

Table of Contents

C Programming and Tcl... 1
Basic Concepts... 1
Creating a Loadable Package.. 5
A C Command Procedure.. 8
The blob Command Example.. 18
CONST in the Tcl 8.4 APIs.. 27
Strings and Internationalization.. 28
Tcl_Main and Tcl_AppInit... 31
The Event Loop... 35
Invoking Scripts from C.. 36

Chapter 47. C Programming and Tcl

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 47. C Programming and Tcl

This chapter explains how to extend a Tcl application with new built-in commands. Tcl
8.0 replaces the original string-based command interface with a more efficient dual-ported
object interface. This chapter describes both interfaces.

Tcl is implemented in a C library that is easy to integrate into an existing application. By
adding the Tcl interpreter to your application, you can configure and control it with Tcl
scripts, and with Tk you can provide a nice graphical interface to it. This was the original
model for Tcl. Applications would be largely application-specific C code and include a small
amount of Tcl for configuration and the graphical interface. However, the basic Tcl shells
proved so useful by themselves that relatively few Tcl programmers need to worry about
programming in C or C++.

Tcl is designed to be easily extensible by writing new command implementations in C. A
command implemented in C is more efficient than an equivalent Tcl procedure. A more
pressing reason to write C code is that it may not be possible to provide the same
functionality purely in Tcl. Suppose you have a new device, perhaps a color scanner or a
unique input device. The programming interface to that device is through a set of C
procedures that initialize and manipulate the state of the device. Without some work on
your part, that interface is not accessible to your Tcl scripts. You are in the same situation
if you have a C or C++ library that implements some specialized function such as a
database. Fortunately, it is rather straightforward to provide a Tcl interface that
corresponds to the C or C++ interface.

Note: Where this chapter says "C", you can always think "C or C++". There is also a package
called TclBlend that lets you extend Tcl by writing Java instead of C, and to evaluate Tcl
scripts from Java. Find out more about TclBlend at:

http://www.tcl.tk/java/

Chapter 47. C Programming and Tcl Page 1 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://www.tcl.tk/java/

Basic Concepts
This chapter assumes that you know some C or C++. You do not have to be an expert
programmer to use the Tcl APIs. Indeed, one of Tcl's strengths is the ease with which you
can extend it by writing C code. This chapter provides a few working examples that explain
how to initialize your application and create Tcl commands. It describes how to organize
your code into packages. It concludes with notes about compiling Tcl under UNIX,
Windows, and Macintosh.

Getting Started
There are two ways to get started writing C code for Tcl applications. The easiest way is to
write an extension that just adds some new commands to a standard Tcl shell like tclsh or
wish. With this approach the Tcl shell creates a basic framework for you, and your C code
just extends this framework with new commands. Tcl supports dynamic loading, so you
can compile your extension as a shared library (i.e., DLL) and load it into a running Tcl
shell. This is the easiest approach because the Tcl shell handles the details of startup and
shutdown, and it provides an interactive console to enter Tcl commands. In the case of
wish, it also provides the framework for a graphical user interface. Finally, a loadable
extension can be shared easily with other Tcl users.

The second way to use the Tcl library is to add it to an existing application. If your
application is very simple, it may make sense to turn it into an extension for a standard
Tcl shell, which brings you back to the first, simpler approach. However, if your application
already has a complex framework (e.g., it is a long-running server process), then you can
just add Tcl to it and export the functionality of your application as one or more Tcl
commands. Once you do this, you will find that you can extend your application with all
the features provided by Tcl.

C Command Procedures and Data Objects
The C or C++ code that implements a Tcl command is called a command procedure. The
interface to a command procedure is much like the interface to a main program. The inputs
are an array of values that correspond exactly to the arguments in the Tcl script command.
The result of the command procedure becomes the result of the Tcl command.

There are two kinds of command procedures: string-based and "object-based." I've quoted
"object" here because we are really talking about the data representation of the arguments
and results. We are not talking about methods and inheritance and other things associated
with object oriented programming. However, the Tcl C APIs use a structure called a
Tcl_Obj, which is called a dual ported object in the reference material. I prefer the term
"Tcl_Obj value".

Chapter 47. C Programming and Tcl Page 2 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The string interface is quite simple. A command procedure gets an array of strings as
arguments, and it computes a string as the result. Tcl 8.0 generalized strings into the
Tcl_Obj type, which can have two representations: both a string and another native
representation like an integer, floating point number, list, or bytecodes. An object-based
command takes an array of Tcl_Obj pointers as arguments, and it computes a
Tcl_Obj as its result. The goal of the Tcl_Obj type is to reduce the number of conversions
between strings and native representations. Object-based commands will be more efficient
than the equivalent string-based commands, but the APIs are a little more complex. For
simple tasks, and for learning, you can use just the simpler string-based command
interface.

SWIG
David Beasley created a nice tool called SWIG (Simple Wrapper Interface Generator) that
generates the C code that implements command procedures that expose a C or C++ API
as Tcl commands. This can be a great time saver if you need to export many calls to Tcl.
The only drawback is that a C interface may not feel that comfortable to the script writer.
Handcrafted Tcl interfaces can be much nicer, but automatically-generated interfaces are
just fine for rapid prototyping and for software testing environments. You can learn more
about SWIG at its web site:

http://www.swig.org/

Tcl Initialization
Before you can use your command procedures from Tcl scripts, you need to register them
with Tcl. In some cases, you may also need to create the Tcl interpreter, although this is
done for you by the standard Tcl shells.

If you are writing an extension, then you must provide an initialization procedure. The job
of this procedure is to register Tcl commands with Tcl_CreateCommand or
Tcl_CreateObjCommand. This is shown in Example 47-1 on page 698. The name of this
procedure must end with _Init, as in Expect_Init, Blt_Init, or Foo_Init, if you
plan to create your extension as a shared library. This procedure is called automatically
when the Tcl script loads your library with the load command, which is described on page
697.

If you are embedding Tcl into an existing application, then you should initialize Tcl with
Tcl_FindExecutable and Tcl_CreateInterp. The first call helps the Tcl runtime
initialize itself, and determines the return value for info nameofexecutable.
Tcl_CreateInterp creates an interpreter that includes the standard commands listed
in Table 1-4 on page 22. You still have to initialize all your custom commands (e.g., by

Chapter 47. C Programming and Tcl Page 3 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.swig.org/
http://safari.oreilly.com//0130385603/ch01lev1sec15#ch01table04

calling Foo_Init) and arrange to run a script using Tcl_Eval or Tcl_EvalFile.
However, there are a lot of details to get right, and Tcl provides a higher level interface in
Tcl_Main and Tcl_AppInit. Tcl_Main creates the interpreter for you, processes
command line arguments to get an initial script to run, and even provides an interactive
command loop. It calls out to Tcl_AppInit, which you provide, to complete the
initialization of the interpreter. The use of Tcl_Main is shown in Example 47-13 on page
720. There are even more details to get right with a Tk application because of the window
system and the event loop. These details are hidden behind Tk_Main, which makes a
similar call out to Tk_AppInit that you provide to complete initialization.

Calling Out to Tcl Scripts
An application can call out to the script layer at any point, even inside command
procedures. Tcl_Eval is the basic API for this, and there are several variations depending
on how you pass arguments to the script. When you look up Tcl_Eval in the reference
material, you will get a description of the whole family of Tcl_Eval procedures.

You can also set and query Tcl variables from C using the Tcl_SetVar and
Tcl_GetVar procedures. Again, there are several variations on these procedures that
account for different types, like strings or Tcl_Obj values, and scalar or array variables.
The Tcl_LinkVar procedure causes a Tcl variable to mirror a C variable. Modifications
to the Tcl variable are reflected in the C variable, and reading the Tcl variable always returns
the C variable's value. Tcl_LinkVar is built on a more general variable tracing facility,
which is exposed to Tcl as the trace command, and available as the Tcl_TraceVar C
API.

A well-behaved extension should provide both a C and Tcl API, but most of the core Tcl
and Tk commands do not provide an exported C API. This forces you to eval Tcl scripts to
get at their functionality. Example 47-15 on page 725 shows the Tcl_Invoke procedure
that can help you work around this limitation. Tcl_Invoke is used to invoke a Tcl
command without the parsing and substitution overhead of Tcl_Eval.

Using the Tcl C Library
Over the years the Tcl C Library has grown from a simple language interpreter into a full
featured library. An important property of the Tcl API is that it is cross platform: its works
equally well on UNIX, Windows, and Macintosh. One can argue that it is easier to write
cross-platform applications in Tcl than in Java! Some of the useful features that you might
not expect from a language interpreter include:

• A general hash table package that automatically adjusts itself as the hash table grows.
It allows various types of keys, including strings and integers.

Chapter 47. C Programming and Tcl Page 4 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• A dynamic string (i.e., DString) package that provides an efficient way to construct
strings.

• An I/O channel package that replaces the old "standard I/O library" found on UNIX
with something that is cross-platform, does buffering, allows nonblocking I/O, and
does character set translations. You can create new I/O channel types.

• Network sockets for TCP/IP communication.
• Character set translations between Unicode, UTF-8, and other encodings.
• An event loop manager that interfaces with network connections and window system

events. You can create new "event sources" that work with the event loop manager.
• Multithreading support in the form of mutexes, condition variables, and thread-local

storage.
• A registration system for exit handlers that are called when Tcl is shutting down.

This Chapter focuses just on the Tcl C API related to the Tcl interpreter. Chapter 50 gives
a high-level overview of all the procedures in the Tcl and Tk C library, but this book does
not provide a complete reference. Refer to the on-line manual pages for the specific details
about each procedure; they are an excellent source of information. The manual pages
should be part of every Tcl distribution. They are on the book's CD, and they can be found
web at:

http://www.tcl.tk/man/

The Tcl source code is worth reading.

Finally, it is worth emphasizing that the source code of the Tcl C library is a great source
of information. The code is well written and well commented. If you want to see how
something really works, reading the code is worthwhile.

Creating a Loadable Package

You can organize your C code into a loadable package that can be dynamically linked into
tclsh, wish, or your own Tcl application. The details about compiling the code into the
shared library that contains the package are presented in Chapter 48. This section
describes a package that implements the random Tcl command that returns random
numbers.

Chapter 47. C Programming and Tcl Page 5 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch50#ch50
http://www.tcl.tk/man/
http://safari.oreilly.com//0130385603/ch48#ch48

The load Command
The Tcl load command is used to dynamically link in a compiled package:

load library package ?interp?

The library is the file name of the shared library file (i.e., the DLL), and package is the
name of the package implemented by the library. This name corresponds to the
package_Init procedure called to initialize the package (e.g., Random_Init) The
optional interp argument lets you load the library into a slave interpreter. If the library
is in /usr/local/lib/random.so, then a Tcl script can load the package like this:

load /usr/local/lib/random.so Random

On most UNIX systems, you can set the LD_LIBRARY_PATH environment variable to a
colon-separated list of directories that contain shared libraries. If you do that, then you
can use relative names for the libraries:

load librandom.so Random

On Macintosh, the load command looks for libraries in the same folder as the Tcl/Tk
application (i.e., Wish) and in the System:Extensions:Tool Command Language
folder:

load random.shlib Random

On Windows, load looks in the same directory as the Tcl/Tk application, the current
directory, the C:\Windows\System directory (or C:\Windows\System32 on Windows
NT), the C:\Windows directory, and then the directories listed in the PATH environment
variable.

load random.dll Random

Fortunately, you usually do not have to worry about these details because the Tcl
package facility can manage your libraries for you. Instead of invoking load directly,
your scripts can use package require instead. The package facility keeps track of where
your libraries are and knows how to call load for your platform. It is described in Chapter
12.

Chapter 47. C Programming and Tcl Page 6 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch12#ch12
http://safari.oreilly.com//0130385603/ch12#ch12

The Package Initialization Procedure
When a package is loaded, Tcl calls a C procedure named package_Init, where
package is the name of your package. Example 47-1 defines Random_Init. It registers
a command procedure, RandomCmd, that implements a new Tcl command, random.
When the Tcl script uses the random command, the RandomCmd procedure will be invoked
by the Tcl interpreter. Two styles of command registrations are made for comparison: the
original Tcl_CreateCommand and the Tcl_CreateObjCommand added in Tcl 8.0. The
command procedures are described in the next section:

Example 47-1. The initialization procedure for a loadable package

/*
 * random.c
 */
#include <tcl.h>
/*
 * Declarations for application-specific command procedures
 */

int RandomCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int RandomObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);

/*
 * Random_Init is called when the package is loaded.
 */

int Random_Init(Tcl_Interp *interp) {
 /*
 * Initialize the stub table interface, which is
 * described in Chapter 48.
 */

 if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {
 return TCL_ERROR;
 }
 /*
 * Register two variations of random.
 * The orandom command uses the object interface.
 */

 Tcl_CreateCommand(interp, "random", RandomCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "orandom", RandomObjCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);

 /*
 * Declare that we implement the random package
 * so scripts that do "package require random"
 * can load the library automatically.
 */
 Tcl_PkgProvide(interp, "random", "1.1");
 return TCL_OK;
}

Chapter 47. C Programming and Tcl Page 7 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using Tcl_PkgProvide
Random_Init uses Tcl_PkgProvide to declare what package is provided by the C code.
This call helps the pkg_mkIndex procedure learn what libraries provide which packages.
pkg_mkIndex saves this information in a package database, which is a file named
pkgIndex.tcl. The package require command looks for the package database files
along your auto_path and automatically loads your package. The general process is:

• Create your shared library and put it into a directory listed on your auto_path variable, or a
subdirectory of one of the directories on your auto_path.

• Run the pkg_mkIndex procedure in that directory, giving it the names of all the script files and shared
libraries it should index. Now your shared library is ready for use by other scripts.

• A script uses package require to request a package. The correct load command for your system
will be used the first time a command from your package is used. The package command is the same
on all platforms:

package require random
=> 1.1

This process is explained in more detail on page 175.

A C Command Procedure

Tcl 8.0 introduced a new interface for Tcl commands that is designed to work efficiently
with its internal on-the-fly byte code compiler. The original interface to commands was
string oriented. This resulted in a lot of conversions between strings and internal formats
such as integers, double-precision floating point numbers, and lists. The new interface is
based on the Tcl_Obj type that can store different types of values. Conversions between
strings and other types are done in a lazy fashion, and the saved conversions help your
scripts run more efficiently.

This section shows how to build a random number command using both interfaces. The
string-based interface is simpler, and we start with that to illustrate the basic concepts.
You can use it for your first experiments with command procedures. Once you gain some
experience, you can start using the interfaces that use Tcl_Obj values instead of simple
strings. If you have old command procedures from before Tcl 8.0, you need to update them
only if you want extra efficiency. The string and Tcl_Obj interfaces are very similar, so
you should find updating your command procedures straightforward.

Chapter 47. C Programming and Tcl Page 8 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The String Command Interface
The string-based interface to a C command procedure is much like the interface to the
main program. You register the command procedure like this:

Tcl_CreateCommand(interp, "cmd", CmdProc, data, DeleteProc);

When the script invokes cmd, Tcl calls CmdProc like this:

CmdProc(data, interp, argc, argv);

The interp is type Tcl_Interp *, and it is a general handle on the state of the
interpreter. Most Tcl C APIs take this parameter. The data is type ClientData, which
is an opaque pointer. You can use this to associate state with your command. You register
this state along with your command procedure, and then Tcl passes it back to you when
the command is invoked. This is especially useful with Tk widgets, which are explained in
more detail in Chapter 49. Our simple RandomCmd command procedure does not use this
feature, so it passes NULL into Tcl_CreateCommand. The DeleteProc is called when
the command is destroyed, which is typically when the whole Tcl interpreter is being
deleted. If your state needs to be cleaned up, you can do it then. RandomCmd does not use
this feature, either.

The arguments from the Tcl command are available as an array of strings defined by an
argv parameter and counted by an argc parameter. This is the same interface that a main
program has to its command line arguments. Example 47-2 shows the RandomCmd
command procedure:

Chapter 47. C Programming and Tcl Page 9 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch49#ch49

Example 47-2. The RandomCmd C command procedure

/*
 * RandomCmd --
 * This implements the random Tcl command. With no arguments
 * the command returns a random integer.
 * With an integer valued argument "range",
 * it returns a random integer between 0 and range.
 */
int
RandomCmd(ClientData clientData, Tcl_Interp *interp,
 int argc, CONST char *argv[])
{
 int rand, error;
 int range = 0;
 char buffer[20];
 if (argc > 2) {
 interp->result = "Usage: random ?range?";
 return TCL_ERROR;
 }
 if (argc == 2) {
 if (Tcl_GetInt(interp, argv[1], &range) != TCL_OK) {
 return TCL_ERROR;
 }
 }
 rand = random();
 if (range != 0) {
 rand = rand % range;
 }
 sprintf(buf, "%d", rand);
 Tcl_SetResult(interp, buf, TCL_VOLATILE);
 return TCL_OK;
}

The return value of a Tcl command is really two things: a result string and a status code.
The result is a string that is either the return value of the command as seen by the Tcl script,
or an error message that is reported upon error. For example, if extra arguments are passed
to the command procedure, it raises a Tcl error by doing this:

Tcl_SetResult(interp, "Usage: random ?range?", TCL_STATIC);
return TCL_ERROR;

The random implementation accepts an optional argument that is a range over which the
random numbers should be returned. The argc parameter is tested to see if this argument
has been given in the Tcl command. argc counts the command name as well as the
arguments, so in our case argc == 2 indicates that the command has been invoked
something like:

random 25

The procedure Tcl_GetInt converts the string-valued argument to an integer. It does
error checking and sets the interpreter's result in the case of error, so we can just return if
it fails to return TCL_OK.

Chapter 47. C Programming and Tcl Page 10 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

if (Tcl_GetInt(interp, argv[1], &range) != TCL_OK) {
 return TCL_ERROR;
}

Finally, the real work of calling random is done. The result is formatted into a string in a
temporary buffer, and the result is set with Tcl_SetResult. A normal return looks like
this:

sprintf(buffer, "%d", rand);
Tcl_SetResult(interp, buffer, TCL_VOLATILE);
return TCL_OK;

Result Codes from Command Procedures
The command procedure returns a status code that is either TCL_OK or TCL_ERROR to
indicate success or failure. If the command procedure returns TCL_ERROR, then a Tcl error
is raised, and the result value is used as the error message. The procedure can also return
TCL_BREAK, TCL_CONTINUE, TCL_RETURN, which affects control structure commands
like foreach and proc. You can even return an application-specific code (e.g., 5 or
higher), which might be useful if you are implementing new kinds of control structures.
The status code returned by the command procedure is the value returned by the
Tcl_Eval family of C APIs, which are described on page 724 and by the catch command,
which is discussed in more detail on page 83.

Managing the String Result
There is a simple protocol that manages the storage for a command procedure's result
string. It involves interp->result, which holds the value, and interp->freeProc,
which determines how the storage is cleaned up. When a command is called, the interpreter
initializes interp->result to a static buffer of TCL_RESULT_SIZE, which is 200 bytes.
The default cleanup action is to do nothing.

In earlier versions of Tcl it was safe to access interp->result directly. With the addition
of the Tcl_Obj interfaces, which are described next, this is no longer always safe. The
following procedures should be used to manage the result and freeProc fields. These
procedures automatically manage storage for the result:

Tcl_SetResult(interp, string, freeProc)
Tcl_AppendResult(interp, str1, str2, str3, (char *)NULL)
Tcl_AppendElement(interp, string)

Chapter 47. C Programming and Tcl Page 11 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch06lev1sec7#ch06lev1sec7

Tcl_SetResult sets the return value to be string. The freeProc argument describes
how the result should be disposed of: TCL_STATIC is used in the case where the result is
a constant string allocated by the compiler, TCL_DYNAMIC is used if the result is allocated
with Tcl_Alloc, which is a platform- and compiler-independent version of malloc, and
TCL_VOLATILE is used if the result is in a stack variable. In the TCL_VOLATILE case, the
Tcl interpreter makes a copy of the result before calling any other command procedures.
Finally, if you have your own memory allocator, pass in the address of the procedure that
should free the result.

Tcl_AppendResult copies its arguments into the result buffer, reallocating the buffer if
necessary. The arguments are concatenated onto the end of the existing result, if any.
Tcl_AppendResult can be called several times to build a result. The result buffer is
overallocated, so several appends are efficient.

Tcl_AppendElement adds the string to the result as a proper Tcl list element. It might
add braces or backslashes to get the proper structure.

Tcl_ResetResult is called before each command procedure. However, If you have built
up a result and want to throw it away (e.g., an error occurs), then you can use
Tcl_ResetResult to restore the result to its initial state.

The Tcl_Obj Command Interface
The Tcl_Obj command interface replaces strings with dual-ported values. The
arguments to a command are an array of pointers to Tcl_Obj structures, and the result
of a command is also of type Tcl_Obj. The replacement of strings by Tcl_Obj values
extends throughout Tcl. The value of a Tcl variable is kept in a Tcl_Obj, and Tcl scripts
are stored in a Tcl_Obj, too. You can continue to use the old string-based API, which
converts strings to Tcl_Obj values, but this conversion adds overhead.

The Tcl_Obj structure stores both a string representation and a native representation.
The native representation depends on the type of the value. Tcl lists are stored as an array
of pointers to strings. Integers are stored as 32-bit integers. Floating point values are stored
in double-precision. Tcl scripts are stored as sequences of byte codes. Conversion between
the native representation and a string are done upon demand. There are APIs for accessing
Tcl_Obj values, so you do not have to worry about type conversions unless you implement
a new type. Example 47-3 shows the random command procedure using the Tcl_Obj
interfaces:

Chapter 47. C Programming and Tcl Page 12 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-3. The RandomObjCmd C command procedure

/*
 * RandomObjCmd --
 * This implements the random Tcl command from
 * Example 47–2 using the object interface.
 */
int
RandomObjCmd(ClientData clientData, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 Tcl_Obj *resultPtr;
 int rand, error;
 int range = 0;
 if (objc > 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "?range?");
 return TCL_ERROR;
 }
 if (objc == 2) {
 if (Tcl_GetIntFromObj(interp, objv[1], &range) !=
 TCL_OK) {
 return TCL_ERROR;
 }
 }
 rand = random();
 if (range != 0) {
 rand = rand % range;
 }
 resultPtr = Tcl_GetObjResult(interp);
 Tcl_SetIntObj(resultPtr, rand);
 return TCL_OK;
}

Compare Example 47-2 with Example 47-3. You can see that the two versions of the C
command procedures are similar. The Tcl_GetInt call is replaced with
Tcl_GetIntFromObj call. This receives an integer value from the command argument.
This call can avoid conversion from string to integer if the Tcl_Obj value is already an
integer.

The result is set by getting a handle on the result object and setting its value. This is done
instead of accessing the interp->result field directly:

resultPtr = Tcl_GetObjResult(interp);
Tcl_SetIntObj(resultPtr, rand);

The Tcl_WrongNumArgs procedure is a convenience procedure that formats an error
message. You pass in objv, the number of arguments to use from it, and additional string.
The example creates this message:

wrong # args: should be "random ?range?"

Example 47-3 does not do anything obvious about storage management. Tcl initializes the
result object before calling your command procedure and takes care of cleaning it up later.

Chapter 47. C Programming and Tcl Page 13 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is sufficient to set a value and return TCL_OK or TCL_ERROR. In more complex cases,
however, you have to worry about reference counts to Tcl_Obj values. This is described
in more detail later.

If your command procedure returns a string, then you will use Tcl_SetStringObj. This
command makes a copy of the string you pass it. The new Tcl interfaces that take strings
also take length arguments so you can pass binary data in strings. If the length is minus 1,
then the string is terminated by a NULL byte. A command that always returned "boring"
would do this:

resultPtr = Tcl_GetObjResult(interp);
Tcl_SetStringObj(resultPtr, "boring", -1);

This is a bit too boring. In practice you may need to build up the result piecemeal. With
the string-based API, you use Tcl_AppendResult. With the Tcl_Obj API you get a
pointer to the result and use Tcl_AppendToObj or Tcl_AppendStringsToObj:

resultPtr = Tcl_GetObjResult(interp);
Tcl_AppendStringsToObj(resultPtr, "hello ", username, NULL);

Managing Tcl_Obj Reference Counts
The string-based interfaces copy strings when passing arguments and returning results,
but the Tcl_Obj interfaces manipulate reference counts to avoid these copy operations.
References come from Tcl variables, from the interpreter's result, and from sharing caused
when a value is passed into a Tcl procedure. Constants are also shared. When a C command
procedure is called, Tcl does not automatically increment the reference count on the
arguments. However, each Tcl_Obj referenced by objv will have at least one reference,
and it is quite common to have two or more references.

The C type definition for Tcl_Obj is shown below. There are APIs to access all aspects of
an object, so you should refrain from manipulating a Tcl_Obj directly unless you are
implementing a new type:

Chapter 47. C Programming and Tcl Page 14 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-4. The Tcl_Obj structure

typedef struct Tcl_Obj {
 int refCount; /* Counts number of shared references */
 char *bytes; /* String representation */
 int length; /* Number of bytes in the string */
 Tcl_ObjType *typePtr;/* Type implementation */
 union {
 long longValue; /* Type data */
 double doubleValue;
 VOID *otherValuePtr;
 struct {
 VOID *ptr1;
 VOID *ptr2;
 } twoPtrValue;
 } internalRep;
} Tcl_Obj;

Each type implementation provides a few procedures like this:

Tcl_GetTypeFromObj(interp, objPtr, valuePtr);
Tcl_SetTypeObj(resultPtr, value);
objPtr = Tcl_NewTypeObj(value);

The initial reference count is zero.

The Tcl_NewTypeObj allocates storage for a Tcl_Obj and sets its reference count to
zero. Tcl_IncrRefCount and Tcl_DecrRefCount increment and decrement the
reference count on an object. Tcl_DecrRefCount frees the storage for Tcl_Obj when
it goes to zero. The initial reference count of zero was chosen because functions like
Tcl_SetObjResult automatically increment the reference count on an object.

The Tcl_GetTypeFromObj and Tcl_SetTypeObj procedures just get and set the value;
the reference count does not change. Type conversions are automatic. You can set a
Tcl_Obj value to an integer and get back a string or double precision number later. The
type implementations automatically take care of the storage for the Tcl_Obj value as it
changes. Of course, if a Tcl_Obj stays the same type, then no string conversions are
necessary and accesses are more efficient.

Modifying Tcl_Obj Values
It is not safe to modify a shared Tcl_Obj. The sharing is only for efficiency: Logically,
each reference is a copy, and you must honor this model when creating and modifying

Chapter 47. C Programming and Tcl Page 15 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tcl_Obj values. Tcl_IsShared returns 1 if there is more than one reference to an object.
If a command procedure modifies a shared object, it must make a private copy with
Tcl_DuplicateObj. The new copy starts with a reference count of zero. You either pass
this to Tcl_SetResultObj, which adds a reference, or you have to explicitly add a
reference to the copy with Tcl_IncrRefCount.

Example 47-5 implements a plus1 command that adds one to its argument. If the
argument is not shared, then plus1 can be implemented efficiently by modifying the
native representation of the integer. Otherwise, it has to make a copy of the object before
modifying it:

Example 47-5. The Plus1ObjCmd procedure

/*
 * Plus1ObjCmd --
 * This adds one to its input argument.
 */
int
Plus1ObjCmd(ClientData clientData, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 Tcl_Obj *objPtr;
 int i;
 if (objc != 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "value");
 return TCL_ERROR;
 }
 objPtr = objv[1];
 if (Tcl_GetIntFromObj(interp, objPtr, &i) != TCL_OK) {
 return TCL_ERROR;
 }
 if (Tcl_IsShared(objPtr)) {
 objPtr = Tcl_DuplicateObj(objPtr); /* refCount 0 */
 Tcl_IncrRefCount(objPtr); /* refCount 1*/
 }
 /*
 * Assert objPtr has a refCount of one here.
 * OK to set the unshared value to something new.
 * Tcl_SetIntObj overwrites the old value.
 */
 Tcl_SetIntObj(objPtr, i+1);
 /*
 * Setting the result object adds a new reference,
 * so we decrement because we no longer care about
 * the integer object we modified.
 */
 Tcl_SetObjResult(interp, objPtr); /* refCount 2*/
 Tcl_DecrRefCount(objPtr); /* refCount 1*/
 /*
 * Now only the interpreter result has a reference to objPtr.
 */
 return TCL_OK;
}

Chapter 47. C Programming and Tcl Page 16 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Pitfalls of Shared Tcl_Obj Values
You have to be careful when using the values from a Tcl_Obj structure. The Tcl C library
provides many procedures like Tcl_GetStringFromObj, Tcl_GetIntFromObj,
Tcl_GetListFromObj, and so on. These all operate efficiently by returning a pointer to
the native representation of the object. They will convert the object to the requested type,
if necessary. The problem is that shared values can undergo type conversions that may
invalidate your reference to a particular type of the value.

Value references are only safe until the next
Tcl_Get*FromObj call.

Consider a command procedure that takes two arguments, an integer and a list. The
command procedure has a sequence of code like this:

Tcl_ListObjGetElements(interp, objv[1], &objc, &listPtr);
/* Manipulate list */
Tcl_GetIntFromObj(interp, objv[2], &int);
/* list may be invalid here */

If, by chance, both arguments have the same value, (e.g., 1 and 1), which is possible for a
Tcl list and an integer, then Tcl will automatically arrange to share these values between
both arguments. The pointers in objv[1] and objv[2] will be the same, and the
reference count on the Tcl_Obj they reference will be at least 2. The first
Tcl_ListObjGetElements call ensures the value is of type list, and it returns a direct
pointer to the native list representation. However, Tcl_GetIntFromObj then helpfully
converts the Tcl_Obj value to an integer. This deallocates the memory for the list
representation, and now listPtr is a dangling pointer! This particular example can be
made safe by reversing the calls because Tcl_GetIntFromObj copies the integer value:

Tcl_GetIntFromObj(interp, objv[2], &int);
Tcl_ListObjGetElements(interp, objv[1], &objc, &listPtr);
/* int is still a good copy of the value */

By the way, you should always test your Tcl_Get* calls in case the format of the value is
incompatible with the requested type. If the object is not a valid list, the following
command returns an error:

if (Tcl_ListObjGetElements(interp, obj[1], &objc, &listPtr)

Chapter 47. C Programming and Tcl Page 17 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 != TCL_OK) {
 return TCL_ERROR;
}

The blob Command Example

This section illustrates some standard coding practices with a bigger example. The example
is still artificial in that it doesn't actually do very much. However, it illustrates a few more
common idioms you should know about when creating Tcl commands.

The blob command creates and manipulates blobs. Each blob has a name and some
associated properties. The blob command uses a hash table to keep track of blobs by their
name. The hash table is an example of state associated with a command that needs to be
cleaned up when the Tcl interpreter is destroyed. The Tcl hash table implementation is
nice and general, too, so you may find it helpful in a variety of situations.

You can associate a Tcl script with a blob. When you poke the blob, it invokes the script.
This shows how easy it is to associate behaviors with your C extensions. Example 47-6
shows the data structures used to implement blobs.

Example 47-6. The Blob and BlobState data structures

/*
 * The Blob structure is created for each blob.
 */
typedef struct Blob {
 int N; /* Integer-valued property */
 Tcl_Obj *objPtr; /* General property */
 Tcl_Obj *cmdPtr; /* Callback script */
} Blob;
/*
 * The BlobState structure is created once for each interp.
 */
typedef struct BlobState {
 Tcl_HashTable hash; /* List blobs by name */
 int uid; /* Used to generate names */
} BlobState;

Creating and Destroying Hash Tables
Example 47-7 shows the Blob_Init and BlobCleanup procedures. Blob_Init creates
the command and initializes the hash table. It registers a delete procedure,
BlobCleanup, that will clean up the hash table.

The Blob_Init procedure allocates and initializes a hash table as part of the
BlobState structure. This structure is passed into Tcl_CreateObjCommand as the

Chapter 47. C Programming and Tcl Page 18 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ClientData, and gets passed back to BlobCmd later. You might be tempted to have a
single static hash table structure instead of allocating one. However, it is quite possible
that a process has many Tcl interpreters, and each needs its own hash table to record its
own blobs.

When the hash table is initialized, you specify what the keys are. In this case, the name of
the blob is a key, so TCL_STRING_KEYS is used. If you use an integer key, or the address
of a data structure, use TCL_ONE_WORD_KEYS. You can also have an array of integers (i.e.,
a chunk of data) for the key. In this case, pass in an integer larger than 1 that represents
the size of the integer array used as the key.

The BlobCleanup command cleans up the hash table. It iterates through all the elements
of the hash table and gets the value associated with each key. This value is cast into a pointer
to a Blob data structure. This iteration is a special case because each entry is deleted as
we go by the BlobDelete procedure. If you do not modify the hash table, you continue
the search with Tcl_NextHashEntry instead of calling Tcl_FirstHashEntry
repeatedly.

Chapter 47. C Programming and Tcl Page 19 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-7. The Blob_Init and BlobCleanup procedures

/*
 * Forward references.
 */

int BlobCmd(ClientData data, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
int BlobCreate(Tcl_Interp *interp, BlobState *statePtr);
void BlobCleanup(ClientData data);

/*
 * Blob_Init --
 *
 * Initialize the blob module.
 *
 * Side Effects:
 * This allocates the hash table used to keep track
 * of blobs. It creates the blob command.
 */
int
Blob_Init(Tcl_Interp *interp)
{
 BlobState *statePtr;
 /*
 * Allocate and initialize the hash table. Associate the
 * BlobState with the command by using the ClientData.
 */
 statePtr = (BlobState *)ckalloc(sizeof(BlobState));
 Tcl_InitHashTable(&statePtr->hash, TCL_STRING_KEYS);
 statePtr->uid = 0;
 Tcl_CreateObjCommand(interp, "blob", BlobCmd,
 (ClientData)statePtr, BlobCleanup);
 return TCL_OK;
}

/*
 * BlobCleanup --
 * This is called when the blob command is destroyed.
 *
 * Side Effects:
 * This walks the hash table and deletes the blobs it
* contains. Then it deallocates the hash table.
 */

void
BlobCleanup(ClientData data)
{
 BlobState *statePtr = (BlobState *)data;
 Blob *blobPtr;
 Tcl_HashEntry *entryPtr;
 Tcl_HashSearch search;

 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 while (entryPtr != NULL) {
 blobPtr = Tcl_GetHashValue(entryPtr);
 BlobDelete(blobPtr, entryPtr);
 /*
 * Get the first entry again, not the "next" one,
 * because we just modified the hash table.
 */
 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 }
 ckfree((char *)statePtr);
}

Chapter 47. C Programming and Tcl Page 20 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tcl_Alloc, ckalloc, and malloc
Tcl provides its own memory allocator, Tcl_Alloc and Tcl_Free, which can be used to
replace poor malloc implementations that some systems have. Tcl 8.4 has a new allocator
that supports threaded applications well. The memory allocator also supports memory
debugging if you compile with -DTCL_MEM_DEBUG. A Tcl memory command is added that
reports on memory use and can help you track down memory problems.

To support optional memory debugging, tcl.h defines ckalloc and ckfree macros that
call different allocation routines depending on compile-time options. Because of this, your
code should not use malloc and free directly, nor should it call Tcl_Alloc and
Tcl_Free directly. Use the ckalloc and ckfree macros everywhere. In general, it is
not safe to allocate memory with Tcl_Alloc or ckalloc and free it with free, or allocate
memory with malloc and free it with Tcl_Free or ckfree. Also, if you compile some
code with -DTCL_MEM_DEBUG, and some code without that option, you get an immediate
crash.

Parsing Arguments and Tcl_GetIndexFromObj
Example 47-8 shows the BlobCmd command procedure. This illustrates a basic framework
for parsing command arguments. The Tcl_GetIndexFromObj procedure is used to map
from the first argument (e.g., "names") to an index (e.g., NamesIx). This does error
checking and formats an error message if the first argument doesn't match. All of the
subcommands except "create" and "names" use the second argument as the name of a blob.
This name is looked up in the hash table with Tcl_FindHashEntry, and the
corresponding Blob structure is fetched using Tcl_GetHashValue. After the argument
checking is complete, BlobCmd dispatches to the helper procedures to do the actual work:

Chapter 47. C Programming and Tcl Page 21 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-8. The BlobCmd command procedure

/*
 * BlobCmd --
 *
 * This implements the blob command, which has these
 * subcommands:
 * create
 * command name ?script?
 * data name ?value?
 * N name ?value?
 * names ?pattern?
 * poke name
 * delete name
 *
 * Results:
 * A standard Tcl command result.
 */
int
BlobCmd(ClientData data, Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[])
{
 BlobState *statePtr = (BlobState *)data;
 Blob *blobPtr;
 Tcl_HashEntry *entryPtr;
 Tcl_Obj *valueObjPtr;

 /*
 * The subCmds array defines the allowed values for the
 * first argument. These are mapped to values in the
 * BlobIx enumeration by Tcl_GetIndexFromObj.
 */

 char *subCmds[] = {
 "create", "command", "data", "delete", "N", "names",
 "poke", NULL
 };
 enum BlobIx {
 CreateIx, CommandIx, DataIx, DeleteIx, NIx, NamesIx,
 PokeIx
 };
 int result, index;

 if (objc == 1 || objc > 4) {
 Tcl_WrongNumArgs(interp, 1, objv, "option ?arg ...?");
 return TCL_ERROR;
 }
 if (Tcl_GetIndexFromObj(interp, objv[1], subCmds,
 "option", 0, &index) != TCL_OK) {
 return TCL_ERROR;
 }
 if (((index == NamesIx || index == CreateIx) &&
 (objc > 2)) ||
 ((index == PokeIx || index == DeleteIx) &&
 (objc == 4))) {
 Tcl_WrongNumArgs(interp, 1, objv, "option ?arg ...?");
 return TCL_ERROR;
 }
 if (index == CreateIx) {
 return BlobCreate(interp, statePtr);
 }
 if (index == NamesIx) {
 return BlobNames(interp, statePtr);
 }
 if (objc < 3) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "option blob ?arg ...?");
 return TCL_ERROR;
 } else if (objc == 3) {
 valueObjPtr = NULL;

Chapter 47. C Programming and Tcl Page 22 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 } else {
 valueObjPtr = objv[3];
 }
 /*
 * The rest of the commands take a blob name as the third
 * argument. Hash from the name to the Blob structure.
 */
 entryPtr = Tcl_FindHashEntry(&statePtr->hash,
 Tcl_GetString(objv[2]));
 if (entryPtr == NULL) {
 Tcl_AppendResult(interp, "Unknown blob: ",
 Tcl_GetString(objv[2]), NULL);
 return TCL_ERROR;
 }
 blobPtr = (Blob *)Tcl_GetHashValue(entryPtr);
 switch (index) {
 case CommandIx: {
 return BlobCommand(interp, blobPtr, valueObjPtr);
 }
 case DataIx: {
 return BlobData(interp, blobPtr, valueObjPtr);
 }
 case NIx: {
 return BlobN(interp, blobPtr, valueObjPtr);
 }
 case PokeIx: {
 return BlobPoke(interp, blobPtr);
 }
 case DeleteIx: {
 return BlobDelete(blobPtr, entryPtr);
 }
 }
}

Creating and Removing Elements from a Hash Table
The real work of BlobCmd is done by several helper procedures. These form the basis of a
C API to operate on blobs as well. Example 47-9 shows the BlobCreate and
BlobDelete procedures. These procedures manage the hash table entry, and they
allocate and free storage associated with the blob.

Chapter 47. C Programming and Tcl Page 23 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-9. BlobCreate and BlobDelete

int
BlobCreate(Tcl_Interp *interp, BlobState *statePtr)
{
 Tcl_HashEntry *entryPtr;
 Blob *blobPtr;
 int new;
 char name[20];
 /*
 * Generate a blob name and put it in the hash table
 */
 statePtr->uid++;
 sprintf(name, "blob%d", statePtr->uid);
 entryPtr = Tcl_CreateHashEntry(&statePtr->hash, name, &new);
 /*
 * Assert new == 1
 */
 blobPtr = (Blob *)ckalloc(sizeof(Blob));
 blobPtr->N = 0;
 blobPtr->objPtr = NULL;
 blobPtr->cmdPtr = NULL;
 Tcl_SetHashValue(entryPtr, (ClientData)blobPtr);
 /*
 * Copy the name into the interpreter result.
 */
 Tcl_SetStringObj(Tcl_GetObjResult(interp), name, -1);
 return TCL_OK;
}
int
BlobDelete(Blob *blobPtr, Tcl_HashEntry *entryPtr)
{
 Tcl_DeleteHashEntry(entryPtr);
 if (blobPtr->cmdPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->cmdPtr);
 }
 if (blobPtr->objPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->objPtr);
 }
 /*
 * Use Tcl_EventuallyFree because of the Tcl_Preserve
 * done in BlobPoke. See page 716.
 */
 Tcl_EventuallyFree((char *)blobPtr, Tcl_Free);
 return TCL_OK;
}

Building a List
The BlobNames procedure iterates through the elements of the hash table using
Tcl_FirstHashEntry and Tcl_NextHashEntry. It builds up a list of the names as it
goes along. Note that the object reference counts are managed for us. The
Tcl_NewStringObj returns a Tcl_Obj with reference count of zero. When that object
is added to the list, the Tcl_ListObjAppendElement procedure increments the
reference count. Similarly, the Tcl_NewListObj returns a Tcl_Obj with reference count
zero, and its reference count is incremented by Tcl_SetObjResult:

Chapter 47. C Programming and Tcl Page 24 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-10. The BlobNames procedure

int
BlobNames(Tcl_Interp *interp, BlobState *statePtr)
{
 Tcl_HashEntry *entryPtr;
 Tcl_HashSearch search;
 Tcl_Obj *listPtr;
 Tcl_Obj *objPtr;
 char *name;
 /*
 * Walk the hash table and build a list of names.
 */
 listPtr = Tcl_NewListObj(0, NULL);
 entryPtr = Tcl_FirstHashEntry(&statePtr->hash, &search);
 while (entryPtr != NULL) {
 name = Tcl_GetHashKey(&statePtr->hash, entryPtr);
 if (Tcl_ListObjAppendElement(interp, listPtr,
 Tcl_NewStringObj(name, -1)) != TCL_OK) {
 return TCL_ERROR;
 }
 entryPtr = Tcl_NextHashEntry(&search);
 }
 Tcl_SetObjResult(interp, listPtr);
 return TCL_OK;
}

Keeping References to Tcl_Obj Values
A blob has two simple properties: an integer N and a general Tcl_Obj value. You can query
and set these properties with the BlobN and BlobData procedures. The BlobData
procedure keeps a pointer to its Tcl_Obj argument, so it must increment the reference
count on it:

Chapter 47. C Programming and Tcl Page 25 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-11. The BlobN and BlobData procedures

int
BlobN(Tcl_Interp *interp, Blob *blobPtr, Tcl_Obj *objPtr)
{
 int N;
 if (objPtr != NULL) {
 if (Tcl_GetIntFromObj(interp, objPtr, &N) != TCL_OK) {
 return TCL_ERROR;
 }
 blobPtr->N = N;
 } else {
 N = blobPtr->N;
 }
 Tcl_SetObjResult(interp, Tcl_NewIntObj(N));
 return TCL_OK;
}
int
BlobData(Tcl_Interp *interp, Blob *blobPtr, Tcl_Obj *objPtr)
{
 if (objPtr != NULL) {
 if (blobPtr->objPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->objPtr);
 }
 Tcl_IncrRefCount(objPtr);
 blobPtr->objPtr = objPtr;
 }
 if (blobPtr->objPtr != NULL) {
 Tcl_SetObjResult(interp, blobPtr->objPtr);
 }
 return TCL_OK;
}

Using Tcl_Preserve and Tcl_Release to Guard Data
The BlobCommand and BlobPoke operations let you register a Tcl command with a blob
and invoke the command later. Whenever you evaluate a Tcl command like this, you must
be prepared for the worst. It is quite possible for the command to turn around and delete
the blob it is associated with! The Tcl_Preserve, Tcl_Release, and
Tcl_EventuallyFree procedures are used to handle this situation. BlobPoke calls
Tcl_Preserve on the blob before calling Tcl_Eval. BlobDelete calls
Tcl_EventuallyFree instead of Tcl_Free. If the Tcl_Release call has not yet been
made, then Tcl_EventuallyFree just marks the memory for deletion, but does not free
it immediately. The memory is freed later by Tcl_Release. Otherwise,
Tcl_EventuallyFree frees the memory directly and Tcl_Release does nothing.
Example 47-12 shows BlobCommand and BlobPoke:

Chapter 47. C Programming and Tcl Page 26 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-12. The BlobCommand and BlobPoke procedures

int
BlobCommand(Tcl_Interp *interp, Blob *blobPtr,
 Tcl_Obj *objPtr)
{
 if (objPtr != NULL) {
 if (blobPtr->cmdPtr != NULL) {
 Tcl_DecrRefCount(blobPtr->cmdPtr);
 }
 Tcl_IncrRefCount(objPtr);
 blobPtr->cmdPtr = objPtr;
 }
 if (blobPtr->cmdPtr != NULL) {
 Tcl_SetObjResult(interp, blobPtr->cmdPtr);
 }
 return TCL_OK;
}
int
BlobPoke(Tcl_Interp *interp, Blob *blobPtr)
{
 int result = TCL_OK;
 if (blobPtr->cmdPtr != NULL) {
 Tcl_Preserve(blobPtr);
 result = Tcl_EvalObj(interp, blobPtr->cmdPtr);
 /*
 * Safe to use blobPtr here
 */
 Tcl_Release(blobPtr);
 /*
 * blobPtr may not be valid here
 */
 }
 return result;
}

It turns out that BlobCmd does not actually use the blobPtr after calling
Tcl_EvalObj, so it could get away without using Tcl_Preserve and Tcl_Release.
These procedures do add some overhead: They put the pointer onto a list of preserved
pointers and have to take it off again. If you are careful, you can omit these calls. However,
it is worth noting the potential problems caused by evaluating arbitrary Tcl scripts!

CONST in the Tcl 8.4 APIs

The const keyword in C is used to create a read-only variable. Once it is set, it cannot be
modified. A common use of CONST is in parameter declarations to imply that the parameter
cannot be modified by a procedure. The Tcl API definitions use a CONST macro instead of
const to allow for older compilers that do not support const.

Several of the Tcl APIs were changed in Tcl 8.4 to include CONST where they previously
did not. The most significant change is in the signature of string-based command
procedures like RandomCmd in this chapter. Changes to tcl.h are generally backward
compatible, so this change met with some debate. Most liked the addition of CONST

Chapter 47. C Programming and Tcl Page 27 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

because it allows better error checking, but the changes cause compiler warning messages
if you compile old code with the 8.4 tcl.h. In some organizations, even compiler warnings
are not allowed in code, so you may be compelled to clean up your code.

There are two reasons you may not be able to change older code. First, you may need to
compile the same code against older and newer versions of Tcl. Second, you may not have
the time to clean up the code. CONST definitions have a tendency to percolate throughout
your code. To support these scenarios, 8.4 adds compile-time defines that change the effect
of the CONST additions. Table 47-1 describes these definitions:

Table 47-1. Defines to control the meaning of CONST in the Tcl APIs

NO_CONST This defines CONST to nothing so no const keywords are used at all. This define has existed for some
time.

USE_NON_CONST Do not use any of the new CONST keywords added in Tcl 8.4.

USE_COMPAT_CONST Only use the CONST keywords added for the return values of the Tcl 8.4 APIs. Almost all APIs return
CONST values now.

Strings and Internationalization

There are two important topics related to string handling: creating strings dynamically
and translating strings between character set encodings. These issues do not show up in
the simple examples we have seen so far, but they will arise in more serious applications.

The DString Interface
It is often the case that you have to build up a string from pieces. The Tcl_DString data
type and a related API are designed to make this efficient. The DString interface hides
the memory management issues, and the Tcl_DString data type starts out with a small
static buffer, so you can often avoid allocating memory if you put a Tcl_String type on
the stack (i.e., as a local variable). The standard code sequence goes something like this:

Tcl_DString ds;
Tcl_DStringInit(&ds);
Tcl_DStringAppend(&ds, "some value", -1);
Tcl_DStringAppend(&ds, "something else", -1);
Tcl_DStringResult(interp, &ds);

The Tcl_DStringInit call initializes a string pointer inside the structure to point to a
static buffer that is also inside the structure. The Tcl_DStringAppend call grows the
string. If it would exceed the static buffer, then a new buffer is allocated dynamically and

Chapter 47. C Programming and Tcl Page 28 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the string is copied into it. The last argument to Tcl_DStringAppend is a length, which
can be minus 1 if you want to copy until the trailing NULL byte in your string. You can use
the string value as the result of your Tcl command with Tcl_DStringResult. This passes
ownership of the string to the interpreter and automatically cleans up the
Tcl_DString structure.

If you do not use the string as the interpreter result, then you must call
Tcl_DStringFree to ensure that any dynamically allocated memory is released:

Tcl_DStringFree(&ds);

You can get a direct pointer to the string you have created with Tcl_DStringValue:

name = Tcl_DStringValue(&ds);

There are a handful of additional procedures in the DString API that you can read about
in the reference material. There are some that create lists, but this is better done with the
Tcl_Obj interface (e.g., Tcl_NewListObj and friends).

To some degree, a Tcl_Obj can replace the use of a Tcl_DString. For example, the
Tcl_NewStringObj and Tcl_AppendToObj allocate a Tcl_Obj and append strings to
it. However, there are a number of Tcl API procedures that take Tcl_DString types as
arguments instead of the Tcl_Obj type. Also, for small strings, the DString interface is
still more efficient because it can do less dynamic memory allocation.

Character Set Conversions
As described in Chapter 15, Tcl uses UTF-8 strings internally. UTF-8 is a representation
of Unicode that does not contain NULL bytes. It also represents 7-bit ASCII characters in
one byte, so if you have old C code that only manipulates ASCII strings, it can coexist with
Tcl without modification.

However, in more general cases, you may need to convert between UTF-8 strings you get
from Tcl_Obj values to strings of a particular encoding. For example, when you pass
strings to the operating system, it expects them in its native encoding, which might be 16-
bit Unicode, ISO-Latin-1 (i.e., iso-8859-1), or something else.

Tcl provides an encoding API that does translations for you. The simplest calls use a
Tcl_DString to store the results because it is not possible to predict the size of the result
in advance. For example, to convert from a UTF-8 string to a Tcl_DString in the
system encoding, you use this call:

Chapter 47. C Programming and Tcl Page 29 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch15#ch15

Tcl_UtfToExternalDString(NULL, string, -1, &ds);

You can then pass Tcl_DStringValue(&ds) to your system call that expects a native
string. Afterwards you need to call Tcl_DStringFree(&ds) to free up any memory
allocated by Tcl_UtfToExternalDString.

To translate strings the other way, use Tcl_ExternalToUtfDString:

Tcl_ExternalToUtfDString(NULL, string, -1, &ds);

The third argument to these procedures is the length of string in bytes (not
characters), and minus 1 means that Tcl should calculate it by looking for a NULL byte.
Tcl stores its UTF-8 strings with a NULL byte at the end so it can do this.

The first argument to these procedures is the encoding to translate to or from. NULL
means the system encoding. If you have data in nonstandard encodings, or need to
translate into something other than the system encoding, you need to get a handle on the
encoding with Tcl_GetEncoding, and free that handle later with
Tcl_FreeEncoding:

encoding = Tcl_GetEncoding(interp, name);
Tcl_FreeEncoding(encoding);

The names of the encodings are returned by the encoding names Tcl command, and you
can query them with a C API, too.

Windows has a quirky string data type called TCHAR, which is an 8-bit byte on Windows
95/98, and a 16-bit Unicode character on Windows NT and Windows CE. If you use a C
API that takes an array of TCHAR, then you have to know what kind of system you are
running on to use it properly. Tcl provides two procedures that deal with this automatically.
Tcl_WinTCharToUf works like Tcl_ExternalToUtfDString, and
Tcl_WinUtfToTChar works like Tcl_UtfToExternalDString:

Tcl_WinUtfToTChar(string, -1, &ds);
Tcl_WinTCharToUtf(string, -1, &ds);

Finally, Tcl has several procedures to work with Unicode characters, which are type
Tcl_UniChar, and UTF-8 encoded characters. Examples include Tcl_UniCharToUtf,
Tcl_NumUtfChars, and Tcl_UtfToUniCharDString. Consult the reference materials
for details about these procedures.

Chapter 47. C Programming and Tcl Page 30 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tcl_Main and Tcl_AppInit

This section describes how to make a custom main program that includes Tcl. However,
the need for custom main programs has been reduced by the use of loadable modules. If
you create your commands as a loadable package, you can just load them into tclsh or
wish. Even if you do not need a custom main, this section will explain how all the pieces
fit together.

The Tcl library supports the basic application structure through the Tcl_Main procedure
that is designed to be called from your main program. Tcl_Main does three things:

• It calls Tcl_CreateInterp to create an interpreter that includes all the standard
Tcl commands like set and proc. It also defines a few Tcl variables like argc and
argv. These have the command-line arguments that were passed to your application.

• It calls Tcl_AppInit, which is not part of the Tcl library. Instead, your application
provides this procedure. In Tcl_AppInit you can register additional application-
specific Tcl commands.

• It reads a script or goes into an interactive loop.

You call Tcl_Main from your main program and provide an implementation of the
Tcl_AppInit procedure:

Chapter 47. C Programming and Tcl Page 31 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-13. A canonical Tcl main program and Tcl_AppInit

/* main.c */
#include <tcl.h>
int Tcl_AppInit(Tcl_Interp *interp);
/*
 * Declarations for application-specific command procedures
 */
int Plus1ObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);

main(int argc, char *argv[]) {
 /*
 * Initialize your application,
 * then initialize and run Tcl.
 */
 Tcl_Main(argc, argv, Tcl_AppInit);
 exit(0);
}
/*
 * Tcl_AppInit is called from Tcl_Main after the Tcl
 * interpreter has been created, and before the script file
 * or interactive command loop is entered.
 */
int
Tcl_AppInit(Tcl_Interp *interp) {
 /*
 * Tcl_Init reads init.tcl from the Tcl script library.
 */
 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 /*
 * Register application-specific commands.
 */
 Tcl_CreateObjCommand(interp, "plus1", Plus1ObjCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Random_Init(interp);
 Blob_Init(interp);
 /*
 * This file is read if no script is supplied.
 */
 Tcl_SetVar(interp, "tcl_rcFileName", "~/.mytcl",
 TCL_GLOBAL_ONLY);
 /*
 * Test of Tcl_Invoke, which is defined on page 725.
 */
 Tcl_Invoke(interp, "set", "foo", "$xyz [foo] {", NULL);
 return TCL_OK;
}

The main program calls Tcl_Main with the argc and argv parameters passed into the
program. These are the strings passed to the program on the command line, and
Tcl_Main will store these values into Tcl variables by the same name. Tcl_Main is also
given the address of the initialization procedure, which is Tcl_AppInit in our example.
Tcl_AppInit is called by Tcl_Main with one argument, a handle on a newly created
interpreter. There are three parts to the Tcl_AppInit procedure:

• The first part initializes the various packages the application uses. The example calls
Tcl_Init to set up the script library facility described in Chapter 12. The core Tcl

Chapter 47. C Programming and Tcl Page 32 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch12#ch12

commands have already been defined by Tcl_CreateInterp, which is called by
Tcl_Main before the call to Tcl_AppInit.

• The second part of Tcl_AppInit does application-specific initialization. The
example registers the command procedures defined earlier in this Chapter.

• The third part defines a Tcl variable, tcl_RcFileName, which names an application
startup script that executes if the program is used interactively.

You can use your custom program just like tclsh, except that it includes the additional
commands you define in your Tcl_AppInit procedure. The sample makefile on the CD
creates a program named mytcl. You can compile and run that program and test
random and the other commands.

Tk_Main
The structure of Tk applications is similar. The Tk_Main procedure creates a Tcl
interpreter and the main Tk window. It calls out to a procedure you provide to complete
initialization. After your Tk_AppInit returns, Tk_Main goes into an event loop until all
the windows in your application have been destroyed.

Example 47-14 shows a Tk_AppInit used with Tk_Main. The main program processes
its own command-line arguments using Tk_ParseArgv, which requires a Tcl interpreter
for error reporting. The Tk_AppInit procedure initializes the clock widget example that
is the topic of Chapter 49:

Chapter 47. C Programming and Tcl Page 33 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch49#ch49

Example 47-14. A canonical Tk main program and Tk_AppInit

/* main.c */
#include <tk.h>

int Tk_AppInit(Tcl_Interp *interp);

/*
 * A table for command line arguments.
 */
char *myoption1 = NULL;
int myint2 = 0;
static Tk_ArgvInfo argTable[] = {
 {"-myoption1", TK_ARGV_STRING, (char *) NULL,
 (char *) &myoption1, "Explain myoption1"},
 {"-myint2", TK_ARGV_CONSTANT, (char *) 1, (char *) &myint2,
 "Explain myint2"},
 {"", TK_ARGV_END, },
};

main(int argc, char *argv[]) {
 Tcl_Interp *interp;
 /*
 * Call this before creating any interpreters.
 */
 Tcl_FindExecutable();
 /*
 * Create an interpreter for the error message from
 * Tk_ParseArgv. Another one is created by Tk_Main.
 * Parse our arguments and leave the rest to Tk_Main.
 */
 interp = Tcl_CreateInterp();
 if (Tk_ParseArgv(interp, (Tk_Window) NULL, &argc, argv,
 argTable, 0) != TCL_OK) {
 fprintf(stderr, "%s\n", interp->result);
 exit(1);
 }
 Tcl_DeleteInterp(interp);

 Tk_Main(argc, argv, Tk_AppInit);
 exit(0);
}
int ClockCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int ClockObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
void ClockObjDestroy(ClientData clientData);

int
Tk_AppInit(Tcl_Interp *interp) {
 /*
 * Initialize packages
 */
 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 if (Tk_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 /*
 * Define application-specific commands here.
 */
 Tcl_CreateCommand(interp, "wclock", ClockCmd,
 (ClientData)Tk_MainWindow(interp),
 (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "oclock", ClockObjCmd,
 (ClientData)NULL, ClockObjDestroy);
 /*

Chapter 47. C Programming and Tcl Page 34 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 * Define start-up filename. This file is read in
 * case the program is run interactively.
 */
 Tcl_SetVar(interp, "tcl_rcFileName", "~/.mytcl",
 TCL_GLOBAL_ONLY);
 return TCL_OK;
}

The Event Loop
An event loop is used to process window system events and other events like timers and
network sockets. The different event types are described later. All Tk applications must
have an event loop so that they function properly in the window system environment. Tk
provides a standard event loop with the Tk_MainLoop procedure, which is called at the
end of Tk_Main. The wish shell provides an event loop automatically. The tclsh shell does
not, although you can add an event loop using pure Tcl as shown in Example 16-2 on page
230.

Some applications already have their own event loop. You have two choices if you want to
add Tk to such an application. The first is to modify the existing event loop to call
Tcl_DoOneEvent to process any outstanding Tcl events. The unix directory of the source
distribution has a file called XtTest.c that adds Tcl to an Xt (i.e., Motif) application. The
other way to customize the event loop is to make your existing events look like Tcl event
sources, and register them with the event loop. Then you can just use Tk_Main. There are
four event classes, and they are handled in the following order by Tcl_DoOneEvent:

• Window events. Use the Tk_CreateEventHandler procedure to register a handler
for these events. Use the TCL_WINDOW_EVENTS flag to process these in
Tcl_DoOneEvent.

• File events. Use these events to wait on slow devices and network connections. On
UNIX you can register a handler for all files, sockets, and devices with
Tcl_CreateFileHandler. On Windows and Macintosh, there are different APIs
for registration because there are different system handles for files, sockets, and
devices. On all platforms you use the TCL_FILE_EVENTS flag to process these
handlers in Tcl_DoOneEvent.

• Timer events. You can set up events to occur after a specified time period. Use the
Tcl_CreateTimerHandler procedure to register a handler for the event. Use the
TCL_TIMER_EVENTS flag to process these in Tcl_DoOneEvent.

• Idle events. These events are processed when there is nothing else to do. Virtually all
the Tk widgets use idle events to display themselves. Use the Tcl_DoWhenIdle
procedure to register a procedure to call once at the next idle time. Use the
TCL_IDLE_EVENTS flag to process these in Tcl_DoOneEvent.

Chapter 47. C Programming and Tcl Page 35 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch16lev1sec4#ch16list02

Invoking Scripts from C

The main program is not the only place you can evaluate a Tcl script. You can use the
Tcl_Eval procedure essentially at any time to evaluate a Tcl command:

Tcl_Eval(Tcl_Interp *interp, char *script);

The return value of Tcl_Eval is a return code like TCL_OK, TCL_ERROR, TCL_BREAK,
TCL_CONTINUE, or TCL_RETURN. The result of the command is obtained with
Tcl_GetStringResult or Tcl_GetObjResult. Those APIs return whatever was set
with the Tcl_SetResult, Tcl_SetObjResult, or the other APIs used to set the result
of a command procedure.

The script is evaluated in the current Tcl procedure scope, which may be the global scope.
Similarly, calls like Tcl_GetVar and Tcl_SetVar access variables in the current scope.
If for some reason you want a new procedure scope, the easiest thing to do is to call your
C code from a Tcl procedure used for this purpose. It is not easy to create a new procedure
scope with the exported C API.

Tcl_Eval modifies its argument.

You should be aware that Tcl_Eval may modify the string that is passed into it as a side
effect of the way substitutions are performed. If you pass a constant string to Tcl_Eval,
make sure your compiler has not put the string constant into read-only memory. If you
use the gcc compiler, you may need to use the -fwritable-strings option. Chapter
48 shows how to get the right compilation settings for your system.

Variations on Tcl_Eval
There are several variations on Tcl_Eval. The possibilities include strings or Tcl_Obj
values, evaluation at the current or global scope, a single string (or Tcl_Obj value) or a
variable number of arguments, and optional byte-code compilation. The most general
string-based eval is Tcl_EvalEx, which takes a counted string and some flags:

Chapter 47. C Programming and Tcl Page 36 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com//0130385603/ch48#ch48
http://safari.oreilly.com//0130385603/ch48#ch48

Tcl_EvalEx(interp, string, count, flags);

The flags are TCL_GLOBAL_EVAL and TCL_EVAL_DIRECT, which bypasses the byte-code
compiler. For code that is executed only one time, TCL_EVAL_DIRECT may be more
efficient. Tcl_GlobalEval is equivalent to passing in the TCL_GLOBAL_EVAL flag. The
Tcl_VarEval procedure takes a variable number of strings arguments and concatenates
them before evaluation:

Tcl_VarEval(Tcl_Interp *interp, char *str, ..., NULL);

Tcl_EvalObj takes an object as an argument instead of a simple string. The string is
compiled into byte codes the first time it is used. If you are going to execute the script many
times, then the Tcl_Obj value caches the byte codes for you. The general Tcl_Obj value
interface to Tcl_Eval is Tcl_EvalObjEx, which takes the same flags as Tcl_EvalEx:

Tcl_EvalObjEx(interp, objPtr, flags);

For variable numbers of arguments, use Tcl_EvalObjv, which takes an array of
Tcl_Obj pointers. This routine concatenates the string values of the various Tcl_Obj
values before parsing the resulting Tcl command:

Tcl_EvalObjv(interp, objc, objv);

Bypassing Tcl_Eval
In a performance-critical situation, you may want to avoid some of the overhead associated
with Tcl_Eval. David Nichols showed me how to call the implementation of a C command
procedure directly. The trick is facilitated by the Tcl_GetCommandInfo procedure that
returns the address of the C command procedure for a Tcl command, plus its client data
pointer. The Tcl_Invoke procedure is shown in Example 47-15. It is used much like
Tcl_VarEval, except that each of its arguments becomes an argument to the Tcl
command without any substitutions being performed.

For example, you might want to insert a large chunk of text into a text widget without
worrying about the parsing done by Tcl_Eval. You could use Tcl_Invoke like this:

Tcl_Invoke(interp, ".t", "insert", "insert", buf, NULL);

Or:

Chapter 47. C Programming and Tcl Page 37 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tcl_Invoke(interp, "set", "foo", "$xyz [blah] {", NULL);

No substitutions are performed on any of the arguments because Tcl_Eval is out of the
picture. The variable foo gets the following literal value:

$xyz [blah] {

Example 47-15 shows Tcl_Invoke. The procedure is complicated for two reasons. First,
it must handle a Tcl command that has either the object interface or the old string interface.
Second, it has to build up an argument vector and may need to grow its storage in the
middle of building it. It is a bit messy to deal with both at the same time, but it lets us
compare the object and string interfaces. The string interfaces are simpler, but the object
interfaces run more efficiently because they reduce copying and type conversions.

Chapter 47. C Programming and Tcl Page 38 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 47-15. Calling C command procedure directly with Tcl_Invoke

#include <tcl.h>

/*
 * Tcl_Invoke --
 * Directly invoke a Tcl command or procedure
 *
 * Call Tcl_Invoke somewhat like Tcl_VarEval
 * Each arg becomes one argument to the command,
 * with no further substitutions or parsing.
 */
 /* VARARGS2 */ /* ARGSUSED */
int
Tcl_Invoke TCL_VARARGS_DEF(Tcl_Interp *, arg1)
{
 va_list argList;
 Tcl_Interp *interp;
 char *cmd; /* Command name */
 char *arg; /* Command argument */
 char **argv; /* String vector for arguments */
 int argc, i, max; /* Number of arguments */
 Tcl_CmdInfo info; /* Info about command procedures */
 int result; /* TCL_OK or TCL_ERROR */

 interp = TCL_VARARGS_START(Tcl_Interp *, arg1, argList);
 Tcl_ResetResult(interp);

 /*
 * Map from the command name to a C procedure
 */
 cmd = va_arg(argList, char *);
 if (! Tcl_GetCommandInfo(interp, cmd, &info)) {
 Tcl_AppendResult(interp, "unknown command \"",
 cmd, "\"", NULL);
 va_end(argList);
 return TCL_ERROR;
 }

 max = 20; /* Initial size of argument vector */

#if TCL_MAJOR_VERSION > 7
 /*
 * Check whether the object interface is preferred for
 * this command
 */

 if (info.isNativeObjectProc) {
 Tcl_Obj **objv; /* Object vector for arguments */
 Tcl_Obj *resultPtr; /* The result object */
 int objc;

 objv = (Tcl_Obj **) ckalloc(max * sizeof(Tcl_Obj *));
 objv[0] = Tcl_NewStringObj(cmd, strlen(cmd));
 Tcl_IncrRefCount(objv[0]); /* ref count == 1*/
 objc = 1;

 /*
 * Build a vector out of the rest of the arguments
 */

 while (1) {
 arg = va_arg(argList, char *);
 if (arg == (char *)NULL) {
 objv[objc] = (Tcl_Obj *)NULL;
 break;
 }
 objv[objc] = Tcl_NewStringObj(arg, strlen(arg));
 Tcl_IncrRefCount(objv[objc]); /* ref count == 1*/
 objc++;

Chapter 47. C Programming and Tcl Page 39 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if (objc >= max) {
 /* allocate a bigger vector and copy old one */
 Tcl_Obj **oldv = objv;
 max *= 2;
 objv = (Tcl_Obj **) ckalloc(max *
 sizeof(Tcl_Obj *));
 for (i = 0 ; i < objc ; i++) {
 objv[i] = oldv[i];
 }
 Tcl_Free((char *)oldv);
 }
 }
 va_end(argList);

 /*
 * Invoke the C procedure
 */
 result = (*info.objProc)(info.objClientData, interp,
 objc, objv);

 /*
 * Make sure the string value of the result is valid
 * and release our references to the arguments
 */
 (void) Tcl_GetStringResult(interp);
 for (i = 0 ; i < objc ; i++) {
 Tcl_DecrRefCount(objv[i]);
 }
 Tcl_Free((char *)objv);

 return result;
 }
#endif
 argv = (char **) ckalloc(max * sizeof(char *));
 argv[0] = cmd;
 argc = 1;

 /*
 * Build a vector out of the rest of the arguments
 */
 while (1) {
 arg = va_arg(argList, char *);
 argv[argc] = arg;
 if (arg == (char *)NULL) {
 break;
 }
 argc++;
 if (argc >= max) {
 /* allocate a bigger vector and copy old one */
 char **oldv = argv;
 max *= 2;
 argv = (char **) ckalloc(max * sizeof(char *));
 for (i = 0 ; i < argc ; i++) {
 argv[i] = oldv[i];
 }
 Tcl_Free((char *) oldv);
 }
 }
 va_end(argList);

 /*
 * Invoke the C procedure
 */
 result = (*info.proc)(info.clientData, interp, argc, argv);

 /*
 * Release the arguments
 */
 Tcl_Free((char *) argv);
 return result;
}

Chapter 47. C Programming and Tcl Page 40 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This version of Tcl_Invoke was contributed by Jean Brouwers. He uses
TCL_VARARGS_DEF and TCL_VARARGS_START macros to define procedures that take a
variable number of arguments. These standard Tcl macros hide the differences in the way
you do this on different operating systems and different compilers. It turns out that there
are numerous minor differences between compilers that can cause portability problems
in a variety of situations. Happily, there is a nice scheme used to discover these differences
and write code in a portable way. This is the topic of the next chapter.

Chapter 47. C Programming and Tcl Page 41 Return to Table of Contents

Chapter 47. C Programming and Tcl
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	C Programming and Tcl
	Basic Concepts
	Creating a Loadable Package
	A C Command Procedure
	The blob Command Example
	CONST in the Tcl 8.4 APIs
	Strings and Internationalization
	Tcl_Main and Tcl_AppInit
	The Event Loop
	Invoking Scripts from C

