

Table of Contents

Send.. 1
The send Command... 1
The Sender Script.. 3
Communicating Processes.. 5
Remote eval through Sockets.. 7

Chapter 43. Send

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 43. Send

This chapter describes the send command that invokes Tcl commands in other
applications. This chapter also presents an alternative to send that uses network sockets.

The send command lets Tk applications on the same display send each other Tcl
commands and cooperate in very flexible ways. A large application can be structured as a
set of smaller tools that cooperate instead of one large monolith. This encourages reuse,
and it exploits your workstation's multiprogramming capabilities.

The send facility provides a name space for Tk applications. The winfo interps
command returns the names of all the Tk applications reachable with send. The send
communication mechanism is limited to applications running on one display. Multiple
screens on one workstation still count as the same display on X. In UNIX, send uses
properties on the X display for communication and to record the application names. As of
Tk 8.0, send is not yet implemented on Macintosh or Windows. There is an extension for
Windows that uses DDE to emulate send.

This chapter also describes an alternative to send that uses network sockets. The facility
is not limited to a single display, and can be used in conjunction with safe interpreters to
limit the capabilities of remote operations. A number of Tcl extensions provide similar
functionality, including GroupKit and Tcl-DP. Of particular note is the comm package,
which is a part of the Standard Tcl Library. The comm package was designed as a sockets-
based replacement for send that would work on any platform. You can find more
information about comm from the tcllib project page on SourceForge:

http://tcllib.sourceforge.net.

The send Command
The send command invokes a Tcl command in another application. The general form of
the command is:

send options interp arg ?arg...?

Chapter 43. Send Page 1 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://tcllib.sourceforge.net

The send command behaves like eval; if you give it extra arguments, it concatenates
them to form a single command. If your argument structure is important, use list to
build the command. Table 43-1 lists the options to send:

Table 43-1. Options to the send command

-async Does not wait for the remote command to complete.

-displayof window Sends to the application on the same display as window.

-- Delimits options from the interp argument. Useful if the interp begins with a dash.

The interp argument is the name of the other application. An application defines its own
name when it creates its main window. The wish shell uses as its name the last component
of the file name of the script. For example, when wish interprets /usr/local/bin/
exmh, it sets its application name to exmh. However, if another instance of the exmh
application is already running, wish chooses the name exmh #2, and so on. If wish is not
executing from a file, its name is just wish. You may have noticed wish #2 or wish
#3 in your window title bars, and this reflects the fact that multiple wish applications are
running on your display.

A script can find out its own name, so you can pass names around or put them into files
in order to set up communications. The tk appname command queries or changes the
application name:

set myname [tk appname]
tk appname aNewName

Send and X Authority
The send command relies on the X authority mechanism for authorization. A command
is rejected by the target interpreter if you do not have X authority set up. There are two
ways around this problem. First, you can disable the access check by compiling the
tkSend.c file with the -DTK_NO_SECURITY compile flag. If you must worry about
malicious programs that send your programs commands, then you should not do this.

The second option is to start your X server with its -auth flag, which initializes the X
authority mechanism. The details vary depending on your X server, and most modern X
servers do this automatically. The general picture is that you generate a pseudo-random
string and store it into a file, which is usually named ~/.Xauthority and must be
readable only by your account. The -auth flag specifies the name of this file to the X server.
Each X application reads this file and sends the contents to the X server when opening the
connection to the server. If the contents match what the server read when it started, then

Chapter 43. Send Page 2 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the connection is allowed. The system is slightly more complicated than described here.
The file actually contains a sequence of records to support multiple displays and client
hosts. Consult your local X guru or the documentation for the details particular to your
system.

Your xhost list must be clear.

Tk also requires that the xhost list be empty. The xhost mechanism is the old, not-so-secure
authentication mechanism in X. With xhost you allow all programs on a list of hosts to
connect to your display. The problem with this is that multiuser workstations allow remote
login, so essentially anybody could log in to a workstation on the xhost list and gain access
to your display. The Xauthority mechanism is much stronger because it restricts access to
your account, or to accounts that you explicitly give a secret token to. The problem is that
even if Xauthority is set up, the user or a program can turn on xhosts and open up access
to your display.

If you run the xhost program with no argument, it reports the status and what hosts are
on the list. The following output is generated when access control is restricted, but
programs running on sage are allowed to connect to the display:

exec xhost
=> Access control enabled: all hosts being restricted
sage

This is not good enough for Tk send. It will fail because sage is on the list. I work in an
environment where old scripts and programs are constantly adding things to my xhost list
for reasons that are no longer valid. I developed a version of send that checks for errors
and then does the following to clean out the xhost list. You have to enable access control
and then explicitly remove any hosts on the list. These are reported after an initial line that
says whether or not hosts are restricted:

xhost - ;# enable access control in general
foreach host [lrange [split [exec xhost] \n] 1 end] {
 exec xhost -$host ;# clear out exceptions
}

Chapter 43. Send Page 3 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Sender Script
The following example is a general-purpose script that reads input and then sends it to
another application. You can put this at the end of a pipeline to get a loopback effect to the
main application, although you can also use fileevent for similar effects. One advantage
of send over fileevent is that the sender and receiver can be more independent. A
logging application, for example, can come and go independently of the applications that
log error messages:

Example 43-1. The sender application

#!/usr/local/bin/wish
sender takes up to four arguments:
1) the name of the application to send to.
2) a command prefix.
3) the name of another application to notify
after the end of the data.
4) the command to use in the notification.

Hide the unneeded window
wm withdraw .
Process command line arguments
if {$argc == 0} {
 puts stderr "Usage: send name ?cmd? ?uiName? ?uiCmd?"
 exit 1
} else {
 set app [lindex $argv 0]
}
if {$argc > 1} {
 set cmd [lindex $argv 1]
} else {
 set cmd Send_Insert
}
if {$argc > 2} {
 set ui [lindex $argv 2]
 set uiCmd Send_Done
}
if {$argc > 3} {
 set uiCmd [lindex $argv 3]
}
Read input and send it to the logger
while {[gets stdin input] >= 0} {
 # Ignore errors with the logger
 catch {send $app [concat $cmd [list $input\n]]}
}
Notify the controller, if any
if [info exists ui] {
 if [catch {send $ui $uiCmd} msg] {
 puts stderr "send.tcl could not notify $ui\n$msg"
 }
}
This is necessary to force wish to exit.
exit

The sender application supports communication with two processes. It sends all its input
to a primary "logging" application. When the input finishes, it can send a notification
message to another "controller" application. The logger and the controller could be the
same application.

Chapter 43. Send Page 4 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Use list to quote arguments to send.

Consider the send command used in the example:

send $app [concat $cmd [list $input\n]]

The combination of concat and list is tricky. The list command quotes the value of
the input line. This quoted value is then appended to the command, so it appears as a single
extra argument. Without the quoting by list, the value of the input line will affect the
way the remote interpreter parses the command. Consider these alternatives:

send $app [list $cmd $input]

This form is safe, except that it limits $cmd to a single word. If cmd contains a value like
the ones given below, the remote interpreter will not parse it correctly. It will treat the
whole multiword value as the name of a command:

.log insert end

.log see end ; .log insert end

This is the most common wrong answer:

send $app $cmd $input

The send command concatenates $cmd and $input together, and the result will be parsed
again by the remote interpreter. The success or failure of the remote command depends
on the value of the input data. If the input included Tcl syntax like $ or [], errors or other
unexpected behavior would result.

Communicating Processes

Chapter 24 presented two examples: a browser for the examples in this book, and a simple
shell in which to try out Tcl commands. In that chapter they are put into the same
application. The two examples shown below hook these two applications together using

Chapter 43. Send Page 5 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch24#ch24

the send command. Example 43-2 changes the Run and Reset procedures of the browser
to send EvalEcho commands to the shell.

Example 43-2. Hooking the browser to an eval server

Replace the Run and Reset procedures of the browser in
Example 24–3 on page 384 with these procedures

Start up the evalsrv.tcl script.
proc StartEvalServer {} {
 global browse
 # Start the shell and pass it our name.
 exec evalsrv.tcl [tk appname] &
 # Wait for evalsrv.tcl to send us its name
 tkwait variable browse(evalInterp)
}
proc Run {} {
 global browse
 set apps [winfo interps]
 set ix [lsearch -glob $apps evalsrv.tcl*]
 if {$ix < 0} {
 # No evalsrv.tcl application running
 StartEvalServer
 }
 if {![info exists browse(evalInterp)]} {
 # Hook up to already running eval server
 set browse(evalInterp) [lindex $apps $ix]
 }
 if [catch {send $browse(evalInterp) {info vars}} err] {
 # It probably died - restart it.
 StartEvalServer
 }
 # Send the command asynchronously. The two
 # list commands foil the concat done by send and
 # the uplevel in EvalEcho
 send -async $browse(evalInterp) \
 [list EvalEcho [list source $browse(current)]]
}
Reset the shell interpreter in the eval server
proc Reset {} {
 global browse
 send $browse(evalInterp) {EvalEcho reset}
}

The number of lists created before the send command may seem excessive, but they are
all necessary. The send command concatenates its arguments, so instead of letting it do
that, we pass it a single list. Similarly, EvalEcho expects a single argument that is a valid
command, so list is used to construct that.

The StartEvalServer procedure starts up the shell. Command-line arguments are used
to pass the application name of the browser to the shell. The shell completes the connection
by sending its own application name back to the browser. The browser stores the name of
the shell application in browser(evalInterp). The code that the shell uses is shown in
Example 43-3:

Chapter 43. Send Page 6 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 43-3. Making the shell into an eval server

Add this to the shell application shown
in Example 24–4 on page 389
if {$argc > 0} {
 # Send our application name to the browser
 send [lindex $argv 0] \
 [list set browse(evalInterp) [tk appname]]
}

Remote eval through Sockets
Network sockets provide another communication mechanism you can use to evaluate Tcl
commands in another application. The "name" of the application is just the host and port
for the socket connection. There are a variety of schemes you can use to manage names. A
crude, but effective way to manage host and ports for your servers is to record them in a
file in your network file system. These examples ignore this problem. The server chooses
a port and the client is expected to know what it is.

Example 43-4 implements Eval_Server that lets other applications connect and
evaluate Tcl commands. The interp argument specifies the interpreter in which to
evaluate the Tcl commands. If the caller of Eval_Server specifies {} for the interpreter,
then the commands are evaluated in the current interpreter. The openCmd is called when
the connection is made. It can do whatever setup or authentication is required. If it doesn't
like the connection, it can close the socket:

Example 43-4. Remote eval using sockets

proc Eval_Server {port {interp {}} {openCmd EvalOpenProc}} {
 socket -server [list EvalAccept $interp $openCmd] $port
}
proc EvalAccept {interp openCmd newsock addr port} {
 global eval
 set eval(cmdbuf,$newsock) {}
 fileevent $newsock readable [list EvalRead $newsock $interp]
 if [catch {
 interp eval $interp $openCmd $newsock $addr $port
 }] {
 close $newsock
 }
}
proc EvalOpenProc {sock addr port} {
 # do authentication here
 # close $sock to deny the connection
}

Example 43-5 shows EvalRead that reads commands and evaluates them in an
interpreter. If the interp is {}, it causes the commands to execute in the current
interpreter. In this case an uplevel #0 is necessary to ensure the command is executed

Chapter 43. Send Page 7 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

in the global scope. If you use interp eval to execute something in yourself, it executes
in the current scope:

Example 43-5. Reading commands from a socket

proc EvalRead {sock interp} {
 global eval errorInfo errorCode
 if [eof $sock] {
 close $sock
 } else {
 gets $sock line
 append eval(cmdbuf,$sock) $line\n
 if {[string length $eval(cmdbuf,$sock)] && \
 [info complete $eval(cmdbuf,$sock)]} {
 set code [catch {
 if {[string length $interp] == 0} {
 uplevel #0 $eval(cmdbuf,$sock)
 } else {
 interp eval $interp $eval(cmdbuf,$sock)
 }
 } result]
 set reply [list $code $result $errorInfo \
 $errorCode]\n
 # Use regsub to count newlines
 set lines [regsub -all \n $reply {} junk]
 # The reply is a line count followed
 # by a Tcl list that occupies that number of lines
 puts $sock $lines
 puts -nonewline $sock $reply
 flush $sock
 set eval(cmdbuf,$sock) {}
 }
 }
}

Example 43-6 presents Eval_Open and Eval_Remote that implement the client side of
the eval connection. Eval_Open connects to the server and returns a token, which is just
the socket. The main task of Eval_Remote is to preserve the information generated when
the remote command raises an error

The network protocol is line-oriented. The Eval_Remote command writes the command
on the socket. The EvalRead procedure uses info complete to detect the end of the
command. The reply is more arbitrary, so server sends a line count and that number of
lines. The regsub command counts up all the newlines because it returns the number of
matches it finds. The reply is a list of error codes, results, and trace information. These
details of the return command are described on page 86.

Chapter 43. Send Page 8 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch06lev1sec9#ch06lev1sec9

Example 43-6. The client side of remote evaluation

proc Eval_Open {server port} {
 global eval
 set sock [socket $server $port]
 # Save this info for error reporting
 set eval(server,$sock) $server:$port
 return $sock
}
proc Eval_Remote {sock args} {
 global eval
 # Preserve the concat semantics of eval
 if {[llength $args] > 1} {
 set cmd [concat $args]
 } else {
 set cmd [lindex $args 0]
 }
 puts $sock $cmd
 flush $sock
 # Read return line count and the result.
 gets $sock lines
 set result {}
 while {$lines > 0} {
 gets $sock x
 append result $x\n
 incr lines -1
 }
 set code [lindex $result 0]
 set x [lindex $result 1]
 # Cleanup the end of the stack
 regsub "\[^\n]+$" [lindex $result 2] \
 "*Remote Server $eval(server,$sock)*" stack
 set ec [lindex $result 3]
 return -code $code -errorinfo $stack -errorcode $ec $x
}
proc Eval_Close {sock} {
 close $sock
}

If an error occurs in the remote command, then a stack trace is returned. This includes the
command used inside EvalRead to invoke the command, which is either the uplevel or
interp eval command. This is the very last line in the stack that is returned, and
regsub is used to replace this with an indication of where control transferred to the remote
server:

catch [Eval_Remote sock6 set xx]
=> 1
set errorInfo
=> can't read "xx": no such variable
 while executing
"set xx
"
 ("uplevel" body line 1)
 invoked from within
Remote Server sage:4000
 invoked from within
"catch [Eval_Remote sock6 set xx]"

Chapter 43. Send Page 9 Return to Table of Contents

Chapter 43. Send
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Send
	The send Command
	The Sender Script
	Communicating Processes
	Remote eval through Sockets

