

Table of Contents

Focus, Grabs, and Dialogs... 1
Standard Dialogs... 1
Custom Dialogs... 4
Animation with the update Command.. 12

Chapter 39. Focus, Grabs, and Dialogs

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 39. Focus, Grabs, and Dialogs

Dialog boxes are a standard part of any user interface. Several dialog boxes are built into
Tk. This chapter also describes how to build dialogs from scratch, which involves keyboard
focus and grabs. Input focus directs keyboard events to different widgets. The grab
mechanism lets a widget capture the input focus. This chapter describes the focus,
grab, tk_dialog, and tkwait commands. Tk 4.2 adds tk_getOpenFile,
tk_getSaveFile, tk_chooseColor, and tk_messageBox. Tk 8.3 adds
tk_chooseDirectory.

Dialog boxes are a common feature in a user interface. The application needs some user
response before it can continue. A dialog box displays some information and some controls,
and the user must interact with it before the application can continue. To implement this,
the application grabs the input focus so that the user can only interact with the dialog box.
Tk has several built-in dialog boxes, including standard dialogs for finding files and
selecting colors. A standard dialog has the same Tcl interface on all platforms, but it is
implemented with platform-specific library routines to provide native look and feel. This
chapter describes the dialogs built into Tk and then goes into the details of focus and grabs.

Standard Dialogs

The tk_dialog command presents a choice of buttons and returns a number indicating
which one was clicked by the user. The general form of the command is:

tk_dialog win title text bitmap default ?label? ?label? ...

The title appears in the title bar, and the text appears in the dialog. The bitmap
appears to the left of the text. Specify {} for the bitmap if you do not want one. The set of
built-in bitmaps is given on page 627. The label arguments give labels that appear on
buttons along the bottom of the dialog. The default argument gives the index of the
default button, counting from zero. If there is no default, specify {} or -1.

Chapter 39. Focus, Grabs, and Dialogs Page 1 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com//0130385603/ch41lev1sec3#ch41lev2sec5

Message Box
The tk_messageBox dialog is a limited form of tk_dialog that has native
implementations on the different platforms. Like tk_dialog, it allows for a message,
bitmap, and a set of buttons. However, the button sets are predefined, and the bitmaps are
limited. The yesno button set, for example, displays a Yes and a No button. The
abortretryignore button set displays Abort, Retry, and Ignore buttons. The
tk_messageBox command returns the symbolic name of the selected button (e.g., yes
or retry.) The yesnocancel message box could be used when trying to quit with
unsaved changes:

set choice [tk_messageBox -type yesnocancel -default yes \
 -message "Save changes before quitting?" \
 -icon question]

The complete set of options to tk_messageBox is listed in Table 39-1:

Table 39-1. Options to tk_messageBox

-default name Default button name (e.g., yes)

-icon name Name: error, info, question, or warning.

-message string Message to display.

-parent window Embeds dialog in window.

-title title Dialog title (UNIX and Windows)

-type type Type: abortretrycancel, ok, okcancel, retrycancel, yesno, or
yesnocancel

File and Directory Dialogs
There are two standard file dialogs, tk_getOpenFile and tk_getSaveFile, and one
standard directory dialog, tk_chooseDirectory. The tk_getOpenFile dialog is used
to find an existing file, while tk_getSaveFile can be used to find a new file. The
tk_chooseDirectory dialog, added in Tk 8.3, allows the user to select a directory,
rather than a file. These procedures return the selected file or directory name, or the empty
string if the user cancels the operation. These procedures take several options that are
listed in Table 39-2:

Chapter 39. Focus, Grabs, and Dialogs Page 2 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 39-2. Options to the standard file and directory dialogs

-defaultextension ext Appends ext if an extension is not specified. tk_getOpenFile and tk_getSaveFile only.

-filetypes typelist typelist defines a set of file types that the user can select to limit the files displayed in the
dialog. tk_getOpenFile and tk_getSaveFile only.

-initialdir dir Lists contents of dir in the initial display. If not provided, then the current working directory is
displayed.

-initialfile file Default file, for tk_getSaveFile only.

-message string A message to include in the client area of the dialog. (Macintosh, only when Navigation Services
are installed.) tk_getOpenFile and tk_getSaveFile only. (Tk 8.3.1)

-multiple Allows the user to select multiple files, returned as a list. tk_getOpenFile only. (Tk 8.4)

-mustexist boolean If False (default), the user may specify non-existent directories. tk_chooseDirectory only.

-parent window Creates the dialog as a child of window. The dialog is displayed on top of its parent window.

-title string Displays string in the title (UNIX and Windows).

The file dialogs can include a listbox that lists different file types. The file types are used
to limit the directory listing to match only those types. The typelist option specifies a
set of file extensions and Macintosh file types that correspond to a named file type. If you
do not specify a typelist, users just see all the files in a directory. Each item in
typelist is itself a list of three values:

name extensions ?mactypes?

The name is displayed in the list of file types. The extensions is a list of file extensions
corresponding to that type. The empty extension "" matches files without an extension,
and the extension * matches all files. The mactypes is an optional list of four-character
Macintosh file types, which are ignored on other platforms. On the Macintosh, if you give
both extensions and mactypes, the files must match both. If the extensions is an
empty list, only the mactypes are considered. However, you can repeat name in the
typelist and give extensions in one set and mactypes in another set. If you do this,
then files that match either the extensions or mactypes are listed.

The following typelist matches Framemaker Interchange Files that have both a .mif
extension and a MIF type:

set typelist {
 {"Maker Interchange Files" {".mif"} {"MIF "}}
}

Chapter 39. Focus, Grabs, and Dialogs Page 3 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The following typelist matches GIF image files that have either a .gif extension or the
GIFF file type. Note that the mactypes are optional:

set typelist {
 {"GIF Image" {".gif"}}
 {"GIF Image" {} {"GIFF"}}}
}

The following typelist puts all these together, along with an entry for all files. The entry
that comes first is displayed first:

set typelist {
 {"All Files" {*}}
 {"GIF Image" {".gif"}}
 {"GIF Image" {} {"GIFF"}}
 {"Maker Interchange Files" {".mif"} {"MIF "}}
}

Color Dialog
The tk_chooseColor dialog displays a color selection dialog. It returns a color, or the
empty string if the user cancels the operation. The options to tk_chooseColor are listed
in Table 39-3:

Table 39-3. Options to tk_chooseColor

-initialcolor color Initial color to display.

-parent window Creates the dialog as an embedded child of window.

-title string Displays string in the title (UNIX and Windows).

Custom Dialogs

When you create your own dialogs, you need to understand keyboard focus, focus grabs,
and how to wait for the user to finish with a dialog. Here is the general structure of your
code when creating a dialog:

Create widgets, then
focus $toplevel
grab $toplevel
tkwait window $toplevel

Chapter 39. Focus, Grabs, and Dialogs Page 4 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This sequence of commands directs keyboard focus to the toplevel containing your dialog.
The grab forces the user to interact with the dialog before using other windows in your
application. The tkwait command returns when the toplevel window is destroyed, and
this automatically releases the grab. This assumes that the button commands in the dialog
destroy the toplevel. The following sections explain these steps in more detail, and Example
39-1 on page 606 illustrates a more robust sequence.

Input Focus
The window system directs keyboard events to the toplevel window that currently has the
input focus. The application, in turn, directs the keyboard events to one of the widgets
within that toplevel window. The focus command sets focus to a particular widget, and
it is used by the default bindings for Tk widgets. Tk remembers what widget has focus
within a toplevel window and automatically gives focus to that widget when the system
gives focus to a toplevel window.

On Windows and Macintosh, the focus is given to an application when you click in its
window. On UNIX, the window manager application gives focus to different windows, and
window managers allow different conventions to shift focus. The click-to-type model is
similar to Windows and Macintosh. There is also focus-follows-mouse, which gives focus
to the window under the mouse. One thing to note about click-to-type is that the
application does not see the mouse click that gives the window focus.

Once the application has focus, you can manage the focus changes among your widgets
any way you like. By default, Tk uses a click-to-type model. Text and entry widgets set focus
to themselves when you click on them with the left mouse button. You can get the focus-
follows-mouse model within your widgets by calling the tk_focusFollowsMouse
procedure. However, in many cases you will find that an explicit focus model is actually
more convenient for users. Carefully positioning the mouse over a small widget can be
tedious.

The focus Command
Table 39-4 summarizes the focus command. The focus implementation supports
multiple displays with a separate focus window on each display. This is useful on UNIX
where X supports multiple displays. The -displayof option can be used to query the
focus on a particular display. The -lastfor option finds out what widget last had the
focus within the same toplevel as another window. Tk will restore focus to that window if
the widget that has the focus is destroyed. The toplevel widget gets the focus if no widget
claims it.

Chapter 39. Focus, Grabs, and Dialogs Page 5 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 39-4. The focus command

focus Returns the widget that currently has the focus on the display of the application's main window.

focus ?-force? window Sets the focus to window. The -force option ignores the window manger, so use it sparingly.

focus -displayof win Returns the focus widget on the same display as win.

focus -lastfor win Returns the name of the last widget to have the focus in the same toplevel as win.

Keyboard Focus Traversal
Users can change focus among widgets with <Tab> and <Shift-Tab>. The creation order
of widgets determines a traversal order for focus that is used by the tk_focusNext and
tk_focusPrev procedures. There are global bindings for <Tab> and <Shift-Tab> that
call these procedures:

bind all <Tab> {tk_focusNext %W}
bind all <Shift-Tab> {tk_focusPrev %W}

The Tk widgets highlight themselves when they have the focus. The highlight size is
controlled with the highlightThickness attribute, and the color of the highlight is set
with the highlightColor attribute. The Tk widgets, even buttons and scrollbars, have
bindings that support keyboard interaction. A <space> invokes the command associated
with a button, if the button has the input focus.

All widgets have a takeFocus attribute that the tk_focusNext and tk_focusPrev
procedures use to determine if a widget will take the focus during keyboard traversal. There
are four possible values to the attribute:

• 0 indicates the widget should not take focus.
• 1 indicates the widget should always take focus.
• An empty string means the traversal procedures tk_focusNext and
tk_focusPrev should decide based on the widget's state and bindings.

• Otherwise the value is a Tcl command prefix. The command is called with the widget
name as an argument, and it should return either 0, 1, or the empty string.

Grabbing the Focus
An input grab overrides the normal focus mechanism. For example, a dialog box can grab
the focus so that the user cannot interact with other windows in the application. The typical
scenario is that the application is performing some task but it needs user input. The grab
restricts the user's actions so it cannot drive the application into an inconsistent state. In
most cases you only need to use the grab and grab release commands. Note that the

Chapter 39. Focus, Grabs, and Dialogs Page 6 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

grab set command is equivalent to the grab command. Table 39-5 summarizes the
grab command.

Table 39-5. The grab command

grab ?-global? window Sets a grab to a particular window.

grab current ?window? Queries the grabs on the display of window, or on all displays if window is omitted.

grab release window Releases a grab on window.

grab set ?-global? win Sets a grab to a particular window.

grab status window Returns none, local, or global.

A global grab prevents the user from interacting with other applications, too, even the
window manager. Tk menus use a global grab, for example, which is how they unpost
themselves no matter where you click the mouse. When an application prompts for a
password, a global grab is also a good idea. This prevents the user from accidentally typing
their password into a random window. The next section includes examples that use the
grab command.

The tkwait Command
You wait for the user to interact with the dialog by using the tkwait command. The
tkwait waits for something to happen, and while waiting it allows events to be processed.
Like vwait, you can use tkwait to wait for a Tcl variable to change value. You can also
wait for a window to become visible, or wait for a window to be destroyed. Table 39-6
summarizes the tkwait command.

Table 39-6. The tkwait command

tkwait variable varname Waits for the global variable varname to be set.

This is just like the vwait command.

tkwait visibility win Waits for the window win to become visible.

tkwait window win Waits for the window win to be destroyed.

Use tkwait with global variables.

Chapter 39. Focus, Grabs, and Dialogs Page 7 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The variable specified in the tkwait variable command must be a global variable.
Remember this if you use procedures to modify the variable. They must declare it global
or the tkwait command will not notice the assignments.

The tkwait visibility waits for the visibility state of the window to change. Most
commonly this is used to wait for a newly created window to become visible. For example,
if you have any sort of animation in a complex dialog, you could wait until the dialog is
displayed before starting the animation.

Destroying Widgets
The destroy command deletes one or more widgets. If the widget has children, all the
children are destroyed, too. Chapter 44 describes a protocol on page 661 to handle destroy
events that come from the window manager. You wait for a window to be deleted with the
tkwait window command.

The focus, grab, tkwait sequence
In practice, I use a slightly more complex command sequence than just focus, grab, and
tkwait. You can remember what widget used to have the focus and then restore it after
the dialog completes. When you do this, it is more reliable to restore focus before
destroying the dialog. This prevents a tug of war between your application and the window
manager. This sequence looks like:

set old [focus]
focus $toplevel
grab $toplevel
tkwait variable doneVar
grab release $toplevel
focus $old
destroy $toplevel

This sequence supports another trick I use, which is to unmap dialogs instead of destroying
them. This way the dialogs appear more quickly the next time they are used. This makes
creating the dialogs a little more complex because you need to see if the toplevel already
exists. Chapter 44 describes the window manager commands used to map and unmap
windows on page 661. Example 39-1 shows Dialog_Create, Dialog_Wait, and
Dialog_Dismiss that capture all of these tricks:

Chapter 39. Focus, Grabs, and Dialogs Page 8 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch44#ch44
http://safari.oreilly.com//0130385603/ch44#ch44

Example 39-1. Procedures to help build dialogs

proc Dialog_Create {top title args} {
 global dialog
 if [winfo exists $top] {
 switch -- [wm state $top] {
 normal {
 # Raise a buried window
 raise $top
 }
 withdrawn -
 iconic {
 # Open and restore geometry
 wm deiconify $top
 catch {wm geometry $top $dialog(geo,$top)}
 }
 }
 return 0
 } else {
 eval {toplevel $top} $args
 wm title $top $title
 return 1
 }
}
proc Dialog_Wait {top varName {focus {}}} {
 upvar $varName var

 # Poke the variable if the user nukes the window
 bind $top <Destroy> [list set $varName cancel]

 # Grab focus for the dialog
 if {[string length $focus] == 0} {
 set focus $top
 }
 set old [focus -displayof $top]
 focus $focus
 catch {tkwait visibility $top}
 catch {grab $top}

 # Wait for the dialog to complete
 tkwait variable $varName
 catch {grab release $top}
 focus $old
}
proc Dialog_Dismiss {top} {
 global dialog
 # Save current size and position
 catch {
 # window may have been deleted
 set dialog(geo,$top) [wm geometry $top]
 wm withdraw $top
 }
}

The Dialog_Wait procedure allows a different focus widget than the toplevel. The idea
is that you can start the focus out in the appropriate widget within the dialog, such as the
first entry widget. Otherwise, the user has to click in the dialog first.

Chapter 39. Focus, Grabs, and Dialogs Page 9 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Grab can fail.

The catch statements in Dialog_Wait come from my experiences on different
platforms. The tkwait visibility is sometimes required because grab can fail if the
dialog is not yet visible. However, on other systems, the tkwait visi bility itself can
fail in some circumstances. Tk reflects these errors, but in this case all that can go wrong
is no grab. The user can still interact with the dialog without a grab, so I just ignore these
errors.

Prompter Dialog

Chapter 39. Focus, Grabs, and Dialogs Page 10 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 39-2. A simple dialog

proc Dialog_Prompt { string } {
 global prompt
 set f .prompt
 if [Dialog_Create $f "Prompt" -borderwidth 10] {
 message $f.msg -text $string -aspect 1000
 entry $f.entry -textvariable prompt(result)
 set b [frame $f.buttons]
 pack $f.msg $f.entry $f.buttons -side top -fill x
 pack $f.entry -pady 5
 button $b.ok -text OK -command {set prompt(ok) 1}
 button $b.cancel -text Cancel \
 -command {set prompt(ok) 0}
 pack $b.ok -side left
 pack $b.cancel -side right
 bind $f.entry <Return> {set prompt(ok) 1 ; break}
 bind $f.entry <Control-c> {set prompt(ok) 0 ; break}
 }
 set prompt(ok) 0
 Dialog_Wait $f prompt(ok) $f.entry
 Dialog_Dismiss $f
 if {$prompt(ok)} {
 return $prompt(result)
 } else {
 return {}
 }
}
Dialog_Prompt "Please enter a name"

Example 39-2 shows Dialog_Prompt, which gets a value from the user, returning the
value entered, or the empty string if the user cancels the operation. Dialog_Prompt uses
the Tcl variable prompt(ok) to indicate the dialog is complete. The variable is set if the
user presses the OK or Cancel buttons, or if the user presses <Return> or <Control-
c> in the entry widget. The Dialog_Wait procedure waits on prompt(ok), and it grabs
and restores focus. If the Dialog_Create procedure returns 1, then the dialog is built:
otherwise, it already existed.

Keyboard Shortcuts and Focus
Focus is set on the entry widget in the dialog with Dialog_Wait, and it is convenient if
users can use special key bindings to complete the dialog. Otherwise, they need to take
their hands off the keyboard and use the mouse. The example defines bindings for
<Return> and <Control-c> that invoke the OK and Cancel buttons, respectively. The

Chapter 39. Focus, Grabs, and Dialogs Page 11 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

bindings override all other bindings by including a break command. Otherwise, the
Entry class bindings insert the short-cut keystroke into the entry widget.

Animation with the update Command
Suppose you want to entertain your user while your application is busy. By default, the
user interface hangs until your processing completes. Even if you change a label or entry
widget in the middle of processing, the updates to that widget are deferred until an idle
moment. The user does not see your feedback, and the window is not refreshed if it gets
obscured and uncovered. The solution is to use the update command that forces Tk to go
through its event loop and update the display.

The next example shows a Feedback procedure that displays status messages. A read-
only entry widget displays the messages, and the update command ensures that the user
sees each new message. An entry widget is used because it won't change size based on the
message length, and it can be scrolled by dragging with the middle mouse button. Entry
widgets also work better with update idletasks as described later:

Example 39-3. A feedback procedure

proc Feedback { message } {
 global feedback
 set e $feedback(entry)
 $e config -state normal
 $e delete 0 end
 $e insert 0 $message
 # Leave the entry in a read-only state
 $e config -state disabled
 # Force a display update
 update idletasks
}

The Tk widgets update their display at idle moments, which basically means after
everything else is taken care of. This lets them collapse updates into one interaction with
the window system. On UNIX, this improves the batching effects that are part of the X
protocol. A call to update idletasks causes any pending display updates to be
processed. Chapter 16 describes the Tk event loop in more detail.

Use update idletasks if possible.

Chapter 39. Focus, Grabs, and Dialogs Page 12 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch16#ch16

The safest way to use update is with its idletasks option. If you use the update
command with no options, then all events are processed. In particular, user input events
are processed. If you are not careful, it can have unexpected effects because another thread
of execution is launched into your Tcl interpreter. The current thread is suspended and
any callbacks that result from input events are executed. It is usually better to use the
tkwait command if you need to process input because it pauses the main application at
a well-defined point.

One drawback of update idletasks is that in some cases a widget's redisplay is
triggered by window system events. In particular, when you change the text of a label, it
can cause the size of the label to change. The widget is too clever for us in this case. Instead
of scheduling a redisplay at idle time, it requests a different size and then waits for the
<Configure> event from the window system. The <Configure> event indicates a size
has been chosen by the geometry manager, and it is at that point that the label schedules
its redisplay. So, changing the label's text and doing update idletasks does not work
as expected.

Chapter 39. Focus, Grabs, and Dialogs Page 13 Return to Table of Contents

Chapter 39. Focus, Grabs, and Dialogs
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Focus, Grabs, and Dialogs
	Standard Dialogs
	Custom Dialogs
	Animation with the update Command

