
Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts... 1
What are Threads?.. 1
Thread Support in Tcl.. 2
Getting Started with the Thread Extension.. 4
Sending Messages to Threads.. 8
Preserving and Releasing Threads.. 11
Error Handling.. 13
Shared Resources... 13
Managing I/O Channels... 14
Shared Variables... 19
Mutexes and Condition Variables.. 21
Thread Pools.. 24
The Thread Package Commands.. 26

Chapter 21. Multi-Threaded Tcl Scripts

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 21. Multi-Threaded Tcl Scripts
478

This chapter describes the Thread extension for creating multi-threaded Tcl scripts.
1249985
Thread support, a key feature of many languages, is a recent addition to Tcl. That's because
the Tcl event loop supports features implemented by threads in most other languages, such
as graphical user interface management, multi-client servers, asynchronous communication,
and scheduling and timing operations. However, although Tcl's event loop can replace the
need for threads in many circumstances, there are still some instances where threads can be
a better solution:
1249985

• Long-running calculations or other processing, which can “starve” the event loop

• Interaction with external libraries or processes that don't support asynchronous communication

• Parallel processing that doesn't adapt well to an event-driven model

• Embedding Tcl into an existing multi-threaded application

What are Threads?
621961
Traditionally, processes have been limited in that they can do only one thing at a time. If your
application needed to perform multiple tasks in parallel, you designed the application to
create multiple processes. However, this approach has its drawbacks. One is that processes
are relatively “heavy” in terms of the resources they consume and the time it takes to create
them. For applications that frequently create new processes — for example, servers that
create a new process to handle each client connection — this can lead to decreased response
time. And widely parallel applications that create many processes can consume so many
system resources as to slow down the entire system. Another drawback is that passing
information between processes can be slow because most interprocess communication
mechanisms — such as files, pipes, and sockets — involve intermediaries such as the file
system or operating system, as well as requiring a context switch from one running process
to another.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 1 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Threads were designed as a light-weight alternative. Threads are multiple flows of execution
within the same process. All threads within a process share the same memory and other
resources. As a result, creating a thread requires far fewer resources than creating a separate
process. Furthermore, sharing information between threads is much faster and easier than
sharing information between processes.
1249985
The operating system handles the details of thread creation and coordination. On a single-
processor system, the operating system allocates processor time to each of an application's
threads, so a single thread doesn't block the rest of the application. On multi-processor
systems, the operating system can even run threads on separate processors, so that threads
truly can run simultaneously.
1249985
The drawback to traditional multi-threaded programming is that it can be difficult to design
a thread-safe application — that is, an application in which one thread doesn't corrupt the
resources being used by another thread. Because all resources are shared in a multi-threaded
application, you need to use various locking and scheduling mechanisms to guard against
multiple threads modifying resources concurrently.
1249985

Thread Support in Tcl
621961
Tcl added support for multi-threaded programming in version 8.1. The Tcl core was made
thread-safe. Furthermore, new C functions exposed “platform-neutral” thread functionality.
However, no official support was provided for multi-threaded scripting. Since then, the
Thread extension — originally written by Brent Welch and currently maintained by Zoran
Vasiljevic — has become the accepted mechanism for creating multi-threaded Tcl scripts.
The most recent version of the Thread extension as this was being written was 2.5. In general,
this version requires Tcl 8.3 or later, and several of the commands provided require Tcl 8.4
or later.
1249985
At the C programming level, Tcl's threading model requires that a Tcl interpreter be managed
by only one thread. However, each thread can create as many Tcl interpreters as needed
running under its control. As is the case in even a single-threaded application, each Tcl
interpreter has its own set of variables and procedures. A thread can execute commands in
another thread's Tcl interpreter only by sending special messages to that interpreter's event
queue. Those messages are handled in the order received along with all other types of events.

1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 2 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Obtaining a Thread-Enabled Tcl Interpreter
628024
Most binary distributions of Tcl are not thread-enabled, because the default options for
building the Tcl interpreters and libraries do not enable thread support. Thread safety adds
overhead, slowing down single-threaded Tcl applications, which constitute the vast majority
of Tcl applications. Also, many Tcl extensions aren't thread safe, and naively trying to use
them in a multi-threaded application can cause errors or crashes.
1249985
Unless you can obtain a thread-enabled binary distribution of Tcl, you must compile your
own from the Tcl source distribution. This requires running the configure command with
the --enable-threads option during the build process. (See Chapter 48, “Compiling Tcl
and Extensions” for more information.)
1249985
You can test whether a particular Tcl interpreter is thread-enabled by checking for the
existence of the tcl_platform(threaded) element. This element exists and contains a
Boolean true value in thread-enabled interpreters, whereas it doesn't exist in interpreters
without thread support.
1249985

Using Extensions in Multi-Threaded Scripts
628024
Because each interpreter has its own set of variables and procedures, you must explicitly load
an extension into each thread that wants to use it. Only the Thread extension itself is
automatically loaded into each interpreter.
1249985
You must be careful when using extensions in multi-threaded scripts. Many Tcl extensions
aren't thread-safe. Attempting to use them in multi-threaded scripts often results in crashes
or corrupted data.
1249985
Tcl-only extensions are generally thread-safe. Of course, they must make no use of other
commands or extensions that aren't thread-safe. But otherwise, multi-threaded operation
doesn't add any new issues that don't already affect single-threaded scripts.
1249985
You should always assume that a binary extension is not thread-safe unless its
documentation explicitly says that it is. And even thread-safe binary extensions must be
compiled with thread support enabled for you to use them in multi-threaded applications.
(The default compilation options for most binary extensions don't include thread support.)
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 3 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Tk isn't truly thread-safe.
1249985

Most underlying display libraries (such as X Windows) aren't thread safe — or at least aren't
typically compiled with thread-safety enabled. However, significant work has gone into
making the Tk core thread-safe. The result is that you can safely use Tk in a multi-threaded
Tcl application as long as only one thread uses Tk commands to manage the interface. Any
other thread that needs to update the interface should send messages to the thread
controlling the interface.
1249985

Getting Started with the Thread Extension
621961
You start a thread-enabled tclsh or wish the same as you would a non-threaded tclsh
or wish. When started, there is only one thread executing, often referred to as the main
thread, which contains a single Tcl interpreter. If you don't create any more threads, your
application runs like any other single-threaded application.
1249985

Make sure that the main thread is the last one to terminate.
1249985

The main thread has a unique position in a multi-threaded Tcl script. If it exits, then the entire
application terminates. Also, if the main thread terminates while other threads still exist, Tcl
can sometimes crash rather than exiting cleanly. Therefore, you should always design your
multi-threaded applications so that your main thread waits for all other threads to terminate
before it exits.
1249985
Before accessing any threading features from your application, you must load the Thread
extension:
1249985

package require Thread

The Thread extension automatically loads itself into any new threads your application
creates with thread::create. All other extensions must be loaded explicitly into each

Chapter 21. Multi-Threaded Tcl Scripts Page 4 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

thread that needs to use them. The Thread extension creates commands in three separate
namespaces:
1249985

• The thread namespace contains all of the commands for creating and managing threads, including inter-thread messaging,
mutexes, and condition variables.

• The tsv namespace contains all of the commands for creating and managing thread shared variables.

• The tpool namespace contains all of the commands for creating and managing thread pools.

Creating Threads
628024
The thread::create command creates a new thread containing a new Tcl interpreter.
Any thread can create another thread at will; you aren't limited to starting threads from only
the main thread. The thread::create command returns immediately, and its return value
is the ID of the thread created. The ID is a unique token that you use to interact with and
manipulate the thread, in much the same way as you use a channel identifier returned by
open to interact with and manipulate that channel. There are several commands available
for introspection on thread IDs: thread::id returns the ID of the current thread;
thread::names returns a list of threads currently in existence; and thread::exists
tests for the existence of a given thread.
1249985
The thread::create command accepts a Tcl script as an argument. If you provide a script,
the interpreter in the newly created thread executes it and then terminates the thread.
Example 21-1 demonstrates this by creating a thread to perform a recursive search for files
in a directory. For a large directory structure, this could take considerable time. By performing
the search in a separate thread, the main thread is free to perform other operations in parallel.
Also note how the “worker” thread loads an extension and opens a file, completely
independent of any extensions loaded or files opened in other threads.
1249985

Example 21-1. Creating a separate thread to perform a lengthy operation

package require Thread

Create a separate thread to search the current directory
and all its subdirectories, recursively, for all files
ending in the extension ".tcl". Store the results in the
file "files.txt".

thread::create {
 # Load the Tcllib fileutil package to use its
 # findByPattern procedure.

 package require fileutil

 set files [fileutil::findByPattern [pwd] *.tcl]

Chapter 21. Multi-Threaded Tcl Scripts Page 5 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 set fid [open files.txt w]
 puts $fid [join $files \n]
 close $fid
}

The main thread can perform other tasks in parallel...

If you don't provide a script argument to thread::create, the thread's interpreter enters
its event loop. You then can use the thread::send command, described on page 328, to
send it scripts to evaluate. Often though, you'd like to perform some initialization of the
thread before having it enter its event loop. To do so, use the thread::wait command to
explicitly enter the event loop after performing any desired initialization, as shown in
Example 21-2. You should always use thread::wait to cause a thread to enter its event
loop, rather than vwait or tkwait, for reasons discussed in “Preserving and Releasing
Threads” on page 330.
1249985

Example 21-2. Initializing a thread before entering its event loop

set httpThread [thread::create {
 package require http
 thread::wait
}]

After creating a thread, never assume that it has started executing.
1249985

There is a distinction between creating a thread and starting execution of a thread. When
you create a thread, the operating system allocates resources for the thread and prepares it
to run. But after creation, the thread might not start execution immediately. It all depends
on when the operating system allocates execution time to the thread. Be aware that the
thread::create command returns when the thread is created, not necessarily when it
has started. If your application has any inter-thread timing dependencies, always use one of
the thread synchronization techniques discussed in this chapter.
1249985

Creating Joinable Threads
628024
Remember that the main thread must be the last to terminate. Therefore you often need
some mechanism for determining when it's safe for the main thread to exit. Example 21-3

Chapter 21. Multi-Threaded Tcl Scripts Page 6 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

shows one possible approach: periodically checking thread::names to see if the main
thread is the only remaining thread.
1249985

Example 21-3. Creating several threads in an application

package require Thread

puts "*** I'm thread [thread::id]"

Create 3 threads

for {set thread 1} {$thread <= 3} {incr thread} {
 set id [thread::create {

 # Print a hello message 3 times, waiting
 # a random amount of time between messages

 for {set i 1} {$i <= 3} {incr i} {
 after [expr { int(500*rand()) }]
 puts "Thread [thread::id] says hello"
 }

 }] ;# thread::create

 puts "*** Started thread $id"
} ;# for

puts "*** Existing threads: [thread::names]"

Wait until all other threads are finished

while {[llength [thread::names]] > 1} {
 after 500
}

puts "*** That's all, folks!"

A better approach in this situation is to use joinable threads, which are supported in Tcl 8.4
or later. A joinable thread allows another thread to wait upon its termination with the
thread::join command. You can use thread::join only with joinable threads, which
are created by including the thread::create -joinable option. Attempting to join a
thread not created with -joinable results in an error. Failing to join a joinable thread causes
memory and other resource leaks in your application. Example 21-4 revises the program from
Example 21-3 to use joinable threads.
1249985

Example 21-4. Using joinable threads to detect thread termination

package require Thread

puts "*** I'm thread [thread::id]"

Create 3 threads

for {set thread 1} {$thread <= 3} {incr thread} {
 set id [thread::create -joinable {

Chapter 21. Multi-Threaded Tcl Scripts Page 7 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 # Print a hello message 3 times, waiting
 # a random amount of time between messages

 for {set i 1} {$i <= 3} {incr i} {
 after [expr { int(500*rand()) }]
 puts "Thread [thread::id] says hello"
 }

 }] ;# thread::create

 puts "*** Started thread $id"

 lappend threadIds $id

} ;# for

puts "*** Existing threads: [thread::names]"

Wait until all other threads are finished

foreach id $threadIds {
 thread::join $id
}

puts "*** That's all, folks!"

The thread::join command blocks.
1249985

Be aware that thread::join blocks. While the thread is waiting for thread::join to
return, it can't perform any other operations, including servicing its event loop. Therefore,
make sure that you don't use thread::join in situations where a thread must be
responsive to incoming events.
1249985

Sending Messages to Threads
621961
The thread::send command sends a script to another thread to execute. The target
thread's main interpreter receives the script as a special type of event added to the end of
its event queue. A thread evaluates its messages in the order received along with all other
types of events. Obviously, a thread must be in its event loop for it to detect and respond to
messages. As discussed on page 324, a thread enters its event loop if you don't provide a
script argument to thread::create, or if you include the thread::wait command in
the thread's initialization script.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 8 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Synchronous Message Sending
628024
By default, thread::send blocks until the target thread finishes executing the script. The
return value of thread::send is the return value of the last command executed in the
script. If an error occurs while evaluating the script, the error condition is “reflected” into the
sending thread; thread::send generates the same error code, and the target thread's
stack trace is included in the value of the errorInfo variable of the sending thread:
1249985

Example 21-5. Examples of synchronous message sending

set t [thread::create] ;# Create a thread
=> 1572

set myX 42 ;# Create a variable in the main thread
=> 42

Copy the value to a variable in the worker thread
thread::send $t [list set yourX $myX]
=> 42

Perform a calculation in the worker thread
thread::send $t {expr { $yourX / 2 } }
=> 21

thread::send $t {expr { $yourX / 0 } }
=> divide by zero

catch {thread::send $t {expr { $yourX / 0 } } } ret
=> 1

puts $ret
=> divide by zero

puts $errorInfo
=> divide by zero

while executing

"expr { $yourX / 0 } "

invoked from within

"thread::send $t {expr { $yourX / 0 } } "

If you also provide the name of a variable to a synchronous thread::send, then it behaves
analogously to a catch command; thread::send returns the return code of the script,
and the return value of the last command executed in the script — or the error message —
is stored in the variable. Tcl stores the target thread's stack trace in the sending thread's
errorInfo variable.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 9 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 21-6. Using a return variable with synchronous message sending

thread::send $t {incr yourX 2} myY
=> 0

puts $myY
=> 44

thread::send $t {expr { acos($yourX) } } ret
=> 1

puts $ret
=> domain error: argument not in valid range

puts $errorInfo
=> domain error: argument not in valid range

while executing

"expr { acos($yourX) } "

While the sending thread is waiting for a synchronous thread::send to return, it can't
perform any other operations, including servicing its event loop. Therefore, synchronous
sending is appropriate only in cases where:
1249985

• you want a simple way of getting a value back from another thread;

• you don't mind blocking your thread if the other thread takes a while to respond; or

• you need a response from the other thread before proceeding.

Watch out for deadlock conditions with synchronous message
sending.
1249985

If Thread A performs a synchronous thread::send to Thread B, and while evaluating the
script Thread B performs a synchronous thread::send to Thread A, then your application
is deadlocked. Because Thread A is blocked in its thread::send, it is not servicing its event
loop, and so can't detect Thread B's message.
1249985
This situation arises most often when the script you send calls procedures in the target thread,
and those procedures contain thread::send commands. Under these circumstances, it
might not be obvious that the script sent will trigger a deadlock condition. For this reason,
you should be cautious about using synchronous thread::send commands for complex
actions. Sending in asynchronous mode, described in the next section, avoids potential
deadlock situations like this.

Chapter 21. Multi-Threaded Tcl Scripts Page 10 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Asynchronous Message Sending
628024
With the -async option, thread::send sends the script to the target thread in
asynchronous mode. In this case, thread::send returns immediately.
1249985
By default, an asynchronous thread::send discards any return value of the script.
However, if you provide the name of a variable as an additional argument to
thread::send, the return value of the last command executed in the script is stored as the
value of the variable. You can then either vwait on the variable or create a write trace on
the variable to detect when the target thread responds. For example:
1249985

thread::send -async $t [list ProcessValues $vals] result
vwait result

In this example, the thread::send command returns immediately; the sending thread
could then continue with any other operations it needed to perform. In this case, it executes
a vwait on the return variable to wait until the target thread finishes executing the script.
However, while waiting for the response, it can detect and process incoming events. In
contrast, the following synchronous thread::send blocks, preventing the sending thread
from processing events until it receives a response from the target thread:
1249985

thread::send $t [list ProcessValues $vals] result

Preserving and Releasing Threads
621961
A thread created with a script not containing a thread::wait command terminates as
soon as the script finishes executing. But if a thread enters its event loop, it continues to run
until its event loop terminates. So how do you terminate a thread's event loop?
1249985
Each thread maintains an internal reference count. The reference count is set initially to 0, or
to 1 if you create the thread with the thread::create -preserved option. Any thread
can increment the reference count afterwards by executing thread::preserve, and
decrement the reference count by executing thread::release. These commands affect
the reference count of the current thread unless you specify the ID of another thread. If a call
to thread::release results in a reference count of 0 or less, the thread is marked for
termination.

Chapter 21. Multi-Threaded Tcl Scripts Page 11 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
The use of thread reference counts allows multiple threads to preserve the existence of a
worker thread until all of the threads release the worker thread. But the majority of multi-
threaded Tcl applications don't require that degree of thread management. In most cases,
you can simply create a thread and then later use thread::release to terminate it:
1249985

set worker [thread::create]
thread::send -async $worker $script
Later in the program, terminate the worker thread
thread::release $worker

A thread marked for termination accepts no further messages and discards any pending
events. It finishes processing any message it might be executing currently, then exits its event
loop. If the thread entered its event loop through a call to thread::wait, any other
commands following thread::wait are executed before thread termination, as shown in
Example 21-7. This can be useful for performing “clean up” tasks before terminating a thread.
1249985

Example 21-7. Executing commands after thread::wait returns

set t [thread::create {
 puts "Starting worker thread"
 thread::wait
 # This is executed after the thread is released
 puts "Exiting worker thread"
}]

Note that if a thread is executing a message script when thread::release is called (either
by itself or another thread), the thread finishes executing its message script before
terminating. So, if a thread is stuck in an endless loop, calling thread::release has no
effect on the thread. In fact, there is no way to kill such a “runaway thread.”
1249985

Always use thread::wait to enter a thread's event loop.
1249985

This system for preserving and releasing threads works only if you use the
thread::wait command to enter the thread's event loop (or if you did not provide a
creation script when creating the thread). If you use vwait or tkwait to enter the event
loop, thread::release cannot terminate the thread.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 12 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Error Handling
621961
If an error occurs while a thread is executing its creation script (provided by
thread::create), the thread dies. In contrast, if an error occurs while processing a
message script (provided by thread::send), the default behavior is for the thread to stop
execution of the message script, but to return to its event loop and continue running. To
cause a thread to die when it encounters an uncaught error, use the
thread::configure command to set the thread's -unwindonerror option to true:
1249985

thread::configure $t -unwindonerror 1

Error handling is determined by the thread creating the thread or sending the message. If
an error occurs in a script sent by a synchronous thread::send, then the error condition
is “reflected” to the sending thread, as described in “Synchronous Message Sending” on page
328. If an error occurs during thread creation or an asynchronous thread::send, the
default behavior is for Tcl to send a stack trace to the standard error channel. Alternatively,
you can specify the name of your own custom error handling procedure with
thread::errorproc. Tcl automatically calls your procedure whenever an “asynchronous”
error occurs, passing it two arguments: the ID of the thread generating the error, and the
stack trace. (This is similar to defining your own bgerror procedure, as described in “The
bgerror Command” on page 202.) For example, the following code logs all uncaught errors
to the file errors.txt:
1249985

Example 21-8. Creating a custom thread error handler

set errorFile [open errors.txt a]

proc logError {id error} {
 global errorFile
 puts $errorFile "Error in thread $id"
 puts $errorFile $error
 puts $errorFile ""
}
thread::errorproc logError

Shared Resources
621961
The present working directory is a resource shared by all interpreters in all threads. If one
thread changes the present working directory, then that change affects all interpreters and
all threads. This can pose a significant problem, as some library routines temporarily change

Chapter 21. Multi-Threaded Tcl Scripts Page 13 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

the present working directory during execution, and then restore it before returning. But in
a multi-threaded application, another thread could attempt to access the present working
directory during this period and get incorrect results. Therefore, the safest approach if your
application needs to access the present working directory is to store this value in a global or
thread-shared variable before creating any other threads. The following example uses
tsv::set to store the current directory in the pwd element of the application shared
variable:
1249985

package require Thread
Save the pwd in a thread-shared variable
tsv::set application pwd [pwd]
set t [thread::create {#...}]

Environment variables are another shared resource. If one thread makes a change to an
environment variable, then that change affects all threads in your application. This might
make it tempting to use the global env array as a method for sharing information between
threads. However, you should not do so, because it is far less efficient than thread-shared
variables, and there are subtle differences in the way environment variables are handled on
different platforms. If you need to share information between threads, you should instead
use thread-shared variables, as discussed in “Shared Variables” on page 337.
1249985

The exit command kills the entire application.
1249985

Although technically not a shared resource, it's important to recognize that the exit
command kills the entire application, no matter which thread executes it. Therefore, you
should never call exit from a thread when your intention is to terminate only that thread.
1249985

Managing I/O Channels
621961
Channels are shared resources in most programming languages. But in Tcl, channels are
implemented as a per-interpreter resource. Only the standard I/O channels (stdin,
stdout, and stderr) are shared.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 14 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Be careful with standard I/O channel on Windows and Macintosh.
1249985

When running wish on Windows and Macintosh prior to OS X, you don't have real standard
I/O channels, but simulated stdout and stderr channels direct output to the special
console window. As of Thread 2.5, these simulated channels appear in the main thread's
channel list, but not in any other thread's channel list. Therefore, you'll cause an error if you
attempt to access these channels from any thread other than the main thread.
1249985

Accessing Files from Multiple Threads
628024
In a multi-threaded application, avoid having the same file open in multiple threads. Having
the same file open for read access in multiple threads is safe, but it is more efficient to have
only one thread read the file and then share the information with other threads as needed.
Opening the same file in multiple threads for write or append access is likely to fail. Operating
systems typically buffer information written to a disk on a per-channel basis. With multiple
channels open to the same file, it's likely that one thread will end up overwriting data written
by another thread. If you need multiple threads to have write access to a single file, it's far
safer to have one thread responsible for all file access, and let other threads send messages
to the thread to write the data. Example 21-9 shows the skeleton implementation of a logging
thread. Once the log file is open, other threads can call the logger's AddLog procedure to
write to the log file.
1249985

Example 21-9. A basic implementation of a logging thread

set logger [thread::create {
 proc OpenLog {file} {
 global fid
 set fid [open $file a]
 }
 proc CloseLog {} {
 global fid
 close $fid
 }
 proc AddLog {msg} {
 global fid
 puts $fid $msg
 }
 thread::wait
}]

Chapter 21. Multi-Threaded Tcl Scripts Page 15 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Transferring Channels between Threads
628024
As long as you're working with Tcl 8.4 or later, the Thread extension gives you the ability to
transfer a channel from one thread to another with the thread::transfer command.
After the transfer, the initial thread has no further access to the channel. The symbolic channel
ID remains the same in the target thread, but you need some method of informing the target
thread of the ID, such as a thread-shared variable. The thread::transfer command
blocks until the target thread has incorporated the channel. The following shows an example
of transferring a channel, and simply duplicating the value of the channel ID in the target
thread rather than using a thread-shared variable:
1249985

set fid [open myfile.txt r]
...
set t [thread::create]
thread::transfer $t $fid
Duplicate the channel ID in the target thread
thread::send $t [list set fid $fid]

Another option for transferring channels introduced in Thread 2.5 is
thread::detach, which detaches a channel from a thread, and thread::attach, which
attaches a previously detached channel to a thread. The advantage to this approach is that
the thread relinquishing the channel doesn't need to know which thread will be acquiring
it. This is useful when your application uses thread pools, which are described on page 342.

1249985
The ability to transfer channels between threads is a key feature in implementing a multi-
thread server, in which a separate thread is created to service each client connected. One
thread services the listening socket. When it receives a client connection, it creates a new
thread to service the client, then transfers the client's communication socket to that thread.
1249985

Transferring socket channels requires special handling.
1249985

A complication arises in that you can't perform the transfer of the communication socket
directly from the connection handler, like this:
1249985

socket -server ClientConnect 9001
proc ClientConnect {sock host port} {
 set t [thread::create { ... }]
 # The following command fails

Chapter 21. Multi-Threaded Tcl Scripts Page 16 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 thread::transfer $t $sock
}

The reason is that Tcl maintains an internal reference to the communication socket during
the connection callback. The thread::transfer command (and the
thread::detach command) cannot transfer the channel while this additional reference
is in place. Therefore, we must use the after command to defer the transfer until after the
connection callback returns, as shown in Example 21-10.
1249985

Example 21-10. Deferring socket transfer until after the connection callback

proc _ClientConnect {sock host port} {
 after 0 [list ClientConnect $sock $host $port]
}

proc ClientConnect {sock host port} {
 # Create the client thread and transfer the channel
}

One issue in early versions of Tcl 8.4 was a bug that failed to initialize Tcl's socket support
when a socket channel was transferred into a thread. The work-around for this bug is to
explicitly create a socket in the thread (which can then be immediately closed) to initialize
the socket support, and then transfer the desired socket. This bug has been fixed, but Example
21-11 illustrates how you can perform extra initialization in a newly created thread before it
enters its event loop:
1249985

Example 21-11. Working around Tcl's socket transfer bug by initializing socket support

set t [thread::create {
 # Initialize socket support by opening and closing
 # a server socket.

 close [socket -server {} 0]

 # Now sockets can be transferred safely into this thread.

 thread::wait
}]

Example 21-12 integrates all of these techniques to create a simple multi-threaded echo
server. Note that the server still uses event-driven interaction in each client thread.
Technically, this isn't necessary for such a simple server, because once a client thread starts
it doesn't expect to receive messages from any other thread. If a thread needs to respond to
messages from other threads, it must be in its event loop to detect and service such messages.
Because this requirement is common, this application demonstrates the event-driven
approach.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 17 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 21-12. A multi-threaded echo server

package require Tcl 8.4
package require Thread 2.5

if {$argc > 0} {
 set port [lindex $argv 0]
} else {
 set port 9001
}
socket -server _ClientConnect $port

proc _ClientConnect {sock host port} {

 # Tcl holds a reference to the client socket during
 # this callback, so we can't transfer the channel to our
 # worker thread immediately. Instead, we'll schedule an
 # after event to create the worker thread and transfer
 # the channel once we've re-entered the event loop.

 after 0 [list ClientConnect $sock $host $port]
}

proc ClientConnect {sock host port} {

 # Create a separate thread to manage this client. The
 # thread initialization script defines all of the client
 # communication procedures and puts the thread in its
 # event loop.

 set thread [thread::create {
 proc ReadLine {sock} {
 if {[catch {gets $sock line} len] || [eof $sock]} {
 catch {close $sock}
 thread::release
 } elseif {$len >= 0} {
 EchoLine $sock $line
 }
 }

 proc EchoLine {sock line} {
 if {[string equal -nocase $line quit]} {
 SendMessage $sock \
 "Closing connection to Echo server"
 catch {close $sock}
 thread::release
 } else {
 SendMessage $sock $line
 }
 }

 proc SendMessage {sock msg} {
 if {[catch {puts $sock $msg} error]} {
 puts stderr "Error writing to socket: $error"
 catch {close $sock}
 thread::release
 }
 }

 # Enter the event loop

 thread::wait

 }]

 # Release the channel from the main thread. We use
 # thread::detach/thread::attach in this case to prevent
 # blocking thread::transfer and synchronous thread::send

Chapter 21. Multi-Threaded Tcl Scripts Page 18 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 # commands from blocking our listening socket thread.

 thread::detach $sock

 # Copy the value of the socket ID into the
 # client's thread

 thread::send -async $thread [list set sock $sock]

 # Attach the communication socket to the client-servicing
 # thread, and finish the socket setup.

 thread::send -async $thread {
 thread::attach $sock
 fconfigure $sock -buffering line -blocking 0
 fileevent $sock readable [list ReadLine $sock]
 SendMessage $sock "Connected to Echo server"
 }
}

vwait forever

Shared Variables
621961
Standard Tcl variables are a per-interpreter resource; an interpreter has no access to variables
in another interpreter. For the simple exchange of information between threads, you can
substitute the values of variables into a script that you send to another thread, and obtain
the return value of a script evaluated by another thread. But this technique is inadequate for
sharing information among multiple threads, and inefficient when transferring large
amounts of information.
1249985
The Thread extension supports the creation of thread-shared variables, which are accessible
by all threads in an application. Thread-shared variables are stored independent of any
interpreter, so if the thread that originally created a shared variable terminates, the shared
variable continues to exist. Shared variables are stored in collections called arrays. The term
is somewhat unfortunate, because while shared variable arrays are similar to standard Tcl
arrays, they do not use the same syntax. Your application can contain as many shared variable
arrays as you like.
1249985
Because of the special nature of shared variables, you cannot use the standard Tcl commands
to create or manipulate shared variables, or use standard variable substitution syntax to
retrieve their values. (This also means that you cannot use shared variables as a widget's -
textvariable or -listvariable, with vwait or tkwait, or with variable traces.) All
commands for interacting with shared variables are provided by the Thread extension in
the tsv namespace. Most of the tsv commands are analogous to Tcl commands for creating

Chapter 21. Multi-Threaded Tcl Scripts Page 19 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

and manipulating standard Tcl variables. Table 21-3 on page 346 describes all of the tsv
commands.
1249985
You create a shared variable with tsv::set, specifying the array name, the variable name
(sometimes also referred to as the shared array element), and the value to assign to it. For
example:
1249985

tsv::set application timeout 10

To retrieve the value of a shared variable, either use tsv::set without a value or call
tsv::get. The two commands shown below are equivalent:
1249985

tsv::set application timeout
tsv::get application timeout

All shared variable commands are guaranteed to be atomic. A thread locks the variable during
the entire command. No other thread can access the variable until the command is complete;
if a thread attempts to do so, it blocks until the variable is unlocked. This simplifies the use
of shared variables in comparison to most other languages, which require explicit locking
and unlocking of variables to prevent possible corruption from concurrent access by multiple
threads.
1249985
This locking feature is particularly useful in the class of tsv commands that manipulate lists.
Standard Tcl commands like linsert and lreplace take a list value as input, and then
return a new list as output. Modifying the value of a list stored in a standard Tcl variable
requires a sequence like this:
1249985

set states [linsert $states 1 California Nevada]

Doing the same with shared variables is problematic:
1249985

tsv::set common cities \
 [linsert [tsv::get common cities] 1 Yreka Winnemucca]

After reading the shared variable with tsv::get, another thread could modify the value of
the variable before the tsv::set command executes, resulting in data corruption. For this
reason, the tsv commands that manipulate list values actually modify the value of the shared
variable. Data corruption by another thread won't occur because the shared variable is locked
during the entire execution of the command:
1249985

tsv::linsert common cities 1 Yreka Winnemucca

Chapter 21. Multi-Threaded Tcl Scripts Page 20 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Mutexes and Condition Variables
621961
Mutexes and condition variables are thread synchronization mechanisms. Although they are
used frequently in other languages, they aren't needed as often in Tcl because of Tcl's
threading model and the atomic nature of all shared variable commands. All mutex and
condition variable commands are provided by the Thread extension in the thread
namespace.
1249985

Mutexes
628024
A mutex, which is short for mutual exclusion, is a locking mechanism. You use a mutex to
protect shared resources — such as shared variables, serial ports, databases, etc. — from
concurrent access by multiple threads. Before accessing the shared resource, the thread
attempts to lock the mutex. If no other thread currently holds the mutex, the thread
successfully locks the mutex and can access the resource. If another thread already holds the
mutex, then the attempt to lock the mutex blocks until the other thread releases the mutex.

1249985
This sequence is illustrated in Example 21-13. The first step is creating a mutex with the
thread::mutex create operation, which returns a unique token representing the
mutex. The same token is used in all threads, and so you must make this token available (for
example, through a shared variable) to all threads that access the shared resource.
1249985

Example 21-13. Using a mutex to protect a shared resource

Create the mutex, storing the mutex token in a shared
variable for other threads to access.

tsv::set db mutex [thread::mutex create]

...

Lock the mutex before accessing the shared resource.

thread::mutex lock [tsv::get db mutex]

Use the shared resource, and then unlock the mutex.

thread::mutex unlock [tsv::get db mutex]

Lather, rinse, repeat as needed...

thread::mutex destroy [tsv::get db mutex]

Chapter 21. Multi-Threaded Tcl Scripts Page 21 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Mutexes rely on threads being “good citizens.”
1249985

Mutexes work only if all threads in an application use them properly. A “rogue” thread can
ignore using a mutex and access the shared resource directly. Therefore, you should be very
careful to use your mutexes consistently when designing and implementing your
application.
1249985

Condition Variables
628024
A condition variable is a synchronization mechanism that allows one or more threads to sleep
until they receive notification from another thread. A condition variable is associated with a
mutex and a boolean condition known as a predicate. A thread uses the condition variable
to wait until the boolean predicate is true. A different thread changes the state of the
predicate to true, and then notifies the condition variable. The mutex synchronizes thread
access to the data used to compute the predicate value. The general usage pattern for the
signalling thread is:
1249985

• Lock the mutex

• Change the state so the predicate is true

• Notify the condition variable

• Unlock the mutex

The pattern for a waiting thread is:
1249985

• Lock the mutex

• Check the predicate

• If the predicate is false, wait on the condition variable until notified

• Do the work

• Unlock the mutex

In practice, a waiting thread should always check the predicate inside a while loop, because
multiple threads might be waiting on the same condition variable. A waiting thread
automatically releases the mutex when it waits on the condition variable. When the signalling
thread notifies the condition variable, all threads waiting on that condition variable compete
for a lock on the mutex. Then when the signalling thread releases the mutex, one of the
waiting threads gets the lock. It is quite possible for that thread then to change the state so
that the predicate is no longer true when it releases the lock. For example, several worker

Chapter 21. Multi-Threaded Tcl Scripts Page 22 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

threads forming a thread pool might wait until there is some type of job to process. Upon
notification, the first worker thread takes the job, leaving nothing for the other worker threads
to process.
1249985
This sequence for using a condition variable sounds complex, but is relatively easy to code.
Example 21-14 shows the sequence for the signalling thread. The first step is creating a
condition variable with the thread::cond create operation, which returns a unique
token representing the condition variable. As with mutexes, the same token is used in all
threads, and so you must make this token available (for example, through a shared variable)
to all threads that access the condition variable. When the thread is ready to update the
predicate, it first locks the associated mutex. Then it notifies the condition variable with
thread::cond notify and finally unlocks the mutex.
1249985

Example 21-14. Standard condition variable use for a signalling thread

Create the condition variable and accompanying mutex.
Use shared variables to share these tokens with all other
threads that need to access them.

set cond [tsv::set tasks cond [thread::cond create]]
set mutex [tsv::set tasks mutex [thread::mutex create]]

When we're ready to update the state of the predicate, we
must first obtain the mutex protecting it.

thread::mutex lock $mutex

Now update the predicate. In this example, we'll just set a
shared variable to true. In practice, the predicate can be
more complex, such as the length of a list stored in a
shared variable being greater than 0.

tsv::set tasks predicate 1

Notify the condition variable, waking all waiting threads.
Each thread will block until it can lock the mutex.

thread::cond notify $cond

Unlock the mutex.

thread::mutex unlock $mutex

Example 21-15 shows the sequence for a waiting thread. When a thread is ready to test the
predicate, it must first lock the mutex protecting it. If the predicate is true, the thread can
continue processing, unlocking the mutex when appropriate. If the predicate is false, the
thread executes thread::cond wait to wait for notification. The thread::cond
wait command atomically unlocks the mutex and puts the thread into a wait state. Upon
notification, the thread atomically locks the mutex (blocking until it can obtain it) and returns
from the thread::cond wait command. It then tests the predicate, and repeats the
process until the predicate is true.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 23 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 21-15. Standard condition variable use for a waiting thread

set mutex [tsv::get tasks mutex]
set cond [tsv::get tasks cond]

Lock the mutex before testing the predicate.

thread::mutex lock $mutex

Test the predicate, if necessary waiting until it is true.
while {![tsv::get tasks predicate]} {
 # Wait for notification on the condition variable.
 # thread::cond wait internally unlocks the mutex,
 # blocks until it receives notification, then locks
 # the mutex again before returning.

 thread::cond wait $cond $mutex
}

We now hold the mutex and know the predicate is true. Do
whatever processing is desired, and unlock the mutex when
it is no longer needed.

thread::mutex unlock $mutex

Tcl's threading model greatly reduces the need for condition variables. It's usually much
simpler to place a thread in its event loop with thread::wait, and then send it messages
with thread::send. And for applications where you want a thread pool to handle jobs on
demand, the Thread extension's built-in thread pool implementation is far easier than
creating your own with condition variables.
1249985

Thread Pools
621961
A thread pool is a common multi-threaded design pattern. A thread pool consists of several
worker threads that wait for jobs to perform. When a job is sent to the thread pool, one of
the available worker threads processes it. If all worker threads are busy, either additional
worker threads are created to handle the incoming jobs, or the jobs are queued until worker
threads are available.
1249985
The tpool namespace of the Thread extension provides several commands for creating
and managing thread pools. Using these commands is much easier than trying to build your
own thread pools from scratch using mutexes, condition variables, etc. Thread pool support
was added to the Thread extension in version 2.5.
1249985
The tpool::create command creates a thread pool, returning the ID of the new thread
pool. There are several options to tpool::create that allow you to configure the behavior
of the thread pool. The -minthreads option specifies the minimum number of threads in
the pool. This number of threads is created when the thread pool is created, and as worker
threads in the pool terminate, new worker threads are created to bring the number up to

Chapter 21. Multi-Threaded Tcl Scripts Page 24 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

this minimum. The -maxthreads option specifies the maximum number of worker threads
allowed. If a job is posted to the thread pool and there are no idle worker threads available,
a new worker thread is created to handle the job only if the number of worker threads won't
exceed the maximum number. If the maximum has been reached, the job is queued until a
worker thread is available. The -idletime option specifies the number of seconds that a
worker thread waits for a new job before terminating itself to preserve system resources. And
the -initcmd and -exitcmd options provide scripts to respectively initialize newly created
worker threads and clean up exiting worker threads.
1249985
Once you have created a thread pool, you send jobs to it with the tpool::post command.
A job consists of an arbitrary Tcl script to execute. The job is executed by the first available
worker thread in the pool. If there are no idle worker threads, a new worker thread is created,
as long as the number of worker threads doesn't exceed the thread pool maximum. If a new
worker thread can't be created, the tpool::post command blocks until a worker thread
can handle the job, but while blocked the posting thread still services its event loop.
1249985
The return value of tpool::post is a job ID. To receive notification that a job is complete,
your thread must call tpool::wait. The tpool::wait command blocks, but continues
to service the thread's event loop while blocked. Additionally, the tpool::wait command
can wait for several jobs simultaneously, returning when any of the jobs are complete. The
return value of tpool::wait is a list of completed job IDs.
1249985
After tpool::wait reports that a job is complete, you can call tpool::get to retrieve
the result of the job, which is the return value of the last command executed in the job script.
If the job execution resulted in an error, the error is “reflected” to the posting thread:
tpool::get raises an error and the values of errorInfo and errorCode are updated
accordingly.
1249985
Finally, a thread pool can be preserved and released in much the same way as an individual
thread. Each thread pool maintains an internal reference count, which is initially set to 0 upon
creation. Any thread can increment the reference count afterwards by executing
tpool::preserve, and decrement the reference count by executing
tpool::release. If a call to tpool::release results in a reference count of 0 or less,
the thread pool is marked for termination. Any further reference to a thread pool once it is
marked for termination results in an error.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 25 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The Thread Package Commands
621961
The commands of the Thread extension are grouped into three separate namespaces,
based on their functionality. This section summarizes the commands found in each
namespace.
1249985

The thread Namespace
628024
The thread namespace contains all of the commands for creating and managing threads,
including inter-thread messaging, mutexes, and condition variables. Table 21-1 describes all
of the commands contained in the thread namespace.
1249985

Table 21-1. The commands of the thread namespace

thread::attach channel
1249985

Attaches the previously detached
channel into current interpreter of the
current thread.
1249985

thread::cond create
1249985

Returns a token for a newly created
condition variable.
1249985

thread::cond destroy cond
1249985

Destroys the specified condition variable.
1249985

thread::cond notify cond
1249985

Wakes up all threads waiting on the
specified condition variable.
1249985

thread::cond wait cond mutex ?ms?
1249985

Blocks until the specified condition
variable is signaled by another thread with
thread::cond notify, or until the
optional timeout in milliseconds specified
by ms expires. The mutex must be locked
by the calling thread before calling
thread::cond wait. While waiting on
the cond, the command releases mutex.

Chapter 21. Multi-Threaded Tcl Scripts Page 26 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Before returning to the calling thread, the
command re-acquires mutex again.
1249985

thread::configure id ?option?
value? ?option value...?
1249985

Queries or sets thread configuration
options, as described in Table 21-2.
1249985

thread::create ?-joinable? ?-
preserved? ?script?
1249985

Creates a thread, returning the thread's ID.
The -joinable flag allows another
thread to wait for termination of this
thread with thread::join. The -
preserved flag sets the thread's initial
reference count to 1, rather than the
default of 0. (See thread::preserve
and thread::release.) If provided, the
thread executes the script, then exits;
otherwise, it enters an events loop to wait
for messages.
1249985

thread::detach channel
1249985

Detaches the specified channel from the
current thread so that it no longer has
access to it. Any single thread can then
thread::attach the channel to gain
access to it.
1249985

thread::errorproc ?proc?
1249985

Registers a procedure to handle errors that
occur when performing asynchronous
thread::send commands. When called,
proc receives two argument: the ID of the
thread that generated the error, and the
value of that thread's errorInfo
variable.
1249985

thread::eval ?-lock mutex? arg ?
arg...?
1249985

Concatenates the arguments and
evaluates the resulting script under the
mutex protection. If no mutex is specified,
an internal static one is used for the
duration of the evaluation.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 27 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

thread::exists id
1249985

Returns boolean indicating whether or not
the specified thread exists.
1249985

thread::id
1249985

Returns the current thread's ID.
1249985

thread::join id
1249985

Blocks until the target thread terminates.
(Available only with Tcl 8.4 or later.)
1249985

thread::mutex create
1249985

Returns a token for a newly created mutex.
1249985

thread::mutex destroy mutex
1249985

Destroys the mutex.
1249985

thread::mutex lock mutex
1249985

Locks the mutex, blocking until it can gain
exclusive access.
1249985

thread::mutex unlock mutex
1249985

Unlocks the mutex.
1249985

thread::names
1249985

Returns a list of the IDs of all running
threads.
1249985

thread::preserve ?id?
1249985

Increments the reference count of the
indicated thread, or the current thread if
no id is given.
1249985

thread::release ?-wait? ?id?
1249985

Decrements the reference count of the
indicated thread, or the current thread if
no id is given. If the reference count is 0 or
less, mark the thread for termination. If -
wait is specified, the command blocks
until the target thread terminates.
1249985

thread::send ?-async? id script ?
varname?
1249985

Sends the script, to thread id. If -
async is specified, do not wait for
script to complete. Stores the result of
script in varname, if provided.

Chapter 21. Multi-Threaded Tcl Scripts Page 28 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

thread::transfer id channel
1249985

Transfers the open channel from the
current thread to the main interpreter of
the target thread. This command blocks
until the target thread incorporates the
channel. (Available only with Tcl 8.4 or
later.)
1249985

thread::unwind
1249985

Terminates a prior thread::wait to
cause a thread to exit. Deprecated in favor
of thread::release.
1249985

thread::wait
1249985

Enters the event loop.
1249985

The thread::configure command allows an application to query and set thread
configuration options, in much the same way as the fconfigure command configures
channels. Table 21-2 lists the available thread configuration options.
1249985

Table 21-2. Thread configuration options

-eventmark int
1249985

Specifies the maximum number of pending scripts sent
with thread::send that the thread accepts. Once the
maximum is reached, subsequent thread::send
messages to this script block until the number of pending
scripts drops below the maximum. A value of 0 (default)
allows an unlimited number of pending scripts.
1249985

-unwindonerror boolean
1249985

If true, the thread “unwinds” (terminates its event loop) on
uncaught errors. Default is false.
1249985

The tsv Namespace
628024
The tsv namespace contains all of the commands for creating and managing thread shared
variables. Table 21-3 describes all of the commands contained in the tsv namespace.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 29 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 21-3. The commands of the tsv namespace

tsv::append array element value ?
value ...?
1249985

Appends to the shared variable like
append.
1249985

tsv::exists array ?element?
1249985

Returns boolean indicating whether the
given element exists, or if no element is
given, whether the shared array exists.
1249985

tsv::get array element ?varname?
1249985

Returns the value of the shared variable. If
varname is provided, the value is stored in
the variable, and the command returns 1 if
the element existed, 0 otherwise.
1249985

tsv::incr array element ?
increment?
1249985

Increments the shared variable like incr.
1249985

tsv::lappend array element
value ?value ...?
1249985

Appends elements to the shared variable
like lappend.
1249985

tsv::lindex array element index
1249985

Returns the indicated element from the
shared variable, similar to lindex.
1249985

tsv::linsert array element index
value ?value ...?
1249985

Atomically inserts elements into the shared
variable, similar to linsert, but actually
modifying the variable.
1249985

tsv::llength array element
1249985

Returns the number of elements in the
shared variable, similar to llength.
1249985

tsv::lock array arg ?arg ...?
1249985

Concatenates the args and evaluates the
resulting script. During script execution,
the command locks the specified shared
array with an internal mutex.
1249985

tsv::lpop array element ?index?
1249985

Atomically deletes the value at the index
list position from the shared variable and

Chapter 21. Multi-Threaded Tcl Scripts Page 30 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

returns the value deleted. The default
index is 0.
1249985

tsv::lpush array element value ?
index?
1249985

Atomically inserts the value at the
index list position in the shared variable.
The default index is 0.
1249985

tsv::lrange array element first
last
1249985

Returns the indicated range of elements
from the shared variable, similar to
lrange.
1249985

tsv::lreplace array element
value ?value ...?
1249985

Atomically replaces elements in the shared
variable, similar to lreplace, but actually
modifying the variable.
1249985

tsv::lsearch array element ?mode?
pattern
1249985

Returns the index of the first element in the
shared variable matching the pattern,
similar to lsearch. Supported modes are:
-exact, -glob (default), and -regexp.
1249985

tsv::move array old new
1249985

Atomically renames the shared variable
from old to new.
1249985

tsv::names ?pattern?
1249985

Returns a list of all shared variable arrays, or
those whose names match the optional
glob pattern.
1249985

tsv::object array element
1249985

Creates and returns the name of an
accessor command for the shared variable.
Other tsv commands are available as
subcommands of the accessor to
manipulate the shared variable.
1249985

tsv::pop array element
1249985

Atomically returns the value of the shared
variable and deletes the element.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 31 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

tsv::set array element ?value?
1249985

Sets the value of the shared variable,
creating it if necessary. If value is omitted,
the current value is returned.
1249985

tsv::unset array ?element?
1249985

Deletes the shared variable, or the entire
array if no element is specified.
1249985

The tpool Namespace
628024
The tpool namespace contains all of the commands for creating and managing thread
pools. Table 21-4 describes all of the commands contained in the tpool namespace.
1249985

Table 21-4. The commands of the tpool namespace

tpool::create ?options?
1249985

Creates a thread pool, returning the
thread pool's ID. Table 21-5 describes
supported configuration options.
1249985

tpool::post tpoolId script
1249985

Sends a Tcl script to the specified
thread pool for execution, returning the
ID of the posted job. This command blocks
(entering the event loop to service events)
until a worker thread can service the job
1249985

tpool::wait tpoolId jobList ?
varName?
1249985

Blocks (entering the event loop to service
events) until one or more of the jobs
whose IDs are given by the jobList
argument are completed. Returns a list of
completed jobs from jobList. If
provided, varName is set to a list of jobs
from jobList that are still pending.
1249985

tpool::get tpoolId jobId
1249985

Returns the result of the specified jobId.
tpool::wait must have reported

Chapter 21. Multi-Threaded Tcl Scripts Page 32 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

previously that the job is complete. If no
error occurred in the job, the result is the
return value of the last command
executed in the job script. Any error
encountered in job execution is in turn
thrown by tpool::get, with the
errorCode and errorInfo variables
set appropriately.
1249985

tpool::names
1249985

Returns a list of existing thread pool IDs.
1249985

tpool::preserve tpoolId
1249985

Increments the reference count of the
indicated thread pool.
1249985

tpool::release tpoolId
1249985

Decrements the reference count of the
indicated thread pool. If the reference
count is 0 or less, mark the thread pool for
termination.
1249985

The tpool::create command supports several options for configuring thread pools.
Table 21-5 lists the available thread pool configuration options.
1249985

Table 21-5. Thread pool configuration options

-minthreads number
1249985

The minimum number of threads. If the number of live threads
in the thread pool is less than this number (including when the
thread pool is created initially), new threads are created to bring
the number up to the minimum. Default is 0.
1249985

-maxthreads number
1249985

The maximum number of threads.When a job is posted to the
thread pool, if there are no idle threads and the number of
existing worker threads is at the maximum, the thread posting
the job blocks (in its event loop) until a worker thread is free to
handle the job. Default is 4.
1249985

-idletime seconds
1249985

The maximum idle time, in seconds, before a worker thread exits
(as long as the number of threads doesn't drop below the -

Chapter 21. Multi-Threaded Tcl Scripts Page 33 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

minthreads limit). Default value is 0, meaning idle threads wait
forever.
1249985

-initcmd script
1249985

A script that newly created worker threads execute.
1249985

-exitcmd script
1249985

A script that worker threads execute before exiting.
1249985

Chapter 21. Multi-Threaded Tcl Scripts Page 34 Return to Table of Contents

Chapter 21. Multi-Threaded Tcl Scripts
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

