
Table of Contents

Chapter 22. Tclkit and Starkits... 1
Getting Started with Tclkit.. 2
Virtual File Systems... 3
Using sdx to Bundle Applications... 5
Exploring the Virtual File System in a Starkit... 8
Creating tclhttpd.kit.. 9
Creating a Shared Starkit... 11
Metakit... 13
More Ideas... 18

Chapter 22. Tclkit and Starkits

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 22. Tclkit and Starkits
739

1249985
Tclkit is a version of the Tcl/Tk interpreter that is designed to make packaging and
deployment of Tcl applications easy. Tclkit includes Tcl/Tk, [incr Tcl], the Metakit database,
and TclVFS. A Starkit is a special file that contains all the scripts and supporting files you need
for your Tcl application. This chapter describes how to package and deploy your application
as a Starkit.
1249985
Tclkit was created by Jean-Claude Wippler as a way to make deploying Tcl applications easier.
Tclkit is an extended Tcl interpreter that includes the Metakit database, the [incr Tcl] object-
oriented system, and a Virtual File System (VFS). The database is cleverly stored as part of the
Tclkit application itself, and the VFS interface is used to make the database look like a private
filesystem. Tclkit puts all the scripts normally associated with Tcl and its extensions into this
database. The result is a self-contained, single file distribution of Tcl that includes extensions
for your GUI, object-oriented programming, a database, and a few other goodies.
1249985
Metakit is a fast, transactional database with a simple programming API. Like Tcl, Metakit is
a compact, efficient library designed to be embedded into applications. The Tcl interface to
Metakit gives you a simple, easy way to manipulate persistent data. Although you do not
have to program Metakit directly when using Starkits, this Chapter does provide a short
introduction to using Metakit to store data for your application.
1249985
A Starkit is a Metakit database file that stores your application. The VFS interface makes this
transparent. Tclkit processes the Starkit just like tclsh or wish, and your application doesn't
even have to know it is packaged inside a Starkit.
1249985
The original Tclkit used an early version of VFS created by Matt Newman. TclVFS was ported
to the Tcl core in version 8.4.1 by Vince Darley. Today you can build Tclkit using unmodified
Tcl sources. The ActiveTcl distribution includes Metakit, TclVFS and tools to create Starkits,
too.
1249985

Chapter 22. Tclkit and Starkits Page 1 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

Getting Started with Tclkit
621961
Using Tclkit is easy. Just copy the version for your platform (e.g., Linux, Windows or Solaris)
into a convenient location under the name tclkit (or tclkit.exe on Windows.) The CD-ROM has
builds for lots of platforms, and you can find more at the Tclkit home page:
1249985

http://www.equi4.com/tclkit

You can use the tclkit application just like tclsh. Run with no arguments, it prints a prompt
and you can type Tcl commands interactively. If you pass a file argument, then it sources that
file just as tclsh would. To use tclkit like wish, you must add this to your scripts:
1249985

package require Tk

Although you can use tclkit to source .tcl files, tclkit is normally used to interpret Starkits,
which have a .kit suffix. On UNIX, Starkits use the #! header to associate themselves with
tclkit. Make sure that tclkit is in a directory named in your PATH environment variable. On
Windows, you can associate tclkit.exe with the .kit extension. Mac OS X behaves like UNIX
(yay!). On Mac Classic systems you can use the File Source menu to source .kit files.
Creating Starkits is described on page 352.
1249985

Inside a Starkit
628024
Tclkit uses the Virtual Filesystem extension to make records in a Metakit database look like
files and directories to your application. Through a simple packaging step described shortly,
you can easily put all of the Tcl scripts and other supporting files that make up your
application into a single database file. The Virtual Filesystem (VFS) extension lets you
transparently access these files through the regular file system interface (e.g., open, gets,
source, even cd.)
1249985
A Starkit is a Metakit database that stores an application. The great thing about a Starkit is
that it is a single file so it is easy to manage. There is no need to unpack files or run an installer
to set things up. Instead, you can distribute your application as two files: the Tclkit interpreter
and the Starkit file. Both of these embed a virtual file system that include all the bits and
pieces needed for Tcl/Tk and your application. The Tclkit file is platform-specific because it
contains Tcl and all the other extensions in a compiled form. There are pre-compiled Tclkits
for Windows, Macintosh, and many flavors of Unix. The Starkit file is platform-independent.
You can use it with the appropriate Tclkit interpreter on different platforms.

Chapter 22. Tclkit and Starkits Page 2 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.equi4.com/tclkit

1249985

Deploying Applications as Starkits
628024
The key benefit of Tclkit and Starkits is easy deployment. Users just copy tclkit and your
Starkits onto their system; there is no special installation step. You can even have different
versions of tclkit and they don't interfere with each other. If users get tired of your application,
they just remove the files.
1249985
Creating Starkits is made easy with the sdx application, which was created by Steve Landers
and Jean-Claude Wippler. You organize your collection of application scripts, data files, binary
graphics, and online documentation into a file system directory structure. Then you use
sdx to wrap that into a Starkit. Creating your own Starkits is described on page 352.
1249985
You can include binary extensions in a Starkit and dynamically load them. The load
command automatically copies the shared library out of the VFS to a temporary location,
and loads the library from that location. The temporary file is necessary because the host OS
cannot find the library inside the Starkit. Binary extensions make the Starkit platform-specific,
but it is possible to put libraries for different platforms into the Starkit. For example, the
kitten.kit Starkit includes extensions for Windows, Linux, and Solaris.
1249985
You can combine Tclkit and a Starkit into a Starpack. The advantage of this is that it reduces
deployment to a single file. The main drawback is that the Starpack file is relatively large, and
it is platform-specific. Use sdx to create Starpacks as described later.
1249985
The Starkit archive contains a growing collection of Starkits that include applications, games,
development tools, a Wiki, tutorials and documentation bundles. There is a copy of the
archive on the CD-ROM, and its home page is:
1249985

http://mini.net/sdarchive/

Virtual File Systems
621961

1249985
The key concept in Tclkit and Starkits is the virtual file system (VFS). You may be familiar with
the file system interface inside a Unix operating system that makes everything look the same
(files, tape drives, network sockets, pipes). The nice thing about Unix is that a system
programmer can use the same APIs to access all of these things. The goal of the Tcl VFS

Chapter 22. Tclkit and Starkits Page 3 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://mini.net/sdarchive/

interface is similar in spirit: use the regular Tcl file system interface to make things like
embedded databases, FTP servers, and zip files available to the Tcl programmer. The VFS
layer in Tcl 8.4 is implemented below the Tcl C APIs for file system access (e.g.,
Tcl_CreateChannel, Tcl_FSDeleteFile). The result is that scripting commands (e.g.,
open, file, glob) and any C extensions that use these APIs automatically access any Virtual
File Systems that are part of the Starkit.
1249985
The virtual file system is mounted on a regular file; by default it is mounted on the Starkit. For
example, if the Starkit is named foo.kit, and its virtual file system contains a file named
main.tcl, then it is visible to the Tcl application as foo.kit/main.tcl. The VFS can
contain a whole directory structure (e.g., foo.kit/lib/httpd.tcl or foo.kit/
htdocs/help/index.html.)
1249985
The next section explores some simple Starkits and their file system structure. The main idea
is that the Starkit file itself is the root of the virtual file system hierarchy, and everything in
the virtual file system is visible to Tcl via the regular scripting commands. If the VFS supports
it, you can create and write files as well as read them.
1249985
Tclkit includes the TclVFS extension that exposes the ability to implement new file systems
in Tcl. Ordinarily you do not need to use the vfs API directly when using a Starkit. However,
the TclVFS project has created a number of VFS implementations that let you access web
sites, FTP sites, zip files, tar files, and more through the filesystem interface. Tclkit does not
include all of these, but you can get them as part of the TclVFS extension. Its home page is
1249985

http://sourceforge.net/projects/tclvfs

Accessing a Zip File Through a VFS
628024
Tclkit includes a zipvfs package that lets you mount a compressed ZIP file archive and read
its contents. This is currently limited to read-only access. Example 22-1 uses the
vfs::zip::Mount command to set up the VFS access. If you use other VFS types supplied
by the TclVFS extension, you will find that each supplies its own
vfs::vfs_type::Mount API:
1249985

Example 22-1. Accessing a Zip file through a VFS

package require vfs::zip
=> 1.0

Mount the zip file on "xyz"

Chapter 22. Tclkit and Starkits Page 4 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://sourceforge.net/projects/tclvfs

vfs::zip::Mount c:/downloads/tclhttpd343.zip xyz
=> filecb15a8

Examine the contents
glob xyz/*
=> xyz/tclhttpd3.4.3

Open and read file inside the zip archive
set in [open xyz/tclhttpd3.4.3/README]
=> rechan16

gets $in
This HTTPD is written in Tcl and Tk.

Using sdx to Bundle Applications
621961

1249985
Sdx, which stands for Starkit Developer eXtension, is an application that you run from the
Unix, Windows, or MacOS command line to create and manipulate Starkits. It is itself a Starkit,
of course. The sdx application is on the CD-ROM, and you can find a link to it from the Starkit
home page:
1249985

http://www.equi4.com/starkit/

Creating a Simple Starkit
628024
Creating a Starkit amounts to creating a directory structure that contains the files you need,
and then wrapping them up with sdx. Create files under kitname.vfs, and wrap them into
the kitname.kit Starkit with:
1249985

sdx wrap
kitname
.kit

In simple cases, sdx will create the directory structure for you. For example, if you have a self-
contained Tcl script called hello.tcl, then you can turn it into a Starkit like this:
1249985

sdx qwrap hello.tcl

Chapter 22. Tclkit and Starkits Page 5 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.equi4.com/starkit/

The qwrap operation (i.e., "quick wrap") creates a new Starkit, hello.kit, that includes the
original hello.tcl script organized into a virtual file system hierarchy with some additional
support files. You run the Starkit like this:
1249985

tclkit hello.kit

On Unix systems you can also execute the Starkit directly. The file uses the #! syntax to specify
that tclkit should run the file. On Windows, you can achieve the same effect by associating
tclkit.exe with files that end in .kit.
1249985

Examining a Starkit
628024
There are two ways to look at a Starkit. You can get a listing of the files with the sdx lsk
operation, or you can use sdx unwrap to extract the files from the Starkit into a
kitname.vfs directory. Example 22-2 shows the lsk output for hello.kit. The dates
are in YY/MM/DD format:
1249985

Example 22-2. The output of sdx lsk hello.kit

hello.kit:
 dir lib/
 67 02/11/08 12:07 main.tcl
hello.kit/lib:
 dir app-hello/
hello.kit/lib/app-hello:
 43 02/11/08 12:10 hello.tcl
 72 02/11/08 12:07 pkgIndex.tcl

Standard Package Organization
628024
The qwrap operation turns the hello.tcl script into the app-hello package. If
necessary, sdx adds a package provide app-hello 1.0 command to the
hello.tcl script. It also creates a short main.tcl script that initializes the Starkit system
and invokes hello.tcl by doing a package require. Example 22-3 shows
main.tcl:
1249985

Example 22-3. The main program of a Starkit

package require starkit
starkit::startup
package require app-hello

Chapter 22. Tclkit and Starkits Page 6 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

When you run the Starkit, its Metakit database is mounted into a Virtual File System that is
visible to the Tcl application. Tclkit sources the main.tcl script it finds in the VFS. The
starkit::startup procedure updates the auto_path to contain the Starkit's lib
directory, so any packages stored there are available to the package mechanism. By
convention, the application is put into a package with the name app-kitname. Example
22-4 shows the pkgIndex.tcl, which causes the package require app-hello
command to source hello.tcl.
1249985

Example 22-4. The pkgIndex.tcl in a Starkit

package ifneeded app-hello 1.0 \
 [list source [file join $dir hello.tcl]]

The dir variable is set by the package mechanism to be the directory containing the
pkgIndex.tcl file. That the lib directory happens to be inside the virtual file system is
completely transparent to the package mechanism. The package mechanism is described in
more detail in Chapter 12.
1249985

Creating a Starpack
628024
A Starpack contains a copy of Tclkit and your Starkit. Use sdx to create Starpacks. The -
runtime flag specifies which Tclkit application you want to merge with your Starkit. For
example, to build a Windows Starpack out of our hello.tcl application:
1249985

sdx wrap hello.kit -runtime tclkit-win32.exe

To build a Starkit for Linux, use the appropriate runtime:
1249985

sdx wrap hello.kit -runtime tclkit-linux-x86

There are 4 variations of the Windows Tclkit. One option uses zlib to automatically compress
Tclkit and the Metakit database. These have .upx in their name. The other creates a console-
mode application that does not include Tk. These have -sh in their name. The smallest Tclkit,
tclkit-win32-sh.upx.exe, is only 450 K. Even tclkit-win32.upx.exe is only 907
K, so you really can create complete applications that fit easily onto a floppy disk!
1249985
The auto-compress variation is also available on the Linux x86 builds as the tclkit-linux-
x86.upx.bin runtime file. Check the Tclkit home page for the latest set of Tclkit builds:
1249985

Chapter 22. Tclkit and Starkits Page 7 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://www.equi4.com/tclkit

Exploring the Virtual File System in a Starkit
621961
Example 22-2 introduces the standard, recommended VFS structure for a Starkit that makes
everything into a package, even the main application. However, in this section we are going
to show a Starkit without packages in order to get a feel for how the VFS works. For example,
instead of doing the package require hello, the main.tcl script of Example 22-3
could source the hello.tcl file directly:
1249985

source hello.kit/lib/app-hello/hello.tcl

However, this only works if you are in the directory containing the hello.kit file.
1249985

Use starkit::topdir to find things in the Starkit Virtual File
System.
1249985

The starkit::topdir variable is set by starkit::startup to be the file name of the
Starkit, which is also the root of the Virtual File System inside the Starkit. The value of
starkit::topdir is an absolute pathname, so it is always valid. Example 22-5 shows a
Starkit that manipulates its virtual file system.
1249985

Example 22-5. A Starkit that examines its Virtual File System

package require starkit
starkit::startup

puts "Contents of VFS before"
foreach f [glob [file join $starkit::topdir *]] {
 puts "[file size $f] $f"
}
puts "Reading data file"
set in [open [file join starkit::topdir data]]
set X [read $in]
puts $X
close $in
set out [open [file join $starkit::topdir data.new w]]
puts $out $X
close $out
puts "Contents of VFS after"
foreach f [glob [file join $starkit::topdir *]] {
 puts "[file size $f] $f"
}

Chapter 22. Tclkit and Starkits Page 8 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.equi4.com/tclkit

Create the Starkit by putting the code in Example 22-5 into a file named main.tcl in the
write.vfs directory. Then use sdx as shown in Example 22-6:
1249985

Example 22-6. Creating a simple Starkit

These are UNIX shell commands
mkdir write.vfs
cp 22_5.tcl write.vfs/main.tcl
sdx wrap write.kit
tclkit write.kit

If you run the write.kit file more than once you will notice that the write.kit/
data.new file does not persist between runs. This is because, by default, the Metakit
database is modified in main memory and it is not written out to the Starkit file. If you want
to store files long term, use the -writable flag to sdx:
1249985

sdx wrap write.kit -writable

Creating tclhttpd.kit
621961

1249985
The Tcl Web Server, TclHttpd, has its source tree organized so you can run the server without
any installation steps. This makes it very easy to put into a Starkit. For our first version, which
we will refine later, all we need is a copy of the TclHttpd source code and a copy of the
Standard Tcl Library, tcllib. I used the tcllib1.3 directory that was installed in the main lib
directory of my desktop Tcl environment, and the tclhttpd3.4.3 source distribution.
Example 22-7 shows the contents of the tclhttpd.vfs directory:
1249985

Example 22-7. The contents of the tclhttpd.vfs directory, version 1

main.tcl
tclhttpd3.4.3/bin/httpd.tcl
tclhttpd3.4.3/bin/httpdthread.tcl
tclhttpd3.4.3/bin/tclhttpd.rc
tclhttpd3.4.3/lib/ (
lots of files
)
tclhttpd3.4.3/htdocs/ (
lots of files
)
tcllib1.3 (
copy of /usr/local/lib/tclib1.3
)

Chapter 22. Tclkit and Starkits Page 9 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 22-8 shows the short main.tcl script used to start up the Starkit. The first two lines
are common to all Starkits. The starkit::autoextend command is used to add the
tcllib1.3 directory to the auto_path so the Standard Tcl Library packages are available.
The last line uses starkit::topdir to find the TclHttpd startup script, bin/
httpd.tcl.
1249985

Example 22-8. The main program for the TclHttpd Starkit, version 1

package require starkit
starkit::startup
starkit::autoextend [file join $starkit::topdir tcllib1.3]
source [file join $starkit::topdir tclhttpd3.4.3/bin/httpd.tcl]

The Starkit is created and used as shown below, assuming tclhttpd.vfs is in the current
directory. Note that command line options are passed through, so you can also use this Starkit
to host an htdocs directory outside the Starkit. If you don't specify one, the htdocs tree
inside the Starkit is used:
1249985

sdx wrap tclhttpd.kit
tclkit tclhttpd.kit -port 8080 -docRoot /my/htdocs

The standard structure introduced in Example 22-2 organizes packages under a lib
directory. By convention, the version numbers are dropped from the package directory
names. Because everything is self contained, there really isn't any need to have explicit
version numbers in the directory names. The file system for the second version of
tclhttpd.kit is shown in Example 22-9.
1249985

Example 22-9. Contents of the tclhttpd.vfs directory, version 2

main.tcl
bin/httpd.tcl
bin/httpdthread.tcl
bin/tclhttpd.rc
lib/tclhttpd/pkgIndex.tcl
lib/tclhttpd/*.tcl (
lots of files
)
lib/tcllib/pkgIndex.tcl
lib/tcllib/* (
lots of subdirectories
)

The main.tcl file is shown in Example 22-10. There is no need to adjust the auto_path
because starkit::startup ensures that the lib directory is on it.
1249985

Chapter 22. Tclkit and Starkits Page 10 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 22-10. The main program for the TclHttpd Starkit, version 2

package require starkit
starkit::startup
source [file join $starkit::topdir bin/httpd.tcl]

One of the first things I noticed about the tclhttpd.vfs was that tcllib took up far more
space than the rest of TclHttpd. TclHttpd only uses a few of the many modules in tcllib. I ended
up only adding the modules I needed in order to keep the Starkit smaller. Another way to
solve this problem is to use the tcllib.kit Starkit that can be shared among applications.
Creating shared Starkits is the topic of the next section.
1249985

Creating a Shared Starkit
621961

1249985
Starkits can be used to create modules that are shared by other applications. For example,
the kitten.kit Starkit contains about 50 popular extensions, and several of them are
binary extensions. It is over 4 MB in size, and so it is a great candidate for sharing. You can
find kitten.kit on the CD-ROM or in the Starkit archive. By organizing each shared module
into a Starkit with the appropriate structure, it is a simple matter to share them.
1249985
Whenever a Starkit is sourced, Tclkit mounts its VFS and looks for its main.tcl file. This is
true for shared Starkits as well as the main Starkit of an application. If main.tcl calls
starkit::startup, then the lib directory in the VFS is automatically added to the
auto_path. Any libraries organized under lib will be automatically accessible to the
application that sourced the Starkit.
1249985
You can add a little logic to make your package behave differently if it is run as the main
Starkit or sourced into another application. For example, this is done in the tcllib Starkit, which
starts a stand-alone Wiki that describes the Standard Tcl Library APIs if run as its own Starkit.
Otherwise it just sets up tcllib to be shared by the main application. Example 22-11 shows
the main.tcl of tcllib.kit. It has to explicitly add the tcllib directory to the
auto_path because it has both a lib and tcllib directory in its VFS:
1249985

Example 22-11. The Standard Tcl Library Starkit main.tcl file

package require starkit
if {[starkit::startup] eq "starkit"} {
 # Do application startup

Chapter 22. Tclkit and Starkits Page 11 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 package require app-tcllib
} else {
 # Set up to be used as a library
 set vfsroot [file dirname [file normalize [info script]]]
 lappend auto_path [file join $vfsroot tcllib]
}

Another side effect of starkit::startup is to set starkit::topdir. However, this
variable is only set once. If you source other Starkits that call starkit::startup, then the
starkit::topdir value is not disturbed.
1249985
This behavior changed in Tclkit 8.4.2. In earlier versions, starkit::topdir was set by each
Starkit, so you had to worry about saving its value if you loaded other Starkits. If you source
tcllib.kit and cannot package require its packages, check its main.tcl. If it uses
starkit::topdir in the non-Starkit case, then it is an older version. Simply unwrap it,
make its main.tcl look like Example 22-11, and wrap it back up to fix the problem.
1249985
The starkit::startup procedure determines the environment of the application by
making a series of tests against the script environment. Its return value helps your
main.tcl script distinguish between starting out as the main Starkit, or being loaded into
another Starkit as a library. Table 22-1 lists the return values of the starkit::startup
procedure in the order they are checked:
1249985

Table 22-1. Return values of the starkit::startup procedure

starpack
1249985

The Starkit was bundled with tclkit to make a Starpack.
1249985

starkit
1249985

The Starkit was run by itself.
1249985

unwrapped
1249985

The Starkit was run out of its unpacked vfs directory.
1249985

tclhttpd
1249985

The Starkit was sourced into TclHttpd.
1249985

plugin
1249985

The Starkit was sourced in the browser plugin.
1249985

service
1249985

The Starkit was run in an NT service.
1249985

sourced
1249985

The Starkit was sourced by another Starkit.
1249985

Chapter 22. Tclkit and Starkits Page 12 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The easiest way to organize your shared Starkits is to put them into the same directory.
Example 22-12 shows how the TclHttpd Starkit is modified to load the tcllib Starkit from the
same directory.
1249985

Example 22-12. The main program for TclHttpd Starkit, version 3

package require starkit
starkit::startup
set dir [file dirname $starkit::topdir]
if {![file exists [file join $dir tcllib.kit]]} {
 puts stderr "Please install tcllib.kit in $dir"
 exit 1
}
source [file join $dir tcllib.kit]
source [file join $starkit::topdir tclhttpd/bin/httpd.tcl]

Metakit
621961
This section provides a short overview of the Metakit database that is used by Starkits to store
their data. You do not need to program Metakit directly to use Starkits because of the
transparent VFS interface. However, Metakit is an easy-to-use database that provides more
power than storing data in flat files, but not as much power (or overhead) as a full SQL
database engine. Metakit has a simple, flexible programming API and an efficient
implementation. By storing your application data in a Metakit table, you can have persistent
data that lives with your application. You can store the data in a file separate from your
application, or right inside the application Starkit itself.
1249985
This Chapter gives a few introductory examples and explains some of the other features that
are available. This Chapter does not provide a complete reference. The following URLs are
excellent guides to the Tcl interface for Metakit. The first URL is also on the CD as
sdarchive/doc/mk4dok.kit.
1249985

http://www.equi4.com/metakit/tcl.html
http://www.equi4.com/metakit/wiki.cgi/mk4tcl
http://www.markroseman.com/tcl/mktcl.html

Metakit Data Model
628024
The Metakit data model is table-oriented. A view is like a table with rows of values. Each row
in a view has an index, which is an integer that counts from 0. The elements (i.e., columns or
fields) of a row are called properties. A property might itself be a view, which leads to nested

Chapter 22. Tclkit and Starkits Page 13 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://www.equi4.com/metakit/tcl.html
http://safari.bvdep.com/http://www.equi4.com/metakit/wiki.cgi/mk4tcl
http://safari.bvdep.com/http://www.markroseman.com/tcl/mktcl.html

views (i.e., nested tables). All the rows in a view have the same properties, and the properties
of a view can be changed dynamically. You can directly relate (view, row, property) to (table,
row, field) when thinking about Metakit views.
1249985
A Metakit data file has one or more views within it. When you open a Metakit file, you specify
a tag. Views are specified as tag.view. Row N of a view is specified as tag.view!N. Such a position
within a view is called a cursor, and there are operations to create cursor variables and move
them through a view. If a property is a nested view, then you can specify a row in the nested
view with tag.view!N.subview!M.
1249985

Examining a Metakit Database
628024
Our first exercise is to open up a Starkit and look at the Metakit database views inside. The
mk::file command implements several operations. The open operation opens a database
and associates it with a tag. The views operation lists the views in the database identified
by the tag. The close operation commits any outstanding modifications to the database.
The other mk::file operations are used to control the commit behavior and to save or
restore the database to an external file. Example 22-13 illustrates how to open a Metakit
database and examine the views it contains:
1249985

Example 22-13. Examining the views in a Metakit database

package require Mk4tcl
=> 2.4.8

mk::file open tclhttpd tclhttpd.kit
=> tclhttpd

mk::file views tclhttpd
=> dirs

The mk::view command has several operations to inspect and manipulate views. The
layout operation queries or sets the properties of a view. Given only a view, the layout
operation returns the properties defined for the view. Each property has a type, and nested
views are represented as a nested list of the property name and its list of properties. Given a
set of properties, the layout operation defines new properties for a view. This may involve
adding or deleting properties from any existing rows in the table. Example 22-14 shows the
layout of the dirs view in a Starkit. The files property is a nested view, which provides a
natural way to represent a hierarchical filesystem. The example gets the name property of
tclhttpd.dirs!0.files!0, which is the first file in the first directory in the view:
1249985

Chapter 22. Tclkit and Starkits Page 14 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 22-14. Examining data in a Metakit view

mk::view layout tclhttpd.dirs
=> name parent:I {files {name size:I date:I contents:B}}

mk::view size tclhttpd.dirs
=> 48

mk::get tclhttpd.dirs!0
=> name <root> parent -1

mk::get tclhttpd.dirs!1
=> name tcllib1.3 parent 0

mk::get tclhttpd.dirs!1 name
=> tcllib1.3

mk::get tclhttpd.dirs!0.files!0 name
=> main.tcl

Of course, real applications will want to query views for values that have certain properties.
The mk::select command returns the row numbers for rows that match given criteria, or
all the row numbers if no matching criteria are given. You can match on multiple properties,
and there are flags that control how the match is done. For example, you can do numeric
comparisons, regular expression or glob matches, and min/max comparisons.
1249985
Example 22-15 shows two forms of mk::select. The KitWalk procedure enumerates the
files in a given directory, which is the view $tag.dirs!$dir.files. Then it queries the
row indices for the $tag.dirs view whose parent property equals $dir, and calls itself
recursively to process the child directories. KitWalk provides a similar function to sdx
lsk:
1249985

Example 22-15. Selecting data with mk::select

proc KitWalk {tag dir {indent 0}} {
 set prefix [string repeat " " $indent]
 puts "$prefix[mk::get $tag.dirs!$dir name]/"
 incr indent 2

 # List the plain files in the directory, if any

 foreach j [mk::select $tag.dirs!$dir.files] {
 puts "$prefix [mk::get $tag.dirs!$dir.files!$j name]"
 }

 # Recursively process directories where $dir is the parent

 foreach i [mk::select $tag.dirs parent $dir] {
 KitWalk $tag $i $indent
 }
}
proc KitInit {starkit} {
 mk::file open starkit $starkit
 if {[mk::file views starkit] != "dirs"} {
 mk::file close $starkit

Chapter 22. Tclkit and Starkits Page 15 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 error "This database is not a starkit"
 }
 return starkit ;# db tag
}
proc KitTest {} {
 set tag [KitInit tclhttpd.kit]
 KitWalk $tag 0
}

Creating a Metakit View
628024
Creating a new view is simple. Example 22-16 opens a database file mydb.tkd and creates
a view test with three properties: name, blob, and i. If the file does not exist, then it gets
created automatically. If the test view doesn't exist, it gets created. If it already exists, it is
reformatted to have the new properties. The name property has the default type, which is a
null-terminated string. The blob property is a binary value (B) which can store anything,
including null characters. The i property is a 32-bit integer (I). Other types include 64-bit
integer (L), 32-bit floating point (F), 64-bit double-precision floating point (D), and null-
terminated string (S), which is the default and needn't be specified.
1249985

Example 22-16. Creating a new view

mk::file open mydb mydb.tkd
=> mydb
mk::view layout mydb.test {name blob:B i:I}
=> mydb.test
mk::file close mydb

The mk::set command sets property values, and the mk::row command modifies rows.
Example 22-17 adds a few values to the test view. Note that you can insert into rows beyond
the end of the view and it is automatically extended. If you only define some properties for
a row, the other properties get default values. Other mk::row operations include insert,
replace, and delete.
1249985

Example 22-17. Adding data to a view

mk::set mydb.test!0 name hello
=> mydb.test!0

mk::get mydb.test!0
=> hello {} 0

mk::row append mydb.test "line two" 0x0 65
=> mydb.test!1

mk::view size mydb.test
=> 2

Chapter 22. Tclkit and Starkits Page 16 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

mk::set mydb.test!100 i 1234
=> mydb.test!100

mk::view size mydb.test
=> 101

Storing Application Data in a Starkit
628024
Your application can create new views in a Starkit to store persistent data. Remember to wrap
your application with the -writable flag. You can determine the name of the Starkit from
$starkit::topdir, and then define a new view within it. Of course, remember that
Starkits use dirs view to store files, but you can create any number of other views within
your Starkits. This is illustrated in Example 22-18, which records each time the application
was run in a simple audit view.
1249985
Example 22-18 is careful to find the existing Metakit handle that is already opened by Tclkit.
The vfs::filesystem info command returns an alternating list of VFS names and their
Metakit database handle. The example extracts the handle and saves it in the $db variable.
This is important because opening the same Metakit file twice (for writing) can cause
corruption:
1249985

Example 22-18. Storing data in a Starkit

package require starkit
starkit::startup
set db [lindex [vfs::filesystem info [$starkit::topdir]] 1]
mk::view layout $db.audit {action timestamp:I}
mk::row append $db.audit "Run as pid [pid]" [clock seconds]
puts "$argv0 has been run [mk::view size $db.audit] times"

To test this, put this example into the main.tcl of a trivial Starkit. When you create the
Starkit, remember the -writable option with sdx:
1249985

mkdir bundle.vfs
cp 22_18.tcl bundle.vfs/main.tcl
sdx wrap bundle.kit -writable-

Chapter 22. Tclkit and Starkits Page 17 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Wikit and the Tcler's Wiki
628024
The alternative to storing data in the Starkit file is to have a separate Metakit data file. This is
the approach taken by Wikit. The wikit.kit file is the Wikit application, and the
wikit.tkd file is a Metakit database file that stores all the pages in the Wiki. (Creating a
new Wiki is simple, just specify a different .tkd file name.) The advantage of having a
separate Metakit file is that you can easily maintain your application by unwrapping and
wrapping your application Starkit. Otherwise, if you put the application data directly into the
Starkit you have to extract it and restore it as an additional maintenance step. In that case,
you must use the mk::file save and load operations to save and restore your Metakit
views to a file.
1249985
A Wiki is a web site that users can easily edit using a simplified markup syntax. Wikit is a Wiki
implementation in Tcl using Metakit to store pages. It can run as a stand-alone Tk application,
a GGI script, as its own little web server, or embedded into another application as a
documentation bundle. There is a copy of wikit.tkd on the CD-ROM. For example, you
run a stand alone copy of the Tcler's Wiki as:
1249985

tclkit wikit.kit wikit.tkd

The live Wiki is at wiki.tcl.tk[*], and you can find out more about Wikit at:
1249985

[*] http://wiki.tcl.tk is an alias for http://mini.net/tcl.

http://wiki.tcl.tk/wikit

More Ideas
621961

1249985
This Chapter has provided a brief introduction to Tclkit, Starkits, and Metakit. This should be
enough to help you get started creating your own Starkits and using Metakit for persistent
storage. You should consult the documentation on the Web for more detailed reference
material.
1249985

Chapter 22. Tclkit and Starkits Page 18 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.bvdep.com/http://wiki.tcl.tk
http://safari.bvdep.com/http://mini.net/tcl
http://safari.bvdep.com/http://wiki.tcl.tk/wikit

Document Bundles
628024
The Starkit archive includes a number of documentation bundles. For example,
mk4dok.kit is a Starkit that contains all the MetaKit documentation. These document
bundles are all based on Wikit. It is very easy to create Wiki-style documentation for your
application and then bundle it up as a Metakit file. You can load wikit.kit and
your .tkd document bundle into your application and use the "local" Wikit interface to
display your documentation. For example, the critcl Starkit displays its help with this simple
command:
1249985

Wikit::init [file join $::starkit::topdir doc critcl.tkd]

Self-Updating Applications
628024
The client in a client-server application is an ideal candidate for a self-updating application.
The front-end client is a Starkit with some simple startup logic that connects to a server via
HTTP and displays a pretty splash screen. The server, which is often based on TclHttpd,
delivers code updates to the client. The client caches the code in the VFS inside the Starkit.
The application is maintained on the server, and clients automatically get updated as they
are used.
1249985
This scenario has the same deployment advantage as browser-based applications: you
deploy a "thin-client" to desktops that rarely, if ever, changes and you update the application
code on the server. In addition, this application structure lets you create a nice client front-
end that uses Tcl/Tk instead of HTML, yet still have the benefit of an easy to manage server-
side installation of the application code. This design pattern is being used for a number of
large-scale commercial application deployments with considerable success.
1249985
A similar system is used with the Starkit archive. If you do:
1249985

sdx update tclhttpd.kit

The sdx application contacts the web server running the archive and checks for any updates
available for the Starkit. Only the differences are transmitted, so updates are quick, and they
are automatically applied to your copy of the Starkit. This should work for all the Starkits in
the snapshot of the archive on the CD-ROM.
1249985

Chapter 22. Tclkit and Starkits Page 19 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Simple Installers
628024
In some cases you simply must install a collection of files as part of your application. It is very
easy to include those files in the VFS, and then extract them into the local file system the first
time your application runs. Or, you can create a traditional "installer" that unpacks the entire
application from the Starkit (or Starpack).
1249985

Chapter 22. Tclkit and Starkits Page 20 Return to Table of Contents

Chapter 22. Tclkit and Starkits
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

