
Table of Contents

User Interface ... 1
... 2
Getting Input One Line at a Time .. 2
Getting Input One Character at a Time ... 4
Parsing Command-Line Arguments .. 6
Testing Whether a Program Is Running Interactively .. 9
Setting Up and Tearing Down a Curses Program .. 10
Clearing the Screen ... 12
Determining Terminal Size .. 13
Changing Text Color ... 16
Reading a Password .. 18
Allowing Input Editing with Readline .. 19
Making Your Keyboard Lights Blink .. 21
Creating a GUI Application with Tk .. 23
Creating a GUI Application with wxRuby .. 27
Creating a GUI Application with Ruby/GTK ... 30
Creating a Mac OS X Application with RubyCocoa ... 34
Using AppleScript to Get User Input ... 44

Chapter 21. User Interface

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

21. User Interface
Ruby has libraries for attaching programs to the three main types of user interface. The
web interface, Ruby's most popular, is covered in depth in Chapters 15, 16, and (to a lesser
extent) 14. This chapter covers the other two interfaces: the terminal or console interface,
and the graphical (GUI) interface. We also cover some unorthodox interfaces (Recipe
21.11).

The terminal interface is is a text-based interface usually invoked from a command line.
It's used by programs like irb and the Ruby interpreter itself. The terminal interface is
usually seen on Unix systems, but all modern operating systems support it.

In the classic Unix-style "command-line program," the user interface consists of the
options used to invoke the program (Recipe 21.3); and the program's standard input,
output, and error streams (Recipe 21.1; also see Recipe 6.16). The Ruby interpreter is a
good example of this kind of program. You can invoke the ruby program with arguments
like -d and --version, but once the interpreter starts, your options are limited to typing
in a Ruby program and executing it.

The advantage of this simple interface is that you can use Unix shell tools like redirection
and pipes to connect these programs to each other. Instead of manually typing a Ruby
program into the interpreter's standard input, you can send it a file with the Unix command
ruby < file.rb. If you've got another program that generates Ruby code and prints it
to standard output, you can pipe the generated code into the interpreter with generator
| ruby.

The disadvantage is that these programs are not very user-friendly. Libraries like Curses
(Recipe 21.5), Readline, and HighLine can add color and sophistication to your terminal
programs. The irb interactive interpreter uses Readline to offer interactive line editing
instead of the simpler interface offered by the Unix shell (Recipe 21.10).

The graphical user interface is the most common interface in the world. Even a web
interface is usually interpreted within a GUI on the client end. However, there's not much
that's Ruby-specific about GUI programming. All the common GUI libraries (like Tk, GTK,
and QT) are written in C, and Ruby's bindings to them look a lot like the bindings for other
dynamic languages such as Perl and Python.

All the GUI libraries work pretty much the same way. You create objects corresponding to
GUI elements, or "widgets," attach chunks of code to them as callbacks (so that something
will happen when, for instance, the user clicks a button), and then "pack" them into a frame

Chapter 21. User Interface Page 1 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-15#rubyckbk-CHP-15
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16#rubyckbk-CHP-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14#rubyckbk-CHP-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-16#rubyckbk-CHP-6-SECT-16

for display. Because it's easiest to do the GUI layout work in a tool like Glade, and write
only the callbacks in regular Ruby, this chapter contains only a few sample recipes on GUI
programming.

Recipe 21.1.

Resources
HighLine, written by James Edward Gray II and Gregory Brown, is available as the
highline gem. The Curses and Readline libraries come preinstalled with Ruby (even on
Windows, if you use the one-click installer). If you're using Windows and don't have
Curses, you can get the library and the Ruby bindings from http://www.dave.burt.id.au/
ruby/curses.zip.

Ncurses is an improved version of Curses (allowing things like colored text), and most
modern Unix systems have it installed. You can get Ncurses bindings for Ruby from http://
ncurses-ruby.berlios.de/. It's also available as the Debian package libncurses-ruby.

The Tk binding for Ruby comes preinstalled with Ruby, assuming you've installed Tk itself.
Ruby bindings for the most common GUI toolkits have been written:

• GTK (http://ruby-gnome2.sourceforge.jp/)
• QT (http://sfns.u-shizuoka-ken.ac.jp/geneng/horie_hp/ruby/index.html)
• wxRuby (http://wxruby.rubyforge.org/)

wxRuby is interesting because it's cross-platform and uses native widgets on each
platform. You can write a Ruby program with wxRuby that runs on Unix, Windows, and
Mac OS X, and looks like a native application on all three platforms.

On Mac OS X, all the tools you need to build a Ruby GUI application come with the
operating system, including a GUI builder. If you're using GTK, your life will be easier if
you download the Glade GUI builder (http://glade.gnome.org/).

Recipe 21.2. Getting Input One Line at a Time

Problem
You're writing an interactive console program, and you want to get line-based input from
the user. You present the user with a prompt, and he types some data before hitting enter.

Chapter 21. User Interface Page 2 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.dave.burt.id.au/ruby/curses.zip
http://www.dave.burt.id.au/ruby/curses.zip
http://ncurses-ruby.berlios.de/
http://ncurses-ruby.berlios.de/
http://ruby-gnome2.sourceforge.jp/
http://sfns.u-shizuoka-ken.ac.jp/geneng/horie_hp/ruby/index.html
http://wxruby.rubyforge.org/
http://glade.gnome.org/

Solution
Instead of reading standard input all at once, read it a line at a time with gets or
readline.

This method populates a data structure with values obtained from user input:

 def confirmation_hearings
 questions = [['What is your name?', :name],
 ['How old are you?', :age],
 ['Why would you like to be Secretary of the Treasury?', :why]]
 answers = questions.inject({}) do |answers, qv|
 question, value = qv
 print question + ' '
 answers[value] = gets.chomp
 answers
 end
 puts "Okay, you're confirmed!"
 return answers
 end

 confirmation_hearings
 # What is your name? # <= Leonard Richardson
 # How old are you? # <= 27
 # Why would you like to be Secretary of the Treasury? # <= Mainly for the money
 # Okay, you're confirmed!
 # => {:age=>"26", :why=>"Mainly for the money", :name=>"Leonard Richardson"}

Discussion
Most console programs take their input from command-line switches or from a file passed
in on standard input. This makes it easy to programatically combine console programs:
you can pipe cat into grep into last without any of the programs having to know that
they're connected to each other. But sometimes it's more user-friendly to ask for input
interactively: in text-based games, or data entry programs with workflow.

The only difference between this technique and traditional console applications is that
you're writing to standard output before you're completely done reading from standard
input. You can pass an input file into a program like this, and it'll still work. In this example,
a Ruby program containing the questionnaire code seen in the Solution is fed by an input
file:

 $./confirmation_hearings.rb < answers
 # => What is your name? How old are you? Why would you like to be
 # Secretary of the Treasury? Okay, you're confirmed!

The program works, but the result looks different—even though the standard output is
actually the same. When a human is running the program, the newline created when they
hit enter is echoed to the screen, making the second question appear on a separate line
from the first. Those newlines don't get echoed when they're read from a file.

Chapter 21. User Interface Page 3 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The HighLine library requires that you install a gem (highline), but it makes
sophisticated line-oriented input much easier. You can make a single method call to print
a prompt, retrieve the input, and validate it. This code works the same way as the code
above, but it's shorter, and it makes sure you enter a reasonable age for the question "How
old are you?"

 require 'rubygems'
 require 'highline/import'

 def confirmation_hearings
 answers = {}
 answers[:name] = ask('What is your name? ')
 answers[:age] = ask('How old are you? ', Integer) { |q| q.in = 0..120 }
 answers[:why] = ask('Why would you like to be Secretary of the Treasury? ')
 puts "Okay, you're confirmed!"
 return answers
 end

 confirmation_hearings
 # What is your name? # <= Leonard Richardson
 # How old are you? # <= twenty-seven
 # You must enter a valid Integer.
 # ? # <= 200
 # Your answer isn't within the expected range (included in 0..120)
 # ? # <= 27
 # …

See Also

• Recipe 21.2, "Getting Input One Character at a Time"
• Recipe 21.9, "Reading a Password"
• The examples/basic_usage.rb script in the HighLine library has many more

examples of data validation with HighLine
• If you want your program to treat its command-line arguments as filenames and read

from the files one line at a time, see Recipe 21.3, "Parsing Command-Line Arguments,"
for a shortcut

Recipe 21.3. Getting Input One Character at a Time

Problem
You're writing an interactive application or a terminal-based game. You want to read a
user's input from standard input a single character at a time.

Solution
Most Ruby installations on Unix come with the the Curses extension installed. If Curses
has the features you want to write the rest of your program, the simplest solution is to use
it.

Chapter 21. User Interface Page 4 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This simple Curses program echoes every key you type to the top-left corner of the screen.
It stops when you hit the escape key (\e).[1]

[1] This code will also work in irb, but it'll look strange because Curses will be fighting with irb for control of the screen.

 #!/usr/bin/ruby -w
 # curses_single_char_input.rb
 require 'curses'
 include Curses

 # Setup: create a curses screen that doesn't echo its input.
 init_screen
 noecho

 # Cleanup: restore the terminal settings when the program is exited or
 # killed.
 trap(0) { echo }

 while (c = getch) != ?\e do
 setpos(0,0)
 addstr("You typed #{c.chr.inspect}")
 end

If you don't want Curses to take over your program, you can use the HighLine library
instead (available as the highline gem). It does its best to define a get_ character
method that will work on your system. The get_character method itself is private, but
you can access it from within a call to ask:

 require 'rubygems'
 require 'highline/import'

 while (c = ask('') { |q| q.character = true; q.echo = false }) != "\e" do
 print "You typed #{c.inspect}"
 end

Be careful; ask echoes a newline after every character it receives.[2] That's why I use a print
statement in that example instead of puts.

[2] This actually happens at the end of HighLine.get_response, which is called by ask.

Of course, you can avoid this annoyance by hacking the HighLine class to make
get_character public:

 class HighLine
 public :get_character
 end
 input = HighLine.new
 while (c = input.get_character) != ?\e do
 puts "You typed #{c.chr.inspect}"
 end

Discussion
This is a huge and complicated problem that (fortunately) is completely hidden by Curses
and HighLine. Here's the problem: Unix systems know how to talk to a lot of historic and

Chapter 21. User Interface Page 5 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

modern terminals. Each one has a different feature set and a different command language.
HighLine (through the Termios library it uses on Unix) and Curses hide this complexity.

Windows doesn't have to deal with a lot of terminal types, but Windows programs don't
usually read from standard input either (much less one character at a time). To do single-
character input on Windows, HighLine makes raw Windows API calls. Here's some code
based on HighLine's, which you can use on Windows if you don't want to require HighLine:

 require 'Win32API'

 def getch
 @getch ||= Win32API.new('crtdll', '_getch', [], 'L')
 @getch.call
 end

 while (c = getch) != ?\e
 puts "You typed #{c.chr.inspect}"
 end

HighLine also has two definitions f get_character for Unix; you can copy one of these
if you don't want to require HighLine. The most reliable implementation is fairly
complicated, and requires the termios gem. But if you need to require the termios gem,
you might as well require the highline gem as well, and use HighLine's implementation
as is. So if you want to do single-character input on Unix without requiring any gems, you'll
need to rely on the Unix command stty:

 def getch
 state = `stty -g`
 begin
 `stty raw -echo cbreak`
 $stdin.getc
 ensure
 `stty #{state}`
 end
 end

 while (c = getch) != ?\e
 puts "You typed #{c.chr.inspect}"
 end

All of the HighLine code is in the main highline.rb file; search for "get_character".

See Also

• Recipe 21.5, "Setting Up and Tearing Down a Curses Program"
• Recipe 21.8, "Changing Text Color"

Recipe 21.4. Parsing Command-Line Arguments

Chapter 21. User Interface Page 6 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You want to make your Ruby script take command-line arguments, the way most Unix
utilities and scripts do.

Solution
If you want to treat your command-line arguments as a simple list of strings, you can just
iterate over the ARGV array.

Here's a Ruby version of the Unix command cat; it takes a list of files on the command
line, opens each one, and prints its contents to standard output:

 #!/usr/bin/ruby -w
 # cat.rb

 ARGV.each { |filename| IO.readlines(filename).each { |line| puts line } }

If you want to treat your command-line arguments as a list of files, and you plan to open
each of those files and iterate over them line by line, you can use ARGF instead of eARGV.
The following cat implementation is equivalent to the first one.[3]

[3] It's actually a little better, because ARGF will iterate over standard input if there are no files given in ARGV.

 #!/usr/bin/ruby -w
 # cat_argf.rb

 ARGF.each { |line| puts line }

If you want to treat certain command-line arguments as switches, or as anything other
than a homogenous list of strings, use the OptionParser class in the optparse library.
Don't write the argument parsing code yourself; there are too many edge cases to think
about.

Discussion
The OptionParser class can parse any command-line arguments you're likely to need,
and it includes a lot of Unix know-how that would take a long time to write yourself. All
you have to do is define the set of arguments your script accepts, and write code that reacts
to the presence of each argument on the command line. Here, I'll use OptionParser to
write cat2.rb, a second Ruby version of cat that supports a few of the real
cat'scommand-line arguments.

The first phase is turning any command-line arguments into a data structure that I can
easily consult during the actual program. The CatArguments class defined below is a
hash that uses OptionParser to populate itself from a list of command-line arguments.

Chapter 21. User Interface Page 7 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For each argument accepted by cat2.rb, I've added a code block to be run as a callback.
When OptionParser sees a particular argument in ARGV, it runs the corresponding code
block, which sets an appropriate value in the hash:

 #!/usr/bin/ruby
 # cat2.rb
 require 'optparse'

 class CatArguments < Hash
 def initialize(args)
 super()
 self[:show_ends] = ''

 opts = OptionParser.new do |opts|
 opts.banner = "Usage: #$0 [options]"
 opts.on('-E', '--show-ends [STRING]',
 'display [STRING] at end of each line') do |string|
 self[:show_ends] = string || '$'
 end

 opts.on('-n', '--number', 'number all output lines') do
 self[:number_lines] = true
 end

 opts.on_tail('-h', '--help', 'display this help and exit') do
 puts opts
 exit
 end
 end

 opts.parse!(args)
 end
 end

 arguments = CatArguments.new(ARGV)

At this point in the code, our CatArguments object contains information about which
command-line arguments were passed in. If the user passed in a command-line switch -E
or --show-ends, then arguments[:show_ends] contains a string to be shown at the end
of each line.

What's more, the command-line arguments handled by OptionParser have been
stripped from ARGV. The only things left in ARGV can be assumed to be the names of files
the user wants to concatenate. This means we can now use the ARGF shortcut to iterate
over those files line by line. All we need is a little extra code to actually implement the
command-line arguments:

 counter = 0
 eol =
 ARGF.each do |line|
 line.sub!(/$/, arguments[:show_ends])
 print '%6.d ' % (counter += 1) if arguments[:number_lines]
 print line
 end

Here's a shell session showing off the robustness that optparse brings to even a simple
script. The help message is automatically generated, multiple combined flags are handled

Chapter 21. User Interface Page 8 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

correctly, nonexistent flags are rejected, and you can disable flag processing altogether
with the -- argument. In general, it works like you expect a Unix command-line tool to
work.

 $./cat2.rb --help
 Usage: ./cat2.rb [options]
 -E, --show-ends [STRING] display STRING at end of each line
 -n, --number number all output lines
 -h, --help display this help and exit

 $./cat2.rb file1 file2
 This is file one.
 Another line in file one.
 This is file two.
 I'm a lot more interesting than file one, I'll tell you that!

 $./cat2.rb file1 -E$ -n file2
 1 This is file one.$
 2 Another line in file one.$
 3 This is file two.$
 4 I'm a lot more interesting than file one, I'll tell you that!$

 $./cat2.rb --nosuchargument
 /usr/lib/ruby/1.8/optparse.rb:1445:in `complete': invalid option: --nosuchargument
 (OptionParser::InvalidOption)

 $./cat2.rb --show-ends=" STOP" -- --argument-looking-file
 The name of this file STOP
 looks just like an argument STOP
 for some odd reason. STOP

With a little more work, you can make OptionParser validate argument data for you—
parse strings as numbers, restrict option values to values from a list. The documentation
for the OptionParser class has a much more complex example that shows off these
advanced features.

See Also

• ri OptionParser

Recipe 21.5. Testing Whether a Program Is Running Interactively

Problem
You want to see whether there's another person on the other end of your program, or
whether the program has been hooked up to a file or the output of another program.

Solution
STDIN.tty? returns true if there's a terminal hooked up to your program's original
standard input. Since only humans use terminals, this will suffice. This code works on Unix
and Windows:

Chapter 21. User Interface Page 9 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #!/usr/bin/ruby -w
 # interactive_or_not.rb
 if STDIN.tty?
 puts "Let me be the first to welcome my human overlords."
 else
 puts "How goes the revolution, brother software?"
 end

Running this program in different ways gives different results:

 $./interactive_or_not.rb
 Let me be the first to welcome my human overlords.

 $ echo "Some data" | interactive_or_not.rb
 How goes the revolution, brother software?

 $./interactive_or_not.rb < input_file
 How goes the revolution, brother software?

Discussion
An interactive application can be more user friendly than one that runs solely off its
command-line arguments and input streams. By checking STDIN.tty? you can make
your program have an interactive and a noninteractive mode. The noninteractive mode
can be chained together with other programs or used in shell scripts.

Recipe 21.6. Setting Up and Tearing Down a Curses Program

Problem
To write a program that uses Curses or Ncurses, you have to write a lot of setup and cleanup
code. You'd like to factor that out.

Solution
Here's a wrapper method that sets up the Curses library and passes the main screen object
into a code block:

 require 'curses'

 module Curses
 def self.program
 main_screen = init_screen
 noecho
 cbreak
 curs_set(0)
 main_screen.keypad = true
 yield main_screen
 end
 end

Chapter 21. User Interface Page 10 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a simple Ruby program that uses the wrapper method to fill up the screen with
random placements of a given string:

 Curses.program do |scr|
 str = ARGV[0] || 'Test'
 max_x = scr.maxx-str.size+1
 max_y = scr.maxy
 100.times do
 scr.setpos(rand(max_y), rand(max_x))
 scr.addstr(str)
 end
 scr.getch
 end

Discussion
The initialization, which is hidden in Curses.program, does the following things:

• Stops keystrokes from being echoed to the screen (noecho)
• Hides the cursor (curs_set(0))
• Turns off buffered input so keys can be processed as they're typed (cbreak)
• Makes the keyboard's arrow keys generate recognizable key events (keypad=true)

The code is a little different if you're using the third-party ncurses binding instead of the
curses library that comes with Ruby. The main difference is that with ncurses, you must
write some of the cleanup code that the curses library handles automatically. A wrapper
method is also a good place to set up the ncurses color code if you plan to use colored
text (see Recipe 21.8 for more on this).

Here's an Ncurses.program method that's equivalent to Curses.program, except that
it performs its cleanup manually by registering an at_exit block to run just before the
interpreter exits. This wrapper also turns on color and initializes a few default color pairs.
If your terminal has no color support, the color code will run but it won't do anything.

 require 'ncurses'

 module Ncurses
 COLORS = [COLOR_BLACK, COLOR_RED, COLOR_GREEN, COLOR_YELLOW, COLOR_BLUE,
 COLOR_MAGENTA, COLOR_CYAN, COLOR_WHITE]

 def self.program
 stdscr = Ncurses.initscr

 # Run ncurses cleanup code when the program exits.
 at_exit do
 echo
 nocbreak
 curs_set(1)
 stdscr.keypad(0)
 endwin
 end

 noecho
 cbreak
 curs_set(0)

Chapter 21. User Interface Page 11 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 stdscr.keypad(1)
 start_color

 COLORS[1…COLORS.size].each_with_index do |color, i|
 init_pair(i+1, color, COLOR_BLACK)
 end

 yield stdscr
 end
 end

Here's the ncurses equivalent of the curses program given earlier:

 Ncurses.program do |scr|
 str = ARGV[0] || 'Test'
 max_y, max_x = [], []
 scr.getmaxyx(max_y, max_x)
 max_y = max_y[0]
 max_x = max_x[0] - str.size + 1
 100.times do
 scr.mvaddstr(rand(max_y), rand(max_x), str)
 end
 scr.getch
 end

See Also

• See this chapter's introduction for information on installing Ncurses
• "Writing Programs with NCURSES" is a good general overview of the Ncurses library;

it's written for C programmers, but it's useful for Rubyists because Ruby's interfaces
to Curses and Ncurses are little more than wrappers (http://dickey.his.com/ncurses/
ncurses-intro.html)

Recipe 21.7. Clearing the Screen

Problem
You're writing a console application, and you want it to clear the screen.

Solution
Capture the output of the Unix clear command as a string and print it whenever you want
to clear the screen:

 #!/usr/bin/ruby -w
 # clear_console.rb
 clear_code = %x{clear}

 puts 'Press enter to clear the screen.'
 $stdin.gets
 print clear_code
 puts "It's cleared!"

Chapter 21. User Interface Page 12 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://dickey.his.com/ncurses/ncurses-intro.html
http://dickey.his.com/ncurses/ncurses-intro.html

Discussion
The clear command prints an escape code sequence to standard output, which the Unix
terminal interprets as a clear-screen command. The exact string depends on your terminal,
but it's probably an ANSI escape sequence, like this:

 %x{clear} # => "\e[H\e[2J"

Your Ruby script can print this escape code sequence to standard output, just as the clear
command can, and clear the screen.

On Windows, the command is cls, and you can't just print its standard output to clear
the screen. Every time you want to clear the screen, you need to call out to cls with
Kernel#system:

 # clear_console_windows.rb

 puts 'Press enter to clear the screen.'
 $stdin.gets
 system('cls')
 puts "It's cleared!"

If you've made your Windows terminal support ANSI (see Recipe 21.8), then you can print
the same ANSI escape sequence used on Unix.

The Curses library makes this a lot more straightforward. A Curses application can clear
any of its windows with Curses::Window#clear. Curses::clear will clear the main
window:

 #!/usr/bin/ruby -w
 # curses_clear.rb
 require 'curses'

 Curses.init_screen
 Curses.setpos(0,0)
 Curses::addstr("Type all you want. 'C' clears the screen, Escape quits.\n")

 begin
 c = nil
 begin
 c = Curses.getch
 end until c == ?C or c == ?\e
 Curses.clear
 end until c == ?\e

But, as always, Curses takes over your whole application, so you might want to just use the
escape sequence trick.

Chapter 21. User Interface Page 13 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 21.8. Determining Terminal Size

Problem
Within a terminal-based application, you want to find the size of the terminal: how many
rows and columns are available for you to draw on.

Solution
This is easy if you're using the Curses library. This example uses the Curses.program
wrapper described in Recipe 21.5:

 Curses.program do |scr|
 max_y, max_x = scr.maxy, scr.maxx

 scr.setpos(0, 0)
 scr.addstr("Your terminal size is #{max_x}x#{max_y}. Press any key to exit.")
 scr.getch
 end

It's a little less easy with Ncurses: you have to pass in two arrays to the underlying C
libraries, and extract the numbers from the arrays. Again, this example uses the Ncurses
wrapper from Recipe 21.5:

 Ncurses.program do |scr|
 max_y, max_x = [], []
 scr.getmaxyx(max_y, max_x)
 max_y, max_x = max_y[0], max_x[0]

 str = "Your terminal size is #{max_x}x#{max_y}. Press any key to exit."
 scr.mvaddstr(0, 0, str)
 scr.getch
 end

If you're not using a Curses-style library, it's not easy at all.

Discussion
If you plan to simulate graphical elements on a textual terminal, subdivide it into virtual
windows, or print justified output, you'll need to know the terminal's dimensions. For
decades, the standard terminal size has been 25 rows by 80 columns, but modern GUIs
and high screen resolutions let users create text terminals of almost any size. It's okay to
enforce a minimum terminal size, but it's a bad idea to assume that the terminal is any
specific size.

The terminal size is a very useful piece of information to have, but it's not an easy one to
get. The Curses library was written to solve this kind of problem, but if you're willing to go
into the operating system API, or if you're on Windows where Curses is not a standard

Chapter 21. User Interface Page 14 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

feature, you can find the terminal size without letting a Curses-style library take over your
whole application.

On Unix systems (including Mac OS X), you can make an ioctl system call to get the
terminal size. Since you're calling out to the underlying operating system, you'll need to
use strange constants and C-like structures to carry the response:

 TIOCGWINSZ = 0x5413 # For an Intel processor
 # TIOCGWINSZ = 0x40087468 # For a PowerPC processor

 def terminal_size
 rows, cols = 25, 80
 buf = [0, 0, 0, 0].pack("SSSS")
 if STDOUT.ioctl(TIOCGWINSZ, buf) >= 0 then
 rows, cols, row_pixels, col_pixels = buf.unpack("SSSS")[0..1]
 end
 return rows, cols
 end

 terminal_size # => [21, 80]

Here, the methods pack and unpack convert between a four-element array and a string
that is modified in-place by the ioctl call. After the call, the first two elements of the array
contain the number of rows and columns for the terminal. Note that the first argument to
ioctl is architecture-dependent.

The Windows version works the same way, although you must jump through more hoops
and the system call returns a much bigger data structure:

 STDOUT_HANDLE = 0xFFFFFFF5
 def terminal_size
 m_GetStdHandle = Win32API.new('kernel32', 'GetStdHandle', ['L'], 'L')
 m_GetConsoleScreenBufferInfo = Win32API.new ('kernel32',
 'GetConsoleScreenBufferInfo',
 ['L', 'P'], 'L')
 format = 'SSSSSssssSS'
 buf = ([0] * format.size).pack(format)
 stdout_handle = m_GetStdHandle.call(STDOUT_HANDLE)

 m_GetConsoleScreenBufferInfo.call(stdout_handle, buf)
 (bufx, bufy, curx, cury, wattr,
 left, top, right, bottom, maxx, maxy) = buf.unpack(format)
 return bottom - top + 1, right - left + 1
 end

 terminal_size # => [25, 80]

If all else fails, on Unix systems you can call out to the stty command:

 def terminal_size
 %x{stty size}.split.collect { |x| x.to_i }
 end

 terminal_size # => [21, 80]

Chapter 21. User Interface Page 15 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The ioctl code is based on code posted to ruby-talk by Paul Brannan (http://
blade.nagaokaut.ac.jp/cgi-bin/rcat.rb/ruby/ruby-talk/40350)

• The Windows code is based on code in the Win32API_Console library, a simple Ruby
wrapper around Windows' console-related API calls (http://rb-
w32mod.sourceforge.net/)

• Recipe 21.5, "Setting Up and Tearing Down a Curses Program"

Recipe 21.9. Changing Text Color

Problem
You want to display multicolored text on the console.

Solution
The simplest solution is to use HighLine. It lets you enclose color commands in an ERb
template that gets interpreted within HighLine and printed to standard output. Try this
colorful bit of code to test the capabilities of your terminal:

 require 'rubygems'
 require 'highline/import'

 say(%{Here's some <%= color('dark red text', RED) %>.})
 say(%{Here's some <%= color('bright red text on a blue background',
 RED+BOLD+ON_BLUE) %>.})
 say(%{Here's some <%= color('blinking bright cyan text', CYAN+BOLD+BLINK) %>.})
 say(%{Here's some <%= GREEN+UNDERLINE %>underlined dark green text<%=CLEAR%>.})

Some of these features (particularly the blinking and underlining) aren't supported on all
terminals.

Discussion
The HighLine#color method encloses a display string in special command strings,
which start with an escape character and a left square bracket:

 HighLine.new.color('Hello', HighLine::GREEN)
 # => "\e[32mHello\e[0m"

These are ANSI escape sequences. Instead of displaying the string "\e[32m", an ANSI-
compatible terminal treats it as a command: in this case, a command to start printing
characters in green-on-black. The string "\e[0m" tells the terminal to go back to white-on-
black.

Chapter 21. User Interface Page 16 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://blade.nagaokaut.ac.jp/cgi-bin/rcat.rb/ruby/ruby-talk/40350
http://blade.nagaokaut.ac.jp/cgi-bin/rcat.rb/ruby/ruby-talk/40350
http://rb-w32mod.sourceforge.net/
http://rb-w32mod.sourceforge.net/

Most modern Unix terminals support ANSI escape sequences, including the Mac OS X
terminal. You should be able to get green text in your irb session just by calling puts
"\e[32mHello\e[0m" (try it!), but HighLine makes it easy to get color without having
to remember the ANSI sequences.

Windows terminals don't support ANSI by default, but you can get it to work by loading
ANSI.SYS (see below for a relevant Microsoft support article).

An alternative to HighLine is the Ncurses library.[4] It supports color terminals that use a
means other than ANSI, but these days, most color terminals get their color support
through ANSI. Since Ncurses is much more complex than HighLine, and not available as
a gem, you should only use Ncurses for color if you're already using it for its other features.

[4] Standard Curses doesn't support color because it was written in the 1980s, when monochrome ruled the world.

Here's a rough equivalent of the HighLine program given above. This program uses the
Ncurses::program wrapper described in Recipe 21.5. The wrapper sets up Ncurses and
initializes some default color pairs:

 Ncurses.program do |s|
 # Define the red-on-blue color pair used in the second string.
 # All the default color pairs use a black background.
 Ncurses.init_pair(8, Ncurses::COLOR_RED, Ncurses::COLOR_BLUE)

 Ncurses::attrset(Ncurses::COLOR_PAIR(1))
 s.mvaddstr(0,0, "Here's some dark red text.")

 Ncurses::attrset(Ncurses::COLOR_PAIR(8) | Ncurses::A_BOLD)
 s.mvaddstr(1,0, "Here's some bright red text on a blue background.")
 Ncurses::attrset(Ncurses::COLOR_PAIR(6) | Ncurses::A_BOLD |
 Ncurses::A_BLINK)
 s.mvaddstr(2,0, "Here's some blinking bright cyan text.")

 Ncurses::attrset(Ncurses::COLOR_PAIR(2) | Ncurses::A_UNDERLINE)
 s.mvaddstr(3,0, "Here's some underlined dark green text.")

 s.getch
 end

An Ncurses program can draw from a palette of color pairs—combinations of foreground
and background colors. Ncurses::program sets up a default palette of the seven basic
ncurses colors (red, green, yellow, blue, magenta, cyan, and white), each on a black
background. You can change this around if you like, or define additional color pairs (like
the red-on-blue defined in the example). The following Ncurses program prints out a color
chart of all foreground-background pairs. It makes the text of the chart bold, so that the
text doesn't become invisible when the background is the same color.

 Ncurses.program do |s|
 pair = 0
 Ncurses::COLORS.each_with_index do |background, i|
 Ncurses::COLORS.each_with_index do |foreground, j|
 Ncurses::init_pair(pair, foreground, background) unless pair == 0
 Ncurses::attrset(Ncurses::COLOR_PAIR(pair) | Ncurses::A_BOLD)

Chapter 21. User Interface Page 17 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 s.mvaddstr(i, j*4, "#{foreground},#{background}")
 pair += 1
 end
 end
 s.getch
 end

You can modify a color pair by combining it with an Ncurses constant. The most useful
constants are Ncurses::A_BOLD, Ncurses::A_BLINK, and
Ncurses::A_UNDERLINE. This works the same way (and, on an ANSI system, uses the
same ANSI codes) as HighLine's BOLD, BLINK, and UNDERLINE constants. The only
difference is that you modify an Ncurses color with the OR operator (|), and you modify
a HighLine color with the addition operator.

See Also

• Recipe 1.3, "Substituting Variables into an Existing String," has more on ERb
• http://en.wikipedia.org/wiki/ANSI_escape_code has technical details on ANSI color

codes
• The examples/ansi_colors.rb file in the HighLine gem
• You can get a set of Ncurses bindings for Ruby at http://ncurses-ruby.berlios.de/; it's

also available as the Debian package libncurses-ruby
• If you want something more lightweight than the highline gem, try the
termansicolor gem instead: it defines methods for generating the escape
sequences for ANSI colors, and nothing else

• "How to Enable ANSI.SYS in a Command Window" (http://support.microsoft.com/?
id=101875)

Recipe 21.10. Reading a Password

Problem
You want to prompt the user for a password, or otherwise capture input without echoing
it to the screen for all to see.

Solution
The ruby-password library makes this easy, but it's not available as a Ruby gem. The
HighLine library is available as a gem, and it can do this almost as well. You just have to
turn off the terminal echo feature:

 require 'rubygems'
 require 'highline/import'

 def get_password(prompt='Password: ')

Chapter 21. User Interface Page 18 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3
http://en.wikipedia.org/wiki/ANSI_escape_code
http://ncurses-ruby.berlios.de/
http://support.microsoft.com/?id=101875
http://support.microsoft.com/?id=101875

 ask(prompt) { |q| q.echo = false}
 end

 get_password("What's your password? ")
 # What's your password?
 # => "buddy"

Discussion
In 2000, President Bill Clinton signed into law the Electronic Signatures Bill, which makes
electronic signatures as binding as handwritten signatures. He signed the law by hand and
then signed it electronically. As he typed the password to his electronic signature, it was
was echoed to the screen. Everyone in the world saw that his password was the name of
his pet dog, Buddy. Don't let this happen to you: turn off echoing when gathering
passwords.

Turning off echoing altogether is the safest way to gather a password, but it might make
your users think your program has stopped responding to input. It's more userfriendly to
echo a mask character, like an asterisk, for every character the user types. You can do this
in HighLine by setting echo to the mask character instead of false:

 def get_password(prompt='Password: ', mask='*')
 ask(prompt) { |q| q.echo = mask }
 end

 get_password
 # Password: *****
 # => "buddy"

 get_password('Password: ', false)
 # Password:
 # => "buddy"

See Also

• The ruby-password third-party library also provides ways of generating,
encrypting, and test-cracking passwords (http://www.caliban.org/ruby/ruby-
password.shtml)

Recipe 21.11. Allowing Input Editing with Readline

Problem
You want to let your users edit their lines of input as they write them, the way irb does.

Chapter 21. User Interface Page 19 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.caliban.org/ruby/ruby-password.shtml
http://www.caliban.org/ruby/ruby-password.shtml

Solution
Use the readline library. Instead of reading directly from standard input, pass a prompt
string into Readline.readline. The user will be able to edit their input using the same
shortcut keys you can use in the irb Ruby interpreter (assuming their terminal supports
those keys).

 #!/usr/bin/ruby -w
 # readline.rb
 require 'readline'
 vegetable = Readline.readline("What's your favorite vegetable?> ")
 puts "#{vegetable.capitalize}? Are you crazy?"

Note that you don't have to chomp the result of Readline.readline:

 $ ruby readline.rb
 What's your favorite vegetable?> okra
 Okra? Are you crazy?

On Windows, this isn't necessary because the cmd shell provides any console program
with many of readline's features. The example given above will work on both Windows
and Unix, but if you're writing a Windows-specific program, you don't need readline:

 # readline_windows.rb
 print "What's your favorite vegetable?> "
 puts gets.chomp.capitalize + "? Are you crazy?"

Discussion
In a Unix program that accepts data from standard input, the user can use their backspace
key to correct typing mistakes, one character at a time. Backspace is a control character:
it's a real character, just like "1" and "m" (its Ruby string representation is "\010"), but
it's not usually interpreted as data. Instead, it's treated as a command: it erases one
character from the input buffer.

With the backspace key, you can correct errors one character at a time. But what if you
want to insert text into the middle of a line, or delete the whole thing and start over? That's
where readline comes in. It's a Ruby interface to the Readline library used by many Unix
programs, and it recognizes many control characters besides the backspace.

In a readline program, you can use the left and right arrow keys to move back and forth
in the input string before submitting it. If you're familiar with the Readline shortcut keys
from Emacs or other Unix programs, you can perform more sophisticated text editing
operations, including cut and paste.

Chapter 21. User Interface Page 20 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The readline library also supports command history: that's the feature of irb that lets
you revisit commands you've already typed. To add this feature to your program, pass true
as the second argument to Readline.readline. When the user enters a line, her input
will be added to the command history. The next time your code calls
Readline.readline, the user can hit the up arrow key to recall previous lines of input.

Here's a simple Ruby interpreter that has all the line-editing capabilities of irb, including
command history:

 #!/usr/bin/ruby -w
 # mini_irb.rb
 require 'readline'
 line = 0
 loop do
 eval Readline.readline('%.3d> ' % line, true)
 line += 1
 end

See Also

• Recipe 1.5, "Representing Unprintable Characters"
• If your irb session doesn't support readline commands, make sure you have the

latest version of Ruby installed, and try invoking it as irb --readline; this is an
especially common problem on Mac OS X

Recipe 21.12. Making Your Keyboard Lights Blink

Problem
You want to control the three standard keyboard LEDs (num lock, caps lock, and scroll
lock) from a Ruby script.

Solution
Use the Blinkenlights library, available as the blinkenlights gem. It works on Windows
or Linux (but not on Mac OS X), and it lets you toggle the lights individually or in patterns:

 require 'rubygems'
 require 'blinkenlights'

 # Turn individual lights on or off.
 BlinkenLights.open do |lights|
 lights.left = true
 lights.middle = true
 lights.right = true

 lights.scr = false
 lights.cap = false
 lights.num = false

Chapter 21. User Interface Page 21 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-5#rubyckbk-CHP-1-SECT-5

 end

 # Display a light show.
 BlinkenLights.open do |lights|
 lights.left_to_right
 10.times { lights.random }
 lights.right_to_left
 end

Discussion
The keyboard lights are an often-overlooked user interface. They were originally designed
to reflect information about the state of the keyboard itself, but they can be manipulated
from the computer to display more interesting things. Each light can continually display
one bit of information (such as whether you have new email), or can flash over time to
indicate a rate (such as your computer's use of incoming or outgoing bandwidth).

BlinkenLights works by writing special command codes to the Unix keyboard device (/
dev/tty8 is the default, but /dev/console should also work). Usually, you can only
write to these devices when running as root.

On Windows, BlinkenLights works by sending key events that make Windows think you
actually hit the corresponding key. This means that if you tell BlinkenLights on Windows
to turn on your caps lock light, caps lock itself is also enabled. The state of the light can't
be disconnected from the state of the keyboard.

When you pass a code block into Blinkenlights.open, BlinkenLights runs the block
and then restores the original state of the lights. This avoids confusing those users who
use their lights to keep track of the state of their keyboards. If you want your setting of the
lights to persist until they're changed again, then use the return value of
Blinkenlights.open instead of passing in a code block.

This code will turn on the first two lights to represent the number six in binary. Until they're
changed again, whether through the keyboard or through code, they'll stay on. Even the
end of your program won't restore the original state of the lights.

 # Display the binary number 6 (that is, 110):
 BlinkenLights.new.set(6)

Here's a program that converts an alphanumeric message to Morse code and displays it
on the keyboard lights:

 #!/usr/bin/ruby -w
 # blink_morse.rb
 require 'rubygems'
 require 'blinkenlights'

 class String

 # Morse code representations for 0-9 and A-Z.

Chapter 21. User Interface Page 22 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 MORSE_TABLE = %w{01111 00111 00011 00001 00000 10000 11000 11100 11110 11111
 01 1000 1010 100 0 0010 110 0000 00 0111 101 0100 11
 10 111 0110 1101 010 000 1 001 0001 011 1001 1011 1100}

 def to_morse(dit_time = 0.3)
 a = "A"[0]
 zero = "0"[0]
 words = upcase.gsub(/[^A-Z0-9\s]/, "").split
 BlinkenLights.open do |lights|
 words.each do |word|
 word.each_byte do |letter|
 code = MORSE_TABLE[letter - (letter < a ? zero : a-10)]
 code.each_byte do |signal|
 lights.flash(dit_time * (signal == zero ? 1 : 3))
 sleep(dit_time) # Space between parts of a letter.
 end
 sleep(dit_time * 3) # Space between letters.
 end
 sleep(dit_time * 5) # Space between words.
 end
 end
 end
 end

 ARGV.shift.to_s.to_morse if $0 == __FILE_ _

See Also

• The BlinkenLights homepage at http://blinkenlights.rubyforge.org/; see especially
the generated RDoc at http://blinkenlights.rubyforge.org/doc/index.html, which
lists the many light patterns defined by the library

• The examples subdirectory of the installed gem contains sample programs that
control the keyboard lights based on your system load or network activity

• The name "Blinkenlights" is explained at http://www.catb.org/jargon/html/B/
blinkenlights.html

• An explanation of Morse code (http://en.wikipedia.org/wiki/Morse_code)
• The idea for the blink_morse.rb program comes from Neal Stephenson's novel

Cryptonomicon

Recipe 21.13. Creating a GUI Application with Tk

Credit: Kevin Marshall

Problem
You need to create a program that has a graphical user interface (GUI).

Solution
Use the Tk library. It's language-independent, cross-platform, and best of all, it comes
standard with most Ruby distributions.

Chapter 21. User Interface Page 23 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://blinkenlights.rubyforge.org/
http://blinkenlights.rubyforge.org/doc/index.html
http://www.catb.org/jargon/html/B/blinkenlights.html
http://www.catb.org/jargon/html/B/blinkenlights.html
http://en.wikipedia.org/wiki/Morse_code

With Tk you create GUI elements, or "widgets", and then bind code blocks to them. When
something happens (like the user clicking a widget), Tk runs the appropriate code block.

Ruby provides a class for each type of Tk widget. This simple Tk program creates a "root"
widget (the application window), and a "label" widget within the window. The program
then waits for events (although it can't respond to any).

 require 'tk'
 root = TkRoot.new { title "Tiny Tk Application" }
 label = TkLabel.new(root) { text "You are a trout!" }
 label.pack
 Tk.mainloop

When run, it looks like Figure 21-1.

Figure 21-1. You are a trout

Discussion
The simple application above shows most of the basic features of GUI programming in Tk
and other modern GUI toolkits. We'll use the techniques to build a more complex
application.

Tk GUI development and layout take a parent/child approach. Most widgets are children
of other widgets: depending on the widget, this nesting can go arbitrarily deep. The
exception to this rule is the TkRoot widget: it's always the top-level widget, and it's
represented as the application window.

Child widgets are "packed" inside their parents so they can be displayed. A system called
the geometry manager controls where on the screen the widgets actually show up. The
default geometry manager is the "placer" manager, which lets you place widgets in relation
to each other.

Tk applications are event-driven, so the final step is to start a main event loop which tells
our program to listen for events to be fired on our widgets.

To further illustrate, let's make a simple stopwatch program to demostrate a realworld use
of Tk.

To start, we'll create four simple methods that will be bound to our widgets. These are the
nonGUI core of the program:

Chapter 21. User Interface Page 24 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #!/usr/bin/ruby
 # stopwatch.rb
 require 'tk'

 class Stopwatch

 def start
 @accumulated = 0 unless @accumulated
 @elapsed = 0
 @start = Time.now

 @mybutton.configure('text' => 'Stop')
 @mybutton.command { stop }
 @timer.start
 end

 def stop
 @mybutton.configure('text' => 'Start')
 @mybutton.command { start }
 @timer.stop
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @mylabel.configure('text' => '00:00:00.0')
 end

 def tick
 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 newtime = "#{h}:#{m}:#{s}:#{mt}"
 @mylabel.configure('text' => newtime)
 end

Next, we set up our GUI. This consists of six simple widgets. As before, the TkRoot is our
application window, and contains all our other widgets:

 def initialize
 root = TkRoot.new { title 'Tk Stopwatch' }

The TkMenuBar corresponds to the menu bar at the top of the screen in most modern GUI
programs. It's an easy way to group a set of program features and make them available
across our application. The menu layout of a TkMenuBar is defined by a nested array
containing the menu items, and the code blocks to run when a menu item is selected:

 menu_spec = [
 [
 ['Program'],
 ['Start', lambda { start }],
 ['Stop', lambda { stop }],
 ['Exit', lambda { exit }]
],
 [
 ['Reset'], ['Reset Stopwatch', lambda { reset }]
]
]

Chapter 21. User Interface Page 25 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 @menubar = TkMenubar.new(root, menu_spec, 'tearoff' => false)
 @menubar.pack('fill'=>'x', 'side'=>'top')

The TkFont is used only as a configuration option for our TkLabel, which in turn is only
used to display the value of our stopwatch:

 @myfont = TkFont.new('size' => 16, 'weight' => 'bold')

 @mylabel = TkLabel.new(root)
 @mylabel.configure('text' => '00:00:00.0', 'font' => @myfont)
 @mylabel.pack('padx' => 10, 'pady' => 10)

Apart from the menu bar, the TKButton is the only part of the GUI that the user can
directly manipulate. The code block passed into its command method is run when the user
clicks the button. Recall how the start and stop methods call this method to modify the
behavior of the button. This makes the button act like the toggle on a physical stopwatch:

 @mybutton = TkButton.new(root)
 @mybutton.configure('text' => 'Start')
 @mybutton.command { start }
 @mybutton.pack('side'=>'left', 'fill' => 'both')

The TkAfter event is an especially interesting widget because it has no direct visual
representation in our program. Instead, it runs in the background firing our tick method
every millisecond:

 @timer = TkAfter.new(1, -1, proc { tick })

Finally, we'll start up the main Tk event loop. This call loads the GUI and starts listening
for events:

 Tk.mainloop
 end
 end

 Stopwatch.new

Figure 21-2 shows the final product.

Figure 21-2. The stopwatch in action

Chapter 21. User Interface Page 26 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This recipe only scratches the surface of the Tk library, not to mention GUI design in
general. The Tk library includes dozens of widgets with lots of options and features. Entire
books have been writen about how to use the library. You should refer to the Ruby Tk
documentation or other Tk references for complete details.

See Also

• If your Ruby distribution doesn't include Tk, you can obtain the binary or source from
http://www.tcl.tk; you may then need to rebuild Ruby from the source distribution
once you have the Tk extension; on Debian GNU/Linux, you can just install the
libtk-ruby package

• Ruby's Tk documentation is not very complete; fortunately, its Tk binding is similar
to Perl's, so you can get a lot of information from the Perl/Tk documentation; one
location for this is http://perlhelp.web.cern.ch/PerlHelp/

• Tcl and Tk by Brent B. Welch and Ken Jones with Jeffrey Hobbs (Prentice Hall)
• Perl/Tk Pocket Reference by Stephen Lidie (O'Reilly)
• The next few recipes (21.13 and 21.15) reproduce the simple GUI application and the

stopwatch with the Ruby bindings to various other GUI libraries

Recipe 21.14. Creating a GUI Application with wxRuby

Problem
You want to write a portable GUI application that looks better than a Tk application.

Solution
Use the wxRuby library, available as a third-party download. It uses native GUI widgets
on Windows, Unix, and Mac OS X. It's got many more features than the Tk library, and
even greater complexity.

Here's a very simple wxRuby application (Figure 21-3):

 #!/usr/bin/ruby -w
 # wxtrout.rb

 require 'wxruby'
 class TroutApp < Wx::App
 def on_init
 frame = Wx::Frame.new(nil, -1, 'Tiny wxRuby Application')
 panel = Wx::StaticText.new(frame, -1, 'You are a trout!',
 Wx::Point.new(-1,1), Wx::DEFAULT_SIZE,
 Wx::ALIGN_CENTER)
 frame.show
 end
 end

 TroutApp.new.main_loop

Chapter 21. User Interface Page 27 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.tcl.tk
http://perlhelp.web.cern.ch/PerlHelp/

Figure 21-3. You are a wxRuby trout

Discussion
The simple wxRuby application has the same basic structure as its Tk cousin (see Recipe
21.12). A top-level widget is created (here called a Frame) and a label (StaticText)
widget is added to it. The application then goes into an event loop, listening for and
retrieving events like mouse clicks.

A wxRuby version of the Tk stopwatch program is also similar, although much longer.
wxRuby code tends to be more verbose and less idiomatic than Ruby Tk code.

The core methods are nearly unchanged, because they have little to do with the GUI:

 #!/usr/bin/ruby -w
 # wx_stopwatch.rb
 require 'wxruby'

 class StopwatchApp < Wx::App

 def start
 @start = Time.now
 @button.set_label('Stop')
 @button.refresh
 @frame.evt_button(@button.get_id) { stop }
 @timer.start(100) # The timer should tick every 100 milliseconds.
 end

 def stop
 @button.set_label('Start')
 @button.refresh
 @frame.evt_button(@button.get_id) { start }
 @timer.stop
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @label.set_label('00:00:00.0')
 @frame.layout
 end

 def tick

Chapter 21. User Interface Page 28 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 newtime = "#{h}:#{m}:#{s}:#{mt}"
 @label.set_label(newtime)
 @frame.layout
 end

The menu bar takes a lot more code in wxRuby than in Tk. Every widget in a wxRuby
program has a unique ID, which must be passed in when you register an event handler.
I've defined a hardcoded ID for each menu item, so that after I create the "menu item"
widget, I can pass its unique ID into the event-handler registration method, evt_menu.
You can really sense the underlying C code here:

 # Constants for the IDs of the menu items.
 START_MENU = 10
 STOP_MENU = 11
 EXIT_MENU = 12
 RESET_MENU = 13

 # Constant for the ID of the timer widget, used below.
 TIMER_ID = 14

 def on_init
 @accumulated, @elapsed = 0, 0
 @frame = Wx::Frame.new(nil, -1, 'wxRuby Stopwatch')

 menu_bar = Wx::MenuBar.new

 program_menu = Wx::Menu.new
 menu_bar.append(program_menu, '&Program')
 program_menu.append(START_MENU, '&Start', 'Start the stopwatch')
 @frame.evt_menu(START_MENU) { start }
 program_menu.append(STOP_MENU, 'S&top', 'Stop the stopwatch')
 @frame.evt_menu(STOP_MENU) { stop }
 menu_exit = program_menu.append(EXIT_MENU, "E&xit\tAlt-X",
 'Exit the program')
 @frame.evt_menu(EXIT_MENU) { exit }

 reset_menu = Wx::Menu.new
 menu_bar.append(reset_menu, '&Reset')
 reset_menu.append(RESET_MENU, '&Reset', 'Reset the stopwatch')
 @frame.evt_menu(RESET_MENU) { reset }
 @frame.set_menu_bar(menu_bar)

wxRuby uses Sizer objects to pack widgets into their display areas. The BoxSizer object
used below arranges widgets within the frame vertically, so that the label will be above the
stopwatch button.

 sizer = Wx::BoxSizer.new(Wx::VERTICAL)

 @label = Wx::StaticText.new(@frame, -1, '00:00:00.0')
 font = Wx::FontData.new.get_chosen_font
 font.set_point_size(16)
 font.set_weight(Wx::FONTWEIGHT_BOLD)
 @label.set_font(font)
 sizer.add(@label, 1, Wx::ALIGN_CENTER)

Chapter 21. User Interface Page 29 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The button and the timer work more or less like their Tk equivalents. The call to
@frame.set_sizer tells the root widget to use our vertical BoxSizer when deciding
how to arrange widgets on the screen (Figure 21-4).

 @button = Wx::Button.new(@frame, -1, 'Start')
 @frame.evt_button(@button.get_id) { start }
 sizer.add(@button, 0, Wx::ALIGN_CENTER, 2)

 @frame.set_sizer(sizer)
 @frame.show
 @timer = Wx::Timer.new(@frame, TIMER_ID)
 @frame.evt_timer(TIMER_ID) { tick }
 end
 end

 StopwatchApp.new.main_loop

Figure 21-4. The wxRuby stopwatch looks more like a native application than the Tk one

See Also

• You need to download (and, on Unix systems, compile) wxRuby as a Ruby extension;
you can get it from http://wxruby.rubyforge.org/; the wxRuby developers provide a
good installation guide at http://wxruby.rubyforge.org/wiki/wiki.pl?Installation

• The wxRuby wiki has a lot of useful information, including a simple tutorial at http://
wxruby.rubyforge.org/wiki/wiki.pl?Getting_Started; the wxRuby distribution also
comes with many good sample applications in its samples/ directory

• The web site for wxWidgets (the underlying library to which wxRuby is a binding) also
has lots of good reference material: http://www.wxwidgets.org/; you just have to be
able to translate the C++-style class and method names into Ruby style (for instance,
WxLabel::SetLabel becomes Wx::Label#set_label)

Recipe 21.15. Creating a GUI Application with Ruby/GTK

Chapter 21. User Interface Page 30 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://wxruby.rubyforge.org/
http://wxruby.rubyforge.org/wiki/wiki.pl?Installation
http://wxruby.rubyforge.org/wiki/wiki.pl?Getting_Started
http://wxruby.rubyforge.org/wiki/wiki.pl?Getting_Started
http://www.wxwidgets.org/

Problem
You want to write a GUI application that uses the GTK widget library, perhaps so you can
integrate it with the Gnome desktop environment.

Solution
Use the Ruby bindings to Gnome's GTK widget library, available as a third-party download.
Here's a simple Ruby/GTK application (Figure 21-5).

 #!/usr/bin/ruby -w
 # gtktrout.rb
 require 'gtk2'

 Gtk.init
 window = Gtk::Window.new 'Tiny Ruby/GTK Application'
 label = Gtk::Label.new 'You are a trout!'
 window.add label
 window.signal_connect('destroy') { Gtk.main_quit }
 window.show_all
 Gtk.main

Figure 21-5. You are a GTK trout

Discussion
Gnome is one of the two most popular Unix desktop suites. The Ruby-Gnome2 project
provides and documents Ruby bindings to Gnome's vast array of C libraries. You can write
Ruby applications that fully integrate with the Gnome desktop, but in this recipe I'm going
to focus on the basics of the Gnome GUI library GTK.

Although the details are different, the sample program above is basically the same as it
would be with Tk (Recipe 21.12) or the wxRuby library (Recipe 21.13). You create two
widgets (a window and a label), attach the label to the window, and tell the GUI library to
display the window. As with Tk and wxRuby, the application goes into a display loop,
capturing user events like mouse clicks.

The sample program won't actually respond to any user events, though, so let's create a
Ruby/GTK version of the stopwatch program seen in previous GUI recipes.

The core methods, the ones that actually implement the stopwatch, are basically the same
as the corresponding methods in the Tk and wxRuby recipes. Since GTK doesn't have a
timer widget, I've implemented a simple timer as a separate thread. The other point of

Chapter 21. User Interface Page 31 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

interest is the HTML-like markup that GTK uses to customize the font size and weight of
the stopwatch text.

 #!/usr/bin/ruby -w
 # gtk_stopwatch.rb
 require 'gtk2'

 class Stopwatch

 LABEL_MARKUP = '%s'

 def start
 @accumulated ||= 0
 @elapsed = 0
 @start = Time.now

 @mybutton.label = 'Stop'
 set_button_handler('clicked') { stop }
 @timer_stopped = false
 @timer = Thread.new do
 until @timer_stopped do
 sleep(0.1)
 tick unless @timer_stopped
 end
 end
 end

 def stop
 @mybutton.label = 'Start'
 set_button_handler('clicked') { start }
 @timer_stopped = true
 @accumulated += @elapsed
 end

 def reset
 stop
 @accumulated, @elapsed = 0, 0
 @mylabel.set_markup(LABEL_MARKUP % '00:00:00.0')
 end

 def tick
 @elapsed = Time.now - @start
 time = @accumulated + @elapsed
 h = sprintf('%02i', (time.to_i / 3600))
 m = sprintf('%02i', ((time.to_i % 3600) / 60))
 s = sprintf('%02i', (time.to_i % 60))
 mt = sprintf('%1i', ((time - time.to_i)*10).to_i)
 @mylabel.set_markup(LABEL_MARKUP % "#{h}:#{m}:#{s}:#{mt}")
 end

Now begins the GUI setup. Ruby uses VBox and HBox objects to pack widgets into the
display area. The stopwatch application will give its main window a single VBox containing
three widgets arranged from top to bottom: a menu bar, a label (displaying the stopwatch
time), and a button (to start and stop the stopwatch):

 def initialize
 Gtk.init
 root = Gtk::Window.new('GTK Stopwatch')

 accel_group = Gtk::AccelGroup.new
 root.add_accel_group(accel_group)
 root.set_border_width 0

 box = Gtk::VBox.new(false, 0)
 root.add(box)

Chapter 21. User Interface Page 32 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The program's menu bar consists of many nested MenuBar, Menu, and MenuItem
objects. Rather than create these objects ourselves, we define the parameters of our menu
bar in a nested array, and pass it into an ItemFactory object:

 menu_factory = Gtk::ItemFactory.new(Gtk::ItemFactory::TYPE_MENU_BAR,
 '<main>', nil)
 menu_spec = [
 ['/_Program'],
 ['/Program/_Start', '<Item>', nil, nil, lambda { start }],
 ['/Program/S_top', '<Item>', nil, nil, lambda { stop }],
 ['/Program/_Exit', '<Item>', nil, nil,
 lambda { Gtk.main_quit }],
 ['/_Reset'],
 ['/Reset/_Reset Stopwatch', '<Item>', nil, nil,
 lambda { reset }]
]
 menu_factory.create_items(menu_spec)
 menu_root = menu_factory.get_widget('<main>')
 box.pack_start(menu_root)

The label and the button are pretty simple: just define them and pack them into the
VBox:

 @mylabel = Gtk::Label.new
 @mylabel.set_markup(LABEL_MARKUP % '00:00:00.0')
 box.pack_start(@mylabel)

 @mybutton = Gtk::Button.new('Start')
 set_button_handler('clicked') { start }
 box.pack_start(@mybutton)

 root.signal_connect('destroy') { Gtk.main_quit }
 root.show_all

 Gtk.main
 end

I've been calling a nonexistent method Stopwatch#set_button_handler whenever I
want to modify the code that runs when the user clicks the button. I close out the
Stopwatch class by defining that method (Figure 21-6):

 def set_button_handler(event, &block)
 @mybutton.signal_handler_disconnect(@mybutton_handler) if @mybutton_handler
 @mybutton_handler = @mybutton.signal_connect(event, &block)
 end
 end

 Stopwatch.new

In the Tk recipe, I simply called a button's command method whenever I needed to change
the code block that runs when the user clicks the button. So why this set_
button_handler code? Why not just call signal_connect whenever I need to change
what the button does here? I can't do that because GTK lets you associate multiple code

Chapter 21. User Interface Page 33 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

blocks with a single event. This doesn't usually come up, but it's a problem here because
I'm changing the function of a button.

Figure 21-6. The GTK stopwatch

If the button is set up to call start when you click it, and you call signal_
connect('clicked',proc { stop }), then clicking on the button will call start and
then call stop. You've added a second code block to the "clicked" event, when what you
want is to replace the old "clicked" code with the new code. To avoid this problem,
set_button_handler removes any old handler from the button before installing the
new handler. The set_button_handler method tracks the internal ID of the newly
installed handler, so that it can be removed if the user clicks the button yet again.

See Also

• You can download the Ruby bindings to GTK from the project homepage (http://ruby-
gnome2.sourceforge.jp/); the GTK homepage itself is at http://www.gtk.org; Debian
GNU/Linux users can install the libgtk2-ruby package

• The Ruby GTK bindings are documented on the Ruby-GNOME2 Wiki at http://ruby-
gnome2.sourceforge.jp/hiki.cgi?Ruby%2FGTK; there's also a tutorial at http://ruby-
gnome2.sourceforge.jp/hiki.cgi?tut-gtk

• Don't confuse the Ruby-GNOME2 project with its predecessor, Ruby-GNOME; the
documentation for the older project is still online and will mislead you if you go to the
wrong web site

Recipe 21.16. Creating a Mac OS X Application with RubyCocoa

Credit: Alun ap Rhisiart

Problem
You want to create a native Mac OS X program with a graphical user interface.

Chapter 21. User Interface Page 34 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://ruby-gnome2.sourceforge.jp/
http://ruby-gnome2.sourceforge.jp/
http://www.gtk.org
http://ruby-gnome2.sourceforge.jp/hiki.cgi?Ruby%2FGTK
http://ruby-gnome2.sourceforge.jp/hiki.cgi?Ruby%2FGTK
http://ruby-gnome2.sourceforge.jp/hiki.cgi?tut-gtk
http://ruby-gnome2.sourceforge.jp/hiki.cgi?tut-gtk

Solution
Use the Mac OS X Cocoa library along with RubyCocoa and the Interface Builder
application. RubyCocoa creates real OS X applications and provides a GUI interface for
building GUIs, as opposed to other libraries, which make you define the GUI with Ruby
code. RubyCocoa is a free download, and the Cocoa development tools are on the Mac OS
X installation DVD.

Interface Builder is very powerful: you can create simple applications without writing any
code. In fact, it takes longer to explain what to do than to do it. Here's how to create a
simple application with Interface Builder:

1. Start the Xcode application and create a new project from the File menu. Choose
"Cocoa-Ruby Application" from the "New Project" list, hit the Next button, give your
project a name and location on disk, and click Finish.

XCode will create a project that looks like Figure 21-7.

Chapter 21. User Interface Page 35 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 21-7. A new Cocoa-Ruby project

The Cocoa-Ruby project template comes with two files: main.m (an Objective-C file)
and rb_main.rb (a RubyCocoa file). For a simple application, this is all the code you
need.

2. Open the NIB Files group and doubleclick MainMenu.nib to open Interface Builder.
You get a new application window, into which you can drag and drop GUI widgets,
and a menubar labeled MainMenu.nib (English)–MainMenu.

You'll also see a palette window with a selection of GUI objects; a nib document
window named MainMenu.nib (English), containing classes, instances, images
and sounds; and an inspector. If the inspector is not open, select Show Inspector
from the Tools menu.

The screenshot in Figure 21-8 shows what we're going to do to our new application window
(seen in the upper left).

Chapter 21. User Interface Page 36 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 21-8. Our destination Interface Builder screenshot

Chapter 21. User Interface Page 37 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1. Select the new application window and set the application's title. Type "Tiny
RubyCocoa Application" in the inspector's Window Title field (you need to select
the "Attributes" tab to see this field).

2. Add a text label to the application window. Select the Text palette in the palette
window. The visible controls are all text fields, with only slight differences between
them. We'll use the control called System Font Text: drag this control into your
application window.

3. Double-click the new text field in the application window and type "You are a trout!"
4. For completeness, go through the menus in the menubar and change "New

Application" to "Tiny RubyCocoaApp" wherever it occurs. Save your nib.
5. Go back to Xcode. Click the Build and Go button. Your application should now run;

it will look like Figure 21-9.

Figure 21-9. You are a Mac OS X trout

A compiled, doubleclickable version of the application will be found in your project build
folder—usually within the project subfolder.

Discussion
This simple application doesn't show much about RubyCocoa, but it gives a glimpse of the
power of the Cocoa framework. The NSApplication class gives you a lot of functionality
for free: spellchecking, printing, application hiding, and so on. Ruby-Cocoa creates an
instance of NSApplication, which deals with the run loop, handling events from the
operating system, and more. You could have created this GUI application entirely in code
(it would have looked something like the Tk example), but in practice, programmers always
use Interface Builder.

For a more realistic example, we'll need to write some code that interacts with the interface.
Like Rails and many other modern frameworks, Cocoa uses a Model-View-Controller
pattern.

• The view layer consists of the windows and widgets: NSView and its subclasses, such
as NSTextField. These are built using Interface Builder.

Chapter 21. User Interface Page 38 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• The model layer is coded by the programmer, based on NSObject or a more
specialised subclass.

• The Controller layer can be dealt with in Interface Builder using subclasses of
NSController (these are in the Controllers palette), or in code.

Let's create a RubyCocoa version of the Stopwatch program seen in previous GUI recipes
like Recipe 21.12. First, we need to create a new Cocoa-Ruby Application project in
Xcode, and once more open the MainMenu.nib file in Interface Builder. Because
RubyCocoa makes it easy, we'll display the time on the stopwatch two ways: as a digital
readout and as an analog clock face (Figure 21-10).

Figure 21-10. The RubyCocoa stopwatch in analog mode

1. Create a new Cocoa-Ruby application. Select the new application window and change
its title in the inspector to Timer.

2. Create the clock. From the Text palette we used before, drag a NSDatePicker (a label
that displays a date and time) into the application window. In the inspector, change
the style to "Graphical", date selection to "None", and time selection to "Hour, Minute,
and Second". The NSDatePicker now shows up as a clock.

3. Create the digital readout. Drag an NSTextField ("System Font Text", as in the
previous example) onto the window below the clock. Now drag a date formatter
(marked with a small calendar in the palette) onto the NSTextField. The Inspector
changes to show a list of possible formats; select %H:%M:%S.

Chapter 21. User Interface Page 39 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4. Create the stopwatch button. Switch to the button palette and drag a normal, rounded,
NSButton to the application window. In the Inspector, change the title to "Start" and
make sure its type is "Push Button".

5. Build the menu bar. Change to the menus palette and drag Submenu objects onto the
"MainMenu" menubar. Double-click them to change their titles (to "Program" and
"Reset"), and drag Item objects onto the menu objects to add items to the menu. As
in the stopwatch examples for other GUI libraries, our "Program" menu will contain
menu items for "Start" and "Stop". The "Reset" menu will have a single menu item:
"Reset Stopwatch". Unlike in the other examples, the application menus will contain
no menu item for "Exit". This is because Mac OS X already provides a way to exit any
program from the apple menu.

6. Now we have all our interface elements in place. We need a model object to actually
do the work. Click on Classes in the MainMenu.nib window, to bring up the class
browser (Figure 21-11).

Figure 21-11. The class browser

Select NSObject and then "Subclass NSObject" from the Classes menu. Change the name
of the new class to Timer. This class will implement the stopwatch code.

We need to tell Interface Builder about the interface to this class. Start by specifying three
methods. In the inspector, with the new class still selected in the class browser, make sure
that the Attributes-Actions tab is selected and hit the Add button three times. Name the
methods reset:, start:, and stop:. These are the methods that will be called from
the button and menus.

Chapter 21. User Interface Page 40 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The model class we are creating also needs to know about some interface elements; for
instance, it needs to know about the time controls so it can change the displayed time. The
model class accesses Interface Builder widgets through instance variables called outlets.
Switch to the "Attributes-Outlets" tab and click Add three times. Name the outlets clock,
timeField, and button.

1. With the model object declared and all the interface elements in place, we can connect
everything together. Recall that Interface Builder deals with instances of objects; we
have a Timer class that implements the stopwatch functionality, but as of yet we have
no instance of the class. Keeping the Timer class selected in the class browser, choose
"Instantiate Timer" from the Classes menu. The window switches to the Instances tab,
with a new icon representing the Timer instance.

To make a connection between two objects, we drag from the object that needs to
know, to the object it needs to know about. First, let's deal with the actions.

When we click the Start button, we want the start method on our Timer class to be
called. The button needs to know about the start: method. Control drag from the
Start button to the Timer instance icon. The Inspector changes to show the methods of
Timer, and automatically selects the start: method for you (it matches the button
label). Click the Connect button to make the connection.

Make the same connection from the menu item "Program/Start" to the Timer, and
then from "Program/Stop" to the stop: method. Connect "Reset/Reset Stopwatch"
to the reset: method.

2. The controls now know which Ruby methods they trigger. We need to tell our Timer
class which interface elements are accessible from its outlets (instance variables). Now
the connections are made from the Timer class to the interface controls it needs to
know about. Control-drag the Timer instance to the clock control: the inspector
changes to show the outlets tab for Timer. Select clock and click the Connect button.

Connect the textField and button outlets to the digital time control and the start
button. Save the nib file as Timer.rb.

Back in Xcode, we are finally ready to write the Ruby code that actually implements the
stopwatch. Choose "New File…" from the File menu, and then select "Ruby-Cocoa
NSObject subclass" from the list. The core model object code is very similar to the Tk recipe,
with some small differences:

 require 'osx/cocoa'
 include OSX

 ZeroDate = NSDate.dateWithString('2000-01-01 00:00:00 +0000')

Chapter 21. User Interface Page 41 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Timer < NSObject
 ib_outlets :clock, :timeField, :button

 def initialize
 @timer = NSTimer.
 scheduledTimerWithTimeInterval_target_selector_userInfo_repeats(
 1.0, self, :tick, nil, true)
 end

First, we call the ib_outlets decorator to specify instance variables that are matched up
with the objects specified in Interface Builder.

In the other GUI examples, we displayed a plaintext label and formatted the time as a string
for display. Here, the label has its own date formatter, so we can tell it to display an NSDate
object and have it figure out the formatting on its own.

NSTimer is a Cocoa class we can use to tap into the Mac OS X user-event loop and call a
method at a certain interval. We can get submillisecond time intervals from NSTimer, but
there's not much point because NSDate won't display fractions of a second. So we set it
up to call the tick method once a second.[5]

[5] If, as in the other GUI recipes, we'd decided to format the time ourselves and display it as a string, we could set a shorter interval and make the fractions of a second
whiz by.

Now we define the start method, triggered when the end user pushes the "Start" button:

 def start(sender)
 @running = true
 @start = NSDate.date
 @accumulated = 0 unless @accumulated
 @elapsed = 0.0
 @button.setTitle('Stop')
 @button.setAction(:stop)
 end

One thing to note here: NSTimer hooks into the operating system's event loop, which
means it can't be switched off. We define a @running variable so we know to ignore the
timer when we are not running the stopwatch.

The rest of the code is similar to the other GUI examples:

 def stop(sender)
 @running = false
 @accumulated += @elapsed
 @button.setTitle('Start')
 @button.setAction(:start)
 end

 def reset(sender)
 stop(nil)
 @accumulated, @elapsed = 0.0, 0.0
 @clock.setDateValue(ZeroDate)
 @timeField.setObjectValue(ZeroDate)
 end

Chapter 21. User Interface Page 42 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def tick()
 if @running
 @elapsed = NSDate.date.timeIntervalSinceDate(@start)
 d = ZeroDate.addTimeInterval(@elapsed + @accumulated)
 @clock.setDateValue(d)
 @timeField.setObjectValue(d)
 end
 end
 end

This recipe is pretty long-winded compared to the other GUI recipes, but that's because it
takes more words to explain how to use a GUI application than to explain how a block of
Ruby code works. Once you're familiar with Interface Builder, you can create complex
Cocoa applications very quickly.

The combination of Ruby and Cocoa can make you very productive. Cocoa is a very big
class library, and the GUI part, called AppKit, is only a part of it. There are classes for
speech recognition, Bluetooth, disc recording, HTML rendering (Web-Kit), database (Core
Data), graphics, audio, and much more. The disadvantage is that a RubyCocoa program is
tied to Mac OS X, unlike Tk or wxRuby, which will work on Windows and Linux as well.

With Apple's recent change to Intel processors, you'll want to create "universal binaries"
for your application, so that your users can run it natively whether they have a PowerPC
or an Intel Mac. The Ruby code doesn't need to change, because Ruby is an interpreted
language; but a RubyCocoa application also contains Objective-C code, which must be
compiled separately for each architecture.

To make a universal binary, select the top-most group in the "Groups & Files" list in Xcode
(the one with the name of your project). Get Info on this (Command-I), go to the "Build"
tab, select "Architectures", and click the Edit button. Select both the PowerPC and Intel
checkboxes, and your packaged application will include compiled code for both
architectures.

See Also

• While Ruby, Xcode, and Interface Builder come as standard with all Macintoshes,
RubyCocoa does not (yet!); there is a standard installer, available from http://
rubycocoa.sourceforge.net, which includes both the framework classes and the Xcode
project templates

• RubyCocoa comes with some documentation and a number of examples; however,
once you know how to translate Objective-C messages to RubyCocoa messages, you
can reference the huge amount of Cocoa documentation available via Xcode's Help
menu, and a large number of examples: there are also many useful and free add-on
libraries and Interface Builder palettes, for instance from The Omni Group

• Cocoa Programming for Mac OS X by Aaron Hillegass (Addison-Wesley)

Chapter 21. User Interface Page 43 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubycocoa.sourceforge.net
http://rubycocoa.sourceforge.net

• Cocoa Programming by Scott Anguish, Erik M. Buck, and Donald A. Yacktman
(Sams)

Recipe 21.17. Using AppleScript to Get User Input

Problem
On Mac OS X, AppleScript makes it easy to add simple graphical interface elements to
programs. You want to use AppleScript from a Ruby program.

Solution
Use the AppleScript library, written by John Butler and available as the applescript
gem. It lets you talk to AppleScript from Ruby.

Here's a script that uses the AppleScript class to get input through AppleScript. It also
shows off the AppleScript.say method, which uses Mac OS X's text-to-speech
capabilities:

 require 'rubygems'
 require 'applescript'

 name = AppleScript.gets("What's your name?")

 AppleScript.puts("Thank you!")

 choice = AppleScript.choose("So which of these is your name?",
 ["Leonard", "Mike", "Lucas", name])

 if name == choice
 AppleScript.say "You are right!"
 picture = AppleScript.choose_file("Find a picture of yourself")

 if File.exists?(picture)
 AppleScript.say "Thanks, I will now post it on Flickr for you."
 # Exercise for the reader: upload the file to Flickr
 end
 else
 AppleScript.say "But you just said your name was #{name}!"
 end

Discussion
The AppleScript library is just a simple wrapper around the osascript command-line
interface to AppleScript. If you already know AppleScript, you can execute raw AppleScript
code with AppleScript.execute:

 script = 'tell application "Finder" to display dialog "Hello World!" ' +
 'buttons {"OK"}'
 AppleScript.execute(script)

Chapter 21. User Interface Page 44 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The manpage for osascript, available online at http://developer.apple.com/
documentation/Darwin/Reference/ManPages/man1/osascript.1.html

Chapter 21. User Interface Page 45 Return to Table of Contents

Chapter 21. User Interface
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/osascript.1.html
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man1/osascript.1.html

	User Interface
	
	Getting Input One Line at a Time
	Getting Input One Character at a Time
	Parsing Command-Line Arguments
	Testing Whether a Program Is Running Interactively
	Setting Up and Tearing Down a Curses Program
	Clearing the Screen
	Determining Terminal Size
	Changing Text Color
	Reading a Password
	Allowing Input Editing with Readline
	Making Your Keyboard Lights Blink
	Creating a GUI Application with Tk
	Creating a GUI Application with wxRuby
	Creating a GUI Application with Ruby/GTK
	Creating a Mac OS X Application with RubyCocoa
	Using AppleScript to Get User Input

