
Table of Contents

Extending Ruby with Other Languages.. 1
Writing a C Extension for Ruby.. 1
Using a C Library from Ruby.. 5
Calling a C Library Through SWIG... 9
Writing Inline C in Your Ruby Code.. 11
Using Java Libraries with JRuby.. 13

Chapter 22. Extending Ruby with Other Languages

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

22. Extending Ruby with Other Languages
When you decide to use an interpreted language such as Ruby, you're trading raw speed
for ease of use. It's far easier to develop a program in a higher-level language, and you get
a working program faster, but you sacrifice some of the speed you might get by writing the
program in a lower-level language like C and C++.

That's the simplified view. Anyone who's spent any serious amount of time working with
higher-level languages knows that the truth is usually more complex. In many situations,
the tradeoff doesn't really matter: if the program is only going to be run once, who cares
if it takes twice as long to do its job? If a program is complex enough, it might be
prohibitively hard to implement in a low-level language: you might never actually get it
working right without using a language like Ruby.

But even Ruby zealots must admit that there are still situations where it's useful to be able
to call code written in another language. Maybe you need a particular part of your program
to run blazingly fast, or maybe you want to use a particular library that's implemented in
C or Java. When that happens you'll be grateful for Ruby's extension mechanism, which
lets you call C code from a regular Ruby program; and the JRuby interpreter, which runs
atop the Java Virtual Machine and uses Java classes as though they were Ruby classes.

Compared to other dynamic languages, it's pretty easy to write C extensions in Ruby. The
interfaces you need to understand are easy to use and clearly defined in just a few header
files, there are numerous examples available in the Ruby standard library itself, and there
are even tools that can help you access C libraries without writing any C code at all.

So let's break out that trusty C compiler and learn how to drop down under the hood of
the Ruby interpreter, because you just never know when your next program will to turn
into one of those situations where a little bit of C code is the only solution to the problem.

—Garrett Rooney

Recipe 22.1. Writing a C Extension for Ruby

Credit: Garrett Rooney

Chapter 22. Extending Ruby with Other Languages Page 1 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

Problem
You want to implement part of your Ruby program in C. This might be the part of your
program that needs to run really fast, it might contain some very platformspecific code, or
you might just have a C implementation already, and you don't want to also write one in
Ruby.

Solution
Write a C extension that implements that portion of your program. Compile it with
extconf.rb and require it in your Ruby program as though it were a Ruby library.
You'll need to have the Ruby header files installed on your system.

Here's a simple Ruby program that requires a library called example. It instantiates an
instance of Example::Class from that library, and calls a method on that library:

 require 'example'
 e = Example::Class.new
 e.print_string("Hello World\n")
 # Hello World

What would the example library look like if it were written in Ruby? Something like this:

 # example.rb
 module Example
 class Class
 def print_string(s)
 print s
 end
 end
 end

Let's implement that same functionality in C code. This small C library, example.c,
defines a Ruby module, class, and method using the functions made available by
ruby.h:

 #include <ruby.h>
 #include <stdio.h>

 static VALUE rb_mExample;
 static VALUE rb_cClass;

 static VALUE
 print_string(VALUE class, VALUE arg)
 {
 printf("%s", RSTRING(arg)->ptr);
 return Qnil;
 }
 void
 Init_example()
 {
 rb_mExample = rb_define_module("Example");

 rb_cClass = rb_define_class_under(rb_mExample, "Class", rb_cObject);

Chapter 22. Extending Ruby with Other Languages Page 2 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 rb_define_method(rb_cClass, "print_string", print_string, 1);
 }

To build the extension, you also need to create an extconf.rb file:

 # extconf.rb
 require 'mkmf'

 dir_config('example')
 create_makefile('example')

Then you can build your library by running extconf.rb, then make:

 $ ls
 example.c extconf.rb

 $ ruby extconf.rb
 creating Makefile

 $ make
 gcc -fPIC -Wall -g -O2 -fPIC -I. -I/usr/lib/ruby/1.8/i486-linux
 -I/usr/lib/ruby/1.8/i486-linux -I. -c example

 gcc -shared -L"/usr/lib" -o example.so example.o -lruby1.8
 -lpthread -ldl -lcrypt -lm -lc

 $ ls
 Makefile example.c example.o example.so extconf.rb

The example.so file contains your extension. As long as it's in your Ruby include path
(and there's no example.rb that might mask it), you can use it like any other Ruby library:

 require 'example'
 e = Example::Class.new
 e.print_string("Hello World\n")
 # Hello World

Discussion
Most programs can be implemented using plain old Ruby code, but occasionally it turns
out that it's better to implement part of the program in C. The example library above simply
provides an interface to C's printf function, and Ruby already has a perfectly good
IO#printf method.

Perhaps you need to perform a calculation hundreds of thousands of times, and
implementing it in Ruby would be too slow (the Example::Class#print_string
method is faster than IO#printf). Or maybe you need to interact with some
platformspecific API that's not exposed by the Ruby standard library. There are a number
of reasons you might want to fall back to C code, so Ruby provides you with a reasonably
simple way of doing it.

Chapter 22. Extending Ruby with Other Languages Page 3 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Unfortunately, the fact that it's easy doesn't always mean it's a good idea. You must
remember that when writing C-level code, you're playing with fire. The Ruby interpreter
does its best to limit the damage you can do if you write bad Ruby code. About the worst
you can do is cause an exception: another part of your program can catch the exception,
handle it, and carry on. But C code runs outside the Ruby interpreter, and an error in C
code can crash the Ruby interpreter.

With that in mind, let's go over some of the details you need to know to write a C extension.

A Ruby extension is just a small, dynamically loadable library, which the Ruby interpreter
loads via dlopen or something similar. The entry point to your extension is via its Init
function. For our example module, we defined an Init_example function to set
everything up. Init_example is the first function to be called by the Ruby interpreter
when it loads our extension.

The Init_example function uses a number of functions provided by the Ruby interpreter
to declare modules, classes, and methods, just as you might in Ruby code. The difference,
of course, is that here the methods are implemented in C. In this example, we used
rb_define_module to create the Example module, then rb_define_class_under
to define the Example::Class class (which inherits from Object), and finally
rb_define_ method to give Example::Class a print_string method.

The first thing to notice in the C code is all the VALUE variables lying around. A VALUE is
the C equivalent of a Ruby reference, and it can point to any Ruby object. Ruby provides
you with a number of functions and macros for manipulating VALUEs.

The rb_cObject variable is a VALUE, a reference to Ruby's Object class. When we pass
it into rb_define_class_under, we're telling the Ruby interpreter to define a new
subclass of Object. The ruby.h header file defines similar variables for many other
Rubylevel modules (named using the rb_mFoo convention) and classes (the convention
is rb_cFoo).

To manipulate a VALUE, you need to know something about it. It makes no more sense in
C code than in Ruby code to call a method of File on a value that refers to a string. The
simplest way to check a Ruby object's type is to use the Check_Type macro, which lets
you see whether or not a VALUE points to an instance of a particular Ruby class. For
convenience, the ruby.h file defines constants T_STRING, T_ARRAY, and so on, to
denote built-in Ruby classes.

But that's not what we'd do in Ruby code. Ruby enforces duck typing, in which objects are
judged on the methods they respond to, rather than the class they instantiate. C code can
operate on Ruby objects the same way. To check whether an object responds to a particular

Chapter 22. Extending Ruby with Other Languages Page 4 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

message, use the function rb_respond_to. To send the message, use rb_funcall. It
looks like this:

 static VALUE
 write_string(VALUE object, VALUE str)
 {
 if (rb_respond_to(object, rb_intern("<<")))
 {
 rb_funcall(object, rb_intern("<<"), 1, str);
 }
 return Qnil;
 }

That's the C-level equivalent of the following Ruby code:

 def write_string(object, str)
 object << str if object.respond_to?('<<')
 return nil
 end

A few more miscellaneous tips: the rb_intern function takes a symbol name as a C string
and returns the corresponding Ruby symbol ID. You use this with functions like
rb_respond_to and rb_funcall to refer to a Ruby method. Qnil is just the C-level
name for Ruby's special nil object. There are a few similar constants, like Qfalse and
Qtrue, which do just about what you'd think they'd do.

There are a number of other C level functions that let you create and manipulate strings
(look in for functions that start with rb_str), arrays (rb_ary), and hashes (rb_ hash).
These APIs are pretty self-explanatory, so we won't go into them in depth here, but you
can find them in the Ruby header files, specifically ruby.h and intern.h.

Ruby also defines some macros to do convenient things with common data types. For
example, the StringValuePtr macro takes a VALUE that refers to a ruby String and
returns a C-style char pointer. This can be useful for interacting with C-level APIs. You can
find this and other similar helpers in the ruby.h header.

See Also

• The file README.EXT file in the Ruby source tree
• Recipe 22.2, "Using a C Library from Ruby"

Recipe 22.2. Using a C Library from Ruby
Credit: Garrett Rooney

Chapter 22. Extending Ruby with Other Languages Page 5 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Problem
You'd like to use a library in your Ruby program, but the library's implemented in C and
there are no bindings.

Solution
Write a Ruby extension that wraps the C library with Ruby classes and methods.

Let's say we want to give a Ruby interface to C's file methods (yes, the File class already
does this, but this makes a good example). We want to make it possible to open a disk file
and read from it a byte at a time.

Just as in Recipe 22.1, you'll need a C file that implements the actual extension. This one
is called stdio.c. It's got an Init_stdio function that defines a Ruby module
(Stdio), a Ruby class (Stdio::File), and some methods for that class.

The file_allocate function corresponds to the Stdio::File constructor. Because
it's a constructor, we must also define some hook functions to create and destroy the
underlying resources (in this case, a filehandle and the memory it uses):

 #include "stdio.h"
 #include "ruby.h"

 static VALUE rb_mStdio;
 static VALUE rb_cStdioFile;

 struct file
 {
 FILE *fhandle;
 };

 static VALUE
 file_allocate(VALUE klass)
 {
 struct file *f = malloc(sizeof(*f));
 f->fhandle = NULL;
 return Data_Wrap_Struct(klass, file_mark, file_free, f);
 }

 static void
 file_mark(struct file *f)
 {
 }

 static void
 file_free(struct file *f)
 {
 fclose(f->fhandle);
 free(f);
 }

The file_open function implements the Stdio::File#open method:

 static VALUE
 file_open(VALUE object, VALUE fname)

Chapter 22. Extending Ruby with Other Languages Page 6 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 {
 struct file *f;
 Data_Get_Struct(object, struct file, f);
 f->fhandle = fopen(RSTRING(fname)->ptr, "r");
 return Qnil;
 }

file_readbyte implements the Stdio::File#readbyte method:

 static VALUE
 file_readbyte(VALUE object)
 {
 char buffer[2] = { 0, 0 };
 struct file *f;

 Data_Get_Struct(object, struct file, f);

 if (! f->fhandle)
 rb_raise(rb_eRuntimeError, "Attempt to read from closed file");

 fread(buffer, 1, 1, f->fhandle);

 return rb_str_new2(buffer);
 }

Finally, our Init_ method defines the Stdio module, the File class, and the three
methods defined for the File class:

 void
 Init_stdio()
 {
 rb_mStdio = rb_define_module("Stdio");
 rb_cStdioFile = rb_define_class_under(rb_mStdio, "File", rb_cObject);

 rb_define_alloc_func(rb_cStdioFile, file_allocate);
 rb_define_method(rb_cStdioFile, "open", file_open, 1);
 rb_define_method(rb_cStdioFile, "readbyte", file_readbyte, 0);
 }

As before, you'll need an extconf.rb file that knows how to compile your C library:

 # extconf.rb
 require 'mkmf'
 dir_config("stdio")
 create_makefile("stdio")

Once the C library is compiled, you can use it from Ruby as though it were a Ruby library:

 open('foo.txt', 'w') { |f| f << 'foo' }

 require 'stdio'
 f = Stdio::File.new
 f.open('foo.txt')
 f.readbyte # => "f"
 f.readbyte # => "o"
 f.readbyte # => "o"

Chapter 22. Extending Ruby with Other Languages Page 7 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Discussion

The basic idea when writing a Ruby extension is to create a C data structure and wrap it
in a Ruby object. The C data structure gives you someplace to store whatever data you
need, so you can access it in your C methods. You're creating a primitive form of object-
oriented programming in C.

Ruby provides some macros to help with this. Data_Wrap_Struct wraps a C data
structure in a Ruby object. It takes a pointer to your data structure, along with a few
pointers to callback functions, and returns a VALUE. The Data_Get_Struct macro takes
that VALUE and gives you back a pointer to your C data structure.

You usually use Data_Wrap_Struct inside your class's allocate function (called by
the constructor), and Data_Get_Struct inside its instance methods. In the example
above, the file_allocate function creates a C struct (containing a variable of type
FILE) and passes it into Data_Wrap_Struct to get a VALUE. The functions for the
instance methods, file_open and file_readbyte, both take a VALUE as an argument,
and pass it into Data_Get_Struct to get a C struct.

So what about those callback functions? There are three of them: an "allocate" function, a
"mark" function, and a "free" function. The "allocate" function is called whenever an object
is created. The other two have to do with garbage collection.

Ruby's garbage collector uses a mark-and-sweep algorithm: it runs through all the "live"
objects in the system, marking them to note that it was able to reach them. Then it destroys
every object that it couldn't reach: by definition, those objects are no longer in use, and
don't need to be kept around in memory. To make this work, you need to provide two
callbacks: one that marks an object as reachable, and one that frees the underlying
resources for all unreachable objects.

In this case, both functions are simple. The "free" callback simply closes the filehandle and
calls the C free function. The "mark" callback doesn't need to do anything, since this
object doesn't refer to any other Ruby objects.

If your object does contain references to other Ruby objects, all you need to do is explicitly
mark them (by calling the rb_gc_mark function) in your "mark" callback. This example
goes a bit further than it needs to by defining an empty mark callback; it could accomplish
the same thing by passing in a NULL function pointer.

To summarize: if your library doesn't define its own data structures, define your own C
struct. Implement methods that translate Ruby arguments into their C equivalents, call

Chapter 22. Extending Ruby with Other Languages Page 8 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

the library functions you're interested in, then translate the return values back into Ruby
data structures, so that the rest of the Ruby program can use it.

See Also

• The README.EXT file in the Ruby source tree
• Recipe 22.1, "Writing a C Extension for Ruby"
• Recipe 22.3, "Calling a C Library Through SWIG," might do what you want with less

complication

Recipe 22.3. Calling a C Library Through SWIG
Credit: Garrett Rooney

Problem
You want to use a C library in your Ruby code, but you don't want to have to write any C
code to do it.

Solution
Use SWIG to generate the C extension for you. SWIG is a programming tool that takes as
its input a file containing the information about C functions. It produces source code that
lets you access those C functions from a variety of programming languages, including Ruby.

All you you need to write is an interface file, containing the prototypes for the C functions
you want to call. The interface file also contains a few directives to control things like the
name of the resulting module. Process that file with the swig command-line tool, build
your extension, and you're up and running.

Let's build a SWIG extension that lets Ruby access functions from the standard C library.
It'll provide access to enough functionality that you can read data from one file and write
it to another. In Recipe 22.1, we wrote the C code for a similar extension ourselves, but
here we'll let SWIG do it.

First we'll need a SWIG interface file, libc.i:

 %module libc

 FILE *fopen(const char *, const char *);

 int fread(void *, size_t, size_t, FILE *);
 int fwrite(void *, size_t, size_t, FILE *);
 int fclose(FILE *);

 void *malloc(size_t);

Chapter 22. Extending Ruby with Other Languages Page 9 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

This file specifies the name of our extension as "libc". For SWIG Ruby extensions, this
means the extension will be named "libc", and the code will be contained in a Ruby module
claled Libc. This file also provides the prototypes for the functions we're going to want to
call.

You'll also need an extconf.rb program, similar to the one we used in the previous two
recipes:

 # extconf.rb
 require 'mkmf'
 dir_config('tcl')
 dir_config('libc')
 create_makefile('libc')

To generate the C extension, we process the header file with the swig command-line tool.
We then run Ruby's extconf.rb program to generate a makefile, and run make to
compile the extension:

 $ swig -ruby libc.i
 $ ls
 extconf.rb libc.i libc_wrap.c

 $ ruby extconf.rb --with-tcl-include=/usr/include/tcl8.4
 creating Makefile

 $ make
 …

 $ ls
 Makefile extconf.rb libc.i libc.so libc_wrap.c libc_wrap.o

Once the module is compiled, we can use it just like any other Ruby extension. This code
uses a Ruby interface to prepopulate a file with random data, then uses the C interface to
copy the contents of that file to another file:

 random_data = ""
 10000.times { random_data << rand(255) }
 open('source.txt', 'w') { |f| f << random_data }

 require 'libc'
 f1 = Libc.fopen('source.txt', 'r')
 f2 = Libc.fopen('dest.txt', 'w+')

 buffer = Libc.malloc(1024)

 nread = Libc.fread(buffer, 1, 1024, f1)

 while nread > 0
 Libc.fwrite(buffer, 1, nread, f2)
 nread = Libc.fread(buffer, 1, 1024, f1)
 end
 Libc.fclose(f1)
 Libc.fclose(f2)

 # dest.txt now contains the same random data as source.txt.
 random_data == open('dest.txt') { |f| f.read }
 # => true

Chapter 22. Extending Ruby with Other Languages Page 10 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

There you have it: without writing a line of C code, we've been able to call into a C library
from Ruby.

Discussion
The great advantage of SWIG over writing your own interface to a C library is that you
don't have to write your own interface to a C library. The disadvantage is that you get the
exact same interface (or a subset) as the C library. The Libc module exposes a Ruby
module that's nothing more than a collection of C functions. If you want a friendlier
interface, you need to write it yourself on top of the SWIGgenerated module.

In addition to the actual function prototypes, the interface file needs to have a little
metadata about your extension. At the minimum, you'll need a %module line that tells
SWIG what to call the extension it generates. Depending on your C code, you might also
need to tell SWIG how to handle C constructs that don't map directly to Ruby; see the
SWIG documentation on %typemap for details.

There are two main ways to create an interface file. The simplest way is simply to copy the
prototypes for your C functions right from your header file into your SWIG interface file.
Alternatively, you can use the %import filename directive to include a C header file in a
SWIG interface file.

One more thing: note the references to tcl in the extconf.rb file and in the
commandline invocation of extconf.rb. Our Libc module has nothing to do with Tcl,
but SWIG's Ruby bindings always generate code that relies on the Tcl libraries. Unless
your Tcl header files live in one of your system's standard include directory, you need to
tell extconf.rb where to find them.

See Also

• http://www.swig.org/
• On Debian GNU/Linux systems, you can install SWIG as the swig package

Recipe 22.4. Writing Inline C in Your Ruby Code

Credit: Garrett Rooney

Problem
You want to implement small portions of your program in C without going to the trouble
of creating a C extension to Ruby.

Chapter 22. Extending Ruby with Other Languages Page 11 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://www.swig.org/

Solution
Embed C code right in your Ruby program, and let RubyInline (available as the
rubyinline gem) create an extension automatically.

For example, if you want to use C's stdio functions to copy a file, you can write RubyInline
code like this:[1]

[1] RubyInline won't work from within irb, so this is a standalone program.

 #!/usr/bin/ruby -w
 # copy.rb
 require 'rubygems'
 require 'inline'

 class Copier
 inline do |builder|
 builder.c <<END
 void copy_file(const char *source, const char *dest)
 {
 FILE *source_f = fopen(source, "r");
 if (!source_f)
 {
 rb_raise(rb_eIOError, "Could not open source : '%s'", source);
 }

 FILE *dest_f = fopen(dest, "w+");
 if (!dest_f)
 {
 rb_raise(rb_eIOError, "Could not open destination : '%s'", dest);
 }

 char buffer[1024];

 int nread = fread(buffer, 1, 1024, source_f);
 while (nread > 0)
 {
 fwrite(buffer, 1, nread, dest_f);
 nread = fread(buffer, 1, 1024, source_f);
 }
 }
 END
 end
 end

The C function copy_file now exists as an instance method of Copier:

 open('source.txt', 'w') { |f| f << 'Some text.' }
 Copier.new.copy_file('source.txt', 'dest.txt')
 puts open('dest.txt') { |f| f.read }

Run this Ruby script, and you'll see it copy the string "Some text." from source.txt to
dest.txt.

Chapter 22. Extending Ruby with Other Languages Page 12 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Discussion
RubyInline is a framework that lets you embed other languages inside your Ruby code. It
defines the Module#inline method, which returns a builder object. You pass the builder
a string containing code written in a language other than Ruby, and the builder transforms
it into something that you can call from Ruby.

When given C or C++ code (the two languages supported in the default RubyInline install),
the builder objects writes a small extension to disk, compiles it, and loads it. You don't
have to deal with the compilation yourself, but you can see the generated code and
compiled extensions in the .ruby_inline subdirectory of your home directory.

There are some limitations you should be aware of, though.

First, RubyInline only understands a limited subset of C and C++. The functions you embed
can only accept and return arguments of the types char, unsigned, unsigned int,
char *, int, long, and unsigned long.

If you need to use other types, RubyInline won't be able to automatically generate the
wrapper functions. You'll have to work around the problem using the inline.c_raw
function to embed code that conforms to the Ruby C API, just like any other extension.

Second, if you're going to just run a script that uses RubyInline, you'll need to have the
Ruby development libraries and headers installed, along with a C/C++ compiler to actually
build the extension.

There's a way around this, though: RubyInline lets you generate a RubyGem package with
a precompiled extension. See the RubyInline docs on the inline_package script for
details.

As always, be careful to make sure that it's actually worth the trouble to write C code. You
should only rewrite part of a Ruby program in C if you've actually determined that Ruby
spends a lot of time there. You should benchmark before and after your change, to make
sure that you're making things better rather than worse. Writing C code within your Ruby
code is much easier than writing a separate extension, but writing Ruby code is easier still.

See Also

• http://www.zenspider.com/ZSS/Products/RubyInline/
• http://rubyforge.org/projects/rubyinline/
• Recipe 17.12, "Profiling Your Application"
• Recipe 17.13, "Benchmarking Competing Solutions"

Chapter 22. Extending Ruby with Other Languages Page 13 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://www.zenspider.com/ZSS/Products/RubyInline/
http://rubyforge.org/projects/rubyinline/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-12#rubyckbk-CHP-17-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-13#rubyckbk-CHP-17-SECT-13

Recipe 22.5. Using Java Libraries with JRuby

Credit: Thomas Enebo

Problem
Java offers many class libraries that would be useful to a Ruby programmer; you'd like to
use one of those libraries from within Ruby. A Java JDBC database may allow you to
connect to a database for which Ruby has no connector. Or perhaps you need to use an
obscure Java library that has no Ruby counterpart.

Solution
JRuby provides an alternate implementation of the Ruby programming language that runs
atop the Java Virtual Machine. When you interpret a Ruby program with JRuby instead
of using the default Ruby interpreter, you can load and use Java classes from within the
Ruby code.

The first step to using JRuby is to install it:

1. Download the latest copy of JRuby (see below for the address).
2. Unzip the JRuby package into the directory where you'd like to install it.
3. Add to your PATH environment variable the bin/ subdirectory of your JRuby

installation.
4. Unless you've already installed it, download the Java Runtime Environment from

Sun's Java web site and install it. You'll need the JRE version 1.4.x or higher.

Now you can invoke the JRuby interpreter with the jruby command and use it to run
Ruby code. Here's a simple example that imports and uses Java's built-in Random class:

 #!/usr/bin/env jruby
 # random.jrb
 require 'java'
 include_class 'java.util.Random'

 r = Random.new(123)
 puts "Some random number #{r.nextInt % 10}"
 r.seed = 456
 puts "Another random number #{r.nextInt % 10}"

Heres a run of this program:

 $ jruby random.jrb
 Some random number 9
 Another random number 0

Chapter 22. Extending Ruby with Other Languages Page 14 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Discussion
JRuby generally behaves like Ruby. The jruby interpreter supports a common subset of
Ruby's command-line options, and includes a subset of common core libraries. As JRuby
is developed, it will eventually end up with all of Ruby's options and libraries.

The first step in a JRuby program is to load the Java support classes. If you don't do this,
you can still use the JRuby interpreter, but you'll be limited to a subset of the Ruby core
libraries: you might as well just use the C implementation.

The statement require 'java' updates Ruby's Object class with an
include_class method, which you can use to import Java classes. When we call
include_class to include a class like java.util.Random, Ruby inserts a class called
Random into the current namespace. This class is really a Ruby class that proxies method
calls to the underlying Java class.

The Random class proxies a constructor call to the java.util.Random constructor.
Random#nextInt becomes a call to java.util.Random#nextInt.
Random#seed= becomes a call to java.util.Random#setSeed; JRuby creates
seed= as a Ruby convenience method, to make the Java classes feel more like Ruby.

If you're including a Java class whose name conflicts with an existing constant in your
namespace, then include_class will throw a ConstantAlreadyExistsError. This
is problematic if you want to use Java classes like java.lang.String, whose names
conflict with the names of built-in Ruby classes. Fortunately, you can customize the name
of the proxy class created by include_class. This piece of code
loads 'java.lang.String' as the class JString instead of String:

 include_class('java.lang.String') { |package,name| "J" + name }

It's worth noting that JRuby implicitly translates primitive types between Ruby and Java.
In the Random constructor, the Fixnum argument 123 gets implicitly converted to a Java
primitive long, since that's what the java.util.Random constructor takes.

Table 22-1.

Ruby type Java type

String char, String

Fixnum long, int, java.lang.Long, java.lang.Integer

Float float, double, Java.lang.Float, java.lang.Double

Boolean java.lang.Boolean, boolean

Chapter 22. Extending Ruby with Other Languages Page 15 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

This automatic conversion creates some amount of ambiguity, because Java supports
method overloading and Ruby doesn't. Suppose you have a Java class which defines two
methods with the same name:

 class Foo
 {
 public void bar(int arg) {…}
 public void bar(long arg) {…}
 }

If you import that class into JRuby and call Foo#bar, to which method should the proxy
class dispatch your call?

 Foo.new.bar(5)

In JRuby, the exact heuristic is undefined. In practice, this is not a huge problem, since
methods that define same-named methods are semantically equivalent. If you do
encounter an ambiguous case, you can work around ambiguity using Java's reflection APIs.

Convenience methods
JRuby tries to make Java classes and objects seem as unobtrusive to Ruby as it can. In our
earlier example, we saw how a setter:

 setSeed(value);

Can be called from Ruby as:

 seed = value

JRuby supports the following additional Ruby method name shortcuts:

Table 22-2.

Java Ruby

obj.getFoo() obj.foo

obj.setFoo(value) obj.foo = value

obj.isFoo(value) obj.foo? value

The original name still exists, so if you like you can use getFoo and setFoo from Ruby.
Of course, if Java already has a method by the same shorthand name (e.g., obj.foo),
Ruby won't create the shorthand name.

JRuby also provides some Ruby methods that make Java classes seem more like Ruby
classes. Here is a list as of Ruby 0.8.3:

Chapter 22. Extending Ruby with Other Languages Page 16 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

• All of Java's Map, Set, and List types define each
• java.lang.Comparable defines <=>
• List defines <<, sort, and sort!

JRuby is still a project under development, so expect to see more added as developers
discover more candidates.

See Also

• JRuby is available from http://jruby.sourceforge.net/
• You can download the JRE from Sun's Java site at http://java.sun.com/

Chapter 22. Extending Ruby with Other Languages Page 17 Return to Table of Contents

Chapter 22. Extending Ruby with Other Languages
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://jruby.sourceforge.net/
http://java.sun.com/

	Extending Ruby with Other Languages
	Writing a C Extension for Ruby
	Using a C Library from Ruby
	Calling a C Library Through SWIG
	Writing Inline C in Your Ruby Code
	Using Java Libraries with JRuby

