
Table of Contents

Web Services and Distributed Programming .. 1
Searching for Books on Amazon .. 2
Finding Photos on Flickr .. 5
Writing an XML-RPC Client .. 8
Writing a SOAP Client .. 10
Writing a SOAP Server ... 12
Searching the Web with Google's SOAP Service .. 13
Using a WSDL File to Make SOAP Calls Easier ... 15
Charging a Credit Card ... 18
Finding the Cost to Ship Packages via UPS or FedEx .. 19
Sharing a Hash Between Any Number of Computers .. 21
Implementing a Distributed Queue ... 25
Creating a Shared "Whiteboard" ... 26
Securing DRb Services with Access Control Lists ... 30
Automatically Discovering DRb Services with Rinda .. 31
Proxying Objects That Can't Be Distributed .. 33
Storing Data on Distributed RAM with MemCached .. 36
Caching Expensive Results with MemCached ... 38
A Remote-Controlled Jukebox ... 41

Chapter 16. Web Services and Distributed Programming

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

16. Web Services and Distributed
Programming

Distributed programming is like network programming—only the audience is different.
The point of network programming is to let a human control a computer across the
network. The point of distributed programming is to let computers communicate between
themselves.

Humans use networking software to get data and use algorithms they don't have on their
own computers. With distributed programming, automated programs can get in on this
action. The programs are (one hopes) designed for the ultimate benefit of humans, but an
end user doesn't see the network usage or even neccessarily know that it's happening.

The simplest and most common form of distributed programming is the web service. Web
services work on top of HTTP: they generally involve sending an HTTP request to a certain
URL (possibly including an XML document), and getting a response in the form of another
XML document. Rather than showing this document to an end user the way a web browser
would, the web service client parses the XML response document and does something with
it.

We start the chapter with a number of recipes that show how to provide and use web
services. We include generic recipes like Recipe 16.3, and recipes for using specific, existing
web services like Recipes 16.1, 16.6, and 16.9. The specific examples are useful in their own
right, but they should also help you see what kind of features you should expose in your
own web services.

There are three main approaches to web services: REST-style services,[1]XML-RPC, and
SOAP. You don't need any special tools to offer or use REST-style services. On the client
end, you just need a scriptable web client (Recipe 14.1) and an XML parser (Recipes 11.2
and 11.3). On the server side, you just write a web application that knows how to generate
XML (Recipe 11.9). We cover some REST philosophy while exploring useful services in
Recipe 16.1 and Recipe 16.2.

[1] Why am I saying "REST-style" instead of REST? Because REST is a design philosophy, not a technology standard. REST basically says: use the technologies of the
web the way they were designed to work. A lot of so-called "REST Web Services" fall short of the REST philosophy in some respect (the Amazon web service, covered in
Recipe 16.1, is the most famous example). These might more accurately be called "HTTP+XML" services, or "HTTP+POX" (Plain Old XML) services. Don't get too hung
up on the exact terminology.

Chapter 16. Web Services and Distributed Programming Page 1 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-2#rubyckbk-CHP-11-SECT-2
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-3#rubyckbk-CHP-11-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-9#rubyckbk-CHP-11-SECT-9

REST is HTTP; XML-RPC and SOAP are protocols that run on top of HTTP. We've devoted
several recipes to Ruby's SOAP client: Recipes 16.4 and 16.7 are the main ones. Ruby's
standalone SOAP server is briefly covered in Recipe 16.5. Rails provides its own SOAP
server (Recipe 15.18), which incidentally also acts as an XML-RPC server.

XML-RPC isn't used much nowadays, so we've just provided a client recipe (Recipe 16.3).
If you want to write a standalone XML-RPC server, check out the documentation at http://
www.ntecs.de/projects/xmlrpc4r/server.html.

You can use a web service to store data on a server or change its state, but web service
clients don't usually use the server to communicate with each other. Web services work
well when there's a server with some interesting data and many clients who want it. It
works less well when you want to get multiple computers to cooperate, or distribute a
computation across multiple CPUs.

This is where DRb (Distributed Ruby) comes in. It's a network protocol that lets Ruby
programs share objects, even when they're running on totally different computers. We
cover a number of the possibilities, from simple data structure sharing (Recipe 16.10) to
a networked application (Recipe 16.18) that, after the initial connection, has no visible
networking code at all.

Distributed programming with DRb is a lot like multithreaded programming, except the
"threads" are actually running on multiple computers. This can be great for performance.
On a single CPU, multithreading makes it look like two things are happening at once, but
it's just an illusion. Run two "threads" on different computers, and you can actually do
twice as much work in the same time. You just need to figure out a way to split up the work
and combine the results.

That's the tricky part. When you start coordinating computers through DRb, you'll run
into concurrency problems and deadlock: the same problems you encounter when you
share data structures between threads. You can address these problems using the same
techniques that worked in Recipes 20.4 and 20.11. You'll also encounter brand new
problems, like the tendency of machines to drop off the network at unfortunate times.
These are more troublesome, and the solutions usually depend on the specific tasks you've
assigned the machines. Recipe 16.10, the first DRb recipe, provides a brief introduction to
these problems.

Recipe 16.1. Searching for Books on Amazon

Problem
You want to incorporate information about books or other cultural artifacts into your
application.

Chapter 16. Web Services and Distributed Programming Page 2 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-18#rubyckbk-CHP-15-SECT-18
http://www.ntecs.de/projects/xmlrpc4r/server.html
http://www.ntecs.de/projects/xmlrpc4r/server.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-4#rubyckbk-CHP-20-SECT-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-11#rubyckbk-CHP-20-SECT-11

Solution
Amazon.com exposes a web service that gives you access to all kinds of information on
books, music, and other media. The third-party Ruby/Amazon library provides a simple
Ruby interface to the Amazon web service.

Here's a simple bit of code that searches for books with Ruby/Amazon, printing their new
and used prices.

 require 'amazon/search'

 $AWS_KEY = 'Your AWS key goes here' # See below.

 def price_books(keyword)
 req = Amazon::Search::Request.new($AWS_KEY)
 req.keyword_search(keyword, 'books', Amazon::Search::LIGHT) do |product|

 newp = product.our_price || 'Not available'
 usedp = product.used_price || 'not available'
 puts "#{product.product_name}: #{newp} new, #{usedp} used."
 end
 end

 price_books('ruby cookbook')
 # Ruby Cookbook (Cookbooks (O'Reilly)): $31.49 new, not available used.
 # Rails Cookbook (Cookbooks (O'Reilly)): $25.19 new, not available used.
 # Ruby Ann's Down Home Trailer Park Cookbook: $10.85 new, $3.54 used.
 # Ruby's Low-Fat Soul-Food Cookbook: Not available new, $12.43 used.
 # …

To save bandwidth, this code asks Amazon for a "light" set of search results. The results
won't include things like customer reviews.

Discussion
What's going on here? In one sense, it doesn't matter. Ruby/Amazon gives us a Ruby
method that somehow knows about books and their Amazon prices. It's getting its
information from a database somewhere, and all we need to know is how to query that
database.

In another sense, it matters a lot, because this is just one example of a REST-style web
service. By looking under the cover of the Amazon web services, you can see how to use
other REST-style services like the ones provided by Yahoo! and Flickr.

REST-style web services operate directly on top of HTTP. Each URL in a REST system
designates a resource or a set of them. When you call keyword_search, Ruby/ Amazon
retrieves a URL that looks something like this:

 http://xml.amazon.com/onca/xml3?KeywordSearch=ruby+cookbook&mode=books…

Chapter 16. Web Services and Distributed Programming Page 3 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This URL designates a set of Amazon book records that match the keywords "ruby
cookbook". Ruby/Amazon uses the Net::HTTP library to send a GET request to this URL.
Amazon returns a representation of the resource, an XML document that looks something
like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <ProductInfo xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:noNamespaceSchemaLocation="http://xml.amazon.com/schemas3/dev-lite.xsd">
 …
 <TotalResults>11</TotalResults>
 <TotalPages>2</TotalPages>

 <Details url="http://www.amazon.com/exec/obidos/ASIN/0596523696/">
 <ProductName>Ruby Cookbook</ProductName>
 <Catalog>Book</Catalog>
 <Authors>
 <Author>Lucas Carlson</Author>
 <Author>Leonard Richardson</Author>
 </Authors>
 <ReleaseDate>September, 2006</ReleaseDate>
 <Manufacturer>O'Reilly Media</Manufacturer>
 …
 </Details>
 …
 </ProductInfo>

Ruby/Amazon uses REXML to parse this XML data and turn it into Amazon::Product
objects. An Amazon::Product is a lot like a Ruby Struct: it's got a bunch of member
methods for getting information about the object (you can list these methods by calling
Product#properties). All that information is derived from the original XML.

A REST web service works like a web site designed for a software program instead of a
human. The web is good for publishing and modifying documents, so REST clients make
HTTP GET requests to retrieve data, and POST requests to modify server state, just like
you'd do from a web browser with an HTML form. XML is good for describing documents,
so REST servers usually give out XML documents that are easy to read and parse.

How does REST relate to other kinds of web services? REST is a distinct design philosophy,
but not all "REST-style" web services take it as gospel.[2] There's a sense in which "REST"
is a drive for simpler web services, a reaction to the complexity of SOAP and the WS-[3]

standards. There's no reason why you can't use SOAP in accordance with the REST
philosophy, but in practice that never seems to happen.

[2] Amazon's web services are a case in point. They use GET requests exclusively, even when they're modifying data like the items in a shopping cart. This is very
unRESTful because "put the Ruby Cookbook in my shopping cart" is a command, not an object the way a set of books is an object. To avoid the wrath of the pedant I
refer to Amazon Web Services as a "REST-style" service. It would be more RESTful to define a separate resource (URL) for the shopping cart, and allow the client to
POST a message to that resource saying "Hey, shopping cart, add the Ruby Cookbook to yourself."

[3] Amazon's web services are a case in point. They use GET requests exclusively, even when they're modifying data like the items in a shopping cart. This is very
unRESTful because "put the Ruby Cookbook in my shopping cart" is a command, not an object the way a set of books is an object. To avoid the wrath of the pedant I
refer to Amazon Web Services as a "REST-style" service. It would be more RESTful to define a separate resource (URL) for the shopping cart, and allow the client to
POST a message to that resource saying "Hey, shopping cart, add the Ruby Cookbook to yourself."

Like REST, XML-RPC and SOAP web services run atop HTTP.[4] But while REST services
expect clients to operate on a large URL space, XML-RPC and SOAP services are generally

Chapter 16. Web Services and Distributed Programming Page 4 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

bound to a single "server" URL. If you have a "resource" to specify, you include it in the
document you send to the server. REST, XML-RPC, and SOAP all serve XML documents,
but XML-RPC and SOAP serve serialized versions of data structures, and REST usually
serves RDF, Atom, or Plain Old XML.

[4] SOAP services can run over other protocols, like email. But almost everyone uses HTTP. After all, they're "web services," not "Internet services."

If there were no Ruby/Amazon library, it wouldn't be hard to do the work yourself with
Net::HTTP and REXML. It'd be more difficult to write a Ruby XML-RPC client without
xmlrpc4r, and much more difficult to write a SOAP client without
SOAP::RPC::Driver.

The downside of this flexibility is that, at least for now, every REST service is different.
Everyone arranges their resources differently, and everyone's response documents need
to be parsed with different code. Ruby/Amazon won't help you at all if you want to use
some other REST service: you'll need to find a separate library for that service, or write
your own using Net::HTTP and REXML.

See Also

• Like Google's web services and others, Amazon's can only be used if you sign up for
an identifying key. You can sign up for an AWS key at the Amazon Web Services site
(http://www.amazon.com/gp/browse.html?node=3435361)

• Get Ruby/Amazon at http://www.caliban.org/ruby/ruby-amazon.shtml: you can
download it as a tarball and run setup.rb to install it; the same site hosts generated
RDoc for the library; see especially http://www.caliban.org/ruby/ruby-amazon/
classes/Amazon.html

• The Amazon Web Services documentation (http://www.amazon.com/gp/
browse.html/103-8028883-0351026?node=3435361)

• Recipe 11.2, "Extracting Data from a Document's Tree Structure"
• Recipe 14.1, "Grabbing the Contents of a Web Page"
• Recipe 16.2, "Finding Photos on Flickr"
• Recipe 16.4, "Writing a SOAP Client"

Recipe 16.2. Finding Photos on Flickr

Problem
You want to use Ruby code to find freely reusable photos: perhaps to automatically
illustrate a piece of text.

Chapter 16. Web Services and Distributed Programming Page 5 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.amazon.com/gp/browse.html?node=3435361
http://www.caliban.org/ruby/ruby-amazon.shtml:
http://www.caliban.org/ruby/ruby-amazon/classes/Amazon.html
http://www.caliban.org/ruby/ruby-amazon/classes/Amazon.html
http://www.amazon.com/gp/browse.html/103-8028883-0351026?node=3435361
http://www.amazon.com/gp/browse.html/103-8028883-0351026?node=3435361
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-2#rubyckbk-CHP-11-SECT-2
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1

Solution
The Flickr photo-sharing web site has a huge number of photos and provides web services
for searching them. Many of the photos are licensed under Creative Commons licenses,
which give you permission to reuse the photos under various restrictions.

There are several Ruby bindings to Flickr's various web service APIs, but its REST API is
so simple that I'm just going to use it directly. Given a tag name (like "elephants"), this
code will find an appropriate picture, and return the URL to a thumbnail version of the
picture.

First, a bit of setup. As with Amazon and Google, to use the Flickr API at all you'll need to
sign up for an API key (see below for details).

 require 'open-uri'
 require 'rexml/document'
 require 'cgi'

 FLICKR_API_KEY = 'Your API key here'

The first method, flickr_call, sends a generic query to Flickr's REST web service. It
doesn't do anything special: it just makes an HTTP GET request and parses the XML
response.[5]

[5] Some of Flickr's APIs let you do things like upload photos and add comments. You'll need to use POST requests to make these calls, since they modify the state of
the site. More importantly, you'll also need to authenticate against your Flickr account.

 def flickr_call(method_name, arg_map={}.freeze)
 args = arg_map.collect {|k,v| CGI.escape(k) + '=' + CGI.escape(v)}.join('&')
 url = "http://www.flickr.com/services/rest/?api_key=%s&method=%s&%s" %
 [FLICKR_API_KEY, method_name, args]
 doc = REXML::Document.new(open(url).read)
 end

Now comes pick_a_photo, a method that uses flickr_call to invoke the
flickr.photos.search web service method. That method returns a REXML
Document object containing a <photo> element for each photo that matched the search
criteria. I use XPath to grab the first <photo> element, and pass it into
small_photo_url (defined below) to turn it into an image URL.

 def pick_a_photo(tag)
 doc = flickr_call('flickr.photos.search', 'tags' => tag, 'license' => '4',
 'per_page' => '1')
 photo = REXML::XPath.first(doc, '//photo')
 small_photo_url(photo) if photo
 end

Finally, I'll define the method, small_photo_url. Given a <photo> element, it returns
the URL to a smallish version of the appropriate Flickr photo.

Chapter 16. Web Services and Distributed Programming Page 6 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def small_photo_url(photo)
 server, id, secret = ['server', 'id', 'secret'].collect do |field|
 photo.attribute(field)
 end
 "http://static.flickr.com/#{server}/#{id}_#{secret}_m.jpg"
 end

Now I can find an appropriate photo for any common word (Figure 16-1):

 pick_a_photo('elephants')
 # => http://static.flickr.com/32/102580480_506d5865d0_m.jpg

 pick_a_photo('what-will-happen-tomorrow')
 # => nil

Figure 16-1. A photo of elephants by Nick Scott-Smith

Discussion
It's nice if there's a predefined Ruby binding available for a particular REST-style web
service, but it's usually pretty easy to roll your own. All you need to do is to craft an HTTP
request and figure out how to process the response document. It's usually an XML
document, and a well-crafted XPath statement should be enough to grab the data you want.

Note the clause license=4 in pick_a_photo's arguments to flickr_call. I wanted
to find a picture that I could publish in this book, so I limited my search to pictures made
available under a Creative Commons "Attribution" license. I can reproduce that picture of
the elephants so long as I credit the person who took the photo. (Nick Scott-Smith of
London. Hi, Nick!)

Flickr has a separate API call that lists the available licenses
(flickr.licenses.getInfo), but once I looked them up and found that "Creative
Commons Attribution" was number four, it was easier to hardcode the number than to
look it up every time.

Chapter 16. Web Services and Distributed Programming Page 7 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The first few recipes in Chapter 11 demonstrate different ways of extracting data from
XML documents; XPath (Recipe 11.4) and Rubyful Soup (Recipe 11.5) let you extract
data without writing much code

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• Sign up for a Flickr API key at http://www.flickr.com/services/api/key.gne
• Flickr provides REST, XML-RPC, and SOAP interfaces, and comprehensive

documentation of its API (http://www.flickr.com/services/api/)
• The Flickr URL documentation shows how to turn a <photo> element into a URL

(http://www.flickr.com/services/api/misc.urls.html)
• Flickr.rb (http://redgreenblu.com/flickr/; available as the flickr gem), the libyws

project (http://rubyforge.org/projects/libyws; check out from CVS repository), and
rflickr (http://rubyforge.org/projects/rflickr/; available as the rflickr gem)

• A brief explanation of the Creative Commons licences (http://creativecommons.org/
about/licenses/meet-the-licenses)

Recipe 16.3. Writing an XML-RPC Client

Credit: John-Mason Shackelford

Problem
You want to call a remote method through the XML-RPC web service protocol.

Solution
Use Michael Neumann's xmlrpc4r library, found in Ruby's standard library.

Here's the canonical simple XML-RPC example. Given a number, it looks up the name of
a U.S. state in an alphabetic list:

 require 'xmlrpc/client'
 server = XMLRPC::Client.new2('http://betty.userland.com/RPC2')
 server.call('examples.getStateName', 5) # => "California"

Discussion
XML-RPC is a language-independent solution for distributed systems that makes a simple
alternative to SOAP (in fact, XML-RPC is an ancestor of SOAP). Although it's losing ground

Chapter 16. Web Services and Distributed Programming Page 8 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11#rubyckbk-CHP-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-4#rubyckbk-CHP-11-SECT-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-5#rubyckbk-CHP-11-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-1#rubyckbk-CHP-14-SECT-1
http://www.flickr.com/services/api/key.gne
http://www.flickr.com/services/api/
http://www.flickr.com/services/api/misc.urls.html
http://redgreenblu.com/flickr/;
http://rubyforge.org/projects/libyws;
http://rubyforge.org/projects/rflickr/;
http://creativecommons.org/about/licenses/meet-the-licenses
http://creativecommons.org/about/licenses/meet-the-licenses

to SOAP and REST-style web services, XML-RPC is still used by many blogging engines
and popular web services, due to its simplicity and relatively long history.

A XML-RPC request is sent to the server as a specially-formatted HTTP POST request, and
the XML-RPC response is encoded in the HTTP response to that request. Since most
firewalls allow HTTP traffic, this has the advantage (and disadvantage) that XML-RPC
requests work through most firewalls. Since XML-RPC requests are POST requests, typical
HTTP caching solutions (which only cache GETs) can't be used to speed up XML-RPC
requests or save bandwidth.

An XML-RPC request consists of a standard set of HTTP headers, a simple XML document
that encodes the name of a remote method to call, and the parameters to pass to that
method. The xmlrpc4r library automatically converts between most XML-RPC data types
and the corresponding Ruby data types, so you can treat XML-RPC calls almost like local
method calls. The main exceptions are date and time objects. You can pass a Ruby Date or
Time object into an XML-RPC method that expects a dateTime.iso8601 parameter,
but a method that returns a date will always be represented as an instance of
XMLRPC::DateTime.

Table 16-1 lists the supported data types of the request parameters and the response.

Table 16-1. Supported data types

XML-RPC data type Description Ruby equivalent

int Four-byte signed integer Fixnum or Bignum

boolean 0 (false) or 1 (true) TrueClass or FalseClass

string
Text or encoded binary data; only the characters < and & are disallowed and
rendered as HTML entities

String

double Double-precision signed floating point number Float

dateTime.iso8601 Date/time in the format YYYYMMDDTHH:MM:SS (where T is a literal) XMLRPC::DateTime

base64 base64-encoded binary data String

struct
An unordered set of key value pairs where the name is always a String and the
value can be any XML-RPC data type, including netsted a nested struct or array

Hash

array
A series of values that may be of any of XML-RPC data type, including a netsted
struct or array; multiple data types can be used in the context of a single array

Array

Note that nil is not a supported XML-RPC value, although some XML-RPC
implementations (including xmlrpc4r) follow an extension that allows it.

An XML-RPC response is another XML document, which encodes the return value of the
remote method (if you're lucky) or a "fault" (if you're not). xmlrpc4r parses this document
and transforms it into the corresponding Ruby objects.

Chapter 16. Web Services and Distributed Programming Page 9 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If the remote method returned a fault, xmlrpc4r raises an
XMLRPC::FaultException. A fault contains an integer value (the fault code) and a
string containing an error message. Here's an example:

 begin
 server.call('noSuchMethod')
 rescue XMLRPC::FaultException => e
 puts "Error: fault code #{e.faultCode}"
 puts e.faultString
 end
 # Error: fault code 7
 # Can't evaluate the expression because the name "noSuchMethod" hasn't been defined.

Here's a more interesting XML-RPC example that searches an online UPC database:

 def lookup_upc(upc)
 server = XMLRPC::Client.new2('http://www.upcdatabase.com/rpc')
 begin
 response = server.call('lookupUPC', upc)
 return response['found'] ? response : nil
 rescue XMLRPC::FaultException => e
 puts "Error: "
 puts e.faultCode
 puts e.faultString
 end
 end

 product = lookup_upc('018787765654')
 product['description'] # => "Dr Bronner's Peppermint Oil Soap"
 product['size'] # => "128 fl oz"

 lookup_upc('no such UPC') # => nil

See Also

• Michael Neumann's xmlrpc4r—HOWTO (http://www.ntecs.de/projects/xmlrpc4r/
howto.html)

• The XML-RPC Specification (http://www.xmlrpc.com/spec)
• The extension to XML-RPC that lets it represent nil values (http://ontosys.com/

xml-rpc/extensions.php)
• The Ruby Developer's Guide, published by Syngress and edited by Michael Neumann,

contains over 20 pages devoted to implementing XML-RPC clients and servers with
xmlrpc4r.

• Recipe 15.8, "Creating a Login System," shows how to serve XML-RPC requests from
within a Rails application

Recipe 16.4. Writing a SOAP Client

Credit: Kevin Marshall

Chapter 16. Web Services and Distributed Programming Page 10 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ntecs.de/projects/xmlrpc4r/howto.html
http://www.ntecs.de/projects/xmlrpc4r/howto.html
http://www.xmlrpc.com/spec
http://ontosys.com/xml-rpc/extensions.php
http://ontosys.com/xml-rpc/extensions.php
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-8#rubyckbk-CHP-15-SECT-8

Problem
You need to call a remote method through a SOAP-based web service.

Solution
Use the SOAP RPC Driver in the Ruby standard library.

This simple program prints a quote of the day. It uses the SOAP RPC Driver to connect to
the SOAP web service at codingtheweb.com.

 require 'soap/rpc/driver'
 driver = SOAP::RPC::Driver.new(
 'http://webservices.codingtheweb.com/bin/qotd',
 'urn:xmethods-qotd')

Once the driver is set up, we define the web service method we want to call (getQuote).
We can then call it like a normal Ruby method and display the result:

 driver.add_method('getQuote')

 puts driver.getQuote
 # The holy passion of Friendship is of so sweet and steady and
 # loyal and enduring a nature that it will last through a whole
 # lifetime, if not asked to lend money.
 # Mark Twain (1835 - 1910)

Discussion
SOAP is a heavyweight protocol for web services, a distant descendant of XML-RPC. As
with XML-RPC, a SOAP client sends an XML representation of a method call to a server,
and gets back an XML representation of a return value. The whole process is more complex
than XML-RPC, but Ruby's built-in SOAP library handles the low-level details for you,
leaving you free to focus on using the results in your program.

There are only a few things you need to know to build useful SOAP clients (as I run through
them, I'll build another SOAP client; this one is to get stock quotes):

1. The location of the web service (known as the endpoint URL) and the namespace used
by the service's documents.

 require 'soap/rpc/driver'
 driver = SOAP::RPC::Driver.new(
 'http://services.xmethods.net/soap/', # The endpoint url
 'urn:xmethods-delayed-quotes') # The namespace

2. The name of the SOAP method you want to call, and the names of its parameters.

Chapter 16. Web Services and Distributed Programming Page 11 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 driver.add_method('getQuote', 'symbol')

Behind the scenes, that call to add_method actually defines a new method on the
SOAP::RPC::Driver object. The SOAP library uses metaprogramming to create
custom Ruby methods that act like SOAP methods.

3. The details about the results you expect back.

 puts 'Stock price: %.2f' % driver.getQuote('TR')
 # Stock price: 28.78

We expect the stock quote service in the example to return a floating-point value,
which we simply display. With more complex result sets, you'll probably assign the
results to a variable, which you'll treat as an array or class instance.

See Also

• Recipe 16.6, "Searching the Web with Google's SOAP Service," provides a more
complex example

• Recipe 16.7, "Using a WSDL File to Make SOAP Calls Easier"

Recipe 16.5. Writing a SOAP Server

Credit: Kevin Marshall

Problem
You want to host a SOAP-based web service using a standalone server (that is, not as part
of a Rails application).

Solution
Building your own SOAP server really only requires three simple steps:

1. Subclass the SOAP::StandaloneServer class. In the constructor, register the
methods you want to expose and the arguments they should take. Here we expose a
method sayhelloto method that expects one parameter, username:

 require 'soap/rpc/standaloneServer'

 class MyServer < SOAP::RPC::StandaloneServer

Chapter 16. Web Services and Distributed Programming Page 12 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def initialize(*args)
 super
 add_method(self, 'sayhelloto', 'username')
 end
 end

2. Define the methods you exposed in step 1:

 class MyServer
 def sayhelloto(username)
 "Hello, #{username}."
 end
 end

3. Finally, set up and start your server. Our example server runs on port 8888 on
localhost. Its name is "CoolServer" and its namespace is "urn:mySoapServer":

 server = MyServer.new('CoolServer','urn:mySoapServer','localhost',8888)
 trap('INT') { server.shutdown }
 server.start

We trap interrupt signals so that we can stop our server from the command line.

Discussion
We've now built a complete SOAP server. It uses the SOAP StandaloneServer and hosts
one simple sayhelloto method that can be accessed at "http://localhost:8888/
sayhelloto" with a namespace of "urn:mySoapServer".

To test your service, start your server in one Ruby session and then use the simple script
below in another Ruby session to call the method it exposes:

 require 'soap/rpc/driver'
 driver = SOAP::RPC::Driver.new('http://localhost:8888/', 'urn:mySoapServer')
 driver.add_method('sayhelloto', 'username')
 driver.sayhelloto('Kevin') # => "Hello, Kevin."

See Also

• Recipe 15.18, "Exposing Web Services on Your Web Site," shows how to use the XML-
RPC/SOAP server that comes with Rails

• For information on building web service clients, see Recipes 16.2 through 16.3, 16.4
and 16.7.

• Ruby on Rails by Bruce A. Tate and Curt Hibbs (O'Reilly)

Chapter 16. Web Services and Distributed Programming Page 13 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://localhost:8888/sayhelloto
http://localhost:8888/sayhelloto
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-18#rubyckbk-CHP-15-SECT-18

Recipe 16.6. Searching the Web with Google's SOAP Service

Problem
You want to use Google's web services to perform searches and grab their results within
your Ruby application.

Solution
Google exposes a SOAP API to its search functionality, and some other miscellaneous
methods like spellcheck. Call these methods with the SOAP client that comes with Ruby's
standard library:

 $KCODE = 'u' # This lets us parse UTF characters
 require 'soap/wsdlDriver'

 class Google
 @@key = 'JW/JqyXMzCsv7k/dxqR9E9HF+jiSgbDL'
 # Get a key at http://www.google.com/apis/
 @@driver = SOAP::WSDLDriverFactory.
 new('http://api.google.com/GoogleSearch.wsdl').create_rpc_driver

 def self.search(query, options={})
 @@driver.doGoogleSearch(
 @@key,
 query,
 options[:offset] || 0,
 options[:limit] || 10, # Note that this value cannot exceed 10
 options[:filter] || true,
 options[:restricts] || ' ',
 options[:safe_search] || false,
 options[:lr] || ' ',
 options[:ie] || ' ',
 options[:oe] || ' '
)
 end

 def self.count(query, options={})
 search(query, options).estimatedTotalResultsCount
 end

 def self.spell(phrase)
 @@driver.doSpellingSuggestion(@@key, phrase)
 end
 end

Here it is in action:

 Google.count "Ruby Cookbook site:oreilly.com"
 # => 368

 results = Google.search "Ruby Cookbook site:oreilly.com", :limit => 7
 results.resultElements.size
 # => 7

 results.resultElements.first["title"]
 # => "oreilly.com -- Online Catalog: Ruby Cookbook…"

 results.resultElements.first["URL"]
 # => "http://www.oreilly.com/catalog/rubyckbk/"

Chapter 16. Web Services and Distributed Programming Page 14 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 results.resultElements.first["snippet"]
 # => "The Ruby Cookbook is a new addition to …"

 Google.spell "tis is te centence"
 # => "this is the sentence"

Discussion
Each of the options defined in Google.search corresponds to an option in the Google
search API.

Table 16-2.

Name Description

key Unique key provided when you sign up with Google's web services.

query The search query.

limit How many results to grab; the maximum is 10.

offset Which result in the list to start from.

filter Whether or not to let Google group together similar results.

restricts Further restrict search results to those containing this string.

safe_search Whether or not to enable the SafeSearch filtering feature.

lr Language restriction: lets you search for pages in specific languages.

ie Input encoding: lets you choose the character encoding for the query.

oe Output encoding: lets you choose the character encoding for the returned results.

See Also

• For a simpler API, see Recipe 16.7, "Using a WSDL File to Make SOAP Calls Easier"
• http://www.google.com/apis/reference.html
• http://www.google.com/help/refinesearch.html

Recipe 16.7. Using a WSDL File to Make SOAP Calls Easier

Credit: Kevin Marshall

Problem
You need to create a client for a SOAP-based web service, but you don't want to type out
the definitions for all the SOAP methods you'll be calling.

Chapter 16. Web Services and Distributed Programming Page 15 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.google.com/apis/reference.html
http://www.google.com/help/refinesearch.html

Solution
Most web services provide a WSDL file: a machine-readable description of the methods
they offer. Ruby's SOAP WSDL Driver can parse a WSDL file and make the appropriate
methods available automatically.

This code uses the xmethods.com SOAP web service to get a stock price. In Recipe 16.7,
we defined the getQuote method manually. Here, its name and signature are loaded from
a hosted WSDL file. You still have to know that the method is called getQuote and that
it takes one string, but you don't have to write any code telling Ruby this.

 require 'soap/wsdlDriver'
 wsdl = 'http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl'
 driver = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

 puts "Stock price: %.2f" % driver.getQuote('TR')
 # Stock price: 28.78

Discussion
According to the World Wide Web Consortium (W3), "WSDL service definitions provide
documentation for distributed systems and serve as a recipe for automating the details
involved in applications communication."

What this means to you is that you don't have to tell Ruby which methods a web service
provides, and what arguments it expects. If you feed a WSDL file in to the Driver Factory,
Ruby will give you a Driver object with all the methods already defined.

There are only a few things you need to know to build useful SOAP clients with a WSDL
file. I'll illustrate with some code that performs a Google search and prints out the results.

1. Start with the URL to the WSDL file:

 require 'soap/wsdlDriver'
 wsdl = 'http://api.google.com/GoogleSearch.wsdl'
 driver = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

2. Next you need the name of the SOAP method you want to call, and the expected types
of its parameters:

 my_google_key = 'get yours from https://www.google.com/accounts'
 my_query = 'WSDL Ruby'
 XSD::Charset.encoding = 'UTF8'
 result = driver.doGoogleSearch(my_google_key, my_query, 0, 10, false,
 '', false, '', '', '')

Chapter 16. Web Services and Distributed Programming Page 16 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Without WSDL, you need to tell Ruby that methods a web service exposes, and what
parameters it takes. With WSDL, Ruby loads this information from the WSDL file. Of
course, you still need to know this information so you can write the method call. In
this case, you'll also need to sign up for an API key that lets you use the web service.

The Google search service returns data encoded as UTF-8, which may contain special
characters that cause mapping problems to Ruby strings. That's what the call to
XSD::Charset.encoding = 'UTF8' is for. The Soap4r and WSDL Factory
libraries rely on the XSD library to handle the data type conversions from web services
to native Ruby types. By explicitly telling Ruby to use UTF-8 encoding, you'll ensure
that any special characters are properly escaped within your results so you can treat
them as proper Ruby Strings.

 result.class
 # => SOAP::Mapping::Object

 (result.methods - SOAP::Mapping::Object.instance_methods).sort
 # => ["directoryCategories", "directoryCategories=", "documentFiltering",
 # …
 # "searchTips", "searchTips=", "startIndex", "startIndex="]

3. Here's how to treat the result object you get back:

 "Query for: #{my_query}"
 # => "Query for: WSDL Ruby"
 "Found: #{result['estimatedTotalResultsCount']}"
 # => "Found: 159000"
 "Query took about %.2f seconds" % result['searchTime']
 # => "Query took about 0.05 seconds"

 result["resultElements"].each do |rec|
 puts "Title: #{rec["title"]}"
 puts "URL: #{rec["URL"]}"
 puts "Snippet: #{rec["snippet"]}"
 puts
 end
 # Title: wsdl: Ruby Standard Library Documentation
 # URL: http://www.ruby-doc.org/stdlib/libdoc/wsdl/rdoc/index.html
 # Snippet: #<SOAP::Mapping::Object:0xb705f560>
 #
 # Title: how to make SOAP4R read WSDL files?
 # URL: http://www.ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/37623
 # Snippet: Subject: how to make SOAP4R read WSDL files? …
 # …

We expect the Google search service to return a complex SOAP type. The XSD library
will convert it into a Ruby hash, containing some keys like
EstimatedTotalResultsCount and resultElements—the latter points to an
array of search results. Every search result is itself a complex type, and XSD maps it
to a hash as well: a hash with keys like snippet and URL.

Chapter 16. Web Services and Distributed Programming Page 17 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 16.4, "Writing a SOAP Client," provides a more generic example of a SOAP
client

• Recipe 16.6, "Searching the Web with Google's SOAP Service," shows what searching
Google would be like without WSDL

• https://www.google.com/accounts to get an access key to Google Web APIs

Recipe 16.8. Charging a Credit Card

Problem
You want to charge a credit card from within your Ruby application.

Solution
To charge credit cards online, you need an account with a credit card merchant. Although
there are many to choose from, Authorize.Net is one of the best and most widely used. The
payment library encapsulates the logic of making a credit card payments with
Authorize.Net, and soon it will support other gateways as well. It's available as the
payment gem.

 require 'rubygems'
 require 'payment/authorize_net'

 transaction = Payment::AuthorizeNet.new(
 :login => 'username',
 :transaction_key => 'my_key',
 :amount => '49.95',
 :card_number => '4012888818888',
 :expiration => '0310',
 :first_name => 'John',
 :last_name => 'Doe'
)

The submit method sends a payment request. If there's a problem with your payment
(probably due to an invalid credit card), the submit method will raise a
Payment::PaymentError:

 begin
 transaction.submit
 puts "Card processed successfully: #{transaction.authorization}"
 rescue Payment::PaymentError
 puts "Card was rejected: #{transaction.error_message}"
 end
 # Card was rejected: The merchant login ID or password is invalid
 # or the account is inactive.

Chapter 16. Web Services and Distributed Programming Page 18 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

https://www.google.com/accounts

Discussion
Some of the information sent during initialization of the Payment::AuthorizeNet class
represent your account with Authorize.Net, and will never change (at least, not for the
lifetime of the account). You can store this information in a YAML file called .payment.yml
in your home directory, and have the payment library load it automatically.
A .payment.yml file might look like this:

 login: username
 transaction_key: my_key

That way you don't have to hardcode login and transaction_key within your Ruby
code.

If you're using the payment library from within a Rails application, you might want to put
your YAML hash in the config directory with other configuration files, instead of in your
home directory. You can override the location for the defaults file by specifying the :prefs
key while initializing the object:

 payment = Payment::AuthorizeNet
 .new(:prefs => "#{RAILS_ROOT}/config/payment.yml")
 payment.amount = 20
 payment.card_number = 'bogus'
 payment.submit rescue "That didn't work"

Notice that after the Payment::AuthorizeNet object has been initialized, you can
change its configuration with accessor methods.

Like most online merchants, Authorize.Net uses its own XML-formatted responses to do
transactions over HTTPS. Some merchants, such as Payflow Pro, use proprietary interfaces
to their backend that require a bridge with their Java or C libraries. If you're using Ruby,
this approach can be cumbersome and difficult. It's worth investing some time into
researching how flexible the backend is before you decide on a merchant platform for your
Ruby application.

See Also

• Recipe 2.17, "Checking a Credit Card Checksum"
• The online RDoc for the payment library (http://payment.rubyforge.org/)
• http://authorize.net/

Recipe 16.9. Finding the Cost to Ship Packages via UPS or FedEx

Chapter 16. Web Services and Distributed Programming Page 19 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-17#rubyckbk-CHP-2-SECT-17
http://payment.rubyforge.org/
http://authorize.net/

Problem
You want to calculate the cost to ship any item with FedEx or UPS. This is useful if you're
running an online store.

Solution
FedEx and UPS provide web services that can query information on pricing as well as
retrieve shipping labels. The logic for using these services has been encapsulated within the
shipping gem:

 require 'rubygems'
 require 'shipping'

 ship = Shipping::Base.new(
 :fedex_url => 'https://gatewaybeta.fedex.com/GatewayDC',
 :fedex_account => '123456789',
 :fedex_meter => '387878',

 :ups_account => '7B4F74E3075AEEFF',
 :ups_user => 'username',
 :ups_password => 'password',

 :sender_zip => 10001 # It's shipped from Manhattan.
)

 ship.weight = 2 # It weighs two pounds.
 ship.city = 'Portland'
 ship.state = 'OR'
 ship.zip = 97202

 ship.ups.price # => 8.77
 ship.fedex.price # => 5.49
 ship.ups.valid_address? # => true

If you have a UPS account or a FedEx account, but not both, you can omit the account
information you don't have, and instantiate a Shipping::UPS or a Shipping::FedEx
object.

Discussion
You can either specify your account information during the initialization of the object (as
above) or in a YAML hash. It's similar to the payment library described in Recipe 16.8. If
you choose to use the YAML hash, you can specify the account information in a file
called .shipping.yml within the home directory of the user running the Ruby program:

 fedex_url: https://gatewaybeta.fedex.com/GatewayDC
 fedex_account: 1234556
 fedex_meter: 387878

 ups_account: 7B4F74E3075AEEFF
 ups_user: username
 ups_password: password

Chapter 16. Web Services and Distributed Programming Page 20 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But your directory is not a good place to keep a file being used by a Rails application. Here's
how to move the .shipping file into a Rails application:

 ship = Shipping::FedEx.new(:prefs => "#{RAILS_ROOT}/config/shipping.yml")
 ship.sender_zip = 10001
 ship.zip = 97202
 ship.state = 'OR'
 ship.weight = 2

 ship.price > ship.discount_price # => true

Notice the use of ship.discount_price to find the discounted price; if you have an
account with FedEx or UPS, you might be eligible for discounts.

See Also

• http://shipping.rubyforge.org/
• Recipe 16.8, "Charging a Credit Card"

Recipe 16.10. Sharing a Hash Between Any Number of Computers

Credit: James Edward Gray II

Problem
You want to easily share some application data with remote programs. Your needs are as
trivial as, "What if all the computers could share this hash?"

Solution
Ruby's built-in DRb library can share Ruby objects across a network. Here's a simple hash
server:

 #!/usr/local/ruby -w
 # drb_hash_server.rb
 require 'drb'

 # Start up DRb with a URI and a hash to share
 shared_hash = {:server => 'Some data set by the server' }
 DRb.start_service('druby://127.0.0.1:61676', shared_hash)
 puts 'Listening for connection…'
 DRb.thread.join # Wait on DRb thread to exit…

Run this server in one Ruby session, and then you can run a client in another:

 require 'drb'

Chapter 16. Web Services and Distributed Programming Page 21 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://shipping.rubyforge.org/

 # Prep DRb
 DRb.start_service
 # Fetch the shared object
 shared_data = DRbObject.new_with_uri('druby://127.0.0.1:61676')

 # Add to the Hash
 shared_data[:client] = 'Some data set by the client'
 shared_data.each do |key, value|
 puts "#{key} => #{value}"
 end
 # client => Some data set by the client
 # server => Some data set by the server

Discussion
If this looks like magic, that's the point. DRb hides the complexity of distributed
programming. There are some complications (covered in later recipes), but for the most
part DRb simply makes remote objects look like local objects.

The solution given above may meet your needs if you're working with a single server and
client on a trusted network, but applications aren't always that simple. Issues like thread-
safety and security may force you to find a more robust solution. Luckily, that doesn't
require too much more work.

Let's take thread-safety first. Behind the scenes, a DRb server handles each client
connection in a separate Ruby thread. Ruby's Hash class is not automatically thread-safe,
so we need to do a little extra work before we can reliably share a hash between multiple
concurrent users.

Here's a library that uses delegation to implement a thread-safe hash. A ThreadsafeHash
object delegates all its method calls to an underlying Hash object, but it uses a Mutex to
ensure that only one thread (or DRb client) can have access to the hash at a time.

 # threadsafe_hash.rb
 require 'rubygems'
 require 'facet/basicobject' # For the BasicObject class
 require 'thread' # For the Mutex class

We base our thread-safe hash on the BasicObject class in the Facets More library
(available as the facets_more gem). A BasicObject is an ordinary Ruby object, except
it defines no methods at all—not even the methods of Object. This gives us a blank slate
to work from. We can make sure that every single method of ThreadsafeHash gets
forwarded to the underlying hash, even methods like inspect, which are defined by Object
and which wouldn't normally trigger method_missing.

 # A thread-safe Hash that delegates all its methods to a real hash.
 class ThreadsafeHash < BasicObject
 def initialize(*args, &block)
 @hash = Hash.new(*args, &block) # The shared hash
 @lock = Mutex.new # For thread safety
 end

Chapter 16. Web Services and Distributed Programming Page 22 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def method_missing(method, *args, &block)
 if @hash.respond_to? method # Forward Hash method calls…
 @lock.synchronize do # but wrap them in a thread safe lock.
 @hash.send(method, *args, &block)
 end
 else
 super
 end
 end
 end

The next step is to build a RemoteHash using BlankSlate. The implementation is trivial.
Just forward method calls onto the Hash, but wrap each of them in a synchronization block
in order to ensure only one thread can affect the object at a time.

Now that we have a thread-safe RemoteHash, we can build a better server:

 #!/usr/bin/ruby -w
 # threadsafe_hash_server.rb

 require 'threadsafe_hash' # both sides of DRb connection need all classes
 require 'drb'

We begin by pulling in our RemoteHash library and DRb:

 $SAFE = 1 # Minimum acceptable paranoia level when sharing code!

The $SAFE=1 line is critical! Don't put any code on a network without a minimum of
$SAFE=1. It's just too dangerous. Malicious code, like obj.instance_eval("`rm -
rf / *`"), must be controlled. Feel free to raise $SAFE even higher, in fact.

 # Start up DRb with a URI and an object to share.
 DRb.start_service('druby://127.0.0.1:61676', Threadsafe.new)
 puts 'Listening for connection…'
 DRb.thread.join # wait on DRb thread to exit…

We're now ready to start the DRb service, which we do with a URI and an object to share.
If you don't want to allow external connections, you may want to replace "127.0.0.1" with
"localhost" in the URI.

Since DRb runs in its own threads, the final line of the server is needed to ensure that we
don't exit before those threads have done their job.

Run that code, and then you can run this client code to share a hash:

 #!/usr/bin/ruby
 # threadsafe_hash_client.rb

 require 'remote_hash' # Both sides of DRb connection need all classes
 require 'drb'

Chapter 16. Web Services and Distributed Programming Page 23 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Prep DRb
 DRb.start_service

 # Fetch the shared hash
 $shared_data = DRbObject.new_with_uri('druby://127.0.0.1:61676')

 puts 'Enter Ruby commands using the shared hash $shared_data…'
 require 'irb'
 IRB.start

Here again we pull in the needed libraries and point DRb at the served object. We store
that object in a variable so that we can continue to access it as needed.

Then, just as an example of what can be done, we enter an IRb session, allowing you to
manipulate the variable any way you like. Remember, any number of clients can connect
and share this hash.

Let's illustrate some sample sessions. In the first one, we add some data to the hash:

 $ ruby threadsafe_hash_client.rb
 Enter Ruby commands using the shared hash $shared_data…
 irb(main):001:0> $shared_data.keys
 => []
 irb(main):002:0> $shared_data[:terminal_one] = 'Hello other terminals!'
 => "Hello other terminals!"

Let's attach a second client and see what the two of them find:

 $ ruby threadsafe_hash_client.rb
 Enter Ruby commands using the shared hash $shared_data…
 irb(main):001:0> $shared_data.keys
 => [:terminal_one]
 irb(main):002:0> $shared_data[:terminal_one]
 => "Hello other terminals!"
 irb(main):003:0> $shared_data[:terminal_two] = 'Is this thing on?'
 => "Is this thing on?"

Going back to the first session, we can see the new data:

 irb(main):003:0> $shared_data.each_pair do |key, value|
 irb(main):004:1* puts "#{key} => #{value}"
 irb(main):005:1> end
 terminal_one => Hello other terminals!
 terminal_two => Is this thing on?

Notice that, as you'd hope, the DRb magic can even cope with a method that takes a code
block.

See Also

• There is a good beginning tutorial for DRb at http://www.rubygarden.org/ruby?
DrbTutorial

Chapter 16. Web Services and Distributed Programming Page 24 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubygarden.org/ruby?DrbTutorial
http://www.rubygarden.org/ruby?DrbTutorial

• There is a helpful DRb presentation by Mark Volkmann in the "Why Ruby?" repository
at http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf

• The standard library documentation for DRb can be found at http://www.ruby-
doc.org/stdlib/libdoc/drb/rdoc/index.html

• For more on the internal workings of the thread-safe hash, see Recipe 8.8, "Delegating
Method Calls to Another Object," and Recipe 20.4, "Synchronizing Access to an
Object"

• Recipe 20.11, "Avoiding Deadlock," for another common problem with multi-
threaded programming

Recipe 16.11. Implementing a Distributed Queue

Credit: James Edward Gray II

Problem
You want to use a central server as a workhorse, queueing up requests from remote clients
and handling them one at a time.

Solution
Here's a method that shares a Queue object with clients. Clients put job objects into the
queue, and the server handles them by yielding them to a code block. #!/usr/bin/ruby

 #!/usr/bin/ruby
 # queue_server.rb

 require 'thread' # For Ruby's thread-safe Queue
 require 'drb'

 $SAFE = 1 # Minimum acceptable paranoia level when sharing code!

 def run_queue(url='druby://127.0.0.1:61676')
 queue = Queue.new # Containing the jobs to be processed

 # Start up DRb with URI and object to share
 DRb.start_service(url, queue)
 puts 'Listening for connection…'
 while job = queue.deq
 yield job
 end
 end

Have your server call run_queue, passing in a code block that handles a single job. Every
time one of your clients puts a job into the server queue, the server passes the job into the
code block. Here's a sample code block that can handle a fast-running job ("Report") or a
slow-running job ("Process"):

Chapter 16. Web Services and Distributed Programming Page 25 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/drb/rdoc/index.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-8#rubyckbk-CHP-8-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-4#rubyckbk-CHP-20-SECT-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-11#rubyckbk-CHP-20-SECT-11

 run_queue do |job|
 case job['request']
 when 'Report'
 puts "Reporting for #{job['from']}… Done."
 when 'Process'
 puts "Processing for #{job['from']}…"
 sleep 3 # Simulate real work
 puts 'Processing complete.'
 end
 end

If we get a couple of clients sending in requests, output might look like this:

 $ ruby queue_server.rb
 Listening for connection…

 Processing for Client 1…
 Processing complete.
 Processing for Client 2…
 Processing complete.
 Reporting for Client 1… Done.
 Reporting for Client 2… Done.
 Processing for Client 1…
 Processing complete.
 Reporting for Client 2… Done.
 …

Discussion
A client for the queue server defined in the Solution simply needs to connect to the DRB
server and add a mix of "Report" and "Process" jobs to the queue. Here's a client that
connects to the DRb server and adds 20 jobs to the queue at random:

 #!/usr/bin/ruby
 # queue_client.rb

 require 'thread'
 require 'drb'

 # Get a unique name for this client
 NAME = ARGV.shift or raise "Usage: #{File.basename($0)} CLIENT_NAME"

 DRb.start_service
 queue = DRbObject.new_with_uri("druby://127.0.0.1:61676")

 20.times do
 queue.enq('request' => ['Report', 'Process'][rand(2)], 'from' => NAME)
 sleep 1 # simulating network delays
 end

Everything from Recipe 16.10 applies here. The major difference is that Ruby ships with
a thread-safe Queue. That saves us the trouble of building our own.

See Also

• Recipe 16.10

Chapter 16. Web Services and Distributed Programming Page 26 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 16.12. Creating a Shared "Whiteboard"

Credit: James Edward Gray II

Problem
You want to create the network equivalent of a whiteboard. Remote programs can place
Ruby objects up on the board, examine objects on the board, or remove objects from the
board.

Solution
You could just use a synchronized hash (as in Recipe 16.10), but Rinda[6] provides a data
structure called a TupleSpace that is optimized for distributed programming. It works
well when you have some clients putting data on the whiteboard, and other clients
processing the data and taking it down.

[6] Rinda is a companion library to DRb. It's a Ruby port of the Linda distributed computing environment, which is based on the idea of the tuplespace. It's similar to
JavaSpaces.

Let's create an application that lets clients on different parts of the network translate each
others' sentences, and builds a translation dictionary as they work.

It's easier to see the architecture of the server if you see the clients first, so here's a client
that adds some English sentences to a shared TupleSpace:

 #!/usr/bin/ruby -w
 # english_client.rb
 require 'drb'
 require 'rinda/tuplespace'

 # Connect to the TupleSpace…
 DRb.start_service
 tuplespace = Rinda::TupleSpaceProxy.new(
 DRbObject.new_with_uri('druby://127.0.0.1:61676')
)

The English client's job is to split English sentences into words and to add each sentence
to the whiteboard as a tuple: [unique id, language, words].

 counter = 0
 DATA.each_line do |line|
 tuplespace.write([(counter += 1), 'English', line.strip.split])
 end

 __END__
 Ruby programmers have more fun
 Ruby gurus are obsessed with ducks
 Ruby programmers are happy programmers

Chapter 16. Web Services and Distributed Programming Page 27 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a second client. It creates a loop that continually reads all the English sentences
from the TupleSpace and puts up word-for-word translations into Pig Latin. It uses
Tuplespace#read to read English-language tuples off the whiteboard without removing
them.

 require 'drb'
 require 'rinda/tuplespace'
 require 'set'

 DRb.start_service
 tuplespace = Rinda::TupleSpaceProxy.new(
 DRbObject.new_with_uri('druby://127.0.0.1:61676')
)

 # Track of the IDs of the sentences we've translated
 translated = Set.new

 # Continually read English sentences off of the board.
 while english = tuplespace.read([Numeric, 'English', Array])
 # Skip anything we've already translated.
 next if translated.member? english.first
 translated << english.first

 # Translate English to Pig Latin.
 pig_latin = english.last.map do |word|
 if word =~ /^[aeiou]/i
 "#{word}way"
 elsif word =~ /^([^aeiouy]+)(.+)$/i
 "#{$2}#{$1.downcase}ay"
 end
 end

 # Write the Pig Latin translation back onto the board
 tuplespace.write([english.first, 'Pig Latin', pig_latin])
 end

Finally, here's the language server: the code that exposes a TupleSpace for the two clients
to use. It also acts as a third client of the TupleSpace: it continually takes non-English
sentences down off of the whiteboard (using the destructive TupleSpace#take method)
and matches them word-for-word with the corresponding English sentences (which it also
removes from the whiteboard). In this way it gradually builds an English-to-Pig Latin
dictionary, which it serializes to disk with YAML:

 #!/usr/bin/ruby -w
 # dictionary_building_server.rb
 require 'drb'
 require 'yaml'
 require 'rinda/tuplespace'

 # Create a TupleSpace and serve it to the world.
 tuplespace = Rinda::TupleSpace.new
 DRb.start_service('druby://127.0.0.1:61676', tuplespace)

 # Create a dictionary to hold the terms we have seen.
 dictionary = Hash.new
 # Remove non-English sentences from the board.
 while translation = tuplespace.take([Numeric, /^(?!English)/, Array])
 # Match each with its English equivalent.
 english = tuplespace.take([translation.first, 'English', Array])
 # Match up the words, and save the dictionary.
 english.last.zip(translation.last) { |en, tr| dictionary[en] = tr }

Chapter 16. Web Services and Distributed Programming Page 28 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 File.open('dictionary.yaml', 'w') { |file| YAML.dump(dictionary, file) }
 end

If you run the server and then the two clients, the server will spit out a dictionary.yaml
file that shows how much it has already learned:

 $ ruby dictionary_building_server.rb &
 $ ruby english_client.rb
 $ ruby pig_latin_client.rb &

 $ cat dictionary.yaml

 happy: appyhay
 programmers: ogrammerspray
 Ruby: ubyray
 gurus: urusgay
 ducks: ucksday
 obsessed: obsessedway
 have: avehay
 are: areway
 fun: unfay
 with: ithway
 more: oremay

Discussion
Rinda's TupleSpace class is pretty close to the network equivalent of a whiteboard. A
"tuple" is just an ordered sequence—in this case, an array of Ruby objects. A TupleSpace
holds these sequences and provides an interface to them.

You can add sequences of objects to the TupleSpace using TupleSpace#write. Later,
the same or different code can query the object using TupleSpace#read or
TupleSpace#take. The only difference is that TupleSpace#take is destructive; it
removes the object from the TupleSpace as it's read.

You can select certain tuples by passing TupleSpace#read or TupleSpace#take a
template that matches the tuples you seek. A template is just another tuple. In the example
code, we used templates like [Numeric, 'English', Array]. Each element of a tuple
is matched against the corresponding element of a template with the === operator, the
same operator used in Ruby case statements.

That particular template will match any three-element tuple whose first element is a
Numeric object, whose second element is the literal string 'English', and whose third
element is an Array object: that is, all the English sentences currently on the whiteboard.

You can create templates containing any kind of object that will work with the ===
operator: for instance, a Regexp object in a template can match against strings in a tuple.
Any nil slot in a template is a wildcard slot that will match anything.

Chapter 16. Web Services and Distributed Programming Page 29 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The DRb presentation by Mark Volkmann in the "Why Ruby?" repository at http://
rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf has some material
on TupleSpaces

• Clients can also choose to be notified of TupleSpace events; you can see an example
at http://ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/159065

Recipe 16.13. Securing DRb Services with Access Control Lists

Credit: James Edward Gray II

Problem
You want to keep everybody in the world (literally!) from having access to your DRb service.
Instead you want to control which hosts can, and cannot, connect.

Solution
Here's the simple shared hash from Recipe 16.10, only this time it's locked down with DRb's
ACL (access control list) class:

 #!/usr/bin/ruby
 # acl_hash_server.rb

 require 'drb'
 require 'drb/acl'

 # Setup the security--remember to call before DRb.start_service()
 DRb.install_acl(ACL.new(%w{ deny all
 allow 192.168.1.*
 allow 127.0.0.1 }))
 # Start up DRb with a URI and a hash to share
 shared_hash = {:server => 'Some data set by the server' }
 DRb.start_service("druby://127.0.0.1:61676", shared_hash)
 puts 'Listening for connection…'
 DRb.thread.join # Wait on DRb thread to exit…

Discussion
If you bind your DRb server to localhost, it'll only be accessible to other Ruby processes
on your computer. That's not very distributed. But if you bind your DRb server to some
other hostname, anyone on your local network (if you've got a local network) or anyone
on the Internet at large will be able to share your Ruby objects. You're probably not feeling
that generous.

Chapter 16. Web Services and Distributed Programming Page 30 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf
http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf
http://ruby-talk.org/cgi-bin/scat.rb/ruby/ruby-talk/159065

DRb's ACL class provides simple white/blacklist security similar to that used by the Unix /
etc/hosts.allow and /etc/hosts.deny files. The ACL constructor takes an array of
strings. The first string of a pair is always "allow" or "deny", and it's followed by the address
or addresses to allow or deny access.

String addresses can include wildcards ("**"), as shown in the solution, to allow or deny
an entire range of addresses. The ACL class also understands the term "all," and your first
address should be either "deny all" or (less likely) "allow all". Subsequent entries can relax
or restrict access, as needed.

In the Solution above, the default is to deny access. Exceptions are carved out afterwards
for anyone on the local IP network (192.168.1.**) and anyone on the same host as the server
itself (127.0.0.1). A public DRb server might allow access by default, and deny access only
to troublesome client IPs.

See Also

• Recipe 16.10, "Sharing a Hash Between Any Number of Computers"

Recipe 16.14. Automatically Discovering DRb Services with Rinda

Credit: James Edward Gray II

Problem
You want to distribute Ruby code across your local network without hardcoding the clients
with the addresses of the servers.

Solution
Using Ruby's standard Rinda library, it's easy to provide zero-configuration networking
for clients and services. With Rinda, machines can discover DRb services without providing
any addresses. All you need is a running RingServer on the local network:

 #!/usr/bin/ruby
 # rinda_server.rb

 require 'rinda/ring' # for RingServer
 require 'rinda/tuplespace' # for TupleSpace

 DRb.start_service

 # Create a TupleSpace to hold named services, and start running.
 Rinda::RingServer.new(Rinda::TupleSpace.new)

 DRb.thread.join

Chapter 16. Web Services and Distributed Programming Page 31 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The RingServer provides automatic service detection for DRb servers. Any machine on
your local network can find the local RingServer without knowing its address. Once it's
found the server, a client can look up services and use them, not having to know the
addresses of the DRb servers that host them.

To find the Rinda server, a client broadcasts a UDP packet asking for the location of a
RingServer. All computers on the local network will get this packet, and if a computer
is running a RingServer, it will respond with its address. A server can use the
RingServer to register services; a client can use the RingServer to look up services.

A RingServer object keeps a service listing in a shared TupleSpace (see Recipe
16.12). Each service has a corresponding tuple with four members:

• The literal symbol :name, which indicates that the tuple is an entry in the
RingServer namespace.

• The symbol of a Ruby class, indicating the type of the service.
• The DRbObject shared by the service.
• A string description of the service.

By retrieving this TupleSpace remotely, you can look up services as tuples and advertise
your own services. Let's advertise an object (a simple TupleSpace) through the
RingServer under the name :TupleSpace:

 #!/usr/bin/ruby
 # share_a_tuplespace.rb

 require 'rinda/ring' # for RingFinger and SimpleRenewer
 require 'rinda/tuplespace' # for TupleSpace

 DRb.start_service
 ring_server = Rinda::RingFinger.primary

 # Register our TupleSpace service with the RingServer
 ring_server.write([:name, :TupleSpace, Rinda::TupleSpace.new, 'Tuple Space'],
 Rinda::SimpleRenewer.new)

 DRb.thread.join

The SimpleRenewer sent in with the namespace listing lets the RingServer periodically
check whether the service has expired.

Now we can write clients that find this service by querying the RingServer, without
having to know which machine it lives on. All we need to know is the name of the service:

 #!/usr/bin/ruby
 # use_a_tuplespace.rb

Chapter 16. Web Services and Distributed Programming Page 32 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'rinda/ring' # for RingFinger
 require 'rinda/tuplespace' # for TupleSpaceProxy

 DRb.start_service
 ring_server = Rinda::RingFinger.primary

 # Ask the RingServer for the advertised TupleSpace.
 ts_service = ring_server.read([:name, :TupleSpace, nil, nil])[2]
 tuplespace = Rinda::TupleSpaceProxy.new(ts_service)

 # Now we can use the object normally:
 tuplespace.write([:data, rand(100)])
 puts "Data is #{tuplespace.read([:data, nil]).last}."
 # Data is 91.

These two programs locate each other without needing hardcoded IP addresses. Addresses
are still being used under the covers, but the address to the Rinda server is discovered
automatically through UDP, and all the other addresses are kept in the Rinda server.

Rinda::RingFinger.primary stores the first RingServer to respond to your Ruby
process's UDP packet. If your local network is running more than one RingServer, the
first one to respond might not be the one with the service you want, so you should probably
only run one RingServer on your network. If you do have more than one
RingServer, you can iterate over them with Rinda::RingFinger#each.

See Also

• Recipe 16.12, "Creating a Shared "Whiteboard"
• Recipe 16.18, "A Remote-Controlled Jukebox"
• Eric Hodel has a Rinda::RingServer tutorial at http://segment7.net/projects/ruby/

drb/rinda/ringserver.html

Recipe 16.15. Proxying Objects That Can't Be Distributed

Credit: James Edward Gray II

Problem
You want to allow classes to connect to your DRb server, without giving the server access
to the class definition. Perhaps you've given clients an API to implement, and you don't
want to make everyone send you the source to their implementations just so they can
connect to the server.

…OR…

Chapter 16. Web Services and Distributed Programming Page 33 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://segment7.net/projects/ruby/drb/rinda/ringserver.html
http://segment7.net/projects/ruby/drb/rinda/ringserver.html

You have some code that is tied to local resources: database connections, log files, or even
just the closure aspect of Ruby's blocks. You want this code to interact with a DRb server,
but it must be run locally.

…OR…

You want to send an object to a DRb server, perhaps as a parameter to a method; but you
want the server to notice changes to that object as your local code modifies it.

Solution
Rather than sending an object to the server, you can ask DRb to send a proxy instead. When
the server acts on the proxy, a description of the act will be sent across the network. The
client end will actually perform the action. In effect, you've partially switched the roles of
the client and the server.

You can set up a proxy in two simple steps. First, make sure your client code includes the
following line before it interacts with any server objects:

 DRb.start_service # The client needs to be a DRb service too.

That's generally just a good habit to get into with DRb client code, because it allows DRb to
magically support some constructs (like Ruby's blocks) by sending a proxy object when
necessary. If you're intentionally trying to send a proxy, it becomes essential.

As long as your client is a DRb service of its own, you can proxy all objects made from a
specific class or individual objects by including the DRbUndumped module:

 class MyLocalClass
 include DRbUndumped # The magic line. All objects of this type are proxied.
 # …
 end

 # … OR …

 my_local_object.extend DRbUndumped # Proxy just this object.

Discussion
Under normal circumstances, DRb is very simple. A method call is packaged up (using
Marshal) as a target object, method name, and some arguments. The resulting object is
sent over the wire to the server, where it's executed. The important thing to notice is that
the server receives copies of the original arguments.

The server unmarshals the data, invokes the method, packages the result, and sends it
back. Again, the result objects are copied to the client.

Chapter 16. Web Services and Distributed Programming Page 34 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But that process doesn't always work. Perhaps the server needs to pass a code block into
a method call. Ruby's blocks cannot be serialized. DRb notices this special case and sends
a proxy object instead. As the server interacts with the proxy, the calls are bundled up and
sent back to you, just as described above, so everything just works.

But DRb can't magically notice all cases where copying is harmful. That's why you need
DRbUndumped. By extending an object with DRbUndumped, you can force DRb to send a
proxy object instead of the real object, and ensure that your code stays local.

If all this sounds confusing, a simple example will probably clear it right up. Let's code up
a trivial hello server:

 #!/usr/bin/ruby
 # hello_server.rb
 require 'drb'

 # a simple greeter class
 class HelloService
 def hello(in_stream, out_stream)
 out_stream.puts 'What is your name?'
 name = in_stream.gets.strip
 out_stream.puts "Hello #{name}."
 end
 end

 # start up DRb with URI and object to share
 DRb.start_service('druby://localhost:61676', HelloService.new)
 DRb.thread.join # wait on DRb thread to exit…

Now we try connecting with a simple client:

 #!/usr/bin/ruby
 # hello_client.rb
 require 'drb'

 # fetch service object and ask it to greet us…
 hello_service = DRbObject.new_with_uri('druby://localhost:61676')
 hello_service.hello($stdin, $stdout)

Unfortunately, that yields an error message. Obviously, $stdin and $stdout are local
resources that won't be available from the remote service. We need to pass them by proxy
to get this working:

 #!/usr/bin/ruby
 # hello_client2.rb
 require 'drb'

 DRb.start_service # make sure client can serve proxy objects…
 # and request that the streams be proxied
 $stdin.extend DRbUndumped
 $stdout.extend DRbUndumped

 # fetch service object and ask it to greet us…
 hello_service = DRbObject.new_with_uri('druby://localhost:61676')
 hello_service.hello($stdin, $stdout)

Chapter 16. Web Services and Distributed Programming Page 35 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

With that client, DRb has remote access to the streams (through the proxy objects) and can
read and write them as needed.

See Also

• Recipe 16.10, "Sharing a Hash Between Any Number of Computers"
• Eric Hodel's "Introduction to DRb" covers DRbUndumped (http://segment7.net/

projects/ruby/drb/introduction.html)
• The DRb presentation by Mark Volkmann in the "Why Ruby?" repository at http://

rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf has some material
on DRbUndumped

Recipe 16.16. Storing Data on Distributed RAM with MemCached

Credit: Ben Bleything with Michael Granger

Problem
You need a lightweight, persistent storage space, and you have systems on your network
that have unused RAM.

Solution
memcached provides a distributed in-memory cache. When used with a Ruby client
library, it can be used to store almost any Ruby object. See the Discussion section below
for more information, and details of where to get memcached.

In this example, we'll use Michael Granger's Ruby-MemCache library, available as the
Ruby-MemCache gem.

Assume you have a memcached server running on the machine at IP address 10.0.1.201.
You can use the memcache gem to access the cache as though it were a local hash. This
Ruby code will store a string in the remote cache:

 require 'rubygems'
 require 'memcache'

 MC = MemCache.new '10.0.1.201'

 MC[:test] = 'This string lives in memcached!'

The string has been placed in your memcached with the key :test. You can fetch it from
a different Ruby session:

Chapter 16. Web Services and Distributed Programming Page 36 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://segment7.net/projects/ruby/drb/introduction.html
http://segment7.net/projects/ruby/drb/introduction.html
http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf
http://rubyforge.org/docman/view.php/251/216/DistributedRuby.pdf

 require 'rubygems'
 require 'memcache'

 MC = MemCache.new '10.0.1.201'

 MC[:test] # => "This string lives in memcached!"

You can also place more complex objects in memcached. In fact, any object that can be
serialized with Marshal.dump can be placed in memcached. Here we store and retrieve
a hash:

 hash = {
 :roses => 'are red',
 :violets => 'are blue'
 }

 MC[:my_hash] = hash
 MC[:my_hash][:roses] # => "are red"

Discussion
memcached was originally designed to alleviate pressure on the database servers for
LiveJournal.com. For more information about how memcached can be used for this kind
of purpose, see Recipe 16.17.

memcached provides a lightweight, distributed cache space where the cache is held in
RAM. This makes the cache extremely fast, and it never blocks on disk I/O. When
effectively deployed, memcached can significantly reduce the load on your database
servers by farming out storage to unused RAM on other machines.

To start using memcached, you'll need to download the server (see below). You can install
it from source, or get it via most *nix packaging systems.

Next, find some machines on your network that have extra RAM. Install memcached on
them, then start the daemon with this command:

 $ memcached -d -m 1024

This starts up a memcached instance with a 1024-megabyte memory cache (you can, of
course, vary the cache size as appropriate for your hardware). If you run this command on
the machine with IP address 10.0.1.201, you can then access it from other machines on
your local network, as in the examples above.

memcached also supports more advanced functions, such as conditional sets and
expiration times. You can also combine multiple machines into a single virtual cache. For

Chapter 16. Web Services and Distributed Programming Page 37 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

more information about these possibilities, refer to the memcached documentation and
to the documentation for the Ruby library that you're using.

See Also

• Recipe 13.2, "Serializing Data with Marshal"
• Recipe 16.7, "Using a WSDL File to Make SOAP Calls Easier"
• The memcached homepage, located at http://danga.com/memcached/, contains

further information about memcached, documentation, and links to client libraries
for other languages; there is also a mailing list at http://lists.danga.com/mailman/
listinfo/memcached

• The Ruby-MemCache homepage is at http://deveiate.org/projects/RMemCache; if
you install Ruby-MemCache from source, you'll also need to install IO::Reactor
(http://deveiate.org/projects/IO-Reactor)

• The Robot Co-op has released their own memcached library, memcache-client,
available at http://dev.robotcoop.com/Libraries/ or via the memcache-client
gem; it is reported to be API-compatible with Ruby-MemCache

Recipe 16.17. Caching Expensive Results with MemCached

Credit: Michael Granger with Ben Bleything

Problem
You want to transparently cache the results of expensive operations, so that code that
triggers the operations doesn't need to know how to use the cache. The memcached
program, described in Recipe 16.16, lets you use other machines' RAM to store key-value
pairs. The question is how to hide the use of this cache from the rest of your code.

Solution
If you have the luxury of designing your own implementation of the expensive operation,
you can design in transparent caching from the beginning. The following code defines a
get method that delegates to expensive_get if it can't find an appropriate value in the
cache. In this case, the expensive operation that gets cached is the (relatively inexpensive,
actually) string reversal operation:

 require 'rubygems'
 require 'memcache'

 class DataLayer

 def initialize(*cache_servers)

Chapter 16. Web Services and Distributed Programming Page 38 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-2#rubyckbk-CHP-13-SECT-2
http://danga.com/memcached/
http://lists.danga.com/mailman/listinfo/memcached
http://lists.danga.com/mailman/listinfo/memcached
http://deveiate.org/projects/RMemCache
http://deveiate.org/projects/IO-Reactor
http://dev.robotcoop.com/Libraries/

 @cache = MemCache.new(*cache_servers)
 end

 def get(key)
 @cache[key] ||= expensive_get(key)
 end
 alias_method :[], :get

 protected
 def expensive_get(key)
 # …do expensive fetch of data for 'key'
 puts "Fetching expensive value for #{key}"
 key.to_s.reverse
 end
 end

Assuming you've got a memcached server running on your local machine, you can use this
DataLayer as a way to cache the reversed versions of strings:

 layer = DataLayer.new('localhost:11211')

 3.times do
 puts "Data for 'foo': #{layer['foo']}"
 end
 # Fetching expensive value for foo
 # Data for 'foo': oof
 # Data for 'foo': oof

Discussion
That's the easy case. But you don't always get the opportunity to define a data layer from
scratch. If you want to add memcaching to an existing data layer, you can create a caching
strategy and add it to your existing classes as a mixin.

Here's a data layer, already written, that has no caching:

 class MyDataLayer
 def get(key)
 puts "Getting value for #{key} from data layer"
 return key.to_s.reverse
 end
 end

The data layer doesn't know about the cache, so all of its operations are expensive. In this
instance, it's reversing a string every time you ask for it:

 layer = MyDataLayer.new

 "Value for 'foo': #{layer.get('foo')}"
 # Getting value for foo from data layer
 # => "Value for 'foo': oof"

 "Value for 'foo': #{layer.get('foo')}"
 # Getting value for foo from data layer
 # => "Value for 'foo': oof"

 "Value for 'foo': #{layer.get('foo')}"
 # Getting value for foo from data layer
 # => "Value for 'foo': oof"

Chapter 16. Web Services and Distributed Programming Page 39 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Let's improve performance a little by defining a caching mixin. It'll wrap the get method
so that it only runs the expensive code (the string reversal) if the answer isn't already in
the cache:

 require 'memcache'

 module GetSetMemcaching
 SERVER = 'localhost:11211'

 def self::extended(mod)
 mod.module_eval do
 alias_method :__uncached_get, :get
 remove_method :get

 def get(key)
 puts "Cached get of #{key.inspect}"
 get_cache()[key] ||= __uncached_get(key)
 end
 def get_cache
 puts "Fetching cache object for #{SERVER}"
 @cache ||= MemCache.new(SERVER)
 end
 end
 super
 end

 def self::included(mod)
 mod.extend(self)
 super
 end
 end

Once we mix GetSetMemcaching into our data layer, the same code we ran before will
magically start to use use the cache:

 # Mix in caching to the pre-existing class
 MyDataLayer.extend(GetSetMemcaching)

 "Value for 'foo': #{layer.get('foo')}"
 # Cached get of "foo"
 # Fetching cache object for localhost:11211
 # Getting value for foo from data layer
 # => "Value for 'foo': oof"

 "Value for 'foo': #{layer.get('foo')}"
 # Cached get of "foo"
 # Fetching cache object for localhost:11211
 # => "Value for 'foo': oof"

 "Value for 'foo': #{layer.get('foo')}"
 # Cached get of "foo"
 # Fetching cache object for localhost:11211
 # => "Value for 'foo': oof"

The examples above are missing a couple features you'd see in real life. Their API is very
simple (just get methods), and they have no cache invalidation—items will stay in the cache
forever, even if the underlying data changes.

Chapter 16. Web Services and Distributed Programming Page 40 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The same basic principles apply to more complex caches, though. When you need a value
that's expensive to find or calculate, you first ask the cache for the value, keyed by its
identifying feature. The cache might map a SQL query to its result set, a primary key to
the corresponding database object, an array of compound keys to the corresponding
database object, and so on. If the object is missing from the cache, you fetch it the expensive
way, and put it in the cache.

See Also

• The Ruby on Rails wiki has a page full of memcached examples at http://
wiki.rubyonrails.com/rails/pages/MemCached; this should give you more ideas on
how to use memcached to speed up your application

Recipe 16.18. A Remote-Controlled Jukebox
What if you had a jukebox on your main computer that played random or selected items
from your music collection? What if you could search your music collection and add items
to the jukebox queue from a laptop in another room of the house?

Ruby can help you realize this super-geek dream—the software part, anyway. In this recipe,
I'll show you how to write a jukebox server that can be programmed from any computer
on the local network.

The jukebox will consist of a client and a server. The server broadcasts its location to a
nearby Rinda server so clients on the local network can find it without knowing the address.
The client will look up the server with Rinda and then communicate with it via DRb.

What features should the jukebox have? When there are no clients interfering with its
business, the server will pick random songs from a predefined playlist and play them. It
will call out to external Unix programs to play songs on the local computer's audio system
(if you have a way of broadcasting songs through streaming audio, say, an IceCast server,
it could use that instead).

A client can query the jukebox, stop or restart it, or request that a particular song be played.
The jukebox will keep requests in a queue. Once it plays all the requests, it will resume
playing songs at random.

Since we'll be running subprocesses to access the sound card on the computer that runs
the jukebox, the Jukebox object can't be distributed to another machine. Instead, we need
to proxy it with DRbUndumped.

Chapter 16. Web Services and Distributed Programming Page 41 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://wiki.rubyonrails.com/rails/pages/MemCached;
http://wiki.rubyonrails.com/rails/pages/MemCached;

The first thing we need to do is start a RingServer somewhere on our local network.
Here's a reprint of the RingServer program from Recipe 16.14:

 #!/usr/bin/ruby
 # rinda_server.rb

 require 'rinda/ring' # for RingServer
 require 'rinda/tuplespace' # for TupleSpace

 DRb.start_service

 # Create a TupleSpace to hold named services, and start running.
 Rinda::RingServer.new(Rinda::TupleSpace.new)

 DRb.thread.join

Here's the jukebox server file. First, we'll define the Jukebox server class, and set up its
basic behavior: to play its queue and pick randomly when the queue is empty.

 #!/usr/bin/ruby -w
 # jukebox_server.rb
 require 'drb'
 require 'rinda/ring'
 require 'rinda/tuplespace'
 require 'thread'
 require 'find'

 DRb.start_service

 class Jukebox
 include DRbUndumped
 attr_reader :now_playing, :running

 def initialize(files)
 @files = files
 @songs = @files.keys
 @now_playing = nil
 @queue = []
 end

 def play_queue
 Thread.new(self) do
 @running = true
 while @running
 if @queue.empty?
 play songs[rand(songs.size)]
 else
 play @queue.shift
 end
 end
 end
 end

Next, we'll write the methods that a client can use:

 # Adds a song to the queue. Returns the new size of the queue.
 def <<(song)
 raise ArgumentError, 'No such song' unless @files[song]
 @queue.push song
 return @queue.size
 end

 # Returns the current queue of songs.

Chapter 16. Web Services and Distributed Programming Page 42 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def queue
 return @queue.clone.freeze
 end

 # Returns the titles of songs that match the given regexp.
 def songs(regexp=/.*/)
 return @songs.grep(regexp).sort
 end

 # Turns the jukebox on or off.
 def running=(value)
 @running = value
 play_queue if @running
 end

Finally, here's the code that actually plays a song, by calling out to a preinstalled program
—either mpg123 or ogg123, depending on the extension of the song file:

 private

 # Play the given through this computer's sound system, using a
 # previously installed music player.
 def play(song)
 @now_playing = song

 path = @files[song]
 player = path[-4..path.size] == '.mp3' ? 'mpg123' : 'ogg123'
 command = %{#{player} "#{path}"}
 # The player and path both come from local data, so it's safe to
 # untaint them.
 command.untaint
 system(command)
 end
 end

Now we can use the Jukebox class in a script. This one treats ARGV as a list of directories.
We descend each one looking for music files, and feed the results into a Jukebox:

 if ARGV.empty?
 puts "Usage: #{__FILE__} [directory full of MP3s and/or OGGs] …"
 exit
 else
 songs = {}
 Find.find(*ARGV) do |path|
 if path =~ /\.(mp3|ogg)$/
 name = File.split(path)[1][0..-5]
 songs[name] = path
 end
 end
 end

 jukebox = Jukebox.new(songs)

So far there hasn't been much distributed code, and there won't be much total. But we do
need to register the Jukebox object with Rinda so that clients can find it:

 # Set safe before we start accepting connections from outside.
 $SAFE = 1
 puts "Registering…"
 # Register the Jukebox with the local RingServer, under its class name.
 ring_server = Rinda::RingFinger.primary

Chapter 16. Web Services and Distributed Programming Page 43 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 ring_server.write([:name, :Jukebox, jukebox, "Remote-controlled jukebox"],
 Rinda::SimpleRenewer.new)

Start the jukebox running, and we're in business:

 jukebox.play_queue
 DRb.thread.join

Now we can query and manipulate the jukebox from an irb session on another computer:

 require 'rinda/ring'
 require 'rinda/tuplespace'

 DRb.start_service
 ring_server = Rinda::RingFinger.primary
 jukebox = ring_server.read([:name, :Jukebox, nil, nil])[2]

 jukebox.now_playing # => "Chickadee"
 jukebox.songs(/D/)
 # => ["ID 3", "Don't Leave Me Here (Over There Would Be Fine)"]

 jukebox << 'ID 3' # => 1
 jukebox << "Attack of the Good Ol' Boys from Planet Honky-Tonk"
 # ArgumentError: No such song
 jukebox.queue # => ["ID 3"]

But it'll be easier to use if we write a real client program. Again, there's almost no DRb
programming in the client, which is as it should be. Once we have the remote Jukebox
object, we can use it just like we would a local object.

First, we have some preliminary argument checking:

 #!/usr/bin/ruby -w
 # jukebox_client.rb

 require 'rinda/ring'

 NO_ARG_COMMANDS = %w{start stop now-playing queue}
 ARG_COMMANDS = %w{grep append grep-and-append}
 COMMANDS = NO_ARG_COMMANDS + ARG_COMMANDS

 def usage
 puts "Usage: #{__FILE__} [#{COMMANDS.join('|')}] [ARG]"
 exit
 end

 usage if ARGV.size < 1 or ARGV.size > 2

 command = ARGV[0]
 argument = nil
 usage unless COMMANDS.index(command)

 if ARG_COMMANDS.index(command)
 if ARGV.size == 1
 puts "Command #{command} takes an argument."
 exit
 else
 argument = ARGV[1]
 end
 elsif ARGV.size == 2
 puts "Command #{command} takes no argument."

Chapter 16. Web Services and Distributed Programming Page 44 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 exit
 end

Next, the only distributed code in the client: the fetch of the Jukebox object from the
Rinda server.

 DRb.start_service
 ring_server = Rinda::RingFinger.primary

 jukebox = ring_server.read([:name, :Jukebox, nil, nil])[2]

Now that we have the Jukebox object (rather, a proxy to the real Jukebox object on the
other computer), we can apply the user's desired command to it:

 case command
 when 'start' then
 if jukebox.running
 puts 'Already running.'
 else
 jukebox.running = true
 puts 'Started.'
 end
 when 'stop' then
 if jukebox.running
 jukebox.running = false
 puts 'Jukebox will stop after current song.'
 else
 puts 'Already stopped.'
 end
 when 'now-playing' then
 puts "Currently playing: #{jukebox.now_playing}"
 when 'queue' then
 jukebox.queue.each { |song| puts song }
 when 'grep'
 jukebox.songs(Regexp.compile(argument)).each { |song| puts song }
 when 'append' then
 jukebox << argument
 jukebox.queue.each { |song| puts song }
 when 'grep-and-append' then
 jukebox.songs(Regexp.compile(argument)).each { |song| jukebox << song }
 jukebox.queue.each { |song| puts song }
 end

Some obvious enhancements to this program:

• Combine the server with the ID3 parser from Recipe 6.17 to provide more reliable title
information, as well as artist and other metadata.

• Make the ID3 metadata searchable, so that you can search for songs by a particular
band.

• Make the @songs data structure capable of handling multiple distinct songs with the
same name.

• Make the selection keep track of song history, so that it doesn't choose to play the
same song twice in the row.

• Have the jukebox send its selections to a program that streams audio over the network,
rather than to programs that play the music locally. This way you can listen to the

Chapter 16. Web Services and Distributed Programming Page 45 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-17#rubyckbk-CHP-6-SECT-17

jukebox from any computer in your house. Without this step, you need to wire your
whole house for sound, or have really loud speakers, or a really small house (like mine).

See Also

• Recipe 6.17, "Processing a Binary File"
• Recipe 16.14, "Automatically Discovering DRb Services with Rinda"
• Recipe 16.15, "Proxying Objects That Can't Be Distributed"

Chapter 16. Web Services and Distributed Programming Page 46 Return to Table of Contents

Chapter 16. Web Services and Distributed Programming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-17#rubyckbk-CHP-6-SECT-17

	Web Services and Distributed Programming
	Searching for Books on Amazon
	Finding Photos on Flickr
	Writing an XML-RPC Client
	Writing a SOAP Client
	Writing a SOAP Server
	Searching the Web with Google's SOAP Service
	Using a WSDL File to Make SOAP Calls Easier
	Charging a Credit Card
	Finding the Cost to Ship Packages via UPS or FedEx
	Sharing a Hash Between Any Number of Computers
	Implementing a Distributed Queue
	Creating a Shared "Whiteboard"
	Securing DRb Services with Access Control Lists
	Automatically Discovering DRb Services with Rinda
	Proxying Objects That Can't Be Distributed
	Storing Data on Distributed RAM with MemCached
	Caching Expensive Results with MemCached
	A Remote-Controlled Jukebox

