

Table of Contents

Writing a Tk Widget in C.. 1
Initializing the Extension.. 1
The Widget Data Structure... 2
The Widget Class Command... 3
The Widget Instance Command... 7
Configuring and Reconfiguring Attributes.. 11
Specifying Widget Attributes... 15
Displaying the Clock.. 21
The Window Event Procedure.. 25
Final Cleanup.. 26

Chapter 49. Writing a Tk Widget in C

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 49. Writing a Tk Widget in C

This chapter describes the implementation of a simple clock widget. Two implementations
are shown: the original string-based command interface and the Tcl_Obj command
interface.

A custom widget implemented in C has the advantage of being efficient and flexible.
However, it requires more work, too. This chapter illustrates the effort by explaining the
implementation of a clock widget. It is a digital clock that displays the current time
according to a format string. This is something you could implement in several lines of Tcl
using a label widget, the clock command, and after for periodic updates. However, the
point of the example is to show the basic structure for a Tk widget implemented in C, not
how much easier Tcl programming is :-). The implementation of a widget includes:

• A data structure to describe one instance of the widget.
• A class procedure to create a new instance of the widget.
• An instance procedure to operate on an instance of the widget.
• A set of configuration options for the widget.
• A configuration procedure used when creating and reconfiguring the widget.
• An event handling procedure.
• A display procedure.
• Other widget-specific procedures.

Two implementations are compared: string-based and Tcl_Obj based. The version that
uses Tcl_Obj values can interpret command line options more efficiently. A new option
parsing package hides most of the details. The string-based version of each procedure is
shown first, and then the Tcl_Obj version is shown for comparison. The display portion
of the code is the same in the two versions.

Initializing the Extension

The widget is packaged as an extension that you can dynamically load into wish. Example
49-1 shows the Clock_Init procedure. It registers two commands, clock and oclock,
which use the string-based and Tcl_Obj interfaces, respectively. It also initializes the stub
table, which is described in Chapter 48, and declares a package so that scripts can load the
widget with package require.

Chapter 49. Writing a Tk Widget in C Page 1 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com//0130385603/ch48#ch48

Example 49-1. The Clock_Init procedure

int ClockCmd(ClientData clientData,
 Tcl_Interp *interp,
 int argc, CONST char *argv[]);
int ClockObjCmd(ClientData clientData,
 Tcl_Interp *interp,
 int objc, Tcl_Obj *CONST objv[]);
void ClockObjDelete(ClientData clientData);

/*
 * Clock_Init is called when the package is loaded.
 */

int Clock_Init(Tcl_Interp *interp) {
 if (Tcl_InitStubs(interp, "8.1", 0) == NULL) {
 return TCL_ERROR;
 }
 Tcl_CreateCommand(interp, "wclock", ClockCmd,
 (ClientData)NULL, (Tcl_CmdDeleteProc *)NULL);
 Tcl_CreateObjCommand(interp, "oclock", ClockObjCmd,
 (ClientData)NULL, ClockObjDelete);
 Tcl_PkgProvide(interp, "Tkclock", "1.0");
 return TCL_OK;
}

The Widget Data Structure

Each widget is associated with a data structure that describes it. Any widget structure will
need a pointer to the Tcl interpreter, the Tk window, and the display. The interpreter is
used in most of the Tcl and Tk library calls, and it provides a way to call out to the script
or query and set Tcl variables. The Tk window is needed for various Tk operations, and the
display is used when doing low-level graphic operations. The rest of the information in the
data structure depends on the widget. The different types will be explained as they are used
in the rest of the code. The structure for the clock widget follows:

Chapter 49. Writing a Tk Widget in C Page 2 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-2. The Clock widget data structure

#include "tk.h"
#include <sys/time.h>

typedef struct {
 Tk_Window tkwin; /* The window for the widget */
 Display *display; /* Tk's handle on the display */
 Tcl_Interp *interp; /* Interpreter of the widget */
 Tcl_Command widgetCmd; /* clock instance command. */
 Tk_OptionTable optionTable; /* Used to parse options */
 /*
 * Clock-specific attributes.
 */
 int borderWidth; /* Size of 3-D border */
 Tcl_Obj *borderWidthPtr;/* Original string value */
 int relief; /* Style of 3-D border */
 Tk_3DBorder background;/* Color for border & background */
 XColor *foreground; /* Color for the text */
 XColor *highlight; /* Color for active highlight */
 XColor *highlightBg; /* Color for neutral highlight */
 int highlightWidth; /* Thickness of highlight rim */
 Tcl_Obj *highlightWidthPtr; /* Original string value */
 Tk_Font tkfont; /* Font info for the text */
 char *format; /* Format for time string */
 /*
 * Graphic contexts and other support.
 */
 GC textGC; /* Text graphics context */
 Tk_TimerToken token; /* Periodic callback handle*/
 char *clock; /* Pointer to the clock string */
 int numChars; /* length of the text */
 int textWidth; /* in pixels */
 Tcl_Obj *widthPtr; /* The original width string value*/
 int textHeight; /* in pixels */
 Tcl_Obj *heightPtr; /* The original height string value*/
 int padX; /* Horizontal padding */
 Tcl_Obj *padXPtr; /* The original padX string value*/
 int padY; /* Vertical padding */
 Tcl_Obj *padYPtr; /* The original padY string value */
 int flags; /* Flags defined below */
} Clock;
/*
 * Flag bit definitions.
 */
#define REDRAW_PENDING 0x1
#define GOT_FOCUS 0x2
#define TICKING 0x4

The Widget Class Command
The Tcl command that creates an instance of a widget is known as the class command. In
our example, the clock command creates a clock widget. The command procedure for
clock follows. The procedure allocates the Clock data structure. It registers an event
handler that gets called when the widget is exposed, resized, or gets the focus. It creates a
new Tcl command that operates on the widget. Finally, it calls ClockConfigure to set
up the widget according to the attributes specified on the command line and the default
configuration specifications.

Chapter 49. Writing a Tk Widget in C Page 3 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-3. The ClockCmd command procedure

int
ClockCmd(clientData, interp, argc, argv)
 ClientData clientData;/* Main window of the app */
 Tcl_Interp *interp; /* Current interpreter. */
 int argc; /* Number of arguments. */
 CONST char **argv; /* Argument strings. */
{
 Tk_Window main = (Tk_Window) clientData;
 Clock *clockPtr;
 Tk_Window tkwin;

 if (argc < 2) {
 Tcl_AppendResult(interp, "wrong # args: should be \"",
 argv[0], " pathName ?options?\"", (char *) NULL);
 return TCL_ERROR;
 }
 tkwin = Tk_CreateWindowFromPath(interp, main,
 argv[1], (char *) NULL);
 if (tkwin == NULL) {
 return TCL_ERROR;
 }
 /*
 * Set resource class.
 */
 Tk_SetClass(tkwin, "Clock");
 /*
 * Allocate and initialize the widget record.
 */
 clockPtr = (Clock *) Tcl_Alloc(sizeof(Clock));
 clockPtr->tkwin = tkwin;
 clockPtr->display = Tk_Display(tkwin);
 clockPtr->interp = interp;
 clockPtr->borderWidth = 0;
 clockPtr->highlightWidth = 0;
 clockPtr->relief = TK_RELIEF_FLAT;
 clockPtr->background = NULL;
 clockPtr->foreground = NULL;
 clockPtr->highlight = NULL;
 clockPtr->highlightBg = NULL;
 clockPtr->tkfont = NULL;
 clockPtr->textGC = None;
 clockPtr->token = NULL;
 clockPtr->clock = NULL;
 clockPtr->format = NULL;
 clockPtr->numChars = 0;
 clockPtr->textWidth = 0;
 clockPtr->textHeight = 0;
 clockPtr->padX = 0;
 clockPtr->padY = 0;
 clockPtr->flags = 0;
 /*
 * Register a handler for when the window is
 * exposed or resized.
 */
 Tk_CreateEventHandler(clockPtr->tkwin,
 ExposureMask|StructureNotifyMask|FocusChangeMask,
 ClockEventProc, (ClientData) clockPtr);
 /*
 * Create a Tcl command that operates on the widget.
 */
 clockPtr->widgetCmd = Tcl_CreateCommand(interp,
 Tk_PathName(clockPtr->tkwin),
 ClockInstanceCmd,
 (ClientData) clockPtr, (void (*)()) NULL);
 /*
 * Parse the command line arguments.
 */
 if (ClockConfigure(interp, clockPtr,

Chapter 49. Writing a Tk Widget in C Page 4 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 argc-2, argv+2, 0) != TCL_OK) {
 Tk_DestroyWindow(clockPtr->tkwin);
 return TCL_ERROR;
 }
 Tcl_SetResult(interp, Tk_PathName(clockPtr->tkwin),
 TCL_VOLATILE);
 return TCL_OK;
}

The Tcl_Obj version, ClockObjCmd, does some additional work to set up an option table
that is used to efficiently parse the command line options to the clock command. The
option table is created the first time the clock command is used. The clientData for
ClockObjCmd is initially NULL; it is used to store the option table once it is initialized.
While ClockCmd uses the clientData to store a reference to the main Tk window,
ClockObjCmd uses the Tk_MainWindow procedure to get a reference to the main Tk
window.

Chapter 49. Writing a Tk Widget in C Page 5 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-4. The ClockObjCmd command procedure

int
ClockObjCmd(clientData, interp, objc, objv)
 ClientData clientData;/* Main window of the app */
 Tcl_Interp *interp; /* Current interpreter. */
 int objc; /* Number of arguments. */
 Tcl_Obj **objv; /* Argument values. */
{
 Tk_OptionTable optionTable;
 Clock *clockPtr;
 Tk_Window tkwin;
 if (objc < 2) {
 Tcl_WrongNumArgs(interp, 1, objv, "pathName ?options?");
 return TCL_ERROR;
 }
 optionTable = (Tk_OptionTable) clientData;
 if (optionTable == NULL) {
 Tcl_CmdInfo info;
 char *name;

 /*
 * Initialize the option table for this widget the
 * first time a clock widget is created. The option
 * table is saved as our client data.
 */

 optionTable = Tk_CreateOptionTable(interp, optionSpecs);
 name = Tcl_GetString(objv[0]);
 Tcl_GetCommandInfo(interp, name, &info);
 info.objClientData = (ClientData) optionTable;
 Tcl_SetCommandInfo(interp, name, &info);
 }
 tkwin = Tk_CreateWindowFromPath(interp,
 Tk_MainWindow(interp),
 Tcl_GetString(objv[1]), (char *) NULL);
 if (tkwin == NULL) {
 return TCL_ERROR;
 }
 /*
 * Set resource class.
 */
 Tk_SetClass(tkwin, "Clock");
 /*
 * Allocate and initialize the widget record.
 */
 clockPtr = (Clock *) ckalloc(sizeof(Clock));
 clockPtr->tkwin = tkwin;
 clockPtr->display = Tk_Display(tkwin);
 clockPtr->interp = interp;
 clockPtr->optionTable = optionTable;
 clockPtr->borderWidth = 0;
 clockPtr->borderWidthPtr = NULL;
 clockPtr->highlightWidth = 0;
 clockPtr->highlightWidthPtr = NULL;
 clockPtr->relief = TK_RELIEF_FLAT;
 clockPtr->background = NULL;
 clockPtr->foreground = NULL;
 clockPtr->highlight = NULL;
 clockPtr->highlightBg = NULL;
 clockPtr->tkfont = NULL;
 clockPtr->textGC = None;
 clockPtr->token = NULL;
 clockPtr->clock = NULL;
 clockPtr->format = NULL;
 clockPtr->numChars = 0;
 clockPtr->textWidth = 0;
 clockPtr->widthPtr = NULL;
 clockPtr->textHeight = 0;
 clockPtr->heightPtr = NULL;

Chapter 49. Writing a Tk Widget in C Page 6 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 clockPtr->padX = 0;
 clockPtr->padXPtr = NULL;
 clockPtr->padY = 0;
 clockPtr->padYPtr = NULL;
 clockPtr->flags = 0;
 /*
 * Register a handler for when the window is
 * exposed or resized.
 */
 Tk_CreateEventHandler(clockPtr->tkwin,
 ExposureMask|StructureNotifyMask|FocusChangeMask,
 ClockEventProc, (ClientData) clockPtr);
 /*
 * Create a Tcl command that operates on the widget.
 */
 clockPtr->widgetCmd = Tcl_CreateObjCommand(interp,
 Tk_PathName(clockPtr->tkwin),
 ClockInstanceObjCmd,
 (ClientData) clockPtr, (void (*)()) NULL);
 /*
 * Parse the command line arguments.
 */
 if ((Tk_InitOptions(interp, (char *)clockPtr,
 optionTable, tkwin) != TCL_OK) ||
 (ClockObjConfigure(interp, clockPtr,
 objc-2, objv+2, 0) != TCL_OK)) {
 Tk_DestroyWindow(clockPtr->tkwin);
 return TCL_ERROR;
 }
 Tcl_SetStringObj(Tcl_GetObjResult(interp),
 Tk_PathName(clockPtr->tkwin), -1);
 return TCL_OK;
}

The Widget Instance Command
For each instance of a widget, a new command is created that operates on that widget. This
is called the widget instance command. Its name is the same as the Tk pathname of the
widget. In the clock example, all that is done on instances is to query and change their
attributes. Most of the work is done by Tk_ConfigureWidget and ClockConfigure,
which are shown in the next section. The ClockInstanceCmd command procedure is
shown in the next example:

Chapter 49. Writing a Tk Widget in C Page 7 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-5. The ClockInstanceCmd command procedure

static int
ClockInstanceCmd(clientData, interp, argc, argv)
 ClientData clientData;/* A pointer to a Clock struct */
 Tcl_Interp *interp;/* The interpreter */
 int argc; /* The number of arguments */
 CONST char *argv[];/* The command line arguments */
{
 Clock *clockPtr = (Clock *)clientData;
 int result = TCL_OK;
 char c;
 int len;
 if (argc < 2) {
 Tcl_AppendResult(interp, "wrong # args: should be \"",
 argv[0], " option ?arg arg ...?\"", (char *) NULL);
 return TCL_ERROR;
 }
 c = argv[1][0];
 len = strlen(argv[1]);
 if ((c == 'c') && (strncmp(argv[1], "cget", len) == 0)
 && (len >= 2)) {
 if (argc != 3) {
 Tcl_AppendResult(interp,
 "wrong # args: should be \"",
 argv[0], " cget option\"",
 (char *) NULL);
 return TCL_ERROR;
 }
 result = Tk_ConfigureValue(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr, argv[2], 0);
 } else if ((c == 'c') && (strncmp(argv[1], "configure", len)
 == 0) && (len >= 2)) {
 if (argc == 2) {
 /*
 * Return all configuration information.
 */
 result = Tk_ConfigureInfo(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr,
 (char *) NULL,0);
 } else if (argc == 3) {
 /*
 * Return info about one attribute, like cget.
 */
 result = Tk_ConfigureInfo(interp, clockPtr->tkwin,
 configSpecs, (char *) clockPtr, argv[2], 0);
 } else {
 /*
 * Change one or more attributes.
 */
 result = ClockConfigure(interp, clockPtr, argc-2,
 argv+2,TK_CONFIG_ARGV_ONLY);
 }
 } else {
 Tcl_AppendResult(interp, "bad option \"", argv[1],
 "\": must be cget, configure, position, or size",
 (char *) NULL);
 return TCL_ERROR;
 }
 return result;
}

Example 49-6 shows the ClockInstanceObjCmd procedure. It uses the
Tk_GetIndexFromObj routine to map the first argument to an index, which is then used
in a switch statement. It uses the Tk_GetOptionValue and Tk_GetOptionInfo
procedures to parse the widget configuration options.

Chapter 49. Writing a Tk Widget in C Page 8 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 49. Writing a Tk Widget in C Page 9 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-6. The ClockInstanceObjCmd command procedure

static int
ClockInstanceObjCmd(clientData, interp, objc, objv)
 ClientData clientData;/* A pointer to a Clock struct */
 Tcl_Interp *interp; /* The interpreter */
 int objc; /* The number of arguments */
 Tcl_Obj *objv[]; /* The command line arguments */
{
 Clock *clockPtr = (Clock *)clientData;
 CONST char *commands[] = {"cget", "configure", NULL};
 enum command {CLOCK_CGET, CLOCK_CONFIGURE};
 int result;
 Tcl_Obj *objPtr;
 int index;

 if (objc < 2) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "option ?arg arg ...?");
 return TCL_ERROR;
 }
 result = Tcl_GetIndexFromObj(interp, objv[1], commands,
 "option", 0, &index);
 if (result != TCL_OK) {
 return result;
 }
 switch (index) {
 case CLOCK_CGET: {
 if (objc != 3) {
 Tcl_WrongNumArgs(interp, 1, objv,
 "cget option");
 return TCL_ERROR;
 }
 objPtr = Tk_GetOptionValue(interp,
 (char *)clockPtr,
 clockPtr->optionTable,
 (objc == 3) ? objv[2] : NULL,
 clockPtr->tkwin);
 if (objPtr == NULL) {
 return TCL_ERROR;
 } else {
 Tcl_SetObjResult(interp, objPtr);
 }
 break;
 }
 case CLOCK_CONFIGURE: {
 if (objc <= 3) {
 /*
 * Return one item if the option is given,
 * or return all configuration information.
 */
 objPtr = Tk_GetOptionInfo(interp,
 (char *) clockPtr,
 clockPtr->optionTable,
 (objc == 3) ? objv[2] : NULL,
 clockPtr->tkwin);
 if (objPtr == NULL) {
 return TCL_ERROR;
 } else {
 Tcl_SetObjResult(interp, objPtr);
 }
 } else {
 /*
 * Change one or more attributes.
 */
 result = ClockObjConfigure(interp, clockPtr,
 objc-2, objv+2);
 }
 }
 }

Chapter 49. Writing a Tk Widget in C Page 10 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 return TCL_OK;
}

Configuring and Reconfiguring Attributes

When the widget is created or reconfigured, then the implementation needs to allocate the
resources implied by the attribute settings. Each clock widget uses some colors and a font.
These are described by graphics contexts that parameterize operations. Instead of
specifying every possible attribute in graphics calls, a graphics context is initialized with
a subset of the parameters, and this is passed into the graphic commands. The context can
specify the foreground and background colors, clip masks, line styles, and so on. The clock
widget allocates a graphics context once and reuses it each time the widget is displayed.

There are two kinds of color resources used by the widget. The focus highlight and the text
foreground are simple colors. The background is a Tk_3DBorder, which is a set of colors
used to render 3D borders. The background color is specified in the attribute, and the other
colors are computed based on that color. The code uses Tk_3DBorderColor to map back
to the original color for use in the background of the widget.

After the resources are set up, a call to redisplay the widget is scheduled for the next idle
period. This is a standard idiom for Tk widgets. It means that you can create and
reconfigure a widget in the middle of a script, and all the changes result in only one
redisplay. The REDRAW_PENDING flag is used to ensure that only one redisplay is queued
up at any time. The ClockConfigure procedure is shown in the next example:

Chapter 49. Writing a Tk Widget in C Page 11 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-7. ClockConfigure allocates resources for the widget

static int
ClockConfigure(interp, clockPtr, argc, argv, flags)
 Tcl_Interp *interp;/* For return values and errors */
 Clock *clockPtr; /* The per-instance data structure */
 int argc; /* Number of valid entries in argv */
 char *argv[]; /* The command line arguments */
 int flags; /* Tk_ConfigureWidget flags */
{
 XGCValues gcValues;
 GC newGC;

 /*
 * Tk_ConfigureWidget parses the command line arguments
 * and looks for defaults in the resource database.
 */
 if (Tk_ConfigureWidget(interp, clockPtr->tkwin,
 configSpecs, argc, argv, (char *) clockPtr, flags)
 != TCL_OK) {
 return TCL_ERROR;
 }
 /*
 * Give the widget a default background so it doesn't get
 * a random background between the time it is initially
 * displayed by the X server and we paint it
 */
 Tk_SetWindowBackground(clockPtr->tkwin,
 Tk_3DBorderColor(clockPtr->background)->pixel);
 /*
 * Set up the graphics contexts to display the widget.
 * The context is used to draw off-screen pixmaps,
 * so turn off exposure notifications.
 */
 gcValues.background =
 Tk_3DBorderColor(clockPtr->background)->pixel;
 gcValues.foreground = clockPtr->foreground->pixel;
 gcValues.font = Tk_FontId(clockPtr->tkfont);
 gcValues.graphics_exposures = False;
 newGC = Tk_GetGC(clockPtr->tkwin,
 GCBackground|GCForeground|GCFont|GCGraphicsExposures,
 &gcValues);
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }
 clockPtr->textGC = newGC;
 /*
 * Determine how big the widget wants to be.
 */
 ComputeGeometry(clockPtr);
 /*
 * Set up a call to display ourself.
 */
 if ((clockPtr->tkwin != NULL) &&
 Tk_IsMapped(clockPtr->tkwin)
 && !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
 return TCL_OK;
}

Example 49-8 shows the ClockObjConfigure procedure. The Tk_SetOptions
interface, which is used to set fields in the Clock data structure, has one potential problem.
It is possible that some configuration options are correct, while others cause errors. In this
case, ClockObjConfigure backs out the changes, so the whole configuration has no

Chapter 49. Writing a Tk Widget in C Page 12 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

effect. This requires a two-pass approach, with the second pass used to restore the original
values. Tk_SetOptions has a feature that lets you classify changes to the widget. The
GEOMETRY_MASK and GRAPHICS_MASK are bits defined by the clock widget to divide its
attributes into two classes. It changes its graphics context or recomputes its geometry only
if an attribute from the appropriate class is changed.

Chapter 49. Writing a Tk Widget in C Page 13 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-8. ClockObjConfigure allocates resources for the widget

static int
ClockObjConfigure(interp, clockPtr, objc, objv)
 Tcl_Interp *interp;/* For return values and errors */
 Clock *clockPtr; /* The per-instance data structure */
 int objc; /* Number of valid entries in argv */
 Tcl_Obj *objv[]; /* The command line arguments */
{
 XGCValues gcValues;
 GC newGC;
 Tk_SavedOptions savedOptions;
 int mask, error;
 Tcl_Obj *errorResult;

 /*
 * The first time through this loop we set the
 * configuration from the command line inputs. The second
 * pass is used to restore the configuration in case of
 * errors
 */
 for (error = 0 ; error <= 1 ; error++) {
 if (!error) {
 /*
 * Tk_SetOptions parses the command arguments
 * and looks for defaults in the resource
 * database.
 */
 if (Tk_SetOptions(interp, (char *) clockPtr,
 clockPtr->optionTable, objc, objv,
 clockPtr->tkwin, &savedOptions,
 &mask) != TCL_OK) {
 continue;
 }
 } else {
 /*
 * Restore options from saved values
 */
 errorResult = Tcl_GetObjResult(interp);
 Tcl_IncrRefCount(errorResult);
 Tk_RestoreSavedOptions(&savedOptions);
 }
 if (mask & GRAPHICS_MASK) {
 /*
 * Give the widget a default background so it doesn't
 * get a random background between the time it is
 * initially displayed by the system and we paint it
 */
 Tk_SetBackgroundFromBorder(clockPtr->tkwin,
 clockPtr->background);
 /*
 * Set up the graphics contexts to display the widget.
 * The context is used to draw off-screen pixmaps,
 * so turn off exposure notifications.
 */
 gcValues.background =
 Tk_3DBorderColor(clockPtr->background)->pixel;
 gcValues.foreground = clockPtr->foreground->pixel;
 gcValues.font = Tk_FontId(clockPtr->tkfont);
 gcValues.graphics_exposures = False;
 newGC = Tk_GetGC(clockPtr->tkwin,
 GCBackground|GCForeground|GCFont|GCGraphicsExposures,
 &gcValues);
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }
 clockPtr->textGC = newGC;
 }
 /*
 * Determine how big the widget wants to be.

Chapter 49. Writing a Tk Widget in C Page 14 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 */
 if (mask & GEOMETRY_MASK) {
 ComputeGeometry(clockPtr);
 }
 /*
 * Set up a call to display ourself.
 */
 if ((clockPtr->tkwin != NULL) &&
 Tk_IsMapped(clockPtr->tkwin)
 && !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay,
 (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
 /*
 * All OK, break out and avoid error rollback.
 */
 break;
 }
 if (!error) {
 Tk_FreeSavedOptions(&savedOptions);
 return TCL_OK;
 } else {
 Tcl_SetObjResult(interp, errorResult);
 Tcl_DecrRefCount(errorResult);
 return TCL_ERROR;
 }
}

Specifying Widget Attributes
Several of the fields in the Clock structure are attributes that can be set when the widget
is created or reconfigured with the configure operation. The Tk_ConfigureWidget
procedure is designed to help you manage the default values, their resource names, and
their class names. It works by associating a widget option with an offset into the widget
data structure. When you use a command line argument to change an option,
Tk_ConfigureWidget reaches into your widget structure and changes the value for you.
Several types are supported, such as colors and fonts, and Tk_ConfigureWidget
handles all the memory allocation used to store the values. Example 49-9 shows the
Tk_ConfigSpec type used to represent information about each attribute:

Example 49-9. The Tk_ConfigSpec typedef

typedef struct Tk_ConfigSpec {
 int type;
 char *name;
 char *dbName;
 char *dbClass;
 char *defValue;
 int offset;
 int specflags;
 Tk_CustomOption *customPtr;
} Tk_ConfigSpec;

Chapter 49. Writing a Tk Widget in C Page 15 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The initial field is a type, such as TK_CONFIG_BORDER. Colors and borders will be
explained shortly. The next field is the command-line flag for the attribute, (e.g., -
background). Then comes the resource name and the class name. The default value is
next, (e.g., light blue). The offset of a structure member is next, and the Tk_Offset
macro is used to compute this offset. The specflags field is a bitmask of flags. The two
used in this example are TK_CONFIG_COLOR_ONLY and TK_CONFIG_MONO_ONLY, which
restrict the application of the configuration setting to color and monochrome displays,
respectively. You can define additional flags and pass them into Tk_ConfigureWidget
if you have a family of widgets that share most, but not all, of their attributes. The
tkButton.c file in the Tk sources has an example of this. The customPtr is used if you
have a TK_CONFIG_CUSTOM type, which is explained in detail in the manual page for
Tk_ConfigureWidget. Example 49-10 shows the Tk_ConfigSpec specification of
widget attributes for the clock widget.

Chapter 49. Writing a Tk Widget in C Page 16 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-10. Configuration specs for the clock widget

static Tk_ConfigSpec configSpecs[] = {
 {TK_CONFIG_BORDER, "-background", "background",
 "Background", "light blue",
 Tk_Offset(Clock, background), TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_BORDER, "-background", "background",
 "Background", "white", Tk_Offset(Clock, background),
 TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_SYNONYM, "-bg", "background", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_SYNONYM, "-bd", "borderWidth", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_PIXELS, "-borderwidth", "borderWidth",
 "BorderWidth","2", Tk_Offset(Clock, borderWidth), 0},
 {TK_CONFIG_RELIEF, "-relief", "relief", "Relief",
 "ridge", Tk_Offset(Clock, relief), 0},
 {TK_CONFIG_COLOR, "-foreground", "foreground",
 "Foreground", "black", Tk_Offset(Clock, foreground),0},
 {TK_CONFIG_SYNONYM, "-fg", "foreground", (char *) NULL,
 (char *) NULL, 0, 0},
 {TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "red", Tk_Offset(Clock, highlight),
 TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "black",
 Tk_Offset(Clock, highlight),TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "light blue", Tk_Offset(Clock, highlightBg),
 TK_CONFIG_COLOR_ONLY},
 {TK_CONFIG_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "black", Tk_Offset(Clock, highlightBg),
 TK_CONFIG_MONO_ONLY},
 {TK_CONFIG_PIXELS, "-highlightthickness",
 "highlightThickness","HighlightThickness",
 "2", Tk_Offset(Clock, highlightWidth), 0},
 {TK_CONFIG_PIXELS, "-padx", "padX", "Pad",
 "2", Tk_Offset(Clock, padX), 0},
 {TK_CONFIG_PIXELS, "-pady", "padY", "Pad",
 "2", Tk_Offset(Clock, padY), 0},
 {TK_CONFIG_STRING, "-format", "format", "Format",
 "%H:%M:%S", Tk_Offset(Clock, format), 0},
 {TK_CONFIG_FONT, "-font", "font", "Font",
 "Courier 18",
 Tk_Offset(Clock, tkfont), 0},
 {TK_CONFIG_END, (char *) NULL, (char *) NULL,
 (char *) NULL, (char *) NULL, 0, 0}
};

There is an alternative to the Tk_ConfigureWidget interface that understands
Tcl_Obj values in the widget data structure. It uses a a similar type, Tk_OptionSpec,
and Tk_ConfigureWidget is replaced by the Tk_SetOptions,
Tk_GetOptionValue, and Tk_GetOptionInfo procedures. Example 49-11 shows the
Tk_OptionSpec type.

Chapter 49. Writing a Tk Widget in C Page 17 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-11. The Tk_OptionSpec typedef

typedef struct Tk_OptionSpec {
 Tk_OptionType type;
 char *optionName;
 char *dbName;
 char *dbClass;
 char *defValue;
 int objOffset;
 int internalOffset;
 int flags;
 ClientData clientData;
 int typeMask;
} Tk_OptionSpec;

The Tk_OptionSpec has two offsets, one for normal values and one for Tcl_Obj values.
You can use the second offset to set Tcl_Obj values directly from the command line
configuration. The TK_CONFIG_PIXELS type uses both offsets. The pixel value is stored
in an integer, and a Tcl_Obj is used to remember the exact string (e.g., 0.2cm) used to
specify the screen distance. Most of the functionality of the specflags field of
Tk_ConfigSpec (e.g., TK_CONFIG_MONO_ONLY) has been changed. The flags field
accepts only TK_CONFIG_NULL_OK, and the rest of the features use the clientData field
instead. For example, the color types uses clientData for their default on monochrome
displays. The typeMask supports a general notion of grouping option values into sets. For
example, the clock widget marks attributes that affect geometry and color into different
sets. This lets the widget optimize its configuration procedure. Example 49-12 shows the
Tk_OptionSpec specification of the clock widget attributes.

Chapter 49. Writing a Tk Widget in C Page 18 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-12. The Tk_OptionSpec structure for the clock widget

#define GEOMETRY_MASK 0X1
#define GRAPHICS_MASK 0X2

static Tk_OptionSpec optionSpecs[] = {
 {TK_OPTION_BORDER, "-background", "background",
 "Background", "light blue", -1,
 Tk_Offset(Clock, background), 0,
 (ClientData) "white", GRAPHICS_MASK},
 {TK_OPTION_SYNONYM, "-bg", "background", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_PIXELS, "-borderwidth", "borderWidth",
 "BorderWidth", "2", Tk_Offset(Clock, borderWidthPtr),
 Tk_Offset(Clock, borderWidth),
 0, 0, GEOMETRY_MASK},
 {TK_OPTION_SYNONYM, "-bd", "borderWidth", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_RELIEF, "-relief", "relief", "Relief",
 "ridge", -1, Tk_Offset(Clock, relief), 0, 0, 0},
 {TK_OPTION_COLOR, "-foreground", "foreground",
 "Foreground", "black",-1, Tk_Offset(Clock, foreground),
 0, (ClientData) "black", GRAPHICS_MASK},
 {TK_OPTION_SYNONYM, "-fg", "foreground", (char *) NULL,
 (char *) NULL, -1, 0, 0, 0, 0},
 {TK_OPTION_COLOR, "-highlightcolor", "highlightColor",
 "HighlightColor", "red",-1, Tk_Offset(Clock, highlight),
 0, (ClientData) "black", GRAPHICS_MASK},
 {TK_OPTION_COLOR, "-highlightbackground",
 "highlightBackground", "HighlightBackground",
 "light blue",-1, Tk_Offset(Clock, highlightBg),
 0, (ClientData) "white", GRAPHICS_MASK},
 {TK_OPTION_PIXELS, "-highlightthickness",
 "highlightThickness","HighlightThickness",
 "2", Tk_Offset(Clock, highlightWidthPtr),
 Tk_Offset(Clock, highlightWidth), 0, 0,
 GEOMETRY_MASK},
 {TK_OPTION_PIXELS, "-padx", "padX", "Pad",
 "2", Tk_Offset(Clock, padXPtr),
 Tk_Offset(Clock, padX), 0, 0, GEOMETRY_MASK},
 {TK_OPTION_PIXELS, "-pady", "padY", "Pad",
 "2", Tk_Offset(Clock, padYPtr),
 Tk_Offset(Clock, padY), 0, 0, GEOMETRY_MASK},
 {TK_OPTION_STRING, "-format", "format", "Format",
 "%H:%M:%S",-1, Tk_Offset(Clock, format), 0, 0,
 GEOMETRY_MASK},
 {TK_OPTION_FONT, "-font", "font", "Font",
 "Courier 18",
 -1, Tk_Offset(Clock, tkfont), 0, 0,
 (GRAPHICS_MASK|GEOMETRY_MASK)},
 {TK_OPTION_END, (char *) NULL, (char *) NULL,
 (char *) NULL, (char *) NULL, -1, 0, 0, 0, 0}
};

Table 49-1 lists the correspondence between the configuration type of the option and the
type of the associated field in the widget data structure. The same types are supported by
the Tk_ConfigSpec and Tk_OptionSpec types, with a few exceptions. The
TK_CONFIG_ACTIVE_CURSOR configuration type corresponds to the
TK_OPTION_CURSOR; both of these set the widgets cursor. The TK_CONFIG_MM and
TK_CONFIG_CURSOR types are simply not supported by Tk_OptionSpec because they
were not very useful. The TK_OPTION_STRING_TABLE replaces
TK_CONFIG_CAP_STYLE and TK_CONFIG_JOIN_STYLE with a more general type that

Chapter 49. Writing a Tk Widget in C Page 19 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

works with Tcl_GetIndexFromObj. In this case, the clientData is an array of strings
that are passed to Tcl_GetIndexFromObj. The index value corresponds to the integer
value returned from procedures like Tk_GetCapStyle.

Table 49-1. Configuration flags and corresponding C types

TK_CONFIG_ACTIVE_CURSOR
TK_OPTION_CURSOR

Cursor

TK_CONFIG_ANCHOR
TK_OPTION_ANCHOR

Tk_Anchor

TK_CONFIG_BITMAP
TK_OPTION_BITMAP

Pixmap

TK_CONFIG_BOOLEAN
TK_OPTION_BOOLEAN

int (0 or 1)

TK_CONFIG_BORDER
TK_OPTION_BORDER

Tk_3DBorder *

TK_CONFIG_CAP_STYLE int (see Tk_GetCapStyle)

TK_CONFIG_COLOR
TK_OPTION_COLOR

XColor *

clientData is monochrome default.

TK_CONFIG_CURSOR Cursor

TK_CONFIG_CUSTOM

TK_CONFIG_DOUBLE
TK_OPTION_DOUBLE

double

TK_CONFIG_END
TK_OPTION_END

(signals end of options)

TK_CONFIG_FONT
TK_OPTION_FONT

Tk_Font

TK_CONFIG_INT
TK_OPTION_INT

int

TK_CONFIG_JOIN_STYLE int (see Tk_GetJoinStyle)

TK_CONFIG_JUSTIFY
TK_OPTION_JUSTIFY

Tk_Justify

TK_CONFIG_MM double

Chapter 49. Writing a Tk Widget in C Page 20 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

TK_CONFIG_PIXELS
TK_OPTION_PIXELS

int

objOffset used for original value.

TK_CONFIG_RELIEF
TK_OPTION_RELIEF

int (see Tk_GetRelief)

TK_CONFIG_STRING
TK_OPTION_STRING

char *

TK_OPTION_STRING_TABLE The clientData is an array of strings used with Tcl_GetIndexFromObj

TK_CONFIG_SYNONYM
TK_OPTION_SYNONYM

(alias for other option)

clientData is the name of another option.

TK_CONFIG_UID Tk_Uid

TK_CONFIG_WINDOW
TK_OPTION_WINDOW

Tk_Window

Displaying the Clock
There are two parts to a widget's display. First, the size must be determined. This is done
at configuration time, and then that space is requested from the geometry manager. When
the widget is later displayed, it should use the Tk_Width and Tk_Height calls to find out
how much space was actually allocated to it by the geometry manager. Example 49-13
shows ComputeGeometry. This procedure is identical in both versions of the widget.

Chapter 49. Writing a Tk Widget in C Page 21 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-13. ComputeGeometry computes the widget's size

static void
ComputeGeometry(Clock *clockPtr)
{
 int width, height;
 Tk_FontMetrics fm; /* Font size information */
 struct tm *tmPtr; /* Time info split into fields */
 struct timeval tv; /* BSD-style time value */
 int bd; /* Padding from borders */
 char clock[1000]; /* Displayed time */

 /*
 * Get the time and format it to see how big it will be.
 */
 gettimeofday(&tv, NULL);
 tmPtr = localtime(&tv.tv_sec);
 strftime(clock, 1000, clockPtr->format, tmPtr);
 if (clockPtr->clock != NULL) {
 ckfree(clockPtr->clock);
 }
 clockPtr->clock = ckalloc(1+strlen(clock));
 clockPtr->numChars = strlen(clock);

 bd = clockPtr->highlightWidth + clockPtr->borderWidth;
 Tk_GetFontMetrics(clockPtr->tkfont, &fm);
 height = fm.linespace + 2*(bd + clockPtr->padY);
 Tk_MeasureChars(clockPtr->tkfont, clock,
 clockPtr->numChars, 0, 0, &clockPtr->textWidth);
 width = clockPtr->textWidth + 2*(bd + clockPtr->padX);

 Tk_GeometryRequest(clockPtr->tkwin, width, height);
 Tk_SetInternalBorder(clockPtr->tkwin, bd);
}

Finally, we get to the actual display of the widget! The routine is careful to check that the
widget still exists and is mapped. This is important because the redisplay is scheduled
asynchronously. The current time is converted to a string. This uses the POSIX library
procedures gettimeofday, localtime, and strftime. There might be different
routines on your system. The string is painted into a pixmap, which is a drawable region
of memory that is off-screen. After the whole display has been painted, the pixmap is copied
into on-screen memory to avoid flickering as the image is cleared and repainted. The text
is painted first, then the borders. This ensures that the borders overwrite the text if the
widget has not been allocated enough room by the geometry manager.

This example allocates and frees the off-screen pixmap for each redisplay. This is the
standard idiom for Tk widgets. They temporarily allocate the off-screen pixmap each time
they redisplay. In the case of a clock that updates every second, it might be reasonable to
permanently allocate the pixmap and store its pointer in the Clock data structure. Make
sure to reallocate the pixmap if the size changes.

After the display is finished, another call to the display routine is scheduled to happen in
one second. If you were to embellish this widget, you might want to make the uptime period
a parameter. The TICKING flag is used to note that the timer callback is scheduled. It is

Chapter 49. Writing a Tk Widget in C Page 22 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

checked when the widget is destroyed so that the callback can be canceled. Example
49-14 shows ClockDisplay. This procedure is identical in both versions of the widget.

Chapter 49. Writing a Tk Widget in C Page 23 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-14. The ClockDisplay procedure

static void
ClockDisplay(ClientData clientData)
{
 Clock *clockPtr = (Clock *)clientData;
 Tk_Window tkwin = clockPtr->tkwin;
 GC gc; /* Graphics Context for highlight */
 Tk_TextLayout layout; /* Text measurement state */
 Pixmap pixmap; /* Temporary drawing area */
 int offset, x, y; /* Coordinates */
 int width, height; /* Size */
 struct tm *tmPtr; /* Time info split into fields */
 struct timeval tv; /* BSD-style time value */

 /*
 * Make sure the clock still exists
 * and is mapped onto the display before painting.
 */
 clockPtr->flags &= ~(REDRAW_PENDING|TICKING);
 if ((clockPtr->tkwin == NULL) || !Tk_IsMapped(tkwin)) {
 return;
 }
 /*
 * Format the time into a string.
 * localtime chops up the time into fields.
 * strftime formats the fields into a string.
 */
 gettimeofday(&tv, NULL);
 tmPtr = localtime(&tv.tv_sec);
 strftime(clockPtr->clock, clockPtr->numChars+1,
 clockPtr->format, tmPtr);
 /*
 * To avoid flicker when the display is updated, the new
 * image is painted in an offscreen pixmap and then
 * copied onto the display in one operation. Allocate the
 * pixmap and paint its background.
 */
 pixmap = Tk_GetPixmap(clockPtr->display,
 Tk_WindowId(tkwin), Tk_Width(tkwin),
 Tk_Height(tkwin), Tk_Depth(tkwin));
 Tk_Fill3DRectangle(tkwin, pixmap,
 clockPtr->background, 0, 0, Tk_Width(tkwin),
 Tk_Height(tkwin), 0, TK_RELIEF_FLAT);

 /*
 * Paint the text first.
 */
 layout = Tk_ComputeTextLayout(clockPtr->tkfont,
 clockPtr->clock, clockPtr->numChars, 0,
 TK_JUSTIFY_CENTER, 0, &width, &height);
 x = (Tk_Width(tkwin) - width)/2;
 y = (Tk_Height(tkwin) - height)/2;
 Tk_DrawTextLayout(clockPtr->display, pixmap,
 clockPtr->textGC, layout, x, y, 0, -1);

 /*
 * Display the borders, so they overwrite any of the
 * text that extends to the edge of the display.
 */
 if (clockPtr->relief != TK_RELIEF_FLAT) {
 Tk_Draw3DRectangle(tkwin, pixmap,
 clockPtr->background,
 clockPtr->highlightWidth,
 clockPtr->highlightWidth,
 Tk_Width(tkwin) - 2*clockPtr->highlightWidth,
 Tk_Height(tkwin) - 2*clockPtr->highlightWidth,
 clockPtr->borderWidth, clockPtr->relief);
 }
 if (clockPtr->highlightWidth != 0) {

Chapter 49. Writing a Tk Widget in C Page 24 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 GC gc;

 /*
 * This GC is associated with the color, and Tk caches
 * the GC until the color is freed. Hence no freeGC.
 */

 if (clockPtr->flags & GOT_FOCUS) {
 gc = Tk_GCForColor(clockPtr->highlight, pixmap);
 } else {
 gc = Tk_GCForColor(clockPtr->highlightBg, pixmap);
 }
 Tk_DrawFocusHighlight(tkwin, gc,
 clockPtr->highlightWidth, pixmap);
 }
 /*
 * Copy the information from the off-screen pixmap onto
 * the screen, then delete the pixmap.
 */

 XCopyArea(clockPtr->display, pixmap, Tk_WindowId(tkwin),
 clockPtr->textGC, 0, 0, Tk_Width(tkwin),
 Tk_Height(tkwin), 0, 0);
 Tk_FreePixmap(clockPtr->display, pixmap);

 /*
 * Queue another call to ourselves. The rate at which
 * this is done could be optimized.
 */
 clockPtr->token = Tk_CreateTimerHandler(1000,
 ClockDisplay, (ClientData)clockPtr);
 clockPtr->flags |= TICKING;
}

The Window Event Procedure
Each widget registers an event handler for expose and resize events. If it implements a
focus highlight, it also needs to be notified of focus events. If you have used other toolkits,
you may expect to register callbacks for mouse and keystroke events too. You should not
need to do that. Instead, use the regular Tk bind facility and define your bindings in Tcl.
That way they can be customized by applications. This procedure is identical in both
versions of the widget.

Chapter 49. Writing a Tk Widget in C Page 25 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Example 49-15. The ClockEventProc handles window events

static void
ClockEventProc(ClientData clientData, XEvent *eventPtr)
{
 Clock *clockPtr = (Clock *) clientData;
 if ((eventPtr->type == Expose) &&
 (eventPtr->xexpose.count == 0)) {
 goto redraw;
 } else if (eventPtr->type == DestroyNotify) {
 Tcl_DeleteCommandFromToken(clockPtr->interp,
 clockPtr->widgetCmd);
 /*
 * Zapping the tkwin lets the other procedures
 * know we are being destroyed.
 */
 clockPtr->tkwin = NULL;

 if (clockPtr->flags & REDRAW_PENDING) {
 Tk_CancelIdleCall(ClockDisplay,
 (ClientData) clockPtr);
 clockPtr->flags &= ~REDRAW_PENDING;
 }
 if (clockPtr->flags & TICKING) {
 Tk_DeleteTimerHandler(clockPtr->token);
 clockPtr->flags &= ~TICKING;
 }
 /*
 * This results in a call to ClockDestroy.
 */
 Tk_EventuallyFree((ClientData) clockPtr,
 ClockDestroy);
 } else if (eventPtr->type == FocusIn) {
 if (eventPtr->xfocus.detail != NotifyPointer) {
 clockPtr->flags |= GOT_FOCUS;
 if (clockPtr->highlightWidth > 0) {
 goto redraw;
 }
 }
 } else if (eventPtr->type == FocusOut) {
 if (eventPtr->xfocus.detail != NotifyPointer) {
 clockPtr->flags &= ~GOT_FOCUS;
 if (clockPtr->highlightWidth > 0) {
 goto redraw;
 }
 }
 }
 return;
redraw:
 if ((clockPtr->tkwin != NULL) &&
 !(clockPtr->flags & REDRAW_PENDING)) {
 Tk_DoWhenIdle(ClockDisplay, (ClientData) clockPtr);
 clockPtr->flags |= REDRAW_PENDING;
 }
}

Final Cleanup

Chapter 49. Writing a Tk Widget in C Page 26 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When a widget is destroyed, you need to free up any resources it has
allocated. The resources associated with attributes are cleaned up by
Tk_FreeOptions. The others you must take care of yourself. The
ClockDestroy procedure is called as a result of the
Tk_EventuallyFree call in the ClockEventProc. The
Tk_EventuallyFree procedure is part of a protocol that is needed for
widgets that might get deleted when in the middle of processing.
Typically the Tk_Preserve and Tk_Release procedures are called at
the beginning and end of the widget instance command to mark the
widget as being in use. Tk_EventuallyFree will wait until
Tk_Release is called before calling the cleanup procedure. The next
example shows ClockDestroy:

Example 49-16. The ClockDestroy cleanup procedure

static void
ClockDestroy(clientData)
 ClientData clientData;/* Info about entry widget. */
{
 register Clock *clockPtr = (Clock *) clientData;

 /*
 * Free up all the stuff that requires special handling,
 * then let Tk_FreeOptions handle resources associated
 * with the widget attributes.
 */
 if (clockPtr->textGC != None) {
 Tk_FreeGC(clockPtr->display, clockPtr->textGC);
 }
 if (clockPtr->clock != NULL) {
 Tcl_Free(clockPtr->clock);
 }
 if (clockPtr->flags & TICKING) {
 Tk_DeleteTimerHandler(clockPtr->token);
 }
 if (clockPtr->flags & REDRAW_PENDING) {
 Tk_CancelIdleCall(ClockDisplay,
 (ClientData) clockPtr);
 }
 /*
 * This frees up colors and fonts and any allocated
 * storage associated with the widget attributes.
 */
 Tk_FreeOptions(configSpecs, (char *) clockPtr,
 clockPtr->display, 0);
 Tcl_Free((char *) clockPtr);
}

The version of ClockDestroy that uses the Tcl_Obj interfaces calls
Tk_FreeConfigOptions instead of Tk_FreeOptions. The ClockObjDelete
command is called when the oclock command is removed from the interpreter. This has
to clean up the option table used to parse options, if it has been initialized. There is no

Chapter 49. Writing a Tk Widget in C Page 27 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

corresponding delete procedure for the string-based version of the widget. Example
49-17 shows ClockObjDelete.

Example 49-17. The ClockObjDelete command

void
ClockObjDelete(ClientData clientData)
{
 Tk_OptionTable optionTable = (Tk_OptionTable) clientData;
 if (optionTable != NULL) {
 Tk_DeleteOptionTable(optionTable);
 }
}

Chapter 49. Writing a Tk Widget in C Page 28 Return to Table of Contents

Chapter 49. Writing a Tk Widget in C
Practical Programming in Tcl and Tk, Fourth Edition By Ken Jones, Jeffrey Hobbs, Brent
B. Welch ISBN: 0-13-038560-3 Publisher: Prentice Hall

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2003/06/10 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Writing a Tk Widget in C
	Initializing the Extension
	The Widget Data Structure
	The Widget Class Command
	The Widget Instance Command
	Configuring and Reconfiguring Attributes
	Specifying Widget Attributes
	Displaying the Clock
	The Window Event Procedure
	Final Cleanup

