
Table of Contents

Chapter 13. Reflection and Debugging.. 1
The clock Command.. 2
The info Command.. 7
Cross-Platform Support... 14
Tracing Variables and Commands... 15
Interactive Command History... 19
Debugging.. 22
Tcl Dev Kit.. 23
Other Tools.. 25
Performance Tuning.. 26

Chapter 13. Reflection and Debugging

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 13. Reflection and Debugging
961

1249985
This chapter describes commands that give you a view into the interpreter. The history
command and a simple debugger are useful during development and debugging. The
info command provides a variety of information about the internal state of the Tcl
interpreter. The time command measures the time it takes to execute a command. Tcl
commands discussed are: clock, info, history, and time.
1249985
Reflection provides feedback to a script about the internal state of the interpreter. This is
useful in a variety of cases, from testing to see whether a variable exists to dumping the state
of the interpreter. The info command provides lots of different information about the
interpreter.
1249985
The clock command returns the time, formats time values, does time calculations, and
parses time strings. It is a great tool all by itself. It also provides high-resolution timer
information for precise measurements.
1249985
Interactive command history is the third topic of the chapter. The history facility can save
you some typing if you spend a lot of time entering commands interactively.
1249985
Debugging is the last topic. The old-fashioned approach of adding puts commands to your
code is often quite useful. For tough problems, however, a real debugger is invaluable. The
Tcl Dev Kit toolset from ActiveState include a high quality debugger and static code checker.
The tkinspect program is an inspector that lets you look into the state of a Tk application. It
can hook up to any Tk application dynamically, so it proves quite useful.
1249985

Chapter 13. Reflection and Debugging Page 1 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

The clock Command
621961
The clock command has facilities for getting the current time, formatting time values, and
scanning printed time strings to get an integer time value. Table 13-1 summarizes the
clock command:
1249985

Table 13-1. The clock command

clock clicks ?-milliseconds?
1249985

A high resolution counter. The precision is
milliseconds, if specified (Tcl 8.4), or a
system-dependent value.
1249985

clock format value ?-format str?
1249985

Formats a clock value according to str.
See Table 13-2.
1249985

clock scan string ?-base clock? ?-
gmt boolean?
1249985

Parses date string and return seconds
value. The clock value determines the
date.
1249985

clock seconds
1249985

Returns the current time in seconds.
1249985

The following command prints the current time:
1249985

clock format [clock seconds]
=> Fri Nov 22 4:09:14 PM PST 2002

The clock seconds command returns the current time, in seconds since a starting epoch.
The clock format command formats an integer value into a date string. It takes an
optional argument that controls the format. The format strings contains % keywords that are
replaced with the year, month, day, date, hours, minutes, and seconds, in various formats.
The default string is:
1249985

%a %b %d %H:%M:%S %Z %Y

Tables 13-2 summarizes the clock formatting strings:
1249985

Chapter 13. Reflection and Debugging Page 2 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 13-2. clock format keywords

%%
1249985

Inserts a %.
1249985

%a
1249985

Abbreviated weekday name (Mon, Tue, etc.).
1249985

%A
1249985

Full weekday name (Monday, Tuesday, etc.).
1249985

%b
1249985

Abbreviated month name (Jan, Feb, etc.).
1249985

%B
1249985

Full month name.
1249985

%c
1249985

Locale specific date and time (e.g., Nov 24 16:00:59 1996).
1249985

%C
1249985

First two digits of the four-digit year (19 or 20).
1249985

%d
1249985

Day of month (01 – 31).
1249985

%D
1249985

Date as %m/%d/%y (e.g., 02/19/97).
1249985

%e
1249985

Day of month (1 – 31), no leading zeros.
1249985

%h
1249985

Abbreviated month name.
1249985

%H
1249985

Hour in 24-hour format (00 – 23).
1249985

%I
1249985

Hour in 12-hour format (01 – 12).
1249985

%j
1249985

Day of year (001 – 366).
1249985

%k
1249985

Hour in 24-hour format, without leading zeros (0 - 23).
1249985

%l
1249985

Hour in 12-hour format, without leading zeros (1 – 12).
1249985

Chapter 13. Reflection and Debugging Page 3 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

%m
1249985

Month number (01 – 12).
1249985

%M
1249985

Minute (00 – 59).
1249985

%n
1249985

Inserts a newline.
1249985

%p
1249985

AM/PM indicator.
1249985

%r
1249985

Time as %I:%M:%S %p (e.g., 02:39:29 PM).
1249985

%R
1249985

Time as %H:%M (e.g., 14:39).
1249985

%s
1249985

Seconds since the epoch.
1249985

%S
1249985

Seconds (00 – 59).
1249985

%t
1249985

Inserts a tab.
1249985

%T
1249985

Time as %H:%M:%S (e.g., 14:34:29).
1249985

%u
1249985

Weekday number (Monday = 1, Sunday = 7).
1249985

%U
1249985

Week of year (00 – 52) when Sunday starts the week.
1249985

%V
1249985

Week of year according to ISO-8601 rules (Week 1 contains January 4).
1249985

%w
1249985

Weekday number (Sunday = 0).
1249985

%W
1249985

Week of year (00 – 52) when Monday starts the week.
1249985

%x
1249985

Locale specific date format (e.g., Feb 19 1997).
1249985

Chapter 13. Reflection and Debugging Page 4 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

%X
1249985

Locale specific time format (e.g., 20:10:13).
1249985

%y
1249985

Year without century (00 – 99).
1249985

%Y
1249985

Year with century (e.g. 1997).
1249985

%Z
1249985

Time zone name.
1249985

The clock clicks command returns the value of the system's highest resolution clock.
The units of the clicks is milliseconds if -milliseconds is specified, otherwise it is
undefined. The main use of this command is to measure the relative time of different
performance tuning trials. The -milliseconds flag was added in Tcl 8.4. Example 13-1
shows how to calibrate the clicks value by counting the clicks per second over 10 seconds,
which will vary from system to system:
1249985

Example 13-1. Calculating clicks per second

set t1 [clock clicks]
after 10000 ;# See page 228
set t2 [clock clicks]
puts "[expr ($t2 - $t1)/10] Clicks/second"
=> 1001313 Clicks/second

The clock scan command parses a date string and returns a seconds value. The command
handles a variety of date formats. If you leave off the year, the current year is assumed.
1249985

Year 2000 Compliance
1249985

Tcl implements the standard interpretation of two-digit year values, which is that 70–99 are
1970–1999, 00–69 are 2000–2069. Versions of Tcl before 8.0 did not properly deal with two-
digit years in all cases. Note, however, that Tcl is limited by your system's time epoch and the
number of bits in an integer. On Windows, Macintosh, and most UNIX systems, the clock
epoch is January 1, 1970. A 32-bit integer can count enough seconds to reach forward into
the year 2037, and backward to the year 1903. If you try to clock scan a date outside that

Chapter 13. Reflection and Debugging Page 5 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

range, Tcl will raise an error because the seconds counter will overflow or underflow. In this
case, Tcl is just reflecting limitations of the underlying system. Some 64-bit systems (such as
Solaris 8 64-bit) use 64-bit integers for the system clock, which Tcl 8.4 supports. This extends
the recognized range into the billions of years.
1249985
If you leave out a date, clock scan assumes the current date. You can also use the -
base option to specify a date. The following example uses the current time as the base,
which is redundant:
1249985

clock scan "10:30:44 PM" -base [clock seconds]
=> 2931690644

The date parser allows these modifiers: year, month, fortnight (two weeks), week,
day, hour, minute, second. You can put a positive or negative number in front of a modifier
as a multiplier. For example:
1249985

clock format [clock scan "10:30:44 PM 1 week"]
=> Fri Nov 29 10:30:44 PM PST 2002

clock format [clock scan "10:30:44 PM -1 week"]
Fri Nov 15 10:30:44 PM PST 2002

You can also use tomorrow, yesterday, today, now, last, this, next, and ago, as
modifiers.
1249985

clock format [clock scan "3 years ago"]
=> Mon Nov 22 4:18:34 PM PST 1999

Both clock format and clock scan take a -gmt option that uses Greenwich Mean Time.
Otherwise, the local time zone is used.
1249985

clock format [clock seconds] -gmt true
=> Sat Nov 23 12:19:13 AM GMT 2002

clock format [clock seconds] -gmt false
=> Fri Nov 22 4:19:35 PM PST 2002

Chapter 13. Reflection and Debugging Page 6 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The info Command
621961
Table 13-3 summarizes the info command. The operations are described in more detail
later.
1249985

Table 13-3. The info command

info args procedure
1249985

A list of procedure's arguments.
1249985

info body procedure
1249985

The commands in the body of procedure.
1249985

info cmdcount
1249985

The number of commands executed so far.
1249985

info commands ?pattern?
1249985

A list of all commands, or those matching pattern.
Includes built-ins and Tcl procedures.
1249985

info complete string
1249985

True if string contains a complete Tcl command.
1249985

info default proc arg var
1249985

True if arg has a default parameter value in procedure
proc. The default value is stored into var.
1249985

info exists variable
1249985

True if variable is defined.
1249985

info functions ?pattern?
1249985

A list of all math functions, or those matching
pattern. (Tcl 8.4)
1249985

info globals ?pattern?
1249985

A list of all global variables, or those matching
pattern.
1249985

info hostname
1249985

The name of the machine. This may be the empty
string if networking is not initialized.
1249985

info level
1249985

The stack level of the current procedure, or 0 for the
global scope.

Chapter 13. Reflection and Debugging Page 7 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

info level number
1249985

A list of the command and its arguments at the
specified level of the stack.
1249985

info library
1249985

The pathname of the Tcl library directory.
1249985

info loaded ?interp?
1249985

A list of the libraries loaded into the interpreter named
interp, which defaults to the current one.
1249985

info locals ?pattern?
1249985

A list of all local variables, or those matching
pattern.
1249985

info nameofexecutable
1249985

The file name of the program (e.g., of tclsh or wish).
1249985

info patchlevel
1249985

The release patch level for Tcl.
1249985

info procs ?pattern?
1249985

A list of all Tcl procedures, or those that match
pattern.
1249985

info script ?filename?
1249985

The name of the file being processed, or the empty
string.
1249985

info sharedlibextension
1249985

The file name suffix of shared libraries.
1249985

info tclversion
1249985

The version number of Tcl.
1249985

info vars ?pattern?
1249985

A list of all visible variables, or those matching
pattern.
1249985

Variables
628024
There are three categories of variables: local, global, and visible. Information about these
categories is returned by the locals, globals, and vars operations, respectively. The

Chapter 13. Reflection and Debugging Page 8 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

local variables include procedure arguments as well as locally defined variables. The global
variables include all variables defined at the global scope. The visible variables include locals,
plus any variables made visible via global or upvar commands. A pattern can be specified
to limit the returned list of variables to those that match the pattern. The pattern is interpreted
according to the rules of string match, which is described on page 53:
1249985

info globals auto*
=> auto_index auto_noexec auto_path

Namespaces, which are the topic of the next chapter, partition global variables into different
scopes. You query the variables visible in a namespace with:
1249985

info vars
namespace
::*

Remember that a variable may not be defined yet even though a global or upvar
command has declared it visible in the current scope. Use the info exists command to
test whether a variable or an array element is defined or not. An example is shown on page
96.
1249985

Procedures
628024
You can find out everything about a Tcl procedure with the args, body, and default
operations. This is illustrated in the following Proc_Show example. The puts commands
use the -nonewline flag because the newlines in the procedure body, if any, are retained:

1249985

Example 13-2. Printing a procedure definition

proc Proc_Show {{namepat *} {file stdout}} {
 foreach proc [info procs $namepat] {
 set space ""
 puts -nonewline $file "proc $proc {"
 foreach arg [info args $proc] {
 if [info default $proc $arg value] {
 puts -nonewline $file "$space{$arg $value}"
 } else {
 puts -nonewline $file $space$arg
 }
 set space " "
 }
 # Double quotes allow substitution
 # of [info body $proc]

Chapter 13. Reflection and Debugging Page 9 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 puts $file "} {[info body $proc]}"

 }
}

Example 13-3 is a more elaborate example of procedure introspection that comes from the
direct.tcl file, which is part of the Tcl Web Server described in Chapter 18. This code is
used to map URL requests and the associated query data directly into Tcl procedure calls.
This is discussed in more detail on page 262. The Web server collects Web form data into an
array called form. Example 13-3 matches up elements of the form array with procedure
arguments, and it collects extra elements into an args parameter. If a form value is missing,
then the default argument value or the empty string is used:
1249985

Example 13-3. Mapping form data onto procedure arguments

cmd is the name of the procedure to invoke
form is an array containing form values

set cmdOrig $cmd
set params [info args $cmdOrig]

Match elements of the form array to parameters

foreach arg $params {
 if {![info exists form($arg)]} {
 if {[info default $cmdOrig $arg value]} {
 lappend cmd $value
 } elseif {[string equal $arg "args"]} {
 set needargs yes
 } else {
 lappend cmd {}
 }
 } else {
 lappend cmd $form($arg)
 }
}
If args is a parameter, then append the form data
that does not match other parameters as extra parameters

if {[info exists needargs]} {
 foreach {name value} [array get form] {
 if {[lsearch $params $name] < 0} {
 lappend cmd $name $value
 }
 }
}
Eval the command

set code [catch $cmd result]

The info commands operation returns a list of all commands, which includes both built-
in commands defined in C and Tcl procedures. There is no operation that just returns the list
of built-in commands. Example 13-4 finds the built-in commands by removing all the
procedures from the list of commands.
1249985

Chapter 13. Reflection and Debugging Page 10 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 13-4. Finding built-in commands

proc Command_Info {{pattern *}} {
 # Create a table of procedures for quick lookup

 foreach p [info procs $pattern] {
 set isproc($p) 1
 }

 # Look for command not in the procedure table
 set result {}
 foreach c [info commands $pattern] {
 if {![info exists isproc($c)]} {
 lappend result $c
 }
 }
 return [lsort $result]
}

The Call Stack
628024
The info level operation returns information about the Tcl evaluation stack, or call
stack. The global level is numbered zero. A procedure called from the global level is at level
one in the call stack. A procedure it calls is at level two, and so on. The info level command
returns the current level number of the stack if no level number is specified.
1249985
If a positive level number is specified (e.g., info level 3), then the command returns the
procedure name and argument values at that level in the call stack. If a negative level is
specified, then it is relative to the current call stack. Relative level -1 is the level of the current
procedure's caller, and relative level 0 is the current procedure. The following example prints
the call stack. The Call_trace procedure avoids printing information about itself by
starting at one less than the current call stack level:
1249985

Example 13-5. Getting a trace of the Tcl call stack

proc Call_Trace {{file stdout}} {
 puts $file "Tcl Call Trace"
 for {set x [expr [info level]-1]} {$x > 0} {incr x -1} {
 puts $file "$x: [info level $x]"
 }
}

Command Evaluation
628024
If you want to know how many Tcl commands are executed, use the info cmdcount
command. This counts all commands, not just top-level commands. The counter is never

Chapter 13. Reflection and Debugging Page 11 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

reset, so you need to sample it before and after a test run if you want to know how many
commands are executed during a test.
1249985
Command tracing provides detailed information about the execution of commands. It is
described along with variable tracing on page 193.
1249985
The info complete operation figures out whether a string is a complete Tcl command.
This is useful for command interpreters that need to wait until the user has typed in a
complete Tcl command before passing it to eval. Example 13-6 defines
Command_Process that gets a line of input and builds up a command. When the command
is complete, the command is executed at the global scope. Command_Process takes two
callbacks as arguments. The inCmd is evaluated to get the line of input, and the outCmd is
evaluated to display the results. Chapter 10 describes callbacks why the curly braces are used
with eval as they are in this example:
1249985

Example 13-6. A procedure to read and evaluate commands

proc Command_Process {inCmd outCmd} {
 global command
 append command(line) [eval $inCmd]
 if {[info complete $command(line)]} {
 set code [catch {uplevel #0 $command(line)} result]
 eval $outCmd {$result $code}
 set command(line) {}
 }
}
proc Command_Read {{in stdin}} {
 if {[eof $in]} {
 if {$in != "stdin"} {
 close $in
 }
 return {}
 }
 return [gets $in]
}
proc Command_Display {file result code} {
 puts stdout $result
}
while {![eof stdin]} {
 Command_Process {Command_Read stdin} \
 {Command_Display stdout}
}

Scripts and the Library
628024
The name of the current script file is returned with the info script command. For
example, if you use the source command to read commands from a file, then info
script returns the name of that file if it is called during execution of the commands in that
script. This is true even if the info script command is called from a procedure that is not
defined in the script.

Chapter 13. Reflection and Debugging Page 12 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Use info script to find related files.
1249985

I often use info script to source or process files stored in the same directory as the script
that is running. A few examples are shown in Example 13-7.
1249985

Example 13-7. Using info script to find related files

Get the directory containing the current script.
set dir [file dirname [info script]]

Source a file in the same directory
source [file join $dir helper.tcl]

Add an adjacent script library directory to auto_path
The use of ../lib with file join is cross-platform safe.
lappend auto_path [file join $dir ../lib]

The pathname of the Tcl library is stored in the tcl_library variable, and it is also returned
by the info library command. While you could put scripts into this directory, it might
be better to have a separate directory and use the script library facility described in Chapter
12. This makes it easier to deal with new releases of Tcl and to package up your code if you
want other sites to use it.
1249985

Version Numbers
628024
Each Tcl release has a version number such as 7.4 or 8.0. This number is returned by the info
tclversion command. If you want your script to run on a variety of Tcl releases, you may
need to test the version number and take different actions in the case of incompatibilities
between releases.
1249985
The Tcl release cycle starts with one or two alpha and beta releases before the final release,
and there may even be a patch release after that. The info patchlevel command returns
a qualified version number, like 8.0b1 for the first beta release of 8.0. We switched from using
“p” (e.g., 8.0p2) to a three-level scheme (e.g., 8.0.3) for patch releases. The patch level is zero
for the final release (e.g., 8.2.0). In general, you should be prepared for feature changes during
the beta cycle, but there should only be bug fixes in the patch releases. Another rule of thumb

Chapter 13. Reflection and Debugging Page 13 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

is that the Tcl script interface remains quite compatible between releases; feature additions
are upward compatible.
1249985

Execution Environment
628024
The file name of the program being executed is returned with info
nameofexecutable. This is more precise than the name in the argv0 variable, which could
be a relative name or a name found in a command directory on your command search path.
It is still possible for info nameofexecutable to return a relative pathname if the user
runs your program as ./foo, for example. The following construct always returns the
absolute pathname of the current program. If info nameofexecutable returns an
absolute pathname, then the value of the current directory is ignored. The pwd command is
described on page 122:
1249985

file join [pwd] [info nameofexecutable]

A few operations support dynamic loading of shared libraries, which are described in Chapter
47. The info sharedlibextension returns the file name suffix of dynamic link libraries.
The info loaded command returns a list of libraries that have been loaded into an
interpreter. Multiple interpreters are described in Chapter 19.
1249985

Cross-Platform Support
621961

1249985
Tcl is designed so that you can write scripts that run unchanged on UNIX, Macintosh, and
Windows platforms. In practice, you may need a small amount of code that is specific to a
particular platform. You can find out information about the platform via the
tcl_platform variable. This is an array with these elements defined:
1249985

• tcl_platform(platform) is one of unix, macintosh, or windows.

• tcl_platform(os) identifies the operating system. Examples include MacOS, Solaris, Linux, Win32s (Windows 3.1
with the Win32 subsystem), Windows 95, Windows NT, and SunOS.

• tcl_platform(osVersion) gives the version number of the operating system.

• tcl_platform(machine) identifies the hardware. Examples include ppc (Power PC), 68k (68000 family), sparc, intel,
mips, and alpha.

• tcl_platform(byteOrder) identifies the byte order of this machine and is one of littleEndian or bigEndian.

• tcl_platform(wordSize) identifies the size of the native machine word in bytes. This was introduced in Tcl 8.4.

Chapter 13. Reflection and Debugging Page 14 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

• tcl_platform(isWrapped) indicates that the application has been wrapped up into a single executable with TclPro
Wrapper. This is not defined in normal circumstances.

• tcl_platform(user) gives the login name of the current user.

• tcl_platform(debug) indicates that Tcl was compiled with debugging symbols.

• tcl_platform(threaded) indicates that Tcl was compiled with thread support enabled.

On some platforms a hostname is defined. If available, it is returned with the info
hostname command. This command may return an empty string.
1249985
One of the most significant areas affected by cross-platform portability is the file system and
the way files are named. This topic is discussed on page 110.
1249985

Tracing Variables and Commands
621961

1249985
The trace command registers a command to be called whenever a variable is accessed,
modified, or unset. Tcl 8.4 introduced an updated trace command which includes support
for command tracing. The original (and still supported) form of the command applies only
to variable traces:
1249985

trace variable
name ops command

trace vdelete
name ops command

trace vinfo
name

The name is a Tcl variable name, which can be a simple variable, an array, or an array element.
If a whole array is traced, the trace is invoked when any element is used according to ops.
The ops argument is one or more of the letters r, for read traces, w, for write traces, u, for
unset traces, and a for array traces. The command is executed when one of these events
occurs. It is invoked as:
1249985

command name1 name2 op

Chapter 13. Reflection and Debugging Page 15 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The name1 argument is the variable or array name. The name2 argument is the name of the
array index, or null if the trace is on a simple variable. If there is an unset trace on an entire
array and the array is unset, name2 is also null. The value of the variable is not passed to the
procedure. The traced variable is one level up the Tcl call stack. The upvar, uplevel, or
global commands need to be used to make the variable visible in the scope of command.
These commands are described in more detail in Chapter 7.
1249985
A read trace is invoked before the value of the variable is returned, so if it changes the variable
itself, the new value is returned. A write trace is called after the variable is modified. The unset
trace is called after the variable is unset. The array trace, which was added in Tcl 8.4, is called
before the array command (e.g., array names) is used on the variable. A variable trace
is automatically deleted when the variable is unset.
1249985

Command Tracing
628024
The new form of trace supports both variable and command tracing:
1249985

trace add
type name ops command

trace remove
type name ops command

trace info
type name

The type is one of command, execution or variable. For command, ops is a list and may
contain rename, to trace the renaming of a Tcl command, or delete, to trace the deletion
of a command. Command tracing cannot be used to prevent the actual deletion of a
command, it just receives the notification. No command traces are triggered when an
interpreter is deleted. The command is invoked as:
1249985

command oldName newName op

For execution, the ops may be any of enter, leave, enterstep, and leavestep.
enter invokes command immediately before the command name is executed, and leave
will invoke command immediately following each execution. enterstep and
leavestep are similar but they operate on the Tcl procedure name, invoking command for
each Tcl command inside the procedure. In order to do this, they prevent the bytecode

Chapter 13. Reflection and Debugging Page 16 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

compilation of that procedure. This allows you to create a simple debugger in pure Tcl. The
enter and enterstep operations invoke command as:
1249985

command command-string op

The leave and leavestep operations invoke command as:
1249985

command command-string code result op

The command-string is the current command being executed, code is the result code of
the execution and result is the result string. Example 6-16 on page 84 illustrates the
different result codes.
1249985
For variable tracing, the ops may be one or more of read, write, unset, or array. This
is an alternate way to set up the variable traces described earlier.
1249985

Read-Only Variables
628024
Example 13-8 uses traces to implement a read-only variable. A variable is modified before
the trace procedure is called, so the ReadOnly variable is needed to preserve the original
value. When a variable is unset, the traces are automatically removed, so the unset trace
action reestablishes the trace explicitly. Note that the upvar alias (e.g., var) cannot be used
to set up the trace. Instead, uplevel is used to create the trace in the original context of the
variable. In general, essentially all traces are on global or namespace variables.
1249985

Example 13-8. Tracing variables

proc ReadOnlyVar {varName} {
 upvar 1 $varName var
 global ReadOnly
 set ReadOnly($varName) $var
 uplevel 1 [list trace variable $varName wu ReadOnlyTrace]
}
proc ReadOnlyTrace { varName index op } {
 global ReadOnly
 upvar 1 $varName var
 switch $op {
 w {
 set var $ReadOnly($varName)
 }

Chapter 13. Reflection and Debugging Page 17 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 u {
 set var $ReadOnly($varName)
 # Re-establish the trace using the true name
 uplevel 1 [list ReadOnlyVar $varName]
 }
 }
}

This example merely overrides the new value with the saved value. Another alternative is to
raise an error with the error command. This will cause the command that modified the
variable to return the error. Another common use of trace is to update a user interface
widget in response to a variable change. Several of the Tk widgets have this feature built into
them.
1249985
If more than one trace is set on a variable, then they are invoked in reverse order; the most
recent trace is executed first. If there is a trace on an array and on an array element, then the
trace on the array is invoked first.
1249985

Creating an Array with Traces
628024
Example 13-9 uses an array trace to dynamically create array elements:
1249985

Example 13-9. Creating array elements with array traces

make sure variable is an array
set dynamic() {}
trace variable dynamic r FixupDynamic
proc FixupDynamic {name index op} {
 upvar 1 $name dynArray
 if {![info exists dynArray($index)]} {
 set dynArray($index) 0
 }
}

Information about traces on a variable is returned with the vinfo option:
1249985

trace vinfo dynamic
=> {r FixupDynamic}

A trace is deleted with the vdelete option, which has the same form as the variable
option. The trace in the previous example can be removed with the following command:
1249985

trace vdelete dynamic r FixupDynamic

Chapter 13. Reflection and Debugging Page 18 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Interactive Command History
621961

1249985

Table 13-4. The history command

history
1249985

Short for history info with no count.
1249985

history add command ?exec?
1249985

Adds the command to the history list. If exec is
specified, then execute the command.
1249985

history change new ?event?
1249985

Changes the command specified by event to new
in the command history.
1249985

history event ?event?
1249985

Returns the command specified by event.
1249985

history info ?count?
1249985

Returns a formatted history list of the last count
commands, or of all commands.
1249985

history keep count
1249985

Limits the history to the last count commands.
1249985

history nextid
1249985

Returns the number of the next event.
1249985

history redo ?event?
1249985

Repeats the specified command.
1249985

The Tcl shell programs keep a log of the commands that you type by using a history facility.
The log is controlled and accessed via the history command. The history facility uses the
term event to mean an entry in its history log. The events are just commands, and they have
an event ID that is their index in the log. You can also specify an event with a negative index
that counts backwards from the end of the log. Event -1 is the previous event. Table 13-4
summarizes the Tcl history command. In the table, event defaults to -1.
1249985
In practice you will want to take advantage of the ability to abbreviate the history options
and even the name of the history command itself. For the command, you need to type a
unique prefix, and this depends on what other commands are already defined. For the

Chapter 13. Reflection and Debugging Page 19 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

options, there are unique one-letter abbreviations for all of them. For example, you could
reuse the last word of the previous command with [history w $]. This works because a
$ that is not followed by alphanumerics or an open brace is treated as a literal $.
1249985
Several of the history operations update the history list. They remove the actual history
command and replace it with the command that resulted from the history operation. The
event and redo operations all behave in this manner. This makes perfect sense because
you would rather have the actual command in the history, instead of the history command
used to retrieve the command.
1249985

History Syntax
628024
Some extra syntax is supported when running interactively to make the history facility more
convenient to use. Table 13-5 shows the special history syntax supported by tclsh and
wish.
1249985

Table 13-5. Special history syntax

!!
1249985

Repeats the previous command.
1249985

!n
1249985

Repeats command number n.If n is negative it counts backward from the
current command. The previous command is event -1.
1249985

!prefix
1249985

Repeats the last command that begins with prefix.
1249985

!pattern
1249985

Repeats the last command that matches pattern.
1249985

^old^new
1249985

Globally replaces old with new in the last command.
1249985

The next example shows how some of the history operations work:
1249985

Example 13-10. Interactive history usage

% set a 5
5
% set a [expr $a+7]
12

Chapter 13. Reflection and Debugging Page 20 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

% history
 1 set a 5
 2 set a [expr $a+7]
 3 history
% !2
19
% !!
26
% ^7^13
39
% !h
 1 set a 5
 2 set a [expr $a+7]
 3 history
 4 set a [expr $a+7]
 5 set a [expr $a+7]
 6 set a [expr $a+13]
 7 history

A Comparison to C Shell History Syntax
628024
The history syntax shown in the previous example is simpler than the history syntax provided
by the C shell. Not all of the history operations are supported with special syntax. The
substitutions (using ^old^new) are performed globally on the previous command. This is
different from the quick-history of the C shell. Instead, it is like the !:gs/old/new/ history
command. So, for example, if the example had included ^a^b in an attempt to set b to 39,
an error would have occurred because the command would have used b before it was
defined:
1249985

set b [expr $b+7]

If you want to improve the history syntax, you will need to modify the unknown command,
which is where it is implemented. This command is discussed in more detail in Chapter 12.
Here is the code from the unknown command that implements the extra history syntax. The
main limitation in comparison with the C shell history syntax is that the ! substitutions are
performed only when ! is at the beginning of the command:
1249985

Example 13-11. Implementing special history syntax

Excerpts from the standard unknown command
uplevel is used to run the command in the right context
if {$name == "!!"} {
 set newcmd [history event]
} elseif {[regexp {^!(.+)$} $name dummy event]} {
 set newcmd [history event $event]
} elseif {[regexp {^\^([^^]*)\^([^^]*)\^?$} $name x old new]} {
 set newcmd [history event -1]
 catch {regsub -all -- $old $newcmd $new newcmd}
}
if {[info exists newcmd]} {
 history change $newcmd 0

Chapter 13. Reflection and Debugging Page 21 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 return [uplevel $newcmd]
}

Debugging
621961

1249985
The rapid turnaround with Tcl coding means that it is often sufficient to add a few puts
statements to your script to gain some insight about its behavior. This solution doesn't scale
too well, however. A slight improvement is to add a Debug procedure that can have its output
controlled better. You can log the information to a file, or turn it off completely. In a Tk
application, it is simple to create a text widget to hold the contents of the log so that you can
view it from the application. Here is a simple Debug procedure. To enable it you need to set
the debug(enable) variable. To have its output go to your terminal, set debug(file) to
stderr.
1249985

Example 13-12. A Debug procedure

proc Debug { args } {
 global debug
 if {![info exists debug(enabled)]} {
 # Default is to do nothing
 return
 }
 puts $debug(file) [join $args " "]
}
proc DebugOn {{file {}}} {
 global debug
 set debug(enabled) 1
 if {[string length $file] == 0} {
 set debug(file) Stderr
 } else {
 if [catch {open $file w} fileID] {
 puts stderr "Cannot open $file: $fileID"
 set debug(file) stderr
 } else {
 puts stderr "Debug info to $file"
 set debug(file) $fileID
 }
 }
}
proc DebugOff {} {
 global debug
 if {[info exists debug(enabled)]} {
 unset debug(enabled)
 flush $debug(file)
 if {$debug(file) != "stderr" &&
 $debug(file) != "stdout"} {
 close $debug(file)
 unset debug(file)
 }
 }
}

Chapter 13. Reflection and Debugging Page 22 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Tcl Dev Kit
621961
Tcl Dev Kit is a commercial development environment for Tcl based on the original TclPro
created by Scriptics. TclPro was released to the open-source community in November 2001.
ActiveState has enhanced Tcl Dev Kit with new tools and more features. The development
environment includes ActiveTcl[*], which is an extended Tcl platform that includes [incr Tcl],
Expect, and TclX. These extensions and Tcl/Tk are distributed in source and binary form for
Windows and a variety of UNIX platforms. More information is available at this URL:
1249985

[*] ActiveTcl is a trademark of ActiveState Corporation.

http://www.activestate.com/Tcl

The current version of the Tcl Dev Kit contains these tools:
1249985

Debugger with Coverage
628024
The Debugger provides a nice graphical user interface with all the features you expect from
a traditional debugger. You can set breakpoints, single step, examine variables, and look at
the call stack. It understands a subtle issue that can arise from using the update command:
nested call stacks. It is possible to launch a new Tcl script as a side effect of the update
command, which pushes the current state onto the execution stack. This shows up clearly in
the debugger stack trace. It maintains project state, so it will remember breakpoint settings
and other preference items between runs. One of the most interesting features is that it can
debug remotely running applications. The debugger also has built-in code coverage and
hotspot profiling analysis. I use it regularly to debug Tcl code running inside the Tcl Web
Server.
1249985

Checker
628024
The Checker is a static code checker. This is a real win for large program development. It
examines every line of your program looking for syntax errors and dubious coding practices.
It has detailed knowledge of Tcl, Tk, Expect, [incr Tcl], and TclX commands and validates your
use of them. It checks that you call Tcl procedures with the correct number of arguments,

Chapter 13. Reflection and Debugging Page 23 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.activestate.com/Tcl

and can cross-check large groups of Tcl files. It knows about changes between Tcl versions,
and it can warn you about old code that needs to be updated.
1249985

Compiler
628024
The Compiler is really just a reader and writer for the byte codes that the Tcl byte-code
compiler generates internally. It lets you precompile scripts and save the results, and then
load the byte-code later instead of raw source. This provides a great way to hide your source
code, if that is important to you. It turns out to save less time than you might think, however.
By the time it reads the file from disk, decodes it, and builds the necessary Tcl data structures,
it is not much faster than reading a source file and compiling it on the fly.
1249985

TclApp
628024
TclApp assembles a collection of Tcl scripts, data files, and a Tcl/Tk interpreter into Starkits
and Starpacks, which are described in Chapter 22. TclApp provides a more friendly user
interface than the sdx command line tool described in that Chapter. The Tcl Dev Kit comes
with pre-built Starkit runtimes that include Metakit, Expect, [incr Tcl], and TclX.
1249985

Tcl Service Manager
628024
The Tcl Service Manager helps you turn your Tcl application into a service for Windows NT/
2000/XP. Services have to implement special OS interfaces that are not supported by tclsh
or wish. You can create services that use the DLLs and scripts from an existing Tcl/Tk
installation, or create stand alone services that have no external dependencies.
1249985

Inspector
628024
The Inspector is an improved version of the tkinspect application that lets you look at the state
of other Tk applications. It displays procedures, variables, and the Tk widget hierarchy. You
can issue commands to another application to change variables or test out commands. This
turns out to be a very useful way to debug Tk applications. The original tkinspect was written
by Sam Shen.
1249985

Chapter 13. Reflection and Debugging Page 24 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Other Tools
621961
The Tcl community has built many interesting and useful tools to help your Tcl development.
Only two of them are mentioned below, but you can find many more at the Tcl Resource
Center:
1249985

http://www.tcl.tk/resource/

The tkcon Console
628024
Tkcon is an enhanced Tk console application written purely in Tcl. It includes many useful
interactive control features, and may be embedded in other Tcl applications. It was written
by Jeff Hobbs and you can find it at:
1249985

http://tkcon.sourceforge.net/

Critcl
628024
Critcl is a tool that lets you mix C code right into your Tcl scripts. When the cproc command
encounters its code for the first time, it automatically compiles it with gcc and loads it into
your application. This provides an easy way to recode small parts of your application in C to
get a performance boost. It's home page is:
1249985

http://www.equi4.com/critcl

The bgerror Command
628024
When a Tcl script encounters an error during background processing, such as handling file
events or during the command associated with a button, it signals the error by calling the
bgerror procedure. A default implementation displays a dialog and gives you an
opportunity to view the Tcl call stack at the point of the error. You can supply your own
version of bgerror. For example, when my exmh mail application gets an error it offers to
send mail to me with a few words of explanation from the user and a copy of the stack trace.
I get interesting bug reports from all over the world!
1249985

Chapter 13. Reflection and Debugging Page 25 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.tcl.tk/resource/
http://safari.bvdep.com/http://tkcon.sourceforge.net/
http://safari.bvdep.com/http://www.equi4.com/critcl

The bgerror command is called with one argument that is the error message. The global
variable errorInfo contains the stack trace information. There is an example tkerror
implementation in the on-line sources associated with this book.
1249985

The tkerror Command
628024
The bgerror command used to be called tkerror. When event processing shifted from
Tk into Tcl with Tcl 7.5 and Tk 4.1, the name tkerror was changed to bgerror. Backwards
compatibility is provided so that if tkerror is defined, then tkerror is called instead of
bgerror. I have run into problems with the compatibility setup and have found it more
reliable to update my applications to use bgerror instead of tkerror. If you have an
application that runs under either Tk 4.0 or Tk 4.1, you can simply define both:
1249985

proc bgerror [info args tkerror] [info body tkerror]

Performance Tuning
621961

1249985
The time command measures the execution time of a Tcl command. It takes an optional
parameter that is a repetition count:
1249985

time {set a "Hello, World!"} 1000

=> 28 microseconds per iteration

If you need the result of the command being timed, use set to capture the result:
1249985

puts $log "
command
: [time {set result [
command
]}]"

An extensive benchmark suite that compares various Tcl versions is available at:
1249985

http://wiki.tcl.tk/Tcl%20Benchmarks

Chapter 13. Reflection and Debugging Page 26 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://wiki.tcl.tk/Tcl%20Benchmarks

Time stamps in a Log
628024
Another way to gain insight into the performance of your script is to generate log records
that contain time stamps. The clock seconds value is too coarse, but you can couple it
with the clock clicks value to get higher resolution measurements. Use the code shown
in Example 13-1 on page 185 to calibrate the clicks per second on your system. Example
13-13 writes log records that contain the current time and the number of clicks since the last
record. There will be occasional glitches in the clicks value when the system counter wraps
around or is reset by the system clock, but it will normally give pretty accurate results. The
Log procedure adds overhead, too, so you should take several measurements in a tight loop
to see how long each Log call takes:
1249985

Example 13-13. Time Stamps in log records

proc Log {args} {
 global log
 if [info exists log(file)] {
 set now [clock clicks]
 puts $log(file) [format "%s (%d)\t%s" \
 [clock format [clock seconds]] \
 [expr $now - $log(last)] \
 [join $args " "]]
 set log(last) $now
 }
}
proc Log_Open {file} {
 global log
 catch {close $log(file)}
 set log(file) [open $file w]
 set log(last) [clock clicks]
}
proc Log_Flush {} {
 global log
 catch {flush $log(file)}
}
proc Log_Close {} {
 global log
 catch {close $log(file)}
 catch {unset log(file)}
}

A more advanced profile command is part of the Extended Tcl (TclX) package. The TclX
profile command monitors the number of calls, the CPU time, and the elapsed time spent
in different procedures.
1249985

The Tcl Compiler
628024
The built-in Tcl compiler improves performance in the following ways:

Chapter 13. Reflection and Debugging Page 27 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

• Tcl scripts are converted into an internal byte-code format that is efficient to process. The byte codes are saved so that cost of
compiling is paid only the first time you execute a procedure or loop. After that, execution proceeds much faster. Compilation
is done as needed, so unused code is never compiled. If you redefine a procedure, it is recompiled the next time it is executed.

• Variables and command arguments are kept in a native format as long as possible and converted to strings only when necessary.
There are several native types, including integers, floating point numbers, Tcl lists, byte codes, and arrays. There are C APIs for
implementing new types. Tcl is still dynamically typed, so a variable can contain different types during its lifetime.

• Expressions and control structures are compiled into special byte codes, so they are executed more efficiently. Because
expr does its own round of substitutions, the compiler generates better code if you group expressions with braces. This means
that expressions go through only one round of substitutions. The compiler can generate efficient code because it does not
have to worry about strange code like:

set subexpr {$x+$y}
expr 5 * $subexpr

The previous expression is not fully defined until runtime, so it has to be parsed and executed
each time it is used. If the expression is grouped with braces, then the compiler knows in
advance what operations will be used and can generate byte codes to implement the
expression more efficiently.
1249985
The operation of the compiler is essentially transparent to scripts, but there are some
differences in lists and expressions. These are described in Chapter 54. With lists, the good
news is that large lists are more efficient. The problem is that lists are parsed more
aggressively, so syntax errors at the end of a list will be detected even if you access only the
beginning of the list. There were also some bugs in the code generator in the widely used
Tcl 8.0p2 release. Most of these were corner cases like unbraced expressions in if and
while commands. Most of these bugs were fixed in the 8.0.3 patch release, and the rest were
cleaned up in Tcl 8.1 with the addition of a new internal parsing package.
1249985
The internal compiler continues to improve over time, with 8.4 extending the core instruction
table to significantly improve performance over previous versions.
1249985

Chapter 13. Reflection and Debugging Page 28 Return to Table of Contents

Chapter 13. Reflection and Debugging
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

