
Table of Contents

Date and Time... 1
Finding Today's Date.. 3
Parsing Dates, Precisely or Fuzzily... 7
Printing a Date.. 10
Iterating Over Dates.. 14
Doing Date Arithmetic.. 16
Counting the Days Since an Arbitrary Date.. 18
Converting Between Time Zones.. 20
Checking Whether Daylight Saving Time Is in Effect.. 22
Converting Between Time and DateTime Objects... 24
Finding the Day of the Week... 27
Handling Commercial Dates.. 28
Running a Code Block Periodically.. 29
Waiting a Certain Amount of Time... 31
Adding a Timeout to a Long-Running Operation.. 34

Chapter 3. Date and Time

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

3. Date and Time

With no concept of time, our lives would be a mess. Without software programs to
constantly manage and record this bizarre aspect of our universe…well, we might actually
be better off. But why take the risk?

Some programs manage real-world time on behalf of the people who'd otherwise have to
do it themselves: calendars, schedules, and data gatherers for scientific experiments. Other
programs use the human concept of time for their own purposes: they may run experiments
of their own, making decisions based on microsecond variations. Objects that have nothing
to do with time are sometimes given timestamps recording when they were created or last
modified. Of the basic data types, a time is the only one that directly corresponds to
something in the real world.

Ruby supports the date and time interfaces you might be used to from other programming
languages, but on top of them are Ruby-specific idioms that make programming easier. In
this chapter, we'll show you how to use those interfaces and idioms, and how to fill in the
gaps left by the language as it comes out of the box.

Ruby actually has two different time implementations. There's a set of time libraries
written in C that have been around for decades. Like most modern programming
languages, Ruby provides a native interface to these C libraries. The libraries are powerful,
useful, and reliable, but they also have some significant shortcomings, so Ruby
compensates with a second time library written in pure Ruby. The pure Ruby library isn't
used for everything because it's slower than the C interface, and it lacks some of the features
buried deep in the C library, such as the management of Daylight Saving Time.

The Time class contains Ruby's interface to the C libraries, and it's all you need for most
applications. The Time class has a lot of Ruby idiom attached to it, but most of its methods
have strange unRuby-like names like strftime and strptime. This is for the benefit of
people who are already used to the C library, or one of its other interfaces (like Perl or
Python's).

The internal representation of a Time object is a number of seconds before or since "time
zero." Time zero for Ruby is the Unix epoch: the first second GMT of January 1, 1970. You
can get the current local time with Time.now, or create a Time object from seconds-since-
epoch with Time.at.

Chapter 3. Date and Time Page 1 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

 Time.now # => Sat Mar 18 14:49:30 EST 2006
 Time.at(0) # => Wed Dec 31 19:00:00 EST 1969

This numeric internal representation of the time isn't very useful as a human-readable
representation. You can get a string representation of a Time, as seen above, or call
accessor methods to split up an instant of time according to how humans reckon time:

 t = Time.at(0)
 t.sec # => 0
 t.min # => 0
 t.hour # => 19
 t.day # => 31
 t.month # => 12
 t.year # => 1969
 t.wday # => 3 # Numeric day of week; Sunday
 is 0
 t.yday # => 365 # Numeric day of year
 t.isdst # => false # Is Daylight Saving Time in
 # effect?
 t.zone # => "EST" # Time zone

See Recipe 3.3 for more human-readable ways of slicing and dicing Time objects.

Apart from the awkward method and member names, the biggest shortcoming of the Time
class is that on a 32-bit system, its underlying implementation can't handle dates before
December 1901 or after January 2037.[1]

[1] A system with a 64-bit time_t can represent a much wider range of times (about half a trillion years):

 Time.local(1865,4,9) # => Sun Apr 09 00:00:00 EWT 1865
 Time.local(2100,1,1) # => Fri Jan 01 00:00:00 EST 2100

You'll still get into trouble with older times, though, because Time doesn't handle calendrical reform. It'll also give time zones to times that predate the creation of time
zones (EWT stands for Eastern War Time, an American timezone used during World War II).

 Time.local(1865, 4, 9)
 # ArgumentError: time out of range
 Time.local(2100, 1, 1)
 # ArgumentError: time out of range

To represent those times, you'll need to turn to Ruby's other time implementation: the
Date and DateTime classes. You can probably use DateTime for everything, and not use
Date at all:

 require 'date'
 DateTime.new(1865, 4, 9).to_s # => "1865-04-09T00:00:00Z"
 DateTime.new(2100, 1, 1).to_s # => "2100-01-01T00:00:00Z"

Recall that a Time object is stored as a fractional number of seconds since a "time zero"
in 1970. The internal representation of a Date or DateTime object is a astronomical Julian
date: a fractional number of days since a "time zero" in 4712 BCE, over 6,000 years ago.

Chapter 3. Date and Time Page 2 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Time zero for the date library:
 DateTime.new.to_s # => "-4712-01-01T00:00:00Z"

 # The current date and time:
 DateTime::now.to_s # => "2006-03-18T14:53:18-0500"

A DateTime object can precisely represent a time further in the past than the universe is
old, or further in the future than the predicted lifetime of the universe. When DateTime
handles historical dates, it needs to take into account the calendar reform movements that
swept the Western world throughout the last 500 years. See Recipe 3.1 for more
information on creating Date and DateTime objects.

Clearly DateTime is superior to Time for astronomical and historical applications, but
you can use Time for most everyday programs. This table should give you a picture of the
relative advantages of Time objects and DateTime objects.

Table 3-1.

 Time DateTime

Date range 1901–2037 on 32-bit systems Effectively infinite

Handles Daylight Saving Time Yes No

Handles calendar reform No Yes

Time zone conversion Easy with the tz gem Difficult unless you only work with time zone offsets

Common time formats like RFC822 Built-in Write them yourself

Speed Faster Slower

Both Time and DateTime objects support niceties like iteration and date arithmetic: you
can basically treat them like numbers, because they're stored as numbers internally. But
recall that a Time object is stored as a number of seconds, while a DateTime object is
stored as a number of days, so the same operations will operate on different time scales on
Time and DateTime objects. See Recipes 3.4 and 3.5 for more on this.

So far, we've talked about writing code to manage specific moments in time: a moment in
the past or future, or right now. The other use of time is duration, the relationship between
two times: "start" and "end," "before" and "after." You can measure duration by subtracting
one DateTime object from another, or one Time object from another: you'll get a result
measured in days or seconds (see Recipe 3.5). If you want your program to actually
experience duration (the difference between now and a time in the future), you can put a
thread to sleep for a certain amount of time: see Recipes 3.12 and 3.13.

You'll need duration most often, perhaps, during development. Benchmarking and
profiling can measure how long your program took to run, and which parts of it took the
longest. These topics are covered in Chapter 17: see Recipes 17.12 and 17.13.

Chapter 3. Date and Time Page 3 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17#rubyckbk-CHP-17
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-12#rubyckbk-CHP-17-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-13#rubyckbk-CHP-17-SECT-13

Recipe 3.1. Finding Today's Date

Problem
You need to create an object that represents the current date and time, or a time in the
future or past.

Solution
The factory method Time.now creates a Time object containing the current local time. If
you want, you can then convert it to GMT time by calling Time#gmtime. The gmtime
method actually modifies the underlying time object, though it doesn't follow the Ruby
naming conventions for such methods (it should be called something like gmtime!).

 now = Time.now # => Sat Mar 18 16:58:07 EST 2006
 now.gmtime # => Sat Mar 18 21:58:07 UTC 2006

 #The original object was affected by the time zone conversion.
 now # => Sat Mar 18 21:58:07 UTC 2006

To create a DateTime object for the current local time, use the factory method
DateTime.now. Convert a DateTime object to GMT by calling DateTime#new_offset
with no argument. Unlike Time#gmtime, this method returns a second DateTime object
instead of modifying the original in place.

 require 'date'
 now = DateTime.now
 # => #<DateTime: 70669826362347677/28800000000,-5/24,2299161>
 now.to_s # => "2006-03-18T16:58:07-0500"
 now.new_offset.to_s # => "2006-03-18T21:58:07Z"

 #The original object was not affected by the time zone conversion.
 now.to_s # => "2006-03-18T16:58:07-0500"

Discussion
Both Time and DateTime objects provide accessor methods for the basic ways in which
the Western calendar and clock divide a moment in time. Both classes provide year,
month, day, hour (in 24-hour format), min, sec, and zone accessors. Time#isdst
lets you know if the underlying time of a Time object has been modified by Daylight Saving
Time in its time zone. DateTime pretends Daylight Saving Time doesn't exist.

 now_time = Time.new
 now_datetime = DateTime.now
 now_time.year # => 2006
 now_datetime.year # => 2006
 now_time.hour # => 18
 now_datetime.hour # => 18

 now_time.zone # => "EST"

Chapter 3. Date and Time Page 4 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 now_datetime.zone # => "-0500"
 now_time.isdst # => false

You can see that Time#zone and DateTime#zone are a little different. Time#zone
returns a time zone name or abbreviation, and DateTime#zone returns a numeric offset
from GMT in string form. You can call DateTime#offset to get the GMT offset as a
number: a fraction of a day.

 now_datetime.offset # => Rational(-5, 24) # -5 hours

Both classes can also represent fractions of a second, accessible with Time#usec (that is,
μsec or microseconds) and DateTime#sec_fraction. In the example above, the
DateTime object was created after the Time object, so the numbers are different even
though both objects were created within the same second.

 now_time.usec # => 247930
 # That is, 247930 microseconds
 now_datetime.sec_fraction # => Rational(62191, 21600000000)
 # That is, about 287921 microseconds

The date library provides a Date class that is like a DateTime, without the time. To create
a Date object containing the current date, the best strategy is to create a DateTime object
and use the result in a call to a Date factory method. DateTime is actually a subclass of
Date, so you only need to do this if you want to strip time data to make sure it doesn't get
used.

 class Date
 def Date.now
 return Date.jd(DateTime.now.jd)
 end
 end
 puts Date.now
 # 2006-03-18

In addition to creating a time object for this very moment, you can create one from a string
(see Recipe 3.2) or from another time object (see Recipe 3.5). You can also use factory
methods to create a time object from its calendar and clock parts: the year, month, day,
and so on.

The factory methods Time.local and Time.gm take arguments Time object for that
time. For local time, use Time.local; for GMT, use Time.gm. All arguments after year
are optional and default to zero.

 Time.local(1999, 12, 31, 23, 21, 5, 1044)
 # => Fri Dec 31 23:21:05 EST 1999

 Time.gm(1999, 12, 31, 23, 21, 5, 22, 1044)
 # => Fri Dec 31 23:21:05 UTC 1999

Chapter 3. Date and Time Page 5 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Time.local(1991, 10, 1)
 # => Tue Oct 01 00:00:00 EDT 1991

 Time.gm(2000)
 # => Sat Jan 01 00:00:00 UTC 2000

The DateTime equivalent of Time.local is the civil factory method. It takes almost
but not quite the same arguments as Time.local:

 [year, month, day, hour, minute, second, timezone_offset, date_of_calendar_reform].

The main differences from Time.local and Time.gmt are:

• There's no separate usec argument for fractions of a second. You can represent
fractions of a second by passing in a rational number for second.

• All the arguments are optional. However, the default year is 4712 BCE, which is
probably not useful to you.

• Rather than providing different methods for different time zones, you must pass in
an offset from GMT as a fraction of a day. The default is zero, which means that calling
DateTime.civil with no time zone will give you a time in GMT.

 DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000)).to_s
 # => "1999-12-31T23:21:00Z"

 DateTime.civil(1991, 10, 1).to_s
 # => "1991-10-01T00:00:00Z"

 DateTime.civil(2000).to_s
 # => "2000-01-01T00:00:00Z"

The simplest way to get the GMT offset for your local time zone is to call offset on the
result of DateTime.now. Then you can pass the offset into DateTime.civil:

 my_offset = DateTime.now.offset # => Rational(-5, 24)

 DateTime.civil(1999, 12, 31, 23, 21, Rational(51044, 100000), my_offset).to_s
 # => "1999-12-31T23:21:00-0500"

Oh, and there's the calendar-reform thing, too. Recall that Time objects can only represent
dates from a limited range (on 32-bit systems, dates from the 20th and 21st centuries).
DateTime objects can represent any date at all. The price of this greater range is that
DateTime needs to worry about calendar reform when dealing with historical dates. If
you're using old dates, you may run into a gap caused by a switch from the Julian calendar
(which made every fourth year a leap year) to the more accurate Gregorian calendar (which
occasionally skips leap years).

Chapter 3. Date and Time Page 6 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This switch happened at different times in different countries, creating differentlysized
gaps as the local calendar absorbed the extra leap days caused by using the Julian reckoning
for so many centuries. Dates created within a particular country's gap are invalid for that
country.

By default, Ruby assumes that Date objects you create are relative to the Italian calendar,
which switched to Gregorian reckoning in 1582. For American and Commonwealth users,
Ruby has provided a constant Date::ENGLAND, which corresponds to the date that
England and its colonies adopted the Gregorian calendar. DateTime's constructors and
factory methods will accept Date::ENGLAND or Date::ITALY as an extra argument
denoting when calendar reform started in that country. The calendar reform argument can
also be any old Julian day, letting you handle old dates from any country:

 #In Italy, 4 Oct 1582 was immediately followed by 15 Oct 1582.
 #
 Date.new(1582, 10, 4).to_s
 # => "1582-10-04"
 Date.new(1582, 10, 5).to_s
 # ArgumentError: invalid date
 Date.new(1582, 10, 4).succ.to_s
 # => "1582-10-15"

 #In England, 2 Sep 1752 was immediately followed by 14 Sep 1752.
 #
 Date.new(1752, 9, 2, Date::ENGLAND).to_s
 # => "1752-09-02"
 Date.new(1752, 9, 3, Date::ENGLAND).to_s
 # ArgumentError: invalid date
 Date.new(1752, 9, 2, DateTime::ENGLAND).succ.to_s
 # => "1752-09-14"
 Date.new(1582, 10, 5, Date::ENGLAND).to_s
 # => "1582-10-05"

You probably won't need to use Ruby's Gregorian conversion features: it's uncommon that
computer applications need to deal with old dates that are both known with precision and
associated with a particular locale.

See Also

• A list of the dates of Gregorian conversion for various countries (http://
www.polysyllabic.com/GregConv.html)

• Recipe 3.7, "Converting Between Time Zones
• Recipe 3.8, "Checking Whether Daylight Saving Time Is in Effect"

Recipe 3.2. Parsing Dates, Precisely or Fuzzily

Chapter 3. Date and Time Page 7 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.polysyllabic.com/GregConv.html
http://www.polysyllabic.com/GregConv.html

Problem
You want to transform a string describing a date or date/time into a Date object. You
might not know the format of the string ahead of time.

Solution
The best solution is to pass the date string into Date.parse or DateTime.parse. These
methods use heuristics to guess at the format of the string, and they do a pretty good job:

 require 'date'

 Date.parse('2/9/2007').to_s
 # => "2007-02-09"

 DateTime.parse('02-09-2007 12:30:44 AM').to_s
 # => "2007-09-02T00:30:44Z"

 DateTime.parse('02-09-2007 12:30:44 PM EST').to_s
 # => "2007-09-02T12:30:44-0500"

 Date.parse('Wednesday, January 10, 2001').to_s
 # => "2001-01-10"

Discussion
The parse methods can save you a lot of the drudgework associated with parsing times
in other programming languages, but they don't always give you the results you want.
Notice in the first example how Date.parse assumed that 2/9/2007 was an American
(month first) date instead of a European (day first) date. parse also tends to misinterpret
two-digit years:

 Date.parse('2/9/07').to_s # => "0007-02-09"

Let's say that Date.parse doesn't work for you, but you know that all the dates you're
processing will be formatted a certain way. You can create a format string using the
standard strftime directives, and pass it along with a date string into
DateTime.strptime or Date.strptime. If the date string matches up with the format
string, you'll get a Date or DateTime object back. You may already be familiar with this
technique, since this many languages, as well as the Unix date command, do date
formatting this way.

Some common date and time formats include:

 american_date = '%m/%d/%y'
 Date.strptime('2/9/07', american_date).to_s # => "2007-02-09"
 DateTime.strptime('2/9/05', american_date).to_s # => "2005-02-09T00:00:00Z"
 Date.strptime('2/9/68', american_date).to_s # => "2068-02-09"
 Date.strptime('2/9/69', american_date).to_s # => "1969-02-09"

 european_date = '%d/%m/%y'

Chapter 3. Date and Time Page 8 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Date.strptime('2/9/07', european_date).to_s # => "2007-09-02"
 Date.strptime('02/09/68', european_date).to_s # => "2068-09-02"
 Date.strptime('2/9/69', european_date).to_s # => "1969-09-02"

 four_digit_year_date = '%m/%d/%Y'
 Date.strptime('2/9/2007', four_digit_year_date).to_s # => "2007-02-09"
 Date.strptime('02/09/1968', four_digit_year_date).to_s # => "1968-02-09"
 Date.strptime('2/9/69', four_digit_year_date).to_s # => "0069-02-09"

 date_and_time = '%m-%d-%Y %H:%M:%S %Z'
 DateTime.strptime('02-09-2007 12:30:44 EST', date_and_time).to_s
 # => "2007-02-09T12:30:44-0500"
 DateTime.strptime('02-09-2007 12:30:44 PST', date_and_time).to_s
 # => "2007-02-09T12:30:44-0800"
 DateTime.strptime('02-09-2007 12:30:44 GMT', date_and_time).to_s
 # => "2007-02-09T12:30:44Z"

 twelve_hour_clock_time = '%m-%d-%Y %I:%M:%S %p'
 DateTime.strptime('02-09-2007 12:30:44 AM', twelve_hour_clock_time).to_s
 # => "2007-02-09T00:30:44Z"
 DateTime.strptime('02-09-2007 12:30:44 PM', twelve_hour_clock_time).to_s
 # => "2007-02-09T12:30:44Z"

 word_date = '%A, %B %d, %Y'
 Date.strptime('Wednesday, January 10, 2001', word_date).to_s
 # => "2001-01-10"

If your date strings might be in one of a limited number of formats, try iterating over a list
of format strings and attempting to parse the date string with each one in turn. This gives
you some of the flexibility of Date.parse while letting you override the assumptions it
makes. Date.parse is still faster, so if it'll work, use that.

 Date.parse('1/10/07').to_s # => "0007-01-10"
 Date.parse('2007 1 10').to_s
 # ArgumentError: 3 elements of civil date are necessary

 TRY_FORMATS = ['%d/%m/%y', '%Y %m %d']
 def try_to_parse(s)
 parsed = nil
 TRY_FORMATS.each do |format|
 begin
 parsed = Date.strptime(s, format)
 break
 rescue ArgumentError
 end
 end
 return parsed
 end

 try_to_parse('1/10/07').to_s # => "2007-10-01"
 try_to_parse('2007 1 10').to_s # => "2007-01-10"

Several common date formats cannot be reliably represented by strptime format strings.
Ruby defines class methods of Time for parsing these date strings, so you don't have to
write the code yourself. Each of the following methods returns a Time object.

Time.rfc822 parses a date string in the format of RFC822/RFC2822, the Internet email
standard. In an RFC2822 date, the month and the day of the week are always in English
(for instance, "Tue" and "Jul"), even if the locale is some other language.

Chapter 3. Date and Time Page 9 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'time'
 mail_received = 'Tue, 1 Jul 2003 10:52:37 +0200'
 Time.rfc822(mail_received)
 # => Tue Jul 01 04:52:37 EDT 2003

To parse a date in the format of RFC2616, the HTTP standard, use Time.httpdate. An
RFC2616 date is the kind of date you see in HTTP headers like Last-Modified. As with
RFC2822, the month and day abbreviations are always in English:

 last_modified = 'Tue, 05 Sep 2006 16:05:51 GMT'
 Time.httpdate(last_modified)
 # => Tue Sep 05 12:05:51 EDT 2006

To parse a date in the format of ISO 8601 or XML Schema, use Time.iso8601 or
Time.xmlschema:

 timestamp = '2001-04-17T19:23:17.201Z'
 t = Time.iso8601(timestamp) # => Tue Apr 17 19:23:17 UTC 2001
 t.sec # => 17
 t.tv_usec # => 201000

Don't confuse these class methods of Time with the instance methods of the same names.
The class methods create Time objects from strings. The instance methods go the other
way, formatting an existing Time object as a string:

 t = Time.at(1000000000) # => Sat Sep 08 21:46:40 EDT 2001
 t.rfc822 # => "Sat, 08 Sep 2001 21:46:40 -0400"
 t.httpdate # => "Sun, 09 Sep 2001 01:46:40 GMT"
 t.iso8601 # => "2001-09-08T21:46:40-04:00"

See Also

• The RDoc for the Time#strftime method lists most of the supported strftime
directives (ri Time#strftime); for a more detailed and complete list, see the table
in Recipe 3.3, "Printing a Date"

Recipe 3.3. Printing a Date

Problem
You want to print a date object as a string.

Chapter 3. Date and Time Page 10 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
If you just want to look at a date, you can call Time#to_s or Date#to_s and not bother
with fancy formatting:

 require 'date'
 Time.now.to_s # => "Sat Mar 18 19:05:50 EST 2006"
 DateTime.now.to_s # => "2006-03-18T19:05:50-0500"

If you need the date in a specific format, you'll need to define that format as a string
containing time-format directives. Pass the format string into Time#strftime or
Date#strftime. You'll get back a string in which the formatting directives have been
replaced by the correpsonding parts of the Time or DateTime object.

A formatting directive looks like a percent sign and a letter: %x. Everything in a format
string that's not a formatting directive is treated as a literal:

 Time.gm(2006).strftime('The year is %Y!') # => "The year is 2006!"

The Discussion lists all the time formatting directives defined by Time#strftime and
Date#strftime. Here are some common time-formatting strings, shown against a
sample date of about 1:30 in the afternoon, GMT, on the last day of 2005:

 time = Time.gm(2005, 12, 31, 13, 22, 33)
 american_date = '%D'
 time.strftime(american_date) # => "12/31/05"
 european_date = '%d/%m/%y'
 time.strftime(european_date) # => "31/12/05"
 four_digit_year_date = '%m/%d/%Y'
 time.strftime(four_digit_year_date) # => "12/31/2005"
 date_and_time = '%m-%d-%Y %H:%M:%S %Z'
 time.strftime(date_and_time) # => "12-31-2005 13:22:33 GMT"
 twelve_hour_clock_time = '%m-%d-%Y %I:%M:%S %p'
 time.strftime(twelve_hour_clock_time) # => "12-31-2005 01:22:33 PM"
 word_date = '%A, %B %d, %Y'
 time.strftime(word_date) # => "Saturday, December 31, 2005"

Discussion
Printed forms, parsers, and people can all be very picky about the formatting of dates.
Having a date in a standard format makes dates easier to read and scan for errors. Agreeing
on a format also prevents ambiguities (is 4/12 the fourth of December, or the twelfth of
April?)

If you require 'time', your Time objects will sprout special-purpose formatting
methods for common date representation standards: Time#rfc822,
Time#httpdate, and Time#iso8601. These make it easy for you to print dates in
formats compliant with email, HTTP, and XML standards:

Chapter 3. Date and Time Page 11 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'time'
 time.rfc822 # => "Sat, 31 Dec 2005 13:22:33 -0000"
 time.httpdate # => "Sat, 31 Dec 2005 13:22:33 GMT"
 time.iso8601 # => "2005-12-31T13:22:33Z"

DateTime provides only one of these three formats. ISO8601 is the the default string
representation of a DateTime object (the one you get by calling #to_s). This means you
can easily print DateTime objects into XML documents without having to convert them
into Time objects.

For the other two formats, your best strategy is to convert the DateTime into a Time object
(see Recipe 3.9 for details). Even on a system with a 32-bit time counter, your DateTime
objects will probably fit into the 1901–2037 year range supported by Time, since RFC822
and HTTP dates are almost always used with dates in the recent past or near future.

Sometimes you need to define a custom date format. Time#strftime and
Date#strftime define many directives for use in format strings. The big table below says
what they do. You can combine these in any combination within a formatting string.

Some of these may be familiar to you from other programming languages; virtually all
languages since C have included a strftime implementation that uses some of these
directives. Some of the directives are unique to Ruby.

Table 3-2.

Formatting directive What it does
Example for 13:22:33 on

December 31, 2005

%A English day of the week "Saturday"

%a Abbreviated English day of the week "Sat"

%B English month of the year "December"

%b English month of the year "Dec"

%C The century part of the year, zero-padded if necessary. "20"

%c
This prints the date and time in a way that looks like the default
string representation of Time, but without the timezone.
Equivalent to '%a %b %e %H:%M:%S %Y'

"Sat Dec 31 13:22:33 2005"

%D
American-style short date format with two-digit year. Equivalent
to "%m/%d/%y"

"12/31/05"

%d Day of the month, zero-padded "31"

%e Day of the month, not zero-padded "31"

%F Short date format with 4-digit year.; equivalent to "%Y-%m-%d" "2005-12-31"

%G
Commercial year with century, zero-padded to a minimum of four
digits and with a minus sign prepended for dates BCE (see Recipe
3.11. For the calendar year, use %Y)

"2005"

%g Year without century, zero-padded to two digits "05"

%H Hour of the day, 24-hour clock, zero-padded to two digits "13"

%h Abbreviated month of the year; the same as "%b" "Dec"

%I Hour of the day, 12-hour clock, zero-padded to two digits "01"

Chapter 3. Date and Time Page 12 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Formatting directive What it does
Example for 13:22:33 on

December 31, 2005

%j Julian day of the year, padded to three digits (from 001 to 366) "365"

%k
Hour of the day, 24-hour clock, not zero-padded; like %H but with
no padding

"13"

%l
Hour of the day, 12-hour clock, not zero-padded; like %I but with
no padding

"1"

%M Minute of the hour, padded to two digits "22"

%m Month of the year, padded to two digits "12"

%n
A newline; don't use this; just put a newline in the formatting
string

"\n"

%P Lowercase meridian indicator ("am" or "pm") "pm"

%p
Upper meridian indicator. Like %P, except gives "AM" or "PM";
yes, the uppercase P gives the lowercase meridian, and vice versa

"PM"

%R Short 24-hour time format; equivalent to "%H:%M" "13:22"

%r Long 12-hour time format; equivalent to "%I:%M:%S %p" "01:22:33 PM"

%S Second of the minute, zero-padded to two digits "33"

%s Seconds since the Unix epoch "1136053353"

%T Long 24-hour time format; equivalent to "%H:%M:%S" "13:22:33"

%t A tab; don't use this; just put a tab in the formatting string "\t"

%U

Calendar week number of the year: assumes that the first week of
the year starts on the first Sunday; if a date comes before the first
Sunday of the year, it's counted as part of "week zero" and "00" is
returned

"52"

%u
Commercial weekday of the year, from 1 to 7, with Monday being
day 1

"6"

%V Commercial week number of the year (see Recipe 3.11) "52"

%W
The same as %V, but if a date is before the first Monday of the year,
it's counted as part of "week zero" and "00" is returned

"52"

%w Calendar day of the week, from 0 to 6, with Sunday being day 0 "6"

%X Preferred representation for the time; equivalent to "%H:%M:%S" "13:22:33"

%x Preferred representation for the date; equivalent to "%m/%d/%y" "12/31/05"

%Y
Year with century, zero-padded to four digits and with a minus
sign prepended for dates BCE "2005"

%y Year without century, zero-padded to two digits "05"

%Z
The timezone abbreviation (Time) or GMT offset (Date). Date
will use "Z" instead of "+0000" if a time is in GMT

"GMT" for Time, "Z" for Date

%z The timezone as a GMT offset "+0000"

%% A literal percent sign "%"

%v
European-style date format with month abbreviation; equivalent
to "%e-%b-%Y"

31-Dec-2005

%+
Prints a Dateobject as though it were a Timeobject converted to a
string; like %c, but includes the timezone information; equivalent
to "%a %b %e %H:%M:%S %Z %Y"

Sat Dec 31 13:22:33 Z 2005

Date defines two formatting directives that won't work at all in Time#strftime. Both
are shortcuts for formatting strings that you could create manually.

If you need a date format for which there's no formatting directive, you should be able to
compensate by writing Ruby code. For instance, suppose you want to format our example

Chapter 3. Date and Time Page 13 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

date as "The 31st of December". There's no special formatting directive tol print the day
as an ordinal number, but you can use Ruby code to build a formatting string that gives
the right answer.

 class Time
 def day_ordinal_suffix
 if day == 11 or day == 12
 return "th"

 else
 case day % 10
 when 1 then return "st"
 when 2 then return "nd"
 when 3 then return "rd"
 else return "th"
 end
 end
 end
 end

 time.strftime("The %e#{time.day_ordinal_suffix} of %B") # => "The 31st of December"

The actual formatting string differs depending on the date. In this case, it ends up "The
%est of %B", but for other dates it will be "The %end of %B", "The %erd of %B", or "The
%eth of %B".

See Also

• Time objects can parse common date formats as well as print them out; see Recipe
3.2, "Parsing Dates, Precisely or Fuzzily," to see how to parse the output of strftime,
rfc822, httpdate, and iso8661

• Recipe 3.11, "Handling Commercial Dates"

Recipe 3.4. Iterating Over Dates

Problem
Given a point in time, you want to get somewhere else.

Solution
All of Ruby's time objects can be used in ranges as though they were numbers. Date and
DateTime objects iterate in increments of one day, and Time objects iterate in increments
of one second:

 require 'date'
 (Date.new(1776, 7, 2)..Date.new(1776, 7, 4)).each { |x| puts x }
 # 1776-07-02
 # 1776-07-03
 # 1776-07-04

Chapter 3. Date and Time Page 14 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 span = DateTime.new(1776, 7, 2, 1, 30, 15)..DateTime.new(1776, 7, 4, 7, 0, 0)
 span.each { |x| puts x }
 # 1776-07-02T01:30:15Z
 # 1776-07-03T01:30:15Z
 # 1776-07-04T01:30:15Z

 (Time.at(100)..Time.at(102)).each { |x| puts x }
 # Wed Dec 31 19:01:40 EST 1969
 # Wed Dec 31 19:01:41 EST 1969
 # Wed Dec 31 19:01:42 EST 1969

Ruby's Date class defines step and upto, the same convenient iterator methods used by
numbers:

 the_first = Date.new(2004, 1, 1)
 the_fifth = Date.new(2004, 1, 5)

 the_first.upto(the_fifth) { |x| puts x }
 # 2004-01-01
 # 2004-01-02
 # 2004-01-03
 # 2004-01-04
 # 2004-01-05

Discussion
Ruby date objects are stored internally as numbers, and a range of those objects is treated
like a range of numbers. For Date and DateTime objects, the internal representation is
the Julian day: iterating over a range of those objects adds one day at a time. For Time
objects, the internal representation is the number of seconds since the Unix epoch:
iterating over a range of Time objects adds one second at a time.

Time doesn't define the step and upto method, but it's simple to add them:

 class Time
 def step(other_time, increment)
 raise ArgumentError, "step can't be 0" if increment == 0
 increasing = self < other_time
 if (increasing && increment < 0) || (!increasing && increment > 0)
 yield self
 return
 end
 d = self
 begin
 yield d
 d += increment
 end while (increasing ? d <= other_time : d >= other_time)
 end

 def upto(other_time)
 step(other_time, 1) { |x| yield x }
 end
 end

 the_first = Time.local(2004, 1, 1)
 the_second = Time.local(2004, 1, 2)
 the_first.step(the_second, 60 * 60 * 6) { |x| puts x }
 # Thu Jan 01 00:00:00 EST 2004
 # Thu Jan 01 06:00:00 EST 2004
 # Thu Jan 01 12:00:00 EST 2004

Chapter 3. Date and Time Page 15 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Thu Jan 01 18:00:00 EST 2004
 # Fri Jan 02 00:00:00 EST 2004

 the_first.upto(the_first) { |x| puts x }
 # Thu Jan 01 00:00:00 EST 2004

See Also

• Recipe 2.15, "Generating a Sequence of Numbers"

Recipe 3.5. Doing Date Arithmetic

Problem
You want to find how much time has elapsed between two dates, or add a number to a date
to get an earlier or later date.

Solution
Adding or subtracting a Time object and a number adds or subtracts that number of
seconds. Adding or subtracting a Date object and a number adds or subtracts that number
of days:

 require 'date'
 y2k = Time.gm(2000, 1, 1) # => Sat Jan 01 00:00:00 UTC 2000
 y2k + 1 # => Sat Jan 01 00:00:01 UTC 2000
 y2k - 1 # => Fri Dec 31 23:59:59 UTC 1999
 y2k + (60 * 60 * 24 * 365) # => Sun Dec 31 00:00:00 UTC 2000

 y2k_dt = DateTime.new(2000, 1, 1)
 (y2k_dt + 1).to_s # => "2000-01-02T00:00:00Z"
 (y2k_dt - 1).to_s # => "1999-12-31T00:00:00Z"
 (y2k_dt + 0.5).to_s # => "2000-01-01T12:00:00Z"
 (y2k_dt + 365).to_s # => "2000-12-31T00:00:00Z"

Subtracting one Time from another gives the interval between the dates, in seconds.
Subtracting one Date from another gives the interval in days:

 day_one = Time.gm(1999, 12, 31)
 day_two = Time.gm(2000, 1, 1)
 day_two - day_one # => 86400.0
 day_one - day_two # => -86400.0

 day_one = DateTime.new(1999, 12, 31)
 day_two = DateTime.new(2000, 1, 1)
 day_two - day_one # => Rational(1, 1)
 day_one - day_two # => Rational(-1, 1)

 # Compare times from now and 10 seconds in the future.
 before_time = Time.now
 before_datetime = DateTime.now
 sleep(10)
 Time.now - before_time # => 10.003414
 DateTime.now - before_datetime # => Rational(5001557, 43200000000)

Chapter 3. Date and Time Page 16 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-15#rubyckbk-CHP-2-SECT-15

The activesupport gem, a prerequisite of Ruby on Rails, defines many useful functions
on Numeric and Time for navigating through time:[2]

[2] So does the Facets More library.

 require 'rubygems'
 require 'active_support'

 10.days.ago # => Wed Mar 08 19:54:17 EST 2006
 1.month.from_now # => Mon Apr 17 20:54:17 EDT 2006
 2.weeks.since(Time.local(2006, 1, 1)) # => Sun Jan 15 00:00:00 EST 2006

 y2k - 1.day # => Fri Dec 31 00:00:00 UTC 1999
 y2k + 6.3.years # => Thu Apr 20 01:48:00 UTC 2006
 6.3.years.since y2k # => Thu Apr 20 01:48:00 UTC 2006

Discussion
Ruby's date arithmetic takes advantage of the fact that Ruby's time objects are stored
internally as numbers. Additions to dates and differences between dates are handled by
adding to and subtracting the underlying numbers. This is why adding 1 to a Time adds
one second and adding 1 to a DateTime adds one day: a Time is stored as a number of
seconds since a time zero, and a Date or DateTime is stored as a number of days since a
(different) time zero.

Not every arithmetic operation makes sense for dates: you could "multiply two dates" by
multiplying the underlying numbers, but that would have no meaning in terms of real time,
so Ruby doesn't define those operators. Once a number takes on aspects of the real world,
there are limitations to what you can legitimately do to that number.

Here's a shortcut for adding or subtracting big chunks of time: using the right-or left-shift
operators on a Date or DateTime object will add or subtract a certain number number
of months from the date.

 (y2k_dt >> 1).to_s # => "2000-02-01T00:00:00Z"
 (y2k_dt << 1).to_s # => "1999-12-01T00:00:00Z"

You can get similar behavior with activesupport's Numeric#month method, but
that method assumes that a "month" is 30 days long, instead of dealing with the lengths
of specific months:

 y2k + 1.month # => Mon Jan 31 00:00:00 UTC 2000
 y2k - 1.month # => Thu Dec 02 00:00:00 UTC 1999

By contrast, if you end up in a month that doesn't have enough days (for instance, you start
on the 31st and then shift to a month that only has 30 days), the standard library will use
the last day of the new month:

Chapter 3. Date and Time Page 17 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Thirty days hath September…
 halloween = Date.new(2000, 10, 31)
 (halloween << 1).to_s # => "2000-09-30"
 (halloween >> 1).to_s # => "2000-11-30"
 (halloween >> 2).to_s # => "2000-12-31"

 leap_year_day = Date.new(1996, 2, 29)
 (leap_year_day << 1).to_s # => "1996-01-29"
 (leap_year_day >> 1).to_s # => "1996-03-29"
 (leap_year_day >> 12).to_s # => "1997-02-28"
 (leap_year_day << 12 * 4).to_s # => "1992-02-29"

See Also

• Recipe 3.4, "Iterating Over Dates"
• Recipe 3.6, "Counting the Days Since an Arbitrary Date"
• The RDoc for Rails' ActiveSupport::CoreExtensions::Numeric::Time

module (http://api.rubyonrails.com/classes/ActiveSupport/CoreExtensions/
Numeric/Time.html)

Recipe 3.6. Counting the Days Since an Arbitrary Date

Problem
You want to see how many days have elapsed since a particular date, or how many remain
until a date in the future.

Solution
Subtract the earlier date from the later one. If you're using Time objects, the result will be
a floating-point number of seconds, so divide by the number of seconds in a day:

 def last_modified(file)
 t1 = File.stat(file).ctime
 t2 = Time.now
 elapsed = (t2-t1)/(60*60*24)
 puts "#{file} was last modified #{elapsed} days ago."
 end

 last_modified("/etc/passwd")
 # /etc/passwd was last modified 125.873605469919 days ago.
 last_modified("/home/leonardr/")
 # /home/leonardr/ was last modified 0.113293513796296 days ago.

If you're using DateTime objects, the result will be a rational number. You'll probably
want to convert it to an integer or floating-point number for display:

 require 'date'
 def advent_calendar(date=DateTime.now)
 christmas = DateTime.new(date.year, 12, 25)
 christmas = DateTime.new(date.year+1, 12, 25) if date > christmas

Chapter 3. Date and Time Page 18 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://api.rubyonrails.com/classes/ActiveSupport/CoreExtensions/Numeric/Time.html
http://api.rubyonrails.com/classes/ActiveSupport/CoreExtensions/Numeric/Time.html

 difference = (christmas-date).to_i
 if difference == 0
 puts "Today is Christmas."
 else
 puts "Only #{difference} day#{"s" unless difference==1} until Christmas."
 end
 end

 advent_calendar(DateTime.new(2006, 12, 24))
 # Only 1 day until Christmas.
 advent_calendar(DateTime.new(2006, 12, 25))
 # Today is Christmas.
 advent_calendar(DateTime.new(2006, 12, 26))
 # Only 364 days until Christmas.

Discussion
Since times are stored internally as numbers, subtracting one from another will give you
a number. Since both numbers measure the same thing (time elapsed since some "time
zero"), that number will actually mean something: it'll be the number of seconds or days
that separate the two times on the timeline.

Of course, this works with other time intervals as well. To display a difference in hours, for
Time objects divide the difference by the number of seconds in an hour (3,600, or 1.hour
if you're using Rails). For DateTime objects, divide by the number of days in an hour (that
is, multiply the difference by 24):

 sent = DateTime.new(2006, 10, 4, 3, 15)
 received = DateTime.new(2006, 10, 5, 16, 33)
 elapsed = (received-sent) * 24
 puts "You responded to my email #{elapsed.to_f} hours after I sent it."
 # You responded to my email 37.3 hours after I sent it.

You can even use divmod on a time interval to hack it down into smaller and smaller pieces.
Once when I was in college, I wrote a script that displayed how much time remained until
the finals I should have been studying for. This method gives you a countdown of the days,
hours, minutes, and seconds until some scheduled event:

 require 'date'
 def remaining(date, event)
 intervals = [["day", 1], ["hour", 24], ["minute", 60], ["second", 60]]
 elapsed = DateTime.now - date
 tense = elapsed > 0 ? "since" : "until"
 interval = 1.0
 parts = intervals.collect do |name, new_interval|
 interval /= new_interval
 number, elapsed = elapsed.abs.divmod(interval)
 "#{number.to_i} #{name}#{"s" unless number == 1}"
 end
 puts "#{parts.join(", ")} #{tense} #{event}."
 end

 remaining(DateTime.new(2006, 4, 15, 0, 0, 0, DateTime.now.offset),
 "the book deadline")
 # 27 days, 4 hours, 16 minutes, 9 seconds until the book deadline.
 remaining(DateTime.new(1999, 4, 23, 8, 0, 0, DateTime.now.offset),
 "the Math 114A final")
 # 2521 days, 11 hours, 43 minutes, 50 seconds since the Math 114A final.

Chapter 3. Date and Time Page 19 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 3.5, "Doing Date Arithmetic"

Recipe 3.7. Converting Between Time Zones

Problem
You want to change a time object so that it represents the same moment of time in some
other time zone.

Solution
The most common time zone conversions are the conversion of system local time to UTC,
and the conversion of UTC to local time. These conversions are easy for both Time and
DateTime objects.

The Time#gmtime method modifies a Time object in place, converting it to UTC. The
Time#localtime method converts in the opposite direction:

 now = Time.now # => Sat Mar 18 20:15:58 EST 2006
 now = now.gmtime # => Sun Mar 19 01:15:58 UTC 2006
 now = now.localtime # => Sat Mar 18 20:15:58 EST 2006

The DateTime.new_offset method converts a DateTime object from one time zone
to another. You must pass in the dstination time zone's offset from UTC; to convert local
time to UTC, pass in zero. Since DateTime objects are immutable, this method creates a
new object identical to the old DateTime object, except for the time zone offset:

 require 'date'
 local = DateTime.now
 local.to_s # => "2006-03-18T20:15:58-0500"
 utc = local.new_offset(0)
 utc.to_s # => "2006-03-19T01:15:58Z"

To convert a UTC DateTime object to local time, you'll need to call
DateTime#new_offset and pass in the numeric offset for your local time zone. The
easiest way to get this offset is to call offset on a DateTime object known to be in local
time. The offset will usually be a rational number with a denominator of 24:

 local = DateTime.now
 utc = local.new_offset

 local.offset # => Rational(-5, 24)
 local_from_utc = utc.new_offset(local.offset)

Chapter 3. Date and Time Page 20 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 local_from_utc.to_s # => "2006-03-18T20:15:58-0500"
 local == local_from_utc # => true

Discussion
Time objects created with Time.at, Time.local, Time.mktime, Time.new, and
Time.now are created using the current system time zone. Time objects created with
Time.gm and Time.utc are created using the UTC time zone. Time objects can represent
any time zone, but it's difficult to use a time zone with Time other than local time or UTC.

Suppose you need to convert local time to some time zone other than UTC. If you know
the UTC offset for the destination time zone, you can represent it as a fraction of a day and
pass it into DateTime#new_offset:

 #Convert local (Eastern) time to Pacific time
 eastern = DateTime.now
 eastern.to_s # => "2006-03-18T20:15:58-0500"

 pacific_offset = Rational(-7, 24)
 pacific = eastern.new_offset(pacific_offset)
 pacific.to_s # => "2006-03-18T18:15:58-0700"

DateTime#new_offset can convert between arbitrary time zone offsets, so for time zone
conversions, it's easiest to use DateTime objects and convert back to Time objects if
necessary. But DateTime objects only understand time zones in terms of numeric UTC
offsets. How can you convert a date and time to UTC when all you know is that the time
zone is called "WET", "Zulu", or "Asia/Taskent"?

On Unix systems, you can temporarily change the "system" time zone for the current
process. The C library underlying the Time class knows about an enormous number of
time zones (this "zoneinfo" database is usually located in /usr/share/zoneinfo/, if
you want to look at the available time zones). You can tap this knowledge by setting the
environment variable TZ to an appropriate value, forcing the Time class to act as though
your computer were in some other time zone. Here's a method that uses this trick to convert
a Time object to any time zone supported by the underlying C library:

 class Time
 def convert_zone(to_zone)
 original_zone = ENV["TZ"]
 utc_time = dup.gmtime
 ENV["TZ"] = to_zone
 to_zone_time = utc_time.localtime
 ENV["TZ"] = original_zone
 return to_zone_time
 end
 end

Let's do a number of conversions of a local (Eastern) time to other time zones across the
world:

Chapter 3. Date and Time Page 21 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 t = Time.at(1000000000) # => Sat Sep 08 21:46:40 EDT 2001

 t.convert_zone("US/Pacific") # => Sat Sep 08 18:46:40 PDT 2001
 t.convert_zone("US/Alaska") # => Sat Sep 08 17:46:40 AKDT 2001

 t.convert_zone("UTC") # => Sun Sep 09 01:46:40 UTC 2001
 t.convert_zone("Turkey") # => Sun Sep 09 04:46:40 EEST 2001

Note that some time zones, like India's, are half an hour offset from most others:

 t.convert_zone("Asia/Calcutta") # => Sun Sep 09 07:16:40 IST 2001

By setting the TZ environment variable before creating a Time object, you can represent
the time in any time zone. The following code converts Lagos time to Singapore time,
regardless of the "real" underlying time zone.

 ENV["TZ"] = "Africa/Lagos"
 t = Time.at(1000000000) # => Sun Sep 09 02:46:40 WAT 2001
 ENV["TZ"] = nil

 t.convert_zone("Singapore") # => Sun Sep 09 09:46:40 SGT 2001

 # Just to prove it's the same time as before:
 t.convert_zone("US/Eastern") # => Sat Sep 08 21:46:40 EDT 2001

Since the TZ environment variable is global to a process, you'll run into problems if you
have multiple threads trying to convert time zones at once.

See Also

• Recipe 3.9, "Converting Between Time and DateTime Objects"
• Recipe 3.8, "Checking Whether Daylight Saving Time Is in Effect"
• Information on the "zoneinfo" database (http://www.twinsun.com/tz/tz-link.htm)

Recipe 3.8. Checking Whether Daylight Saving Time Is in Effect

Problem
You want to see whether the current time in your locale is normal time or Daylight Saving/
Summer Time.

Solution
Create a Time object and check its isdst method:

 Time.local(2006, 1, 1) # => Sun Jan 01 00:00:00 EST 2006
 Time.local(2006, 1, 1).isdst # => false

Chapter 3. Date and Time Page 22 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.twinsun.com/tz/tz-link.htm

 Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
 Time.local(2006, 10, 1).isdst # => true

Discussion
Time objects representing UTC times will always return false when isdst is called,
because UTC is the same year-round. Other Time objects will consult the daylight saving
time rules for the time locale used to create the Time object. This is usually the sysem
locale on the computer you used to create it: see Recipe 3.7 for information on changing
it. The following code demonstrates some of the rules pertaining to Daylight Saving Time
across the United States:

 eastern = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 EDT 2006
 eastern.isdst # => true

 ENV['TZ'] = 'US/Pacific'
 pacific = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 PDT 2006
 pacific.isdst # => true

 # Except for the Navajo Nation, Arizona doesn't use Daylight Saving Time.
 ENV['TZ'] = 'America/Phoenix'
 arizona = Time.local(2006, 10, 1) # => Sun Oct 01 00:00:00 MST 2006
 arizona.isdst # => false

 # Finally, restore the original time zone.
 ENV['TZ'] = nil

The C library on which Ruby's Time class is based handles the complex rules for Daylight
Saving Time across the history of a particular time zone or locale. For instance,

Daylight Saving Time was mandated across the U.S. in 1918, but abandoned in most locales
shortly afterwards. The "zoneinfo" file used by the C library contains this information,
along with many other rules:

 # Daylight saving first took effect on March 31, 1918.
 Time.local(1918, 3, 31).isdst # => false
 Time.local(1918, 4, 1).isdst # => true
 Time.local(1919, 4, 1).isdst # => true

 # The federal law was repealed later in 1919, but some places
 # continued to use Daylight Saving Time.
 ENV['TZ'] = 'US/Pacific'
 Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 PST 1920

 ENV['TZ'] = nil
 Time.local(1920, 4, 1) # => Thu Apr 01 00:00:00 EDT 1920

 # Daylight Saving Time was reintroduced during the Second World War.
 Time.local(1942,2,9) # => Mon Feb 09 00:00:00 EST 1942
 Time.local(1942,2,10) # => Tue Feb 10 00:00:00 EWT 1942
 # EWT stands for "Eastern War Time"

A U.S. law passed in 2005 expands Daylight Saving Time into March and November,
beginning in 2007. Depending on how old your zoneinfo file is, Time objects you create
for dates in 2007 and beyond might or might not reflect the new law.

Chapter 3. Date and Time Page 23 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Time.local(2007, 3, 13) # => Tue Mar 13 00:00:00 EDT 2007
 # Your computer may incorrectly claim this time is EST.

This illustrates a general point. There's nothing your elected officials love more than
passing laws, so you shouldn't rely on isdst to be accurate for any Time objects that
represent times a year or more into the future. When that time actually comes around,
Daylight Saving Time might obey different rules in your locale.

The Date class isn't based on the C library, and knows nothing about time zones or locales,
so it also knows nothing about Daylight Saving Time.

See Also

• Recipe 3.7, "Converting Between Time Zones"
• Information on the "zoneinfo" database (http://www.twinsun.com/tz/tz-link.htm)

Recipe 3.9. Converting Between Time and DateTime Objects

Problem
You're working with both DateTime and Time objects, created from Ruby's two standard
date/time libraries. You can't mix these objects in comparisons, iterations, or date
arithmetic because they're incompatible. You want to convert all the objects into one form
or another so that you can treat them all the same way.

Solution
To convert a Time object to a DateTime, you'll need some code like this:

 require 'date'
 class Time
 def to_datetime
 # Convert seconds + microseconds into a fractional number of seconds
 seconds = sec + Rational(usec, 10**6)

 # Convert a UTC offset measured in minutes to one measured in a
 # fraction of a day.
 offset = Rational(utc_offset, 60 * 60 * 24)
 DateTime.new(year, month, day, hour, min, seconds, offset)
 end
 end

 time = Time.gm(2000, 6, 4, 10, 30, 22, 4010)
 # => Sun Jun 04 10:30:22 UTC 2000
 time.to_datetime.to_s
 # => "2000-06-04T10:30:22Z"

Chapter 3. Date and Time Page 24 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.twinsun.com/tz/tz-link.htm

Converting a DateTime to a Time is similar; you just need to decide whether you want the
Time object to use local time or GMT. This code adds the conversion method to Date, the
superclass of DateTime, so it will work on both Date and DateTime objects.

 class Date
 def to_gm_time
 to_time(new_offset, :gm)
 end

 def to_local_time
 to_time(new_offset(DateTime.now.offset-offset), :local)
 end

 private
 def to_time(dest, method)
 #Convert a fraction of a day to a number of microseconds
 usec = (dest.sec_fraction * 60 * 60 * 24 * (10**6)).to_i
 Time.send(method, dest.year, dest.month, dest.day, dest.hour, dest.min,
 dest.sec, usec)
 end
 end

 (datetime = DateTime.new(1990, 10, 1, 22, 16, Rational(41,2))).to_s
 # => "1990-10-01T22:16:20Z"
 datetime.to_gm_time
 # => Mon Oct 01 22:16:20 UTC 1990
 datetime.to_local_time
 # => Mon Oct 01 17:16:20 EDT 1990

Discussion
Ruby's two ways of representing dates and times don't coexist very well. But since neither
can be a total substitute for the other, you'll probably use them both during your Ruby
career. The conversion methods let you get around incompatibilities by simply converting
one type to the other:

 time < datetime
 # ArgumentError: comparison of Time with DateTime failed
 time.to_datetime < datetime
 # => false
 time < datetime.to_gm_time
 # => false

 time - datetime
 # TypeError: can't convert DateTime into Float
 (time.to_datetime - datetime).to_f
 # => 3533.50973962975 # Measured in days
 time - datetime.to_gm_time
 # => 305295241.50401 # Measured in seconds

The methods defined above are reversible: you can convert back and forth between Date
and DateTime objects without losing accuracy.

 time # => Sun Jun 04 10:30:22 UTC 2000
 time.usec # => 4010'

 time.to_datetime.to_gm_time # => Sun Jun 04 10:30:22 UTC 2000
 time.to_datetime.to_gm_time.usec # => 4010

Chapter 3. Date and Time Page 25 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 datetime.to_s # => "1990-10-01T22:16:20Z"
 datetime.to_gm_time.to_datetime.to_s # => "1990-10-01T22:16:20Z"

Once you can convert between Time and DateTime objects, it's simple to write code that
normalizes a mixed array, so that all its elements end up being of the same type. This
method tries to turn a mixed array into an array containing only Time objects. If it
encounters a date that won't fit within the constraints of the Time class, it starts over and
converts the array into an array of DateTime objects instead (thus losing anyinformation
about Daylight Saving Time):

 def normalize_time_types(array)
 # Don't do anything if all the objects are already of the same type.
 first_class = array[0].class
 first_class = first_class.super if first_class == DateTime
 return unless array.detect { |x| !x.is_a?(first_class) }

 normalized = array.collect do |t|
 if t.is_a?(Date)
 begin
 t.to_local_time
 rescue ArgumentError # Time out of range; convert to DateTimes instead.
 convert_to = DateTime
 break
 end
 else
 t
 end
 end

 unless normalized
 normalized = array.collect { |t| t.is_a?(Time) ? t.to_datetime : t }
 end
 return normalized
 end

When all objects in a mixed array can be represented as either Time or DateTime objects,
this method makes them all Time objects:

 mixed_array = [Time.now, DateTime.now]
 # => [Sat Mar 18 22:17:10 EST 2006,
 # #<DateTime: 23556610914534571/9600000000,-5/24,2299161>]
 normalize_time_types(mixed_array)
 # => [Sat Mar 18 22:17:10 EST 2006, Sun Mar 19 03:17:10 EST 2006]

If one of the DateTime objects can't be represented as a Time,
normalize_time_types turns all the objects into DateTime instances. This code is run
on a system with a 32-bit time counter:

 mixed_array << DateTime.civil(1776, 7, 4)
 normalize_time_types(mixed_array).collect { |x| x.to_s }
 # => ["2006-03-18T22:17:10-0500", "2006-03-18T22:17:10-0500",
 # => "1776-07-04T00:00:00Z"]

Chapter 3. Date and Time Page 26 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 3.1, "Finding Today's Date"

Recipe 3.10. Finding the Day of the Week

Problem
You want to find the day of the week for a certain date.

Solution
Use the wday method (supported by both Time and DateTime) to find the day of the week
as a number between 0 and 6. Sunday is day zero.

The following code yields to a code block the date of every Sunday between two dates. It
uses wday to find the first Sunday following the start date (keeping in mind that the first
date may itself be a Sunday). Then it adds seven days at a time to get subsequent Sundays:

 def every_sunday(d1, d2)
 # You can use 1.day instead of 60*60*24 if you're using Rails.
 one_day = d1.is_a?(Time) ? 60*60*24 : 1
 sunday = d1 + ((7-d1.wday) % 7) * one_day
 while sunday < d2
 yield sunday
 sunday += one_day * 7
 end
 end

 def print_every_sunday(d1, d2)
 every_sunday(d1, d2) { |sunday| puts sunday.strftime("%x")}
 end

 print_every_sunday(Time.local(2006, 1, 1), Time.local(2006, 2, 4))
 # 01/01/06
 # 01/08/06
 # 01/15/06
 # 01/22/06
 # 01/29/06

Discussion
The most commonly used parts of a time are its calendar and clock readings: year, day,
hour, and so on. Time and DateTime let you access these, but they also give you access
to a few other aspects of a time: the Julian day of the year (yday), and, more usefully, the
day of the week (wday).

The every_sunday method will accept either two Time objects or two DateTime objects.
The only difference is the number you need to add to an object to increment it by one day.
If you're only going to be using one kind of object, you can simplify the code a little.

Chapter 3. Date and Time Page 27 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To get the day of the week as an English string, use the strftime directives %A and %a:

 t = Time.local(2006, 1, 1)
 t.strftime("%A %A %A!") # => "Sunday Sunday Sunday!"
 t.strftime("%a %a %a!") # => "Sun Sun Sun!"

You can find the day of the week and the day of the year, but Ruby has no built-in method
for finding the week of the year (there is a method to find the commercial week of the year;
see Recipe 3.11). If you need such a method, it's not hard to create one using the day of the
year and the day of the week. This code defines a week method in a module, which it mixes
in to both Date and Time:

 require 'date'
 module Week
 def week
 (yday + 7 - wday) / 7
 end
 end

 class Date
 include Week
 end

 class Time
 include Week
 end

 saturday = DateTime.new(2005, 1, 1)
 saturday.week # => 0
 (saturday+1).week # => 1 #Sunday, January 2
 (saturday-1).week # => 52 #Friday, December 31

See Also

• Recipe 3.3, "Printing a Date"
• Recipe 3.5, "Doing Date Arithmetic"
• Recipe 3.11, "Handling Commercial Dates"

Recipe 3.11. Handling Commercial Dates

Problem
When writing a business or financial application, you need to deal with commercial dates
instead of civil or calendar dates.

Solution
DateTime offers some methods for working with commercial dates. Date#cwday gives
the commercial day of the week, Date#cweek gives the commercial week of the year, and
Date#cwyear gives the commercial year.

Chapter 3. Date and Time Page 28 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Consider January 1, 2006. This was the first day of calendar 2006, but since it was a
Sunday, it was the last day of commercial 2005:

 require 'date'
 sunday = DateTime.new(2006, 1, 1)
 sunday.year # => 2006
 sunday.cwyear # => 2005
 sunday.cweek # => 52
 sunday.wday # => 0
 sunday.cwday # => 7

Commercial 2006 started on the first weekday in 2006:

 monday = sunday + 1
 monday.cwyear # => 2006
 monday.cweek # => 1

Discussion
Unless you're writing an application that needs to use commercial dates, you probably
don't care about this, but it's kind of interesting (if you think dates are interesting). The
commercial week starts on Monday, not Sunday, because Sunday's part of the weekend.
DateTime#cwday is just like DateTime#wday, except it gives Sunday a value of seven
instead of zero.

This means that DateTime#cwday has a range from one to seven instead of from zero to
six:

 (sunday…sunday+7).each do |d|
 puts "#{d.strftime("%a")} #{d.wday} #{d.cwday}"
 end
 # Sun 0 7
 # Mon 1 1
 # Tue 2 2
 # Wed 3 3
 # Thu 4 4
 # Fri 5 5
 # Sat 6 6

The cweek and cwyear methods have to do with the commercial year, which starts on
the first Monday of a year. Any days before the first Monday are considered part of the
previous commercial year. The example given in the Solution demonstrates this: January
1, 2006 was a Sunday, so by the commercial reckoning it was part of the last week of 2005.

See Also

• See Recipe 3.3, "Printing a Date," for the strftime directives used to print parts of
commercial dates

Chapter 3. Date and Time Page 29 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 3.12. Running a Code Block Periodically

Problem
You want to run some Ruby code (such as a call to a shell command) repeatedly at a certain
interval.

Solution
Create a method that runs a code block, then sleeps until it's time to run the block again:

 def every_n_seconds(n)
 loop do
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end
 end
 every_n_seconds(5) do
 puts "At the beep, the time will be #{Time.now.strftime("%X")}…beep!"
 end
 # At the beep, the time will be 12:21:28… beep!
 # At the beep, the time will be 12:21:33… beep!
 # At the beep, the time will be 12:21:38… beep!
 # …

Discussion
There are two main times when you'd want to run some code periodically. The first is when
you actually want something to happen at a particular interval: say you're appending your
status to a log file every 10 seconds. The other is when you would prefer for something to
happen continuously, but putting it in a tight loop would be bad for system performance.
In this case, you compromise by putting some slack time in the loop so that your code isn't
always running.

The implementation of every_n_seconds deducts from the sleep time the time spent
running the code block. This ensures that calls to the code block are spaced evenly apart,
as close to the desired interval as possible. If you tell every_n_seconds to call a code
block every five seconds, but the code block takes four seconds to run, every_n_seconds
only sleeps for one second. If the code block takes six seconds to run, every_n_seconds
won't sleep at all: it'll come back from a call to the code block, and immediately yield to
the block again.

If you always want to sleep for a certain interval, no matter how long the code block takes
to run, you can simplify the code:

 def every_n_seconds(n)
 loop do
 yield

Chapter 3. Date and Time Page 30 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 sleep(n)
 end
 end

In most cases, you don't want every_n_seconds to take over the main loop of your
program. Here's a version of every_n_seconds that spawns a separate thread to run
your task. If your code block stops the loop by with the break keyword, the thread stops
running:

 def every_n_seconds(n)
 thread = Thread.new do
 while true
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end
 end
 return thread
 end

In this snippet, I use every_n_seconds to spy on a file, waiting for people to modify it:

 def monitor_changes(file, resolution=1)
 last_change = Time.now
 every_n_seconds(resolution) do
 check = File.stat(file).ctime
 if check > last_change
 yield file
 last_change = check
 elsif Time.now - last_change > 60
 puts "Nothing's happened for a minute, I'm bored."
 break
 end
 end
 end

That example might give output like this, if someone on the system is working on the file /
tmp/foo:

 thread = monitor_changes("/tmp/foo") { |file| puts "Someone changed #{file}!" }
 # "Someone changed /tmp/foo!"
 # "Someone changed /tmp/foo!"
 # "Nothing's happened for a minute; I'm bored."
 thread.status # => false

See Also

• Recipe 3.13, "Waiting a Certain Amount of Time"
• Recipe 23.4, "Running Periodic Tasks Without cron or at"

Chapter 3. Date and Time Page 31 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-4#rubyckbk-CHP-23-SECT-4

Recipe 3.13. Waiting a Certain Amount of Time

Problem
You want to pause your program, or a single thread of it, for a specific amount of time.

Solution
The Kernel#sleep method takes a floating-point number and puts the current thread
to sleep for some (possibly fractional) number of seconds:

 3.downto(1) { |i| puts "#{i}…"; sleep(1) }; puts "Go!"
 # 3…
 # 2…
 # 1…
 # Go!

 Time.new # => Sat Mar 18 21:17:58 EST 2006
 sleep(10)
 Time.new # => Sat Mar 18 21:18:08 EST 2006
 sleep(1)
 Time.new # => Sat Mar 18 21:18:09 EST 2006
 # Sleep for less then a second.
 Time.new.usec # => 377185
 sleep(0.1)
 Time.new.usec # => 479230

Discussion

Timers are often used when a program needs to interact with a source much slower than
a computer's CPU: a network pipe, or human eyes and hands. Rather than constantly poll
for new data, a Ruby program can sleep for a fraction of a second between each poll, giving
other programs on the CPU a chance to run. That's not much time by human standards,
but sleeping for a fraction of a second at a time can greatly improve a system's overall
performance.

You can pass any floating-point number to sleep, but that gives an exaggerated picture
of how finely you can control a thread's sleeping time. For instance, you can't sleep for
10-50 seconds, because it's physically impossible (that's less than the Planck time). You
can't sleep for Float::EPSILON seconds, because that's almost certainly less than the
resolution of your computer's timer.

You probably can't even reliably sleep for a microsecond, even though most modern
computer clocks have microsecond precision. By the time your sleep command is
processed by the Ruby interpreter and the thread actually starts waiting for its timer to go
off, some small amount of time has already elapsed. At very small intervals, this time can
be greater than the time you asked Ruby to sleep in the first place.

Chapter 3. Date and Time Page 32 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a simple benchmark that shows how long sleep on your system will actually make
a thread sleep. It starts with a sleep interval of one second, which is fairly accurate. It
then sleeps for shorter and shorter intervals, with lessening accuracy each time:

 interval = 1.0
 10.times do |x|
 t1 = Time.new
 sleep(interval)
 actual = Time.new - t1

 difference = (actual-interval).abs
 percent_difference = difference / interval * 100
 printf("Expected: %.9f Actual: %.6f Difference: %.6f (%.2f%%)\n",
 interval, actual, difference, percent_difference)

 interval /= 10
 end
 # Expected: 1.000000000 Actual: 0.999420 Difference: 0.000580 (0.06%)
 # Expected: 0.100000000 Actual: 0.099824 Difference: 0.000176 (0.18%)
 # Expected: 0.010000000 Actual: 0.009912 Difference: 0.000088 (0.88%)
 # Expected: 0.001000000 Actual: 0.001026 Difference: 0.000026 (2.60%)
 # Expected: 0.000100000 Actual: 0.000913 Difference: 0.000813 (813.00%)
 # Expected: 0.000010000 Actual: 0.000971 Difference: 0.000961 (9610.00%)
 # Expected: 0.000001000 Actual: 0.000975 Difference: 0.000974 (97400.00%)
 # Expected: 0.000000100 Actual: 0.000015 Difference: 0.000015 (14900.00%)
 # Expected: 0.000000010 Actual: 0.000024 Difference: 0.000024 (239900.00%)
 # Expected: 0.000000001 Actual: 0.000016 Difference: 0.000016 (1599900.00%)

A small amount of the reported time comes from overhead, caused by creating the second
Time object, but not enough to affect these results. On my system, if I tell Ruby to sleep
for a millisecond, the time spent running the sleep call greatly exceeds the time I wanted
to sleep in the first place! According to this benchmark, the shortest length of time for
which I can expect sleep to accurately sleep is about 1/100 of a second.

You might think to get better sleep resolution by putting the CPU into a tight loop with a
certain number of repetitions. Apart from the obvious problems (this hurts system
performance, and the same loop will run faster over time since computers are always
getting faster), this isn't even reliable.

The operating system doesn't know you're trying to run a timing loop: it just sees you using
the CPU, and it can interrupt your loop at any time, for any length of time, to let some other
process use the CPU. Unless you're on an embedded operating system where you can
control exactly what the CPU does, the only reliable way to wait for a specific period of
time is with sleep.

Waking up early
The sleep method will end early if the thread that calls it has its run method called. If
you want a thread to sleep until another thread wakes it up, use Thread.stop:

 alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }
 puts "Going to sleep for 1000 seconds at #{Time.new}…"
 sleep(10000); puts "Woke up at #{Time.new}!"

Chapter 3. Date and Time Page 33 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Going to sleep for 1000 seconds at Thu Oct 27 14:45:14 PDT 2005…
 # Woke up at Thu Oct 27 14:45:19 PDT 2005!

 alarm = Thread.new(self) { sleep(5); Thread.main.wakeup }
 puts "Goodbye, cruel world!";
 Thread.stop;
 puts "I'm back; how'd that happen?"
 # Goodbye, cruel world!
 # I'm back; how'd that happen?

See Also

• Recipe 3.12, "Running a Code Block Periodically"
• Chapter 20
• The Morse Code example in Recipe 21.11, "Making Your Keyboard Lights Blink,"

displays an interesting use of sleep

Recipe 3.14. Adding a Timeout to a Long-Running Operation

Problem
You're running some code that might take a long time to complete, or might never complete
at all. You want to interrupt the code if it takes too long.

Solution
Use the built-in timeout library. The Timeout.timeout method takes a code block and
a deadline (in seconds). If the code block finishes running in time, it returns true. If the
deadline passes and the code block is still running, Timeout.timeout terminates the
code block and raises an exception.

The following code would never finish running were it not for the timeout call. But after
five seconds, timeout raises a Timeout::Error and execution halts:

 # This code will sleep forever… OR WILL IT?
 require 'timeout'
 before = Time.now
 begin
 status = Timeout.timeout(5) { sleep }
 rescue Timeout::Error
 puts "I only slept for #{Time.now-before} seconds."
 end
 # I only slept for 5.035492 seconds.

Discussion
Sometimes you must make a network connection or take some other action that might be
incredibly slow, or that might never complete at all. With a timeout, you can impose an
upper limit on how long that operation can take. If it fails, you can try it again later, or

Chapter 3. Date and Time Page 34 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20
http://safari.oreilly.com/0596523696/rubyckbk-CHP-21-SECT-11#rubyckbk-CHP-21-SECT-11

forge ahead without the information you were trying to get. Even when you can't recover,
you can report your failure and gracefully exit the program, rather than sitting around
forever waiting for the operation to complete.

By default, Timeout.timeout raises a Timeout::Error. You can pass in a custom
exception class as the second argument to Timeout.timeout: this saves you from having
to rescue the Timeout:Error just so you can raise some other error that your application
knows how to handle.

If the code block had side effects, they will still be visible after the timeout kills the code
block:

 def count_for_five_seconds
 $counter = 0
 begin
 Timeout::timeout(5) { loop { $counter += 1 } }
 rescue Timeout::Error
 puts "I can count to #{$counter} in 5 seconds."
 end
 end

 count_for_five_seconds
 # I can count to 2532825 in 5 seconds.
 $counter # => 2532825

This may mean that your dataset is now in an inconsistent state.

See Also

• ri Timeout
• Recipe 3.13, "Waiting a Certain Amount of Time"
• Recipe 14.1, "Grabbing the Contents of a Web Page"

Chapter 3. Date and Time Page 35 Return to Table of Contents

Chapter 3. Date and Time
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1

	Date and Time
	Finding Today's Date
	Parsing Dates, Precisely or Fuzzily
	Printing a Date
	Iterating Over Dates
	Doing Date Arithmetic
	Counting the Days Since an Arbitrary Date
	Converting Between Time Zones
	Checking Whether Daylight Saving Time Is in Effect
	Converting Between Time and DateTime Objects
	Finding the Day of the Week
	Handling Commercial Dates
	Running a Code Block Periodically
	Waiting a Certain Amount of Time
	Adding a Timeout to a Long-Running Operation

