
Table of Contents

System Administration.. 1
Scripting an External Program.. 1
Managing Windows Services.. 3
Running Code as Another User.. 5
Running Periodic Tasks Without cron or at... 7
Deleting Files That Match a Regular Expression... 8
Renaming Files in Bulk.. 11
Finding Duplicate Files... 13
Automating Backups... 16
Normalizing Ownership and Permissions in User Directories... 17
Killing All Processes for a Given User.. 20

Chapter 23. System Administration

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

23. System Administration
Once you start using Ruby, you'll want to use it everywhere. Well, nothing's stopping you.
This chapter shows you how to use Ruby in command-line programs that solve general
everyday problems. It also demonstrates patterns that you can use to solve your own, more
specific everyday problems.

System administration scripts are usually private scripts, disposable or lightly reusable.
Ruby scripts are easy to write, so you can get the job done quickly and move on. You won't
feel bad if your script is less rigorous than your usual work, and you won't feel invested in
a huge program that you only needed once.

Ruby's syntax makes it easy to write, but for system administration, it's the libraries that
make Ruby powerful. Most of the recipes in this chapter combine ideas from recipes
elsewhere in the book to solve a real-world problem. The most commonly used idea is the
Find.find technique first covered in Recipe 6.12. Recipes 23.5, 23.6, 23.7, 23.8, and
23.9 all give different twists on this technique.

The major new feature introduced in this chapter is Ruby's standard etc library. It lets
you query a Unix system's users and groups. It's used in Recipe 23.10 to look up a user's
ID given their username. Recipe 23.9 uses it to find a user's home directory and to get the
members of Unix groups.

Although these recipes focus mainly on Unix system administration, Ruby is perhaps even
more useful for Windows administration. Unix has a wide variety of standard shell tools
and an environment that makes it easy to combine them. If Ruby and other high-level
languages didn't exist, Unix administrators would still have tools like find and cut, and
they'd use those tools like they did throughout the 1980s. On Windows, though, languages
like Ruby are useful even for simple administration tasks: Ruby is easier to use than
VBScript or batch files.

If you're trying to administer a Windows machine with Ruby, there are many third-party
libraries that provide Ruby hooks into Windows internals: see especially the "win32utils"
project at http://rubyforge.org/projects/win32utils/. Another useful library is Ruby's
standard Win32OLE library, which lets you do things like query Active Directory.

Libraries are also available for the more esoteric parts of Unix systems. See, for instance,
Recipe 23.10, which uses the third-party library sys-proctable to gain access to the
kernel's process table.

Chapter 23. System Administration Page 1 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Licensed by
Ronald Fischer

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-12#rubyckbk-CHP-6-SECT-12
http://rubyforge.org/projects/win32utils/

Recipe 23.1. Scripting an External Program

Problem
You want to automatically control an external program that expects to get terminal input
from a human user.

Solution
When you're running a program that only needs a single string of input, you can use
IO.popen, as described in Recipe 20.8. This method runs a command, sends it a string
as standard input, and returns the contents of its standard output:

 def run(command, input='')
 IO.popen(command, 'r+') do |io|
 io.puts input
 io.close_write
 return io.read
 end
 end

 run 'wc -w', 'How many words are in this string?' # => "7\n"

This technique is commonly used to invoke a command with sudo, which expects the user's
password on standard input. This code obtains a user's password and runs a command on
his behalf using sudo:

 print 'Enter your password for sudo: '
 sudo_password = gets.chomp
 run('sudo apachectl graceful', user_password)

Discussion
IO.popen is a good way to run noninteractive commands—commands that read all their
standard input at once and produce some output. But some programs are interactive; they
send prompts to standard output, and expect a human on the other end to respond with
more input.

On Unix, you can use Ruby's standard PTY and expect libraries to spawn a command
and impersonate a human on the other end. This code scripts the Unix passwd command:

 require 'expect'
 require 'pty'

 print 'Old password:'
 old_pwd = gets.chomp

 print "\nNew password:"
 new_pwd = gets.chomp

 PTY.spawn('passwd') do |read,write,pid|

Chapter 23. System Administration Page 2 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-8#rubyckbk-CHP-20-SECT-8

 write.sync = true
 $expect_verbose = false

 # If 30 seconds pass and the expected text is not found, the
 # response object will be nil.
 read.expect("(current) UNIX password:", 30) do |response|
 write.print old_pwd + "\n" if response
 end

 # You can use regular expressions instead of strings. The code block
 # will give you the regex matches.
 read.expect(/UNIX password: /, 2) do |response, *matches|
 write.print new_pwd + "\n" if response
 end

 # The default value for the timeout is 9999999 seconds
 read.expect("Retype new UNIX password:") do |response|
 write.puts new_pwd + "\n" if response
 end
 end

The read and write objects in the PTY#spawn block are IO objects. The expect library
defines the IO#expect method found throughout this example.

See Also

• Recipe 20.8, "Driving an External Process with popen"
• Recipe 21.9, "Reading a Password," shows how to obtain a password without echoing

it to the screen

Recipe 23.2. Managing Windows Services

Credit: Bill Froelich

Problem
You want to interact with existing system services on the Windows platform.

Solution
User the win32-service library, available as the gem of the same name. Its Service
module gives you an interface to work with services in Windows 2000 or XP Pro.

You can use this to print a list of the currently running services on your machine:

 require 'rubygems'
 require 'win32/service'
 include Win32

 puts 'Currently Running Services:'
 Service.services do |svc|
 if svc.current_state == 'running'

Chapter 23. System Administration Page 3 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-8#rubyckbk-CHP-20-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-21-SECT-9#rubyckbk-CHP-21-SECT-9

 puts "#{svc.service_name}\t-\t#{svc.display_name}"
 end
 end
 # Currently Running Services:
 # ACPI - Microsoft ACPI Driver
 # AcrSch2Svc - Acronis Scheduler2 Service
 # AFD - AFD Networking Support Environment
 # agp440 - Intel AGP Bus Filter
 # …

This command checks whether the DNS client service exists on your machine:

 Service.exists?('dnscache') # => true

Service.status returns a Win32ServiceStatus struct describing the current state
of a service:

 Service.status('dnscache')
 # => #<struct Struct::Win32ServiceStatus
 # service_type="share process", current_state="running",
 # controls_accepted=["netbind change", "param change", "stop"],
 # win32_exit_code=0, service_specific_exit_code=0, check_point=0,
 # wait_hint=0, :interactive?=false, pid=1144, service_flags=0>

If a service is not currently running, you can start it with Service.start:

 Service.stop('dnscache')
 Service.status('dnscache').current_state # => "stopped"
 Service.start('dnscache')
 Service.status('dnscache').current_state # => "running"

Discussion
Services are typically accessed using their service_name attribute, not by their display
name as shown in the Services Control Panel. Fortunately, Service provides helpful
methods to convert between the two:

 Service.getdisplayname('dnscache') # => "DNS Client"
 Service.getservicename('DNS Client') # => "dnscache"

In addition to getting information about the status and list of services available, the
win32-service gem lets you start, pause, and stop services. In the example below,
replace the "foo" service with a valid service_name that responds to each of the
commands.

 Service.start('foo')
 Service.pause('foo')
 Service.resume('foo')
 Service.stop('foo')

Chapter 23. System Administration Page 4 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

You can check whether a service supports pause or resume by checking the controls_
accepted member of its Win32ServiceStatus struct. As seen below, the dnscache
command can't be paused or resumed:

 Service.status('dnscache').controls_accepted
 # => ["netbind change", "param change", "stop"]

Stopping system services may cause Windows to behave strangely, so be careful.

See Also

• The win32-service library was written by Daniel J. Berger; it's part of his win32utils
project (http://rubyforge.org/projects/win32utils/)

• The win32-service APIreference at http://rubyforge.org/docman/view.php/85/29/
service.txt; see especially the member list for the Win32Service struct yielded by
Service.services

• You can also use win32-service to make your own services; see Recipe 20.2,
"Creating a Windows Service"

Recipe 23.3. Running Code as Another User

Problem
While writing a Ruby script that runs as root, you need to take some action on behalf of
another user: say, run an external program or create a file.

Solution
Simply set Process.euid to the UID of the user. When you're done, set it back to its
previous value (that is, root's UID). Here's a method Process.as_uid that runs a code
block under a different user ID and resets it at the end:

 module Process
 def as_uid(uid)
 old_euid, old_uid = Process.euid, Process.uid
 Process.euid, Process.uid = uid, uid
 begin
 yield
 ensure
 Process.euid, Process.uid = old_euid, old_uid
 end
 end
 module_function(:as_uid)
 end

Chapter 23. System Administration Page 5 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://rubyforge.org/projects/win32utils/
http://rubyforge.org/docman/view.php/85/29/service.txt
http://rubyforge.org/docman/view.php/85/29/service.txt
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-2#rubyckbk-CHP-20-SECT-2

Discussion
When a Unix process tries to do something that requires special permissions (like access
a file), the permissions are checked according to the "effective user ID" of the process. The
effective user ID starts out as the user ID you used when you started the process, but if
you're root you can change the effective user ID with Process.euid=. The operating
system will treat you as though you were really that user.

This comes in handy when you're administering a system used by others. When someone
asks you for help, you can write a script that impersonates them and runs the commands
they don't know how to run. Rather than creating files as root and using chown to give
them to another user, you can create the files as the other user in the first place.

Here's an example. On my system the account leonardr has UID 1000. When run as root,
this code will create one directory owned by root and one owned by leonardr:

 Dir.mkdir("as_root")
 Process.as_uid(1000) do
 Dir.mkdir("as_leonardr")
 %x{whoami}
 end
 # => "leonardr\n"

Here are the directories:

 $ ls -ld as_*
 drwxr-xr-x 2 leonardr root 4096 Feb 2 13:06 as_leonardr/
 drwxr-xr-x 2 root root 4096 Feb 2 13:06 as_root/

When you're impersonating another user, your permissions are restricted to what that user
can do. I can't remove the as_root directory as a nonroot user, because I created it as
root:

 Process.as_uid(1000) do
 Dir.rmdir("as_root")
 end
 # Errno::EPERM: Operation not permitted - as_root

 Dir.rmdir("as_root") # => 0

On Windows, you can do something like this by splitting your Ruby script into two, and
running the second one through runas.exe:

 # script_one.rb
 system 'runas /user:frednerk ruby script_two.rb'

Chapter 23. System Administration Page 6 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

See Also

• Recipe 6.2, "Checking Your Access to a File"
• If you want to pass in the name of the user to impersonate, instead of their UID, you

can adapt the technique shown in Recipe 23.10, "Killing All Processes for a Given
User"

Recipe 23.4. Running Periodic Tasks Without cron or at

Problem
You want to write a self-contained Ruby program that performs a task in the background
at a certain time, or runs repeatedly at a certain interval.

Solution
Fork off a new process that sleeps until it's time to run the Ruby code.

Here's a program that waits in the background until a certain time, then prints a message:

 #!/usr/bin/ruby
 # lunchtime.rb

 def background_run_at(time)
 fork do
 sleep(1) until Time.now >= time
 yield
 end
 end

 today = Time.now
 noon = Time.local(today.year, today.month, today.day, 12, 0, 0)
 raise Exception, "It's already past lunchtime!" if noon < Time.now

 background_run_at(noon) { puts "Lunchtime!" }

The fork command only works on Unix systems. The win32-process third-party add
on gives Windows a fork implementation, but it's more idiomatic to run this code as a
Windows service with win32-service.

Discussion
With this technique, you can write self-contained Ruby programs that act as though they
were spawned by the at command. If you want to run a backgrounded code block at a
certain interval, the way a cronjob would, then combine fork with the technique described
in Recipe 3.12.

 #!/usr/bin/ruby
 # reminder.rb

Chapter 23. System Administration Page 7 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-2#rubyckbk-CHP-6-SECT-2
http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12

 def background_every_n_seconds(n)
 fork do
 loop do
 before = Time.now
 yield
 interval = n-(Time.now-before)
 sleep(interval) if interval > 0
 end
 end
 end

 background_every_n_seconds(15*60) { puts 'Get back to work!' }

Forking is the best technique if you want to run a background process and a foreground
process. If you want a script that immediately returns you to the command prompt when
it runs, you might want to use the Daemonize module instead; see Recipe 20.1.

See Also

• Both the win32-process and the win32-service libraries are available at http://
rubyforge.org/projects/win32utils/

• Recipe 3.12, "Running a Code Block Periodically"
• Recipe 20.1, "Running a Daemon Process on Unix"

Recipe 23.5. Deleting Files That Match a Regular Expression

Credit: Matthew Palmer

Problem
You have a directory full of files and you need to remove some of them. The patterns you
want to match are too complex to represent as file globs, but you can represent them as a
regular expression.

Solution
The Dir.entries method gives you an array of all files in a directory, and you can iterate
over this array with #each. A method to delete the files matching a regular expression
might look like this:

 def delete_matching_regexp(dir, regex)
 Dir.entries(dir).each do |name|
 path = File.join(dir, name)
 if name =~ regex
 ftype = File.directory?(path) ? Dir : File
 begin
 ftype.delete(path)
 rescue SystemCallError => e
 $stderr.puts e.message
 end

Chapter 23. System Administration Page 8 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-1#rubyckbk-CHP-20-SECT-1
http://rubyforge.org/projects/win32utils/
http://rubyforge.org/projects/win32utils/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-1#rubyckbk-CHP-20-SECT-1

 end
 end
 end

Here's an example. Let's create a bunch of files and directories beneath a temporary
directory:

 require 'fileutils'
 tmp_dir = 'tmp_buncha_files'
 files = ['A', 'A.txt', 'A.html', 'p.html', 'A.html.bak']
 directories = ['text.dir', 'Directory.for.html']

 Dir.mkdir(tmp_dir) unless File.directory? tmp_dir
 files.each { |f| FileUtils.touch(File.join(tmp_dir,f)) }
 directories.each { |d| Dir.mkdir(File.join(tmp_dir, d)) }

Now let's delete some of those files and directories. We'll delete a file or directory if its
name starts with a capital letter, and if its extension (the string after its last period) is at
least four characters long. This corresponds to the regular expression /^[A-Z].*\.[^.]
{4,}$/:

 Dir.entries(tmp_dir)
 # => [".", "..", "A", "A.txt", "A.html", "p.html", "A.html.bak",
 # "text.dir", "Directory.for.html"]

 delete_matching_regexp(tmp_dir, /^[A-Z].*\.[^.]{4,}$/)

 Dir.entries(tmp_dir)
 # => [".", "..", "A", "A.txt", "p.html", "A.html.bak", "text.dir"]

Discussion
Like most good things in Ruby, Dir.entries takes a code block. It yields every file
and subdirectory it finds to that code block. Our particular code block uses the regular
expression match operator =~ to match every real file (no subdirectories) against the
regular expression, and File.delete to remove offending files.

File.delete won't delete directories; for that, you need Directory.delete. So
delete_ matching_regexp uses the File predicates to check whether a file is a
directory. We also have error reporting, to report cases when we don't have permission to
delete a file, or a directory isn't empty.

Of course, once we've got this basic "find matching files" thing going, there's no reason
why we have to limit ourselves to deleting the matched files. We can move them to
somewhere new:

 def move_matching_regexp(src, dest, regex)
 Dir.entries(dir).each do |name|
 File.rename(File.join(src, name), File.join(dest, name)) if name =~ regex

Chapter 23. System Administration Page 9 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 end
 end

Or we can append a suffix to them:

 def append_matching_regexp(dir, suffix, regex)
 Dir.entries(dir).each do |name|
 if name =~ regex
 File.rename(File.join(dir, name), File.join(dir, name+suffix))
 end
 end
 end

Note the common code in both of those implementations. We can factor it out into yet
another method that takes a block:

 def each_matching_regexp(dir, regex)
 Dir.entries(dir).each { |name| yield name if name =~ regex }
 end

We no longer have to tell Dir.each how to match the files we want; we just need to tell
each_matching_regexp what to do with them:

 def append_matching_regexp(dir, suffix, regex)
 each_matching_regexp(dir, regex) do |name|
 File.rename(File.join(dir, name), File.join(dir, name+suffix))
 end
 end

This is all well and good, but these methods only manipulate files directly beneath the
directory you specify. "I've got a whole tree full of files I want to get rid of!" I hear you cry.
For that, you should use Find.find instead of Dir.each. Apart from that change, the
implementation is nearly identical to delete_matching_regexp:

 def delete_matching_regexp_recursively(dir, regex)
 Find.find(dir) do |path|
 dir, name = File.split(path)
 if name =~ regex
 ftype = File.directory?(path) ? Dir : File
 begin
 ftype.delete(path)
 rescue SystemCallError => e
 $stderr.puts e.message
 end
 end
 end
 end

If you want to recursively delete the contents of directories that match the regular
expression (even if the contents themselves don't match), use FileUtils.rm_rf instead
of Dir.delete.

Chapter 23. System Administration Page 10 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

See Also

• Dir.delete will only remove an empty directory; see Recipe 6.18 for information
on how to remove one that's not empty

• Recipe 6.20, "Finding the Files You Want"

Recipe 23.6. Renaming Files in Bulk

Problem
You want to rename a bunch of files programmatically: for instance, to normalize the
filename case or to change the extensions.

Solution
Use the Find module in the Ruby standard library. Here's a method that renames files
according to the results of a code block. It returns a list of files it couldn't rename, because
their proposed new name already existed:

 require 'find'

 module Find
 def rename(*paths)
 unrenamable = []
 find(*paths) do |file|
 next unless File.file? file # Skip directories, etc.
 path, name = File.split(file)
 new_name = yield name

 if new_name and new_name != name
 new_path = File.join(path, new_name)
 if File.exists? new_path
 unrenamable << file
 else
 puts "Renaming #{file} to #{new_path}" if $DEBUG
 File.rename(file, new_path)
 end
 end
 end
 return unrenamable
 end
 module_function(:rename)
 end

This addition to the Find module makes it easy to do things like convert all filenames to
lowercase. I'll create some dummy files to demonstrate:

 require 'fileutils'
 tmp_dir = 'tmp_files'
 Dir.mkdir(tmp_dir)
 ['CamelCase.rb', 'OLDFILE.TXT', 'OldFile.txt'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
 end

Chapter 23. System Administration Page 11 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-18#rubyckbk-CHP-6-SECT-18
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-20#rubyckbk-CHP-6-SECT-20

 tmp_dir = File.join(tmp_dir, 'subdir')
 Dir.mkdir(tmp_dir)
 ['i_am_SHOUTING', 'I_AM_SHOUTING'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
 end

Now let's convert these filenames to lowercase:

 $DEBUG = true
 Find.rename('./') { |file| file.downcase }
 # Renaming ./tmp_files/subdir/I_AM_SHOUTING to ./tmp_files/subdir/i_am_shouting
 # Renaming ./tmp_files/OldFile.txt to ./tmp_files/oldfile.txt
 # Renaming ./tmp_files/CamelCase.rb to ./tmp_files/camelcase.rb
 # => ["./OldFile.txt", "./dir/i_am_SHOUTING"]

Two of the files couldn't be renamed, because oldfile.txt and subdir/
i_am_shouting were already taken.

Let's add a ".txt" extension to all files that have no extension:

 Find.rename('./') { |file| file + '.txt' unless file.index('.') }
 # Renaming ./tmp_files/subdir/i_am_shouting to ./tmp_files/subdir/i_am_shouting.txt
 # Renaming ./tmp_files/subdir/i_am_SHOUTING to ./tmp_files/subdir/i_am_SHOUTING.txt #
 # => []

Discussion
Renaming files in bulk is a very common operation, but there's no standard command-
line application to do it because renaming operations are best described algorithmically.

The Find.rename method makes several simplifying assumptions. It assumes that you
want to rename regular files and not directories. It assumes that you can decide on a new
name for a file based solely on its filename, not on its full path. It assumes that you'll handle
in some other way the files it couldn't rename.

Another implementation might make different assumptions: it might yield both path and
name, and use autoversioning to guarantee that it can rename every file, although not
necessary to the exact filename returned by the code block. It all depends on your needs.

Perhaps the most common renaming operation is modifying the extensions of files. Here's
a method that uses Find.rename to make this kind of operation easier:

 module Find
 def change_extensions(extension_mappings, *paths)
 rename(*paths) do |file|
 base, extension = file.split(/(.*)\./)[1..2]
 new_extension = extension
 extension_mappings.each do |re, ext|
 if re.match(extension)
 new_extension = ext
 break
 end

Chapter 23. System Administration Page 12 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 end
 "#{base}.#{new_extension}"
 end
 end
 module_function(:change_extensions)
 end

This code uses Find.change_extensions to normalize a collection of images. All JPEG
files will be given the extension ".jpg", all PNG files the extension ".png", and all GIF files
the extension ".gif".

Again, we'll create some dummy image files to test:

 tmp_dir = 'tmp_graphics'
 Dir.mkdir(tmp_dir)

 ['my.house.jpeg', 'Construction.Gif', 'DSC1001.JPG', '52.PNG'].each do |f|
 FileUtils.touch(File.join(tmp_dir, f))
 end

Now, let's rename:

 Find.change_extensions({/jpe?g/i => 'jpg',
 /png/i => 'png',
 /gif/i => 'gif'}, tmp_dir)
 # Renaming tmp_graphics/52.PNG to tmp_graphics/52.png
 # Renaming tmp_graphics/DSC1001.JPG to tmp_graphics/DSC1001.jpg
 # Renaming tmp_graphics/Construction.Gif to tmp_graphics/Construction.gif
 # Renaming tmp_graphics/my.house.jpeg to tmp_graphics/my.house.jpg

See Also

• Some Unix installations come with a program or Perl script called rename, which can
do your renaming if you can represent it as a string substitution or a regular
expression; you may not need anything else

• Recipe 6.14, "Backing Up to Versioned Filenames"
• Recipe 6.20, "Finding the Files You Want"

Recipe 23.7. Finding Duplicate Files

Problem
You want to find the duplicate files that are taking up all the space on your hard drive.

Solution
The simple solution is to group the files by size and then by their MD5 checksum. Two files
are presumed identical if they have the same size and MD5 sum.

Chapter 23. System Administration Page 13 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-14#rubyckbk-CHP-6-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-20#rubyckbk-CHP-6-SECT-20

The following program takes a list of directories on the command line, and prints out all
sets of duplicate files. You can pass a different code block into each_set_of_
duplicates for different behavior: for instance, to prompt the user about which of the
duplicates to keep and which to delete.

 #!/usr/bin/ruby
 # find_duplicates.rb

 require 'find'
 require 'digest/md5'

 def each_set_of_duplicates(*paths)
 sizes = {}
 Find.find(*paths) do |f|
 (sizes[File.size(f)] ||= []) << f if File.file? f
 end
 sizes.each do |size, files|
 next unless files.size > 1
 md5s = {}
 files.each do |f|
 digest = Digest::MD5.hexdigest(File.read(f))
 (md5s[digest] ||= []) << f
 end
 md5s.each { |sum, files| yield files if files.size > 1 }
 end
 end

 each_set_of_duplicates(*ARGV) do |f|
 puts "Duplicates: #{f.join(", ")}"
 end

Discussion
This is one task that can't be handled with a simple Find.find code block, because it's
trying to figure out which files have certain relationships to each other. Find.find takes
care of walking the file tree, but it would be very inefficient to try to make a single trip
through the tree and immediately spit out a set of duplicates. Instead, we group the files
by size and then by their MD5 checksum.

The MD5 checksum is a short binary string used as a stand-in for the contents of a file. It's
commonly used to verify that a huge file was downloaded without errors. It's not impossible
for two different files to have an MD5 sum, but unless someone is deliberately trying to
trick you, it's almost impossible to have two files with the same size and the same MD5
sum.

Calculating a MD5 sum is very expensive: it means performing a mathematical calculation
on the entire contents of the file. Grouping the files by size beforehand greatly reduces the
number of sums that must be calculated, but that's still a lot of I/O. Even if two similarly
sized files differ in the first byte, the code above will read the entire files.

Here's a different version of the same program that takes an incremental approach like
that seen in Recipe 6.10. When it thinks a set of files might contain duplicates, it makes

Chapter 23. System Administration Page 14 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-10#rubyckbk-CHP-6-SECT-10

repeated calls to a method called eliminate_non_duplicates. The duplicates are
yielded and the nonduplicates discarded over the course of these calls.

 #!/usr/bin/ruby
 # find_duplicates2.rb

 require 'find'
 BLOCK_SIZE = 1024*8

 def each_set_of_duplicates(*paths, &block)
 sizes = Hash.new {|h, k| h[k] = [] }
 Find.find(*paths) { |f| sizes[File.size(f)] << f if File.file? f }

 sizes.each_pair do |size, files|
 next unless files.size > 1
 offset = 0
 files = [files]
 while !files.empty? && offset <= size
 files = eliminate_non_duplicates(files, size, offset, &block)
 offset += BLOCK_SIZE
 end
 end
 end

The method eliminate_non_duplicates takes lists of files that might contain
duplicates. It reads each file an eight-kilobyte block at a time, and compares just one block
of each file. Files whose blocks don't match the corresponding blocks of any other file are
discarded; they're not duplicates. All files with the same block are put into a new list of
possible duplicates, and sent back to each_set_of_duplicates.

If two files are not duplicates, eliminate_non_duplicates will eventually find a block
where they differ. Otherwise, it will eventually read the last block of each file and confirm
them as duplicates.

 def eliminate_non_duplicates(partition, size, offset)
 possible_duplicates = []
 partition.each do |possible_duplicate_set|
 blocks = Hash.new {|h, k| h[k] = [] }
 possible_duplicate_set.each do |f|
 block = open(f, 'rb') do |file|
 file.seek(offset)
 file.read(BLOCK_SIZE)
 end
 blocks[block || ''] << f
 end
 blocks.each_value do |files|
 if files.size > 1
 if offset+BLOCK_SIZE >= size
 # We know these are duplicates.
 yield files
 else
 # We suspect these are duplicates, but we need to compare
 # more blocks of data.
 possible_duplicates << files
 end
 end
 end
 end
 return possible_duplicates
 end

Chapter 23. System Administration Page 15 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 each_set_of_duplicates(*ARGV) do |f|
 puts "Duplicates: #{f.join(", ")}"
 end

This code is more complicated, but in real-world situations, it's considerably faster. Most
files of the same size are not duplicates, and it's cheaper to find this out by reading eight
kilobytes than by reading many megabytes and then performing two MD5 sums. This
solution also eliminates any last possibility that each_set_of_duplicates will claim
two files are duplicates when they're not.

See Also

• Recipe 6.10, "Comparing Two Files"
• Recipe 6.12, "Walking a Directory Tree"

Recipe 23.8. Automating Backups

Problem
You want to make a dated archive of a directory to burn to CD or otherwise store on backup
media.

Solution
This script copies a directory to a timestamped backup. It reuses the File.versioned_
filename method defined in Recipe 6.14, so you can create multiple backups in the same
time period:

 require 'fileutils'

 def backup(from_dir, to_dir, time_format="-%Y%m%d")
 from_path, from_name = File.split(from_dir)
 now = Time.now.strftime(time_format)
 Dir.mkdir(to_dir) unless File.exists? to_dir
 unless File.directory? to_dir
 raise ArgumentError, "Not a directory: #{to_dir}"
 end
 to = File.versioned_filename(File.join(to_dir, from_name + now))
 FileUtils.cp_r(from_dir, to, :preserve=>true)
 return to
 end

 # This method copied from "Backing Up to Versioned Filenames"
 class File
 def File.versioned_filename(base, first_suffix=".0")
 suffix = nil
 filename = base
 while File.exists?(filename)
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 end
 return filename
 end

Chapter 23. System Administration Page 16 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-10#rubyckbk-CHP-6-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-12#rubyckbk-CHP-6-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-14#rubyckbk-CHP-6-SECT-14

 end

 # Create a dummy directory
 Dir.mkdir('recipes')
 # And back it up.
 backup('recipes', '/tmp/backup') # => "/tmp/backup/recipes-20061031"
 backup('recipes', '/tmp/backup') # => "/tmp/backup/recipes-20061031.0"
 backup('recipes', '/tmp/backup', '-%Y%m%d-%H.%M.%S')
 # => "/tmp/backup/recipes-20061031-20.48.56"

Discussion
The backup method recursively copies the contents of a directory into another directory,
possibly on another filesystem. It uses the time-based scheme you specify along with
versioned_filename to uniquely name the destination directory.

As written, the backup method uses a lot of space: every time you call it, it creates an
entirely new copy of every file in the source directory. Fortunately, the technique has many
variations. Instead of copying the files, you can make a timestamped tarball with the
techniques from Recipe 12.10. You can archive the files to another computer with the
techniques from Recipe 14.11 (although to save space, you should use the rsync program
instead). You could even automatically check your work into a version control system every
so often; this works better with text than with binary files.

See Also

• Recipe 6.14, "Backing Up to Versioned Filenames"
• Recipe 12.10, "Compressing and Archiving Files with Gzip and Tar"
• Recipe 14.11, "Copying a File to Another Machine"

Recipe 23.9. Normalizing Ownership and Permissions in User
Directories

Problem
You want to make make sure your users' home directories don't contain world-writable
directories, directories owned by other users, or other potential security problems.

Solution
Use the etc library to look up a user's home directory and UID from the username. Then
use Find.find to walk the directory trees, and File methods to check and modify access
to each file.

Chapter 23. System Administration Page 17 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-10#rubyckbk-CHP-12-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-11#rubyckbk-CHP-14-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-14#rubyckbk-CHP-6-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-10#rubyckbk-CHP-12-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-11#rubyckbk-CHP-14-SECT-11

We are looking out for any case where one user's home directory can be modified by some
other user. Whenever we find such a case, we fix it with a File.chmod or File.chown
call. In this program, the actual calls are commented out, so that you don't accidentally
change your permissions when you just want to test out the program.

 #!/usr/bin/ruby -w
 # normalize_homes.rb

 require 'etc'
 require 'find'
 require 'optparse'

 def normalize_home(pwd_entry, maximum_perms=0775, dry_run=true)
 uid, home = pwd_entry.uid, pwd_entry.dir
 username = pwd_entry.name

 puts "Scanning #{username}'s home of #{home}."

 Find.find(home) do |f|
 next unless File.exists? f
 stat = File.stat(f)
 file_uid, file_gid, mode = stat.uid, stat.gid, stat.mode

The most obvious thing we want to check is whether the user owns every file in their home
directory. With occasional exceptions (such as files owned by the web server), a user should
own the files in his or her home directory:

 # Does the user own the file?
 if file_uid != uid
 begin
 current_owner = Etc.getpwuid(file_uid).name
 rescue ArgumentError # No such user; just use UID
 current_owner = "uid #{file_uid}"
 end
 puts " CHOWN #{f}"
 puts " Current owner is #{current_owner}, should be #{username}"
 # File.chown(uid, nil, f) unless dry_run
 end

A less obvious check involves the Unix group that owns the file. A user can let other people
work on a file in their home directory by giving ownership to a user group. But you can
only give ownership to a group if you're a member of that group. If a user's home directory
contains a file owned by a group the user doesn't belong to, something fishy is probably
going on.

 # Does the user belong to the group that owns the file?
 begin
 group = Etc.getgrgid(file_gid)
 group_name = group.name
 rescue ArgumentError # No such group
 group_name = "gid #{file_gid}"
 end
 unless group && (group.mem.member?(username) || group.name == username)
 puts " CHGRP #{f}"
 puts " Current group is #{group_name}, and #{username} doesn't belong."
 # File.chown(nil, uid, f) unless dry_run
 end

Chapter 23. System Administration Page 18 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

Finally, we'll check each file's permissions and make sure they are no more permissive
than the value passed in as maximum_perms. The default value of 0775 allows any kind
of file except a world-writable file. If normalize_home finds a world-writable file, it will
flip the world-writable bit and leave the rest of the permissions alone:

 # Does the file have more than the maximum allowed permissions?
 perms = mode & 0777 # Drop non-permission bits
 should_be = perms & maximum_perms
 if perms != should_be
 puts " CHMOD #{f}"
 puts " Current perms are #{perms.to_s(8)}, " +
 "should be #{should_be.to_s(8)}"
 # File.chmod(perms & maximum_perms, f) unless dry_run
 end
 end
 end

All that's left to do is a simple command-line interface to the normalize_home method:

 dry_run = false
 opts = OptionParser.new do |opts|
 opts.on("-D", "--dry-run",
 "Display changes to be made, don't make them.") do
 dry_run = true
 end

 opts.on_tail("-h", "--help", "display this help and exit") do
 puts opts
 exit
 end
 end
 opts.banner = "Usage: #{__FILE__} [--dry-run] username [username2, …]"
 opts.parse!(ARGV)

 # Make sure all the users exist.
 pwd_entries = ARGV.collect { |username| Etc.getpwnam(username) }

 # Normalize all given home directories.
 pwd_entries.each { |p| normalize_home(p, 0775, dry_run) }

Discussion
Running this script on my home directory shows over 2,500 problems. These are mostly
files owned by root, files owned by UIDs that don't exist on my system (these come from
tarballs), and world-writable files. Below I give a sample of the embarrassment:

 $ ruby -D normalize_homes.rb leonardr

 Scanning leonardr's home of /home/leonardr.
 CHOWN /home/leonardr/writing/Ruby Cookbook/sys-proctable-0.7.3/proctable.so
 Current owner is root, should be leonardr
 CHGRP /home/leonardr/writing/Ruby Cookbook/sys-proctable-0.7.3/proctable.so
 Current group is root, and leonardr doesn't belong.
 …
 CHOWN /home/leonardr/writing/Ruby Cookbook/rubygems-0.8.4/lib/rubygems.rb
 Current owner is uid 501, should be leonardr
 CHGRP /home/leonardr/writing/Ruby Cookbook/rubygems-0.8.4/lib/rubygems.rb
 Current group is gid 501, and leonardr doesn't belong.
 …
 CHMOD /home/leonardr/SORT/gogol-home-2002/mail

Chapter 23. System Administration Page 19 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

 Current perms are 722, should be 720
 …

Running the script as root (and with the File.chmod and File.chown calls
uncommented) fixes all the problems.

You can run the script as yourself to check your own home directory, and it'll fix permission
problems on files you own. But if a file is owned by someone else, you can't take it back
just because it's in your home directory—that's part of the problem with having a file owned
by someone else in your home directory.

As usual with system administration scripts, normalize.homes.rb is only a starting
point. You'll probably need to adapt this program to your specific purposes. For instance,
you may want to leave certain files alone, especially files owned by root (who can modify
anyone's home directory anyway) or by system processes such as the web server (usually
user apache, httpd, or nobody).

See Also

• Recipe 2.6, "Converting Between Numeric Bases"
• Recipe 6.2, "Checking Your Access to a File"
• Recipe 6.3, "Changing the Permissions on a File"
• Recipe 6.12, "Walking a Directory Tree"

Recipe 23.10. Killing All Processes for a Given User

Problem
You want an easy way to kill all the running processes of a user whose processes get out of
control.

Solution
You can send a Unix signal (including the deadly SIGTERM or the even deadlier SIGKILL)
from Ruby with the Process.kill method. But how to get the list of processes for a given
user? The simplest way is to call out to the unix ps command and parse the output. Running
ps -u#{username} gives us the processes for a particular user.

 #!/usr/bin/ruby -w
 # banish.rb
 def signal_all(username, signal)
 lookup_uid(username)
 killed = 0
 %x{ps -u#{username}}.each_with_index do |proc, i|
 next if i == 0 # Skip the header provided by ps

Chapter 23. System Administration Page 20 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-6#rubyckbk-CHP-2-SECT-6
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-2#rubyckbk-CHP-6-SECT-2
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-3#rubyckbk-CHP-6-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-12#rubyckbk-CHP-6-SECT-12

 pid = proc.split[0].to_i
 begin
 Process.kill(signal, pid)
 rescue SystemCallError => e
 raise e unless e.errno == Errno::ESRCH
 end
 killed += 1
 end
 return killed
 end

There are a couple things to look out for here.

• ps dumps a big error message if we pass in the name of a nonexistent user. It would
look better if we could handle that error ourselves. That's what the call to
lookup_uid will do.

• ps prints out a header as its first line. We want to skip that line because it doesn't
represent a process.

• Killing a process also kills all of its children. This can be a problem if the child process
shows up later in the ps list: killing it again will raise a SystemCallError. We deal
with that possibility by catching and ignoring that particular SystemCallError. We
still count the process as "killed," though.

Here's the implementation of lookup_id:

 def lookup_uid(username)
 require 'etc'
 begin
 user = Etc.getpwnam(username)
 rescue ArgumentError
 raise ArgumentError, "No such user: #{username}"
 end
 return user.uid
 end

Now all that remains is the command-line interface:

 require 'optparse'
 signal = "SIGHUP"
 opts = OptionParser.new do |opts|
 opts.banner = "Usage: #{__FILE__} [-9] [USERNAME]"
 opts.on("-9", "--with-extreme-prejudice",
 "Send an uncatchable kill signal.") { signal = "SIGKILL" }
 end
 opts.parse!(ARGV)

 if ARGV.size != 1
 $stderr.puts opts.banner
 exit
 end

 username = ARGV[0]
 if username == "root"
 $stderr.puts "Sorry, killing all of root's processes would bring down the system."
 exit
 end
 puts "Killed #{signal_all(username, signal)} process(es)."

Chapter 23. System Administration Page 21 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

As root, you can do some serious damage with this tool:

 $./banish.rb peon
 5 process(es) killed

Discussion
The main problem with banish.rb as written is that it depends on an external program.
What's worse, it depends on parsing the human-readable output of an external program.
For a quick script this is fine, but this would be more reliable as a self-contained program.

You can get a Ruby interface to the Unix process table by installing the sysproctable
library. This makes it easy to treat the list of currently running processes as a Ruby data
structure. Here's an alternate implementation of signal_all that uses sys-
proctable instead of invoking a separate program. Note that, unlike the other
implementation, this one actually uses the return value of lookup_uid:

 def signal_all(username, signal)
 uid = lookup_uid(username)
 require 'sys/proctable'
 killed = 0
 Sys::ProcTable.ps.each do |proc|
 if proc.uid == uid
 begin
 Process.kill(signal, proc.pid)
 rescue SystemCallError => e
 raise e unless e.errno == Errno::ESRCH
 end
 killed += 1
 end
 end
 return killed
 end

See Also

• sys-proctable is in the RAA at http://raa.ruby-lang.org/project/sys-proctable/;
it's one of the sysutils packages: see http://rubyforge.org/projects/sysutils for the
others

• To write an equivalent program for Windows, you'd either use WMIthrough Ruby's
win32ole standard library, or install a native binary of GNU's ps and use win32-
process

Chapter 23. System Administration Page 22 Return to Table of Contents

Chapter 23. System Administration
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly Media, Inc.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/19 User number: 628024
© 2008 Safari Books Online, LLC. This PDF is made available for personal use only during the relevant subscription term, subject to the Safari Terms of Service. Any other use
requires prior written consent from the copyright owner. Unauthorized use, reproduction and/or distribution are strictly prohibited and violate applicable laws. All rights reserved.

http://raa.ruby-lang.org/project/sys-proctable/
http://rubyforge.org/projects/sysutils

	System Administration
	Scripting an External Program
	Managing Windows Services
	Running Code as Another User
	Running Periodic Tasks Without cron or at
	Deleting Files That Match a Regular Expression
	Renaming Files in Bulk
	Finding Duplicate Files
	Automating Backups
	Normalizing Ownership and Permissions in User Directories
	Killing All Processes for a Given User

