
Table of Contents

Modules and Namespaces.. 1
Simulating Multiple Inheritance with Mixins... 1
Extending Specific Objects with Modules.. 5
Mixing in Class Methods... 7
Implementing Enumerable: Write One Method, Get 22 Free... 8
Avoiding Naming Collisions with Namespaces... 11
Automatically Loading Libraries as Needed... 12
Including Namespaces.. 14
Initializing Instance Variables Defined by a Module.. 15
Automatically Initializing Mixed-In Modules... 17

Chapter 9. Modules and Namespaces

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

9. Modules and Namespaces
A Ruby module is nothing more than a grouping of objects under a single name. The objects
may be constants, methods, classes, or other modules.

Modules have two uses. You can use a module as a convenient way to bundle objects
together, or you can incorporate its contents into a class with Ruby's include statement.

When a module is used as a container for objects, it's called a namespace. Ruby's Math
module is a good example of a namespace: it provides an overarching structure for
constants like Math::PI and methods like Math::log, which would otherwise clutter
up the main Kernel namespace. We cover this most basic use of modules in Recipes 9.5
and 9.7.

Modules are also used to package functionality for inclusion in classes. The Enumerable
module isn't supposed to be used on its own: it adds functionality to a class like Array or
Hash. We cover the use of modules as packaged functionality for existing classes in Recipes
9.1 and 9.4.

Module is actually the superclass of Class, so every Ruby class is also a module.
Throughout this book we talk about using methods of Module from within classes. The
same methods will work exactly the same way within modules. The only thing you can't
do with a module is instantiate an object from it:

 Class.superclass # => Module
 Math.class # => Module
 Math.new
 # NoMethodError: undefined method `new' for Math:Module

Recipe 9.1. Simulating Multiple Inheritance with Mixins

Problem
You want to create a class that derives from two or more sources, but Ruby doesn't support
multiple inheritance.

Chapter 9. Modules and Namespaces Page 1 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

Solution
Suppose you created a class called Taggable that lets you associate tags (short strings of
informative metadata) with objects. Every class whose objects should be taggable could
derive from Taggable.

This would work if you made Taggable the top-level class in your class structure, but that
won't work in every situation. Eventually you might want to do something like make a
string taggable. One class can't subclass both Taggable and String, so you'd have a
problem.

Furthermore, it makes little sense to instantiate and use a Taggable object by itself—
there is nothing there to tag! Taggability is more of a feature of a class than a fullfledged
class of its own. The Taggable functionality only works in conjunction with some other
data structure.

This makes it an ideal candidate for implementation as a Ruby module instead of a class.
Once it's in a module, any class can include it and use the methods it defines.

 require 'set' # Deals with a collection of unordered values with no duplicates

 # Include this module to make your class taggable. The names of the
 # instance variable and the setup method are prefixed with "taggable_"
 # to reduce the risk of namespace collision. You must call
 # taggable_setup before you can use any of this module's methods.
 module Taggable
 attr_accessor :tags

 def taggable_setup
 @tags = Set.new
 end

 def add_tag(tag)
 @tags << tag
 end

 def remove_tag(tag)
 @tags.delete(tag)
 end
 end

Here's a taggable string class: it subclasses String, but it also includes the functionality of
Taggable.

 class TaggableString < String
 include Taggable
 def initialize(*args)
 super
 taggable_setup
 end
 end
 s = TaggableString.new('It was the best of times, it was the worst of times.')
 s.add_tag 'dickens'
 s.add_tag 'quotation'
 s.tags # => #<Set: {"dickens", "quotation"}>

Chapter 9. Modules and Namespaces Page 2 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
A Ruby class can only have one superclass, but it can include any number of modules.
These modules are called mixins. If you write a chunk of code that can add functionality
to classes in general, it should go into a mixin module instead of a class.

The only objects that need to be defined as classes are the ones that get instantiated and
used on their own (modules can't be instantiated).

If you come from Java, you might think of a module as being the combination of an
interface and its implementation. By including a module, your class implements certain
methods, and announces that since it implements those methods it can be treated a certain
way.

When a class includes a module with the include keyword, all of the module's methods
and constants are made available from within that class. They're not copied, the way a
method is when you alias it. Rather, the class becomes aware of the methods of the module.
If a module's methods are changed later (even during runtime), so are the methods of all
the classes that include that module.

Module and class definitions have an almost identical syntax. If you find out after
implementing a class that you should have done it as a module, it's not difficult to translate
the class into a module. The main problem areas will be methods defined both by your
module and the classes that include it: especially methods like initialize.

Your module can define an initialize method, and it will be called by a class whose
constructor includes a super call (see Recipe 9.8 for an example), but sometimes that
doesn't work. For instance, Taggable defines a taggable_setup method that takes no
arguments. The String class, the superclass of TaggableString, takes one and only
one argument. TaggableString can call super within its constructor to trigger both
String#initialize and a hypothetical Taggable#initialize, but there's no way
a single super call can pass one argument to one method and zero arguments to another.

That's why Taggable doesn't define an initialize method.[1] Instead, it defines a
taggable_setup method and (in the module documentation) asks everyone who
includes the module to call taggable_setup within their initialize method. Your
module can define a <module name>_setup method instead of initialize, but you
need to document it, or your users will be very confused.

[1] An alternative is to define Taggable#initialize to take a variable number of arguments, and then just ignore all the arguments. This only works because
Taggable can initialize itself without any outside information.

Chapter 9. Modules and Namespaces Page 3 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It's okay to expect that any class that includes your module will implement some methods
you can't implement yourself. For instance, all of the methods in the Enumerable module
are defined in terms of a method called each, but Enumerable never actually defines
each. Every class that includes Enumerable must define what each means within that
class before it can use the Enumerable methods.

If you have such undefined methods, it will cut down on confusion if you provide a default
implementation that raises a helpful exception:

 module Complaint
 def gripe
 voice('In all my years I have never encountered such behavior…')
 end

 def faint_praise
 voice('I am pleased to notice some improvement, however slight…')
 end

 def voice(complaint_text)
 raise NotImplementedError,
 "#{self.class} included the Complaint module but didn't define voice!"
 end
 end

 class MyComplaint
 include Complaint
 end

 MyComplaint.new.gripe
 # NotImplementedError: MyComplaint included the Complaint module
 # but didn't define voice!

If two modules define methods with the same name, and a single class includes both
modules, the class will have only one implementation of that method: the one from the
module that was included last. The method of the same name from the other module will
simply not be available. Here are two modules that define the same method:

 module Ayto
 def potato
 'Pohtayto'
 end
 end

 module Ahto
 def potato
 'Pohtahto'
 end
 end

One class can mix in both modules:

 class Potato
 include Ayto
 include Ahto
 end

Chapter 9. Modules and Namespaces Page 4 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But there can be only one potato method for a given class or module.[2]

[2] You could get both methods by aliasing Potato#potato to another method after mixing in Ayto but before mixing in Ahto. There would still only be one
Potato#potato method, and it would still be Ahto#potato, but the implementation of Ayto#potato would survive under a different name.

 Potato.new.potato # => "Pohtahto"

This rule sidesteps the fundamental problem of multiple inheritance by letting the
programmer explicitly choose which ancestor they would like to inherit a particular
method from. Nevertheless, it's good programming practice to give distinctive names to
the methods in your modules. This reduces the risk of namespace collisions when a class
mixes in more than one module. Collisions can occur, and the later module's method will
take precedence, even if one or both methods are protected or private.

See Also

• If you want a real-life implementation of a Taggable-like mixin, see Recipe 13.18,
"Adding Taggability with a Database Mixin"

Recipe 9.2. Extending Specific Objects with Modules

Credit: Phil Tomson

Problem
You want to add instance methods from a module (or modules) to specific objects. You
don't want to mix the module into the object's class, because you want certain objects to
have special abilities.

Solution
Use the Object#extend method.

For example, let's say we have a mild-mannered Person class:

 class Person
 attr_reader :name, :age, :occupation

 def initialize(name, age, occupation)
 @name, @age, @occupation = name, age, occupation
 end

 def mild_mannered?
 true
 end
 end

Chapter 9. Modules and Namespaces Page 5 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-18#rubyckbk-CHP-13-SECT-18

Now let's create a couple of instances of this class.

 jimmy = Person.new('Jimmy Olsen', 21, 'cub reporter')
 clark = Person.new('Clark Kent', 35, 'reporter')
 jimmy.mild_mannered? # => true
 clark.mild_mannered? # => true

But it happens that some Person objects are not as mild-mannered as they might appear.
Some of them have super powers.

 module SuperPowers
 def fly
 'Flying!'
 end

 def leap(what)
 "Leaping #{what} in a single bound!"
 end

 def mild_mannered?
 false
 end

 def superhero_name
 'Superman'
 end
 end

If we use include to mix the SuperPowers module into the Person class, it will give
every person super powers. Some people are bound to misuse such power. Instead, we'll
use extend to give super powers only to certain people:

 clark.extend(SuperPowers)
 clark.superhero_name # => "Superman"
 clark.fly # => "Flying!"
 clark.mild_mannered? # => false
 jimmy.mild_mannered? # => true

Discussion
The extend method is used to mix a module's methods into an object, while include is
used to mix a module's methods into a class.

The astute reader might point out that classes are actually objects in Ruby. Let us see what
happens when we use extend in a class definition:

 class Person
 extend SuperPowers
 end

 #which is equivalent to:
 Person.extend(SuperPowers)

Chapter 9. Modules and Namespaces Page 6 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

What exactly are we extending here? Within the class definition, extend is being called
on the Person class itself: we could have also written self.extend(SuperPowers).
We're extending the Person class with the methods defined in SuperPowers. This means
that the methods defined in the SuperPowers module have now become class methods of
Person:

 Person.superhero_name # => "Superman"
 Person.fly # => "Flying!"

This is not what we intended in this case. However, sometimes you do want to mix methods
into a class, and Class#extend is an easy and powerful way to do it.

See Also

• Recipe 9.3, "Mixing in Class Methods," shows how to mix in class methods with
include

Recipe 9.3. Mixing in Class Methods

Credit: Phil Tomson

Problem
You want to mix class methods into a class, instead of mixing in instance methods.

Solution
The simplest way to accomplish this is to call extend on the class object, as seen in the
Discussion of Recipe 9.2. Just as you can use extend to add singleton methods to an object,
you can use it to add class methods to a class. But that's not always the best option. Your
users may not know that your module provides or even requires some class methods, so
they might not extend their class when they should. How can you make an include
statement mix in class methods as well?

To begin, within your module, define a submodule called ClassMethods,[3]which contains
the methods you want to mix into the class:

[3] The name ClassMethods has no special meaning within Ruby: technically, you can call your submodule whatever you want. But the Ruby community has
standardized on ClassMethods as the name of this submodule, and it's used in many Ruby libraries, so you should use it too.

 module MyLib
 module ClassMethods
 def class_method
 puts "This method was first defined in MyLib::ClassMethods"

Chapter 9. Modules and Namespaces Page 7 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end
 end

To make this code work, we must also define the included callback method within the
MyLib module. This method is called every time a module is included in the class, and it's
passed the class object in which our module is being included. Within the callback method,
we extend that class object with our ClassMethods module, making all of its instance
methods into class methods. Continuing the example:

 module MyLib
 def self.included(receiver)
 puts "MyLib is being included in #{receiver}!"
 receiver.extend(ClassMethods)
 end
 end

Now we can include our MyLib module in a class, and get the contents of ClassMethods
mixed in as genuine class methods:

 class MyClass
 include MyLib
 end
 # MyLib is being included in MyClass!

 MyClass.class_method
 # This method was first defined in MyLib::ClassMethods

Discussion
Module#included is a callback method that is automatically called during the inclusion
of a module into a class. The default included implementation is an empty method. In
the example, MyLib overrides it to extend the class that's including the MyLib module
with the contents of the MyLib::ClassMethods submodule.

The Object#extend method takes a Module object as a parameter. It mixes all the
methods defined in the module into the receiving object. Since classes are themselves
objects, and the singleton methods of a Class object are just its class methods, calling
extend on a class object fills it up with new class methods.

See Also

• Recipe 7.11, "Coupling Systems Loosely with Callbacks," covers callbacks in general
and shows how to write your own

• Recipe 10.6, "Listening for Changes to a Class," covers Ruby's other class and module
callback methods

Chapter 9. Modules and Namespaces Page 8 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-11#rubyckbk-CHP-7-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-6#rubyckbk-CHP-10-SECT-6

Recipe 9.4. Implementing Enumerable: Write One Method, Get 22
Free

Problem
You want to give a class all the useful iterator and iteration-related features of Ruby's arrays
(sort, detect, inject, and so on), but your class can't be a subclass of Array. You
don't want to define all those methods yourself.

Solution
Implement an each method, then include the Enumerable module. It defines 22 of the
most useful iteration methods in terms of the each implementation you provide.

Here's a class that keeps multiple arrays under the covers. By defining each, it can expose
a large interface that lets the user treat it like a single array:

 class MultiArray
 include Enumerable

 def initialize(*arrays)
 @arrays = arrays
 end

 def each
 @arrays.each { |a| a.each { |x| yield x } }
 end
 end

 ma = MultiArray.new([1, 2], [3], [4])
 ma.collect # => [1, 2, 3, 4]
 ma.detect { |x| x > 3 } # => 4
 ma.map { |x| x ** 2 } # => [1, 4, 9, 16]
 ma.each_with_index { |x, i| puts "Element #{i} is #{x}" }
 # Element 0 is 1
 # Element 1 is 2
 # Element 2 is 3
 # Element 3 is 4

Discussion
The Enumerable module is the most common mixin module. It lets you add a lot of
behavior to your class for a little investment. Since Ruby relies so heavily on iterator
methods, and almost every data structure can be iterated over in some way, it's no wonder
that so many of the classes in Ruby's standard library include Enumerable: Dir,
Hash, Range, and String, just to name a few.

Here's the complete list of methods you can get by including Enumerable. Many of them
are described elsewhere in this book, especially in Chapter 4. Perhaps the most useful are
collect, inject, find_all, and sort_by.

Chapter 9. Modules and Namespaces Page 9 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4#rubyckbk-CHP-4

 Enumerable.instance_methods.sort
 # => ["all?", "any?", "collect", "detect", "each_with_index", "entries",
 # => "find", "find_all", "grep", "include?", "inject", "map", "max",
 # => "member?", "min", "partition", "reject", "select", "sort", "sort_by",
 # => "to_a", "zip"]

Although you can get all these methods simply by implementing an each method, some
of the methods won't work unless your each implementation returns objects that can be
compared to each other. For example, a data structure that contains both numbers and
strings can't be sorted, since it makes no sense to compare a number to a string:

 ma.sort # => [1, 2, 3, 4]
 mixed_type_ma = MultiArray.new([1, 2, 3], ["a", "b", "c"])
 mixed_type_ma.sort
 # ArgumentError: comparison of Fixnum with String failed

The methods subject to this restriction are max, min, sort, and sort_by. Since you
probably don't have complete control over the types of the data stored in your data
structure, the best strategy is probably to just let a method fail if the data is incompatible.
This is what Array does:

 [1, 2, 3, "a", "b", "c"].sort
 # ArgumentError: comparison of Fixnum with String failed

One more example: in this one, I'll make Module itself include Enumerable. My each
implementation will iterate over the instance methods defined by a class or module. This
makes it easy to find methods of a class that meet certain criteria.

 class Module
 include Enumerable
 def each
 instance_methods.each { |x| yield x }
 end
 end

 # Find all instance methods of String that modify the string in place.
 String.find_all { |method_name| method_name[-1] == ?! }
 # => ["sub!", "upcase!", "delete!", "lstrip!", "succ!", "gsub!",
 # => "squeeze!", "downcase!", "rstrip!", "slice!", "chop!", "capitalize!",
 # => "tr!", "chomp!", "next!", "swapcase!", "reverse!", "tr_s!", "strip!"]

 # Find all instance methods of Fixnum that take 2 arguments.
 sample = 0
 sample.class.find_all { |method_name| sample.method(method_name).arity == 2 }
 # => ["instance_variable_set", "between?"]

See Also

• Many of the recipes in Chapter 4 actually cover methods of Enumerable; see
especially Recipe 4.12, "Building Up a Hash Using Injection"

• Recipe 9.1, "Simulating Multiple Inheritance with Mixins"

Chapter 9. Modules and Namespaces Page 10 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4#rubyckbk-CHP-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-12#rubyckbk-CHP-4-SECT-12

Recipe 9.5. Avoiding Naming Collisions with Namespaces

Problem
You want to define a class or module whose name conflicts with an existing class or module,
or you want to prevent someone else from coming along later and defining a class whose
name conflicts with yours.

Solution
A Ruby module can contain classes and other modules, which means you can use it as a
namespace.

Here's some code from a physics library that defines a class called String within the
StringTheory module. The real name of this class is its fully-qualified name:
StringTheory::String. It's a totally different class from Ruby's built-in String class.

 module StringTheory
 class String
 def initialize(length=10**-33)
 @length = length
 end
 end
 end

 String.new # => ""

 StringTheory::String.new
 # => #<StringTheory::String:0xb7c343b8 @length=1.0e-33>

Discussion
If you've read Recipe 8.17, you've already seen namespaces in action. The constants defined
in a module are qualified with the module's name. This lets Math::PI have a different
value from Greek::PI.

You can qualify the name of any Ruby object this way: a variable, a class, or even another
module. Namespaces let you organize your libraries, and make it possible for them to
coexist alongside others.

Ruby's standard library uses namespaces heavily as an organizing principle. An excellent
example is REXML, the standard XML library. It defines a REXML namespace that includes
lots of XML-related classes like REXML::Comment and REXML::Instruction. Naming
those classes Comment and Instruction would be a disaster: they'd get overwritten by
other librarys' Comment and Instruction classes. Since nothing about the

Chapter 9. Modules and Namespaces Page 11 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-17#rubyckbk-CHP-8-SECT-17

genericsounding names relates them to the REXML library, you might look at someone
else's code for a long time before realizing that the Comment objects have to do with XML.

Namespaces can be nested: see for instance rexml's REXML::Parsers module, which
contains classes like REXML::Parsers::StreamParser. Namespaces group similar
classes in one place so you can find what you're looking for; nested namespaces do the
same for namespaces.

In Ruby, you should name your top-level module after your software project (SAX), or after
the task it performs (XML::Parser). If you're writing Yet Another implementation of
something that already exists, you should make sure your namespace includes your project
name (XML::Parser::SAX). This is in contrast to Java's namespaces: they exist in its
package structure, which follows a naming convention that includes a domain name, like
org.xml.sax.

All code within a module is implicitly qualified with the name of the module. This can cause
problems for a module like StringTheory, if it needs to use Ruby's built-in String class
for something. This should be fixed in Ruby 2.0, but you can also fix it by setting the built-in
String class to a variable before defining your StringTheory::String class. Here's
a version of the StringTheory module that can use Ruby's builtin String class:

 module StringTheory2
 RubyString = String
 class String
 def initialize(length=10**-33)
 @length = length
 end
 end

 RubyString.new("This is a built-in string, not a StringTheory2::String")
 end
 # => "This is a built-in string, not a StringTheory2::String"

See Also

• qRecipe 8.17, "Declaring Constants"
• Recipe 9.7, "Including Namespaces"

Recipe 9.6. Automatically Loading Libraries as Needed

Problem
You've written a big library with multiple components. You'd like to split it up so that users
don't have to load the entire library into memory just to use part of it. But you don't want
to make your users explicitly require each part of the library they plan to use.

Chapter 9. Modules and Namespaces Page 12 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-17#rubyckbk-CHP-8-SECT-17

Solution
Split the big library into multiple files, and set up autoloading for the individual files by
calling Kernel#autoload. The individual files will be loaded as they're referenced.

Suppose you have a library, functions.rb, that provides two very large modules:

 # functions.rb
 module Decidable
 # … Many, many methods go here.
 end

 module Semidecidable
 # … Many, many methods go here.
 end

You can provide the same interface, but possibly save your users some memory, by splitting
functions.rb into three files. The functions.rb file itself becomes a stub full of
autoload calls:

 # functions.rb
 autoload :Decidable, "decidable.rb"
 autoload :Semidecidable, "semidecidable.rb"

The modules themselves go into the files mentioned in the new functions.rb:

 # decidable.rb
 module Decidable
 # … Many, many methods go here.
 end
 # semidecidable.rb
 module Semidecidable
 # … Many, many methods go here.
 end

The following code will work if all the modules are in functions.rb, but it will also work
if functions.rb only contains calls to autoload:

 require 'functions'
 Decidable.class # => Module
 # More use of the Decidable module follows…

When Decidable and Semidecidable have been split into autoloaded modules, that
code only loads the Decidable module. Memory is saved that would otherwise be used
to contain the unsed Semidecidable module.

Chapter 9. Modules and Namespaces Page 13 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Refactoring a library to consist of autoloadable components takes a little extra planning,
but it's often worth it to improve performance for the people who use your library.

Each call to Kernel#autoload binds a symbol to the path of the Ruby file that's supposed
to define that symbol. If the symbol is referenced, that file is loaded exactly as though it
had been passed as an argument into require. If the symbol is never referenced, the user
saves some memory.

Since you can use autoload wherever you might use require, you can autoload builtin
libraries when the user triggers some code that needs them. For instance, here's some code
that loads Ruby's built-in set library as needed:

 autoload :Set, "set.rb"

 def random_set(size)
 max = size * 10
 set = Set.new
 set << rand(max) until set.size == size
 return set
 end

 # More code goes here…

If random_set is never called, the set library will never be loaded, and memory will be
saved. As soon as random_set gets called, the set library is autoloaded, and the code
works even though we never explicitly require 'set':

 random_set(10)
 # => #<Set: {39, 83, 73, 40, 90, 25, 91, 31, 76, 54}>

 require 'set' # => false

Recipe 9.7. Including Namespaces

Problem
You want to use the objects within a module without constantly qualifying the object names
with the name of their module.

Solution
Use include to copy a module's objects into the current namespace. You can then use
them from the current namespace, without qualifying their names.

Instead of this:

Chapter 9. Modules and Namespaces Page 14 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'rexml/document'

 REXML::Document.new(xml)

You might write this:

 require 'rexml/document'
 include REXML

 Document.new(xml)

Discussion

This is the exact same include statement you use to incorporate a mixin module into a
class you're writing. It does the same thing here as when it includes a mixin: it copies the
contents of a module into the current namespace.

Here, though, the point isn't to add new functionality to a class or module: it's to save you
from having to do so much typing. This technique is especially useful with large library
modules like Curses and the Rails libraries.

This use of include comes with the same caveats as any other: if you already have
variables with the same names as the objects being included, the included objects will be
copied in over them and clobber them.

You can, of course, import a namespace that's nested within a namespace of its own.
Instead of this:

 require 'rexml/parsers/pullparser'

 REXML::Parsers::PullParser.new("Some XML")

You might write this:

 require 'rexml/parsers/pullparser'
 include REXML::Parsers

 PullParser.new("Some XML")

See Also

• Recipe 11.3, "Extracting Data While Parsing a Document"

Chapter 9. Modules and Namespaces Page 15 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-3#rubyckbk-CHP-11-SECT-3

Recipe 9.8. Initializing Instance Variables Defined by a Module

Credit: Phil Tomson

Problem
You have a mixin module that defines some instance variables. Given a class that mixes in
the module, you want to initialize the instance variables whenever an instance of the class
is created.

Solution
Define an initialize method in the module, and call super in your class's constructor.
Here's a Timeable module that tracks when objects are created and how old they are:

 module Timeable
 attr_reader :time_created

 def initialize
 @time_created = Time.now
 end

 def age #in seconds
 Time.now - @time_created
 end
 end

Timeable has an instance variable time_created, and an initialize method that
assigns Time.now (the current time) to the instance variable. Now let's mix Timeable
into another class that also defines an initialize method:

 class Character
 include Timeable
 attr_reader :name
 def initialize(name)
 @name = name
 super() #calls Timeable's initialize
 end
 end
 c = Character.new "Fred"

 c.time_created
 # => Mon Mar 27 18:34:31 EST 2006

Discussion
You can define and access instance variables within a module's instance methods, but you
can't actually instantiate a module. A module's instance variables only exist within objects
of a class that includes the module. However, classes don't usually need to know about the

Chapter 9. Modules and Namespaces Page 16 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

instance variables defined by the modules they include. That sort of information should
be initialized and maintained by the module itself.

The Character#initialize method overrides the Timeable#initialize method,
but you can use super to call the Timeable constructor from within the Character
constructor. When a module is included in a class, that module becomes an ancestor of
the class. We can test this in the context of the example above by calling the
Module#ancestors on the Character class:

 Character.ancestors # => [Character, Timeable, Object, Kernel]

When you call super from within a method (such as initialize), Ruby finds every
ancestor that defines a method with the same name, and calls it too.

See Also

• Recipe 8.13, "Calling a Superclass's Method"
• Sometimes an initialize method won't work; see Recipe 9.3, "Mixing in Class

Methods," for when it won't work, and how to manage without one
• Recipe 9.9, "Automatically Initializing Mixed-In Modules," covers an even more

complex case, when you want a module to perform some initialization, without
making the class that includes do anything at all beyond the initial include

Recipe 9.9. Automatically Initializing Mixed-In Modules
Credit: Phil Tomson

Problem
You've written a module that gets mixed into classes. Your module has some initialization
code that needs to run whenever the mixed-into class is initialized. You do not want users
of your module to have to call super in their initialize methods.

Solution
First, we need a way for classes to keep track of which modules they've included. We also
need to redefine Class#new to call a module-level initialize method for each included
module. Fortunately, Ruby's flexibility lets us makes changes to the built-in Class class
(though this should never be done lightly):

 class Class
 def included_modules
 @included_modules ||= []
 end

Chapter 9. Modules and Namespaces Page 17 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-13#rubyckbk-CHP-8-SECT-13

 alias_method :old_new, :new
 def new(*args, &block)
 obj = old_new(*args, &block)
 self.included_modules.each do |mod|
 mod.initialize if mod.respond_to?(:initialize)
 end
 obj
 end
 end

Now every class has a list of included modules, accessable from the included_modules
class method. We've also redefined the Class#new method so that it iterates through all
the modules in included_modules, and calls the module-level initialize method of
each.

All that's missing is a way to add included modules to included_modules. We'll put this
code into an Initializable module. A module that wants to be initializable can mix
this module into itself and define an initialize method:

 module Initializable

 def self.included(mod)
 mod.extend ClassMethods
 end

 module ClassMethods
 def included(mod)
 if mod.class != Module #in case Initializeable is mixed-into a class
 puts "Adding #{self} to #{mod}'s included_modules" if $DEBUG
 mod.included_modules << self
 end
 end
 end
 end

The included callback method is called whenever this module is included in another
module. We're using the pattern shown in Recipe 9.3 to add an included callback method
into the receiving module. If we didn't do this, you'd have to use that pattern yourself for
every module you wanted to be Initializable.

Discussion
That's a lot of code, but here's the payoff. Let's define a couple of modules which include
Initializeable and define initialize module methods:

 module A
 include Initializable
 def self.initialize
 puts "A's initialized."
 end
 end

 module B
 include Initializable
 def self.initialize

Chapter 9. Modules and Namespaces Page 18 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "B's initialized."
 end
 end

We can now define a class that mixes in both modules. Instantiating the class instantiates
the modules, with not a single super call in sight!

 class BothAAndB
 include A
 include B
 end

 both = BothAAndB.new
 # A's initialized.
 # B's initialized.

The goal of this recipe is very similar to Recipe 9.8. In that recipe, you call super in a class's
initialize method to call a mixed-in module's initialize method. That recipe is a
lot simpler than this one and doesn't require any changes to built-in classes, so it's often
preferable to this one.

Consider a case like the BothAAndB class above. Using the techniques from Recipe 9.8,
you'd need to make sure that both A and B had calls to super in their initialize
methods, so that each module would get initialized. This solution moves all of that work
into the Initializable module and the built-in Class class. The other drawback of
the previous technique is that the user of your module needs to know to call super
somewhere in their initialize method. Here, everything happens automatically.

This technique is not without its pitfalls. Anytime you redefine critical built-in methods like
Class#new, you need to be careful: someone else may have already redefined it elsewhere
in your program. Also, you won't be able to define your own included method callback
in a module which includes Initializeable: doing so will override the callback defined
by Initializable itself.

See Also

• Recipe 9.3, "Mixing in Class Methods"
• Recipe 9.8, "Initializing Instance Variables Defined by a Module"

Chapter 9. Modules and Namespaces Page 19 Return to Table of Contents

Chapter 9. Modules and Namespaces
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Modules and Namespaces
	Simulating Multiple Inheritance with Mixins
	Extending Specific Objects with Modules
	Mixing in Class Methods
	Implementing Enumerable: Write One Method, Get 22 Free
	Avoiding Naming Collisions with Namespaces
	Automatically Loading Libraries as Needed
	Including Namespaces
	Initializing Instance Variables Defined by a Module
	Automatically Initializing Mixed-In Modules

