
Table of Contents

Chapter 29. Binding Commands to Events... 1
The bind Command... 1
The bindtags Command... 3
Event Syntax.. 5
Modifiers.. 10
Event Sequences... 12
Virtual Events... 13
Generating Events... 14
Event Summary... 15

Chapter 29. Binding Commands to Events

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 29. Binding Commands to Events

This chapter introduces the event binding mechanism in Tk. Bindings associate a Tcl
command with an event like a mouse click or a key stroke. There are also facilities to define
virtual events like <<Cut>> and <<Paste>> that are associated with different keystrokes
on different platforms. Tcl commands discussed are: bind, bindtags, and event.
Bindings associate a Tcl command with a sequence of events from the window system. Events
include key press, key release, button press, button release, mouse entering a window, mouse
leaving, window changing size, window open, window close, focus in, focus out, and widget
destroyed. The bindings are defined on binding tags, and each widget is associated with an
ordered set of binding tags. The binding tags provide a level of indirection between bindings
and widgets that creates a flexible and powerful system.
Virtual events are used to support a different look and feel on different platforms. A virtual
event is a higher-level name, like <<Copy>>, for a lower-level event name like <Control-
c> or <Key-F6>. A virtual event hides the different keystrokes used on different platforms
for the same logical operation. Tk defines a few virtual events, and applications can define
their own.

The bind Command
The bind command creates event bindings, and it returns information about current
bindings. The general form of the command is:

bind bindingTag ?eventSequence? ?command?

If all arguments are present, a binding from eventSequence to command is defined for
bindingTag. The bindingTag is typically a widget class name (e.g., Button) or a widget
instance name (e.g., .buttons.foo). Binding tags are described in more detail later. Called
with a single argument, a binding tag, bind returns the events for which there are command
bindings:

bind Menubutton
=> <Key-Return> <Key-space> <ButtonRelease-1>
 <B1-Motion> <Motion> <Button-1> <Leave> <Enter>

Chapter 29. Binding Commands to Events Page 1 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

The events in this example are keystroke and mouse events. <Button-1> is the event
generated when the user presses the first, or left-hand, mouse button. <B1-Motion> is
generated when the user moves the mouse while holding down the first mouse button. The
<Key-space> event occurs when the user presses the space bar. The surrounding angle
brackets delimit a single event, and you can define bindings for a sequence of events. The
event syntax is described on page 439, and event sequences are described on page 445.
If bind is given a binding tag and an event sequence, it returns the Tcl command bound to
that event sequence:

bind Menubutton <B1-Motion>
=> tk::MbMotion %W down %X %Y

The Tcl commands in event bindings support an additional syntax for event keywords. These
keywords begin with a percent sign and have one more character that identifies some
attribute of the event. The keywords are substituted with event-specific data before the Tcl
command is evaluated. For example, %W is replaced with the widget's pathname. The %X and
%Y keywords are replaced with the coordinates of the event relative to the screen. The %x
and %y keywords are replaced with the coordinates of the event relative to the widget. The
event keywords are summarized on page 448.
The % substitutions are performed throughout the entire command bound to an event,
without regard to other quoting schemes. You must use %% to obtain a single percent sign.
For this reason you should make your binding commands short, adding a new procedure if
necessary (e.g., tk::MbMotion), instead of littering percent signs throughout your code.
A new binding is created by specifying a binding tag, an event sequence, and a command:

bind Menubutton <B1-Motion> {tk::MbMotion %W down %X %Y}

If the first character of the binding command is +, the command (without the +) is added to
the commands, if any, for that event and binding tag:

bind bindingTag event {+ command args}

To delete a binding for an event, bind the event to the null string:

bind bindingTag event {}

Bindings execute in the global scope.

Chapter 29. Binding Commands to Events Page 2 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

When a binding is triggered, the command is evaluated at the global scope. A very common
mistake is to confuse the scope that is active when the bind command creates a binding,
and the scope that is active when the binding is triggered. The same problem crops up with
the commands associated with buttons, and it is discussed in more detail at the beginning
of Chapter 30.

The bindtags Command
A binding tag groups related bindings, and each widget is associated with an ordered set of
binding tags. The level of indirection between widgets and bindings lets you group
functionality on binding tags and compose widget behavior from different binding tags.
For example, the all binding tag has bindings on <Tab> that change focus among widgets.
The Text binding tag has bindings on keystrokes that insert and edit text. Only text widgets
use the Text binding tag, but all widgets share the all binding tag. You can introduce new
binding tags and change the association of widgets to binding tags dynamically. The result
is a powerful and flexible way to manage bindings.
The bindtags command sets or queries the binding tags for a widget. The general form of
the bindtags command is:

bindtags widget ?tagList?

The following command returns the binding tags for text widget .t:

bindtags .t
=> .t Text . all

You can change the binding tags and their order. The tagList argument to bindtags
must be a proper Tcl list. The following command reorders the binding tags for .t and
eliminates the . binding tag:

bindtags .t [list all Text .t]

By default, all the Tk widgets, except a toplevel, have four binding tags in the following order:

• The widget's Tk pathname (e.g., .t). Use this binding tag to provide special behavior to
a particular widget. There are no bindings on this bindtag by default.

• The widget's class (e.g., Text). The class for a widget is derived from the name of the
command that creates it. A button widget has the class Button, a text has the class
Text, and so on. The Tk widgets define their default behavior with bindings on their
class.

• The Tk pathname of the widget's toplevel window (e.g., .). This is redundant in the case
of a toplevel widget, so it is not used twice. There are no bindings on this bindtag by
default. The bindings on a toplevel window can be used in dialog boxes to handle
keyboard accelerators.

Chapter 29. Binding Commands to Events Page 3 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch30#ch30

• The global binding tagall. The default bindings on all are used to change focus
among widgets. They are described on page 604.

When there is more than one binding tag on a widget, then one binding from each binding
tag can match an event. The bindings are processed in the order of the binding tags. By
default, the most specific binding tag comes first, and the most general binding tag comes
last.
Example 29-1 has two frame widgets that have the following behavior. When the mouse
enters them, they turn red. They turn white when the mouse leaves. When the user types
<Control-c>, the frame under the mouse is destroyed. One of the frames, .two, reports
the coordinates of mouse clicks.

Example 29-1. Bindings on different binding tags

frame .one -width 30 -height 30
frame .two -width 30 -height 30
bind Frame <Enter> {%W config -bg red}
bind Frame <Leave> {%W config -bg white}
bind .two <Button> {puts "Button %b at %x %y"}
pack .one .two -side left
bind all <Control-c> {destroy %W}
bind all <Enter> {focus %W}

The Frame class has a binding on <Enter> and <Leave> that changes a frame's
background color when the mouse moves in and out of the window. This binding is shared
by all the frames. There is also a binding on all for <Enter> that sets the keyboard focus.
Both bindings will trigger when the mouse enters a frame.

Focus and Key Events
The binding on <Control-c> is shared by all widgets. The binding destroys the target
widget. Because this is a keystroke, it is important to get the keyboard focus directed at the
proper widget. By default, focus is on the main window, and destroying it terminates the
entire application. The global binding for <Enter> gives focus to a widget when you move
the mouse over the widget. In this example, moving the mouse into a widget and then typing
<Control-c> destroys the widget. Bind the focus command to <Button> instead of
<Enter> if you prefer a click-to-type focus model. Focus is described in Chapter 39.

Using break and continue in Bindings
The break and continue commands control the progression through the set of binding
tags. The break command stops the current binding and suppresses the bindings from any
remaining tags in the binding set order. The continue command in a binding stops the
current binding and continues with the command from the next binding tag.
For example, the Entry binding tag has bindings that insert and edit text in a one-line entry
widget. You can put a binding on <Return> that executes a Tcl command using the value

Chapter 29. Binding Commands to Events Page 4 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch39#ch39

of the widget. The following example runs Some Command before the \r character is added
to the entry widget. The binding is on the name of the widget, which is first in the set of
binding tags, so the break suppresses the Entry binding that inserts the character:

bind .entry <Return> {Some Command ; break}

Note that you cannot use the break or continue commands inside a procedure that is
called by the binding. This is because the procedure mechanism will not propagate the
break or continue signal. Instead, you could use the -code option to return, which is
described on page 86:

return -code break

Defining New Binding Tags
You introduce new binding tags just by using them in a bind or bindtags command.
Binding tags are useful for grouping bindings into different sets, such as specialized bindings
for different modes of an editor. One way to emulate the vi editor, for example, is to use two
bind tags, one for insert mode and one for command mode. The user types i to enter insert
mode, and they type <Escape> to enter command mode:

bindtags $t [list ViInsert Text $t all]
bind ViInsert <Escape> {bindtags %W {ViCmd %W all}}
bind ViCmd <Key-i> {bindtags %W {ViInsert Text %W all}}

The Text class bindings are used in insert mode. The command to put the widget into
command mode is put on a new binding tag, ViInsert, instead of changing the default
Text bindings. The bindtag command changes the mode by changing the set of binding
tags for the widget. The %W is replaced with the name of the widget, which is the same as
$t in this example. Of course, you need to define many more bindings to fully implement all
the vi commands.

Event Syntax
The bind command uses the following syntax to describe events:

<modifier-modifier-type-detail>
<<Event>>

The first form is for physical events like keystrokes and mouse motion. The second form is
for virtual events like Cut and Paste, which correspond to different physical events on different
platforms. Physical events are described in this section. Virtual events are described in more
detail on page 446.

Chapter 29. Binding Commands to Events Page 5 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch06lev1sec9#ch06lev1sec9

The primary part of the description is the type, (e.g., Button or Motion). The detail is
used in some events to identify keys or buttons, (.e.g., Key-a or Button-1). A modifier
is another key or button that is already pressed when the event occurs, (e.g., Control-Key-
a or B2-Motion). There can be multiple modifiers (e.g., Control-Shift-x). The < and
> delimit a single event.
Table 29-1 lists all physical event types. When two event types are listed together (e.g.,
ButtonPress and Button) they are equivalent.

Table 29-1. Event types

Activate The application has been activated. (Macintosh)

ButtonPress, Button A button is pressed (down).

ButtonRelease A button is released (up).

Circulate The stacking order of the window changed.

CirculateRequest An application request to change its window stacking order. (Used by window managers.)

Colormap The color map has changed.

Configure The window changed size, position, border, or stacking order.

ConfigureRequest An application request to change its window configuration. (Used by window managers.)

Create An application request to create a window. (Used by window managers.)

Deactivate The application has been deactivated. (Macintosh)

Destroy The window has been destroyed.

Enter The mouse has entered the window.

Expose The window has been exposed.

FocusIn The window has received focus.

FocusOut The window has lost focus.

Gravity The window has moved because of a change in size of its parent window.

KeyPress, Key A key is pressed (down).

KeyRelease A key is released (up).

Leave The mouse is leaving the window.

Map The window has been mapped (opened).

MapRequest An application request to map a window. (Used by window managers.)

Motion The mouse is moving in the window.

MouseWheel The scrolling mouse wheel has moved.

Property A property on the window has been changed or deleted.

Reparent A window has been reparented.

ResizeRequest An application request to resize window. (Used by window managers.)

Chapter 29. Binding Commands to Events Page 6 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Unmap The window has been unmapped (iconified).

Visibility The window has changed visibility.

Keyboard Events
The KeyPress type is distinguished from KeyRelease so that you can have different
bindings for each of these events. KeyPress can be abbreviated Key, and Key can be left
off altogether if a detail is given to indicate what key. Finally, as a special case for
KeyPress events, the angle brackets can also be left out. The following are all equivalent
event specifications:

<KeyPress-a>
<Key-a>
<a>
a

The detail for a key is also known as the keysym, which refers to the graphic printed on the
key of the keyboard. For punctuation and non-printing characters, special keysyms are
defined. Case is significant in keysyms, but unfortunately there is no consistent scheme. In
particular BackSpace has a capital B and a capital S. Commonly encountered keysyms
include: Return, Escape, BackSpace, Tab, Up, Down, Left, Right,
comma, period, dollar, asciicircum, numbersign, exclam. Starting in Tk
8.3.2, the online documentation includes a new keysym reference page that documents all
standard keysyms.

Finding out what keysyms are generated by your keyboard.

There are times when you do not know what keysym is generated by a special key on your
keyboard. The keysyms are defined by the window system implementation, and on UNIX
systems they are affected by a dynamic keyboard map, the X modmap. You may find the
next binding useful to determine just what the keysym for a particular key is on your system:

bind $w <KeyPress> {puts stdout {%%K=%K %%A=%A}}

The %K keyword is replaced with the keysym from the event. The %A is replaced with the
printing character that results from the event and any modifiers like Shift. The %% is
replaced with a single percent sign. Note that these substitutions occur in spite of the curly
braces used for grouping. If the user types a capital Q, there are two KeyPress events, one
for the Shift key, and one for the q key. The output is:

Chapter 29. Binding Commands to Events Page 7 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

%K=Shift_R %A={}
%K=Q %A=Q

The Shift_R keysym indicates the right-hand shift key was pressed. The %A keyword is
replaced with {} when modifier keys are pressed. You can check for this in <KeyPress>
bindings to avoid doing anything if only a modifier key is pressed. On Macintosh, there is no
event at all when the modifier keys are pressed. The following can be used with a text widget.
The double quotes are necessary to force a string comparison:

bind $w <KeyPress> {
 if {"%A" != "{}"} {%W insert insert %A}
}

Mouse Events
Button events also distinguish between ButtonPress, (or Button), and
ButtonRelease. Button can be left off if a detail specifies a button by number. The
following are equivalent:

<ButtonPress-1>
<Button-1>
<1>

Note: The event <1> implies a ButtonPress event, while the event 1 implies a
KeyPress event. To avoid confusion, always specify the Key or Button type.
The mouse is tracked by binding to the Enter, Leave, and Motion events. Enter and
Leave are triggered when the mouse comes into and exits out of the widget, respectively.
A Motion event is generated when the mouse moves within a widget.
The coordinates of the mouse event are represented by the %x and %y keywords in the
binding command. The coordinates are widget-relative, with the origin at the upper-left hand
corner of a widget's window. The keywords %X and %Y represent the coordinates relative to
the screen:

bind $w <Enter> {puts stdout "Entered %W at %x %y"}
bind $w <Leave> {puts stdout "Left %W at %x %y"}
bind $w <Motion> {puts stdout "%W %x %y"}

A mouse drag event is a Motion event that occurs when the user holds down a mouse
button. In this case the mouse button is a modifier, which is discussed in more detail on page
443. The binding looks like this:

bind $w <B1-Motion> {puts stdout "%W %x %y"}

Chapter 29. Binding Commands to Events Page 8 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Other Events
The <Map> and <Unmap> events are generated when a window is opened and closed, or
when a widget is packed or unpacked by its geometry manager.
The <Activate> and <Deactivate> events are generated when an application is
activated by the operating system. This applies to Macintosh systems, and it occurs when
the user clicks in the application window.
The <Configure> event is generated when the window changes size. A canvas that
computes its display based on its size can bind a redisplay procedure to the
<Configure> event, for example. The <Configure> event can be caused by interactive
resizing. It can also be caused by a configure widget command that changes the size of
the widget. You should not reconfigure a widget's size while processing a <Configure>
event to avoid an indefinite sequence of these events.
The <Destroy> event is generated when a widget is destroyed. You can intercept requests
to delete windows, too. See also the description of the wm command on page 657.
The <MouseWheel> event is generated on Windows by the small scrolling wheel built into
the Microsoft Mouse. It reports a delta value using the %D keyword. Currently the delta is an
integer multiple of 120, where positive values indicate a scroll up, and negative values
indicate a scroll down. Note that most Unix systems don't report <MouseWheel> events,
but some do report mousewheel movement via <ButtonPress-4> and
<ButtonPress-5> events.
Chapter 39 presents some examples that use the <FocusIn> and <FocusOut> events. The
remaining events in Table 29-1 have to do with dark corners of the X protocol, and they are
seldom used. More information can be found on these events in the Event Reference section
of the Xlib Reference Manual (Adrian Nye, O'Reilly & Associates, Inc., 1992).

Bindings on Top-level Windows

Bindings on toplevels are shared by widgets they contain.

Be careful when binding events to toplevel windows because their name is used as a binding
tag on all the widgets contained in them. For example, the following binding fires when the
user destroys the main window, which means the application is about to exit:

bind . <Destroy> {puts "goodbye"}

Unfortunately, all widgets inside the main window are destroyed as a side effect, and they
all share the name of their toplevel widget as a binding tag. So this binding fires when every

Chapter 29. Binding Commands to Events Page 9 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch44lev1sec1#ch44lev1sec1
http://safari.oreilly.com//0130385603/ch39#ch39

widget inside the main window is destroyed. Typically you only want to do something one
time. The following binding checks the identity of the widget before doing anything:

bind . <Destroy> {if {"%W" == "."} {puts "goodbye"}}

Modifiers

A modifier indicates that another key or button is being held down at the time of the event.
Typical modifiers are the Shift and Control keys. The mouse buttons can also be used as
modifiers. If an event does not specify any modifiers, the presence of a modifier key is ignored
by the event dispatcher. However, if there are two possible matching events, the more
accurate match will be used. For example, consider these three bindings:

bind $w <KeyPress> {puts "key=%A"}
bind $w <Key-c> {puts "just a c"}
bind $w <Control-Key-c> {exit}

The last event is more specific than the others. Its binding will be triggered when the user
types c with the Control key held down. If the user types c with the Meta key held down,
the second binding will be triggered. The Meta key is ignored because it does not match any
binding. If the user types something other than a c, the first binding is triggered. If the user
presses the Shift key, then the keysym that is generated is C, not c, so the last two events
do not match.
There are eight possible modifier keys. The Control, Shift, and Lock modifiers are found
on nearly all keyboards. The Meta and Alt modifiers tend to vary from system to system,
and they may not be defined at all. They are commonly mapped to be the same as Mod1 or
Mod2, and Tk will try to determine how the mappings are set. The Macintosh has a
Command modifier that corresponds to the clover-leaf or apple key. The remaining modifiers,
Mod3 through Mod5, are sometimes mapped to other special keys. In OpenLook
environments, for example, the Paste function key is also mapped to the Mod5 modifier.
The button modifiers, B1 through B5, are most commonly used with the Motion event to
distinguish different mouse dragging operations. For example, <B1-Motion> is the event
generated when the user drags the mouse with the first mouse button held down.

Double-click warning.

The Double, Triple, and Quadruple events match on repetitions of an event within a
short period of time. These are commonly used with mouse events. Be careful: The binding

Chapter 29. Binding Commands to Events Page 10 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

for the regular press event will match on the first press of the Double. Then the command
bound to the Double event will match on the second press. Similarly, a Double event will
match on the first two presses of a Triple event, and so on. Verify this by trying out the
following bindings:

bind . <1> {puts stdout 1}
bind . <Double-1> {puts stdout 2}
bind . <Triple-1> {puts stdout 3}

If you click the first mouse button several times quickly, you will see a 1, 2, and then a few
3's output. Your bindings must take into consideration that more than one binding might
match a Double, Triple, or Quadruple event. This effect is compatible with an interface
that selects an object with the first click, and then operates on the selected object with a
Double event. In an editor, character, word, line, and paragraph selection on a single, double,
triple, and quadruple click, respectively, is a good example.[*]

[*] If you really want to disable this, you can experiment with using after to postpone processing of one event. The time constant in the bind implementation of
<Double> is 500 milliseconds. At the single-click event, schedule its action to occur after 600 milliseconds, and verify at that time that the <Double> event has not occurred.

Table 29-2 summarizes the modifiers.

Table 29-2. Event modifiers

Control The control key.

Shift The shift key.

Lock The caps-lock key.

Command The command key. (Macintosh)

Meta, M Defined to be what ever modifier (M1 through M5) is mapped to the Meta_L and Meta_R keysyms.

Alt Defined to be the modifier mapped to Alt_L and Alt_R.

Mod1, M1 The first modifier.

Mod2, M2, Alt The second modifier.

Mod3, M3 Another modifier.

Mod4, M4 Another modifier.

Mod5, M5 Another modifier.

Button1, B1 The first mouse button (left).

Button2, B2 The second mouse button (middle).

Button3, B3 The third mouse button (right).

Button4, B4 The fourth mouse button.

Button5, B5 The fifth mouse button.

Double Matches double-press event.

Triple Matches triple-press event.

Chapter 29. Binding Commands to Events Page 11 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Quadruple Matches quadruple-press event.

Any Matches any combination of modifiers. (Before Tk 4.0)

The UNIX xmodmap program returns the current mappings from keys to these modifiers. The
first column of its output lists the modifier. The rest of each line identifies the keysym(s) and
low-level keycodes that are mapped to each modifier. The xmodmap program can also be
used to change mappings. The following example shows the mappings on my system. Your
setup may be different.

Example 29-2. Output from the UNIX xmodmap program

xmodmap: up to 3 keys per modifier,
 (keycodes in parentheses):
shift Shift_L (0x6a), Shift_R (0x75)
lock Caps_Lock (0x7e)
control Control_L (0x53)
mod1 Meta_L (0x7f), Meta_R (0x81)
mod2 Mode_switch (0x14)
mod3 Num_Lock (0x69)
mod4 Alt_L (0x1a)
mod5 F13 (0x20), F18 (0x50), F20 (0x68)

Event Sequences
The bind command accepts a sequence of events in a specification, and most commonly
this is a sequence of key events. In the following examples, the Key events are abbreviated
to just the character detail, and so abc is a sequence of three Key events:

bind . a {puts stdout A}
bind . abc {puts stdout C}

With these bindings in effect, both bindings are executed when the user types abc. The
binding for a is executed when a is pressed, even though this event is also part of a longer
sequence. This is similar to the behavior with Double and Triple event modifiers. For this
reason you must be careful when binding sequences. You can use break in the binding for
the prefix to ensure that it does not do anything:

bindtags $w [list $w Text [winfo toplevel $w] all]
bind $w <Control-x> break
bind $w <Control-x><Control-s> {Save ; break}
bind $w <Control-x><Control-c> {Quit ; break}

The break ensures that the default Text binding that inserts characters does not trigger.
This trick is embodied by BindSequence in the next example. If a sequence is detected,
then a break binding is added for the prefix. The procedure also supports the emacs
convention that <Meta-x> is equivalent to <Escape>x. This convention arose because

Chapter 29. Binding Commands to Events Page 12 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Meta is not that standard across keyboards. There is no meta key at all on Windows and
Macintosh keyboards. The regexp command is used to pick out the detail from the
<Meta> event.

Example 29-3. Emacs-like binding convention for Meta and Escape

proc BindSequence { w seq cmd } {
 bind $w $seq $cmd
 # Double-bind Meta-key and Escape-key
 if [regexp {<Meta-(.*)>} $seq match letter] {
 bind $w <Escape><$letter> $cmd
 }
 # Make leading keystroke harmless
 if [regexp {(<.+>)<.+>} $seq match prefix] {
 bind $w $prefix break
 }
}

The use of break and continue in bindings is not supported in Tk 3.6 and earlier. This is
because only a single binding tag can match an event. To make a prefix of a sequence
harmless in Tk 3.6, bind a space to it:

bind $w $prefix { }

This installs a binding for the widget, which suppresses the class binding in Tk 3.6. The space
is different than a null string, {}. Binding to a null string deletes the current binding instead
of replacing it with a harmless one.

Virtual Events
A virtual event corresponds to one or more event sequences. When any of the event
sequences occurs, then the virtual event occurs. Example 29-4 shows the cut, copy, and paste
virtual events for each platform:

Chapter 29. Binding Commands to Events Page 13 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 29-4. Virtual events for cut, copy, and paste

switch $tcl_platform(platform) {
 "unix" {
 event add <<Cut>> <Control-Key-x> <Key-F20>
 event add <<Copy>> <Control-Key-c> <Key-F16>
 event add <<Paste>> <Control-Key-v> <Key-F18>
 }
 "windows" {
 event add <<Cut>> <Control-Key-x> <Shift-Key-Delete>
 event add <<Copy>> <Control-Key-c> <Control-Key-Insert>
 event add <<Paste>> <Control-Key-v> <Shift-Key-Insert>
 }
 "macintosh" {
 event add <<Cut>> <Control-Key-x> <Key-F2>
 event add <<Copy>> <Control-Key-c> <Key-F3>
 event add <<Paste>> <Control-Key-v> <Key-F4>
 }
}

You can define more than one physical event that maps to the same virtual event:

event add <<Cancel>> <Control-c> <Escape> <Command-period>

With this definition any of the physical events will trigger a <<Cancel>>. This would be
convenient if the same user commonly used your application on different platforms.
However, it is also possible that the physical bindings on different platforms overlap in
conflicting ways.
By default, virtual event definitions add to existing definitions for the same virtual event. The
previous command could be replaced with these three:

event add <<Cancel>> <Control-c>
event add <<Cancel>> <Escape>
event add <<Cancel>> <Command-period>

Several widgets use virtual events as a notification mechanism. They generate virtual events
in response to various conditions so that you can create bindings to respond to those
conditions. For example, the listbox widget generates a <<ListboxSelect>> virtual event
whenever the listbox selection changes. The easiest way to respond to changes to the listbox
selection is to bind to this virtual event, for example:

bind .lbox <<ListboxSelect>> {ListboxChanged %W}

Generating Events
Your application can use the event generate command to programmatically generate
events, in essence emulating user interaction. You can generate either standard windowing
events or virtual events. However, you can generate events only for the current application;
you can't send events to other applications running on your system. (In other words, you

Chapter 29. Binding Commands to Events Page 14 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

can't use the event generate command to have your application control another
application.)
The first argument to event generate is the target widget for the event. You may provide
either the path name of the widget, or the window identifier (such as returned by winfo
id) as long as it is for a window in the current application.
The second argument is an event specification, using the same syntax as for creating event
bindings. (See "Event Syntax" on page 439.) However, you can't generate an event sequence
(such as <KeyPress-Escape><KeyPress-a>), only single events.
As an example, the following command delivers a ButtonPress-3 event to a widget:

event generate .b <ButtonPress-3>

A widget must have focus to receive key events.

Remember that a widget must have keyboard focus to receive KeyPress or
KeyRelease events. You can use the focus command to assign keyboard focus to a widget:

focus .e1
event generate .e1 <KeyPress-a>

The event generate command also accepts options to specify additional attributes of
the event, such as the x and y mouse position. Table 29-4 lists the event generate options.
Of note is the -warp option, added in Tk 8.3. If you provide a -warp value of True, then the
mouse pointer moves to the x and y coordinates of the generated event; otherwise, the
mouse pointer remains at its current location. For example, the following commands moves
the mouse pointer to the point 10,20 relative to the top-left corner of the main window:

event generate . <Motion> -x 10 -y 20 -warp 1

Event Summary

Event Command Syntax
The event command is summarized in Table 29-3.

Table 29-3. The event command

event add virt phys1 phy2... Adds a mapping from one or more physical events to virtual event virt.

Chapter 29. Binding Commands to Events Page 15 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

event delete virt Deletes virtual event virt.

event info Returns the defined virtual events.

event info virt Returns the physical events that map to virt.

event generate win event?opt val? ... Generates event for window win. The options are listed in Table 29-4.

Event Keywords
Table 29-4 lists the percent keywords and the corresponding option to the event
generate command. Remember that keyword substitutions occur throughout the
command, regardless of other Tcl quoting conventions. Keep your binding commands short,
introducing procedures if needed. For the details about various event fields, consult the Xlib
Reference Manual (O'Reilly & Associates, Inc.). The string values for the keyword substitutions
are listed after a short description of the keyword. If no string values are listed, the keyword
has an integer value like a coordinate or a window ID.

Table 29-4. A summary of the event keywords

%% Use this to get a single percent sign. All events.

%# -serial num The serial number for the event. All events.

%a -above win The above field from the event. Configure event.

%b -button num Button number. Events: ButtonPress and ButtonRelease.

%c -count num The count field. Events: Expose and Map.
%d -detail value The detail field. Values: NotifyAncestor,

NotifyNonlinearVirtual, NotifyDetailNone,
NotifyPointer, NotifyInferior, NotifyPointerRoot,
NotifyNonlinear, or NotifyVirtual.
Events: Enter, Leave, FocusIn, and FocusOut.

%f -focus boolean The focus field (0 or 1). Events: Enter and Leave.
%h -height num The height field. Events: Configure and Expose.

%i The window field from the event, represented as a hexadecimal integer. All events.

%k -keycode num The keycode field. Events: KeyPress and KeyRelease.

%m -mode value The mode field. Values: NotifyNormal, NotifyGrab,
NotifyUngrab, or NotifyWhileGrabbed. Events: Enter,
Leave, FocusIn, and FocusOut.

%o -override boolean The override_redirect field. Events: Map, Reparent, and
Configure.

Chapter 29. Binding Commands to Events Page 16 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

%p -place value The place field. Values: PlaceOnTop, PlaceOnBottom.
Circulate event.

%s -state value The state field. A decimal string for events: ButtonPress,
ButtonRelease, Enter, Leave, KeyPress, KeyRelease, and
Motion.
Values for theVisibilityevent: VisibilityUnobscured,
VisibilityPartiallyObscured, or
VisibilityFullyObscured.

%t -time num The time field. All events.

%v The value_mask field. Configure event.

%w -width num The width field. Events: Configure and Expose.

%x -x pixel The X coordinate, widget relative. Mouse events.

%y -y pixel The Y coordinate, widget relative. Mouse events.

%A The printing character from the event, or {}.

Events: KeyPress and KeyRelease.

%B -borderwidth num The border width. Configure event.

%D -delta value The delta value. MouseWheel event.

%E -sendevent bool The send_event field. All events.

%K -keysym symbol The keysym from the event. Events: KeyPress and KeyRelease.

%N The keysym as a decimal number. Events: KeyPress and
KeyRelease.

%P The atom name for the property being changed or deleted. Property event.

%R -root win The root window ID. All events.

%S -subwindow win The subwindow ID. All events.

%T The type field. All events.

%W The Tk pathname of the widget receiving the event. All events.

%X -rootx pixel The x_root field. Relative to the (virtual) root window. Events:
ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
Motion.

%Y -rooty pixel The y_root field. Relative to the (virtual) root window. Events:
ButtonPress, ButtonRelease, KeyPress, KeyRelease, and
Motion.

Chapter 29. Binding Commands to Events Page 17 Return to Table of Contents

Chapter 29. Binding Commands to Events
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

	Chapter 29. Binding Commands to Events
	The
	The
	Focus and Key Events
	Using
	Defining New Binding Tags

	Event Syntax
	Keyboard Events
	Mouse Events
	Other Events
	Bindings on Top-level Windows
	Example 29-2. Output from the UNIX
	Example 29-3. Emacs-like binding convention for
	Example 29-4. Virtual events for cut, copy, and paste

	Modifiers
	Event Sequences
	Virtual Events
	Generating Events
	Event Summary
	Event Command Syntax
	Event Keywords

