
Table of Contents

XML and HTML... 1
Checking XML Well-Formedness... 2
Extracting Data from a Document's Tree Structure... 4
Extracting Data While Parsing a Document... 6
Navigating a Document with XPath... 7
Parsing Invalid Markup.. 10
Converting an XML Document into a Hash... 13
Validating an XML Document... 15
Substituting XML Entities.. 18
Creating and Modifying XML Documents.. 21
Compressing Whitespace in an XML Document... 24
Guessing a Document's Encoding... 25
Converting from One Encoding to Another.. 27
Extracting All the URLs from an HTML Document.. 28
Transforming Plain Text to HTML... 31
Converting HTML Documents from the Web into Text.. 32
A Simple Feed Aggregator... 35

Chapter 11. XML and HTML

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

11. XML and HTML
XML and HTML are the most popular markup languages (textual ways of describing
structured data). HTML is used to describe textual documents, like you see on the Web.
XML is used for just about everything else: data storage, messaging, configuration files,
you name it. Just about every software buzzword forged over the past few years involves
XML.

Java and C++ programmers tend to regard XML as a lightweight, agile technology, and
are happy to use it all over the place. XML is a lightweight technology, but only compared
to Java or C++. Ruby programmers see XML from the other end of the spectrum, and from
there it looks pretty heavy. Simpler formats like YAML and JSON usually work just as well
(see Recipe 13.1 or Recipe 13.2), and are easier to manipulate. But to shun XML altogether
would be to cut Ruby off from the rest of the world, and nobody wants that. This chapter
covers the most useful ways of parsing, manipulating, slicing, and dicing XML and HTML
documents.

There are two standard APIs for manipulating XML: DOM and SAX. Both are overkill for
most everyday uses, and neither is a good fit for Ruby's code-block–heavy style. Ruby's
solution is to offer a pair of APIs that capture the style of DOM and SAX while staying true
to the Ruby programming philosophy.[1] Both APIs are in the standard library's REXML
package, written by Sean Russell.

[1] REXML also provides the SAX2Parser and SAX2Listener classes, which implement the basic SAX2 API.

Like DOM, the Document class parses an XML document into a nested tree of objects.
You can navigate the tree with Ruby accessors (Recipe 11.2)or with XPath queries (Recipe
11.4). You can modify the tree by creating your own Element and Text objects (Recipe
11.9). If even Document is too heavyweight for you, you can use the XmlSimple library
to transform an XML file into a nested Ruby hash (Recipe 11.6).

With a DOM-style API like Document, you have to parse the entire XML file before you
can do anything. The XML document becomes a large number of Ruby objects nested
under a Document object, all sitting around taking up memory. With a SAXstyle parser
like the StreamParser class, you can process a document as it's parsed, creating only the
objects you want. The StreamParser API is covered in Recipe 11.3.

The main problem with the REXML APIs is that they're very picky. They'll only parse a
document that's valid XML, or close enough to be have an unambiguous representation.
This makes them nearly useless for parsing HTML documents off the World Wide Web,

Chapter 11. XML and HTML Page 1 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-1#rubyckbk-CHP-13-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-2#rubyckbk-CHP-13-SECT-2

since the average web page is not valid XML. Recipe 11.5 shows how to use the third-party
tools Rubyful Soup and SGMLParser; they give a DOMor SAX-style interface that handles
even invalid XML.

• http://www.germane-software.com/software/rexml/
• http://www.germane-software.com/software/rexml/docs/tutorial.html

Recipe 11.1. Checking XML Well-Formedness

Credit: Rod Gaither

Problem
You want to check that an XML document is well-formed before processing it.

Solution
The best way to see whether a document is well-formed is to try to parse it. The REXML
library raises an exception when it can't parse an XML document, so just try parsing it and
rescue any exception.

The valid_xml? method below returns nil unless it's given a valid XML document. If
the document is valid, it returns a parsed Document object, so you don't have to parse it
again:

 require 'rexml/document'
 def valid_xml?(xml)
 begin
 REXML::Document.new(xml)
 rescue REXML::ParseException
 # Return nil if an exception is thrown
 end
 end

Discussion
To be useful, an XML document must be structured correctly or "well-formed." For
instance, an opening tag must either be self-closing or be paired with an appropriate
closing tag.

As a file and messaging format, XML is often used in situations where you don't have
control over the input, so you can't assume that it will always be well-formed. Rather than
just letting REXML throw an exception, you'll need to handle ill-formed XML gracefully,
providing options to retry or continue on a different path.

Chapter 11. XML and HTML Page 2 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.germane-software.com/software/rexml/
http://www.germane-software.com/software/rexml/docs/tutorial.html

This bit of XML is not well-formed: it's missing ending tags for both the pending and done
elements:

 bad_xml = %{
 <tasks>
 <pending>
 <entry>Grocery Shopping</entry>
 <done>
 <entry>Dry Cleaning</entry>
 </tasks>}

 valid_xml?(bad_xml) # => nil

This bit of XML is well-formed, so valid_xml? returns the parsed Document object.

 good_xml = %{
 <groceries>
 <bread>Wheat</bread>
 <bread>Quadrotriticale</bread>
 </groceries>}

 doc = valid_xml?(good_xml)
 doc.root.elements[1] # => <bread> … </>

When your program is responsible for writing XML documents, you'll want to write unit
tests that make sure you generate valid XML. You can use a feature of the Test:: Unit
library to simplify the checking. Since invalid XML makes REXML throw an exception,
your unit test can use the assert_nothing_thrown method to make sure your XML is
valid:

 doc = nil
 assert_nothing_thrown {doc = REXML::Document.new(source_xml)}

This is a simple, clean test to verify XML when using a unit test.

Note that valid_xml? doesn't work perfectly: some invalid XML is unambiguous, which
means REXML can parse it. Consider this truncated version of the valid XML example.
It's missing its closing tags, but there's no ambiguity about which closing tag should come
first, so REXML can parse the file and provide the closing tags:

 invalid_xml = %{
 <groceries>
 <bread>Wheat
 }

 (valid_xml? invalid_xml) == nil # => false # That is, it is "valid"
 REXML::Document.new(invalid_xml).write
 # <groceries>
 # <bread>Wheat
 # </bread></groceries>

Chapter 11. XML and HTML Page 3 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Official information on XML can be found at http://www.w3.org/XML/
• The Wikipedia has a good description of the difference between Well-Formed and

Valid XML documents at http://en.wikipedia.org/wiki/
Xml#Correctness_in_an_XML_document

• Recipe 11.5, "Parsing Invalid Markup"
• Recipe 17.3, "Handling an Exception"

Recipe 11.2. Extracting Data from a Document's Tree Structure

Credit: Rod Gaither

Problem
You want to parse an XML file into a Ruby data structure, to traverse it or extract data
from it.

Solution
Pass an XML document into the REXML::Document constructor to load and parse the
XML. A Document object contains a tree of subobjects (of class Element and Text) rep-
resenting the tree structure of the underlying document. The methods of Document and
Element give you access to the XML tree data. The most useful of these methods is
#each_element.

Here's some sample XML and the load process. The document describes a set of orders,
each of which contains a set of items. This particular document contains a single order for
two items.

 orders_xml = %{
 <orders>
 <order>
 <number>105</number>
 <date>02/10/2006</date>
 <customer>Corner Store</customer>
 <items>
 <item upc="404100" desc="Red Roses" qty="240" />
 <item upc="412002" desc="Candy Hearts" qty="160" />
 </items>
 </order>
 </orders>}

 require 'rexml/document'
 orders = REXML::Document.new(orders_xml)

Chapter 11. XML and HTML Page 4 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.w3.org/XML/
http://en.wikipedia.org/wiki/Xml#Correctness_in_an_XML_document
http://en.wikipedia.org/wiki/Xml#Correctness_in_an_XML_document
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-3#rubyckbk-CHP-17-SECT-3

To process each order in this document, we can use Document#root to get the document's
root element (<orders>)and then call Element#each_element to iterate over the
children of the root element (the <order> elements). This code repeatedly calls each to
move down the document tree and print the details of each order in the document:

 orders.root.each_element do |order| # each <order> in <orders>
 order.each_element do |node| # <customer>, <items>, etc. in <order>
 if node.has_elements?
 node.each_element do |child| # each <item> in <items>
 puts "#{child.name}: #{child.attributes['desc']}"
 end
 else
 # the contents of <number>, <date>, etc.
 puts "#{node.name}: #{node.text}"
 end
 end
 end
 # number: 105
 # date: 02/10/2006
 # customer: Corner Store
 # item: Red Roses
 # item: Candy Hearts

Discussion
Parsing an XML file into a Document gives you a tree-like data structure that you can treat
kind of like an array of arrays. Starting at the document root, you can move down the tree
until you find the data that interests you. In the example above, note how the structure of
the Ruby code mirrors the structure of the original document. Every call to
each_element moves the focus of the code down a level: from <orders> to <order> to
<items> to <item>.

There are many other methods of Element you can use to navigate the tree structure of
an XML document. Not only can you iterate over the child elements, you can reference a
specific child by indexing the parent as though it were an array. You can navigate through
siblings with Element.next_element and Element.previous_element. You can
move up the document tree with Element.parent:

 my_order = orders.root.elements[1]
 first_node = my_order.elements[1]
 first_node.name # => "number"
 first_node.next_element.name # => "date"
 first_node.parent.name # => "order"

This only scratches the surface; there are many other ways to interact with the data loaded
from an XML source. For example, explore the convenience methods
Element.each_element_with_attribute and
Element.each_element_with_text, which let you select elements based on features
of the elements themselves.

Chapter 11. XML and HTML Page 5 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The RDoc documentation for the REXML::Document and REXML::Element classes
• The section "Tree Parsing XML and Accessing Elements" in the REXML Tutorial

(http://www.germane-software.com/software/rexml/docs/
tutorial.html#id2247335)

• If you want to start navigating the document at some point other than the root, an
XPath statement is probably the simplest way to get where you want; see Recipe
11.4, "Navigating a Document with XPath"

Recipe 11.3. Extracting Data While Parsing a Document

Credit: Rod Gaither

Problem
You want to process a large XML file without loading it all into memory.

Solution
The method REXML::Document.parse_stream gives you a fast and flexible way to scan
a large XML file and process the parts that interest you.

Consider this XML document, the output of a hypothetical program that runs auto mated
tasks. We want to parse the document and find the tasks that failed (that is, returned an
error code other than zero).

 event_xml = %{
 <events>
 <clean system="dev" start="01:35" end="01:55" area="build" error="1" />
 <backup system="prod" start="02:00" end="02:35" size="2300134" error="0" />
 <backup system="dev" start="02:00" end="02:01" size="0" error="2" />
 <backup system="test" start="02:00" end="02:47" size="327450" error="0" />
 </events>}

We can process the document as it's being parsed by writing a REXML::
StreamListener subclass that responds to parsing events such as tag_start and
tag_end. Here's a subclass that listens for tags with a nonzero value for their error
attribute. It prints a message for every failed event it finds.

 require 'rexml/document'
 require 'rexml/streamlistener'

 class ErrorListener
 include REXML::StreamListener
 def tag_start(name, attrs)

Chapter 11. XML and HTML Page 6 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.germane-software.com/software/rexml/docs/tutorial.html#id2247335
http://www.germane-software.com/software/rexml/docs/tutorial.html#id2247335

 if attrs["error"] != nil and attrs["error"] != "0"
 puts %{Event "#{name}" failed for system "#{attrs["system"]}" } +
 %{with code #{attrs["error"]}}
 end
 end
 end

To actually parse the XML data, pass it along with the StreamListener into the method
REXML::Document.parse_stream:

 REXML::Document.parse_stream(event_xml, ErrorListener.new)
 # Event "clean" failed for system "dev" with code 1
 # Event "backup" failed for system "dev" with code 2

Discussion
We could find the failed events in less code by loading the XML into a Document and
running an XPath query. That approach would work fine for this example, since the
document only contains four events. It wouldn't work as well if the document were a file
on disk containing a billion events. Building a Document means building an elaborate in-
memory data structure representing the entire XML document. If you only care about part
of a document (in this case, the failed events), it's faster and less memory-intensive to
process the document as it's being parsed. Once the parser reaches the end of the
document, you're done.

The stream-oriented approach to parsing XML can be as simple as shown in this recipe,
but it can also handle much more complex scenarios. Your StreamListener subclass
can keep arbitrary state in instance variables, letting you track complex combinations of
elements and attributes.

See Also

• The RDoc documentation for the REXML::StreamParser class
• The "Stream Parsing" section of the REXML Tutorial (http://www.germane-

software.com/software/rexml/docs/tutorial.html#id2248457)
• Recipe 11.2, "Extracting Data from a Document's Tree Structure"

Recipe 11.4. Navigating a Document with XPath

Problem
You want to find or address sections of an XML document in a standard, programming-
language–independent way.

Chapter 11. XML and HTML Page 7 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.germane-software.com/software/rexml/docs/tutorial.html#id2248457
http://www.germane-software.com/software/rexml/docs/tutorial.html#id2248457

Solution
The XPath language defines a way of referring to almost any element or set of elements in
an XML document, and the REXML library comes with a complete XPath implementation.
REXML::XPath provides three class methods for locating Element objects within parsed
documents: first, each, and match.

Take as an example the following XML description of an aquarium. The aquarium contains
some fish and a gaudy castle decoration full of algae. Due to an aquarium stocking mishap,
some of the smaller fish have been eaten by larger fish, just like in those cartoon food chain
diagrams. (Figure 11-1 shows the aquarium.)

 xml = %{
 <aquarium>
 <fish color="blue" size="small" />

 <fish color="orange" size="large">
 <fish color="green" size="small">
 <fish color="red" size="tiny" />
 </fish>
 </fish>

 <decoration type="castle" style="gaudy">
 <algae color="green" />
 </decoration>
 </aquarium>}

 require 'rexml/document'
 doc = REXML::Document.new xml

Figure 11-1. The aquarium

We can use REXML::Xpath.first to get the Element object corresponding to the first
<fish> tag in the document:

Chapter 11. XML and HTML Page 8 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 REXML::XPath.first(doc, '//fish')
 # => <fish size='small' color='blue'/>

We can use match to get an array containing all the elements that are green:

 REXML::XPath.match(doc, '//[@color="green"]')
 # => [<fish size='small' color='green'> … </>, <algae color='green'/>]

We can use each with a code block to iterate over all the fish that are inside other fish:

 def describe(fish)
 "#{fish.attribute('size')} #{fish.attribute('color')} fish"
 end
 REXML::XPath.each(doc, '//fish/fish') do |fish|
 puts "The #{describe(fish.parent)} has eaten the #{describe(fish)}."
 end
 # The large orange fish has eaten the small green fish.
 # The small green fish has eaten the tiny red fish.

Discussion
Every element in a Document has an xpath method that returns the canonical XPath path
to that element. This path can be considered the element's "address" within the document.
In this example, a complex bit of Ruby code is replaced by a simple XPath expression:

 red_fish = doc.children[0].children[3].children[1].children[1]
 # => <fish size='tiny' color='red'/>

 red_fish.xpath
 # => "/aquarium/fish[2]/fish/fish"

 REXML::XPath.first(doc, red_fish.xpath)
 # => <fish size='tiny' color='red'/>

Even a brief overview of XPath is beyond the scope of this recipe, but here are some more
examples to give you ideas:

 # Find the second green element.
 REXML::XPath.match(doc, '//[@color="green"]')[1]
 # => <algae color='green'/>

 # Find the color attributes of all small fish.
 REXML::XPath.match(doc, '//fish[@size="small"]/@color')
 # => [color='blue', color='green']

 # Count how many fish are inside the first large fish.
 REXML::XPath.first(doc, "count(//fish[@size='large'][1]//*fish)")
 # => 2

The Elements class acts kind of like an array that supports XPath addressing. You can
make your code more concise by passing an XPath expression to Elements#each, or
using it as an array index.

Chapter 11. XML and HTML Page 9 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 doc.elements.each('//fish') { |f| puts f.attribute('color') }
 # blue
 # orange
 # green
 # red

 doc.elements['//fish']
 # => <fish size='small' color='blue'/>

Within an XPath expression, the first element in a list has an index of 1, not 0. The XPath
expression //fish[size='large'][1] matches the first large fish, not the second
large fish, the way large_fish[1] would in Ruby code. Pass a number as an array index
to an Elements object, and you get the same behavior as XPath:

 doc.elements[1]
 # => <aquarium> … </>
 doc.children[0]
 # => <aquarium> … </>

See Also

• The XPath standard, at http://www.w3.org/TR/xpath, has more XPath examples
• XPath and XPointer by John E. Simpson (O'Reilly)

Recipe 11.5. Parsing Invalid Markup

Problem
You need to extract data from a document that's supposed to be HTML or XML, but that
contains some invalid markup.

Solution
For a quick solution, use Rubyful Soup, written by Leonard Richardson and found in the
rubyful_soup gem. It can build a document model even out of invalid XML or HTML,
and it offers an idiomatic Ruby interface for searching the document model. It's good for
quick screen-scraping tasks or HTML cleanup.

 require 'rubygems'
 require 'rubyful_soup'

 invalid_html = 'A lot of <b class=1>tags are <i class=2>never closed.'
 soup = BeautifulSoup.new(invalid_html)
 puts soup.prettify
 # A lot of
 # <b class="1">tags are
 # <i class="2">never closed.
 # </i>
 #

Chapter 11. XML and HTML Page 10 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.w3.org/TR/xpath

 soup.b.i # => <i class="2">never closed.</i>
 soup.i # => <i class="2">never closed.</i>
 soup.find(nil, :attrs=>{'class' => '2'}) # => <i class="2">never closed.</i>
 soup.find_all('i') # => [<i class="2">never closed.</i>]

 soup.b['class'] # => "1"

 soup.find_text(/closed/) # => "never closed."

If you need better performance, do what Rubyful Soup does and write a custom parser on
top of the event-based parser SGMLParser (found in the htmltools gem). It works a lot
like REXML's StreamListener interface.

Discussion
Sometimes it seems like the authors of markup parsers do their coding atop an ivory tower.
Most parsers simply refuse to parse bad markup, but this cuts off an enormous source of
interesting data. Most of the pages on the World Wide Web are invalid HTML, so if your
application uses other peoples' web pages as input, you need a forgiving parser. Invalid
XML is less common but by no means rare.

The SGMLParser class in the htmltools gem uses regular expressions to parse an
XMLlike data stream. When it finds an opening or closing tag, some data, or some other
part of an XML-like document, it calls a hook method that you're supposed to define in a
subclass. SGMLParser doesn't build a document model or keep track of the document
state: it just generates events. If closing tags don't match up or if the markup has other
problems, it won't even notice.

Rubyful Soup's parser classes define SGMLParser hook methods that build a document
model out of an ambiguous document. Its BeautifulSoup class is intended for HTML
documents: it uses heuristics like a web browser's to figure out what an ambiguous
document "really" means. These heuristics are specific to HTML; to parse XML
documents, you should use the BeautifulStoneSoup class. You can also subclass
BeautifulStoneSoup and implement your own heuristics.

Rubyful Soup builds a densely linked model of the entire document, which uses a lot of
memory. If you only need to process certain parts of the document, you can implement the
SGMLParser hooks yourself and get a faster parser that uses less memory.

Here's a SGMLParser subclass that extracts URLs from a web page. It checks every A tag
for an href attribute, and keeps the results in a set. Note the similarity to the
LinkGrabber class defined in Recipe 11.13.

 require 'rubygems'
 require 'html/sgml-parser'
 require 'set'

Chapter 11. XML and HTML Page 11 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 html = %{O'Reilly
 irrelevantRuby}

 class LinkGrabber < HTML::SGMLParser
 attr_reader :urls

 def initialize
 @urls = Set.new
 super
 end

 def do_a(attrs)
 url = attrs.find { |attr| attr[0] == 'href' }
 @urls << url[1] if url
 end
 end

 extractor = LinkGrabber.new
 extractor.feed(html)
 extractor.urls
 # => #<Set: {"http://www.ruby-lang.org/", "http://www.oreilly.com"}>

The equivalent Rubyful Soup program is quicker to write and easier to understand, but it
runs more slowly and uses more memory:

 require 'rubyful_soup'

 urls = Set.new
 BeautifulStoneSoup.new(html).find_all('a').each do |tag|
 urls << tag['href'] if tag['href']
 end

You can improve performance by telling Rubyful Soup's parser to ignore everything except
A tags and their contents:

 puts BeautifulStoneSoup.new(html, :parse_only_these => 'a')
 #
 # O'Reilly
 # Ruby

But the fastest implementation will always be a custom SGMLParser subclass. If your
parser is part of a full application (rather than a one-off script), you'll need to find the best
tradeoff between performance and code legibility.

See Also

• Recipe 11.13, "Extracting All the URLs from an HTML Document"
• The Rubyful Soup documentation (http://www.crummy.com/software/

RubyfulSoup/documentation.html)
• The htree library defines a forgiving HTML/XML parser that can convert a parsed

document into a REXML Document object (http://cvs.m17n.org/~akr/htree/)
• The HTML TIDY library can fix up most invalid HTML so that it can be parsed by a

standard parser; it's a C library with Ruby bindings; see http://tidy.sourceforge.net/
for the library, and http://rubyforge.org/projects/tidy for the bindings

Chapter 11. XML and HTML Page 12 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.crummy.com/software/RubyfulSoup/documentation.html
http://www.crummy.com/software/RubyfulSoup/documentation.html
http://cvs.m17n.org/~akr/htree/
http://tidy.sourceforge.net/
http://rubyforge.org/projects/tidy

Recipe 11.6. Converting an XML Document into a Hash

Problem
When you parse an XML document with Document.new, you get a representation of the
document as a complex data structure. You'd like to represent an XML document using
simple, built-in Ruby data structures.

Solution
Use the XmlSimple library, found in the xml-simple gem. It parses an XML document
into a hash.

Consider an XML document like this one:

 xml = %{
 <freezer temp="-12" scale="celcius">
 <food>Phyllo dough</food>
 <food>Ice cream</food>
 <icecubetray>
 <cube1 />
 <cube2 />
 </icecubetray>
 </freezer>}

Here's how you parse it with XMLSimple:

 require 'rubygems'
 require 'xmlsimple'

 doc = XmlSimple.xml_in xml

And here's what it looks like:

 require 'pp'
 pp doc
 # {"icecubetray"=>[{"cube2"=>[{}], "cube1"=>[{}]}],
 # "food"=>["Phyllo dough", "Ice cream"],
 # "scale"=>"celcius",
 # "temp"=>"-12"}

Discussion
XmlSimple is a lightweight alternative to the Document class. Instead of exposing a tree of
Element objects, it exposes a nested structure of Ruby hashes and arrays. There's no
performance savings (XmlSimple actually builds a Document class behind the scenes
and iterates over it, so it's about half as fast as Document), but the resulting object is easy

Chapter 11. XML and HTML Page 13 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to use. XmlSimple also provides several tricks that can make a document more concise
and navigable.

The most useful trick is the KeyAttr one. Suppose you had a better-organized freezer than
the one above, a freezer in which everything had its own name attribute:[2]

[2] Okay, it's not really better organized. In fact, it's exactly the same. But it sure looks cooler!

 xml = %{
 <freezer temp="-12" scale="celcius">
 <item name="Phyllo dough" type="food" />
 <item name="Ice cream" type="food" />
 <item name="Ice cube tray" type="container">
 <item name="Ice cube" type="food" />
 <item name="Ice cube" type="food" />
 </item>
 </freezer>}

You could parse this data with just a call to XmlSimple.xml_in, but you get a more
concise representation by specifing the name attribute as a KeyAttr argument. Compare:

 parsed1 = XmlSimple.xml_in xml
 pp parsed1
 # {"scale"=>"celcius",
 # "item"=>
 # [{"name"=>"Phyllo dough", "type"=>"food"},
 # {"name"=>"Ice cream", "type"=>"food"},
 # {"name"=>"Ice cube tray",
 # "type"=>"container",
 # "item"=>
 # [{"name"=>"Ice cube", "type"=>"food"},
 # {"name"=>"Ice cube", "type"=>"food"}]}],
 # "temp"=>"-12"}

 parsed2 = XmlSimple.xml_in(xml, 'KeyAttr' => 'name')
 pp parsed2
 # {"scale"=>"celcius",
 # "item"=>
 # {"Phyllo dough"=>{"type"=>"food"},
 # "Ice cube tray"=>
 # {"type"=>"container",
 # "item"=>{"Ice cube"=>{"type"=>"food"}}},
 # "Ice cream"=>{"type"=>"food"}},
 # "temp"=>"-12"}

The second parsing is also easier to navigate:

 parsed1["item"].detect { |i| i['name'] == 'Phyllo dough' }['type']
 # => "food"
 parsed2["item"]["Phyllo dough"]["type"]
 # => "food"

But notice that the second parsing represents the ice cube tray as containing only one ice
cube. This is because both ice cubes have the same name. When two tags at the same level
have the same KeyAttr, one overwrites the other in the hash.

Chapter 11. XML and HTML Page 14 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You can modify the data structure with normal Ruby hash and array methods, then write
it back out to XML with XMLSimple.xml_out:

 parsed1["item"] << {"name"=>"Curry leaves", "type"=>"spice"}
 parsed1["item"].delete_if { |i| i["name"] == "Ice cube tray" }

 puts XmlSimple.xml_out(parsed1, "RootName"=>"freezer")
 # <freezer scale="celcius" temp="-12">
 # <item name="Phyllo dough" type="food" />
 # <item name="Ice cream" type="food" />
 # <item name="Curry leaves" type="spice" />
 # </freezer>

Be sure to specify a RootName argument when you call xml_out. When it parses a file,
XmlSimple removes one level of indirection by throwing away the name of your
document's root element. You can prevent this by using the KeepRoot argument in your
original call to xml_in. You'll need an extra hash lookup to navigate the resulting data
structure, but you'll retain the name of your root element.

 parsed3 = XmlSimple.xml_in(xml, 'KeepRoot'=>true)
 # Now there's no need to add an extra root element when writing back to XML.
 XmlSimple.xml_out(parsed3, 'RootName'=>nil)

One disadvantage of XmlSimple is that, since it puts elements into a hash, it replaces the
order of the original document with the random-looking order of a Ruby hash. This is fine
for a document listing the contents of a freezer—where order doesn't matter—but it would
give interesting results if you tried to use it on a web page.

Another disadvantage is that, since an element's attributes and children are put into the
same hash, you have no reliable way of telling one from the other. Indeed, attributes and
subelements may even end up in a list together, as in this example:

 pp XmlSimple.xml_in(%{
 <freezer temp="-12" scale="celcius">
 <temp>Body of temporary worker who knew too much</temp>
 </freezer>})
 # {"scale"=>"celcius",
 # "temp"=>["-12", "Body of temp worker who knew too much"]}

See Also

• The XmlSimple home page at http://www.maik-schmidt.de/xml-simple.html has
much more information about the options you can pass to XmlSimple.xml_in

Recipe 11.7. Validating an XML Document
Credit: Mauro Cicio

Chapter 11. XML and HTML Page 15 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.maik-schmidt.de/xml-simple.html

Problem
You want to check whether an XML document conforms to a certain schema or DTD.

Solution
Unfortunately, as of this writing there are no stable, pure Ruby libraries that do XML
validation. You'll need to install a Ruby binding to a C library. The easiest one to use is the
Ruby binding to the GNOME libxml2 toolkit. (There are actually two Ruby bindings to
libxml2, so don't get confused: we're referring to the one you get when you install the
libxml-ruby gem.)

To validate a document against a DTD, create a a DTD object and pass it into
Document#validate. To validate against an XML Schema, pass in a Schema object
instead.

Consider the following DTD, for a cookbook like this one:

 require 'rubygems'
 require 'libxml'

 dtd = XML::Dtd.new(%{<!ELEMENT rubycookbook (recipe+)>
 <!ELEMENT recipe (title?, problem, solution, discussion, seealso?)+>
 <!ELEMENT title (#PCDATA)>
 <!ELEMENT problem (#PCDATA)>
 <!ELEMENT solution (#PCDATA)>
 <!ELEMENT discussion (#PCDATA)>
 <!ELEMENT seealso (#PCDATA)>})

Here's an XML document that looks like it conforms to the DTD:

 open('cookbook.xml', 'w') do |f|
 f.write %{<?xml version="1.0"?>
 <rubycookbook>
 <recipe>
 <title>A recipe</title>
 <problem>A difficult/common problem</problem>
 <solution>A smart solution</solution>
 <discussion>A deep solution</discussion>
 <seealso>Pointers</seealso>
 </recipe>
 </rubycookbook>
 }
 end

But does it really? We can tell for sure with Document#validate:

 document = XML::Document.file('cookbook.xml')
 document.validate(dtd) # => true

Chapter 11. XML and HTML Page 16 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a Schema definition for the same document. We can validate the document against
the schema by making it into a Schema object and passing that into
Document#validate:

 schema = XML::Schema.from_string %{<?xml version="1.0"?>

 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <xsd:element name="recipe" type="recipeType"/>

 <xsd:element name="rubycookbook" type="rubycookbookType"/>

 <xsd:element name="title" type="xsd:string"/>
 <xsd:element name="problem" type="xsd:string"/>
 <xsd:element name="solution" type="xsd:string"/>
 <xsd:element name="discussion" type="xsd:string"/>
 <xsd:element name="seealso" type="xsd:string"/>

 <xsd:complexType name="rubycookbookType">
 <xsd:sequence>
 <xsd:element ref="recipe"/>
 </xsd:sequence>
 </xsd:complexType>
 <xsd:complexType name="recipeType">
 <xsd:sequence>
 <xsd:element ref="title"/>
 <xsd:element ref="problem"/>
 <xsd:element ref="solution"/>
 <xsd:element ref="discussion"/>
 <xsd:element ref="seealso"/>
 </xsd:sequence>
 </xsd:complexType>

 </xsd:schema>
 }

 document.validate(schema) # => true

Discussion
Programs that use XML validation are more robust and less complicated than
nonvalidating versions. Before starting work on a document, you can check whether or not
it's in the format you expect. Most services that accept XML as input don't have forgiving
parsers, so you must validate your document before submitting it or it might fail without
you even noticing.

One of the most popular and complete XML libraries around is the GNOME Libxml2
library. Despite its name, it works fine outside the GNOME platform, and has been ported
to many different OSes. The Ruby project libxml (http://libxml.rubyforge.org) is a Ruby
wrapper around the GNOME Libxml2 library. The project is not yet in a mature state, but
it's very active and the validation features are definitively usable. Not only does libxml
support validation and a complete range of XML manipolation techniques, it can also
improve your program's speed by an order of magnitude, since it's written in C instead of
REXML's pure Ruby.

Chapter 11. XML and HTML Page 17 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://libxml.rubyforge.org

Don't confuse the libxml project with the libxml library. The latter is part of the
XML::Tools project. It binds against the GNOME Libxml2 library, but it doesn't expose
that library's validation features. If you try the example code above but can't find the
XML::Dtd or the XML::Schema classes, then you've got the wrong binding. If you
installed the libxml-ruby package on Debian GNU/Linux, you've got the wrong one.
You need the one you get by installing the libxml-ruby gem. Of course, you'll need to
have the actual GNOME libxml library installed as well.

See Also

• The Ruby libxml project page (http://www.rubyforge.org/projects/libxml)
• The other Ruby libxml binding (the one that doesn't do validation)is part of the

XML::Tools project (http://rubyforge.org/projects/xml-tools/); don't confuse the
two!

• The GNOME libxml project homepage (http://xmlsoft.org/)
• Refer to http://www.w3.org/XML for the difference between a DTD and a Schema

Recipe 11.8. Substituting XML Entities

Problem
You've parsed a document that contains internal XML entities. You want to substitute the
entities in the document for their values.

Solution
To perform entity substitution on a specific text element, call its value method. If it's the
first text element of its parent, you can call text on the parent instead.

Here's a simple document that defines and uses two entities in a single text node. We can
substitute those entities for their values without changing the document itself:

 require 'rexml/document'

 str = %{<?xml version="1.0"?>
 <!DOCTYPE doc [
 <!ENTITY product 'Stargaze'>
 <!ENTITY version '2.3'>
]>
 <doc>
 &product; v&version; is the most advanced astronomy product on the market.
 </doc>}
 doc = REXML::Document.new str

 doc.root.children[0].value
 # => "\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"
 doc.root.text
 # => "\n Stargaze v2.3 is the most advanced astronomy product on the market.\n"

Chapter 11. XML and HTML Page 18 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubyforge.org/projects/libxml
http://rubyforge.org/projects/xml-tools/
http://xmlsoft.org/
http://www.w3.org/XML

 doc.root.children[0].to_s
 # => "\n &product; v&version; is the most advanced astronomy product on the market.\n"
 doc.root.write
 # <doc>
 # &product; v&version; is the most advanced astronomy program on the market.
 # </doc>

Discussion
Internal XML entities are often used to factor out data that changes a lot, like dates or
version numbers. But REXML only provides a convenient way to perform substitution on
a single text node. What if you want to perform substitutions throughout the entire
document?

When you call Document#write to send a document to some IO object, it ends up calling
Text#to_s on each text node. As seen in the Solution, this method presents a
"normalized" view of the data, one where entities are displayed instead of having their
values substituted in.

We could write our own version of Document#write that presents an "unnormalized"
view of the document, one with entity values substituted in, but that would be a lot of work.
We could hack Text#to_s to work more like Text#value, or hack Text#write to call
the value method instead of to_s. But it's less intrusive to do the entity replacement
outside of the write method altogether. Here's a class that wraps any IO object and
performs entity replacement on all the text that comes through it:

 require 'delegate'
 require 'rexml/text'
 class EntitySubstituter < DelegateClass(IO)
 def initialize(io, document, filter=nil)
 @document = document
 @filter = filter
 super(io)

 end

 def <<(s)
 super(REXML::Text::unnormalize(s, @document.doctype, @filter))
 end
 end

 output = EntitySubstituter.new($stdout, doc)
 doc.write(output)
 # <?xml version='1.0'?><!DOCTYPE doc [
 # <!ENTITY product "Stargaze">
 # <!ENTITY version "2.3">
 #]>
 # <doc>
 # Stargaze v2.3 is the most advanced astronomy product on the market.
 # </doc>

Chapter 11. XML and HTML Page 19 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because it processes the entire output of Document#write, this code will replace all entity
references in the document. This includes any references found in attribute values, which
may or may not be what you want.

If you create a Text object manually, or set the value of an existing object, REXML assumes
that you're giving it unnormalized text, and normalizes it. This can be problematic if your
text contains strings that happen to be the values of entities:

 text_node = doc.root.children[0]
 text_node.value = "&product; v&version; has a catalogue of 2.3 " +
 "million celestial objects."

 doc.write
 # <?xml version='1.0'?><!DOCTYPE doc [
 # <!ENTITY product "Stargaze">
 # <!ENTITY version "2.3">
 #]>
 # <doc>&product; v&version; has a catalogue of &version; million celestial objects.
 </doc>

To avoid this, you can create a "raw" text node:

 text_node.raw = true
 doc.write
 # <?xml version='1.0'?><!DOCTYPE doc [
 # <!ENTITY product "Stargaze">
 # <!ENTITY version "2.3">
 #]>
 # <doc>&product; v&version; has a catalogue of 2.3 million celestial objects.</doc>

 text_node.value
 # => "Stargaze v2.3 has a catalogue of 2.3 million celestial objects."
 text_node.to_s
 # => "&product; v&version; has a catalogue of 2.3 million celestial objects."

In addition to entities you define, REXML automatically processes five named character
entities: the ones for left and right angle brackets, single and double quotes, and the
ampersand. Each is replaced with the corresponding ASCII character.

 str = %{
 <!DOCTYPE doc [<!ENTITY year '2006'>]>
 <doc>© &year; Komodo Dragon & Bob Productions</doc>
 }

 doc = REXML::Document.new str
 text_node = doc.root.children[0]

 text_node.value
 # => "© 2006 Komodo Dragon & Bob Productions"
 text_node.to_s
 # => "© &year; Komodo Dragon & Bob Productions"

"©" is an HTML character entity representing the copyright symbol, but REXML
doesn't know that. It only knows about the five XML character entities. Also, REXML only

Chapter 11. XML and HTML Page 20 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

knows about internal entities: ones whose values are defined within the same document
that uses them. It won't resolve external entities.

See Also

• The section "Text Nodes" of the REXML tutorial (http://www.germane-
software.com/software/rexml/docs/tutorial.html#id2248004)

Recipe 11.9. Creating and Modifying XML Documents

Problem
You want to modify an XML document, or create a new one from scratch.

Solution
To create an XML document from scratch, just start with an empty Document object.

 require 'rexml/document'
 require
 doc = REXML::Document.new

To add a new element to an existing document, pass its name and any attributes into its
parent's add_element method. You don't have to create the Element objects yourself.

 meeting = doc.add_element 'meeting'
 meeting_start = Time.local(2006, 10, 31, 13)
 meeting.add_element('time', { 'from' => meeting_start,
 'to' => meeting_start + 3600 })

 doc.children[0] # => <meeting> … </>
 doc.children[0].children[0]
 # => "<time from='Tue Oct 31 13:00:00 EST 2006'
 # to='Tue Oct 31 14:00:00 EST 2006'/>"

 doc.write($stdout, 1)
 # <meeting>
 # <time from='Tue Oct 31 13:00:00 EST 2006'
 # to='Tue Oct 31 14:00:00 EST 2006'/>
 # </meeting>
 doc.children[0] # => <?xml … ?>
 doc.children[1] # => <meeting> … </>

To append a text node to the contents of an element, use the add_text method. This code
adds an <agenda> element to the <meeting> element, and gives it two different text
nodes:

 agenda = meeting.add_element 'agenda'
 doc.children[1].children[1] # => <agenda/>

 agenda.add_text "Nothing of importance will be decided."

Chapter 11. XML and HTML Page 21 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.germane-software.com/software/rexml/docs/tutorial.html#id2248004
http://www.germane-software.com/software/rexml/docs/tutorial.html#id2248004

 agenda.add_text " The same tired ideas will be rehashed yet again."

 doc.children[1].children[1] # => <agenda> … </>

 doc.write($stdout, 1)
 # <meeting>
 # <time from='Tue Oct 31 13:00:00 EST 2006'
 # to='Tue Oct 31 14:00:00 EST 2006'/>
 # <agenda>
 # Nothing of importance will be decided. The same tired ideas will be
 # rehashed yet again.
 # </agenda>
 # </meeting>

Element#text= is a nice shortcut for giving an element a single text node. You can also
use to overwrite a document's initial text nodes:

 item1 = agenda.add_element 'item'
 doc.children[1].children[1].children[1] # => <item/>
 item1.text = 'Weekly status meetings: improving attendance'
 doc.children[1].children[1].children[1] # => <item> … </>
 doc.write($stdout, 1)
 # <meeting>
 # <time from='Tue Oct 31 13:00:00 EST 2006'
 # to='Tue Oct 31 14:00:00 EST 2006'/>
 # <agenda>
 # Nothing of importance will be decided. The same tired ideas will be
 # rehashed yet again.
 # <item>Weekly status meetings: improving attendance</item>
 # </agenda>
 # </meeting>

Discussion
If you can access an element or text node (numerically or with XPath), you can modify or
delete it. You can modify an element's name with name=, and modify one of its attributes
by assigning to an index of attributes. This code uses these methods to make major
changes to a document:

 doc = REXML::Document.new %{<?xml version='1.0'?>
 <girl size="little">
 <foods>
 <sugar />
 <spice />
 </foods>
 <set of="nice things" cardinality="all" />
 </girl>
 }

 root = doc[1] # => <girl size='little'> … </>
 root.name = 'boy'

 root.elements['//sugar'].name = 'snails'
 root.delete_element('//spice')

 set = root.elements['//set']
 set.attributes["of"] = "snips"
 set.attributes["cardinality"] = 'some'

 root.add_element('set', {'of' => 'puppy dog tails', 'cardinality' => 'some' })
 doc.write
 # <?xml version='1.0'?>
 # <boy size='little'>

Chapter 11. XML and HTML Page 22 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # <foods>
 # <snails/>
 #
 # </foods>
 # <set of='snips' cardinality='some'/>
 # <set of='puppy dog tails' cardinality='some'/></boy>

You can delete an attribute with Element#delete_attribute, or by assigning nil to
it:

 root.attributes['size'] = nil
 doc.write($stdout, 0)
 # <?xml version='1.0'?>
 # <boy>
 # <foods>
 # …
 # </boy>

You can use methods like replace_with to swap out one node for another:

 doc.elements["//snails"].replace_with(REXML::Element.new("escargot"))

All these methods are convenient, but add_element in particular is not very idiomatic.
The cgi library lets you structure method calls and code blocks so that your Ruby code
has the same nesting structure as the HTML it generates. Why shouldn't you be able to do
the same for XML? Here's a new method for Element that makes it possible:

 class REXML::Element
 def with_element(*args)
 e = add_element(*args)
 yield e if block_given?
 end
 end

Now you can structure your Ruby code the same way you structure your XML:

 doc = REXML::Document.new
 doc.with_element('girl', {'size' => 'little'}) do |girl|
 girl.with_element('foods') do |foods|
 foods.add_element('sugar')
 foods.add_element('spice')
 end
 girl.add_element('set', {'of' => 'nice things', 'cardinality' => 'all'})
 end

 doc.write($stdout, 0)
 # <girl size='little'>
 # <foods>
 # <sugar/>
 # <spice/>
 # </foods>
 # <set of='nice things' cardinality='all'/>
 # </girl>

The builder gem also lets you build XML this way.

Chapter 11. XML and HTML Page 23 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 7.10, "Hiding Setup and Cleanup in a Block Method," has an example of using
the XmlMarkup class in the builder gem.

Recipe 11.10. Compressing Whitespace in an XML Document

Problem
When REXML parses a document, it respects the original whitespace of the document's
text nodes. You want to make the document smaller by compressing extra whitespace.

Solution
Parse the document by creating a REXML::Document out of it. Within the Document
constructor, tell the parser to compress all runs of whitespace characters:

 require 'rexml/document'

 text = %{<doc><a>Some whitespace Some more</doc>}

 REXML::Document.new(text, { :compress_whitespace => :all }).to_s
 # => "<doc><a>Some whitespace Some more</doc>"

Discussion
Sometimes whitespace within a document is significant, but usually (as with HTML) it can
be compressed without changing the meaning of the document. The resulting document
takes up less space on the disk and requires less bandwidth to transmit.

Whitespace compression doesn't have to be all-or-nothing. REXML gives two ways to
configure it. Instead of passing :all as a value for :compress_whitespace, you can
pass in a list of tag names. Whitespace will only be compressed in those tags:

 REXML::Document.new(text, { :compress_whitespace => %w{a} }).to_s
 # => "<doc><a>Some whitespace Some more</doc>"

You can also switch it around: pass in :respect_whitespace and a list of tag names
whose whitespace you don't want to be compressed. This is useful if you know that
whitespace is significant within certain parts of your document.

 REXML::Document.new(text, { :respect_whitespace => %w{a} }).to_s
 # => "<doc><a>Some whitespace Some more</doc>"

Chapter 11. XML and HTML Page 24 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-10#rubyckbk-CHP-7-SECT-10

What about text nodes containing only whitespace? These are often inserted by XML
pretty-printers, and they can usually be totally discarded without altering the meaning of
a document. If you add :ignore_whitespace_nodes => :all to the parser
configuration, REXML will simply decline to create text nodes that contain nothing but
whitespace characters. Here's a comparison of :compress_whitespace alone, and in
conjunction with :ignore_whitespace_nodes:

 text = %{<doc><a>Some text\n Some more\n\n}
 REXML::Document.new(text, { :compress_whitespace => :all }).to_s
 # => "<doc><a>Some text\n Some more\n</doc>"
 REXML::Document.new(text, { :compress_whitespace => :all,
 :ignore_whitespace_nodes => :all }).to_s
 # => "<doc><a>Some textSome more</doc>"

By itself, :compress_whitespace shouldn't make a document less human-readable,
but :ignore_whitespace_nodes almost certainly will.

See Also

• Recipe 1.11, "Managing Whitespace"

Recipe 11.11. Guessing a Document's Encoding

Credit: Mauro Cicio

Problem
You want to know the character encoding of a document that doesn't declare it explicitly.

Solution
Use the Ruby bindings to the libcharguess library. Once it's installed, using
libcharguess is very simple.

Here's an XML document written in Italian, with no explicit encoding:

 doc = %{<?xml version="1.0"?>
 <menu tipo="specialità" giorno="venerdì">
 <primo_piatto>spaghetti al ragù</primo_piatto>
 <bevanda>frappè</bevanda>
 </menu>}

Let's find its encoding:

 require 'charguess'

Chapter 11. XML and HTML Page 25 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-11#rubyckbk-CHP-1-SECT-11

 CharGuess::guess doc
 # => "windows-1252"

This is a pretty good guess: the XML is written in the ISO-8859-1 encoding, and many web
browsers treat ISO-8859-1 as Windows-1252.

Discussion
In XML, the character-encoding indication is optional, and may be provided as an attribute
of the XML declaration in the first line of the document:

 <xml version="1.0" encoding="utf-8"?>

If this is missing, you must guess the document encoding to process the document. You
can assume the lowest common denominator for your community (usually this means
assuming that everything is either UTF-8 or ISO-8859-1), or you can use a library that
examines the document and uses heuristics to guess the encoding.

As of the time of writing, there are no pure Ruby libraries for guessing the encoding of a
document. Fortunately, there is a small Ruby wrapper around the Charguess library. This
library can guess with 95% accuracy the encoding of any text whose charset is one of the
following: BIG5, HZ, JIS, SJIS, EUC-JP, EUC-KR, EUC-TW, GB2312, Bulgarian, Cyrillic,
Greek, Hungarian, Thai, Latin1, and UTF8.

Note that Charguess is not XML-or HTML-specific. In fact, it can guess the encoding of
an arbitrary string:

 CharGuess::guess("\xA4\xCF") # => "EUC-JP"

It's fairly easy to install libcharguess, since the library is written in portable C++.
Unfortunately, it doesn't take care to put its header files in a standard location. This makes
it a little tricky to compile the Ruby bindings, which depend on the charguess.h header.
When you run extconf.rb to prepare the bindings, you must explicitly tell the script
where to find libcharguess's headers. Here's how you might compile the Ruby bindings
to libcharguess:

 $ ruby extconf.rb --with-charguess-include=/location/of/charguess.h
 $ make
 $ make install

Chapter 11. XML and HTML Page 26 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• To find your way through the jungle of character encodings, the Wikipedia entry on
character encodings makes a good reference (http://en.wikipedia.org/wiki/
Character_encoding)

• A good source for sample texts in various charsets is http://vancouver-
webpages.com/multilingual/

• The XML specification has a section on character encoding autodetection (http://
www.w3.org/TR/REC-xml/#sec-guessing)

• The Charguess library is at http://libcharguess.sourceforge.net; its Ruby bindings are
available from http://raa.ruby-lang.org/project/charguess

Recipe 11.12. Converting from One Encoding to Another
Credit: Mauro Cicio

Problem
You want to convert a document to a given charset encoding (probably UTF-8).

Solution
If you don't know the document's current encoding, you can guess at it using the Charguess
library described in the previous recipe. Once you know the current encoding, you can
convert the document to another encoding using Ruby's standard iconv library.

Here's an XML document written in Italian, with no explicit encoding:

 doc = %{<?xml version="1.0"?>
 <menu tipo="specialità" giorno="venerdì">
 <primo_piatto>spaghetti al ragù</primo_piatto>
 <bevanda>frappè</bevanda>
 </menu>}

Let's figure out its encoding and convert it to UTF-8:

 require 'iconv'
 require 'charguess' # not necessary if input encoding is known

 input_encoding = CharGuess::guess doc # => "windows-1252"
 output_encoding = 'utf-8'

 converted_doc = Iconv.new(output_encoding, input_encoding).iconv(doc)

 CharGuess::guess(converted_doc) # => "UTF-8"

Chapter 11. XML and HTML Page 27 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/Character_encoding
http://vancouver-webpages.com/multilingual/
http://vancouver-webpages.com/multilingual/
http://www.w3.org/TR/REC-xml/#sec-guessing
http://www.w3.org/TR/REC-xml/#sec-guessing
http://libcharguess.sourceforge.net
http://raa.ruby-lang.org/project/charguess

Discussion
The heart of the iconv library is the Iconv class, a wrapper for the Unix 95 iconv()
family of functions. These functions translate strings between various encoding systems.
Since iconv is part of the Ruby standard library, it should be already available on your
system.

Iconv works well in conjunction with Charguess: even if Charguess guesses the encoding
a little bit wrong (such as guessing Windows-1252 for an ISO-8859-1 document), it always
makes a good enough guess that iconv can convert the document to another encoding.

Like Charguess, the Iconv library is not XML-or HTML-specific. You can use
libcharguess and iconv together to convert an arbitrary string to a given encoding.

See Also

• Recipe 11.11, "Guessing a Document's Encoding"
• The iconv library is documented at http://www.ruby-doc.org/stdlib/libdoc/iconv/

rdoc/classes/Iconv.html; you can find pointers to The Open Group Unix library
specifications

Recipe 11.13. Extracting All the URLs from an HTML Document

Problem
You want to find all the URLs on a web page.

Solution
Do you only want to find links (that is, URLs mentioned in the HREF attribute of an A tag)?
Do you also want to find the URLs of embedded objects like images and applets? Or do
you want to find all URLs, including ones mentioned in the text of the page?

The last case is the simplest. You can use URI.extract to get all the URLs found in a
string, or to get only the URLs with certain schemes. Here we'll extract URLs from some
HTML, whether or not they're inside A tags:

 require 'uri'

 text = %{"My homepage is at
 http://www.example.com/, and be sure
 to check out my weblog at http://www.example.com/blog/. Email me at bob@example.com.}

 URI.extract(text)
 # => ["http://www.example.com/", "http://www.example.com/",

Chapter 11. XML and HTML Page 28 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-doc.org/stdlib/libdoc/iconv/rdoc/classes/Iconv.html;
http://www.ruby-doc.org/stdlib/libdoc/iconv/rdoc/classes/Iconv.html;

 # "http://www.example.com/blog/.", "mailto:bob@example.com"]

 # Get HTTP(S) links only.
 URI.extract(text, ['http', 'https'])
 # => ["http://www.example.com/", "http://www.example.com/"
 # "http://www.example.com/blog/."]

If you only want URLs that show up inside certain tags, you need to parse the HTML.
Assuming the document is valid, you can do this with any of the parsers in the rexml
library. Here's an efficient implementation using REXML's stream parser. It retrieves
URLs found in the HREF attributes of A tags and the SRC attributes of IMG tags, but you
can customize this behavior by passing a different map to the constructor.

 require 'rexml/document'
 require 'rexml/streamlistener'
 require 'set'

 class LinkGrabber
 include REXML::StreamListener
 attr_reader :links

 def initialize(interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
 @tags = interesting_tags
 @links = Set.new
 end
 def tag_start(name, attrs)
 @tags[name].each do |uri_attr|
 @links << attrs[uri_attr] if attrs[uri_attr]
 end if @tags[name]
 end

 def parse(text)
 REXML::Document.parse_stream(text, self)
 end
 end

 grabber = LinkGrabber.new
 grabber.parse(text)
 grabber.links
 # => #<Set: {"http://www.example.com/", "mailto:bob@example.com"}>

Discussion
The URI.extract solution uses regular expressions to find everything that looks like a
URL. This is faster and easier to write than a REXML parser, but it will find every absolute
URL in the document, including any mentioned in the text and any in the document's
initial DOCTYPE. It will not find relative URLs hidden within HREF attributes, since those
don't start with an access scheme like "http://".

URI.extract treats the period at the end of the first sentence ("check out my weblog
at…")as though it were part of the URL. URLs contained within English text are often
ambiguous in this way. "http://www.example.com/blog/." is a perfectly valid URL and
might be correct, but that period is probably just punctuation. Accessing the URL is the
only sure way to know for sure, but it's almost always safe to strip those characters:

 END_CHARS = %{.,'?!:;}

Chapter 11. XML and HTML Page 29 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.example.com/blog/

 URI.extract(text, ['http']).collect { |u| END_CHARS.index(u[-1]) ? u.chop : u }
 # => ["http://www.example.com/", "http://www.example.com/",
 # "http://www.example.com/blog/"]

The parser solution defines a listener that hears about every tag present in its
interesting_tags map. It checks each tag for attributes that tend to contain URLs:
"href" for <a> tags and "src" for tags, for instance. Every URL it finds goes into a
set.

The use of a set here guarantees that the result contains no duplicate URLs. If you want to
gather (possibly duplicate)URLs in the order they were found in the document, use a list,
the way URI.extract does.

The LinkGrabber solution will not find URLs in the text portions of the document, but
it will find relative URLs. Of course, you still need to know how to turn relative URLs into
absolute URLs. If the document has a <base> tag, you can use that. Otherwise, the base
depends on the original URL of the document.

Here's a subclass of LinkGrabber that changes relative links to absolute links if possible.
Since it uses URI.join, which returns a URI object, your set will end up containing URI
objects instead of strings:

 class AbsoluteLinkGrabber < LinkGrabber
 include REXML::StreamListener
 attr_reader :links

 def initialize(original_url = nil,
 interesting_tags = {'a' => %w{href}, 'img' => %w{src}}.freeze)
 super(interesting_tags)
 @base = original_url
 end

 def tag_start(name, attrs)
 if name == 'base'
 @base = attrs['href']
 end
 super
 end

 def parse(text)
 super
 # If we know of a base URL by the end of the document, use it to
 # change all relative URLs to absolute URLs.
 @links.collect! { |l| URI.join(@base, l) } if @base
 end
 end

If you want to use the parsing solution, but the web page has invalid HTML that chokes
the REXML parsers (which is quite likely), try the techniques mentioned in Recipe 11.5.

Almost 20 HTML tags can have URLs in one or more of their attributes. If you want to
collect every URL mentioned in an appropriate part of a web page, here's a big map you
can pass in to the constructor of LinkGrabber or AbsoluteLinkGrabber:

Chapter 11. XML and HTML Page 30 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 URL_LOCATIONS = { 'a' => %w{href},
 'area' => %w{href},
 'applet' => %w{classid},
 'base' => %w{href},
 'blockquote' => %w{cite},
 'body' => %w{background},
 'codebase' => %w{classid},
 'del' => %w{cite},
 'form' => %w{action},
 'frame' => %w{src longdesc},
 'iframe' => %w{src longdesc},
 'input' => %w{src usemap},
 'img' => %w{src longdesc usemap},
 'ins' => %w{cite},
 'link' => %w{href},
 'object' => %w{usemap archive codebase data},
 'profile' => %w{head},
 'q' => %w{cite},
 'script' => %w{src}}.freeze

See Also

• Recipe 11.4, "Navigating a Document with XPath"
• Recipe 11.5, "Parsing Invalid Markup"
• I compiled that big map of URI attributes from the W3C's Index of Attributes for

HTML 4.0; look for the attributes of type %URI; (http://www.w3.org/TR/REC-
html40/index/attributes.html)

Recipe 11.14. Transforming Plain Text to HTML

Problem
You want to add simple markup to plaintext and turn it into HTML.

Solution
Use RedCloth, written by "why the lucky stiff" and available as the RedCloth gem. It
extends Ruby's string class to support Textile markup: its to_html method converts
Textile markup to HTML.

Here's a simple document:

 require 'rubygems'
 require 'redcloth'

 text = RedCloth.new %{Who would ever write "HTML":http://www.w3.org/MarkUp/
 markup directly?

 I mean, _who has the time_? Nobody, that's who:

 |_. Person |_. Has the time? |
 | Jake | No |
 | Alice | No |

Chapter 11. XML and HTML Page 31 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.w3.org/TR/REC-html40/index/attributes.html
http://www.w3.org/TR/REC-html40/index/attributes.html

 | Rodney | Not since the accident |
 }

 puts text.to_html
 # <p>Who would ever write
 # HTML
 # markup directly?</p>
 #
 # <p>I mean, who has the time? Nobody, that’s who:</p>
 #
 # <table>
 # <tr>
 # <th>Person </th>
 # <th>Has the time? </th>
 # </tr>
 # …

The Textile version is more readable and easier to edit.

Discussion
The Textile markup language lets you produce HTML without having to write any HTML.
You just add punctuation to plain text, to convey what markup you'd like. Paragraph breaks
are represented by blank lines, italics by underscores, tables by ASCII-art drawings of
tables.

A text-based markup that converts to HTML is very useful in weblog and wiki software,
where the markup will be edited many times. It's also useful for hiding the complexity of
HTML from new computer users. We wrote this entire book using a Textile-like markup,
though it was converted to Docbook instead of HTML.

See Also

• The RedCloth homepage (http://www.whytheluckystiff.net/ruby/redcloth/)
• A comprehensive Textile reference (http://hobix.com/textile/)and a quick reference

(http://hobix.com/textile/quick.html)
• You can experiment with Textile markup at the language's homepage (http://

www.textism.com/tools/textile/)
• Markdown (http://daringfireball.net/projects/markdown/)is another popular

simple markup language for plain text; you can turn Markdown text to XHTML with
the BlueCloth gem (project page: http://www.deveiate.org/projects/BlueCloth);
because BlueCloth and RedCloth both define String#to_html, it's not easy to use
them both in the same program

Recipe 11.15. Converting HTML Documents from the Web into Text

Chapter 11. XML and HTML Page 32 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.whytheluckystiff.net/ruby/redcloth/
http://hobix.com/textile/
http://hobix.com/textile/quick.html
http://www.textism.com/tools/textile/
http://www.textism.com/tools/textile/
http://daringfireball.net/projects/markdown/
http://www.deveiate.org/projects/BlueCloth

Problem
You want to get a text summary of a web site.

Solution
The open-uri library is the easiest way to grab the content of a web page; it lets you open
a URL as though it were a file:

 require 'open-uri'

 example = open('http://www.example.com/')
 # => #<StringIO:0xb7bb601c>

 html = example.read

As with a file, the read method returns a string. You can do a series of sub and gsub
methods to clean the code into a more readable format.

 plain_text = html.sub(%r{<body.*?>(.*?)</body>}mi, '\1').gsub(/<.*?>/m, ' ').
 gsub(%r{(\n\s*){2}}, "\n\n")

Finally, you can use the standard CGI library to unescape HTML entities like < into
their ASCII equivalents (<):

 require 'cgi'
 plain_text = CGI.unescapeHTML(plain_text)

The final product:

 puts plain_text
 # Example Web Page
 #
 # You have reached this web page by typing "example.com",
 # "example.net",
 # or "example.org" into your web browser.
 # These domain names are reserved for use in documentation and are not available
 # for registration. See RFC
 # 2606 , Section 3.

Discussion
The open-uri library extends the open method so that you can access the contents of
web pages and FTP sites with the same interface used for local files.

The simple regular expression substitutions above do nothing but remove HTML tags and
clean up excess whitespace. They work well for well-formatted HTML, but the web is full
of mean and ugly HTML, so you may consider taking a more involved approach. Let's
define a HTMLSanitizer class to do our dirty business.

Chapter 11. XML and HTML Page 33 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An HTMLSanitizer will start off with some HTML, and through a series of search-and-
replace operations transform it into plain text. Different HTML tags will be handled
differently. The contents of some HTML tags should simply be removed in a plaintext
rendering. For example, you probably don't want to see the contents of <head> and
<script> tags. Other tags affect what the rendition should look like, for instance, a <p>
tag should be represented as a blank line:

 require 'open-uri'
 require 'cgi'

 class HTMLSanitizer
 attr_accessor :html

 @@ignore_tags = ['head', 'script', 'frameset']
 @@inline_tags = ['span', 'strong', 'i', 'u']
 @@block_tags = ['p', 'div', 'ul', 'ol']

The next two methods define the skeleton of our HTML sanitizer:

 def initialize(source='')
 begin
 @html = open(source).read
 rescue Errno::ENOENT
 # If it's not a file, assume it's an HTML string
 @html = source
 end
 end

 def plain_text
 # remove pre-existing blank spaces between tags since we will
 # be adding spaces on our own
 @plain_text = @html.gsub(/\s*(<.*?>)/m, '\1')

 handle_ignore_tags
 handle_inline_tags
 handle_block_tags
 handle_all_other_tags

 return CGI.unescapeHTML(@plain_text)
 end

Now we need to fill in the handle_ methods defined by
HTMLSanitizer#plain_text. These methods perform search-and-replace operations
on the @plain_text instance variable, gradually transforming it from HTML into plain
text. Because we are modifying @plain_text in place, we will need to use
String#gsub! instead of String#gsub.

 private

 def tag_regex(tag)
 %r{<#{tag}.*?>(.*?)</#{tag}>}mi
 end

 def handle_ignore_tags
 @@ignore_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '') }
 end
 def handle_inline_tags
 @@inline_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), '\1 ') }

Chapter 11. XML and HTML Page 34 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 def handle_block_tags
 @@block_tags.each { |tag| @plain_text.gsub!(tag_regex(tag), "\n\\1\n") }
 end

 def handle_all_other_tags
 @plain_text.gsub!(/
/mi, "\n")
 @plain_text.gsub!(/<.*?>/m, ' ')
 @plain_text.gsub!(/(\n\s*){2}/, "\n\n")
 end
 end

To use this class, simply initialize it with a URL and call the plain_text method:

 puts HTMLSanitizer.new('http://slashdot.org/').plain_text
 # Stories
 # Slash Boxes
 # Comments
 #
 # Slashdot
 #
 # News for nerds, stuff that matters
 #
 # Login
 #
 # Why Login? Why Subscribe?
 # …

See Also

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• For a more sophisticated text renderer, parse the HTML document with the

techniques described in Recipe 11.2, "Extracting Data from a Document's Tree
Structure," or Recipe 11.5, "Parsing Invalid Markup"

Recipe 11.16. A Simple Feed Aggregator
Credit: Rod Gaither

XML is the basis for many specialized langages. One of the most popular is RSS, an XML
format often used to store lists of articles from web pages. With a tool called an aggregator,
you can collect weblog entries and articles from several web sites' RSS feeds, and read all
those web sites at once without having to skip from one to the other. Here, we'll create a
simple aggregator in Ruby.

Before aggregating RSS feeds, let's start by reading a single one. Fortunately we have
several options for parsing RSS feeds into Ruby data structures. The Ruby standard library
has built-in support for the three major versions of the RSS format (0.9, 1.0, and 2.0). This
example uses the standard rss library to parse an RSS 2.0 feed and print out the titles of
the items in the feed:

Chapter 11. XML and HTML Page 35 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1

 require 'rss/2.0'
 require 'open-uri'

 url = 'http://www.oreillynet.com/pub/feed/1?format=rss2'
 feed = RSS::Parser.parse(open(url).read, false)
 puts "=== Channel: #{feed.channel.title} ==="
 feed.items.each do |item|
 puts item.title
 puts " (#{item.link})"
 puts
 puts item.description
 end
 # === Channel: O'Reilly Network Articles ===
 # How to Make Your Sound Sing with Vocoders
 # (http://digitalmedia.oreilly.com/2006/03/29/vocoder-tutorial-and-tips.html)
 # …

Unfortunately, the standard rss library is a little out of date. There's a newer syndication
format called Atom, which serves the same purpose as RSS, and the rss library doesn't
support it. Any serious aggregator must support all the major syndication formats.

So instead, our aggregator will use Lucas Carlson's Simple RSS library, available as the
simple-rss gem. This library supports the three main versions of RSS, plus Atom, and
it does so in a relaxed way so that ill-formed feeds have a better chance of being read.

Here's the example above, rewritten to use Simple RSS. As you can see, only the name of
the class is different:

 require 'rubygems'
 require 'simple-rss'
 url = 'http://www.oreillynet.com/pub/feed/1?format=rss2'
 feed = RSS::Parser.parse(open(url), false)
 puts "=== Channel: #{feed.channel.title} ==="
 feed.items.each do |item|
 puts item.title
 puts " (#{item.link})"
 puts
 puts item.description
 end

Now we have a general method of reading a single RSS or Atom feed. Time to work on
some aggregation!

Although the aggregator will be a simple Ruby script, there's no reason not to use Ruby's
object-oriented features. Our approach will be to create a class to encapsulate the
aggregator's data and behavior, and then write a sample program to use the class.

The RSSAggregator class that follows is a bare-bones aggregator that reads from
multiple syndication feeds when instantiated. It uses a few simple methods to expose the
data it has read.

 #!/usr/bin/ruby
 # rss-aggregator.rb - Simple RSS and Atom Feed Aggregator

Chapter 11. XML and HTML Page 36 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'rubygems'
 require 'simple-rss'
 require 'open-uri'

 class RSSAggregator
 def initialize(feed_urls)
 @feed_urls = feed_urls
 @feeds = []
 read_feeds
 end

 protected
 def read_feeds
 @feed_urls.each { |url| @feeds.push(SimpleRSS.new(open(url).read)) }
 end
 public
 def refresh
 @feeds.clear
 read_feeds
 end

 def channel_counts
 @feeds.each_with_index do |feed, index|
 channel = "Channel(#{index.to_s}): #{feed.channel.title}"
 articles = "Articles: #{feed.items.size.to_s}"
 puts channel + ', ' + articles
 end
 end

 def list_articles(id)
 puts "=== Channel(#{id.to_s}): #{@feeds[id].channel.title} ==="
 @feeds[id].items.each { |item| puts ' ' + item.title }
 end

 def list_all
 @feeds.each_with_index { |f, i| list_articles(i) }
 end
 end

Now we just need a few more lines of code to instantiate and use an RSSAggregator
object:

 test = RSSAggregator.new(ARGV)
 test.channel_counts
 puts "\n"
 test.list_all

Here's the output from a run of the test program against a few feed URLs:

 $ ruby rss-aggregator.rb http://www.rubyriver.org/rss.xml \
 http://rss.slashdot.org/Slashdot/slashdot \
 http://www.oreillynet.com/pub/feed/1 \
 http://safari.oreilly.com/rss/
 Channel(0): RubyRiver, Articles: 20
 Channel(1): Slashdot, Articles: 10
 Channel(2): O'Reilly Network Articles, Articles: 15
 Channel(3): O'Reilly Network Safari Bookshelf, Articles: 10
 === Channel(0): RubyRiver ===
 Mantis style isn't eas…
 It's wonderful when tw…
 Red tailed hawk
 37signals
 …

Chapter 11. XML and HTML Page 37 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

While a long way from a fully functional RSS aggregator, this program illustrates the basic
requirements of any real aggregator. From this starting point, you can expand and refine
the features of RSSAggregator.

One very important feature missing from the aggregator is support for the If-Modified-
Since HTTP request header. When you call RSSAggregator#refresh, your aggregator
downloads the specified feeds, even if it just grabbed the same feeds and none of them
have changed since then. This wastes bandwidth.

Polite aggregators keep track of when they last grabbed a certain feed, and when they
request it again they do a conditional request by supplying an HTTP request header called
If-Modified Since. The details are a little beyond our scope, but basically the web server
serves the reuqested feed only if it has changed since the last time the RSSAggregator
downloaded it.

Another important feature our RSSAggregator is missing is the ability to store the
articles it fetches. A real aggregator would store articles on disk or in a database to keep
track of which stories are new since the last fetch, and to keep articles available even after
they become old news and drop out of the feed.

Our simple aggregator counts the articles and lists their titles for review, but it doesn't
actually provide access to the article detail. As seen in the first example, the
SimpleRSS.item has a link attribute containing the URL for the article, and a
description attribute containing the (possibly HTML) body of the article. A real
aggregator might generate a list of articles in HTML format for use in a browser, or convert
the body of each article to text for output to a terminal.

See Also

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• Recipe 14.3, "Customizing HTTP Request Headers"
• Recipe 11.15, "Converting HTML Documents from the Web into Text"
• A good comparison of the RSS and Atom formats (http://www.intertwingly.net/wiki/

pie/Rss20AndAtom10Compared)
• Details on the Simple RSS project (http://simple-rss.rubyforge.org/)
• The FeedTools project has a more sophisticated aggregator library that supports

caching and If-Modified-Since; see http://sporkmonger.com/projects/feedtools/ for
details

• "HTTP Conditional Get for RSS Hackers" is a readable introduction to If-Modified-
Since (http://fishbowl.pastiche.org/2002/10/21/
http_conditional_get_for_rss_hackers)

Chapter 11. XML and HTML Page 38 Return to Table of Contents

Chapter 11. XML and HTML
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-3#rubyckbk-CHP-14-SECT-3
http://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
http://www.intertwingly.net/wiki/pie/Rss20AndAtom10Compared
http://simple-rss.rubyforge.org/
http://sporkmonger.com/projects/feedtools/
http://fishbowl.pastiche.org/2002/10/21/http_conditional_get_for_rss_hackers
http://fishbowl.pastiche.org/2002/10/21/http_conditional_get_for_rss_hackers

	XML and HTML
	Checking XML Well-Formedness
	Extracting Data from a Document's Tree Structure
	Extracting Data While Parsing a Document
	Navigating a Document with XPath
	Parsing Invalid Markup
	Converting an XML Document into a Hash
	Validating an XML Document
	Substituting XML Entities
	Creating and Modifying XML Documents
	Compressing Whitespace in an XML Document
	Guessing a Document's Encoding
	Converting from One Encoding to Another
	Extracting All the URLs from an HTML Document
	Transforming Plain Text to HTML
	Converting HTML Documents from the Web into Text
	A Simple Feed Aggregator

