
Table of Contents

Automating Tasks with Rake... 1
Automatically Running Unit Tests... 2
Automatically Generating Documentation... 5
Cleaning Up Generated Files.. 8
Automatically Building a Gem.. 10
Gathering Statistics About Your Code... 11
Publishing Your Documentation... 14
Running Multiple Tasks in Parallel... 16
A Generic Project Rakefile... 17

Chapter 19. Automating Tasks with Rake

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

19. Automating Tasks with Rake

Even when your software is written, tested, and packaged, you're still not done. You've got
to start working on the next version, and the next… Every release you do, in some cases
every change you make to your code, will send you running through a maze of repetitive
tasks that have nothing to do with programming.

Fortunately, there's a way to automate these tasks, and the best part is that you can do it
by writing more Ruby code. The answer is Rake.

Rake is a build language, Ruby's answer to Unix make and Java's Ant. It lets you define
tasks: named code bocks that carry out specific actions, like building a gem or running a
set of unit tests. Invoke Rake, and your predefined tasks will happily do the work you once
did: compiling C extensions, splicing files together, running unit tests, or packaging a new
release of your software. If you can define it, Rake can run it.

Rake is available as the rake gem; if you've installed Rails, you already have it. Unlike
most gems, it doesn't just install libraries: it installs a command-line program called
rake, which contains the logic for actually performing Rake tasks. For ease of use, you
may need to add to your PATH environment variable the directory containing the rake
script: something like /usr/lib/ruby/gems/1.8/gems/rake-0.6.2/bin/. That
way you can just run rake from the command line.

A Rakefile is just a Ruby source file that has access to some special methods: task, file,
directory, and a few others. Calling one of these methods defines a task, which can be
run by the command-line rake program, or called as a dependency by other tasks.

The most commonly used method is the generic one: task. This method takes the name
of the task to define, and a code block that implements the task. Here's a simple Rakefile
that defines two tasks, cross_bridge and build_bridge, one of which depends on the
other. It designates cross_bridge as the default task by defining a third task called
default which does nothing except depend on cross_bridge.

 # Rakefile
 desc "Cross the bridge."
 task :cross_bridge => [:build_bridge] do
 puts "I'm crossing the bridge."
 end

 desc "Build the bridge"
 task :build_bridge do

Chapter 19. Automating Tasks with Rake Page 1 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

 puts 'Bridge construction is complete.'
 end

 task :default => [:cross_bridge]

Call this file Rakefile, and it'll be automatically picked up by the rake command when
you run the command in its directory. Here are some sample runs:

 $ rake
 Bridge construction is complete.
 I'm crossing the bridge.

 $ rake build_bridge
 Bridge construction is complete.

Note all the stuff I didn't have to do. I didn't have to write code to process command-line
options and run the appropriate tasks: the rake command does that. The rake command
also takes care of loading the Rake libraries, so I didn't have to recite require statements
at the beginning of my Rakefile. I certainly didn't have to learn a whole new programming
language or a new file format: just one new Ruby method and its arguments.

Adapt the recipes in this chapter to your project's Rakefile, and a lot of the auxilliary work
that surrounds a software project will simply disappear. You won't have to remember to
run unit tests or generate documentation after every change, because it will happen as a
side effect of things you do anyway. If your unit tests fail, so will your attempt to release
your project, and you won't be embarrassed by bugs.

Whenever you ask yourself: "What was the command to …?", just invoke rake with the -T
option. It will print a list of available tasks and a description of each:

 $ rake -T
 (in /home/leonardr/my_project/)
 rake build_bridge # Build the bridge.
 rake cross_bridge # Cross the bridge.

Nothing says you can only use Rake in Ruby projects. Most Rake tasks simply run external
programs and move disk files around: the same things tasks do in other build languages.
You can use Rake as a replacement for make, build static web sites with it, or automate
any other repetitive action made up of smaller, interlocking actions.

Here are some more resources for automating tasks with Ruby:

• The site http://docs.rubyrake.org/ provides a tutorial, a user guide, and examples for
Rake.

• The generated RDoc for Rake has a good overview of the special methods available to
Rakefiles (http://rake.rubyforge.org/files/doc/rakefile_rdoc.html)

Chapter 19. Automating Tasks with Rake Page 2 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://docs.rubyrake.org/
http://rake.rubyforge.org/files/doc/rakefile_rdoc.html

Recipe 19.1. Automatically Running Unit Tests

Credit: Pat Eyler

Problem
You want to make it easy to run your project's unit test suite. You also want the tests to
run automatically before you do a new release of your project.

Solution
Require the rake/testtask library and create a new Rake::TestTask. Save the
following code in a file called Rakefile in the project's top-level directory (or add it to
your existing Rakefile).

 require 'rake/testtask'

 Rake::TestTask.new('test') do |t|
 t.pattern = 'test/**/tc_*.rb'
 t.warning = true
 end

This Rakefile makes two assumptions:

1. The Test::Unit test cases live in files under the test directory (and its
subdirectories). The names of these files start with tc_ and end in .rb.

2. The Ruby libraries to be tested live under the lib directory. Rake automatically
appends this directoy to Ruby's load path, the list of directories that Ruby searches
when you try to require a library.

To execute your test cases, run the command rake test in the project's top-level
directory. The tests are loaded by a new Ruby interpreter with warnings enabled. The
output is the same as you'd see from Test::Unit's console runner.

Discussion
If it's easy to trigger the test process, you'll run your tests more often, and you'll detect
problems sooner. Rake makes it really convenient to run your tests.

We can make the test command even shorter by defining a default task. Just add the
following line to the Rakefile. The position within the file doesn't matter, but to keep things
clear, you should put it before other task definitions:

 task "default" => ["test"]

Chapter 19. Automating Tasks with Rake Page 3 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now, whenever we run rake without an argument, it will invoke the test task. If your
Rakefile already has a default task, you should be able to just add the test task to its list
of prerequisites. Similarly, if you have a task that packages a new release of your software
(like the one defined in Recipe 19.4), you can make the test task a prerequisite. If your
tests fail, your package won't be built and you won't release a buggy piece of software.

The Rake::TestTask has a special attribute, libs; the entries in this array are added
to Ruby's load path. As mentioned above, the default value is ["lib"], making it possible
for your tests to require files in your project's lib/ subdirectory. Sometimes this default
is not enough. Your Ruby code might not be in the lib/ subdirectory. Or worse, your test
code might change the current working directory. Since lib/ is a relative path, the default
value of libs would start out as a valid source for library files, and then stop being valid
when the test code changed the working directory.

We can solve this problem by specifying the absolute path to the project's lib directory in the
Rakefile. Using an absolute path is generally more stable. In this sample Rakefile, we
give the load path the absolute path to the lib and test subdirectories. Adding the test
directory to the load path is useful if you need to require a library full of test utility
methods:

 require 'rake/testtask'

 lib_dir = File.expand_path('lib')
 test_dir = File.expand_path('test')

 Rake::TestTask.new("test") do |t|
 t.libs = [lib_dir, test_dir]
 t.pattern = "test/**/tc_*.rb"
 t.warning = true
 end

Test suites

As a project grows, it takes longer and longer to run all the test cases. This is bad for the
habit we're trying to inculcate, where you run the tests whenever you make a change. To
solve this problem, group the test cases into test suites. Depending on the project, you
might have a test suite of all test cases concerning file I/O, another suite for the console
interface, and so on.

Let's say that when you're working on the DataFile class, you can get away with only
running the file I/O test suite. But before releasing a new version of the software, you need
to run all the test cases.

Chapter 19. Automating Tasks with Rake Page 4 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To create a Rake test suite, instantiate a Rake::TestTask instance, and set the
test_files attribute to something other than the complete list of test files. This sample
Rakefile splits up the test files into two suites.

 require 'rake/testtask'

 Rake::TestTask.new('test-file') do |t|
 t.test_files = ['test/tc_datafile.rb',
 'test/tc_datafilewriter.rb',
 'test/tc_datafilereader.rb']
 t.warning = true
 end

 Rake::TestTask.new('test-console') do |t|
 t.test_files = ['test/tc_console.rb',
 'test/tc_prettyprinter.rb']
 t.warning = true
 end

Invoking rake test-file runs the tests related to file I/O, and invoking rake test-
console tests the console interface. The only thing missing is a task that runs all tests.
You can either use the all-inclusive task from the Rakefile given in the Solution, or you can
create a task that has all the test suites as prerequisites:

 task 'test' => ['test-file', 'test-console']

When this test task is invoked, Rake runs the test-file suite and then the test-
console suite. Each suite is run in its own Ruby interpreter.

See Also

• Recipe 17.8, "Running Unit Tests"
• For a guide to the options available to the TestTask class, consult its RDoc; it's

available at, for instance, http://rake.rubyforge.org/classes/Rake/TestTask.html

Recipe 19.2. Automatically Generating Documentation

Credit: Stefan Lang

Problem
You want to automatically create HTML pages from the RDoc formatted comments in your
code, and from other RDoc formatted files.

Chapter 19. Automating Tasks with Rake Page 5 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-8#rubyckbk-CHP-17-SECT-8
http://rake.rubyforge.org/classes/Rake/TestTask.html

Solution
Within your Rakefile, require the rake/rdoctask library and create a new Rake::
RDocTask. Here's a typical example:

 require 'rake/rdoctask'

 Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "MyLib API documentation"
 end

Now you can run the command rake rdoc from a shell in your project's top-level
directory. This particular Rake task creates API documentation for all files under the lib
directory (and its subdirectories) whose names end in .rb. Additionally, the RDoc-
formatted contents of the top-level README file will appear on the front page of the
documentation.

The HTML output files are written under your project's %(filename)html% directory. To
read the documentation, point your browser to %(filename)html/index.html%. The
browser will show "MyLib API documentation" (that is, the value of the task's title) as
the page title.

Discussion
It is common practice among authors of Ruby libraries to document a library's API with
RDoc-formatted text. Since Ruby 1.8.1, a standard Ruby installation contains the rdoc
tool, which extracts the RDoc comments from source code and creates nicely formatted
HTML pages.

Unlike the tasks you define from scratch with the task method, but like the TestTask
covered in Recipe 19.1, Rake::RDocTask.new takes a code block, which is executed
immediately at task definition time. The code block lets you customize how your RDoc
documentation should look. After running your code block, the Rake:: RDocTask object
defines three new Rake tasks:

rdoc

Updates the HTML documentation by running RDoc.

clobber_rdoc

Removes the directory and its contents created by the rdoc task.

Chapter 19. Automating Tasks with Rake Page 6 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

rerdoc

Force a rebuild of the HTML-documentation. Has the same effect as running
clobber_rdoc followed by rdoc.

Now we know enough to integrate the Rake::RDocTask into a more useful Rakefile.
Suppose we want a task that uploads the documentation to RubyForge (or another site),
and a general cleanup task that removes the generated HTML-documentation as well as
all backup files in the project directory. To keep the example simple, I've inserted
comments instead of the actual commands for uploading and removing the files; see
Recipes 19.3 and 19.8 for more realistic examples.

 require 'rake/rdoctask'

 Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "MyLib API documentation"
 end

 desc 'Upload documentation to RubyForge.'
 task 'upload' => 'rdoc' do
 # command(s) to upload html/ and contents to RubyForge
 end
 desc 'Remove generated and backup files.'
 task 'clobber' => 'clobber_rdoc' do
 # command(s) to remove all files ending in ~ or .bak
 end

Finally, we make the default task dependent on the rdoc task, so that RDoc gets built
automatically when you invoke rake with no task. If there already is a default task, this
code will simply add another dependency to the existing task:

 task :default => ['rdoc']

Available attributes
Here's a list of attributes that can be set in the block given to Rake::RDocTask.new.

rdoc_dir

Name of the directory where the produced HTML files go. Defaults to html.

title

A title for the produced HTML pages.

Chapter 19. Automating Tasks with Rake Page 7 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

main

Name of the input file whose contents should appear at the initial page of the HTML
output.

template

Name of the template to be used by RDoc.

rdoc_files

Initialized to an empty filelist. Just call the include method with the names of files
to be documented, or glob patterns matching multiple files.

options

An array of arguments to be passed directly to rdoc. Use this if none of the other
attributes fits your needs. Run rdoc --help for a list of available options.

See Also

• Recipe 19.3, "Cleaning Up Generated Files"
• Recipe 19.8, "A Generic Project Rakefile"
• The RDoc documentation for the Rake::RDocTask class (http://

rake.rubyforge.org/classes/Rake/RDocTask.html)

Recipe 19.3. Cleaning Up Generated Files
Credit: Stefan Lang

Problem
You want to clean up files that aren't actually part of your project: generated files, backup
files, and so on.

Solution
Within your Rakefile, require the rake/clean library to get access to the clean and
clobber tasks. Put glob patterns for all your generated files in the CLOBBER
FileList. Put glob patterns for all other scratch files in the CLEAN FileList.

Chapter 19. Automating Tasks with Rake Page 8 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rake.rubyforge.org/classes/Rake/RDocTask.html
http://rake.rubyforge.org/classes/Rake/RDocTask.html

By default, CLEAN also includes the patterns **/*~, **/*.bak, and **/core. Here's
a typical set of CLOBBER and CLEAN files:

 require 'rake/clean'

 # Include the "pkg" and "doc" directories and their contents.
 # Include all files ending in ".o" in the current directory
 # and its subdirectories (recursively).
 CLOBBER.include('pkg', 'doc', '**/*.o')

 # Include InstalledFiles and .config: files created by setup.rb.
 # Include temporary files created during test run.
 CLEAN.include('InstalledFiles', '.config', 'test/**/*.tmp')

Run rake clean to remove all files specified by the CLEAN filelist, and rake clobber
to remove the files specified by both file lists.

Discussion
The rake/clean library initializes the constants CLEAN and CLOBBER to new Rake::
FileList instances. It also defines the tasks clean and clobber, making clean a
prerequisite of clobber. The idea is that rake clean removes any files that might need
to be recreated once your program changes, while rake clobber returns your source
tree to a completely pristine state.

Other Rake libraries define cleanup tasks that remove certain products of their main tasks.
An example: the packaging libraries create a task called clobber_package, and make it
a prerequisite of clobber. Running rake clobber on such a project removes the
package files: you don't have to explicitly include them in your CLOBBER list.

You can do the same thing for your own tasks: rather than manipulate CLEAN and
CLOBBER, you can create a custom cleanup task and make it a prerequisite of clean or
clobber. The following code is a different way of making sure that rake clobber
removes any precompiled object files:

 desc 'Remove all object files.'
 task 'clobber_objects' do
 rm_f FileList['**/*.o']
 end

 # Make clobber_objects a prerequisite of the preexisting clobber task
 task 'clobber' => 'clobber_objects'

Now you can run rake clobber_objects to remove all object files, and rake
clobber to remove all other unwanted files as well.

Chapter 19. Automating Tasks with Rake Page 9 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The documentation for the Dir.glob method describes the format for the patterns
accepted by FileList#include; it's accessible via ri Dir.glob

• Online documentation for the rake/clean library (http://rake.rubyforge.org/files/
lib/rake/clean_rb.html)

Recipe 19.4. Automatically Building a Gem

Credit: Stefan Lang

Problem
You want to automatically build a gem package for your application or library whenever
you do a release.

Solution
Require the rake/gempackagetask library within your Rakefile, and create a Gem::
Specification instance that describes your project. Feed it to the Rake::
GemPackageTask constructor, which automatically defines a number of gem-related
tasks:

 require 'rake/gempackagetask'

 # Create a gem specification
 gem_spec = Gem::Specification.new do |s|
 s.name = 'docbook'
 s.version = '1.0.0'
 s.summary = 'DocBook formatting program and library.'

 # Files containing Test::Unit test cases.
 s.test_files = FileList['tests/**/*']

 # Executable scripts under the "bin" directory.
 s.executables = ['voc']

 # List of other files to be included.
 s.files = FileList['README', 'ChangeLog', 'lib/**/*.rb']
 end

 Rake::GemPackageTask.new(gem_spec) do |pkg|
 pkg.need_zip = false
 pkg.need_tar = false
 end

Run the command rake package, and (assuming those files actually exist), Rake will
build a gem file docbook-1.0.0.gem under the pkg/ directory.

Chapter 19. Automating Tasks with Rake Page 10 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rake.rubyforge.org/files/lib/rake/clean_rb.html
http://rake.rubyforge.org/files/lib/rake/clean_rb.html

Discussion
The RubyGems library provides the Gem::Specification class, and Rake provides the
Rake::GemPackageTask class that uses it. Creating a new Rake::GemPackageTask
object automatically defines the three tasks: package, clobber_package, and
repackage.

The package task builds a gem inside the project's pkg/ directory. The
clobber_package task removes the pkg/ directory and its contents. The repackage
task just invokes clobber_package to remove any old package file, and then invokes
package to rebuild them from scratch.

The example above sets to false the attributes need_zip and need_tar of the
Rake::GemPackageTask. If you set them to true, then in addition to a gem you'll get a
ZIP file and a gzipped tar archive containing the same files as the gem. Note that Rake uses
the zip and tar command-line tools, so if your system doesn't provide them (the way a
standard Windows installation doesn't), the package task won't be able to create these
ZIP or tar archives.

The package task recreates a package file only if it doesn't already exist, or if you've
updated one of your input files since you last built the package. The most common problem
you'll run into here is that you'll decide to stop packaging a certain file. Rake won't
recognize the change (since the file is gone), and running rake package won't do
anything. To force a rebuild of your package file(s), run rake repackage.

See Also

• Recipe 18.6, "Packaging Your Code as a Gem"
• The Gem::Specification reference describes everything you can do when creating

a gem (http://docs.rubygems.org/read/chapter/20)
• The Rake alternative Rant can build gems, ZIP files, and tarballs without calling out

to external tools; point your browser to http://make.ruby-co.de

Recipe 19.5. Gathering Statistics About Your Code

Credit: Stefan Lang

Problem
You want to gather statistics about your Ruby project, like the total number of lines of code.

Chapter 19. Automating Tasks with Rake Page 11 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-18-SECT-6#rubyckbk-CHP-18-SECT-6
http://docs.rubygems.org/read/chapter/20
http://make.ruby-co.de

Solution
Here's a class that parses Ruby source files and gathers statistics. Put this in
scriptlines.rb in your project's top-level directory.

 # scriptlines.rb
 # A ScriptLines instance analyses a Ruby script and maintains
 # counters for the total number of lines, lines of code, etc.
 class ScriptLines

 attr_reader :name
 attr_accessor :bytes, :lines, :lines_of_code, :comment_lines

 LINE_FORMAT = '%8s %8s %8s %8s %s'

 def self.headline
 sprintf LINE_FORMAT, "BYTES", "LINES", "LOC", "COMMENT", "FILE"
 end

 # The 'name' argument is usually a filename
 def initialize(name)
 @name = name
 @bytes = 0
 @lines = 0 # total number of lines
 @lines_of_code = 0
 @comment_lines = 0
 end

 # Iterates over all the lines in io (io might be a file or a
 # string), analyses them and appropriately increases the counter
 # attributes.
 def read(io)
 in_multiline_comment = false
 io.each { |line|
 @lines += 1
 @bytes += line.size
 case line
 when /^=begin(\s|$)/
 in_multiline_comment = true
 @comment_lines += 1
 when /^=end(\s|$)/:
 @comment_lines += 1
 in_multiline_comment = false
 when /^\s*#/
 @comment_lines += 1
 when /^\s*$/
 # empty/whitespace only line
 else
 if in_multiline_comment
 @comment_lines += 1
 else
 @lines_of_code += 1
 end
 end
 }
 end

 # Get a new ScriptLines instance whose counters hold the
 # sum of self and other.
 def +(other)
 sum = self.dup
 sum.bytes += other.bytes
 sum.lines += other.lines
 sum.lines_of_code += other.lines_of_code
 sum.comment_lines += other.comment_lines
 sum
 end

Chapter 19. Automating Tasks with Rake Page 12 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Get a formatted string containing all counter numbers and the
 # name of this instance.
 def to_s
 sprintf LINE_FORMAT,
 @bytes, @lines, @lines_of_code, @comment_lines, @name
 end
 end

To tie the class into your build system, give your Rakefile a stats task like the following.
This task assumes that the Rakefile and scriptlines.rb are in the same directory:

 task 'stats' do
 require 'scriptlines'

 files = FileList['lib/**/*.rb']

 puts ScriptLines.headline
 sum = ScriptLines.new("TOTAL (#{files.size} file(s))")

 # Print stats for each file.
 files.each do |fn|
 File.open(fn) do |file|
 script_lines = ScriptLines.new(fn)
 script_lines.read(file)
 sum += script_lines
 puts script_lines
 end
 end

 # Print total stats.
 puts sum
 end

Discussion
ScriptLines performs a very basic parsing of Ruby code: it divides a source file into
blank lines, comment lines, and lines containing Ruby code. If you want more detailed
information, you can include each file and get more information about the defined
classes and methods with reflection or an extension like Parse Tree.

Invoke the stats task to run all the Ruby scripts beneath your lib/ directory through
ScriptLines. The following example output is for the highline library:

 $ rake stats
 (in /usr/local/lib/ruby/gems/1.8/gems/highline-1.0.1)
 BYTES LINES LOC COMMENT FILE
 18626 617 360 196 lib/highline.rb
 12745 375 168 181 lib/highline/menu.rb
 15760 430 181 227 lib/highline/question.rb
 801 25 7 14 lib/highline/import.rb
 47932 1447 716 618 TOTAL (4 scripts)

BYTES is the file size in bytes, LINES the number of total lines in each file, LOC stands for
"Lines Of Code," and COMMENT is the number of comment-only lines.

Chapter 19. Automating Tasks with Rake Page 13 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

These simple metrics are good for gauging the complexity of a project, but don't use them
as a measure of day-to-day progress. Complexity is not the same as progress, and a good
day's work might consist of replacing a hundred lines of code with ten.

See Also

• ri Kernel#sprintf
• The RDoc documentation for Rake's FileList class (http://rake.rubyforge.org/

classes/Rake/FileList.html)
• The ParseTree extension (http://rubyforge.org/projects/parsetree/)

Recipe 19.6. Publishing Your Documentation

Credit: Stefan Lang

Problem
You want to automatically update your project's web site on RubyForge (or some other
site) with generated documentation or custom pages.

Solution
As seen in Recipe 19.2, Rake provides a RDocTask for generating RDoc documentation:

 require 'rake/rdoctask'

 html_dir = 'doc/html'
 library = 'MyLib'
 Rake::RDocTask.new('rdoc') do |t|
 t.rdoc_files.include('README', 'lib/**/*.rb')
 t.main = 'README'
 t.title = "#{library} API documentation"
 t.rdoc_dir = html_dir
 end

To upload your generated documentation to RubyForge, use this task along with the
upload-docs task defined below. The Unix scp command-line tool does the actual work
of uploading:

 # Define your RubyForge username and your project's Unix name here:
 rubyforge_user = 'user'
 rubyforge_project = 'project'
 rubyforge_path = "/var/www/gforge-projects/#{rubyforge_project}/"
 desc 'Upload documentation to RubyForge.'
 task 'upload-docs' => ['rdoc'] do
 sh "scp -r #{html_dir}/* " +
 "#{rubyforge_user}@rubyforge.org:#{rubyforge_path}"
 end

Chapter 19. Automating Tasks with Rake Page 14 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rake.rubyforge.org/classes/Rake/FileList.html
http://rake.rubyforge.org/classes/Rake/FileList.html
http://rubyforge.org/projects/parsetree/

Discussion
Set off the publishing process by invoking rake upload-docs. The upload-docs task
has the rdoc task as a prerequisite, so the HTML pages under doc/html/ will be created
if necessary.

Then scp prompts for your RubyForge account password. Enter it, and all files under
doc/html/ and its subdirectories will be uploaded to RubyForge. The docs will become
available under http://project.rubyforge.org/, where "project" is the Unix name of your
project. Now your users can read your RDoc online without having to generate it
themselves. Your documentation will also show up in web search results.

Rake's sh method starts an instance of the OS's standard shell. This feature is used to run
the scp command-line tool. This means that this recipe will only work if scp is installed
on your system.

The scp command copies all the files that the RDoc placed under doc/html/, to the root
of your project's web site on the RubyForge server. In effect, the main page of the API
documentation will appear as your project's homepage. Some RubyForge projects don't
have a custom homepage, so this is a good place to put the RDoc. If you want a custom
homepage, just copy the RDoc into a different directory by changing rubyforge_path:

 rubyforge_path = "/var/www/gforge-projects/#{rubyforge_project}/rdoc/"

You'll have to manually create the rdoc directory before you can use the scp shortcut.
After that, the generated RDoc will show up at http://project.rubyforge.org/rdoc/, and
you can link to it from your custom homepage with a relative link to rdoc/.

You can make Rake upload your custom homepage as well, of course. Just add an upload-
site task that uploads your custom homepage and other web content. Make upload-
site and upload-docs prerequisites of an overarching publish task:

 website_dir = 'site'
 desc 'Update project website to RubyForge.'
 task 'upload-site' do
 sh "scp -r #{website_dir}/* " +
 "#{rubyforge_user}@rubyforge.org:/var/www/gforge-projects/project/"
 end

 desc 'Update API docs and project website to RubyForge.'
 task 'publish' => ['upload-docs', 'upload-site']

Now you can run rake publish to update the generated API documentation, and upload
it together with the rest of the web site to RubyForge. The publish task can be just one
more prerequisite for an overarching release task.

Chapter 19. Automating Tasks with Rake Page 15 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://project.rubyforge.org/
http://project.rubyforge.org/rdoc/

Of course, you can use this same technique if you're using a web host other than RubyForge:
just change the destination host of the scp command.

See Also

• Recipe 17.11, "Documenting Your Application," covers writing RDoc documentation
• Recipe 19.2, "Automatically Generating Documentation"

Recipe 19.7. Running Multiple Tasks in Parallel

Problem
Your build process takes too long to run. Rake finishes copying one set of files only to start
copying another set. You could save time by running these tasks in parallel, instead of
stringing them one after another.

Solution
Define a task using the multitask function instead of task. Each of that task's
prerequisites will be run in a separate thread.

In this code, I'll define two long-running tasks:

 task 'copy_docs' do
 # Simulate a large disk copy.
 sleep 5
 end

 task 'compile_extensions' do
 # Simulate a C compiler compiling a bunch of files.
 sleep 10
 end

 task 'build_serial' => ['copy_docs', 'compile_extensions']
 multitask 'build_parallel' => ['copy_docs', 'compile_extensions']

The build_serial task runs in about 15 seconds, but the build_parallel task does
the same thing in about 10 seconds.

Discussion
A multitask runs just like a normal task, except that each of its dependencies runs in
a separate thread. When running the dependencies of a multitask, Rake first finds any
common secondary dependencies of these dependencies, and runs them first. It then
spawns a separate thread for each dependency, so that they can run simultaneously.

Chapter 19. Automating Tasks with Rake Page 16 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-11#rubyckbk-CHP-17-SECT-11

Consider three tasks, ice_cream, cheese, and yogurt, all of which have a dependency
on buy_milk. You can run the first three tasks in separate threads with a multitask,
but Rake will run buy_milk before creating the threads. Otherwise, ice_cream,
cheese, and yogurt would all trigger buy_milk, wasting time.

When your tasks spend a lot of time blocking on I/O operations (as many Rake tasks do),
using a multitask can speed up your builds. Unfortunately, it can also cause the same
problems you'll see with any multithreaded code. If you've got a fancy Rakefile, in which
the tasks keep state inside Ruby data structures, you'll need to synchronize access to those
data structures to prevent multithreading problems.

You may also have problems converting a task to a multitask if your dependencies are
set up incorrectly. Take the following example:

 task 'build' => ['compile_extensions', 'run_tests', 'generate_rdoc']

The unit tests can't run if the compiled extensions aren't available,
so :compile_extensions shouldn't be in this list at all: it should be a dependency
of :run_tests. You might not notice this problem as long as you're using task
(because :compile_extensions runs before :run_tests anyway), but if you switch to a
multitask your tests will start failing. Fixing your dependencies will solve the problem.

The multitask method is available only in Rake 0.7.0 and higher.

See Also

• Chapter 20

Recipe 19.8. A Generic Project Rakefile

Credit: Stefan Lang

Every project's Rakefile is different, but most Ruby projects can be handled by very similar
Rakefiles. To close out the chapter, we present a generic Rakefile that includes most of the
tasks covered in this chapter, and a few (such as compilation of C extensions) that we only
hinted at.

This Rakefile will work for pure Ruby projects, Ruby projects with C extensions, and
projects that are only C extensions. It defines an overarching task called publish that
builds the project, runs tests, generates RDoc, and releases the whole thing on Ruby-Forge.

Chapter 19. Automating Tasks with Rake Page 17 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20

It's a big file, but you don't have to use all of it. The publish task is made entirely of
smaller tasks, and you can pick and choose from those smaller tasks to build your own
Rakefile. For a simple project, you can just customize the settings at the beginning of the
file, and ignore the rest. Of course, you can also extend this Rakefile with other tasks, like
the stats task presented in Recipe 19.5.

This Rakefile assumes that you follow the directory layout conventions laid down by the
setup.rb script, even if you don't actually use setup.rb to install your project. For
instance, it assumes you put your Ruby files in lib/ and your unit tests in test/.

First, we include Rake libraries that make it easy to define certain kinds of tasks:

 # Rakefile
 require "rake/testtask"
 require "rake/clean"
 require "rake/rdoctask"
 require "rake/gempackagetask"

You'll need to configure these variables:

 # The name of your project
 PROJECT = "MyProject"

 # Your name, used in packaging.
 MY_NAME = "Frodo Beutlin"

 # Your email address, used in packaging.
 MY_EMAIL = "frodo.beutlin@my.al"

 # Short summary of your project, used in packaging.
 PROJECT_SUMMARY = "Commandline program and library for …"

 # The project's package name (as opposed to its display name). Used for
 # RubyForge connectivity and packaging.
 UNIX_NAME = "my_project"

 # Your RubyForge user name.
 RUBYFORGE_USER = ENV["RUBYFORGE_USER"] || "frodo"

 # Directory on RubyForge where your website's files should be uploaded.
 WEBSITE_DIR = "website"

 # Output directory for the rdoc html files.
 # If you don't have a custom homepage, and want to use the RDoc
 # index.html as homepage, just set it to WEBSITE_DIR.
 RDOC_HTML_DIR = "#{WEBSITE_DIR}/rdoc"

Now we start defining the variables you probably won't have to configure. The first set is
for your project includes C extensions, to be compiled with extconf.rb, these variables
let Rake know where to find the source and header files, as well as extconf.rb itself:

 # Variable settings for extension support.
 EXT_DIR = "ext"
 HAVE_EXT = File.directory?(EXT_DIR)
 EXTCONF_FILES = FileList["#{EXT_DIR}/**/extconf.rb"]
 EXT_SOURCES = FileList["#{EXT_DIR}/**/*.{c,h}"]

Chapter 19. Automating Tasks with Rake Page 18 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Eventually add other files from EXT_DIR, like "MANIFEST"
 EXT_DIST_FILES = EXT_SOURCES + EXTCONF_FILES

This next piece of code automatically finds the current version of your project, so long as
you define a file my_project.rb, which defines a module MyProject containing a
constant VERSION. This is convenient because you don't have to change the version
number in your gemspec whenever you change it in the main program.

 REQUIRE_PATHS = ["lib"]
 REQUIRE_PATHS << EXT_DIR if HAVE_EXT
 $LOAD_PATH.concat(REQUIRE_PATHS)
 # This library file defines the MyProject::VERSION constant.
 require "#{UNIX_NAME}"
 PROJECT_VERSION = eval("#{PROJECT}::VERSION") # e.g., "1.0.2"

If you don't want to set it up this way, you can:

• Have the Rakefile scan a source file for the current version.
• Use an environment variable.

Hardcode PROJECT_VERSION here, and change it whenever you do a new version.

These variables here are for the rake clobber tasks: they tell Rake to clobber files
generated when you run setup.rb or build your C extensions.

 # Clobber object files and Makefiles generated by extconf.rb.
 CLOBBER.include("#{EXT_DIR}/**/*.{so,dll,o}", "#{EXT_DIR}/**/Makefile")
 # Clobber .config generated by setup.rb.
 CLOBBER.include(".config")

Now we start defining file lists and options for the various tasks. If you have a non-standard
file layout, you can change these variables to reflect it.

 # Options common to RDocTask AND Gem::Specification.
 # The --main argument specifies which file appears on the index.html page
 GENERAL_RDOC_OPTS = {
 "--title" => "#{PROJECT} API documentation",
 "--main" => "README.rdoc"
 }

 # Additional RDoc formatted files, besides the Ruby source files.
 RDOC_FILES = FileList["README.rdoc", "Changes.rdoc"]
 # Remove the following line if you don't want to extract RDoc from
 # the extension C sources.
 RDOC_FILES.include(EXT_SOURCES)

 # Ruby library code.
 LIB_FILES = FileList["lib/**/*.rb"]

 # Filelist with Test::Unit test cases.
 TEST_FILES = FileList["test/**/tc_*.rb"]

 # Executable scripts, all non-garbage files under bin/.
 BIN_FILES = FileList["bin/*"]

 # This filelist is used to create source packages.

Chapter 19. Automating Tasks with Rake Page 19 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Include all Ruby and RDoc files.
 DIST_FILES = FileList["**/*.rb", "**/*.rdoc"]
 DIST_FILES.include("Rakefile", "COPYING")
 DIST_FILES.include(BIN_FILES)
 DIST_FILES.include("data/**/*", "test/data/**/*")
 DIST_FILES.include("#{WEBSITE_DIR}/**/*.{html,css}", "man/*.[0-9]")
 # Don't package files which are autogenerated by RDocTask
 DIST_FILES.exclude(/^(\.\/)?#{RDOC_HTML_DIR}(\/|$)/)
 # Include extension source files.
 DIST_FILES.include(EXT_DIST_FILES)
 # Don't package temporary files, perhaps created by tests.
 DIST_FILES.exclude("**/temp_*", "**/*.tmp")
 # Don't get into recursion…
 DIST_FILES.exclude(/^(\.\/)?pkg(\/|$)/)

Now we can start defining the actual tasks. First, a task for running unit tests:

 # Run the tests if rake is invoked without arguments.
 task "default" => ["test"]

 test_task_name = HAVE_EXT ? "run-tests" : "test"
 Rake::TestTask.new(test_task_name) do |t|
 t.test_files = TEST_FILES
 t.libs = REQUIRE_PATHS
 end

Next a task for building C extensions:

 # Set an environment variable with any configuration options you want to
 # be passed through to "setup.rb config".
 CONFIG_OPTS = ENV["CONFIG"]
 if HAVE_EXT
 file_create ".config" do
 ruby "setup.rb config #{CONFIG_OPTS}"
 end

 desc "Configure and make extension. " +
 "The CONFIG variable is passed to `setup.rb config'"
 task "make-ext" => ".config" do
 # The -q option suppresses messages from setup.rb.
 ruby "setup.rb -q setup"
 end

 desc "Run tests after making the extension."
 task "test" do
 Rake::Task["make-ext"].invoke
 Rake::Task["run-tests"].invoke
 end
 end

A task for generating RDoc:

 # The "rdoc" task generates API documentation.
 Rake::RDocTask.new("rdoc") do |t|
 t.rdoc_files = RDOC_FILES + LIB_FILES
 t.title = GENERAL_RDOC_OPTS["--title"]
 t.main = GENERAL_RDOC_OPTS["--main"]
 t.rdoc_dir = RDOC_HTML_DIR
 end

Chapter 19. Automating Tasks with Rake Page 20 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now we define a gemspec for the project, using the customized variables from the
beginning of the file. We use this to define a task that builds a gem.

 GEM_SPEC = Gem::Specification.new do |s|
 s.name = UNIX_NAME
 s.version = PROJECT_VERSION
 s.summary = PROJECT_SUMMARY
 s.rubyforge_project = UNIX_NAME
 s.homepage = "http://#{UNIX_NAME}.rubyforge.org/"
 s.author = MY_NAME
 s.email = MY_EMAIL
 s.files = DIST_FILES
 s.test_files = TEST_FILES
 s.executables = BIN_FILES.map { |fn| File.basename(fn) }
 s.has_rdoc = true
 s.extra_rdoc_files = RDOC_FILES
 s.rdoc_options = GENERAL_RDOC_OPTS.to_a.flatten
 if HAVE_EXT
 s.extensions = EXTCONF_FILES
 s.require_paths >> EXT_DIR
 end
 end

 # Now we can generate the package-related tasks.
 Rake::GemPackageTask.new(GEM_SPEC) do |pkg|
 pkg.need_zip = true
 pkg.need_tar = true
 end

Here's a task to publish RDoc and static HTML content to RubyForge:

 desc "Upload website to RubyForge. " +
 "scp will prompt for your RubyForge password."
 task "publish-website" => ["rdoc"] do
 rubyforge_path = "/var/www/gforge-projects/#{UNIX_NAME}/"
 sh "scp -r #{WEBSITE_DIR}/* " +
 "#{RUBYFORGE_USER}@rubyforge.org:#{rubyforge_path}",
 :verbose => true
 end

Here's a task that uses the rubyforge command to log in to RubyForge and publish the
packaged software as a release of the project:

 task "rubyforge-setup" do
 unless File.exist?(File.join(ENV["HOME"], ".rubyforge"))
 puts "rubyforge will ask you to edit its config.yml now."
 puts "Please set the `username' and `password' entries"
 puts "to your RubyForge username and RubyForge password!"
 puts "Press ENTER to continue."
 $stdin.gets
 sh "rubyforge setup", :verbose => true
 end
 end

 task "rubyforge-login" => ["rubyforge-setup"] do
 # Note: We assume that username and password were set in
 # rubyforge's config.yml.
 sh "rubyforge login", :verbose => true
 end

 task "publish-packages" => ["package", "rubyforge-login"] do
 # Upload packages under pkg/ to RubyForge
 # This task makes some assumptions:
 # * You have already created a package on the "Files" tab on the

Chapter 19. Automating Tasks with Rake Page 21 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # RubyForge project page. See pkg_name variable below.
 # * You made entries under package_ids and group_ids for this
 # project in rubyforge's config.yml. If not, eventually read
 # "rubyforge --help" and then run "rubyforge setup".
 pkg_name = ENV["PKG_NAME"] || UNIX_NAME
 cmd = "rubyforge add_release #{UNIX_NAME} #{pkg_name} " +
 "#{PROJECT_VERSION} #{UNIX_NAME}-#{PROJECT_VERSION}"
 cd "pkg" do
 sh(cmd + ".gem", :verbose => true)
 sh(cmd + ".tgz", :verbose => true)
 sh(cmd + ".zip", :verbose => true)
 end
 end

Now we're in good shape to define some overarching tasks. The prepare-release task
makes sure the code works, and creates a package. The top-level publish task does all
that and also performs the actual release to RubyForge:

 # The "prepare-release" task makes sure your tests run, and then generates
 # files for a new release.
 desc "Run tests, generate RDoc and create packages."
 task "prepare-release" => ["clobber"] do
 puts "Preparing release of #{PROJECT} version #{VERSION}"
 Rake::Task["test"].invoke
 Rake::Task["rdoc"].invoke
 Rake::Task["package"].invoke
 end

 # The "publish" task is the overarching task for the whole project. It
 # builds a release and then publishes it to RubyForge.
 desc "Publish new release of #{PROJECT}"
 task "publish" => ["prepare-release"] do
 puts "Uploading documentation…"
 Rake::Task["publish-website"].invoke
 puts "Checking for rubyforge command…"
 `rubyforge --help`
 if $? == 0
 puts "Uploading packages…"
 Rake::Task["publish-packages"].invoke
 puts "Release done!"
 else
 puts "Can't invoke rubyforge command."
 puts "Either install rubyforge with 'gem install rubyforge'"
 puts "and retry or upload the package files manually!"
 end
 end

To get an overview of this extensive Rakefile, run rake -T:

 $ rake -T
 rake clean # Remove any temporary products.
 rake clobber # Remove any generated file.
 rake clobber_package # Remove package products
 rake clobber_rdoc # Remove rdoc products
 rake package # Build all the packages
 rake prepare-release # Run tests, generate RDoc and create packages.
 rake publish # Publish new release of MyProject
 rake publish-website # Upload website to RubyForge. scp will prompt for your
 # RubyForge password.
 rake rdoc # Build the rdoc HTML Files
 rake repackage # Force a rebuild of the package files
 rake rerdoc # Force a rebuild of the RDOC files
 rake test # Run tests for test

Chapter 19. Automating Tasks with Rake Page 22 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's the idea behind prepare-release and publish: suppose you get a bug report
and you need to do a new release. You fix the bug and add a test case to make sure it stays
fixed. You check your fix by running the tests with rake (or rake test). Then you edit
a library file and bump up the project's version number.

Now that you're confident the bug is fixed, you can run rake publish. This task builds
your package, tests it, packages it, and uploads it to RubyForge. You didn't have to do any
work besides fix the bug and increment the version number.

The rubyforge script is a command-line tool that performs common interactions with
RubyForge, like the creation of new releases. To use the publish task, you need to install
the rubyforge script and do some basic setup for it. The alternative is to use the
prepare-release task instead of publish, and upload all your new packages manually.

Note that Rake uses the zip and tar command-line tools to create the ZIP file and tarball
packages. These tools are not available on most Windows installations. If you're on
windows, set the attributes need_tar and need_zip of the Rake::GemPackageTask to
false. With these attributes, the package task only creates a gem package.

See Also

• Recipe 19.4, "Automatically Building a Gem"
• You can download the rubyforge script from http://rubyforge.org/projects/

codeforpeople/

Chapter 19. Automating Tasks with Rake Page 23 Return to Table of Contents

Chapter 19. Automating Tasks with Rake
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/projects/codeforpeople/
http://rubyforge.org/projects/codeforpeople/

	Automating Tasks with Rake
	Automatically Running Unit Tests
	Automatically Generating Documentation
	Cleaning Up Generated Files
	Automatically Building a Gem
	Gathering Statistics About Your Code
	Publishing Your Documentation
	Running Multiple Tasks in Parallel
	A Generic Project Rakefile

