if it detects a case of string
comparison. The conversion back is always done as a decimal number. This can lead to unexpected
conversions between strings that look like hexadecimal or octal numbers. The following boolean
expression is true!
1249985

if {"0xa" == "10"} { puts stdout ack! }
=> ack!

A safe way to compare strings is to use the string compare and string equal operations.
The eq and ne expr operators were introduced in 8.4 to allow more compact strict string
comparison. These operations also work faster because the unnecessary conversions are eliminated.
Like the C library strcmp function, string compare returns 0 if the strings are equal, minus
1 if the first string is lexicographically less than the second, or 1 if the first string is greater than
the second:
1249985

Example 4-1. Comparing strings with string compare

if {[string compare $s1 $s2] == 0} {
 # strings are equal
}

The string equal command added in Tcl 8.1 makes this simpler:
1249985

Example 4-2. Comparing strings with string equal

if {[string equal $s1 $s2]} {
 # strings are equal
}

Chapter 4. String Processing in Tcl Page 5 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The eq operator added in Tcl 8.4 is semantically equal, but more compact. It also avoids any internal
format conversions. There is also a ne operator to efficiently test for inequality.
1249985

Example 4-3. Comparing strings with eq

if {$s1 eq $s2} {
 # strings are equal
}

String Matching
628024
The string match command implements glob-style pattern matching that is modeled after the
file name pattern matching done by various UNIX shells. The heritage of the word "glob" is rooted
in UNIX, and Tcl preserves this historical oddity in the glob command that does pattern matching
on file names. The glob command is described on page 122. Table 4-2 shows the three constructs
used in string match patterns:
1249985

Table 4-2. Matching characters used with string match

*
1249985

Match any number of any characters.
1249985

?
1249985

Match exactly one character.
1249985

[chars]
1249985

Match any character in chars.
1249985

Any other characters in a pattern are taken as literals that must match the input exactly. The
following example matches all strings that begin with a:
1249985

string match a* alpha
=> 1

To match all two-letter strings:
1249985

string match ?? XY
=> 1

To match all strings that begin with either a or b:

Chapter 4. String Processing in Tcl Page 6 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
string match {[ab]*} cello
=> 0

Be careful! Square brackets are also special to the Tcl interpreter, so you will need to wrap the
pattern up in curly braces to prevent it from being interpreted as a nested command. Another
approach is to put the pattern into a variable:
1249985

set pat {[ab]*x}
string match $pat box
=> 1

You can specify a range of characters with the syntax [x-y]. For example, [a-z] represents the
set of all lower-case letters, and [0-9] represents all the digits. You can include more than one
range in a set. Any letter, digit, or the underscore is matched with:
1249985

string match {[a-zA-Z0-9_]} $char

The set matches only a single character. To match more complicated patterns, like one or more
characters from a set, then you need to use regular expression matching, which is described on page
158.
1249985
If you need to include a literal *, ?, or bracket in your pattern, preface it with a backslash:
1249985

string match {*\?} what?
=> 1

In this case the pattern is quoted with curly braces because the Tcl interpreter is also doing backslash
substitutions. Without the braces, you would have to use two backslashes. They are replaced with
a single backslash by Tcl before string match is called.
1249985

string match *\\? what?

Character Classes
628024
The string is command tests a string to see whether it belongs to a particular class. This is
useful for input validation. For example, to make sure something is a number, you do:
1249985

Chapter 4. String Processing in Tcl Page 7 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

if {![string is integer -strict $input]} {
 error "Invalid input. Please enter a number."
}

Classes are defined in terms of the Unicode character set, which means they are more general than
specifying character sets with ranges over the ASCII encoding. For example, alpha includes many
characters outside the range of [A-Za-z] because of different characters in other alphabets. The
classes are listed in Table 4-3.
1249985

Table 4-3. Character class names

alnum
1249985

Any alphabet or digit character.
1249985

alpha
1249985

Any alphabet character.
1249985

ascii
1249985

Any character with a 7-bit character code (i.e., less than 128.)
1249985

boolean
1249985

A valid Tcl boolean value, such as 0, 1, true, false (in any case).
1249985

control
1249985

Character code less than 32, and not NULL.
1249985

digit
1249985

Any digit character.
1249985

double
1249985

A valid floating point number.
1249985

false
1249985

A valid Tcl boolean false value, such as 0 or false (in any case).
1249985

graph
1249985

Any printing characters, not including space characters.
1249985

integer
1249985

A valid integer.
1249985

lower
1249985

A string in all lower case.
1249985

print
1249985

A synonym for alnum.
1249985

punct
1249985

Any punctuation character.
1249985

space
1249985

Space, tab, newline, carriage return, vertical tab, backspace.
1249985

Chapter 4. String Processing in Tcl Page 8 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

true
1249985

A valid Tcl boolean true value, such as 1 or true (in any case).
1249985

upper
1249985

A string all in upper case.
1249985

wordchar
1249985

Alphabet, digit, and the underscore.
1249985

xdigit
1249985

Valid hexadecimal digits.
1249985

Mapping Strings
628024
The string map command translates a string based on a character map. The map is in the form
of a input, output list. Wherever a string contains an input sequence, that is replaced with the
corresponding output. For example:
1249985

string map {f p d l} food
=> pool

The inputs and outputs can be more than one character and they do not have to be the same length:
1249985

string map {f p d ll oo u} food
=> pull

Example 4-4 is more practical. It uses string map to replace fancy quotes and hyphens produced
by Microsoft Word into ASCII equivalents. It uses the open, read, and close file operations
that are described in Chapter 9, and the fconfigure command described on page 234 to ensure that
the file format is UNIX friendly.
1249985

Example 4-4. Mapping Microsoft World special characters to ASCII

proc Dos2Unix {filename} {
 set input [open $filename]
 set output [open $filename.new]
 fconfigure $output -translation lf
 puts $output [string map {
 \223 "
 \224 "
 \222 '
 \226 -
 } [read $input]]
 close $input
 close $output
}

Chapter 4. String Processing in Tcl Page 9 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The append Command
621961

1249985
The append command takes a variable name as its first argument and concatenates its remaining
arguments onto the current value of the named variable. The variable is created if it does not already
exist:
1249985

set foo z
append foo a b c
set foo
=> zabc

The append command is efficient with large strings.
1249985

The append command provides an efficient way to add items to the end of a string. It modifies a
variable directly, so it can exploit the memory allocation scheme used internally by Tcl. Using the
append command like this:
1249985

append x " some new stuff"

is always faster than this:
1249985

set x "$x some new stuff"

The lappend command described on page 65 has similar performance benefits when working with
Tcl lists.
1249985

The format Command
621961

Chapter 4. String Processing in Tcl Page 10 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
The format command is similar to the C printf function. It formats a string according to a
format specification:
1249985

format spec value1 value2 ...

The spec argument includes literals and keywords. The literals are placed in the result as is, while
each keyword indicates how to format the corresponding argument. The keywords are introduced
with a percent sign, %, followed by zero or more modifiers, and terminate with a conversion
specifier. The most general keyword specification for each argument contains up to six parts:
1249985

• position specifier
• flags
• field width
• precision
• word length
• conversion character

Example keywords include %f for floating point, %d for integer, and %s for string format. Use
%% to obtain a single percent character. The following examples use double quotes around the
format specification. This is because often the format contains white space, so grouping is
required, as well as backslash substitutions like \t or \n, and the quotes allow substitution of these
special characters. Table 4-4 lists the conversion characters:
1249985

Table 4-4. Format conversions

d
1249985

Signed integer.
1249985

u
1249985

Unsigned integer.
1249985

i
1249985

Signed integer. The argument may be in hex (0x) or octal (0) format.
1249985

o
1249985

Unsigned octal.
1249985

x or X
1249985

Unsigned hexadecimal. 'x' gives lowercase results.
1249985

c
1249985

Map from an integer to the ASCII character it represents.
1249985

s
1249985

A string.
1249985

Chapter 4. String Processing in Tcl Page 11 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

f
1249985

Floating point number in the format a.b.
1249985

e or E
1249985

Floating point number in scientific notation, a.bE+-c.
1249985

g or G
1249985

Floating point number in either %f or %e format, whichever is shorter.
1249985

A position specifier is i$, which means take the value from argument i as opposed to the normally
corresponding argument. The position counts from 1. If a position is specified for one format
keyword, the position must be used for all of them. If you group the format specification with double
quotes, you need to quote the $ with a backslash:
1249985

set lang 2
format "%${lang}\$s" one un uno
=> un

The position specifier is useful for picking a string from a set, such as this simple language-specific
example. The message catalog facility described in Chapter 15 is a much more sophisticated way
to solve this problem. The position is also useful if the same value is repeated in the formatted
string.
1249985
The flags in a format are used to specify padding and justification. In the following examples, the
causes a leading 0x to be printed in the hexadecimal value. The zero in 08 causes the field to be
padded with zeros. Table 4-5 summarizes the format flag characters.
1249985

format "%#x" 20
=> 0x14
format "%#08x" 10
=> 0x0000000a

After the flags you can specify a minimum field width value. The value is padded to this width with
spaces, or with zeros if the 0 flag is used:
1249985

Table 4-5. Format flags

-
1249985

Left justify the field.
1249985

+
1249985

Always include a sign, either + or -.
1249985

Chapter 4. String Processing in Tcl Page 12 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

space
1249985

Precede a number with a space, unless the number has a leading sign. Useful for packing numbers close
together.
1249985

0
1249985

Pad with zeros.
1249985

#
1249985

Leading 0 for octal. Leading 0x for hex. Always include a decimal point in floating point. Do not remove
trailing zeros (%g).
1249985

format "%-20s %3d" Label 2
=> Label 2

You can compute a field width and pass it to format as one of the arguments by using * as the
field width specifier. In this case the next argument is used as the field width instead of the value,
and the argument after that is the value that gets formatted.
1249985

set maxl 8
format "%-*s = %s" $maxl Key Value
=> Key = Value

The precision comes next, and it is specified with a period and a number. For %f and %e it indicates
how many digits come after the decimal point. For %g it indicates the total number of significant
digits used. For %d and %x it indicates how many digits will be printed, padding with zeros if
necessary.
1249985

format "%6.2f %6.2d" 1 1
=> 1.00 01

The storage length part comes last but it only became useful in Tcl 8.4 where wide integer support
was added. Otherwise Tcl maintains all floating point values in double-precision, and all integers
as long words. Wide integers are a minimum of 64-bits wide. By adding the l (long) word length
specifier, we can see the difference between regular and wide integers.
1249985

format %u -1
=> 4294967295
format %lu -1
=> 18446744073709551615

Chapter 4. String Processing in Tcl Page 13 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The scan Command
621961
The scan command parses a string according to a format specification and assigns values to
variables. It returns the number of successful conversions it made, unless no capture variables are
given, in which case it returns the scan matches in a list. The general form of the command is:
1249985

scan string format ?var? ?var? ?var? ...

The format for scan is nearly the same as in the format command. The %c scan format converts
one character to its decimal value.
1249985
The scan format includes a set notation. Use square brackets to delimit a set of characters. The
set matches one or more characters that are copied into the variable. A dash is used to specify a
range. The following scans a field of all lowercase letters.
1249985

scan abcABC {%[a-z]} result
=> 1
set result
=> abc

If the first character in the set is a right square bracket, then it is considered part of the set. If the
first character in the set is ^, then characters not in the set match. Again, put a right square bracket
immediately after the ^ to include it in the set. Nothing special is required to include a left square
bracket in the set. As in the previous example, you will want to protect the format with braces, or
use backslashes, because square brackets are special to the Tcl parser.
1249985

The binary Command
621961
Tcl 8.0 added support for binary strings. Previous versions of Tcl used null-terminated strings
internally, which foils the manipulation of some types of data. Tcl now uses counted strings, so it
can tolerate a null byte in a string value without truncating it.
1249985
This section describes the binary command that provides conversions between strings and packed
binary data representations. The binary format command takes values and packs them
according to a template. For example, this can be used to format a floating point vector in memory
suitable for passing to Fortran. The resulting binary value is returned:
1249985

Chapter 4. String Processing in Tcl Page 14 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

binary format template value ?value ...?

The binary scan command extracts values from a binary string according to a similar template.
For example, this is useful for extracting data stored in binary data file. It assigns values to a set of
Tcl variables:
1249985

binary scan value template variable ?variable ...?

Format Templates
628024
The format template consists of type keys and counts. The count is interpreted differently depending
on the type. For types like integer (i) and double (d), the count is a repetition count (e.g., i3 means
three integers). For strings, the count is a length (e.g., a3 means a three-character string). If no
count is specified, it defaults to 1. If count is *, then binary scan uses all the remaining bytes
in the value.
1249985
Several type keys can be specified in a template. Each key-count combination moves an imaginary
cursor through the binary data. There are special type keys to move the cursor. The x key generates
null bytes in binary format, and it skips over bytes in binary scan. The @ key uses its
count as an absolute byte offset to which to set the cursor. As a special case, @* skips to the end
of the data. The X key backs up count bytes. The types are summarized in Table 4-6. In the table,
count is the optional count following the type letter.
1249985

Table 4-6. Binary conversion types

a
1249985

A character string of length count. Padded with nulls in binary format.
1249985

A
1249985

A character string of length count. Padded with spaces in binary format. Trailing nulls and blanks
are discarded in binary scan.
1249985

b
1249985

A binary string of length count. Low-to-high order.
1249985

B
1249985

A binary string of length count. High-to-low order.
1249985

h
1249985

A hexadecimal string of length count. Low-to-high order.
1249985

H
1249985

A hexadecimal string of length count. High-to-low order. (More commonly used than h.)
1249985

Chapter 4. String Processing in Tcl Page 15 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

c
1249985

An 8-bit character code. The count is for repetition.
1249985

s
1249985

A 16-bit integer in little-endian byte order. The count is for repetition.
1249985

S
1249985

A 16-bit integer in big-endian byte order. The count is for repetition.
1249985

i
1249985

A 32-bit integer in little-endian byte order. The count is for repetition.
1249985

I
1249985

A 32-bit integer in big-endian byte order. The count is for repetition.
1249985

f
1249985

Single-precision floating point value in native format.The count is for repetition.
1249985

d
1249985

Double-precision floating point value in native format. The count is for repetition.
1249985

w
1249985

A 64-bit integer in little-endian byte order. The count is for repetition. (Tcl 8.4)
1249985

W
1249985

A 64-bit integer in big-endian byte order. The count is for repetition. (Tcl 8.4)
1249985

x
1249985

Pack count null bytes with binary format.
1249985
Skip count bytes with binary scan.
1249985

X
1249985

Backup count bytes.
1249985

@
1249985

Skip to absolute position specified by count. If count is *, skip to the end.
1249985

Numeric types have a particular byte order that determines how their value is laid out in memory.
The type keys are lowercase for little-endian byte order (e.g., Intel) and uppercase for big-endian
byte order (e.g., SPARC and Motorola). Different integer sizes are 16-bit (s or S), 32-bit (i or
I), and, with Tcl 8.4 or greater, 64-bit (w or W). Note that the official byte order for data transmitted
over a network is big-endian. Floating point values are always machine-specific, so it only makes
sense to format and scan these values on the same machine.
1249985
There are three string types: character (a or A), binary (b or B), and hexadecimal (h or H). With
these types the count is the length of the string. The a type pads its value to the specified length
with null bytes in binary format and the A type pads its value with spaces. If the value is too
long, it is truncated. In binary scan, the A type strips trailing blanks and nulls.
1249985

Chapter 4. String Processing in Tcl Page 16 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

A binary string consists of zeros and ones. The b type specifies bits from low-to-high order, and
the B type specifies bits from high-to-low order. A hexadecimal string specifies 4 bits (i.e., nybbles)
with each character. The h type specifies nybbles from low-to-high order, and the H type specifies
nybbles from high-to-low order. The B and H formats match the way you normally write out
numbers.
1249985

Examples
628024
When you experiment with binary format and binary scan, remember that Tcl treats
things as strings by default. A "6", for example, is the character 6 with character code 54 or 0x36.
The c type returns these character codes:
1249985

set input 6
binary scan $input "c" 6val
set 6val
=> 54

You can scan several character codes at a time:
1249985

binary scan abc "c3" list
=> 1
set list
=> 97 98 99

The previous example uses a single type key, so binary scan sets one corresponding Tcl
variable. If you want each character code in a separate variable, use separate type keys:
1249985

binary scan abc "ccc" x y z
=> 3
set z
=> 99

Use the H format to get hexadecimal values:
1249985

binary scan 6 "H2" 6val
set 6val
=> 36

Use the a and A formats to extract fixed width fields. Here the * count is used to get all the rest of
the string. Note that A trims trailing spaces:
1249985

Chapter 4. String Processing in Tcl Page 17 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

binary scan "hello world " a3x2A* first second
puts "\"$first\" \"$second\""
=> "hel" " world"

Use the @ key to seek to a particular offset in a value. The following command gets the second
double-precision number from a vector. Assume the vector is read from a binary data file:
1249985

binary scan $vector "@8d" double

With binary format, the a and A types create fixed width fields. A pads its field with spaces,
if necessary. The value is truncated if the string is too long:
1249985

binary format "A9A3" hello world
=> hello wor

An array of floating point values can be created with this command:
1249985

binary format "f*" 1.2 3.45 7.43 -45.67 1.03e4

Remember that floating point values are always in native format, so you have to read them on the
same type of machine that they were created. With integer data you specify either big-endian or
little-endian formats. The tcl_platform variable described on page 193 can tell you the byte order
of the current platform.
1249985

Binary Data and File I/O
628024
When working with binary data in files, you need to turn off the newline translations and character
set encoding that Tcl performs automatically. These are described in more detail on pages 120 and
219. For example, if you are generating binary data, the following command puts your standard
output in binary mode:
1249985

fconfigure stdout -translation binary -encoding binary
puts [binary format "B8" 11001010]

Related Chapters
621961

• To learn more about manipulating data in Tcl, read about lists in Chapter 5 and arrays in Chapter 8.
• For more about pattern matching, read about regular expressions in Chapter 11.
• For more about file I/O, see Chapter 9.

Chapter 4. String Processing in Tcl Page 18 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

• For information on Unicode and other Internationalization issues, see Chapter 15.

Chapter 4. String Processing in Tcl Page 19 Return to Table of Contents

Chapter 4. String Processing in Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2006, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

