
Table of Contents

Code Blocks and Iteration.. 1
Creating and Invoking a Block.. 4
Writing a Method That Accepts a Block... 5
Binding a Block Argument to a Variable.. 8
Blocks as Closures: Using Outside Variables Within a Code Block... 10
Writing an Iterator Over a Data Structure.. 12
Changing the Way an Object Iterates.. 15
Writing Block Methods That Classify or Collect... 17
Stopping an Iteration.. 19
Looping Through Multiple Iterables in Parallel... 21
Hiding Setup and Cleanup in a Block Method... 25
Coupling Systems Loosely with Callbacks.. 27

Chapter 7. Code Blocks and Iteration

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

7. Code Blocks and Iteration

In Ruby, a code block (or just "block") is an object that contains some Ruby code, and the
context neccesary to execute it. Code blocks are the most visually distinctive aspect of Ruby,
and also one of the most confusing to newcomers from other languages. Essentially, a Ruby
code block is a method that has no name.

Most other languages have something like a Ruby code block: C's function pointers, C++'s
function objects, Python's lambdas and list comprehensions, Perl's anonymous functions,
Java's anonymous inner classes. These features live mostly in the corners of those
languages, shunned by novice programmers. Ruby can't be written without code blocks.
Of the major languages, only Lisp is more block-oriented.

Unlike most other languages, Ruby makes code blocks easy to create and imposes few
restrictions on them. In every other chapter of this book, you'll see blocks passed into
methods like it's no big deal (which it isn't):

 [1,2,3].each { |i| puts i}
 # 1
 # 2
 # 3

In this chapter, we'll show you how to write that kind of method, the kinds of method that
are useful to write that way, and when and how to treat blocks as first class objects.

Ruby provides two syntaxes for creating code blocks. When the entire block will fit on one
line, it's most readable when enclosed in curly braces:

 [1,2,3].each { |i| puts i }
 # 1
 # 2
 # 3

When the block is longer than one line, it's more readable to begin it with the do keyword
and end it with the end keyword:

 [1,2,3].each do |i|
 if i % 2 == 0
 puts "#{i} is even."
 else
 puts "#{i} is odd."
 end
 end
 # 1 is odd.

Chapter 7. Code Blocks and Iteration Page 1 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

 # 2 is even.
 # 3 is odd.

Some people use the bracket syntax when they're interested in the return value of the block,
and the do…end syntax when they're interested in the block's side effects.

Keep in mind that the bracket syntax has a higher precedence than the do..end syntax.
Consider the following two snippets of code:

 1.upto 3 do |x|
 puts x
 end
 # 1
 # 2
 # 3

 1.upto 3 { |x| puts x }
 # SyntaxError: compile error

In the second example, the code block binds to the number 3, not to the function call
1.upto 3. A standalone variable can't take a code block, so you get a compile error. When
in doubt, use parentheses.

 1.upto(3) { |x| puts x }
 # 1
 # 2
 # 3

Usually the code blocks passed into methods are anonymous objects, created on the spot.
But you can instantiate a code block as a Proc object by calling lambda. See Recipe 7.1
for more details.

 hello = lambda { "Hello" }
 hello.call
 # => "Hello"

 log = lambda { |str| puts "[LOG] #{str}" }
 log.call("A test log message.")
 # [LOG] A test log message.

Like any method, a block can accept arguments. A block's arguments are defined in a
comma-separated list at the beginning of the block, enclosed in pipe characters:

 {1=>2, 2=>4}.each { |k,v| puts "Key #{k}, value #{v}" }
 # Key 1, value 2
 # Key 2, value 4

Arguments to blocks look almost like arguments to methods, but there are a few
restrictions: you can't set default values for block arguments, you can't expand hashes or
arrays inline, and a block cannot itself take a block argument.[1]

Chapter 7. Code Blocks and Iteration Page 2 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[1] In Ruby 1.9, a block can itself take a block argument: |arg1, arg2, &block|. This makes methods like Module#define_method more useful. In Ruby 2.0,
you'll be able to give default values to block arguments.

Since Proc objects are created like other objects, you can create factory methods whose
return values are customized pieces of executable Ruby code. Here's a simple factory
method for code blocks that do multiplication:

 def times_n(n)
 lambda { |x| x * n }
 end

The following code uses the factory to create and use two customized methods:

 times_ten = times_n(10)
 times_ten.call(5) # => 50
 times_ten.call(1.25) # => 12.5

 circumference = times_n(2*Math::PI)
 circumference.call(10) # => 62.8318530717959
 circumference.call(3) # => 18.8495559215388
 [1, 2, 3].collect(&circumference)
 # => [6.28318530717959, 12.5663706143592, 18.8495559215388]

You may have heard people talking about Ruby's "closures." What is a closure, and how is
it different from a block? In Ruby, there is no difference between closures and blocks. Every
Ruby block is also a closure.[2]

[2] Someone could argue that a block isn't really a closure if it never actually uses any of the context it carries around: you could have done the same job with a "dumb"
block, assuming Ruby supported those. For simplicity's sake, we do not argue this.

So what makes a Ruby block a closure? Basically, a Ruby block carries around the context
in which it was defined. A block can reference the variables that were in scope when it was
defined, even if those variables later go out of scope. Here's a simple example; see Recipe
7.4 for more.

 ceiling = 50
 # Which of these numbers are less than the target?
 [1, 10, 49, 50.1, 200].select { |x| x < ceiling }
 # => [1, 10, 49]

The variable ceiling is within scope when the block is defined, but it goes out of scope
when the flow of execution enters the select method. Nonetheless, the block can access
ceiling from within select, because it carries its context around with it. That's what
makes it a closure.

We suspect that a lot of people who say "closures" when talking about Ruby blocks just do
it to sound smart. Since we've already ruined any chance we might have had at sounding
smart, we've decided refer to Ruby closures as just plain "blocks" throughout this book.
The only exceptions are in the rare places where we must discuss the context that makes
Ruby's code blocks real closures, rather than "dumb" blocks.

Chapter 7. Code Blocks and Iteration Page 3 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 7.1. Creating and Invoking a Block

Problem
You want to put some Ruby code into an object so you can pass it around and call it later.

Solution
By this time, you should familiar with a block as some Ruby code enclosed in curly brackets.
You might think it possible to define a block object as follows:

 aBlock = { |x| puts x } # WRONG

 # SyntaxError: compile error

That doesn't work because a block is only valid Ruby syntax when it's an argument to a
method call. There are several equivalent methods that take a block and return it as an
object. The most favored method is Kernel#lambda:[3]

[3] The name lambda comes from the lambda calculus (a mathematical formal system) via Lisp.

 aBlock = lambda { |x| puts x } # RIGHT

To call the block, use the call method:

 aBlock.call "Hello World!"
 # Hello World!

Discussion
The ability to assign a bit of Ruby code to a variable is very powerful. It lets you write
general frameworks and plug in specific pieces of code at the crucial points.

As you'll find out in Recipe 7.2, you can accept a block as an argument to a method by
prepending & to the argument name. This way, you can write your own trivial version of the
lambda method:

 def my_lambda(&aBlock)
 aBlock
 end

 b = my_lambda { puts "Hello World My Way!" }
 b.call
 # Hello World My Way!

A newly defined block is actually a Proc object.

Chapter 7. Code Blocks and Iteration Page 4 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 b.class # => Proc

You can also initialize blocks with the Proc constructor or the method Kernel#proc. The
methods Kernel#lambda, Kernel#proc, and Proc.new all do basically the same
thing. These three lines of code are nearly equivalent:

 aBlock = Proc.new { |x| puts x }
 aBlock = proc { |x| puts x }
 aBlock = lambda { |x| puts x }

What's the difference? Kernel#lambda is the preferred way of creating block objects,
because it gives you block objects that act more like Ruby methods. Consider what happens
when you call a block with the wrong number of arguments:

 add_lambda = lambda { |x,y| x + y }

 add_lambda.call(4)
 # ArgumentError: wrong number of arguments (1 for 2)

 add_lambda.call(4,5,6)
 # ArgumentError: wrong number of arguments (3 for 2)

A block created with lambda acts like a Ruby method. If you don't specify the right number
of arguments, you can't call the block. But a block created with Proc.new acts like the
anonymous code block you pass into a method like Enumerable#each:

 add_procnew = Proc.new { |x,y| x + y }

 add_procnew.call(4)
 # TypeError: nil can't be coerced into Fixnum

 add_procnew.call(4,5,6) # => 9

If you don't specify enough arguments when you call the block, the rest of the arguments
are given nil. If you specify too many arguments, the extra arguments are ignored. Unless
you want this kind of behavior, use lambda.

In Ruby 1.8, Kernel#proc acts like Kernel#lambda. In Ruby 1.9, Kernel#proc acts
like Proc.new, as better befits its name.

See Also

• Recipe 7.2, "Writing a Method That Accepts a Block"
• Recipe 10.4, "Getting a Reference to a Method"

Chapter 7. Code Blocks and Iteration Page 5 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-4#rubyckbk-CHP-10-SECT-4

Recipe 7.2. Writing a Method That Accepts a Block

Problem
You want to write a method that can accept and call an attached code block: a method that
works like Array#each, Fixnum#upto, and other built-in Ruby methods.

Solution
You don't need to do anything special to make your method capable of accepting a block.
Any method can use a block if the caller passes one in. At any time in your method, you
can call the block with yield:

 def call_twice
 puts "I'm about to call your block."
 yield
 puts "I'm about to call your block again."
 yield
 end

 call_twice { puts "Hi, I'm a talking code block." }
 # I'm about to call your block.
 # Hi, I'm a talking code block.
 # I'm about to call your block again.
 # Hi, I'm a talking code block.

Another example:

 def repeat(n)
 if block_given?
 n.times { yield }
 else
 raise ArgumentError.new("I can't repeat a block you don't give me!")
 end
 end

 repeat(4) { puts "Hello." }
 # Hello.
 # Hello.
 # Hello.
 # Hello.

 repeat(4)
 # ArgumentError: I can't repeat a block you don't give me!

Discussion
Since Ruby focuses so heavily on iterator methods and other methods that accept code
blocks, it's important to know how to use code blocks in your own methods.

You don't have to do anything special to make your method capable of taking a code block.
A caller can pass a code block into any Ruby method; it's just that there's no point in doing
that if the method never invokes yield.

Chapter 7. Code Blocks and Iteration Page 6 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts("Print this message.") { puts "And also run this code block!" }
 # Print this message.

The yield keyword acts like a special method, a stand-in for whatever code block was
passed in. When you call it, it's exactly as the code block were a Proc object and you had
invoked its call method.

This may seem mysterious if you're unfamiliar with the practice of passing blocks around,
but it is usually the preferred method of calling blocks in Ruby. If you feel more comfortable
receiving a code block as a "real" argument to your method, see Recipe 7.3.

You can pass in arguments to yield (they'll be passed to the block) and you can do things
with the value of the yield statement (this is the value of the last statement in the block).

Here's a method that passes arguments into its code block, and uses the value of the block:

 def call_twice
 puts "Calling your block."
 ret1 = yield("very first")
 puts "The value of your block: #{ret1}"

 puts "Calling your block again."
 ret2 = yield("second")
 puts "The value of your block: #{ret2}"
 end

 call_twice do |which_time|
 puts "I'm a code block, called for the #{which_time} time."
 which_time == "very first" ? 1 : 2
 end
 # Calling your block.
 # I'm a code block, called for the very first time.
 # The value of your block: 1
 # Calling your block again.
 # I'm a code block, called for the second time.
 # The value of your block: 2

Here's a more realistic example. The method Hash#find takes a code block, passes each
of a hash's key-value pairs into the code block, and returns the first key-value pair for which
the code block evaluates to true.

 squares = {0=>0, 1=>1, 2=>4, 3=>9}
 squares.find { |key, value| key > 1 } # => [2, 4]

Suppose we want a method that works like Hash#find, but returns a new hash containing
all the key-value pairs for which the code block evaluates to true. We can do this by passing
arguments into the yield statement and using its result:

 class Hash
 def find_all
 new_hash = Hash.new
 each { |k,v| new_hash[k] = v if yield(k, v) }

Chapter 7. Code Blocks and Iteration Page 7 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 new_hash
 end
 end

 squares.find_all { |key, value| key > 1 } # => {2=>4, 3=>9}

As it turns out, the Hash#delete_if method already does the inverse of what we want.
By negating the result of our code block, we can make Hash#delete_if do the job of
Hash#find_all. We just need to work off of a duplicate of our hash, because delete_if
is a destructive method:

 squares.dup.delete_if { |key, value| key > 1 } # => {0=>0, 1=>1}
 squares.dup.delete_if { |key, value| key <= 1 } # => {2=>4, 3=>9}

Hash#find_all turns out to be unnecessary, but it made for a good example.

You can write a method that takes an optional code block by calling
Kernel#block_given? from within your method. That method returns true only if the
caller of your method passed in a code block. If it returns false, you can raise an exception,
or you can fall back to behavior that doesn't need a block and never uses the yield
keyword.

If your method calls yield and the caller didn't pass in a code block, Ruby will throw an
exception:

 [1, 2, 3].each
 # LocalJumpError: no block given

See Also

• Recipe 7.3, "Binding a Block Argument to a Variable"

Recipe 7.3. Binding a Block Argument to a Variable

Problem
You've written a method that takes a code block, but it's not enough for you to simply call
the block with yield. You need to somehow bind the code block to a variable, so you can
manipulate the block directly. Most likely, you need to pass it as the code block to another
method.

Chapter 7. Code Blocks and Iteration Page 8 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
Put the name of the block variable at the end of the list of your method's arguments. Prefix
it with an ampersand so that Ruby knows it's a block argument, not a regular argument.

An incoming code block will be converted into a Proc object and bound to the block
variable. You can pass it around to other methods, call it directly using call, or yield to
it as though you'd never bound it to a variable at all. All three of the following methods do
exactly the same thing:

 def repeat(n)
 n.times { yield } if block_given?
 end
 repeat(2) { puts "Hello." }
 # Hello.
 # Hello.
 def repeat(n, &block)
 n.times { block.call } if block
 end
 repeat(2) { puts "Hello." }
 # Hello.
 # Hello.

 def repeat(n, &block)
 n.times { yield } if block
 end
 repeat(2) { puts "Hello." }
 # Hello.
 # Hello.

Discussion
If &foo is the name of a method's last argument, it means that the method accepts an
optional block named foo. If the caller chooses to pass in a block, it will be made available
as a Proc object bound to the variable foo. Since it is an optional argument, foo will be nil
if no block is actually passed in. This frees you from having to call
Kernel#block_given? to see whether or not you got a block.

When you call a method, you can pass in any Proc object as the code block by prefixing
the appropriate variable name with an ampersand. You can even do this on a Proc object
that was originally passed in as a code block to your method.

Many methods for collections, like each, select, and detect, accept code blocks. It's
easy to wrap such methods when your own methods can bind a block to a variable. Here,
a method called biggest finds the largest element of a collection that gives a true result
for the given block:

 def biggest(collection, &block)
 block ? collection.select(&block).max : collection.max
 end

 array = [1, 2, 3, 4, 5]
 biggest(array) {|i| i < 3} # => 2

Chapter 7. Code Blocks and Iteration Page 9 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 biggest(array) {|i| i != 5 } # => 4
 biggest(array) # => 5

This is also very useful when you need to write a frontend to a method that takes a block.
Your wrapper method can bind an incoming code block to a variable, then pass it as a code
block to the other method.

This code calls a code block limit times, each time passing in a random number between
min and max:

 def pick_random_numbers(min, max, limit)
 limit.times { yield min+rand(max+1) }
 end

This code is a wrapper method for pick_random_numbers. It calls a code block 6 times,
each time with a random number from 1 to 49:

 def lottery_style_numbers(&block)
 pick_random_numbers(1, 49, 6, &block)
 end

 lottery_style_numbers { |n| puts "Lucky number: #{n}" }
 # Lucky number: 20
 # Lucky number: 39
 # Lucky number: 41
 # Lucky number: 10
 # Lucky number: 41
 # Lucky number: 32

The code block argument must always be the very last argument defined for a method.
This means that if your method takes a variable number of arguments, the code block
argument goes after the container for the variable arguments:

 def invoke_on_each(*args, &block)
 args.each { |arg| yield arg }
 end

 invoke_on_each(1, 2, 3, 4) { |x| puts x ** 2 }
 # 1
 # 4
 # 9
 # 16

See Also

• Recipe 8.11, "Accepting or Passing a Variable Number of Arguments"
• Recall from the chapter introduction that in Ruby 1.8, a code block cannot itself take

a block argument; this is fixed in Ruby 1.9

Chapter 7. Code Blocks and Iteration Page 10 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-11#rubyckbk-CHP-8-SECT-11

Recipe 7.4. Blocks as Closures: Using Outside Variables Within a
Code Block

Problem
You want to share variables between a method, and a code block defined within it.

Solution
Just reference the variables, and Ruby will do the right thing. Here's a method that adds
a certain number to every element of an array:

 def add_to_all(array, number)
 array.collect { |x| x + number }
 end

 add_to_all([1, 2, 3], 10) # => [11, 12, 13]

Enumerable#collect can't access number directly, but it's passed a block that can
access it, since number was in scope when the block was defined.

Discussion
A Ruby block is a closure: it carries around the context in which it was defined. This is
useful because it lets you define a block as though it were part of your normal code, then
tear it off and send it to a predefined piece of code for processing.

A Ruby block contains references to the variable bindings, not copies of the values. If the
variable changes later, the block will have access to the new value:

 tax_percent = 6
 position = lambda do
 "I have always supported a #{tax_percent}% tax on imported limes."
 end
 position.call
 # => "I have always supported a 6% tax on imported limes."

 tax_percent = 7.25
 position.call
 # => "I have always supported a 7.25% tax on imported limes."

This works both ways: you can rebind or modify a variable from within a block.

 counter = 0
 4.times { counter += 1; puts "Counter now #{counter}"}
 # Counter now 1
 # Counter now 2
 # Counter now 3
 # Counter now 4
 counter # => 4

Chapter 7. Code Blocks and Iteration Page 11 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is especially useful when you want to simulate inject or collect in conjunction
with a strange iterator. You can create a storage object outside the block, and add things
to it from within the block. This code simulates Enumerable#collect, but it collects the
elements of an array in reverse order:

 accumulator = []
 [1, 2, 3].reverse_each { |x| accumulator << x + 1 }

 accumulator # => [4, 3, 2]

The accumulator variable is not within the scope of Array#reverse_each, but it is
within the scope of the block.

Recipe 7.5. Writing an Iterator Over a Data Structure

Problem
You've created a custom data structure, and you want to implement an each method for
it, or you want to implement an unusual way of iterating over an existing data structure.

Solution
Complex data structures are usually constructed out of the basic data structures: hashes,
arrays, and so on. All of the basic data structures have defined the each method. If your
data structure is composed entirely of scalar values and these simple data structures, you
can write a new each method in terms of the each methods of its components.

Here's a simple tree data structure. A tree contains a single value, and a list of children
(each of which is a smaller tree).

 class Tree
 attr_reader :value
 def initialize(value)
 @value = value
 @children = []
 end

 def <<(value)
 subtree = Tree.new(value)
 @children << subtree
 return subtree
 end
 end

Here's code to create a specific Tree (Figure 7-1):

 t = Tree.new("Parent")
 child1 = t << "Child 1"
 child1 << "Grandchild 1.1"
 child1 << "Grandchild 1.2"

Chapter 7. Code Blocks and Iteration Page 12 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 child2 = t << "Child 2"
 child2 << "Grandchild 2.1"

Figure 7-1. A simple tree

How can we iterate over this data structure? Since a tree is defined recursively, it makes
sense to iterate over it recursively. This implementation of Tree#each yields the value
stored in the tree, then iterates over its children (the children are stored in an array, which
already supports each) and recursively calls Tree#each on every child tree.

 class Tree
 def each
 yield value
 @children.each do |child_node|
 child_node.each { |e| yield e }
 end
 end
 end

The each method traverses the tree in a way that looks right:

 t.each { |x| puts x }
 # Parent
 # Child 1
 # Grandchild 1.1
 # Grandchild 1.2
 # Child 2
 # Grandchild 2.1

Discussion
The simplest way to build an iterator is recursively: to use smaller iterators until you've
covered every element in your data structure. But what if those iterators aren't there? More

Chapter 7. Code Blocks and Iteration Page 13 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

likely, what if they're there but they give you elements in the wrong order? You'll need to
go down a level and write some loops.

Loops are somewhat declassé in Ruby because iterators are more idiomatic, but when
you're writing an iterator you may have no choice but to use a loop. Here's a reprint of an
iterator from Recipe 4.1, which illustrates how to use a while loop to iterate over an array
from both sides:

 class Array
 def each_from_both_sides()
 front_index = 0
 back_index = self.length-1
 while front_index <= back_index
 yield self[front_index]
 front_index += 1
 if front_index <= back_index
 yield self[back_index]
 back_index -= 1
 end
 end
 end
 end

 %w{Curses! been again! foiled I've}.each_from_both_sides { |x| puts x }
 # Curses!
 # I've
 # been
 # foiled
 # again!

Here are two more simple iterators. The first one yields each element multiple times in a
row:

 module Enumerable
 def each_n_times(n)
 each { |e| n.times { yield e } }
 end
 end

 %w{Hello Echo}.each_n_times(3) { |x| puts x }
 # Hello
 # Hello
 # Hello
 # Echo
 # Echo
 # Echo

The next one returns the elements of an Enumerable in random order; see Recipe 4.10
for a more efficient way to do the shuffling.

 module Enumerable
 def each_randomly
 (sort_by { rand }).each { |e| yield e }
 end
 end
 %w{Eat at Joe's}.each_randomly { |x| puts x }
 # Eat
 # Joe's
 # at

Chapter 7. Code Blocks and Iteration Page 14 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-1#rubyckbk-CHP-4-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-10#rubyckbk-CHP-4-SECT-10

See Also

• Recipe 4.1, "Iterating Over an Array"
• Recipe 4.10, "Shuffling an Array"
• Recipe 5.7, "Iterating Over a Hash"
• Recipe 7.6, "Changing the Way an Object Iterates"
• Recipe 7.8, "Stopping an Iteration"
• Recipe 7.9, "Looping Through Multiple Iterables in Parallel"

Recipe 7.6. Changing the Way an Object Iterates

Problem
You want to use a data structure as an Enumerable, but the object's implementation of
#each doesn't iterate the way you want. Since all of Enumerable's methods are based on
each, this makes them all useless to you.

Discussion
Here's a concrete example: a simple array.

 array = %w{bob loves alice}
 array.collect { |x| x.capitalize }
 # => ["Bob", "Loves", "Alice"]

Suppose we want to call collect on this array, but we don't want collect to use
each: we want it to use reverse_each. Something like this hypothetical
collect_reverse method:

 array.collect_reverse { |x| x.capitalize }
 # => ["Alice", "Loves", "Bob"]

Actually defining a collect_reverse method would add significant new code and only
solve part of the problem. We could overwrite the array's each implementation with a
singleton method that calls reverse_each, but that's hacky and it would surely have
undesired side effects.

Fortunately, there's an elegant solution with no side effects: wrap the object in an
Enumerator. This gives you a new object that acts like the old object would if you'd
swapped out its each method:

 require 'enumerator'

Chapter 7. Code Blocks and Iteration Page 15 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-1#rubyckbk-CHP-4-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-10#rubyckbk-CHP-4-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-7#rubyckbk-CHP-5-SECT-7

 reversed_array = array.to_enum(:reverse_each)
 reversed_array.collect { |x| x.capitalize }
 # => ["Alice", "Loves", "Bob"]

 reversed_array.each_with_index do |x, i|
 puts %{#{i}=>"#{x}"}
 end
 # 0=>"alice"
 # 1=>"loves"
 # 2=>"bob"

Note that you can't use the Enumerator for our array as though it were the actual array.
Only the methods of Enumerable are supported:

 reversed_array[0]
 # NoMethodError: undefined method `[]' for #<Enumerable::Enumerator:0xb7c2cc8c>

Discussion
Whenever you're tempted to reimplement one of the methods of Enumerable, try using an
Enumerator instead. It's like modifying an object's each method, but it doesn't affect the
original object.

This can save you a lot of work. Suppose you have a tree data structure that provides three
different iteration styles: each_prefix, each_postfix, and each_infix. Rather
than implementing the methods of Enumerable for all three iteration styles, you can let
each_prefix be the default implementation of each, and call
tree.to_enum(:each_postfix) or tree.to_enum(:each_infix) if you need an
Enumerable that acts differently.

A single underlying object can have multiple Enumerable objects. Here's a second
Enumerable for our simple array, in which each acts like each_with_index does for
the original array:

 array_with_index = array.enum_with_index
 array_with_index.each do |x, i|
 puts %{#{i}=>"#{x}"}
 end
 # 0=>"bob"
 # 1=>"loves"
 # 2=>"alice"

 array_with_index.each_with_index do |x, i|
 puts %{#{i}=>#{x.inspect}}
 end
 # 0=>["bob", 0]
 # 1=>["loves", 1]
 # 2=>["alice", 2]

When you require 'enumerator', Enumerable sprouts two extra enumeration
methods, each_cons and each_slice. These make it easy to iterate over a data structure
in chunks. An example is the best way to show what they do:

Chapter 7. Code Blocks and Iteration Page 16 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 sentence = %w{Well, now I've seen everything!}

 two_word_window = sentence.to_enum(:each_cons, 2)
 two_word_window.each { |x| puts x.inspect }
 # ["Well,", "now"]
 # ["now", "I've"]
 # ["I've", "seen"]
 # ["seen", "everything!"]

 two_words_at_a_time = sentence.to_enum(:each_slice, 2)
 two_words_at_a_time.each { |x| puts x.inspect }
 # ["Well,", "now"]
 # ["I've", "seen"]
 # ["everything!"]

Note how any arguments passed into to_enum are passed along as arguments to the
iteration method itself.

In Ruby 1.9, the Enumerable::Enumerator class is part of the Ruby core; you don't
need the require statement. Also, each_cons and each_slice are built-in methods of
Enumerable.

See Also

• Recipe 7.9, "Looping Through Multiple Iterables in Parallel"
• Recipe 20.6, "Running a Code Block on Many Objects Simultaneously"

Recipe 7.7. Writing Block Methods That Classify or Collect

Problem
The basic block methods that come with the Ruby standard library aren't enough for you.
You want to define your own method that classifies the elements in an enumeration (like
Enumerable#detect and Enumerable#find_all), or that does a transformation on
each element in an enumeration (like Enumerable#collect).

Solution
You can usually use inject to write a method that searches or classifies an enumeration
of objects. With inject you can write your own versions of methods such as detect and
find_all:

 module Enumerable
 def find_no_more_than(limit)
 inject([]) do |a,e|
 a << e if yield e
 return a if a.size >= limit
 a
 end

Chapter 7. Code Blocks and Iteration Page 17 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-6#rubyckbk-CHP-20-SECT-6

 end
 end

This code finds at most three of the even numbers in a list:

 a = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 a.find_no_more_than(3) { |x| x % 2 == 0 } # => [2, 4, 6]

If you find yourself needing to write a method like collect, it's probably because, for
your purposes, collect itself yields elements in the wrong order. You can't use
inject, because that yields elements in the same order as collect.

You need to find or write an iterator that yields elements in the order you want. Once you've
done that, you have two options: you can write a collect equivalent on top of the iterator
method, or you can use the iterator method to build an Enumerable object, and call its
collect method (as seen in Recipe 7.6).

Discussion
We discussed these block methods in more detail in Chapter 4, because arrays are the
simplest and most common Enumerable data type, and the most common. But almost any
data structure can be enumerated, and a more complex data structure can be enumerated
in more different ways.

As you'll see in Recipe 9.4, the Enumerable methods, like detect and inject, are
actually implemented in terms of each. The detect and inject methods yield to the
code block every element that comes out of each. The value of the yield statement is
used to determine whether the element matches some criteria.

In a method like detect, the iteration may stop once it finds an element that matches. In
a method like find_all, the iteration goes through all elements, collecting the ones that
match.

Methods like collect work the same way, but instead of returning a subset of elements
based on what the code block says, they collect the values returned by the code block in a
new data structure, and return the data structure once the iteration is completed.

If you're using a particular object and you wish its collect method used a different
iterator, then you should turn the object into an Enumerator and call its collect
method. But if you're writing a class and you want to expose a new collect-like
method, you'll have to define a new method.[4] In that case, the best solution is probably to
expose a method that returns a custom Enumerator: that way, your users can use all the
methods of Enumerable, not just collect.

Chapter 7. Code Blocks and Iteration Page 18 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4#rubyckbk-CHP-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-4#rubyckbk-CHP-9-SECT-4

[4] Of course, behind the scenes, your method could just create an appropriate Enumerator and call its collect implemenation.

See Also

• Recipe 4.5, "Sorting an Array"
• Recipe 4.11, "Getting the N Smallest Items of an Array"
• Recipe 4.15, "Partitioning or Classifying a Set"
• Recipe 7.6, "Changing the Way an Object Iterates"
• If all you want is to make your custom data structure support the methods of
Enumerable, see Recipe 9.4, "Implementing Enumerable: Write One Method, Get
22 Free"

Recipe 7.8. Stopping an Iteration

Problem
You want to interrupt an iteration from within the code block you passed into it.

Solution
The simplest way to interrupt execution is to use break. A break statement will jump out
of the closest enclosing loop defined in the current method:

 1.upto(10) do |x|
 puts x
 break if x == 3
 end
 # 1
 # 2
 # 3

Discussion
The break statement is simple but it has several limitations. You can't use break within a
code block defined with Proc.new or (in Ruby 1.9 and up) Kernel#proc. If this is a
problem for you, use lambda instead:

 aBlock = Proc.new do |x|
 puts x
 break if x == 3
 puts x + 2
 end

 aBlock.call(5)
 # 5
 # 7

 aBlock.call(3)

Chapter 7. Code Blocks and Iteration Page 19 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-5#rubyckbk-CHP-4-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-11#rubyckbk-CHP-4-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-15#rubyckbk-CHP-4-SECT-15
http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-4#rubyckbk-CHP-9-SECT-4

 # 3
 # LocalJumpError: break from proc-closure

More seriously, you can't use break to jump out of multiple loops at once. Once a loop
has run, there's no way to know whether it completed normally or by using break.

The simplest way around this problem is to enclose the code you want to skip within a
catch block with a descriptive symbolic name. You can then throw the corresponding
symbol when you want to jump to the end of the catch block. This lets you skip out of any
number of nested loops and method calls.

The throw/catch syntax isn't exception handling—exceptions use a raise/rescue
syntax. This is a special flow control construct designed to replace the use of exceptions
for flow control (as sometimes happens in Java programs). It's a bit like an old style global
GOTO, capable of suddenly moving execution to a faraway part of your program. It keeps
your code more readable than a GOTO, though, because it's restricted: a throw can only
jump to the end of a corresponding catch block.

The best example of the catch..throw syntax is the Find.find function described in
Recipe 6.12. When you pass a code block into Find.find, it yields up every directory and
file in a certain directory tree. When your code block is given a directory, it can stop find
from recursing into that directory by calling Find.prune, which throws a :prune
symbol. Using break would stop the find operation altogether; throwing a symbol lets
Find.prune know to just skip one directory.

Here's a simplified view of the Find.find and Find.prune code:

 def find(*paths)
 paths.each do |p|
 catch(:prune) do
 # Process p as a file or directory…
 end
 # When you call Find.prune you'll end up here.
 end
 end

 def prune
 throw :prune
 end

When you call Find.prune, execution jumps to immediately after the catch(:prune)
block. Find.find then starts processing the next file or directory.

See Also

• Recipe 6.12, "Walking a Directory Tree"
• ri Find

Chapter 7. Code Blocks and Iteration Page 20 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-12#rubyckbk-CHP-6-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-12#rubyckbk-CHP-6-SECT-12

Recipe 7.9. Looping Through Multiple Iterables in Parallel

Problem
You want to traverse multiple iteration methods simultaneously, probably to match up the
corresponding elements in several different arrays.

Solution
The SyncEnumerator class, defined in the generator library, makes it easy to iterate
over a bunch of arrays or other Enumerable objects in parallel. Its each method yields a
series of arrays, each array containing one item from each underlying Enumerable object:

 require 'generator'

 enumerator = SyncEnumerator.new(%w{Four seven}, %w{score years},
 %w{and ago})
 enumerator.each do |row|
 row.each { |word| puts word }
 puts '---'
 end
 # Four
 # score
 # and
 # ---
 # seven
 # years
 # ago
 # ---

 enumerator = SyncEnumerator.new(%w{Four and}, %w{score seven years ago})
 enumerator.each do |row|
 row.each { |word| puts word }
 puts '---'
 end
 # Four
 # score
 # ---
 # and
 # seven
 # ---
 # nil
 # years
 # ---
 # nil
 # ago
 # ---

You can reproduce the workings of a SyncEnumerator by wrapping each of your
Enumerable objects in a Generator object. This code acts like
SyncEnumerator#each, only it yields each individual item instead of arrays containing
one item from each Enumerable:

 def interosculate(*enumerables)
 generators = enumerables.collect { |x| Generator.new(x) }
 done = false

Chapter 7. Code Blocks and Iteration Page 21 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 until done
 done = true
 generators.each do |g|
 if g.next?
 yield g.next
 done = false
 end
 end
 end
 end

 interosculate(%w{Four and}, %w{score seven years ago}) do |x|
 puts x
 end
 # Four
 # score
 # and
 # seven
 # years
 # ago

Discussion
Any object that implements the each method can be wrapped in a Generator object. If
you've used Java, think of a Generator as being like a Java Iterator object. It keeps
track of where you are in a particular iteration over a data structure.

Normally, when you pass a block into an iterator method like each, that block gets called
for every element in the iterator without interruption. No code outside the block will run
until the iterator is done iterating. You can stop the iteration by writing a break statement
inside the code block, but you can't restart a broken iteration later from the same place—
unless you use a Generator.

Think of an iterator method like each as a candy dispenser that pours out all its candy in
a steady stream once you push the button. The Generator class lets you turn that candy
dispenser into one which dispenses only one piece of candy every time you push its button.
You can carry this new dispenser around and ration your candy more easily.

In Ruby 1.8, the Generator class uses continuations to achieve this trick. It sets
bookmarks for jumping out of an iteration and then back in. When you call
Generator#next the generator "pumps" the iterator once (yielding a single element),
sets a bookmark, and returns control back to your code. The next time you call
Generator#next, the generator jumps back to its previously set bookmark and "pumps"
the iterator once more.

Ruby 1.9 uses a more efficient implementation based on threads. This implementation
calls each Enumerable object's each method (triggering the neverending stream of
candy), but it does it in a separate thread for each object. After each piece of candy comes
out, Ruby freezes time (pauses the thread) until the next time you call
Generator#next.

Chapter 7. Code Blocks and Iteration Page 22 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It's simple to wrap an array in a generator, but if that's all there were to generators, you
wouldn't need to mess around with Generators or even SyncEnumerables. It's easy
to simulate the behavior of SyncEnumerable for arrays by starting an index into each
array and incrementing it whenever you want to get another item from a particular array.
Generator methods are truly useful in their ability to turn any type of iteration into a single-
item candy dispenser.

Suppose that you want to use the functionality of a generator to iterate over an array, but
you have an unusual type of iteration in mind. For instance, consider an array that looks
like this:

 l = ["junk1", 1, "junk2", 2, "junk3", "junk4", 3, "junk5"]

Let's say you'd like to iterate over the list but skip the "junk" entries. Wrapping the list in
a generator object doesn't work; it gives you all the entries:

 g = Generator.new(l)
 g.next # => "junk1"
 g.next # => 1
 g.next # => "junk2"

It's not difficult to write an iterator method that skips the junk. Now, we don't want an
iterator method—we want a Generator object—but the iterator method is a good starting
point. At least it proves that the iteration we want can be implemented in Ruby.

 def l.my_iterator
 each { |e| yield e unless e =~ /^junk/ }
 end

 l.my_iterator { |x| puts x }
 # 1
 # 2
 # 3

Here's the twist: when you wrap an array in a Generator or a SyncEnumerable object,
you're actually wrapping the array's each method. The Generator doesn't just happen
to yield elements in the same order as each: it's actually calling each, but using
continuation (or thread) trickery to pause the iteration after each call to
Generator#next.

By defining an appropriate code block and passing it into the Generator constructor, you
can make a generation object of out of any piece of iteration code—not only the each
method. The generator will know to call and interrupt that block of code, just as it knows
to call and interrupt each when you pass an array into the constructor. Here's a generator
that iterates over our array the way we want:

Chapter 7. Code Blocks and Iteration Page 23 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 g = Generator.new { |g| l.each { |e| g.yield e unless e =~ /^junk/ } }
 g.next # => 1
 g.next # => 2
 g.next # => 3

The Generator constructor can take a code block that accepts the generator object itself
as an argument. This code block performs the iteration that you'd like to have wrapped in
a generator. Note the basic similarity of the code block to the body of the 1#my_iterator
method. The only difference is that instead of the yield keyword we call the
Generator#yield function, which handles some of the work involved with setting up
and jumping to the continuations (Generator#next handles the rest of the continuation
work).

Once you see how this works, you can eliminate some duplicate code by wrapping the
1#my_iterator method itself in a Generator:

 g = Generator.new { |g| l.my_iterator { |e| g.yield e } }
 g.next # => 1
 g.next # => 2
 g.next # => 3

Here's a version of the interosculate method that can wrap methods as well as arrays.
It accepts any combination of Enumerable objects and Method objects, turns each one
into a Generator object, and loops through all the Generator objects, getting one
element at a time from each:

 def interosculate(*iteratables)
 generators = iteratables.collect do |x|
 if x.is_a? Method
 Generator.new { |g| x.call { |e| g.yield e } }
 else
 Generator.new(x)
 end
 end
 done = false
 until done
 done = true
 generators.each do |g|
 if g.next?
 yield g.next
 done = false
 end
 end
 end
 end

Here, we pass interosculate an array and a Method object, so that we can iterate
through two arrays in opposite directions:

 words1 = %w{Four and years}
 words2 = %w{ago seven score}
 interosculate(words1, words2.method(:reverse_each)) { |x| puts x }
 # Four

Chapter 7. Code Blocks and Iteration Page 24 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # score
 # and
 # seven
 # years
 # ago

See Also

• Recipe 7.5, "Writing an Iterator Over a Data Structure"
• Recipe 7.6, "Changing the Way an Object Iterates"

Recipe 7.10. Hiding Setup and Cleanup in a Block Method

Problem
You have a setup method that always needs to run before custom code, or a cleanup method
that needs to run afterwards. You don't trust the person writing the code (possibly yourself)
to remember to call the setup and cleanup methods.

Solution
Create a method that runs the setup code, yields to a code block (which contains the custom
code), then runs the cleanup code. To make sure the cleanup code always runs, even if the
custom code throws an exception, use a begin/finally block.

 def between_setup_and_cleanup
 setup
 begin
 yield
 finally
 cleanup
 end
 end

Here's a concrete example. It adds a DOCTYPE and an HTML tag to the beginning of an
HTML document. At the end, it closes the HTML tag it opened earlier. This saves you a
little bit of work when you're generating HTML files.

 def write_html(out, doctype=nil)
 doctype ||= %{<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">}
 out.puts doctype
 out.puts '<html>'
 begin
 yield out
 ensure
 out.puts '</html>'
 end
 end

 write_html($stdout) do |out|
 out.puts '<h1>Sorry, the Web is closed.</h1>'

Chapter 7. Code Blocks and Iteration Page 25 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 # <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 # "http://www.w3.org/TR/html4/loose.dtd">
 # <html>
 # <h1>Sorry, the Web is closed.</h1>
 # </html>

Discussion
This useful technique shows up most often when there are scarce resources (such as file
handles or database connections) that must be closed when you're done with them, lest
they all get used up. A language that makes the programmer remember these resources
tends to leak those resources, because programmers are lazy. Ruby makes it easy to be lazy
and still do the right thing.

You've probably used this technique already, with the the Kernel#open and File#open
methods for opening files on disk. These methods accept a code block that manipulates an
already open file. They open the file, call your code block, and close the file once you're
done:

 open('output.txt', 'w') do |out|
 out.puts 'Sorry, the filesystem is also closed.'
 end

Ruby's standard cgi module takes the write_html example to its logical conclusion.[5]

You can construct an entire HTML document by nesting blocks inside each other. Here's
a small Ruby CGI that outputs much the same document as the write_html example
above.

[5] But your code will be more maintainable if you do HTML with templates instead of writing it in Ruby code.

 #!/usr/bin/ruby

 # closed_cgi.rb
 require 'cgi'
 c = CGI.new("html4")

 c.out do
 c.html do
 c.h1 { 'Sorry, the Web is closed.' }
 end
 end

Note the multiple levels of blocks: the block passed into CGI#out simply calls CGI#html
to generate the DOCTYPE and the <html> tags. The <html> tags contain the result of a
call to CGI#h1, which encloses some plain text in <h1> tags. The program produces this
output:

 Content-Type: text/html
 Content-Length: 137

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

Chapter 7. Code Blocks and Iteration Page 26 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 "http://www.w3.org/TR/html4/strict.dtd">
 <HTML><H1>Sorry, the Web is closed.</H1></HTML>

The XmlMarkup class in Ruby's builder gem works the same way: you can write Ruby
code that resembles the structure of the document it creates:

 require 'rubygems'
 require 'builder'
 xml = Builder::XmlMarkup.new.message('type' => 'apology') do |b|
 b.content('Sorry, Web Services are closed.')
 end
 puts xml
 # <message type="apology">
 # <content>Sorry, Web Services are closed.</content>
 # </message>

See Also

• Recipe 6.13, "Locking a File," uses this technique to create a method that locks a file,
and automatically unlocks it when you're done using it

• Recipe 11.9, "Creating and Modifying XML Documents"
• Recipe 20.11, "Avoiding Deadlock," uses this technique to have your thread lock

multiple resources in the right order, and unlock them when you're done using them

Recipe 7.11. Coupling Systems Loosely with Callbacks

Problem
You want to combine different types of objects without hardcoding them full of references
to each other.

Solution
Use a callback system, in which objects register code blocks with each other to be executed
as needed. An object can call out to its registered callbacks when it needs something, or it
can send notification to the callbacks when it does something.

To implement a callback system, write a "register" or "subscribe" method that accepts a
code block. Store the registered code blocks as Proc objects in a data structure: probably
an array (if you only have one type of callback) or a hash (if you have multiple types). When
you need to call the callbacks, iterate over the data structure and call each of the
registered code blocks.

Here's a mixin module that gives each instance of a class its own hash of "listener" callback
blocks. An outside object can listen for a particular event by calling subscribe with the

Chapter 7. Code Blocks and Iteration Page 27 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-13#rubyckbk-CHP-6-SECT-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-9#rubyckbk-CHP-11-SECT-9
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-11#rubyckbk-CHP-20-SECT-11

name of the event and a code block. The dispatcher itself is responsible for calling notify
with an appropriate event name at the appropriate time, and the outside object is
responsible for passing in the name of the event it wants to "listen" for.

 module EventDispatcher
 def setup_listeners
 @event_dispatcher_listeners = {}
 end

 def subscribe(event, &callback)
 (@event_dispatcher_listeners[event] ||= []) << callback
 end

 protected
 def notify(event, *args)
 if @event_dispatcher_listeners[event]
 @event_dispatcher_listeners[event].each do |m|
 m.call(*args) if m.respond_to? :call
 end
 end
 return nil
 end
 end

Here's a Factory class that keeps a set of listeners. An outside object can choose to be
notified every time a Factory object is created, or every time a Factory object produces
a widget:

 class Factory
 include EventDispatcher

 def initialize
 setup_listeners
 end

 def produce_widget(color)
 #Widget creation code goes here…
 notify(:new_widget, color)
 end
 end

Here's a listener class that's interested in what happens with Factory objects:

 class WidgetCounter
 def initialize(factory)
 @counts = Hash.new(0)
 factory.subscribe(:new_widget) do |color|
 @counts[color] += 1
 puts "#{@counts[color]} #{color} widget(s) created since I started watching."
 end
 end
 end

Finally, here's the listener in action:

 f1 = Factory.new
 WidgetCounter.new(f1)
 f1.produce_widget("red")
 # 1 red widget(s) created since I started watching.

Chapter 7. Code Blocks and Iteration Page 28 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 f1.produce_widget("green")
 # 1 green widget(s) created since I started watching.

 f1.produce_widget("red")
 # 2 red widget(s) created since I started watching.

 # This won't produce any output, since our listener is listening to
 # another Factory.
 Factory.new.produce_widget("blue")

Discussion
Callbacks are an essential technique for making your code extensible. This technique has
many names (callbacks, hook methods, plugins, publish/subscribe, etc.) but no matter
what terminology is used, it's always the same. One object asks another to call a piece of
code (the callback) when some condition is met. This technique works even when the two
objects know almost nothing about each other. This makes it ideal for refactoring big,
tightly integrated systems into smaller, loosely coupled systems.

In a pure listener system (like the one given in the Solution), the callbacks set up lines of
communication that always move from the event dispatcher to the listeners. This is useful
when you have a master object (like the Factory), from which numerous lackey objects
(like the WidgetCounter) take all their cues.

But in many loosely coupled systems, information moves both ways: the dispatcher calls
the callbacks and then uses the return results. Consider the stereotypical web portal: a
customizable homepage full of HTML boxes containing sports scores, weather predictions,
and so on. Since new boxes are always being added to the system, the core portal software
shouldn't have to know anything about a specific box. The boxes should also know as little
about the core software as possible, so that changing the core doesn't require a change to
all the boxes.

A simple change to the EventDispatcher class makes it possible for the dispatcher to
use the return values of the registered callbacks. The original implementation of
EventDispatcher#notify called the registered code blocks, but ignored their return
value. This version of EventDispatcher#notify yields the return values to a block
passed in to notify:

 module EventDispatcher
 def notify(event, *args)
 if @event_dispatcher_listeners[event]
 @event_dispatcher_listeners[event].each do |m|
 yield(m.call(*args)) if m.respond_to? :call
 end
 end
 return nil
 end
 end

Chapter 7. Code Blocks and Iteration Page 29 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's an insultingly simple portal rendering engine. It lets boxes register to be rendered
inside an HTML table, on one of two rows on the portal page:

 class Portal
 include EventDispatcher

 def initialize
 setup_listeners
 end

 def render
 puts '<table>'
 render_block = Proc.new { |box| puts " <td>#{box}</td>" }
 [:row1, :row2].each do |row|
 puts ' <tr>'
 notify(row, &render_block)
 puts ' </tr>'
 end
 puts '</table>'
 end
 end

Here's the rendering engine rendering a specific user's portal layout. This user likes to see
a stock ticker and a weather report on the left, and a news box on the right. Note that there
aren't even any classes for these boxes; they're so simple they can be implemented as
anonymous code blocks:

 portal = Portal.new
 portal.subscribe(:row1) { 'Stock Ticker' }
 portal.subscribe(:row1) { 'Weather' }
 portal.subscribe(:row2) { 'Pointless, Trivial News' }
 portal.render # <table>
 # <table>
 # <tr>
 # <td>Stock Ticker</td>
 # <td>Weather</td>
 # </tr>
 # <tr>
 # <td>Pointless, Trivial News</td>
 # </tr>
 # </table>

If you want the registered listeners to be shared across all instances of a class, you can make
listeners a class variable, and make subscribe a module method. This is most useful
when you want listeners to be notified whenever a new instance of the class is created.

Chapter 7. Code Blocks and Iteration Page 30 Return to Table of Contents

Chapter 7. Code Blocks and Iteration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Code Blocks and Iteration
	Creating and Invoking a Block
	Writing a Method That Accepts a Block
	Binding a Block Argument to a Variable
	Blocks as Closures: Using Outside Variables Within a Code Block
	Writing an Iterator Over a Data Structure
	Changing the Way an Object Iterates
	Writing Block Methods That Classify or Collect
	Stopping an Iteration
	Looping Through Multiple Iterables in Parallel
	Hiding Setup and Cleanup in a Block Method
	Coupling Systems Loosely with Callbacks

