
Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl... 1
The interp Command... 2
Creating Interpreters.. 3
Safe Interpreters.. 6
Command Aliases.. 8
Hidden Commands.. 9
Substitutions.. 11
I/O from Safe Interpreters.. 12
The Safe Base... 14
Security Policies... 16

Chapter 19. Multiple Interpreters and Safe-Tcl

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 19. Multiple Interpreters and Safe-Tcl
781

1249985
This chapter describes how to create more than one Tcl interpreter in your application. A
child interpreter can be made safe so that it can execute untrusted scripts without
compromising your application or your computer. Command aliases, hidden commands,
and shared I/O channels enable communication among interpreters. Tcl command described
is: interp.
1249985
Safe-Tcl was invented by Nathaniel Borenstein and Marshall Rose so that they could send Tcl
scripts via email and have the recipient safely execute the script without worry of viruses or
other attacks. Safe-Tcl works by removing dangerous commands like exec and open that
would let an untrusted script damage the host computer. You can think of this restricted
interpreter as a “padded cell” in which it is safe to execute untrusted scripts. To continue the
analogy, if the untrusted code wants to do anything potentially unsafe, it must ask
permission. This works by adding additional commands, or aliases, that are implemented by
a different Tcl interpreter. For example, a safeopen command could be implemented by
limiting file space to a temporary directory that is deleted when the untrusted code
terminates.
1249985
The key concept of Safe-Tcl is that there are two Tcl interpreters in the application, a trusted
one and an untrusted (or “safe”) one. The trusted interpreter can do anything, and it is used
for the main application (e.g., the Web browser or email user interface). When the main
application receives a message containing an untrusted script, it evaluates that script in the
context of the untrusted interpreter. The restricted nature of the untrusted interpreter means
that the application is safe from attack. This model is much like user mode and kernel mode
in a multiuser operating system like UNIX or Windows/NT. In these systems, applications run
in user mode and trap into the kernel to access resources like files and the network. The kernel
implements access controls so that users cannot read and write each other's files, or hijack
network services. In Safe-Tcl the application implements access controls for untrusted scripts.
1249985

Chapter 19. Multiple Interpreters and Safe-Tcl Page 1 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

The dual interpreter model of Safe-Tcl has been generalized in Tcl 7.5 and made accessible
to Tcl scripts. A Tcl script can create other interpreters, destroy them, create command aliases
among them, share I/O channels among them, and evaluate scripts in them.
1249985

The interp Command
621961
The interp command is used to create and manipulate interpreters. The interpreter being
created is called a slave, and the interpreter that creates it is called the master. The master
has complete control over the slave. The interp command is summarized in Table 19-1.
1249985

Table 19-1. The interp command

interp aliases slave
1249985

Lists aliases that are defined in slave.
1249985

interp alias slave cmd1
1249985

Returns target command and arguments
for the alias cmd1 in slave.
1249985

interp alias slave cmd1 master cmd2
arg ...
1249985

Defines cmd1 in slave that is an alias to
cmd2 in master with additional args.
1249985

interp create ?-safe? slave
1249985

Creates an interpreter named slave.
1249985

interp delete slave
1249985

Destroys interpreter slave.
1249985

interp eval slave cmd args ...
1249985

Evaluates cmd and args in slave.
1249985

interp exists slave
1249985

Returns 1 if slave is an interpreter, else
0.
1249985

interp expose slave cmd
1249985

Exposes hidden command cmd in
slave.
1249985

interp hide slave cmd
1249985

Hides cmd from slave.
1249985

Chapter 19. Multiple Interpreters and Safe-Tcl Page 2 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

interp hidden slave
1249985

Returns the commands hidden from
slave.
1249985

interp invokehidden slave cmd
arg ...
1249985

Invokes hidden command cmd and
args in slave.
1249985

interp issafe slave
1249985

Returns 1 if slave was created with -
safe flag.
1249985

interp marktrusted slave
1249985

Clears the issafe property of slave.
1249985

interp recursionlimit slave ?
limit?
1249985

Set or get the interpreter recursion limit
for slave. (Tcl 8.4)
1249985

interp share master file slave
1249985

Shares the I/O descriptor named file in
master with slave.
1249985

interp slaves master
1249985

Returns the list of slave interpreters of
master.
1249985

interp target slave cmd
1249985

Returns the name of the interpreter that
is the target of alias cmd in slave.
1249985

interp transfer master file slave
1249985

Transfers the I/O descriptor named
file from master to slave.
1249985

Creating Interpreters
621961

1249985
Here is a simple example that creates an interpreter, evaluates a couple of commands in it,
and then deletes the interpreter:
1249985

Chapter 19. Multiple Interpreters and Safe-Tcl Page 3 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 19-1. Creating and deleting an interpreter

interp create foo
=> foo

interp eval foo {set a 5}
=> 5

set sum [interp eval foo {expr {$a + $a}}]
=> 10

interp delete foo

In Example 19-1 the interpreter is named foo. Two commands are evaluated in the foo
interpreter:
1249985

set a 5
expr {$a + $a}

Note that curly braces are used to protect the commands from any interpretation by the
main interpreter. The variable a is defined in the foo interpreter and does not conflict with
variables in the main interpreter. The set of variables and procedures in each interpreter is
completely independent.
1249985

The Interpreter Hierarchy
628024
A slave interpreter can itself create interpreters, resulting in a hierarchy. The next examples
illustrates this, and it shows how the grandparent of an interpreter can reference the
grandchild by name. The example uses interp slaves to query the existence of child
interpreters.
1249985

Example 19-2. Creating a hierarchy of interpreters

interp create foo
=> foo

interp eval foo {interp create bar}
=> bar

interp create {foo bar2}
=> foo bar2

interp slaves
=> foo

interp slaves foo
=> bar bar2

interp delete bar
=> interpreter named "bar" not found

interp delete {foo bar}

Chapter 19. Multiple Interpreters and Safe-Tcl Page 4 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The example creates foo, and then it creates two children of foo. The first one is created by
foo with this command:
1249985

interp eval foo {interp create bar}

The second child is created by the main interpreter. In this case, the grandchild must be
named by a two-element list to indicate that it is a child of a child. The same naming
convention is used when the grandchild is deleted:
1249985

interp create {foo bar2}
interp delete {foo bar2}

The interp slaves operation returns the names of child (i.e., slave) interpreters. The
names are relative to their parent, so the slaves of foo are reported simply as bar and
bar2. The name for the current interpreter is the empty list, or {}. This is useful in command
aliases and file sharing described later. For security reasons, it is not possible to name the
master interpreter from within the slave.
1249985

The Interpreter Name as a Command
628024
After interpreter slave is created, a new command is available in the main interpreter, also
called slave, that operates on the child interpreter. The following two forms are equivalent
most operations:
1249985

slave operation args
 ...
interp
operation slave args
 ...

For example, the following are equivalent commands:
1249985

foo eval {set a 5}
interp eval foo {set a 5}

And so are these:
1249985

foo issafe
interp issafe foo

Chapter 19. Multiple Interpreters and Safe-Tcl Page 5 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

However, the operations delete, exists, share, slaves, target, and transfer
cannot be used with the per interpreter command. In particular, there is no foo delete
operation; you must use interp delete foo.
1249985
If you have a deep hierarchy of interpreters, the command corresponding to the slave is
defined only in the parent. For example, if a master creates foo, and foo creates bar, then
the master must operate on bar with the interp command. There is no “foo bar”
command defined in the master.
1249985

Use list with interp eval
628024
The interp eval command treats its arguments like eval. If there are extra arguments,
they are all concatenated together first. This can lose important structure, as described in
Chapter 10. To be safe, use list to construct your commands. For example, to safely define
a variable in the slave, you should do this:
1249985

interp eval
slave
 [list set
var
 $
value
]

Safe Interpreters
621961

1249985
A child can be created either safe (i.e., untrusted) or fully functional. In the examples so far,
the children have been trusted and fully functional; they have all the basic Tcl commands
available to them. An interpreter is made safe by eliminating certain commands. Table
19-2 lists the commands removed from safe interpreters. As described later, these commands
can be used by the master on behalf of the safe interpreter. To create a safe interpreter, use
the -safe flag:
1249985

interp create -safe untrusted

Chapter 19. Multiple Interpreters and Safe-Tcl Page 6 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Table 19-2. Commands hidden from safe interpreters

cd
1249985

Changes directory.
1249985

exec
1249985

Executes another program.
1249985

exit
1249985

Terminates the process.
1249985

fconfigure
1249985

Sets modes of an I/O stream.
1249985

file
1249985

Queries file attributes.
1249985

glob
1249985

Matches on file name patterns.
1249985

load
1249985

Dynamically loads object code.
1249985

open
1249985

Opens files and process pipelines.
1249985

pwd
1249985

Determines the current directory.
1249985

socket
1249985

Opens network sockets.
1249985

source
1249985

Loads scripts.
1249985

A safe interpreter does not have commands to manipulate the file system and other programs
(e.g., cd, open, and exec). This ensures that untrusted scripts cannot harm the host
computer. The socket command is removed so that untrusted scripts cannot access the
network. The exit, source, and load commands are removed so that an untrusted script
cannot harm the hosting application. Note that commands like puts and gets are not
removed. A safe interpreter can still do I/O, but it cannot create an I/O channel. We will show
how to pass an I/O channel to a child interpreter on page 299.
1249985
The initial state of a safe interpreter is very safe, but it is too limited. The only thing a safe
interpreter can do is compute a string and return that value to the parent. By creating
command aliases, a master can give a safe interpreter controlled access to resources. A
security policy implements a set of command aliases that add controlled capabilities to a safe

Chapter 19. Multiple Interpreters and Safe-Tcl Page 7 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

interpreter. We will show, for example, how to provide limited network and file system access
to untrusted slaves. Tcl provides a framework to manage several security policies, which is
described in Chapter 20.
1249985

Command Aliases
621961

1249985
A command alias is a command in one interpreter that is implemented by a command in
another interpreter. The master interpreter installs command aliases in its slaves. The
command to create an alias has the following general form:
1249985

interp alias
slave cmd1 target cmd2
 ?
arg arg
 ...?

This creates cmd1 in slave that is an alias for cmd2 in target. When cmd1 is invoked in
slave, cmd2 is invoked in target. The alias mechanism is transparent to the slave.
Whatever cmd2 returns, the slave sees as the return value of cmd1. If cmd2 raises an error,
the error is propagated to the slave.
1249985

Name the current interpreter with {}.
1249985

If target is the current interpreter, name it with {}. The empty list is the way to name
yourself as the interpreter. This is the most common case, although target can be a different
slave. The slave and target can even be the same interpreter.
1249985
The arguments to cmd1 are passed to cmd2, after any additional arguments to cmd2 that
were specified when the alias was created. These hidden arguments provide a safe way to
pass extra arguments to an alias. For example, it is quite common to pass the name of the
slave to the alias. In Example 19-3, exit in the interpreter foo is an alias that is implemented
in the current interpreter (i.e., {}). When the slave executes exit, the master executes:
1249985

interp delete foo

Chapter 19. Multiple Interpreters and Safe-Tcl Page 8 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 19-3. A command alias for exit

interp create foo
interp alias foo exit {} interp delete foo
interp eval foo exit
Child foo is gone.

Alias Introspection
628024
You can query what aliases are defined for a child interpreter. The interp aliases
command lists the aliases; the interp alias command can also return the value of an
alias, and the interp target command tells you what interpreter implements an alias.
These are illustrated in the following examples:
1249985

Example 19-4. Querying aliases

proc Interp_ListAliases {name out} {
 puts $out "Aliases for $name"
 foreach alias [interp aliases $name] {
 puts $out [format "%-20s => (%s) %s" $alias \
 [interp target $name $alias] \
 [interp alias $name $alias]]
 }
}

Example 19-4 generates output in a human readable format. Example 19-5 generates the
aliases as Tcl commands that can be used to re-create them later:
1249985

Example 19-5. Dumping aliases as Tcl commands

proc Interp_DumpAliases {name out} {
 puts $out "# Aliases for $name"
 foreach alias [interp aliases $name] {
 puts $out [format "interp alias %s %s %s %s" \
 $name $alias [list [interp target $name $alias]] \
 [interp alias $name $alias]]
 }
}

Hidden Commands
621961

1249985

Chapter 19. Multiple Interpreters and Safe-Tcl Page 9 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The commands listed in Table 19-2 are hidden instead of being completely removed. A hidden
command can be invoked in a slave by its master. For example, a master can load Tcl scripts
into a slave by using its hidden source command:
1249985

interp create -safe
slave

interp invokehidden
slave
 source
filename

Without hidden commands, the master has to do a bit more work to achieve the same thing.
It must open and read the file and eval the contents of the file in the slave. File operations
are described in Chapter 9.
1249985

interp create -safe
slave

set in [open
filename
]
interp eval
slave
 [read $in]
close $in

Hidden commands were added in Tcl 7.7 in order to better support the Tcl/Tk browser plug-
in described in Chapter 20. In some cases, hidden commands are strictly necessary; it is not
possible to simulate them any other way. The best examples are in the context of Safe-Tk,
where the master creates widgets or does potentially dangerous things on behalf of the slave.
These will be discussed in more detail later.
1249985
A master can hide and expose commands using the interp hide and interp expose
operations, respectively. You can even hide Tcl procedures. However, the commands inside
the procedure run with the same privilege as that of the slave. For example, if you are really
paranoid, you might not want an untrusted interpreter to read the clock or get timing
information. You can hide the clock and time commands:
1249985

interp create -safe
slave

interp hide
slave
 clock
interp hide
slave

Chapter 19. Multiple Interpreters and Safe-Tcl Page 10 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 time

You can remove commands from the slave entirely like this:
1249985

interp eval slave [list rename clock {}]
interp eval slave [list rename time {}]

Substitutions
621961
You must be aware of Tcl parsing and substitutions when commands are invoked in other
interpreters. There are three cases corresponding to interp eval, interp
invokehidden, and command aliases.
1249985
With interp eval the command is subject to a complete round of parsing and
substitutions in the target interpreter. This occurs after the parsing and substitutions for the
interp eval command itself. In addition, if you pass several arguments to interp
eval, those are concatenated before evaluation. This is similar to the way the eval
command works as described in Chapter 19. The most reliable way to use interp eval is
to construct a list to ensure the command is well structured:
1249985

interp eval
slave
 [list
cmd arg1 arg2
]

With hidden commands, the command and arguments are taken directly from the arguments
to interp invokehidden, and there are no substitutions done in the target interpreter.
This means that the master has complete control over the command structure, and nothing
funny can happen in the other interpreter. For this reason you should not create a list. If you
do that, the whole list will be interpreted as the command name! Instead, just pass separate
arguments to interp invokehidden and they are passed straight through to the target:
1249985

interp invokehidden
slave command arg1 arg2

Chapter 19. Multiple Interpreters and Safe-Tcl Page 11 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Never eval alias arguments.
1249985

With aliases, all the parsing and substitutions occur in the slave before the alias is invoked in
the master. The alias implementation should never eval or subst any values it gets from
the slave to avoid executing arbitrary code.
1249985
For example, suppose there is an alias to open files. The alias does some checking and then
invokes the hidden open command. An untrusted script might pass [exit] as the name of
the file to open in order to create mischief. The untrusted code is hoping that the master will
accidentally eval the filename and cause the application to exit. This attack has nothing to
do with opening files; it just hopes for a poor alias implementation. Example 19-6 shows an
alias that is not subject to this attack:
1249985

Example 19-6. Substitutions and hidden commands

interp alias slave open {} safeopen slave
proc safeopen {slave filename {mode r}} {
 # do some checks, then...
 interp invokehidden $slave open $filename $mode
}
interp eval slave {open \[exit\]}

The command in the slave starts out as:
1249985

open \[exit\]

The master has to quote the brackets in its interp eval command or else the slave will
try to invoke exit because of command substitution. Presumably exit isn't defined, or it
is defined to terminate the slave. Once this quoting is done, the value of filename is
[exit] and it is not subject to substitutions. It is safe to use $filename in the interp
invokehidden command because it is only substituted once, in the master. The hidden
open command also gets [exit] as its filename argument, which is never evaluated as a
Tcl command.
1249985

I/O from Safe Interpreters
621961

Chapter 19. Multiple Interpreters and Safe-Tcl Page 12 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985
A safe child interpreter cannot open files or network sockets directly. An alias can create an
I/O channel (i.e., open a file or socket) and give the child access to it. The parent can share
the I/O channel with the child, or it can transfer the I/O channel to the child. If the channel is
shared, both the parent and the child can use it. If the channel is transferred, the parent no
longer has access to the channel. In general, transferring an I/O channel is simpler, but sharing
an I/O channel gives the parent more control over an unsafe child. The differences are
illustrated in Example 19-7 and Example 19-9.
1249985
There are three properties of I/O channels that are important to consider when choosing
between sharing and transferring: the name, the seek offset, and the reference count.
1249985

• The name of the I/O channel (e.g., file4) is the same in all interpreters. If a parent transfers a channel to a child, it can close
the channel by evaluating a close command in the child. Although names are shared, an interpreter cannot attempt I/O on
a channel to which it has not been given access.

• The seek offset of the I/O channel is shared by all interpreters that share the I/O channel. An I/O operation on the channel
updates the seek offset for all interpreters that share the channel. This means that if two interpreters share an I/O channel,
their output will be cleanly interleaved in the channel. If they both read from the I/O channel, they will get different data. Seek
offsets are explained in more detail on page 121.

• A channel has a reference count of all interpreters that share the I/O channel. The channel remains open until all references
are closed. When a parent transfers an I/O channel, the reference count stays the same. When a parent shares an I/O channel,
the reference count increments by one. When an interpreter closes a channel with close, the reference count is decremented
by one. When an interpreter is deleted, all of its references to I/O channels are removed.

The syntax of commands to share or transfer an I/O channel is:
1249985

interp share
interp1 chanName interp2

interp transfer
interp1 chanName interp2

In these commands, chanName exists in interp1 and is being shared or transferred to
interp2. As with command aliases, if interp1 is the current interpreter, name it with {}.
1249985
The following example creates a temporary file for an unsafe interpreter. The file is opened
for reading and writing, and the slave can use it to store data temporarily.
1249985

Example 19-7. Opening a file for an unsafe interpreter

proc TempfileAlias {slave} {
 set i 0
 while {[file exists Temp$slave$i]} {
 incr i
 }

Chapter 19. Multiple Interpreters and Safe-Tcl Page 13 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 set out [open Temp$slave$i w+]
 interp transfer {} $out $slave
 return $out
}
proc TempfileExitAlias {slave} {
 foreach file [glob -nocomplain Temp$slave*] {
 file delete -force $file
 }
 interp delete $slave
}
interp create -safe foo
interp alias foo Tempfile {} TempfileAlias foo
interp alias foo exit {} TempfileExitAlias foo

The TempfileAlias procedure is invoked in the parent when the child interpreter invokes
Tempfile. TempfileAlias returns the name of the open channel, which becomes the
return value from Tempfile. TempfileAlias uses interp transfer to pass the I/O
channel to the child so that the child has permission to access the I/O channel. In this example,
it would also work to invoke the hidden open command to create the I/O channel directly
in the slave.
1249985
Example 19-7 is not fully safe because the unsafe interpreter can still overflow the disk or
create a million files. Because the parent has transferred the I/O channel to the child, it cannot
easily monitor the I/O activity by the child. Example 19-9 addresses these issues.
1249985

The Safe Base
621961

1249985
An safe interpreter created with interp create -safe has no script library environment
and no way to source scripts. Tcl provides a safe base that extends a raw safe interpreter with
the ability to source scripts and packages which are described in Chapter 12. The safe base
also defines an exit alias that terminates the slave like the one in Example 19-7. The safe
base is implemented as Tcl scripts that are part of the standard Tcl script library. Create an
interpreter that uses the safe base with safe::interpCreate:
1249985

safe::interpCreate foo

The safe base has source and load aliases that only access directories on an access path
defined by the master interpreter. The master has complete control over what files can be
loaded into a slave. In general, it would be all right to source any Tcl program into an untrusted
interpreter. However, untrusted scripts might learn things from the error messages they get
by sourcing arbitrary files. The safe base also has versions of the package and unknown

Chapter 19. Multiple Interpreters and Safe-Tcl Page 14 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

commands that support the library facility. Table 19-3 lists the Tcl procedures in the safe base:

1249985

Table 19-3. The safe base master interface

safe::interpCreate ?slave? ?options?
1249985

Creates a safe interpreter and
initialize the security policy
mechanism.
1249985

safe::interpInit slave ?options?
1249985

Initializes a safe interpreter so it
can use security policies.
1249985

safe::interpConfigure slave ?options?
1249985

Options are -accessPath
pathlist, -nostatics, -
deleteHook script, -
nestedLoadOk.
1249985

safe::interpDelete slave
1249985

Deletes a safe interpreter.
1249985

safe::interpAddToAccessPath slave
directory
1249985

Adds a directory to the slave's
access path.
1249985

safe::interpFindInAccessPath
1249985

Maps from a directory to the
token visible in the slave for that
directory.
1249985

safe::setLogCmd ?cmd arg ... ?
1249985

Sets or queries the logging
command used by the safe base.
1249985

Table 19-4 lists the aliases defined in a safe interpreter by the safe base.
1249985

Table 19-4. The safe base slave aliases

source
1249985

Loads scripts from directories in the access path.
1249985

load Loads binary extensions from the slaves access path.

Chapter 19. Multiple Interpreters and Safe-Tcl Page 15 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985 1249985

file
1249985

Only the dirname, join, extension, root, tail, pathname, and split
operations are allowed.
1249985

exit
1249985

Destroys the slave interpreter.
1249985

Security Policies
621961

1249985
A security policy defines what a safe interpreter can do. Designing security policies that are
secure is difficult. If you design your own, make sure to have your colleagues review the code.
Give out prizes to folks who can break your policy. Good policy implementations are proven
with lots of review and trial attacks. The good news is that Safe-Tcl security policies can be
implemented in relatively small amounts of Tcl code. This makes them easier to analyze and
get correct. Here are a number of rules of thumb:
1249985

• Small policies are better than big, complex policies. If you do a lot of complex processing to allow or disallow access to resources,
chances are there are holes in your policy. Keep it simple.

• Never eval arguments to aliases. If an alias accepts arguments that are passed by the slave, you must avoid being tricked into
executing arbitrary Tcl code. The primary way to avoid this is never to eval arguments that are passed into an alias. Watch
your expressions, too. The expr command does an extra round of substitutions, so brace all your expressions so that an attacker
cannot pass [exit] where you expect a number!

• Security policies do not compose. Each time you add a new alias to a security policy, it changes the nature of the policy. Even
if alias1 and alias2 are safe in isolation, there is no guarantee that they cannot be used together to mount an attack. Each
addition to a security policy requires careful review.

Limited Socket Access
628024
The Safesock security policy provides limited socket access. The policy is designed around
a simple table of allowed hosts and ports. An untrusted interpreter can connect only to
addresses listed in the table. For example, I would never let untrusted code connect to the
sendmail, ftp, or telnet ports on my hosts. There are just too many attacks possible on these
ports. On the other hand, I might want to let untrusted code fetch a URL from certain hosts,
or connect to a database server for an intranet application. The goal of this policy is to have
a simple way to specify exactly what hosts and ports a slave can access. Example 19-8 shows
a simplified version of the Safesock security policy that is distributed with Tcl 8.0.

Chapter 19. Multiple Interpreters and Safe-Tcl Page 16 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

1249985

Example 19-8. The Safesock security policy

The index is a host name, and the
value is a list of port specifications, which can be
an exact port number
a lower bound on port number: N-
a range of port numbers, inclusive: N-M
array set safesock {
 sage.eng 3000-4000
 www.sun.com 80
 webcache.eng {80 8080}
 bisque.eng {80 1025-}
}
proc Safesock_PolicyInit {slave} {
 interp alias $slave socket {} SafesockAlias $slave
}
proc SafesockAlias {slave host port} {
 global safesock
 if ![info exists safesock($host)] {
 error "unknown host: $host"
 }

 foreach portspec $safesock($host) {
 set low [set high ""]
 if {[regexp {^([0-9]+)-([0-9]*)$} $portspec x low high]} {
 if {($low <= $port && $high == "") ||
 ($low <= $port && $high >= $port)} {
 set good $port
 break
 }
 } elseif {$port == $portspec} {
 set good $port
 }
 }

 if [info exists good] {
 set sock [interp invokehidden $slave socket $host $good]
 interp invokehidden $slave fconfigure $sock \
 -blocking 0
 return $sock
 }
 error "bad port: $port"
}

The policy is initialized with Safesock_PolicyInit. The name of this procedure follows
a naming convention used by the safe base. In this case, a single alias is installed. The alias
gives the slave a socket command that is implemented by SafesockAlias in the master.
1249985
The alias checks for a port that matches one of the port specifications for the host. If a match
is found, then the invokehidden operation is used to invoke two commands in the slave.
The socket command creates the network connection, and the fconfigure command
puts the socket into nonblocking mode so that read and gets by the slave do not block
the application:
1249985

set sock [interp invokehidden $slave socket $host $good]
interp invokehidden $slave fconfigure $sock -blocking 0

Chapter 19. Multiple Interpreters and Safe-Tcl Page 17 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The socket alias in the slave does not conflict with the hidden socket command. There
are two distinct sets of commands, hidden and exposed. It is quite common for the alias
implementation to invoke the hidden command after various permission checks are made.
1249985
The Tcl Web browser plug-in ships with a slightly improved version of the Safesock policy.
It adds an alias for fconfigure so that the http package can set end of line translations
and buffering modes. The fconfigure alias does not let you change the blocking behavior
of the socket. The policy has also been extended to classify hosts into trusted and untrusted
hosts based on their address. A different table of allowed ports is used for the two classes of
hosts. The classification is done with two tables: One table lists patterns that match trusted
hosts, and the other table lists hosts that should not be trusted even though they match the
first table. The improved version also lets a downloaded script connect to the Web server
that it came from. The Web browser plug-in is described in Chapter 20.
1249985

Limited Temporary Files
628024
Example 19-9 improves on Example 19-7 by limiting the number of temporary files and the
size of the files. It is written to work with the safe base, so it has a
Tempfile_PolicyInit that takes the name of the slave as an argument.
TempfileOpenAlias lets the child specify a file by name, yet it limits the files to a single
directory.
1249985
The example demonstrates a shared I/O channel that gives the master control over output.
TempfilePutsAlias restricts the amount of data that can be written to a file. By sharing
the I/O channel for the temporary file, the slave can use commands like gets, eof, and
close, while the master does the puts. The need for shared I/O channels is somewhat
reduced by hidden commands, which were added to Safe-Tcl more recently than shared I/
O channels. For example, the puts alias can either write to a shared channel after checking
the file size, or it can invoke the hidden puts in the slave. This alternative is shown in Example
19-10.
1249985

Example 19-9. The Tempfile security policy

Policy parameters:
directory is the location for the files
maxfile is the number of files allowed in the directory
maxsize is the max size for any single file.

array set tempfile {
 maxfile 4
 maxsize 65536
}

Chapter 19. Multiple Interpreters and Safe-Tcl Page 18 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

tempfile(directory) is computed dynamically based on
the source of the script

proc Tempfile_PolicyInit {slave} {
 global tempfile
 interp alias $slave open {} \
 TempfileOpenAlias $slave $tempfile(directory) \
 $tempfile(maxfile)
 interp alias $slave puts {} TempfilePutsAlias $slave \
 $tempfile(maxsize)
 interp alias $slave exit {} TempfileExitAlias $slave
}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {
 global tempfile
 # remove sneaky characters
 regsub -all {|/:} [file tail $name] {} real
 set real [file join $dir $real]
 # Limit the number of files
 set files [glob -nocomplain [file join $dir *]]
 set N [llength $files]
 if {($N >= $maxfile) && (\
 [lsearch -exact $files $real] < 0)} {
 error "permission denied"
 }
 if [catch {open $real $m $p} out] {
 return -code error "$name: permission denied"
 }
 lappend tempfile(channels,$slave) $out
 interp share {} $out $slave
 return $out
}
proc TempfileExitAlias {slave} {
 global tempfile
 interp delete $slave
 if [info exists tempfile(channels,$slave)] {
 foreach out $tempfile(channels,$slave) {
 catch {close $out}
 }
 unset tempfile(channels,$slave)
 }
}
See also the puts alias in Example 24–4 on page 389
proc TempfilePutsAlias {slave max chan args} {
 # max is the file size limit, in bytes
 # chan is the I/O channel
 # args is either a single string argument,
 # or the -nonewline flag plus the string.

 if {[llength $args] > 2} {
 error "invalid arguments"
 }
 if {[llength $args] == 2} {
 if {![string match -n* [lindex $argv 0]]} {
 error "invalid arguments"
 }
 set string [lindex $args 1]
 } else {
 set string [lindex $args 0]\n
 }
 set size [expr [tell $chan] + [string length $string]]
 if {$size > $max} {
 error "File size exceeded"
 } else {
 puts -nonewline $chan $string
 }
}

The TempfileAlias procedure is generalized in Example 19-9 to have parameters that
specify the directory, name, and a limit to the number of files allowed. The directory and

Chapter 19. Multiple Interpreters and Safe-Tcl Page 19 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

maxfile limit are part of the alias definition. Their existence is transparent to the slave. The
slave specifies only the name and access mode (i.e., for reading or writing.) The Tempfile
policy can be used by different slave interpreters with different parameters.
1249985
The master is careful to restrict the files to the specified directory. It uses file tail to strip
off any leading pathname components that the slave might specify. The tempfile
(directory) definition is not shown in the example. The application must choose a
directory when it creates the safe interpreter. The Browser security policy described on
page 317 chooses a directory based on the name of the URL containing the untrusted script.
1249985
The TempfilePutsAlias procedure implements a limited form of puts. It checks the size
of the file with tell and measures the output string to see if the total exceeds the limit. The
limit comes from a parameter defined when the alias is created. The file cannot grow past
the limit, at least not by any action of the child interpreter. The args parameter is used to
allow an optional -nonewline flag to puts. The value of args is checked explicitly instead
of using the eval trick described in Example 10-3 on page 136. Never eval arguments to
aliases or else a slave can attack you with arguments that contain embedded Tcl commands.
1249985
The master and slave share the I/O channel. The name of the I/O channel is recorded in
tempfile, and TempfileExitAlias uses this information to close the channel when the
child interpreter is deleted. This is necessary because both parent and child have a reference
to the channel when it is shared. The child's reference is automatically removed when the
interpreter is deleted, but the parent must close its own reference.
1249985
The shared I/O channel lets the master use puts and tell. It is also possible to implement
this policy by using hidden puts and tell commands. The reason tell must be hidden is
to prevent the slave from implementing its own version of tell that lies about the seek
offset value. One advantage of using hidden commands is that there is no need to clean up
the tempfile state about open channels. You can also layer the puts alias on top of any existing
puts implementation. For example, a script may define puts to be a procedure that inserts
data into a text widget. Example 19-10 shows the difference when using hidden commands.
1249985

Example 19-10. Restricted puts using hidden commands

proc Tempfile_PolicyInit {slave} {
 global tempfile
 interp alias $slave open {} \
 TempfileOpenAlias $slave $tempfile(directory) \
 $tempfile(maxfile)
 interp hide $slave tell
 interp alias $slave tell {} TempfileTellAlias $slave
 interp hide $slave puts
 interp alias $slave puts {} TempfilePutsAlias $slave \
 $tempfile(maxsize)

Chapter 19. Multiple Interpreters and Safe-Tcl Page 20 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

 # no special exit alias required
}
proc TempfileOpenAlias {slave dir maxfile name {m r} {p 0777}} {
 # remove sneaky characters
 regsub -all {|/:} [file tail $name] {} real
 set real [file join $dir $real]
 # Limit the number of files
 set files [glob -nocomplain [file join $dir *]]
 set N [llength $files]
 if {($N >= $maxfile) && (\
 [lsearch -exact $files $real] < 0)} {
 error "permission denied"
 }
 if [catch {interp invokehidden $slave \
 open $real $m $p} out] {
 return -code error "$name: permission denied"
 }
 return $out
}
proc TempfileTellAlias {slave chan} {
 interp invokehidden $slave tell $chan
}
proc TempfilePutsAlias {slave max chan args} {
 if {[llength $args] > 2} {
 error "invalid arguments"
 }
 if {[llength $args] == 2} {
 if {![string match -n* [lindex $args 0]]} {
 error "invalid arguments"
 }
 set string [lindex $args 1]
 } else {
 set string [lindex $args 0]\n
 }
 set size [interp invokehidden $slave tell $chan]
 incr size [string length $string]
 if {$size > $max} {
 error "File size exceeded"
 } else {
 interp invokehidden $slave \
 puts -nonewline $chan $string
 }
}

Safe after Command
628024
The after command is unsafe because it can block the application for an arbitrary amount
of time. This happens if you only specify a time but do not specify a command. In this case,
Tcl just waits for the time period and processes no events. This will stop all interpreters, not
just the one doing the after command. This is a kind of resource attack. It doesn't leak
information or damage anything, but it disrupts the main application.
1249985
Example 19-11 defines an alias that implements after on behalf of safe interpreters. The
basic idea is to carefully check the arguments, and then do the after in the parent
interpreter. As an additional feature, the number of outstanding after events is limited.
The master keeps a record of each after event scheduled. Two IDs are associated with each
event: one chosen by the master (i.e., myid), and the other chosen by the after command

Chapter 19. Multiple Interpreters and Safe-Tcl Page 21 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

(i.e., id). The master keeps a map from myid to id. The map serves two purposes: The
number of map entries counts the number of outstanding events. The map also hides the
real after ID from the slave, which prevents a slave from attempting mischief by specifying
invalid after IDs to after cancel. The SafeAfterCallback is the procedure scheduled.
It maintains state and then invokes the original callback in the slave.
1249985

Example 19-11. A safe after command

SafeAfter_PolicyInit creates a child with
a safe after command

proc SafeAfter_PolicyInit {slave max} {
 # max limits the number of outstanding after events
 global after
 interp alias $slave after {} SafeAfterAlias $slave $max
 interp alias $slave exit {} SafeAfterExitAlias $slave
 # This is used to generate after IDs for the slave.
 set after(id,$slave) 0
}

SafeAfterAlias is an alias for after. It disallows after
with only a time argument and no command.

proc SafeAfterAlias {slave max args} {
 global after
 set argc [llength $args]
 if {$argc == 0} {
 error "Usage: after option args"
 }
 switch -- [lindex $args 0] {
 cancel {
 # A naive implementation would just
 # eval after cancel $args
 # but something dangerous could be hiding in args.
 set myid [lindex $args 1]
 if {[info exists after(id,$slave,$myid)]} {
 set id $after(id,$slave,$myid)
 unset after(id,$slave,$myid)
 after cancel $id
 }
 return ""
 }
 default {
 if {$argc == 1} {
 error "Usage: after time command args..."
 }
 if {[llength [array names after id,$slave,*]]\
 >= $max} {
 error "Too many after events"
 }
 # Maintain concat semantics
 set command [concat [lrange $args 1 end]]
 # Compute our own id to pass the callback.
 set myid after#[incr after(id,$slave)]
 set id [after [lindex $args 0] \
 [list SafeAfterCallback $slave $myid $command]]
 set after(id,$slave,$myid) $id
 return $myid
 }
 }
}

SafeAfterCallback is the after callback in the master.

Chapter 19. Multiple Interpreters and Safe-Tcl Page 22 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

It evaluates its command in the safe interpreter.

proc SafeAfterCallback {slave myid cmd} {
 global after
 unset after(id,$slave,$myid)
 if [catch {
 interp eval $slave $cmd
 } err] {
 catch {interp eval $slave bgerror $error}
 }
}

SafeAfterExitAlias is an alias for exit that does cleanup.

proc SafeAfterExitAlias {slave} {
 global after
 foreach id [array names after id,$slave,*] {
 after cancel $after($id)
 unset after($id)
 }
 interp delete $slave
}

Chapter 19. Multiple Interpreters and Safe-Tcl Page 23 Return to Table of Contents

Chapter 19. Multiple Interpreters and Safe-Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 6/10/2003 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

