
Table of Contents

Chapter 25. The Pack Geometry Manager... 1
Packing toward a Side... 2
Horizontal and Vertical Stacking.. 3
The Cavity Model... 4
Packing Space and Display Space.. 6
Resizing and -expand.. 9
Anchoring... 11
Packing Order.. 13
Choosing the Parent for Packing... 14
Unpacking a Widget... 15
Packer Summary... 15
Window Stacking Order... 17

Chapter 25. The Pack Geometry Manager

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 25. The Pack Geometry Manager

This chapter explores the pack geometry manager that positions widgets on the screen.
Geometry managers arrange widgets on the screen. This chapter describes the pack
geometry manager, which is a constraint-based system. The next two chapters describe the
grid and place geometry managers. The pack and grid geometry managers are quite
general, while place is used for special-purpose applications. This book uses pack a lot
because it was the original geometry manager for Tk. The grid geometry manager was
added in Tk 4.1.
A geometry manager uses one widget as a parent, and it arranges multiple children (also
called slaves) inside the parent. The parent is almost always a frame, but this is not strictly
necessary. A widget can only be managed by one geometry manager at a time, but you can
use different managers to control different widgets in your user interface. If a widget is not
managed, then it doesn't appear on your display at all.

Don't pack and grid into the same manager widget.

For each individual manager widget — such as a frame, a labelframe, or a toplevel — you
have the choice of using either pack or grid to manage all of its immediate children.
Attempting to use both in the same manager results in an endless loop as both geometry
managers try to control the window layout. This restriction applies only to the immediate
children of a manager widget; you can use a different geometry manager for "descendents"
that aren't immediate children. For example, you can choose to pack all of the immediate
children of the . toplevel. Then, if one of the children of . is a frame, you can choose to use
either pack or grid to manage the children of that frame.
The packer is a powerful constraint-based geometry manager. Instead of specifying in detail
the placement of each window, the programmer defines some constraints about how
windows should be positioned, and the packer works out the details. It is important to
understand the algorithm the packer uses; otherwise, the constraint-based results may not
be what you expect.

Chapter 25. The Pack Geometry Manager Page 1 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Copyright Safari Books Online #628024

This chapter explores the packer through a series of examples. The background of the main
window is set to black, and the other frames are given different colors so you can identify
frames and observe the effect of the different packing parameters. When consecutive
examples differ by a small amount, the added command or option is printed in bold
courier to highlight the addition.

Packing toward a Side
The following example creates two frames and packs them toward the top side of the main
window. The upper frame, .one, is not as big and the main window shows through on either
side. The children are packed toward the specified side in order, so .one is on top. The four
possible sides are: top, right, bottom, and left. The top side is the default.

Example 25-1. Two frames packed inside the main frame

Make the main window black
. config -bg black
Create and pack two frames
frame .one -width 40 -height 40 -bg white
frame .two -width 100 -height 50 -bg grey50
pack .one .two -side top

Shrinking Frames and pack propagate
In the previous example, the main window shrank down to be just large enough to hold its
two children. In most cases this is the desired behavior. If not, you can turn it off with the
pack propagate command. Apply this to the parent frame, and it will not adjust its size
to fit its children:

Chapter 25. The Pack Geometry Manager Page 2 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 25-2. Turning off geometry propagation

frame .one -width 40 -height 40 -bg white
frame .two -width 100 -height 50 -bg grey50
pack propagate . false
pack .one .two -side top

Horizontal and Vertical Stacking
In general, you use either horizontal or vertical stacking within a frame. If you mix sides such
as left and top, the effect might not be what you expect. Instead, you should introduce
more frames to pack a set of widgets into a stack of a different orientation. For example,
suppose we want to put a row of buttons inside the upper frame in the examples we have
given so far:

Example 25-3. A horizontal stack inside a vertical stack

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta gamma} {
 button .one.$b -text $b
 pack .one.$b -side left
}
pack .one .two -side top

Chapter 25. The Pack Geometry Manager Page 3 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 25-4. Even more nesting of horizontal and vertical stacks

frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
foreach b {alpha beta} {
 button .one.$b -text $b
 pack .one.$b -side left
}
Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {
 button .one.right.$b -text $b
 pack .one.right.$b -side bottom
}
pack .one.right -side right
pack .one .two -side top

You can build more complex arrangements by introducing nested frames and switching
between horizontal and vertical stacking as you go. Within each frame pack all the children
with either a combination of -side left and -side right, or -side top and -side
bottom.
Example 25-4 replaces the .one.gamma button with a vertical stack of two
buttons, .one.right.delta and .one.right.epsilon. These are packed toward the
bottom of .one.right, so the first one packed is on the bottom.
The frame .one.right was packed to the right, and in the previous example, the
button .one.gamma was packed to the left. Despite the difference, they ended up in the
same position relative to the other two widgets packed inside the .one frame. The next
section explains why.

The Cavity Model

Chapter 25. The Pack Geometry Manager Page 4 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The packing algorithm is based on a cavity model for the available space
inside a frame. For example, when the main wish window is created, the
main frame is empty and there is an obvious space, or cavity, in which to
place widgets. The primary rule about the packing cavity is a widget
occupies one whole side of the cavity. To demonstrate this, pack three
widgets into the main frame. Put the first two on the bottom, and the third
one on the right:

Example 25-5. Mixing bottom and right packing sides

pack two frames on the bottom.
frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
pack .one .two -side bottom
pack another frame to the right
frame .three -width 20 -height 20 -bg grey75
pack .three -side right

When we pack a third frame into the main window with -side left or -side right,
the new frame is positioned inside the cavity, which is above the two frames already packed
toward the bottom side. The frame does not appear to the right of the existing frames as you
might have expected. This is because the .two frame occupies the whole bottom side of the
packing cavity, even though its display does not fill up that side.
Can you tell where the packing cavity is after this example? It is to the left of the
frame .three, which is the last frame packed toward the right, and it is above the
frame .two, which is the last frame packed toward the bottom. This explains why there was
no difference between the previous two examples when .one.gamma was packed to the
left, but .one.right was packed to the right. At that point, packing to the left or right of
the cavity had the same effect. However, it will affect what happens if another widget is
packed into those two configurations. Try out the following commands after running
Example 25-3 and Example 25-4 and compare the difference.[*]

[*] Answer: After Example 25-3 the new button is to the right of all buttons. After Example 25-4 the new button is between .one.beta and .one.right.

button .one.omega -text omega
pack .one.omega -side right

Chapter 25. The Pack Geometry Manager Page 5 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Each packing parent has its own cavity, which is why introducing nested frames can help. If
you use a horizontal or vertical arrangement inside any given frame, you can more easily
simulate the packer's behavior in your head!

Packing Space and Display Space

The packer distinguishes between packing space and display space when it arranges the
widgets. The display space is the area requested by a widget for the purposes of painting
itself. The packing space is the area the packer allows for the placement of the widget.
Because of geometry constraints, a widget may be allocated more (or less) packing space
than it needs to display itself. The extra space, if any, is along the side of the cavity against
which the widget was packed.

The -fill Option
The -fill packing option causes a widget to fill up the allocated packing space with its
display. A widget can fill in the X or Y direction, or both. The default is not to fill, which is why
the black background of the main window has shown through in the examples so far:

Example 25-6. Filling the display into extra packing space

frame .one -width 100 -height 50 -bg grey50
frame .two -width 40 -height 40 -bg white
Pack with fill enabled
pack .one .two -side bottom -fill x
frame .three -width 20 -height 20 -bg red
pack .three -side right -fill x

This is just like Example 25-5, except that -fill x has been specified for all the frames.
The .two frame fills, but the .three frame does not. This is because the fill does not expand
into the packing cavity. In fact, after this example, the packing cavity is the part that shows
through in black. Another way to look at this is that the .two frame was allocated the whole
bottom side of the packing cavity, so its fill can expand the frame to occupy that space.
The .three frame has only been allocated the right side, so a fill in the X direction will not
have any effect.

Chapter 25. The Pack Geometry Manager Page 6 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Another use of fill is for a menu bar that has buttons at either end and some empty space
between them. The frame that holds the buttons is packed toward the top. The buttons are
packed into the left and right sides of the menu bar frame. Without fill, the menu bar shrinks
to be just large enough to hold all the buttons, and the buttons are squeezed together. When
fill is enabled in the X direction, the menu bar fills out the top edge of the display:

Example 25-7. Using horizontal fill in a menu bar

frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body

Internal Padding with -ipadx and -ipady
Another way to get more fill space is with the -ipadx and -ipady packing options that
request more display space in the X and Y directions, respectively. Due to other constraints
the request might not be offered, but in general you can use this to give a widget more
display space. The next example is just like the previous one except that some internal
padding has been added:

Chapter 25. The Pack Geometry Manager Page 7 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 25-8. The effects of internal padding (-ipady)

Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left -ipady 10
pack .menubar.beta -side right -ipadx 10
Let the menu bar fill along the top
pack .menubar -side top -fill x -ipady 5
pack .body

The alpha button is taller and the beta button is wider because of the internal padding.
The frame has internal padding, which reduces the space available for the packing cavity, so
the .menubar frame shows through above and below the buttons.
Some widgets have attributes that result in more display space. For example, it would be
hard to distinguish a frame with width 50 and no internal padding from a frame with width
40 and a -ipadx 5 packing option. The packer would give the frame 5 more pixels of display
space on either side for a total width of 50.
Buttons have their own -padx and -pady options that give them more display space, too.
This padding provided by the button is used to keep its text away from the edge of the button.
The following example illustrates the difference. The -anchor e button option positions
the text as far to the right as possible. Example 40-5 on page 617 provides another
comparison of these options:

Example 25-9. Button padding vs. packer padding

Foo has internal padding from the packer
button .foo -text Foo -anchor e -padx 0 -pady 0
pack .foo -side right -ipadx 10 -ipady 10
Bar has its own padding
button .bar -text Bar -anchor e -pady 10 -padx 10
pack .bar -side right -ipadx 0 -ipady 0

Chapter 25. The Pack Geometry Manager Page 8 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch40lev1sec5#ch40list05

In all cases, you can specify the amount of padding using any type of screen distance
recognized by Tk. A simple numeric value is interpreted as pixels. You can also follow a
number with one of i, m, c, or p, which is interpreted as inches, millimeters, centimeters, or
typographic points, respectively.

External Padding with -padx and -pady
The packer can provide external padding that allocates packing space that cannot be filled.
The space is outside of the border that widgets use to implement their 3D reliefs. Example
40-2 on page 614 shows the different reliefs. The look of a default button is achieved with
an extra frame and some padding:

Example 25-10. The look of a default button

. config -borderwidth 10
OK is the default button
frame .ok -borderwidth 2 -relief sunken
button .ok.b -text OK
pack .ok.b -padx 5 -pady 5
Cancel is not
button .cancel -text Cancel
pack .ok .cancel -side left -padx 5 -pady 5

The .ok.b button looks the same even if it is packed with -fill both. The child widgets
do not fill the external padding provided by the packer.
Example 25-10 handcrafts the look of a default button. Tk 8.0 added a -default attribute
for buttons that gives them the right appearance for the default button on the current
platform. It looks somewhat like this on UNIX, but the appearance is different on Macintosh
and Windows.
Tk 8.4 added the ability to specify asymmetric padding as a list of two screen distances. For
example, the following adds 5 pixels of padding to the left and right of the widgets, 3 pixels
above them, and 6 pixels below them:

pack .ok .cancel -side left -padx 5 -pady {3 6}

Resizing and -expand

Chapter 25. The Pack Geometry Manager Page 9 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch40lev1sec3#ch40list02
http://safari.oreilly.com//0130385603/ch40lev1sec3#ch40list02

The -expand true packing option lets a widget expand its packing space into unclaimed
space in the packing cavity. Example 25-6 could use this on the small frame on top to get it
to expand across the top of the display, even though it is packed to the right side. The more
common case occurs when you have a resizable window. When the user makes the window
larger, the widgets have to be told to take advantage of the extra space. Suppose you have
a main widget like a text, listbox, or canvas that is in a frame with a scrollbar. That frame has
to be told to expand into the extra space in its parent (e.g., the main window) and then the
main widget (e.g., the canvas) has to be told to expand into its parent frame. Example 24-1
on page 378 does this.
In nearly all cases the -fill both option is used along with -expand true so that the
widget actually uses its extra packing space for its own display. The converse is not true.
There are many cases where a widget should fill extra space but not attempt to expand into
the packing cavity. The examples below show the difference.
Now we can investigate what happens when the window is made larger. The next example
starts like Example 25-7 on page 400, but the size of the main window is increased:

Example 25-11. Resizing without the expand option

Make the main window black
. config -bg black
Create and pack two frames
frame .menubar -bg white
frame .body -width 150 -height 50 -bg grey50
Create buttons at either end of the menubar
foreach b {alpha beta} {
 button .menubar.$b -text $b
}
pack .menubar.alpha -side left
pack .menubar.beta -side right
Let the menu bar fill along the top
pack .menubar -side top -fill x
pack .body
Resize the main window to be bigger
wm geometry . 200x100
Allow interactive resizing
wm minsize . 100 50

The only widget that claims any of the new space is .menubar because of its -fill x
packing option. The .body frame needs to be packed properly:

Chapter 25. The Pack Geometry Manager Page 10 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch24lev1sec1#ch24list01

Example 25-12. Resizing with expand turned on

Use all of Example 25–11 then repack .body
pack .body -expand true -fill both

If more than one widget inside the same parent is allowed to expand, then the packer shares
the extra space between them proportionally. This is probably not the effect you want in the
examples we have built so far. The .menubar, for example, is not a good candidate for
expansion.

Example 25-13. More than one expanding widget

Use all of Example 25–11 then repack .menubar and .body
pack .menubar -expand true -fill x
pack .body -expand true -fill both

Anchoring
If a widget is left with more packing space than display space, you can position it within its
packing space using the -anchor packing option. The default anchor position is center.
The other options correspond to points on a compass: n, ne, e, se, s, sw, w, and nw:

Chapter 25. The Pack Geometry Manager Page 11 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 25-14. Setup for anchor experiments

Make the main window black
. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float a label and the prop in the cavity
label .foo -text Foo
pack .prop .foo -side right -expand true

The .base frame is packed on the bottom. Then the .prop frame and the .foo label are
packed to the right with expand set but no fill. Instead of being pressed up against the right
side, the expand gives each of these widgets half of the extra space in the X direction. Their
default anchor of center results in the positions shown. The next example shows some
different anchor positions:

Example 25-15. The effects of noncenter anchors

. config -bg black
Create two frames to hold open the cavity
frame .prop -bg white -height 80 -width 20
frame .base -width 120 -height 20 -bg grey50
pack .base -side bottom
Float the label and prop
Change their position with anchors
label .foo -text Foo
pack .prop -side right -expand true -anchor sw
pack .foo -side right -expand true -anchor ne

The label has room on all sides, so each of the different anchors will position it differently.
The .prop frame only has room in the X direction, so it can only be moved into three different
positions: left, center, and right. Any of the anchors w, nw, and sw result in the left position.

Chapter 25. The Pack Geometry Manager Page 12 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

The anchors center, n, and s result in the center position. The anchors e, se, and ne result
in the right position.
If you want to see all the variations, type in the following commands to animate the different
packing anchors. The update idletasks forces any pending display operations. The
after 500 causes the script to wait for 500 milliseconds:

Example 25-16. Animating the packing anchors

foreach anchor {center n ne e se s sw w nw center} {
 pack .foo .prop -anchor $anchor
 # Update the display
 update idletasks
 # Wait half a second
 after 500
}

Packing Order

The packer maintains an order among the children that are packed into a frame. By default,
each new child is appended to the end of the packing order. The most obvious effect of the
order is that the children first in the packing order are closest to the side they are packed
against. You can control the packing order with the -before and -after packing options,
and you can reorganize widgets after they have already been packed:

Example 25-17. Controlling the packing order

Create five labels in order
foreach label {one two three four five} {
 label .$label -text $label
 pack .$label -side left -padx 5
}
ShuffleUp moves a widget to the beginning of the order
proc ShuffleUp { parent child } {
 set first [lindex [pack slaves $parent] 0]
 pack $child -in $parent -before $first
}
ShuffleDown moves a widget to the end of the order
proc ShuffleDown { parent child } {
 pack $child -in $parent
}
ShuffleUp . .five
ShuffleDown . .three

Chapter 25. The Pack Geometry Manager Page 13 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Introspection
The pack slaves command returns the list of children in their packing order. The
ShuffleUp procedure uses this to find out the first child so that it can insert another child
before it. The ShuffleDown procedure is simpler because the default is to append the child
to the end of the packing order.
When a widget is repacked, then it retains all its packing parameters that have already been
set. If you need to examine the current packing parameters for a widget, use the pack
info command.

pack info .five
=> -in . -anchor center -expand 0 -fill none -ipadx 0 \
 -ipady 0 -padx 0 -pady 0 -side left

Pack the Scrollbar First
The packing order also determines what happens when the window is
made too small. If the window is made small enough the packer will clip
children that come later in the packing order. This is why, when you pack
a scrollbar and a text widget into a frame, you should pack the scrollbar
first. Otherwise, when the window is made smaller the text widget takes
up all the space and the scrollbar is clipped.

Choosing the Parent for Packing

In nearly all of the examples in this chapter, a widget is packed into its parent frame. In general,
it is possible to pack a widget into any descendent of its parent. For example, the .a.b widget
could be packed into .a, .a.c or .a.d.e.f. The -in packing option lets you specify an
alternate packing parent. One motivation for this is that the frames introduced to get the
arrangement right can cause cluttered names for important widgets. In Example 25-4 on
page 398, the buttons have names like .one.alpha and .one.right.delta, which is
not consistent. Here is an alternate implementation of the same example that simplifies the
button names and gives the same result:

Chapter 25. The Pack Geometry Manager Page 14 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

Example 25-18. Packing into other relatives

Create and pack two frames
frame .one -bg white
frame .two -width 100 -height 50 -bg grey50
Create a row of buttons
foreach b {alpha beta} {
 button .$b -text $b
 pack .$b -in .one -side left
}
Create a frame for two more buttons
frame .one.right
foreach b {delta epsilon} {
 button .$b -text $b
 pack .$b -in .one.right -side bottom
}
pack .one.right -side right
pack .one .two -side top

When you do this, remember that the order in which you create widgets is important. Create
the frames first, then create the widgets. The stacking order for windows will cause the later
windows to obscure the windows created first. The following is a common mistake because
the frame obscures the button:

button .a -text hello
frame .b
pack .a -in .b

If you cannot avoid this problem scenario, then you can use the raise command to fix things
up. Stacking order is also discussed on page 409.

raise .a

Unpacking a Widget
The pack forget command removes a widget from the packing order. The widget gets
unmapped, so it is not visible. If you unpack a parent frame, the packing structure inside it is
maintained, but all the widgets inside the frame get unmapped. Unpacking a widget is useful
if you want to suppress extra features of your interface. You can create all the parts of the
interface, and just delay packing them in until the user requests to see them. Then you can
pack and unpack them dynamically.

Packer Summary
Keep these rules in mind about the packer:

• Pack vertically (-side top and -side bottom) or horizontally (-side left and -
side right) within a frame. Only rarely will a different mixture of packing directions
work out the way you want. Add frames to build more complex structures.

Chapter 25. The Pack Geometry Manager Page 15 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

• By default, the packer puts widgets into their parent frame, and the parent frame must
be created before the children that are packed into it.

• If you put widgets into other relatives, remember to create the frames first so the frames
stay underneath the widgets packed into them.

• By default, the packer ignores -width and -height attributes of frames that have
widgets packed inside them. It shrinks frames to be just big enough to allow for its border
width and to hold the widgets inside them. Use pack propagate to turn off the shrink-
wrap behavior.

• The packer distinguishes between packing space and display space. A widget's display
might not take up all the packing space allocated to it.

• The -fill option causes the display to fill up the packing space in the X or Y directions,
or both.

• The -expand true option causes the packing space to expand into any room in the
packing cavity that is otherwise unclaimed. If more than one widget in the same frame
wants to expand, then they share the extra space.

• The -ipadx and -ipady options allocate more display space inside the border, if
possible.

• The -padx and -pady options allocate more packing space outside the border, if
possible. The widget never fills this space. These values may be specified as a list of two
values to get asymmetric padding (Tk 8.4.)

The pack Command
Table 25-1 summarizes the pack command. Table 25-2 summarizes the packing options for
a widget. These are set with the pack configure command, and the current settings are
returned by the pack info command.

Table 25-1. The pack command

pack win?win..? ?options? This is just like pack configure.

pack configure win?win...? ?options? Packs one or more widgets according to the options, which are given in
Table 25-2.

pack forget win?win...? Unpacks the specified windows.

pack info win Returns the packing parameters of win.

pack propagate win?bool? Queries or sets the geometry propagation of win, which has other widgets
packed inside it.

pack slaves win Returns the list of widgets managed by win.

Table 25-2. Packing options

-after win Packs after win in the packing order.

Chapter 25. The Pack Geometry Manager Page 16 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

-anchor anchor Anchors: center, n, ne, e, se, s, sw, w, or nw.

-before win Packs before win in the packing order.

-expand boolean Controls expansion into the unclaimed packing cavity.

-fill style Controls fill of packing space. Style: x, y, both, or none.

-in win Packs inside win.

-ipadx amount Horizontal internal padding, in screen units.

-ipady amount Vertical internal padding, in screen units.

-padx amount Horizontal external padding, in screen units. May be a list of two screen units for asymmetric padding (Tk
8.4).

-pady amount Vertical external padding, in screen units. May be a list of two screen units for asymmetric padding (Tk 8.4).

-side side Sides: top, right, bottom, or left.

Window Stacking Order

The raise and lower commands control the window stacking order. The stacking order
controls the display of windows. Windows higher in the stacking order obscure windows
lower in the stacking order. By default, new windows are created at the top of the stacking
order so they obscure older windows. Consider this sequence of commands:

button .one
frame .two
pack .one -in .two

If you do this, you do not see the button. The problem is that the frame is higher in the stacking
order so it obscures the button.
You can change the stacking order with the raise command:

raise .one .two

This puts .one just above .two in the stacking order. If .two was not specified,
then .one would be put at the top of the stacking order.
The lower command has a similar form. With one argument, it puts that window at the
bottom of the stacking order. Otherwise, it puts it just below another window in the stacking
order.
You can use raise and lower on top-level windows to control their stacking order among
all other top-level windows. For example, if a user requests a dialog that is already displayed,
use raise to make it pop to the foreground of their cluttered desktop. To determine the
stacking order of toplevel windows, use the wm stackorder command. (See "Toplevel Size,
Placement, and Decoration" on page 658.)

Chapter 25. The Pack Geometry Manager Page 17 Return to Table of Contents

Chapter 25. The Pack Geometry Manager
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent B. Welch ISBN:
0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
Reproduction, transmission and/or redistribution in any form by any means without the prior written permission from the publisher is prohibited.

http://safari.oreilly.com//0130385603/ch44lev1sec1#ch44lev2sec1
http://safari.oreilly.com//0130385603/ch44lev1sec1#ch44lev2sec1

	Chapter 25. The Pack Geometry Manager
	Packing toward a Side
	Shrinking Frames and
	Example 25-2. Turning off geometry propagation
	Example 25-3. A horizontal stack inside a vertical stack
	Example 25-4. Even more nesting of horizontal and vertical stacks
	Example 25-5. Mixing bottom and right packing sides

	Horizontal and Vertical Stacking
	The Cavity Model
	Packing Space and Display Space
	The
	Example 25-6. Filling the display into extra packing space
	Example 25-7. Using horizontal fill in a menu bar

	Internal Padding with
	Example 25-8. The effects of internal padding (
	Example 25-9. Button padding vs. packer padding

	External Padding with
	Example 25-10. The look of a default button
	Example 25-11. Resizing without the
	Example 25-12. Resizing with
	Example 25-13. More than one expanding widget
	Example 25-14. Setup for anchor experiments
	Example 25-15. The effects of noncenter anchors
	Example 25-16. Animating the packing anchors
	Example 25-17. Controlling the packing order

	Resizing and
	Anchoring
	Packing Order
	Introspection
	Pack the Scrollbar First
	Example 25-18. Packing into other relatives

	Choosing the Parent for Packing
	Unpacking a Widget
	Packer Summary
	The

	Window Stacking Order

