
Table of Contents

Packaging and Distributing Software .. 1
Finding Libraries by Querying Gem Respositories ... 2
Installing and Using a Gem .. 5
Requiring a Specific Version of a Gem .. 8
Uninstalling a Gem ... 11
Reading Documentation for Installed Gems ... 12
Packaging Your Code as a Gem .. 14
Distributing Your Gems .. 17
Installing and Creating Standalone Packages with setup.rb ... 20

Chapter 18. Packaging and Distributing Software

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

18. Packaging and Distributing Software

No matter how productive it makes you, a programming language won't save you any time
if you can't take advantage of a body of code written by other people. A community works
faster than any one person, and it's usually easier to install and learn a library than to write
and debug the same code yourself.

That is, if you can find the library in the first place. And if you're not sucked into an mess
of dependencies that grow and grow, making you want to write the code yourself just so
you can be doing some real programming.

The success of Perl's CPAN archive has made the Ruby community work on our own
centralized code repository and packaging system. Whatever you think of Perl, you must
admit that a Perl programmer can find just about any library they need in CPAN. If you
write your own Perl library, you know where to send it: CPAN. This is not really a technical
aspect of Perl, but it's a powerful component of that language's popularity.

The problem of packaging is more a logistical problem than a technical one. It's a matter
of coordination: getting everyone to agree on a single mechanism for installing packages,
and a single place to go to find those packages. For Ruby, the installation mechanism is
Ruby gems (or rubygems or just "gems"), and rubyforge.org is the place to go to find gems
(packaged libraries and programs).

In many recipes in this book, we tell you to use a gem for some task: the alternative is often
to show you pages and pages of code. This chapter covers how to find the gems you need,
install them, and package your own software as gems so that others can benefit from your
work.

You may need to find and install the Ruby gems system itself. It comes installed by default
on Windows, but not on Unix. You can download it from this URL:

 http://rubyforge.org/frs/?group_id=126

To install the Ruby gems package, unzip the tarball or ZIP file, and run the setup.rb
script within. You can then use the gem command to search for and install gems, as
described in Recipes 18.1 and 18.2. You can also build your own gems from "gemspec" files,
as described in Recipe 18.6, and upload it to RubyForge or some other site (Recipe 18.7).

Chapter 18. Packaging and Distributing Software Page 1 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

An older installation system called setup.rb is still in use (for instance, to install the
Ruby gems package itself). We cover this mechanism briefly in Recipe 18.8.

Neither Ruby gems nor setup.rb play well with a Unix distribution's native package
installers. If you use a system like Debian or Red Hat, you may find that some packages
(like Rails) are available both as gems and in your native package format. These issues are
still being resolved; in the meantime, you should use your native package format whenever
possible.

Recipe 18.1. Finding Libraries by Querying Gem Respositories

Problem
You want to find new gems to install on your system, or see which gems you already have
installed.

Solution
From the command line, use gem's query command:

 $ gem query
 *** LOCAL GEMS ***

 sources (0.0.1)
 This package provides download sources for remote gem installation

 $ gem query --remote
 *** REMOTE GEMS ***
 actionmailer (1.1.1, 1.0.1, 1.0.0, 0.9.1, 0.9.0, 0.8.1, …)
 Service layer for easy email delivery and testing.

 actionpack (1.10.1, 1.9.1, 1.9.0, 1.8.1, 1.8.0, 1.7.0, …)
 Web-flow and rendering framework putting the VC in MVC.

 [… Much more output omitted ….]

From Ruby code, use Gem::cache to query your locally installed gems, and
Gem::RemoteInstaller#search to query the gems on some other site. Gem::cache
can be treated as an Enumerable full of tasty Gem::Specification objects.
Gem::Remote-Installer#search returns an Array containing an Array of
Gem::Specification objects for every remote source it searched. Usually there will
only be one remote source—the main gem repository on rubyforge.org.

This Ruby code iterates over the locally installed gems:

 require 'rubygems'

 Gem::cache.each do |name, gem|
 puts %{"#{gem.name}" gem version #{gem.version} is installed.}

Chapter 18. Packaging and Distributing Software Page 2 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 # "sources" gem version 0.0.1 is installed

The format_gems method defined below gives a convenient way of looking at a large set of
Gem::Specification objects. It groups the gems by name and version, then prints a
formatted list:

 require 'rubygems/remote_installer'
 require 'yaml'

 def format_gems(gems)
 gem_versions = gems.inject({}) { |h, gem| (h[gem.name] ||= []) << gem; h}
 gem_versions.keys.sort.each do |name|
 versions = gem_versions[name].collect { |gem| gem.version.to_s }
 puts "#{name} is available in these versions: #{versions.join(', ')}"
 end
 end

Here it is being run on the gems available from RubyForge:

 format_gems(Gem::RemoteInstaller.new.search(/.*/).flatten)
 # Asami is available in these versions: 0.04
 # Bangkok is available in these versions: 0.1.0
 # Bloglines4R is available in these versions: 0.1.0
 # BlueCloth is available in these versions: 0.0.2, 0.0.3, 0.0.4, 1.0.0
 # …

Discussion
Not only are Ruby gems a convenient packaging mechanism, they're an excellent way to
find out about new pieces of Ruby code. The gem repository at rubyforge.org is the
canonical location for Ruby libraries, so you've got one place to find new code.

You can query the gems library for gems whose names match a certain regular expression:

 $ gem query --remote --name-matches "test"
 ** REMOTE GEMS ***

 lazytest (0.1.0)
 Testing and benchmarking for lazy people

 test-unit-mock (0.30)
 Test::Unit::Mock is a class for conveniently building mock objects
 in Test::Unit test cases.

 testunitxml (0.1.4, 0.1.3)
 Unit test suite for XML documents
 ZenTest (3.1.0, 3.0.0)
 == FEATURES/PROBLEMS

Or, from Ruby code:

 format_gems(Gem::RemoteInstaller.new.search(/test/i).flatten)
 # ZenTest is available in these versions: 3.0.0, 3.1.0
 # lazytest is available in these versions: 0.1.0

Chapter 18. Packaging and Distributing Software Page 3 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # test-unit-mock is available in these versions: 0.30
 # testunitxml is available in these versions: 0.1.3, 0.1.4

This method finds gems that are newer than a certain date. It has to keep around both a
Date and a Time object for comparisons, because RubyForge stores some gems' dates as
Date objects, some as Time objects, and some as string representations of dates.[1]

[1] This is because of differences in the underlying gem specification files. Different people build their gemspecs in different ways.

 require 'date'

 def gems_newer_than(date, query=/.*/)
 time = Time.local(date.year, date.month, date.day, 0, 0, 0)
 gems = Gem::RemoteInstaller.new.search(query).flatten
 gems.reject do |gem|
 gem_date = gem.date
 gem_date = DateTime.parse(gem_date) if gem_date.respond_to? :to_str
 gem_date < (gem_date.is_a?(Date) ? date : time)
 end
 end

 todays_gems = gems_newer_than(Date.today-1)
 todays_gems.size #=> 7
 format_gems(todays_gems)
 # filament is available in these versions: 0.3.0
 # mechanize is available in these versions: 0.4.1
 # mongrel is available in these versions: 0.3.12.1, 0.3.12.1
 # rake is available in these versions: 0.7.1
 # rspec is available in these versions: 0.5.0
 # tzinfo is available in these versions: 0.2.0

By default, remote queries look only at the main gem repository on rubyforge.org:

 Gem::RemoteInstaller.new.sources # => ["http://gems.rubyforge.org"]

To query a gem repository other than rubyforge.org, pass in the URL to the repository as the
--source argument from the command line. This code starts a gem server on the local
machine (it can serve all of your installed gems to other machines), and queries it:

 $ gem_server &

 $ gem query --remote --source http://localhost:8808
 # *** REMOTE GEMS ***
 # Updating Gem source index for: http://localhost:8808
 # sources (0.0.1)
 # This package provides download sources for remote gem installation

From Ruby code, modify the Gem.sources variable to retrieve gems from another source:

 Gem.sources.replace(['http://localhost:8808'])
 format_gems(Gem::RemoteInstaller.new.search(/.*/).flatten)
 # sources is available in these versions: 0.0.1

Chapter 18. Packaging and Distributing Software Page 4 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 18.7, "Distributing Your Gems," for more on hosting your own gem repository
• The Ruby Application Archive is a companion to rubyforge.org: rather than hosting

Ruby projects, it links to Ruby packages hosted all around the Web; you're more likely
to see projects on the RAA that aren't packaged as gems (see Recipe 18.8 for tips on
installing them)

Recipe 18.2. Installing and Using a Gem

Problem
You want to install a gem, then use the code it provides in your programs.

Solution
You can install the latest version of a gem with the gem installcommand. This
command looks for an uninstalled gem file on your local system; if it can't find one, it calls
out to an external source (gems.rubyforge.org, unless you specify otherwise) asking for a
gem file. Since gem install changes the system-wide Ruby installation, you'll need to
have superuser access to run it.

 $ gem install RedCloth
 Attempting local installation of 'RedCloth'
 Local gem file not found: RedCloth*.gem
 Attempting remote installation of 'RedCloth'
 Successfully installed RedCloth-3.0.4

A gem contains standard Ruby code files, and once you install the gem, you can require
those files normally and use the classes and modules they define. However, gems are not
installed in the same path as the standard Ruby libraries, so you'll need to tell Ruby to
supplement its normal library path with the path to the gems. The simplest way is to
require 'rubygems' in any program that uses a gem, before you write any require
statements for libraries installed via gems. This is the solution we use throughout this book.

 # This code assumes the "redcloth" gem has been installed, as in the
 # code above.
 require 'redcloth'
 # LoadError: no such file to load -- redcloth

 require 'rubygems'
 require 'redcloth'
 parser = RedCloth::CommandParser.new
 # …

Chapter 18. Packaging and Distributing Software Page 5 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For a solution that works across Ruby scripts, you'll need to change your Ruby runtime
environment, either by setting the RUBYOPT environment variable to rubygems, or by
aliasing your ruby command so that it always passes in a -rubygems option to the
interpreter.

 $ ruby -e "require 'redcloth'; puts 'Success'"
 -e:1:in `require': no such file to load -- redcloth (LoadError)
 from -e:1

 $ ruby -rubygems -e "require 'redcloth'; puts 'Success'"
 Success

 # On Unix:
 $ export RUBYOPT=rubygems
 $ ruby -e "require 'redcloth'; puts 'Success'"
 Success

 # On Windows:
 $ set RUBYOPT=rubygems
 $ ruby -e "require 'redcloth'; puts 'Success'"
 Success

Discussion
Once you've installed a gem, you can upgrade it to the latest version with the gem update
command. Even if you've already got the latest version, you'll see output like this:

 $ gem update RedCloth
 # Upgrading installed gems…
 # Attempting remote upgrade of RedCloth
 # Attempting remote installation of 'RedCloth'
 # Successfully installed RedCloth-3.0.4
 # Gems: [redcloth] updated

You might install a gem for your own use, or because it's required by a program you want
to run. If you want to use a gem in your own programs, there's no reason not to always use
the latest version. Some programs, though, impose version constraints that force you to
install a particular version of a gem.

Ruby's gem system can keep multiple versions of the same gem installed at once. You can
satisfy one program's archaic dependencies while still being able to use the latest version
of a gem in your own programs. To install a specific version of a gem, append the version
number to the name, or specify a --version argument to gem install.

 $ gem install RedCloth-3.0.4
 $ gem install RedCloth --version "3.0.4"

Use the technique described in Recipe 18.3 to require the one that's right for your
program.

Chapter 18. Packaging and Distributing Software Page 6 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A program that imposes a version constraint doesn't usually tell you which specific version
of a gem you need to install. Instead, it crashes with an error that tells you which contraint
string you need to meet. Again, you can see Recipe 18.3 for more on constraint strings, but
they look like >2.0 or <= 1.6. You can install a version of a gem that satisfies a constraint
string by passing the contraint as a --version argument to gem install. The gem
command will find and install the latest version that meets that constraint.

 $ ruby -e "require 'rubygems'; require_gem 'units', '~>1.0' puts 'Units'"
 /usr/local/lib/site_ruby/1.8/rubygems.rb:204:in `report_activate_error':
 Could not find RubyGem units (~> 1.0) (Gem::LoadError)

 $ gem install units --version "~> 1.0"
 Attempting remote installation of 'units'
 Successfully installed units-1.0.1
 Installing RDoc documentation for units-1.0.1…

 $ ruby -e "require 'rubygems'; require_gem 'units', '~>1.0'; puts 'Units'"
 Units!

Whether you run the gem install command, or install a gem from Ruby code that you
write, you'll need to have the proper permissions to write to your gem directory.

When you install a gem from the command line, the gem command will offer you a chance
to install all other gems on which it depends. You can have gem install the dependencies
without prompting by passing in the --include-dependencies flag. This invocation
installs the rubyful_soup gem and the htmltools gem on which it depends:

 $ gem install rubyful_soup --include-dependencies
 Attempting local installation of 'rubyful_soup'
 Local gem file not found: rubyful_soup*.gem
 Attempting remote installation of 'rubyful_soup'
 Successfully installed rubyful_soup-1.0.4
 Successfully installed htmltools-1.09
 Installing RDoc documentation for rubyful_soup-1.0.4…
 Installing RDoc documentation for htmltools-1.09…

You can install a gem from Ruby code by creating a Gem::Installer or
Gem::RemoteInstaller object, and calling its install method. The install
method will return an array containing a Gem::Specification object for the gem that
was installed.

Here's a simple method that mimics the behavior of the gem install command, looking
for a local copy of a gem before going out to the network:

 require 'rubygems/installer'
 require 'rubygems/remote_installer'

 def install_gem(gem_name)
 if File.file? gem_name:
 Gem::Installer.new(gem_name).install
 else
 Gem::RemoteInstaller.new.install(gem_name)

Chapter 18. Packaging and Distributing Software Page 7 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end

 install_gem('redcloth')
 # Updating Gem source index for: http://gems.rubyforge.org
 # => [#<Gem::Specification:0xb5fc7dbc
 # @loaded_from="/usr/lib/ruby/gems/1.8/specifications/redcloth-2.0.0.gemspec"]
 # …

To install a gem from Ruby code, you must first go through all of its dependencies and
install them, too.

See Also

• Recipe 18.3, "Requiring a Specific Version of a Gem"

Recipe 18.3. Requiring a Specific Version of a Gem

Problem
Your program depends on an interface or feature of a gem found only in particular versions
of the library. If a user tries to run your program with the wrong version installed, you
want to tell them which version you require, so they can upgrade.

Solution
The rubygems library defines a method, Kernel#require_gem, which is a kind of
assertion method for gems. It will raise a Gem::LoadError if the given gem is not
installed, or if no installed version of a gem meets your requirements.

The easiest solution is to allow any version of a gem; you don't need to use require_gem
at all:

 require 'rubygems'
 require 'cmdparse' # => true

This is equivalent to requiring a minimum version of 0.0.0:

 require_gem 'nosuchgem'
 # Gem::LoadError: Could not find RubyGem nosuchgem (> 0.0.0)

If you can't use just any version of a gem, it's usually safe to require a minimum version,
relying on future versions to be backwards-compatible:[2]

[2] The first require_gem command in this code snippet returns false not because the cmdparse gem isn't there, but because we've already loaded the cmdparse
library (in the very first code snippet of this recipe). The require method only returns true the first time it loads a library.

Chapter 18. Packaging and Distributing Software Page 8 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require_gem 'cmdparse', '>= 1.0' # => false
 require_gem 'cmdparse', '>= 2.0.3'
 # Gem::LoadError: RubyGem version error: cmdparse(2.0.0 not >= 2.0.3)

Discussion
Although you may already be familiar with it, a brief review of the structure of version
numbers is useful here. A version number for a Ruby gem (and most other pieces of open
source software) has three parts: a major version number, a minor version number, and a
revision number or build number (Figure 18-1).

Figure 18-1. Anatomy of a version number

Some packages have only a major and minor version number (such as 2.0 or 1.6), and some
have additional numbers after the revision number, but the three-number convention is
the accepted standard for numbering Ruby gems.

The revision number is incremented at every new public release of the software. If the
revision contains more than minor changes, or changes the public API in a backwards-
compatible way, the author increments the minor version and resets the revision number
to zero. When a release contains large changes, especially ones that change the public API
in backwards-incompatible ways, the author usually increments the major version
number, and resets the minor version and revision number to zero.

Version numbers are not decimal numbers: version 1.10 is more recent than version 1.1,
not the same. Version numbers should be represented as a string or an array of integers,
not as a floating-point number or BigDecimal.

The require_gem method takes the name of a gem and an optional version requirement.
A version requirement is a string containing a comparison operator and a version number:
for instance, "< 2.4". A version requirement can use any of the comparison operators
usable in Ruby code, including =, !=, <, >, <=, and =>.

Chapter 18. Packaging and Distributing Software Page 9 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

RubyGems uses the comparison operator to compare the installed version of a gem to the
required version. The assertion is met if the installed version has the given relationship
with the required version. For instance, if version 1.1.4 is installed, and the version
requirement is "> 0.9", the two version numbers are compared with an expression similar
to "1.1.4 > 0.9", which evaluates to true (the installed major version, 1, is greater than
the required major version, 0).

A version requirement can also use the special ~> comparison operator, which restricts
certain parts of the version number while leaving the others alone. You'll usually use it to
restrict the installed version of a gem to a particular minor version, but allowing any
revision number. For instance, the version requirement ~> 2.0 will match any version
with a major number of 2 and a minor number of 0: 2.0, 2.0.1, 2. 0.2, and 2.0.20 will all
be accepted. ~> 2 will match any version whose major number is 2; 2.0, 2.1, and 2.10 will
all be accepted.

A library is supposed to increment its major or minor version whenever the published API
changes, so ~> is designed to let you require a particular version of a library's API. This is
slightly more restrictive than requiring a minimum version, and is useful if the API changes
drastically between versions, or if you anticipate incompatible changes in the future.

Since a single Ruby installation can have multiple versions of a single gem installed at once,
there's no technical reason (other than disk space) why you can't make your users install
the exact same versions of the gems you used to develop your program:

 require_gem 'gem_1' '= 1.0.1'
 require_gem 'gem_2' '= 2.6'
 require_gem 'gem_3' '= 1.3.2'

However, it's usually not necessary, and such draconian specificity imposes burdens on
the programmers as well as the users. It's usually better to use >= or ~>.

If a particular version of a library has an awful bug in it, you can refuse to use it with code
like this:

 require_gem 'buggy' '!=1.0.3'

You can combine comparison operators by making multiple calls to require_gem. For
instance, you can simulate ~> with two calls:

 require_gem 'my_gem' '>= 2.0'
 require_gem 'my_gem' '< 3'

Chapter 18. Packaging and Distributing Software Page 10 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 18.2, "Installing and Using a Gem," for information on using the version
requirement strings to install the appropriate version of a gem

• The Facets Core library defines a String#natcmp that can compare version
numbers: that is, "1.10.0" will show up as being less than "1.2.0"

Recipe 18.4. Uninstalling a Gem

Problem
You want to remove an installed gem from your Ruby installation.

Solution
From the command line, use the gem uninstall command:

 $ gem uninstall blinkenlights
 Attempting to uninstall gem 'blinkenlights'
 Successfully uninstalled blinkenlights version 0.0.2

From Ruby code, the most reliable way to uninstall a gem is to simulate a command-line
invocation with the Gem::GemRunner class. This code installs a gem, then immediately
removes it:

 require 'rubygems'
 require 'rubygems/installer'
 require 'rubygems/remote_installer'
 Gem::RemoteInstaller.new.install('blinkenlights')

 require 'rubygems/gem_runner'
 require 'rubygems/doc_manager'
 Gem.manage_gems
 Gem::GemRunner.new.run(['uninstall', 'blinkenlights'])
 # Successfully uninstalled blinkenlights version 0.0.4

Uninstalling a gem can disrupt the normal workings of your Ruby programs, so I
recommend you only uninstall gems from the command line. That way, there's less chance
of a bug wiping out all your gems.

Discussion
Since rubygems can manage multiple installed versions of the same gem, you won't usually
have to remove old copies of gems. There are three main reasons to remove gems:

1. You find out that a particular version of a gem is buggy, and you want to make sure it
never gets used.

Chapter 18. Packaging and Distributing Software Page 11 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2. You want to save disk space.
3. You want to clean up the list of installed gems so that it's more obvious which gems

you actually use.

If uninstalling a gem would leave another installed gem with an unmet dependency, you'll
be told about the dependency and asked whether you want to go through with the uninstall
anyway. You'll get this interactive prompt whether you run the gem uninstall
command or whether you use the Gem::Uninstaller class from Ruby code.

 Gem::Uninstaller.new('actionpack', {}).uninstall
 # You have requested to uninstall the gem:
 # actionpack-1.8.1
 # actionmailer-0.9.1 depends on [actionpack (= 1.8.1)]
 # If you remove this gem, the dependency will not be met.
 # Uninstall anyway? [yN]

The sources gem is a special gem that tells rubygems to look for remotely installable gems at
http://gems.rubyforge.org/ by default. If you uninstall this gem, you won't be able to install
any more gems, except through complicated hacks of the classes in the Gem module. Just
don't do it. Not even if you never plan to install any gems from rubyforge.org. Not even if
you'd never thought of doing it until I brought it up in this recipe, and now you're curious.

You did it, didn't you? Now you'll have to reinstall rubygems by rerunning its setup.rb
script.

Recipe 18.5. Reading Documentation for Installed Gems

Problem
You want to read the RDoc documentation for the gems you have installed. Although some
gem projects provide human-written documentation like tutorials, the generated RDoc
documentation isn't usually available online.

Solution
RDoc documentation isn't usually available online because when you install a gem, Ruby
generates your very own HTML copy of the RDoc documentation and installs it along with
the software. The documentation you need is probably already on your computer.

The simplest way to browse the documentation for your installed gems is to run the
gem_server command, then visit http://localhost:8808/. You'll see all your installed
gems in a table form, and be able to browse the generated documentation of each gem that
provides any.

Chapter 18. Packaging and Distributing Software Page 12 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://gems.rubyforge.org/

Otherwise, you can find your Rubygems documentation directory, and browse the installed
documentation with local filesystem tools.

Discussion
The generated rdoc for a gem is kept in the doc/ subdirectory of the base directory in
which the gem was installed. For instance, on my computer, gems are installed in /usr/
lib/ruby/gems/1.8/. For every gem that has RDoc, the generated HTML
documentation will be kept in the directory /usr/lib/ruby/gems/1.8/doc/[gem
name]/rdoc/. If I were to install one particular gem to another directory, the
documentation for the gem would be in a doc/ subdirectory of that directory.

Here's some code that prints out the location of the RDoc files for every installed gem.
Unless you've installed specific gems in nonstandard locations, they'll all be in the doc/
subdirectory of Gem.dir. This code snippet also shows off some of the capabilities of
Gem::DocManager, the Ruby class you can use to manipulate a gem's RDoc.

 require 'rubygems'
 Gem.manage_gems

 def show_gem_rdoc
 puts "Your generated docs are all probably in #{File.join(Gem.dir, "doc")}"

 puts "Just to be safe, I'll print out every gem's RDoc location:"
 specifications_dir = File.join(Gem.dir, 'specifications')
 lacking_rdoc = []
 Gem::SourceIndex.from_installed_gems(specifications_dir).each do |path, spec|
 manager = Gem::DocManager.new(spec)
 if manager.rdoc_installed?
 doc_path = File.join(spec.installation_path, 'doc', spec.full_name)
 puts " #{spec.full_name} => #{doc_path}"
 else
 lacking_rdoc << spec.full_name
 end
 end

 unless lacking_rdoc.empty?
 puts "\nThese installed gems have no RDoc installed:"
 puts " #{lacking_rdoc.join("\n ")}"
 end
 end

 show_gem_rdoc
 # Your generated RDoc is probably all in /usr/lib/ruby/gems/1.8/doc
 # Just to be safe, I'll print out every gem's RDoc location:
 # flexmock-0.1.7 => /usr/lib/ruby/gems/1.8/doc/flexmock-0.1.7
 # simple-rss-1.1 => /usr/lib/ruby/gems/1.8/doc/simple-rss-1.1
 # classifier-1.3.0 => /usr/lib/ruby/gems/1.8/doc/classifier-1.3.0
 # actionmailer-1.1.5 => /usr/lib/ruby/gems/1.8/doc/actionmailer-1.1.5
 # …
 #
 # These installed gems have no RDoc installed:
 # Ruby-MemCache-0.0.1
 # RedCloth-3.0.4
 # sources-0.0.1
 # …

Chapter 18. Packaging and Distributing Software Page 13 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

RDoc is generated for most gems whether or not the author was careful to add RDoc
descriptions to all their Ruby code. At minimum, a gem's RDoc will list the classes and
methods present in the gem, which is useful in a bare-bones way.

If you don't want to generate RDoc when you install a gem, pass in the --no-rdoc
argument to the gem install command. The only real reason to do this is a concern for
disk space.

The flip side of reading a gem's documentation is writing it. When you're writing your
gemspec (see Recipe 18.6), you should set spec.has_rdoc = true. This will let the end
user's gem installer know that your gem was written with RDoc in mind. It doesn't do much
except suppress a warning during the installation of your gem.

See Also

• The Ruby Standard Library Documentation collection (http://www.ruby-doc.org/
stdlib/) contains generated HTML for the RDoc of all the packages in the Ruby
standard library: it includes everything in lib/ruby/, but it doesn't include the core
application

• Recipe 17.11, "Documenting Your Application"
• Recipe 18.6, "Packaging Your Code as a Gem"
• Recipe 19.2, "Automatically Generating Documentation"

Recipe 18.6. Packaging Your Code as a Gem

Problem
You want to package a program you wrote as a Ruby gem, possibly to distribute it on the
main gem server at rubyforge.org.

Solution
First, you must write a specification file. This file consists of a few lines of Ruby code that
instantiate a Gem::Specification object and populate it with information about your
program. Assuming that all of your program's files are in a subdirectory called lib/, the
following might make a good specification file:

 # shielding.gemspec
 require 'rubygems'
 spec = Gem::Specification.new do |spec|
 spec.name = 'shielding'
 spec.summary = 'A library for calculating the strength of duophasic shielding'
 spec.description = %{This library calculates to high precision the
 physical and electrostatic strength of a duophasic shield. It knows
 about most real-world shield configurations, as well as many

Chapter 18. Packaging and Distributing Software Page 14 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-doc.org/stdlib/
http://www.ruby-doc.org/stdlib/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-11#rubyckbk-CHP-17-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-2#rubyckbk-CHP-19-SECT-2

 theoretical arrangements not yet built.}
 spec.author = 'Bob Zaff'
 spec.email = 'zaff@example.com'
 spec.homepage = 'http://www.example.com/software/shielding/'
 spec.files = Dir['lib/*.rb']
 spec.version = '1.0.0'
 end

You can then use the gem build command to create the actual gem from its specification
file:

 $ gem build shielding.gemspec
 Attempting to build gem spec 'shielding.gemspec'
 Successfully built RubyGem
 Name: shielding
 Version: 1.0.0
 File: shielding-1.0.0.gem

 $ ls
 shield.gemspec shielding-1.0.0.gem

Then install the gem normally:

 $ gem install ./shielding-1.0.0.gem
 Attempting local installation of './shielding-1.0.0.gem'
 Successfully installed shielding, version 1.0.0
 Installing RDoc documentation for shielding-1.0.0…
 WARNING: Generating RDoc on .gem that may not have RDoc.

You can also build a gem from within Ruby code by passing the completed
Gem::Specification into a Gem::Builder object.

 require 'rubygems/builder'
 builder = Gem::Builder.new(spec).build
 # Successfully built RubyGem
 # Name: shielding
 # Version: 1.0.0
 # File: shielding-1.0.0.gem
 # => "shielding-1.0.0.gem"

Gem::Builder is useful as a starting point for automating your releases, but if you're
interested in doing that, you should use Rake (see Chapter 19, especially Recipe 19.4).

Discussion
Other recipes in this chapter query gem repositories for information and get it back in the
form of Gem::Specification objects. To create your own Ruby gem, you need to create
a Gem::Specification object from scratch. A file that defines a
Gem::Specification object is called a "gemspec" and it usually has a .gemspec
extension.

Chapter 18. Packaging and Distributing Software Page 15 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-19#rubyckbk-CHP-19
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-4#rubyckbk-CHP-19-SECT-4

To make a Gem::Specification object that can be turned into a gem, you must define
the four attributes name, summary, version, and files. The version attribute should
be a string of the form "[major version].[minor version].[revision]"; this is the
recommended form for version numbers of software products packaged as gems (see
Recipe 18.3).

I recommend you also define author, email, description, and possibly
homepage. The description attribute advertises your gem, and the other three
attributes give a way for your users to get in touch with you.

Some other tips on creating your gemspec:

• If you want a user to be able to require a file from their own Ruby code, put it into the
lib/ subdirectory of your project. If you put it into some other directory, you'll need
to add the name of that directory to the require_paths attribute.

• If you want a user to be able to run a file as a Ruby script, put it into the bin/
subdirectory of your project. If you put it into some other directory, you'll need to
change the bindir attribute.

• If the code in your gem has associated unit tests, put the names of the test files into
an array as the test_files attribute. It's also a good idea to keep those files together
in a test/ subdirectory. Once the gem is installed, you can run its tests by issuing the
command gem check-t [gem name]

• Ruby automatically generates a set of RDoc HTML pages for all the Ruby classes and
files in your gem. Unless you set the has_rdoc attribute, when you install the gem
you'll get a "WARNING: Generating RDoc on .gem that may not have RDoc."

You can take advantage of the RDoc generation by linking nonRDoc files from the
RDoc site: just name those files in the array extra_rdoc_files. If your gem comes
with a README file or other nonRDoc documentation, it's a good idea to include that
with the RDoc, since that's where most people will look first for documentation.

• The files attribute should be an array that includes every file you want to be
packaged in the gem. If you included any files in test_files or
extra_rdoc_files, you must include them again here or they won't actually be
installed. The simplest way to do this is to define files last of all, and stick
test_files and extra_rdoc_files inside:

 spec.test_files = Dir['test/*.rb']
 spec.extra_rdoc_files = ['README']
 spec.files = Dir['lib/*.rb'] + spec.test_files + spec.extra_rdoc_files

• If your gem requires another gem to work, the spec file is where you define the
dependency. Use the Gem::Specification#add_dependency method rather
than modifying the dependencies attribute directly. The add_dependency

Chapter 18. Packaging and Distributing Software Page 16 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method accepts an optional version restriction, in a format that should be familiar to
you if you've read other recipes in this chapter. You can use a version restriction to
make sure your gem is only used with certain versions of another gem.

 spec.add_dependency('another_gem')
 spec.add_dependency('yet_another_gem', '~> 3.0')
 # Any version will do.
 # Must be 3.0.x series.

See Also

• The Gemspec reference (http://docs.rubygems.org/read/chapter/20)
• Recipe 18.3, "Requiring a Specific Version of a Gem"
• Recipe 18.7, "Distributing Your Gems"
• Recipe 19.4, "Automatically Building a Gem"

Recipe 18.7. Distributing Your Gems

Problem
You've packaged your software as a Ruby gem, but nobody knows about it. You want to
make your gem easy to find and install, so that your genius does not go unrecognized.

Solution
The simplest solution (for you, at least) is to upload your .gem file to a web site or FTP site.
Your users can download the .gem file, then install it by passing the filename into the gem
install command:

 $ wget http://www.example.com/gems/my_gem-1.0.4.gem
 --10:40:10-- http://www.example.com/gems/my_gem-1.0.4.gem
 => `my_gem-1.0.4.gem'
 Resolving gems.example.com… 204.127.202.4
 Connecting to gems.example.com|204.127.202.4|:80… connected.
 HTTP request sent, awaiting response… 200 OK
 Length: 40,823 (40K) [text/plain]

 100%[====================================>] 40,823 46.96K/s

 10:40:11 (46.85 KB/s) - `my_gem-1.0.4.gem' saved [40823/40823]

 $ gem install ./my_gem-1.0.4.gem
 Attempting local installation of './my_gem-1.0.4.gem'
 Successfully installed my_gem, version 1.0.4
 Installing RDoc documentation for my_gem-1.0.4…

Chapter 18. Packaging and Distributing Software Page 17 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://docs.rubygems.org/read/chapter/20
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-4#rubyckbk-CHP-19-SECT-4

If your gem has dependencies, the end user must separately install the dependencies before
installing a downloaded gem, or the gem command will become confused and die. This
will happen even if the user specifies the --include-dependencies flag:

 $ gem install --include-dependencies ./my_gem_with_dependency-1.0.0.gem
 Attempting local installation of './my_gem_with_dependency.1.0.0.gem'
 ERROR: Error installing gem ./my_gem_with_dependency-1.0.0.gem[.gem]:
 my_gem_with_dependency requires my_dependency > 0.0.0

If you distribute your gem from a web site, be sure to set the homepage attribute in your
gemspec file.

Discussion
Gems are usually distributed through HTTP. A web server might serve standalone .gem
files intended for download by the end user, or it might also serve some metadata that
allows the gem command to download and install gems on its own.

There are several ways of setting up gems for distribution. In general you must negotiate
a tradeoff between the developer's (your) convenience and the end user's ease of
installation. The Rubygems package makes it easy to install and manage third-party Ruby
packages, but the developers of those packages have to jump through some hoops if they
want to make the installation process as transparent as possible.

Simply uploading the raw gem files to your web site is the simplest solution from your
point of view (assuming you already have a web site), but it's less convenient for your users.
This is especially true if your gem has dependencies. The most convenient solution for the
end user is for you to upload your gem to the rubyforge.org site. Whenever you upload
a .gem file to a project on this site, it is automatically mirrored to the canonical rubygems
repository at http://gems.rubyforge.org/gems/. This is where the rubygems package looks
for gems by default.

However, getting your gem onto rubyforge.org is more complicated than uploading a gem
to your own web site. You must first sign up for a RubyForge account, giving the
administrators your personal information. You must then submit a project (the name of
the project should go into the rubyforge_project attribute in your gemspec) and have
it approved by the site administrators.

Once your RubyForge project is set up, you can use the web interface to "create a new
release" for your project, then upload your prebuilt gem to your project's file repository.
Within a few minutes to a few hours, your gem will be mirrored to the main gem repository.
From that point on, anybody with the rubygems package and Internet access can install
your gem, along with any dependencies, simply by running gem install your_gem -

Chapter 18. Packaging and Distributing Software Page 18 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://gems.rubyforge.org/gems/

—include-dependencies. But for your smaller projects, the work you have to do to get
to this point may seem like overkill

A compromise is to host the gem yourself on an existing web server, and also host the
YAML metadata that lets the gem command locate, download, and install gems on its own.
You can generate the YAML metadata with the generate_yaml_index.rb script that
comes with the rubygems package. Put all your gems into a gems/ directory somewhere
in your webspace, and pass in the parent of the gems/ directory as the --dir argument to
generate_yaml_index.rb.

 $ cd ~/public_html/
 $ mkdir gems
 $ cp ~/mygem-1.0.0.gem gems/
 $ generate_yaml_index.rb --dir=~/public_html/ --verbose
 Building yaml file
 … adding mygem-1.0.0
 Building yaml.Z file
 $ ls yaml*
 yaml yaml.Z

The yaml and yaml.Z files are intended for download by the various gem commands.
Simply tell your users to pass in an appropriate --source argument to gem, and they'll
be able to install gems from your web space just as they can from the canonical repository
at RubyForge

The --source argument should correspond to the directory in your webspace that
contains the yaml and yaml.Z files. For instance, if your ~/public_html/ directory in
the example above corresponds to the URL http://www.example.com/~leonardr/, you
should ask your users to install your gems with gem install --source=http://
www.example.com/~leonardr/. Passing in a --source is more work than just getting
everything from RubyForge, but once the user knows the URL, it's not much more.

Note, however, that one invocation of the gem install command can only load gems
from a single source. If you're hosting a gem that depends on other gems, you must assume
the user has already installed the dependencies, or else provide copies of the dependency
gems in the same gems/ directory as your own gems. If gem install is given a --source
argument, it won't know to look at gems.rubyforge.org as a backup.

If you don't already have a web site, you can run a special web server that only serves gems.
The rubygems package comes with an application called gem_server that acts as a web
server providing copies of all the gems installed on your system. The best way to use this
is as a private gem repository that distributes in-house Ruby gems throughout your team
or organization.

Chapter 18. Packaging and Distributing Software Page 19 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.example.com/~leonardr/
http://www.example.com/~leonardr/
http://www.example.com/~leonardr/

See Also

• Recipe 18.2, "Installing and Using a Gem"
• Recipe 18.6, "Packaging Your Code as a Gem"
• A tutorial for running a gem server as a Windows service (http://rubyforge.org/

docman/view.php/85/126/gemserver_tutorial.txt)

Recipe 18.8. Installing and Creating Standalone Packages with
setup.rb

Problem
You want to install a Ruby package that includes a setup.rb script instead of being
packaged as a Ruby gem. Or, you want to make it possible for people to install your software
package without having to install Ruby gems.

Solution
To install a setup-rb—based Ruby package as root or the administrative user, simply
run the setup.rb script:

 $ ruby setup.rb

By default, setup.rb installs a package into your site_ruby directory. If you don't have
root access or only want to install the package for your own use, you can install the package
into your home directory, like this:

 $ ruby setup.rb all --installdirs=home

That command installs the package into the lib/ruby/ subdirectory of your home
directory. Make sure you have that directory included in your RUBYLIB environment
variable, or Ruby won't know to look there when you require a library. You can check
your library path with the special $: global variable:

 $:
 # => ["/home/leonardr/lib/ruby", "/usr/local/lib/site_ruby/1.8", …]
 require 'installed_via_setup'
 # => true

Chapter 18. Packaging and Distributing Software Page 20 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/docman/view.php/85/126/gemserver_tutorial.txt
http://rubyforge.org/docman/view.php/85/126/gemserver_tutorial.txt

Discussion
Because Ruby gems are not yet part of the standard Ruby library, some people prefer to
package their software releases as self-contained archives. A package that includes a
setup.rb installation script contains all the code and data necessary for installation; it
might have dependencies, but it doesn't rely on another component just to get itself
installed. The rubygems package itself is installed via setup.rb, since it can't assume
that the system already supports gem-based installations.

You might also use a setup.rb script instead of a Ruby gem if you want to add Ruby hook
scripts to the installation procedure. For instance, you might want to create a new database
when your package is installed. Once the Rubygems package is included in the Ruby
standard library, this will be just about the only reason left not to package all your software
as Ruby gems. Even native C extensions can be included in a Ruby gem and built as part
of the gem installation.

Ruby gems and setup.rb impose similar file structures on your package: your Ruby
libraries go into a lib/ subdirectory, command-line applications go into a bin/
subdirectory, and unit tests go into a tests/ subdirectory.

To use setup.rb, simply arrange your package to conform with its file stucture, and copy
the setup.rb file itself into the top-level directory of your package.

setup.rb works kind of like a Unix Makefile: it has various tasks like test, clean, install,
and all that are triggered when the user runs setup.rb with certain options. You can put
a pre- or post-hook into any task by creating a Ruby script called "pre-[task].rb" or "post-
[task].rb". All such files will be run before or after the appropriate task.

Here's a simple example. I've created a small package with the following layout:

 setup.rb
 post-clean.rb
 lib/
 lib/installed_via_setup.rb
 lib/pre-config.rb
 bin/
 bin/command.rb

I've got a library, a command-line script, a hook script pre-config.rb that needs to run
before the config task, and a second hook script post-clean.rb that needs to
run after the clean task. The hook scripts simply print out the messages "Pre-config hook
called" and "Post-clean hook called".

When I run the clean task, with the command ruby setup.rb clean, I see the following
output:

Chapter 18. Packaging and Distributing Software Page 21 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 $ ruby setup.rb clean
 ---> bin
 <--- bin
 ---> lib
 <--- lib
 Post-clean hook called.
 rm -f .config
 rm -f InstalledFiles

When I run setup.rb without specifying a task, I see the following output:

 $ ruby setup.rb
 …
 Pre-configuration hook called.
 …
 rm -f InstalledFiles
 ---> bin
 mkdir -p /usr/bin/
 install command.rb /usr/bin/
 <--- bin
 ---> lib
 mkdir -p /usr/local/lib/site_ruby/1.8/
 install installed_via_setup.rb /usr/local/lib/site_ruby/1.8/

My command-line program gets installed into /usr/bin/, and my library file into
site_ruby. The preconfiguration hook script gets called because the default task, all,
simply runs three other tasks: config (triggering the hook script), setup, and
install.

Once I've run ruby setup.rb, I am free to require 'installed_via_setup' from within
any Ruby program, and to invoke command.rb from the command line.

There's no easy way to uninstall a package installed with setup.rb; you need to delete
the files manually.

One final thing to watch out for: standalone Ruby packages created before about 2004 may
be installed via a script called install.rb. This script works much the same way as
setup.rb. The two scripts were both written by Minero Aoki and are both part of the
setup.rb package, but install.rb was intended for smaller-scale installations. As of late
2003, the two scripts were merged, so now you only have to worry about setup.rb.

See Also

• Many of the packages on the Ruby Application Archive use setup.rb, while most of
the packages on rubyforge.org are packaged as gems (http://raa.ruby-lang.org/)

• The "setup.rb User Manual" describes how to run and create setup.rb scripts
(http://i.loveruby.net/en/projects/setup/doc/)

• If you want to write setup.rb hook scripts, see the hook script API at http://
i.loveruby.net/en/projects/setup/doc/hookapi.html

Chapter 18. Packaging and Distributing Software Page 22 Return to Table of Contents

Chapter 18. Packaging and Distributing Software
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://raa.ruby-lang.org/
http://i.loveruby.net/en/projects/setup/doc/
http://i.loveruby.net/en/projects/setup/doc/hookapi.html
http://i.loveruby.net/en/projects/setup/doc/hookapi.html

	Packaging and Distributing Software
	Finding Libraries by Querying Gem Respositories
	Installing and Using a Gem
	Requiring a Specific Version of a Gem
	Uninstalling a Gem
	Reading Documentation for Installed Gems
	Packaging Your Code as a Gem
	Distributing Your Gems
	Installing and Creating Standalone Packages with setup.rb

