

Table of Contents

A User Interface to Bindings.. 1
A Pair of Listboxes Working Together.. 3
The Editing Interface.. 5
Saving and Loading Bindings... 6

Chapter 46. A User Interface to Bindings

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 46. A User Interface to Bindings

This chapter presents a user interface to view and edit bindings.

A good way to learn about how a widget works is to examine the bindings that are defined
for it. This chapter presents a user interface that lets you browse and change bindings for
a widget or a class of widgets.

The interface uses a pair of listboxes to display the events and their associated commands.
An entry widget is used to enter the name of a widget or a class. There are a few command
buttons that let the user add a new binding, edit an existing binding, save the bindings to
a file, and dismiss the dialog. Here is what the display looks like:

Chapter 46. A User Interface to Bindings Page 1 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

Example 46-1. A user interface to widget bindings

proc Bind_Interface { w } {
 # Our state
 global bind
 set bind(class) $w

 # Set a class used for resource specifications
 set frame [toplevel .bindui -class Bindui]
 # Default relief
 option add *Bindui*Entry.relief sunken startup
 option add *Bindui*Listbox.relief raised startup
 # Default Listbox sizes
 option add *Bindui*key.width 18 startup
 option add *Bindui*cmd.width 25 startup
 option add *Bindui*Listbox.height 5 startup

 # A labeled entry at the top to hold the current
 # widget name or class.
 set t [frame $frame.top -bd 2]
 label $t.l -text "Bindings for" -width 11
 entry $t.e -textvariable bind(class)
 pack $t.l -side left
 pack $t.e -side left -fill x -expand true
 pack $t -side top -fill x
 bind $t.e <Return> [list Bind_Display $frame]

 # Command buttons
 button $t.quit -text Dismiss \
 -command [list destroy $frame]
 button $t.save -text Save \
 -command [list Bind_Save $frame]
 button $t.edit -text Edit \
 -command [list Bind_Edit $frame]
 button $t.new -text New \
 -command [list Bind_New $frame]
 pack $t.quit $t.save $t.edit $t.new -side right

 # A pair of listboxes and a scrollbar
 scrollbar $frame.s -orient vertical \
 -command [list BindYview \
 [list $frame.key $frame.cmd]]
 listbox $frame.key \
 -yscrollcommand [list $frame.s set] \
 -exportselection false
 listbox $frame.cmd \
 -yscrollcommand [list $frame.s set]
 pack $frame.s -side left -fill y
 pack $frame.key $frame.cmd -side left \
 -fill both -expand true

 foreach l [list $frame.key $frame.cmd] {
 bind $l <B2-Motion>\
 [list BindDragto %x %y $frame.key $frame.cmd]
 bind $l <Button-2> \
 [list BindMark %x %y $frame.key $frame.cmd]
 bind $l <Button-1> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <B1-Motion> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <Shift-B1-Motion> {}
 bind $l <Shift-Button-1> {}
 }
 # Initialize the display
 Bind_Display $frame
}

Chapter 46. A User Interface to Bindings Page 2 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Bind_Interface command takes a widget name or class as a parameter. It creates
a toplevel and gives it the Bindui class so that resources can be set to control widget
attributes. The option add command is used to set up the default listbox sizes. The lowest
priority, startup, is given to these resources so that clients of the package can override
the size with their own resource specifications.

At the top of the interface is a labeled entry widget. The entry holds the name of the class
or widget for which the bindings are displayed. The textvariable option of the entry
widget is used so that the entry's contents are available in a variable, bind(class).
Pressing <Return> in the entry invokes Bind_Display that fills in the display.

Example 46-2. Bind_Display presents the bindings for a widget or class

proc Bind_Display { frame } {
 global bind
 $frame.key delete 0 end
 $frame.cmd delete 0 end
 foreach seq [bind $bind(class)] {
 $frame.key insert end $seq
 $frame.cmd insert end [bind $bind(class) $seq]
 }
}

The Bind_Display procedure fills in the display with the binding information. The
bind command returns the events that have bindings, and what the command associated
with each event is. Bind_Display loops through this information and fills in the
listboxes.

A Pair of Listboxes Working Together
The two listboxes in the interface, $frame.key and $frame.cmd, are set up to work as
a unit. A selection in one causes a parallel selection in the other. Only one listbox exports
its selection as the PRIMARY selection. Otherwise, the last listbox to assert the selection
steals the selection rights from the other widget. The following example shows the bind
commands from Bind_Interface and the BindSelect routine that selects an item in
both listboxes:

Chapter 46. A User Interface to Bindings Page 3 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 46-3. Related listboxes are configured to select items together

foreach l [list $frame.key $frame.cmd] {
 bind $l <Button-1> \
 [list BindSelect %y $frame.key $frame.cmd]
 bind $l <B1-Motion> \
 [list BindSelect %y $frame.key $frame.cmd]
}
proc BindSelect { y args } {
 foreach w $args {
 $w select clear 0 end
 $w select anchor [$w nearest $y]
 $w select set anchor [$w nearest $y]
 }
}

A scrollbar for two listboxes.

A single scrollbar scrolls both listboxes. The next example shows the scrollbar
command from Bind_Interface and the BindYview procedure that scrolls the
listboxes:

Example 46-4. Controlling a pair of listboxes with one scrollbar

scrollbar $frame.s -orient vertical \
 -command [list BindYview [list $frame.key $frame.cmd]]

proc BindYview { lists args } {
 foreach l $lists {
 eval {$l yview} $args
 }
}

The BindYview command is used to change the display of the listboxes associated with
the scrollbar. The first argument to BindYview is a list of widgets to scroll, and the
remaining arguments are added by the scrollbar to specify how to position the display. The
details are essentially private between the scrollbar and the listbox. See page 501 for the
details. The args keyword is used to represent these extra arguments, and eval is used
to pass them through BindYview. The reasoning for using eval like this is explained in
Chapter 10 on page 136.

The Listbox class bindings for <Button-2> and <B2-Motion> cause the listbox to
scroll as the user drags the widget with the middle mouse button. These bindings are
adjusted so that both listboxes move together. The following example shows the bind

Chapter 46. A User Interface to Bindings Page 4 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch10#ch10

commands from the Bind_Interface procedure and the BindMark and BindDrag
procedures that scroll the listboxes:

Example 46-5. Drag-scrolling a pair of listboxes together

bind $l <B2-Motion>\
 [list BindDragto %x %y $frame.key $frame.cmd]
bind $l <Button-2> \
 [list BindMark %x %y $frame.key $frame.cmd]

proc BindDragto { x y args } {
 foreach w $args {
 $w scan dragto $x $y
 }
}
proc BindMark { x y args } {
 foreach w $args {
 $w scan mark $x $y
 }
}

The BindMark procedure does a scan mark that defines an origin, and BindDragto
does a scan dragto that scrolls the widget based on the distance from that origin. All
Tk widgets that scroll support yview, scan mark, and scan dragto. Thus the
BindYview, BindMark, and BindDragto procedures are general enough to be used with
any set of widgets that scroll together.

The Editing Interface
Editing and defining a new binding are done in a pair of entry widgets. These widgets are
created and packed into the display dynamically when the user presses the New or Edit
button:

Chapter 46. A User Interface to Bindings Page 5 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 46-6. An interface to define bindings

proc Bind_New { frame } {
 if [catch {frame $frame.edit} f] {
 # Frame already created
 set f $frame.edit
 } else {
 foreach x {key cmd} {
 set f2 [frame $f.$x]
 pack $f2 -fill x -padx 2
 label $f2.l -width 11 -anchor e
 pack $f2.l -side left
 entry $f2.e
 pack $f2.e -side left -fill x -expand true
 bind $f2.e <Return> [list BindDefine $f]
 }
 $f.key.l config -text Event:
 $f.cmd.l config -text Command:
 }
 pack $frame.edit -after $frame.top -fill x
}
proc Bind_Edit { frame } {
 Bind_New $frame
 set line [$frame.key curselection]
 if {$line == {}} {
 return
 }
 $frame.edit.key.e delete 0 end
 $frame.edit.key.e insert 0 [$frame.key get $line]
 $frame.edit.cmd.e delete 0 end
 $frame.edit.cmd.e insert 0 [$frame.cmd get $line]
}

The -width 11 and -anchor e attributes for the label widgets are specified so that the
Event: and Command: labels will line up with the Bindings for label at the top.

Saving and Loading Bindings
All that remains is the actual change or definition of a binding and some way to remember
the bindings the next time the application is run. The BindDefine procedure attempts a
bind command that uses the contents of the entries. If it succeeds, then the edit window
is removed by unpacking it.

Chapter 46. A User Interface to Bindings Page 6 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The bindings are saved by Bind_Save as a series of Tcl commands that define the
bindings. It is crucial that the list command be used to construct the commands properly.

Bind_Read uses the source command to read the saved commands. The application
must call Bind_Read as part of its initialization to get the customized bindings for the
widget or class. It also must provide a way to invoke Bind_Interface, such as a button,
menu entry, or key binding.

Example 46-7. Defining and saving bindings

proc BindDefine { f } {
 if [catch {
 bind [$f.top.e get] [$f.edit.key.e get] \
 [$f.edit.cmd.e get]
 } err] {
 Status $err
 } else {
 # Remove the edit window
 pack forget $f.edit
 }
}
proc Bind_Save { dotfile args } {
 set out [open $dotfile.new w]
 foreach w $args {
 foreach seq [bind $w] {
 # Output a Tcl command
 puts $out [list bind $w $seq [bind $w $seq]]
 }
 }
 close $out
 file rename -force $dotfile.new $dotfile
}
proc Bind_Read { dotfile } {
 if [catch {
 if [file exists $dotfile] {
 # Read the saved Tcl commands
 source $dotfile
 }
 } err] {
 Status "Bind_Read $dotfile failed: $err"
 }
}

Chapter 46. A User Interface to Bindings Page 7 Return to Table of Contents

Chapter 46. A User Interface to Bindings
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	A User Interface to Bindings
	A Pair of Listboxes Working Together
	The Editing Interface
	Saving and Loading Bindings

