
Table of Contents

Arrays.. 1
Iterating Over an Array... 3
Rearranging Values Without Using Temporary Variables... 7
Stripping Duplicate Elements from an Array... 9
Reversing an Array.. 10
Sorting an Array... 11
Ignoring Case When Sorting Strings... 13
Making Sure a Sorted Array Stays Sorted... 14
Summing the Items of an Array.. 19
Sorting an Array by Frequency of Appearance.. 20
Shuffling an Array... 22
Getting the N Smallest Items of an Array... 24
Building Up a Hash Using Injection... 26
Extracting Portions of Arrays... 28
Computing Set Operations on Arrays... 31
Partitioning or Classifying a Set... 34

Chapter 4. Arrays

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

4. Arrays

Like all high-level languages, Ruby has built-in support for arrays, objects that contain
ordered lists of other objects. You can use arrays (often in conjunction with hashes) to
build and use complex data structures without having to define any custom classes.

An array in Ruby is an ordered list of elements. Each element is a reference to some object,
the way a Ruby variable is a reference to some object. For convenience, throughout this
book we usually talk about arrays as though the array elements were the actual objects,
not references to the objects. Since Ruby (unlike languages like C) gives no way of
manipulating object references directly, the distinction rarely matters.

The simplest way to create a new array is to put a comma-separated list of object references
between square brackets. The object references can be predefined variables (my_var),
anonymous objects created on the spot ('my string', 4.7, or MyClass.new), or
expressions (a+b, object.method). A single array can contain references to objects of
many different types:

 a1 = [] # => []
 a2 = [1, 2, 3] # => [1, 2, 3]
 a3 = [1, 2, 3, 'a', 'b', 'c', nil] # => [1, 2, 3, "a", "b", "c", nil]

 n1 = 4
 n2 = 6
 sum_and_difference = [n1, n2, n1+n2, n1-n2]
 # => [4, 6, 10, -2]

If your array contains only strings, you may find it simpler to build your array by enclosing
the strings in the w{} syntax, separated by whitespace. This saves you from having to write
all those quotes and comma:

 %w{1 2 3} # => ["1", "2", "3"]
 %w{The rat sat
 on the mat}
 # => ["The", "rat", "sat", "on", "the", "mat"]

The << operator is the simplest way to add a value to an array. Ruby dynamically resizes
arrays as elements are added and removed.

 a = [1, 2, 3] # => [1, 2, 3]
 a << 4.0 # => [1, 2, 3, 4.0]
 a << 'five' # => [1, 2, 3, 4.0, "five"]

Chapter 4. Arrays Page 1 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

An array element can be any object reference, including a reference to another array. An
array can even contain a reference to itself, though this is usually a bad idea, since it can
send your code into infinite loops.

 a = [1,2,3] # => [1, 2, 3]
 a << [4, 5, 6] # => [1, 2, 3, [4, 5, 6]]
 a << a # => [1, 2, 3, [4, 5, 6], […]]

As in most other programming languages, the elements of an array are numbered with
indexes starting from zero. An array element can be looked up by passing its index into
the array index operator []. The first element of an array can be accessed with a[0], the
second with a[1], and so on.

Negative indexes count from the end of the array: the last element of an array can be
accessed with a[-1], the second-to-last with a[-2], and so on. See Recipe 4.13 for more
ways of using the array indexing operator.

The size of an array is available through the Array#size method. Because the index
numbering starts from zero, the index of the last element of an array is the size of the array,
minus one.

 a = [1, 2, 3, [4, 5, 6]]
 a.size # => 4
 a << a # => [1, 2, 3, [4, 5, 6], […]]
 a.size # => 5

 a[0] # => 1
 a[3] # => [4, 5, 6]
 a[3][0] # => 4
 a[3].size # => 3

 a[-2] # => [4, 5, 6]
 a[-1] # => [1, 2, 3, [4, 5, 6], […]]
 a[a.size-1] # => [1, 2, 3, [4, 5, 6], […]]

 a[-1][-1] # => [1, 2, 3, [4, 5, 6], […]]
 a[-1][-1][-1] # => [1, 2, 3, [4, 5, 6], […]]

All languages with arrays have constructs for iterating over them (even if it's just a for
loop). Languages like Java and Python have general iterator methods similar to Ruby's,
but they're usually used for iterating over arrays. In Ruby, iterators are the standard way
of traversing all data structures: array iterators are just their simplest manifestation.

Ruby's array iterators deserve special study because they're Ruby's simplest and most
accessible iterator methods. If you come to Ruby from another language, you'll probably
start off thinking of iterator methods as letting you treat aspects of a data structure "like
an array." Recipe 4.1 covers the basic array iterator methods, including ones in the
Enumerable module that you'll encounter over and over again in different contexts.

Chapter 4. Arrays Page 2 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Set class, included in Ruby's standard library, is a useful alternative to the Array
class for many basic algorithms. A Ruby set models a mathematical set: sets are not
ordered, and cannot contain more than one reference to the same object. For more about
sets, see Recipes 4.14 and 4.15.

Recipe 4.1. Iterating Over an Array

Problem
You want to perform some operation on each item in an array.

Solution
Iterate over the array with Enumerable#each. Put into a block the code you want to
execute for each item in the array.

 [1, 2, 3, 4].each { |x| puts x }
 # 1
 # 2
 # 3
 # 4

If you want to produce a new array based on a transformation of some other array, use
Enumerable#collect along with a block that takes one element and transforms it:

 [1, 2, 3, 4].collect { |x| x ** 2 } # => [1, 4, 9, 16]

Discussion
Ruby supports for loops and the other iteration constructs found in most modern
programming languages, but its prefered idiom is a code block fed to an method like each
or collect.

Methods like each and collect are called generators or iterators: they iterate over a
data structure, yielding one element at a time to whatever code block you've attached.
Once your code block completes, they continue the iteration and yield the next item in
the data structure (according to whatever definition of "next" the generator supports).
These methods are covered in detail in Chapter 7.

In a method like each, the return value of the code block, if any, is ignored. Methods like
collect take a more active role. After they yield an element of a data structure to a code
block, they use the return value in some way. The collect method uses the return value
of its attached block as an element in a new array.

Chapter 4. Arrays Page 3 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7#rubyckbk-CHP-7

Although commonly used in arrays, the collect method is actually defined in the
Enumerable module, which the Array class includes. Many other Ruby classes (Hash
and Range are just two) include the Enumerable methods; it's a sort of baseline for Ruby
objects that provide iterators. Though Enumerable does not define the each method, it
must be defined by any class that includes Enumerable, so you'll see that method a lot,
too. This is covered in Recipe 9.4.

If you need to have the array indexes along with the array elements, use
Enumerable#each_with_index.

 ['a', 'b', 'c'].each_with_index do |item, index|
 puts "At position #{index}: #{item}"
 end
 # At position 0: a
 # At position 1: b
 # At position 2: c

Ruby's Array class also defines several generators not seen in Enumerable . For
instance , to iterate over a list in reverse order, use the reverse_each method:

 [1, 2, 3, 4].reverse_each { |x| puts x }
 # 4
 # 3
 # 2
 # 1

Enumerable#collect has a destructive equivalent: Array#collect!, also known as
Arary#map! (a helpful alias for Python programmers). This method acts just like
collect, but instead of creating a new array to hold the return values of its calls to the
code block, it replaces each item in the old array with the corresponding value from the
code block. This saves memory and time, but it destroys the old array:

 array = ['a', 'b', 'c']
 array.collect! { |x| x.upcase }
 array # => ["A", "B", "C"]
 array.map! { |x| x.downcase }
 array # => ["a", "b", "c"]

If you need to skip certain elements of an array, you can use the iterator methods
Range#step and Integer#upto instead of Array#each. These methods generate a
sequence of numbers that you can use as successive indexes into an array.

 array = ['junk', 'junk', 'junk', 'val1', 'val2']
 3.upto(array.length-1) { |i| puts "Value #{array[i]}" }
 # Value val1
 # Value val2

 array = ['1', 'a', '2', 'b', '3', 'c']
 (0..array.length-1).step(2) do |i|
 puts "Letter #{array[i]} is #{array[i+1]}"

Chapter 4. Arrays Page 4 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-4#rubyckbk-CHP-9-SECT-4

 end
 # Letter 1 is a
 # Letter 2 is b
 # Letter 3 is c

Like most other programming languages, Ruby lets you define for, while, and until
loops—but you shouldn't need them very often. The for construct is equivalent to each,
whether it's applied to an array or a range:

 for element in ['a', 'b', 'c']
 puts element
 end
 # a
 # b
 # c

 for element in (1..3)
 puts element
 end
 # 1
 # 2
 # 3

The while and until constructs take a boolean expression and execute the loop while
the expression is true (while)or until it becomes true (until). All three of the following
code snippets generate the same output:

 array = ['cherry', 'strawberry', 'orange']

 for index in (0…array.length)
 puts "At position #{index}: #{array[index]}"
 end

 index = 0
 while index < array.length
 puts "At position #{index}: #{array[index]}"
 index += 1
 end

 index = 0
 until index == array.length
 puts "At position #{index}: #{array[index]}"
 index += 1
 end

 # At position 0: cherry
 # At position 1: strawberry
 # At position 2: orange

These constructs don't make for very idiomatic Ruby. You should only need to use them
when you're iterating over a data structure in a way that doesn't already have an iterator
method (for instance, if you're traversing a custom tree structure). Even then, it's more
idiomatic if you only use them to define your own iterator methods.

The following code is a hybrid of each and each_reverse. It switches back and forth
between iterating from the beginning of an array and iterating from its end.

Chapter 4. Arrays Page 5 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 array = [1,2,3,4,5]
 new_array = []
 front_index = 0

 back_index = array.length-1
 while front_index <= back_index
 new_array << array[front_index]
 front_index += 1
 if front_index <= back_index
 new_array << array[back_index]
 back_index -= 1
 end
 end
 new_array # => [1, 5, 2, 4, 3]

That code works, but it becomes reusable when defined as an iterator. Put it into the Array
class, and it becomes a universally accessible way of doing iteration, the colleague of each
and reverse_each:

 class Array
 def each_from_both_sides
 front_index = 0
 back_index = self.length-1
 while front_index <= back_index
 yield self[front_index]
 front_index += 1
 if front_index <= back_index
 yield self[back_index]
 back_index -= 1
 end
 end
 end
 end

 new_array = []
 [1,2,3,4,5].each_from_both_sides { |x| new_array << x }
 new_array # => [1, 5, 2, 4, 3]

This "burning the candle at both ends" behavior can also be defined as a collecttype
method: one which constructs a new array out of multiple calls to the attached code block.
The implementation below delegates the actual iteration to the each_
from_both_sides method defined above:

 class Array
 def collect_from_both_sides
 new_array = []
 each_from_both_sides { |x| new_array << yield(x) }
 return new_array
 end
 end

 ["ham", "eggs", "and"].collect_from_both_sides { |x| x.capitalize }
 # => ["Ham", "And", "Eggs"]

Chapter 4. Arrays Page 6 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Chapter 7, especially Recipe 7.5, "Writing an Iterator Over a Data Structure," and
Recipe 7.9, "Looping Through Multiple Iterables in Parallel"

Recipe 4.2. Rearranging Values Without Using Temporary
Variables

Problem
You want to rearrange a number of variables, or assign the elements of an array to
individual variables.

Solution
Use a single assignment statement. Put the destination variables on the left-hand side, and
line each one up with a variable (or expression) on the right side.

A simple swap:

 a = 1
 b = 2
 a, b = b, a
 a # => 2
 b # => 1

A more complex rearrangement:

 a, b, c = :red, :green, :blue
 c, a, b = a, b, c
 a # => :green
 b # => :blue
 c # => :red

You can split out an array into its components:

 array = [:red, :green, :blue]
 c, a, b = array
 a # => :green
 b # => :blue
 c # => :red

You can even use the splat operator to extract items from the front of the array:

 a, b, *c = [12, 14, 178, 89, 90]
 a # => 12
 b # => 14
 c # => [178, 89, 90]

Chapter 4. Arrays Page 7 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7#rubyckbk-CHP-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-5#rubyckbk-CHP-7-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-9#rubyckbk-CHP-7-SECT-9

Discussion
Ruby assignment statements are very versatile. When you put a comma-separated list of
variables on the left-hand side of an assignment statement, it's equivalent to assigning
each variable in the list the corresponding right-hand value. Not only does this make your
code more compact and readable, it frees you from having to keep track of temporary
variables when you swap variables.

Ruby works behind the scenes to allocate temporary storage space for variables that would
otherwise be overwritten, so you don't have to do it yourself. You don't have to write this
kind of code in Ruby:

 a, b = 1, 2
 x = a
 a = b
 b = x

The right-hand side of the assignment statement can get almost arbitrarily complicated:

 a, b = 5, 10
 a, b = b/a, a-1 # => [2, 4]

 a, b, c = 'A', 'B', 'C'
 a, b, c = [a, b], { b => c }, a
 a # => ["A", "B"]
 b # => {"B"=>"C"}
 c # => "A"

If there are more variables on the left side of the equal sign than on the right side, the extra
variables on the left side get assigned nil. This is usually an unwanted side effect.

 a, b = 1, 2
 a, b = b
 a # => 2
 b # => nil

One final nugget of code that is interesting enough to mention even though it has no
legitimate use in Ruby: it doesn't save enough memory to be useful, and it's slower than
doing a swap with an assignment. It's possible to swap two integer variables using bitwise
XOR, without using any additional storage space at all (not even implicitly):

 a, b = rand(1000), rand(1000) # => [595, 742]
 a = a ^ b # => 181
 b = b ^ a # => 595
 a = a ^ b # => 742

 [a, b] # => [742, 595]

Chapter 4. Arrays Page 8 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In terms of the cookbook metaphor, this final snippet is a dessert—no nutritional value,
but it sure is tasty.

Recipe 4.3. Stripping Duplicate Elements from an Array

Problem
You want to strip all duplicate elements from an array, or prevent duplicate elements from
being added in the first place.

Solution
Use Array#uniq to create a new array, based on an existing array but with no duplicate
elements. Array#uniq! strips duplicate elements from an existing array.

 survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]
 distinct_answers = survey_results.uniq # => [1, 2, 7, 5]
 survey_results.uniq!
 survey_results # => [1, 2, 7, 5]

To ensure that duplicate values never get into your list, use a Set instead of an array. If
you try to add a duplicate element to a Set, nothing will happen.

 require 'set'
 survey_results = [1, 2, 7, 1, 1, 5, 2, 5, 1]
 distinct_answers = survey_results.to_set
 # => #<Set: {5, 1, 7, 2}>

 games = [["Alice", "Bob"], ["Carol", "Ted"],
 ["Alice", "Mallory"], ["Ted", "Bob"]]
 players = games.inject(Set.new) { |set, game| game.each { |p| set << p }; set }
 # => #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

 players << "Ted"
 # => #<Set: {"Alice", "Mallory", "Ted", "Carol", "Bob"}>

Discussion
The common element between these two solutions is the hash (see Chapter 5).
Array#uniq iterates over an array, using each element as a key in a hash that it always
checks to see if it encountered an element earlier in the iteration. A Set keeps the same
kind of hash from the beginning, and rejects elements already in the hash. You see
something that acts like an array, but it won't accept duplicates. In either case, two objects
are considered "duplicates" if they have the same result for ==.

The return value of Array#uniq is itself an array, and nothing prevents you from adding
duplicate elements to it later on. If you want to start enforcing uniqueness in perpetuity,

Chapter 4. Arrays Page 9 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5#rubyckbk-CHP-5

you should turn the array into a Set instead of calling uniq. Requiring the set library
will define a new method Enumerable#to_set, which does this.

Array#uniq preserves the original order of the array (that is, the first instance of an object
remains in its original location), but a Set has no order, because its internal
implementation is a hash. To get array-like order in a Set, combine this recipe with Recipe
5.8 and subclass Set to use an OrderedHash:

 class OrderedSet < Set
 def initialize
 @hash ||= OrderedHash.new
 end
 end

Needing to strip all instances of a particular value from an array is a problem that often
comes up. Ruby provides Array#delete for this task, and Array#compact for the
special case of removing nil values.

 a = [1, 2, nil, 3, 3, nil, nil, nil, 5]
 a.compact # => [1, 2, 3, 3, 5]

 a.delete(3)
 a # => [1, 2, nil, nil, nil, nil, 5]

Recipe 4.4. Reversing an Array

Problem
Your array is the wrong way around: the last item should be first and the first should be
last.

Solution
Use reverse to create a new array with the items reversed. Internal subarrays will not
themselves be reversed.

 [1,2,3].reverse # => [3, 2, 1]
 [1,[2,3,4],5].reverse # => [5, [2, 3, 4], 1]

Discussion
Like many operations on basic Ruby types, reverse has a corresponding method,
reverse!, which reverses an array in place:

 a = [1,2,3]
 a.reverse!
 a # => [3, 2, 1]

Chapter 4. Arrays Page 10 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-8#rubyckbk-CHP-5-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-8#rubyckbk-CHP-5-SECT-8

Don't reverse an array if you just need to iterate over it backwards. Don't use a for loop
either; the reverse_each iterator is more idiomatic.

See Also

• Recipe 1.4, "Reversing a String by Words or Characters"
• Recipe 4.1, "Iterating Over an Array," talks about using Array#reverse_each to

iterate over an array in reverse order
• Recipe 4.2, "Rearranging Values Without Using Temporary Variables"

Recipe 4.5. Sorting an Array

Problem
You want to sort an array of objects, possibly according to some custom notion of what
"sorting" means.

Solution
Homogeneous arrays of common data types, like strings or numbers, can be sorted
"naturally" by just calling Array#sort:

 [5.01, -5, 0, 5].sort # => [-5, 0, 5, 5.01]
 ["Utahraptor", "Ankylosaur", "Maiasaur"].sort
 # => ["Ankylosaur", "Maiasaur", "Utahraptor"]

To sort objects based on one of their data members, or by the results of a method call, use
Array#sort_by. This code sorts an array of arrays by size, regardless of their contents:

 arrays = [[1,2,3], [100], [10,20]]
 arrays.sort_by { |x| x.size } # => [[100], [10, 20], [1, 2, 3]]

To do a more general sort, create a code block that compares the relevant aspect of any
two given objects. Pass this block into the sort method of the array you want to sort.

This code sorts an array of numbers in ascending numeric order, except that the number
42 will always be at the end of the list:

 [1, 100, 42, 23, 26, 10000].sort do |x, y|
 x == 42 ? 1 : x <=> y
 end
 # => [1, 23, 26, 100, 10000, 42]

Chapter 4. Arrays Page 11 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-4#rubyckbk-CHP-1-SECT-4

Discussion
If there is one "canonical" way to sort a particular class of object, then you can have that
class implement the <=> comparison operator. This is how Ruby automatically knows how
to sort numbers in ascending order and strings in ascending ASCII order: Numeric and
String both implement the comparison operator.

The sort_by method sorts an array using a Schwartzian transform (see Recipe 4.6 for an
in-depth discussion). This is the most useful customized sort, because it's fast and easy to
define. In this example, we use sort_by to sort on any one of an object's fields.

 class Animal
 attr_reader :name, :eyes, :appendages

 def initialize(name, eyes, appendages)
 @name, @eyes, @appendages = name, eyes, appendages
 end

 def inspect
 @name
 end
 end

 animals = [Animal.new("octopus", 2, 8),
 Animal.new("spider", 6, 8),
 Animal.new("bee", 5, 6),
 Animal.new("elephant", 2, 4),
 Animal.new("crab", 2, 10)]

 animals.sort_by { |x| x.eyes }
 # => [octopus, elephant, crab, bee, spider]

 animals.sort_by { |x| x.appendages }
 # => [elephant, bee, octopus, spider, crab]

If you pass a block into sort, Ruby calls the block to make comparisons instead of using
the comparison operator. This is the most general possible sort, and it's useful for cases
where sort_by won't work.

The comparison operator and a sort code block both take one argument: an object against
which to compare self. A call to <=> (or a sort code block) should return–1 if self is
"less than" the given object (and should therefore show up before it in a sorted list). It
should return 1 if self is "greater than" the given object (and should show up after it in a
sorted list), and 0 if the objects are "equal" (and it doesn't matter which one shows up
first). You can usually avoid remembering this by delegating the return value to some other
object's <=> implementation.

See Also

• Recipe 4.6, "Ignoring Case When Sorting Strings," covers the workings of the
Schwartzian Transform

Chapter 4. Arrays Page 12 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Recipe 4.7, "Making Sure a Sorted Array Stays Sorted"
• Recipe 4.10, "Shuffling an Array"
• If you need to find the minimum or maximum item in a list according to some criteria,

don't sort it just to save writing some code; see Recipe 4.11, "Getting the N Smallest
Items of an Array," for other options

Recipe 4.6. Ignoring Case When Sorting Strings

Problem
When you sort a list of strings, the strings beginning with uppercase letters sort before the
strings beginning with lowercase letters.

 list = ["Albania", "anteater", "zorilla", "Zaire"]
 list.sort
 # => ["Albania", "Zaire", "anteater", "zorilla"]

You want an alphabetical sort, regardless of case.

Solution
Use Array#sort_by. This is both the fastest and the shortest solution.

 list.sort_by { |x| x.downcase }
 # => ["Albania", "anteater", "Zaire", "zorilla"]

Discussion
The Array#sort_by method was introduced in Recipe 4.5, but it's worth discussing in
detail because it's so useful. It uses a technique called a Schwartzian Transform. This
common technique is like writing the following Ruby code (but it's a lot faster, because it's
implemented in C):

 list.collect { |s| [s.downcase, s] }.sort.collect { |subarray| subarray[1] }

It works like this: Ruby creates a new array containing two-element subarrays. Each
subarray contains a value of String#downcase, along with the original string. This new
array is sorted, and then the original strings (now sorted by their values for
String#downcase) are recovered from the subarrays. String#downcase is called only
once for each string.

A sort is the most common occurance of this pattern, but it shows up whenever an
algorithm calls a particular method on the same objects over and over again. If you're not

Chapter 4. Arrays Page 13 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

sorting, you can't use Ruby's internal Schwartzian Transform, but you can save time by
caching, or memoizing, the results of each distinct method call.

If you need to implement a Schwartzian Transform in Ruby, it's faster to use a hash than
an array:

 m = {}
 list.sort { |x,y| (m[x] ||= x.downcase) <=> (m[y] ||= y.downcase) }

This technique is especially important if the method you need to call has side effects. You
certainly don't want to call such methods more than once!

See Also

• The Ruby FAQ, question 9.15
• Recipe 4.5, "Sorting an Array"

Recipe 4.7. Making Sure a Sorted Array Stays Sorted

Problem
You want to make sure an array stays sorted, even as you replace its elements or add new
elements to it.

Solution
Subclass Array and override the methods that add items to the array. The new
implementations add every new item to a position that maintains the sortedness of the
array.

As you can see below, there are a lot of these methods. If you can guarantee that a particular
method will never be called, you can get away with not overriding it.

 class SortedArray < Array

 def initialize(*args, &sort_by)
 @sort_by = sort_by || Proc.new { |x,y| x <=> y }
 super(*args)
 sort! &sort_by
 end

 def insert(i, v)
 # The next line could be further optimized to perform a
 # binary search.
 insert_before = index(find { |x| @sort_by.call(x, v) == 1 })
 super(insert_before ? insert_before : -1, v)
 end

 def <<(v)

Chapter 4. Arrays Page 14 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 insert(0, v)
 end

 alias push <<
 alias unshift <<

Some methods, like collect!, can modify the items in an array, taking them out of sort
order. Some methods, like flatten!, can add new elements to strange places in an array.
Rather than figuring out a way to implement these methods in a way that preserves the
sortedness of the array, we'll just let them run and then re-sort the array.[1]

[1] We can't use define_method to define these methods because in Ruby 1.8 you can't use define_method to create a method that takes a block argument. See
Chapter 10 for more on this.

 ["collect!", "flatten!", "[]="].each do |method_name|
 module_eval %{
 def #{method_name}(*args)
 super
 sort! &@sort_by
 end
 }
 end

 def reverse!
 #Do nothing; reversing the array would disorder it.
 end
 end

A SortedArray created from an unsorted array will end up sorted:

 a = SortedArray.new([3,2,1]) # => [1, 2, 3]

Discussion
Many methods of Array are much faster on sorted arrays, so it's often useful to expend
some overhead on keeping an array sorted over time. Removing items from a sorted array
won't unsort it, but adding or modifying items can. Keeping a sorted array sorted means
intercepting and reimplementing every sneaky way of putting objects into the array.

The SortedArray constructor accepts any code block you can pass into Array#sort,
and keeps the array sorted according to that code block. The default code block uses the
comparison operator (<=>) used by sort.

 unsorted= ["b", "aa", "a", "cccc", "1", "zzzzz", "k", "z"]
 strings_by_alpha = SortedArray.new(unsorted)
 # => ["1", "a", "aa", "b", "cccc", "k", "z", "zzzzz"]
 strings_by_length = SortedArray.new(unsorted) do |x,y|
 x.length <=> y.length
 end
 # => ["b", "z", "a", "k", "1", "aa", "cccc", "zzzzz"]

Chapter 4. Arrays Page 15 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10#rubyckbk-CHP-10

The methods that add elements to an array specify where in the array they operate: push
operates on the end of the array, and insert operates on a specified spot. SortedArray
responds to these methods but it ignores the caller's request to put elements in a certain
place. Every new element is inserted into a position that keeps the array sorted.

 a << -1 # => [-1, 1, 2, 3]
 a << 1.5 # => [-1, 1, 1.5, 2, 3]
 a.push(2.5) # => [-1, 1, 1.5, 2, 2.5, 3]
 a.unshift(1.6) # => [-1, 1, 1.5, 1.6, 2, 2.5, 3]

For methods like collect! and array assignment ([]=)that allow complex changes to an
array, the simplest solution is to allow the changes to go through and then re-sort:

 a = SortedArray.new([10, 6, 4, -4, 200, 100])
 # => [-4, 4, 6, 10, 100, 200]
 a.collect! { |x| x * -1 } # => [-200, -100, -10, -6, -4, 4]

 a[3] = 25
 a # => [-200, -100, -10, -4, 4, 25]
 # That is, -6 has been replaced by 25 and the array has been re-sorted.

 a[1..2] = [6000, 10, 600, 6]
 a # => [-200, -4, 4, 6, 10, 25, 600, 6000]
 # That is, -100 and -10 have been replaced by 6000, 10, 600, and 6,
 # and the array has been re-sorted.

But with a little more work, we can write a more efficient implementation of array
assignment that gives the same behavior. What happens when you run a command like
a[0]= 10 on a SortedArray? The first element in the SortedArray is replaced by 10,
and the SortedArray is re-sorted. This is equivalent to removing the first element in the
array, then adding the value 10 to a place in the array that keeps it sorted.

Array#[]= implements three different types of array assignment, but all three can be
modeled as a series of removals followed by a series of insertions. We can use this fact to
implement a more efficient version of SortedArray#[]=:.

 class SortedArray
 def []=(*args)
 if args.size == 3
 #e.g. "a[6,3] = [1,2,3]"
 start, length, value = args
 slice! Range.new(start, start+length, true)
 (value.respond_to? :each) ? value.each { |x| self << x } : self << value
 elsif args.size == 2
 index, value = args
 if index.is_a? Numeric
 #e.g. "a[0] = 10" (the most common form of array assignment)
 delete_at(index)
 self << value
 elsif index.is_a? Range
 #e.g. "a[0..3] = [1,2,3]"
 slice! index
 (value.respond_to? :each) ? value.each { |x| self << x } : self << value
 else
 #Not supported. Delegate to superclass; will probably give an error.
 super

Chapter 4. Arrays Page 16 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 sort!(&sort_by)
 end
 else
 #Not supported. Delegate to superclass; will probably give an error.
 super
 sort!(&sort_by)
 end
 end
 end

Just as before, the sort will be maintained even when you use array assignment to replace
some of a SortedArray's elements with other objects. But this implementation doesn't
have to re-sort the array every time.

 a = SortedArray.new([1,2,3,4,5,6])
 a[0] = 10
 a # => [2, 3, 4, 5, 6, 10]

 a[0, 2] = [100, 200]
 a # => [4, 5, 6, 10, 100, 200]

 a[1..2] = [-4, 6]
 a # => [-4, 4, 6, 10, 100, 200]

It's possible to subvert the sortedness of a SortedArray by modifying an object in place
in a way that changes its sort order. Since the SortedArray never hears about the change
to this object, it has no way of updating itself to move that object to its new sort position:
[2]

[2] One alternative is to modify SortedArray[] so that when you look up an element of the array, you actually get a delegate object that intercepts all of the element's
method calls, and re-sorts the array whenever the user calls a method that modifies the element in place. This is probably overkill.

 stripes = SortedArray.new(["aardwolf", "zebrafish"])
 stripes[1].upcase!
 stripes # => ["aardwolf", "ZEBRAFISH"]
 stripes.sort! # => ["ZEBRAFISH", "aardwolf"]

If this bothers you, you can make a SortedArray keep frozen copies of objects instead
of the objects themselves. This solution hurts performance and uses more memory, but it
will also prevent objects from being modified after being put into the SortedArray. This
code adds a convenience method to Object that makes a frozen copy of the object:

 class Object
 def to_frozen
 f = self
 unless frozen?
 begin
 f = dup.freeze
 rescue TypeError
 #This object can't be duped (e.g. Fixnum); fortunately,
 #it usually can't be modified either
 end
 end
 return f
 end
 end

Chapter 4. Arrays Page 17 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The FrozenCopySortedArray stores frozen copies of objects instead of the objects
themselves:

 class FrozenCopySortedArray < SortedArray
 def insert(i, v)
 insert_before = index(find { |x| x > v })
 super(insert_before ? insert_before : -1, v.to_frozen)
 end

 ["initialize", "collect!", "flatten!"].each do |method_name|
 define_method(method_name) do
 super
 each_with_index { |x, i| self[i] = x.to_frozen }
 # No need to sort; by doing an assignment to every element
 # in the array, we've made #insert keep the array sorted.
 end
 end
 end

 stripes = SortedArray.new(["aardwolf", "zebrafish"])
 stripes[1].upcase!
 # TypeError: can't modify frozen string

Unlike a regular array, which can have elements of arbitrarily different data classes, all the
elements of a SortedArray must be mutually comparable. For instance, you can mix
integers and floating-point numbers within a SortedArray, but you can't mix integers
and strings. Any data set that would cause Array#sort to fail makes an invalid
SortedArray:

 [1, "string"].sort
 # ArgumentError: comparison of Fixnum with String failed

 a = SortedArray.new([1])
 a << "string"
 # ArgumentError: comparison of Fixnum with String failed

One other pitfall: operations that create a new object, such as |=, +=, and to_a will turn an
SortedArray into a (possibly unsorted) array.

 a = SortedArray.new([3, 2, 1]) # => [1, 2, 3]
 a += [1, -10] # => [1, 2, 3, 1, -10]
 a.class # => Array

The simplest way to avoid this is to override these methods to transform the resulting array
back into a SortedArray:

 class SortedArray
 def + (other_array)
 SortedArray.new(super)
 end
 end

Chapter 4. Arrays Page 18 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 4.11, "Getting the N Smallest Items of an Array," uses a SortedArray
• If you're going to do a lot of insertions and removals, a red-black tree may be faster

than a SortedArray; you can choose from a pure Ruby implementation (http://
www.germane-software.com/software/Utilities/RBTree/) and one that uses a C
extension for speed (http://www.geocities.co.jp/SiliconValley-PaloAlto/3388/
rbtree/README.html)

Recipe 4.8. Summing the Items of an Array

Problem
You want to add together many objects in an array.

Solution
There are two good ways to accomplish this in Ruby. Plain vanilla iteration is a simple way
to approach the problem:

 collection = [1, 2, 3, 4, 5]
 sum = 0
 collection.each {|i| sum += i}
 sum # => 15

However this is such a common action that Ruby has a special iterator method called
inject, which saves a little code:

 collection = [1, 2, 3, 4, 5]
 collection.inject(0) {|sum, i| sum + i} # => 15

Discussion
Notice that in the inject solution, we didn't need to define the variable total variable
outside the scope of iteration. Instead, its scope moved into the iteration. In the example
above, the initial value for total is the first argument to inject. We changed the += to +
because the block given to inject is evaluated on each value of the collection, and the
total variable is set to its output every time.

You can think of the inject example as equivalent to the following code:

 collection = [1, 2, 3, 4, 5]
 sum = 0
 sum = sum + 1
 sum = sum + 2

Chapter 4. Arrays Page 19 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.germane-software.com/software/Utilities/RBTree/
http://www.germane-software.com/software/Utilities/RBTree/
http://www.geocities.co.jp/SiliconValley-PaloAlto/3388/rbtree/README.html
http://www.geocities.co.jp/SiliconValley-PaloAlto/3388/rbtree/README.html

 sum = sum + 3
 sum = sum + 4
 sum = sum + 5

Although inject is the preferred way of summing over a collection, inject is generally
a few times slower than each. The speed difference does not grow exponentially, so you
don't need to always be worrying about it as you write code. But after the fact, it's a good
idea to look for inject calls in crucial spots that you can change to use faster iteration
methods like each.

Nothing stops you from using other kinds of operators in your inject code blocks. For
example, you could multiply:

 collection = [1, 2, 3, 4, 5]
 collection.inject(1) {|total, i| total * i} # => 120

Many of the other recipes in this book use inject to build data structures or run
calculations on them.

See Also

• Recipe 2.8, "Finding Mean, Median, and Mode"
• Recipe 4.12, "Building Up a Hash Using Injection"
• Recipe 5.12, "Building a Histogram"

Recipe 4.9. Sorting an Array by Frequency of Appearance

Problem
You want to sort an array so that its least-frequently-appearing items come first.

Solution
Build a histogram of the frequencies of the objects in the array, then use it as a lookup table
in conjunction with the sort_by method.

The following method puts the least frequently-appearing objects first. Objects that have
the same frequency are sorted normally, with the comparison operator.

 module Enumerable
 def sort_by_frequency
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| [histogram[x], x] }
 end
 end

Chapter 4. Arrays Page 20 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-8#rubyckbk-CHP-2-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-12#rubyckbk-CHP-5-SECT-12

 [1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency
 # => [3, 8, 9, 16, 2, 2, 1, 1, 1, 4, 4, 4]

Discussion
The sort_by_frequency method uses sort_by, a method introduced in Recipe 4.5
and described in detail in Recipe 4.6. The technique here is a little different from other
uses of sort_by, because it sorts by two different criteria. We want to first compare the
relative frequencies of two items. If the relative frequencies are equal, we want to compare
the items themselves. That way, all the instances of a given item will show up together in
the sorted list.

The block you pass to Enumerable#sort_by can return only a single sort key for each
object, but that sort key can be an array. Ruby compares two arrays by comparing their
corresponding elements, one at a time. As soon as an element of one array is different from
an element of another, the comparison stops, returning the comparison of the two different
elements. If one of the arrays runs out of elements, the longer one sorts first. Here are
some quick examples:

 [1,2] <=> [0,2] # => 1
 [1,2] <=> [1,2] # => 0
 [1,2] <=> [2,2] # => -1
 [1,2] <=> [1,1] # => 1
 [1,2] <=> [1,3] # => -1
 [1,2] <=> [1] # => 1
 [1,2] <=> [3] # => -1
 [1,2] <=> [0,1,2] # => 1
 [1,2] <=> [] # => 1

In our case, all the arrays contain two elements: the relative frequency of an object in the
array, and the object itself. If two objects have different frequencies, the first elements of
their arrays will differ, and the items will be sorted based on their frequencies. If two items
have the same frequency, the first element of each array will be the same. The comparison
method will move on to the second array element, which means the two objects will be
sorted based on their values.

If you don't mind elements with the same frequency showing up in an unsorted order, you
can speed up the sort a little by comparing only the histogram frequencies:

 module Enumerable
 def sort_by_frequency_faster
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| histogram[x] }
 end
 end

 [1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_faster
 # => [16, 8, 3, 9, 2, 2, 4, 1, 1, 4, 4, 1]

Chapter 4. Arrays Page 21 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To sort the list so that the most-frequently-appearing items show up first, either invert the
result of sort_by_frequency, or multiply the histogram values by–1 when passing them
into sort_by:

 module Enumerable
 def sort_by_frequency_descending
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash}
 sort_by { |x| [histogram[x] * -1, x]}
 end
 end

 [1,2,3,4,1,2,4,8,1,4,9,16].sort_by_frequency_descending
 # => [1, 1, 1, 4, 4, 4, 2, 2, 3, 8, 9, 16]

If you want to sort a list by the frequency of its elements, but not have repeated elements
actually show up in the sorted list, you can run the list through Array#uniq after sorting
it. However, since the keys of the histogram are just the distinct elements of the array, it's
more efficient to sort the keys of the histogram and return those:

 module Enumerable
 def sort_distinct_by_frequency
 histogram = inject(Hash.new(0)) { |hash, x| hash[x] += 1; hash }
 histogram.keys.sort_by { |x| [histogram[x], x] }
 end
 end

 [1,2,3,4,1,2,4,8,1,4,9,16].sort_distinct_by_frequency
 # => [3, 8, 9, 16, 2, 1, 4]

See Also

• Recipe 4.5, "Sorting an Array"
• Recipe 5.12, "Building a Histogram"

Recipe 4.10. Shuffling an Array

Problem
You want to put the elements of an array in random order.

Solution
The simplest way to shuffle an array (in Ruby 1.8 and above) is to sort it randomly:

 [1,2,3].sort_by { rand } # => [1, 3, 2]

This is not the fastest way, though.

Chapter 4. Arrays Page 22 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-12#rubyckbk-CHP-5-SECT-12

Discussion
It's hard to beat a random sort for brevity of code, but it does a lot of extra work. Like any
general sort, a random sort will do about n log n variable swaps. But to shuffle a list, it
suffices to put a randomly selected element in each position of the list. This can be done
with only n variable swaps.

 class Array
 def shuffle!
 each_index do |i|
 j = rand(length-i) + i
 self[j], self[i] = self[i], self[j]
 end
 end

 def shuffle
 dup.shuffle!
 end
 end

If you're shuffling a very large list, either Array#shuffle or Array#shuffle! will be
significantly faster than a random sort. Here's a real-world example of shuffling using
Array#shuffle:

 class Card
 def initialize(suit, rank)
 @suit = suit
 @rank = rank
 end

 def to_s
 "#{@suit} of #{@rank}"
 end
 end

 class Deck < Array
 attr_reader :cards
 @@suits = %w{Spades Hearts Clubs Diamonds}
 @@ranks = %w{Ace 2 3 4 5 6 7 8 9 10 Jack Queen King}

 def initialize
 @@suits.each { |suit| @@ranks.each { |rank| self << Card.new(rank, suit) } }
 end
 end

 deck = Deck.new
 deck.collect { |card| card.to_s }
 # => ["Ace of Spades", "2 of Spades", "3 of Spades", "4 of Spades",…]
 deck.shuffle!
 deck.collect { |card| card.to_s }
 # => ["6 of Clubs", "8 of Diamonds", "2 of Hearts", "5 of Clubs",…]

See Also

• Recipe 2.5, "Generating Random Numbers"
• The Facets Core library provides implementations of Array#shuffle and
Array#shuffle!

Chapter 4. Arrays Page 23 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-5#rubyckbk-CHP-2-SECT-5

Recipe 4.11. Getting the N Smallest Items of an Array

Problem
You want to find the smallest few items in an array, or the largest, or the most extreme
according to some other measure.

Solution
If you only need to find the single smallest item according to some measure, use
Enumerable#min. By default, it uses the <=> method to see whether one item is "smaller"
than another, but you can override this by passing in a code block.

 [3, 5, 11, 16].min
 # => 3
 ["three", "five", "eleven", "sixteen"].min
 # => "eleven"
 ["three", "five", "eleven", "sixteen"].min { |x,y| x.size <=> y.size }
 # => "five"

Similarly, if you need to find the single largest item, use Enumerable#max.

 [3, 5, 11, 16].max
 # => 16
 ["three", "five", "eleven", "sixteen"].max
 # => "three"
 ["three", "five", "eleven", "sixteen"].max { |x,y| x.size <=> y.size }
 # => "sixteen"

By default, arrays are sorted by their natural order: numbers are sorted by value, strings
by their position in the ASCII collating sequence (basically alphabetical order, but all
lowercase characters precede all uppercase characters). Hence, in the previous examples,
"three" is the largest string, and "eleven" the smallest.

It gets more complicated when you need to get a number of the smallest or largest elements
according to some measurement: say, the top 5 or the bottom 10. The simplest solution is
to sort the list and skim the items you want off of the top or bottom.

 l = [1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]
 sorted = l.sort

 #The top 5
 sorted[-5…sorted.size]
 # => [60, 66, 85, 91, 100]

 #The bottom 5
 sorted[0…5]
 # => [-5, 1, 4, 20, 21]

Chapter 4. Arrays Page 24 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Despite the simplicity of this technique, it's inefficient to sort the entire list unless the
number of items you want to extract approaches the size of the list.

Discussion
The min and max methods work by picking the first element of the array as a "champion,"
then iterating over the rest of the list trying to find an element that can beat the current
champion on the appropriate metric. When it finds one, that element becomes the new
champion. An element that can beat the old champion can also beat any of the other
contenders seen up to that point, so one run through the list suffices to find the maximum
or minimum.

The naive solution to finding more than one smallest item is to repeat this process multiple
times. Iterate over the Array once to find the smallest item, then iterate over it again to
find the next-smallest item, and so on. This is naive for the same reason a bubble sort is
naive: you're repeating many of your comparisons more times than necessary. Indeed, if
you run this algorithm once for every item in the array (trying to find the n smallest items
in an array of n items), you get a bubble sort.

Sorting the list beforehand is better when you need to find more than a small fraction of
the items in the list, but it's possible to do better. After all, you don't really want to sort the
whole list: you just want to sort the bottom of the list to find the smallest items. You don't
care if the other elements are unsorted because you're not interested in those elements
anyway.

To sort only the smallest elements, you can keep a sorted "stable" of champions, and kick
the largest champion out of the stable whenever you find an element that's smaller. If you
encounter a number that's too large to enter the stable, you can ignore it from that point
on. This process rapidly cuts down on the number of elements you must consider, making
this approach faster than doing a sort.

The SortedList class from Recipe 4.7 is useful for this task. The min_n method below
creates a SortedList "stable" that keeps its elements sorted based on the same block
being used to find the minimum. It keeps the stable at a certain size by kicking out the
largest item in the stable whenever a smaller item is found. The max_n method works
similarly, but the comparisons are reversed, and the smallest element in the stable is kicked
out when a larger element is found.

 module Enumerable
 def min_n(n, &block)
 block = Proc.new { |x,y| x <=> y } if block == nil
 stable = SortedArray.new(&block)
 each do |x|
 stable << x if stable.size < n or block.call(x, stable[-1]) == -1
 stable.pop until stable.size <= n
 end
 return stable

Chapter 4. Arrays Page 25 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end

 def max_n(n, &block)
 block = Proc.new { |x,y| x <=> y } if block == nil
 stable = SortedArray.new(&block)
 each do |x|
 stable << x if stable.size < n or block.call(x, stable[0]) == 1
 stable.shift until stable.size <= n
 end
 return stable
 end
 end

 l = [1, 60, 21, 100, -5, 20, 60, 22, 85, 91, 4, 66]
 l.max_n(5)
 # => [60, 66, 85, 91, 100]
 l.min_n(5)
 # => [-5, 1, 4, 20, 21]

 l.min_n(5) { |x,y| x.abs <=> y.abs }
 # => [1, 4, -5, 20, 21]

See Also

• Recipe 4.7, "Making Sure a Sorted Array Stays Sorted"

Recipe 4.12. Building Up a Hash Using Injection

Problem
You want to create a hash from the values in an array.

Solution
As seen in Recipe 4.8, the most straightforward way to solve this kind of problem is to use
Enumerable#inject. The inject method takes one parameter (the object to build up,
in this case a hash), and a block specifying the action to take on each item. The block takes
two parameters: the object being built up (the hash), and one of the items from the array.

Here's a straightforward use of inject to build a hash out of an array of key-value pairs:

 collection = [[1, 'one'], [2, 'two'], [3, 'three'],
 [4, 'four'], [5, 'five']
]

 collection.inject({}) do |hash, value|
 hash[value.first] = value.last
 hash
 end
 # => {5=>"five", 1=>"one", 2=>"two", 3=>"three", 4=>"four"}

Chapter 4. Arrays Page 26 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Why is there that somewhat incongrous expression hash at the end of the inject block
above? Because the next time it calls the block, inject uses the value it got from the block
the last time it called the block. When you're using inject to build a data structure, the
last line of code in the block should evaluate to the object you're building up: in this case,
our hash.

This is probably the most common inject-related gotcha. Here's some code that doesn't
work:

 collection.dup.inject({}) { |hash, value| hash[value.first] = value.last }
 # IndexError: index 3 out of string

Why doesn't this work? Because hash assignment returns the assigned value, not the hash.

 Hash.new["key"] = "some value" # => "some value"

In the broken example above, when inject calls the code block for the second and
subsequent times, it does not pass the hash as the code block's first argument. It passes in
the last value to be assigned to the hash. In this case, that's a string (maybe "one" or "four").
The hash has been lost forever, and the inject block crashes when it tries to treat a string
as a hash.

Hash#update can be used like hash assignment, except it returns the hash instead of the
assigned value (and it's slower). So this code will work:

 collection.inject({}) do |hash, value|
 hash.update value.first => value.last
 end
 # => {5=>"five", 1=>"ontwo", 2=>"two", 3=>"three", 4=>"four"}

Ryan Carver came up with a more sophisticated way of building a hash out of an array:
define a general method for all arrays called to_h.

 class Array
 def to_h(default=nil)
 Hash[*inject([]) { |a, value| a.push value, default || yield(value) }]
 end
 end

The magic of this method is that you can provide a code block to customize how keys in the
array are mapped to values.

 a = [1, 2, 3]

Chapter 4. Arrays Page 27 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 a.to_h(true)
 # => {1=>true, 2=>true, 3=>true}

 a.to_h { |value| [value * -1, value * 2] }
 # => {1=>[-1, 2], 2=>[-2, 4], 3=>[-3, 6]}

References

• Recipe 5.3, "Adding Elements to a Hash"
• Recipe 5.12, "Building a Histogram"
• The original definition of Array#to_h:(http://fivesevensix.com/posts/

2005/05/20/array-to_h)

Recipe 4.13. Extracting Portions of Arrays

Problem
Given an array, you want to retrieve the elements of the array that occupy certain positions
or have certain properties. You might to do this in a way that removes the matching
elements from the original array.

Solution
To gather a chunk of an array without modifying it, use the array retrieval operator
Array#[], or its alias Array#slice.

The array retrieval operator has three forms, which are the same as the corresponding
forms for substring accesses. The simplest and most common form is array[index].It
takes a number as input, treats it as an index into the array, and returns the element at
that index. If the input is negative, it counts from the end of the array. If the array is smaller
than the index, it returns nil. If performance is a big consideration for you, Array#at
will do the same thing, and it's a little faster than Array#[]:

 a = ("a".."h").to_a # => ["a", "b", "c", "d", "e", "f", "g", "h"]

 a[0] # => "a"
 a[1] # => "b"

 a.at(1) # => "b"
 a.slice(1) # => "b"
 a[-1] # => "h"
 a[-2] # => "g"
 a[1000] # => nil
 a[-1000] # => nil

The second form is array[range]. This form retrieves every element identified by an
index in the given range, and returns those elements as a new array.

Chapter 4. Arrays Page 28 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-3#rubyckbk-CHP-5-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-12#rubyckbk-CHP-5-SECT-12
http://fivesevensix.com/posts/2005/05/20/array-to_h
http://fivesevensix.com/posts/2005/05/20/array-to_h

A range in which both numbers are negative will retrieve elements counting from the end
of the array. You can mix positive and negative indices where that makes sense:

 a[2..5] # => ["c", "d", "e", "f"]
 a[2…5] # => ["c", "d", "e"]
 a[0..0] # => ["a"]
 a[1..-4] # => ["b", "c", "d", "e"]
 a[5..1000] # => ["f", "g", "h"]

 a[2..0] # => []
 a[0…0] # => []

 a[-3..2] # => []

The third form is array[start_index, length]. This is equivalent to array[range.
new(start_index…start_index+length)].

 a[2, 4] # => ["c", "d", "e", "f"]
 a[2, 3] # => ["c", "d", "e"]
 a[0, 1] # => ["a"]
 a[1, 2] # => ["b", "c"]
 a[-4, 2] # => ["e", "f"]
 a[5, 1000] # => ["f", "g", "h"]

To remove a slice from the array, use Array#slice!. This method takes the same
arguments and returns the same results as Array#slice, but as a side effect, the objects
it retrieves are removed from the array.

 a.slice!(2..5) # => ["c", "d", "e", "f"]
 a # => ["a", "b", "g", "h"]

 a.slice!(0) # => "a"
 a # => ["b", "g", "h"]

 a.slice!(1,2) # => ["g", "h"]
 a # => ["b"]

Discussion
The Array methods [], slice, and slice! work well if you need to extract one particular
elements, or a set of adjacent elements. There are two other main possibilities: you might
need to retrieve the elements at an arbitrary set of indexes, or (a catch-all) you might need
to retrieve all elements with a certain property that can be determined with a code block.

To nondestructively gather the elements at particular indexes in an array, pass in any
number of indices to Array#values_at. Results will be returned in a new array, in the
same order they were requested.

 a = ("a".."h").to_a # => ["a", "b", "c", "d", "e", "f", "g", "h"]
 a.values_at(0) # => ["a"]
 a.values_at(1, 0, -2) # => ["b", "a", "g"]
 a.values_at(4, 6, 6, 7, 4, 0, 3)# => ["e", "g", "g", "h", "e", "a", "d"]

Chapter 4. Arrays Page 29 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Enumerable#find_all finds all elements in an array (or other class with Enumerable
mixed in)for which the specified code block returns true. Enumerable#reject will find
all elements for which the specified code block returns false.

 a.find_all { |x| x < "e" } # => ["a", "b", "c", "d"]
 a.reject { |x| x < "e" } # => ["e", "f", "g", "h"]

To find all elements in an array that match a regular expression, you can use
Enumerable#grep instead of defining a block that does the regular expression match:

 a.grep /[aeiou]/ # => ["a", "e"]
 a.grep /[^g]/ # => ["a", "b", "c", "d", "e", "f", "h"]

It's a little tricky to implement a destructive version of Array#values_at, because
removing one element from an array changes the indexes of all subsequent elements. We
can let Ruby do the work, though, by replacing each element we want to remove with a
dummy object that we know cannot already be present in the array. We can then use the
C-backed method Array#delete to remove all instances of the dummy object from the
array. This is much faster than using Array#slice! to remove elements one at a time,
because each call to Array#slice! forces Ruby to rearrange the array to be contiguous.

If you know that your array contains no nil values, you can set your undesired values to
nil, then use use Array#compress! to remove them. The solution below is more general.

 class Array
 def strip_values_at!(*args)
 #For each mentioned index, replace its value with a dummy object.
 values = []
 dummy = Object.new
 args.each do |i|
 if i < size
 values << self[i]
 self[i] = dummy
 end
 #Strip out the dummy object.
 delete(dummy)
 return values
 end
 end
 end

 a = ("a".."h").to_a
 a.strip_values_at!(1, 0, -2) # => ["b", "a", "g"]
 a # => ["c", "d", "e", "f", "h"]

 a.strip_values_at!(1000) # => []
 a # => ["c", "d", "e", "f", "h"]

Array#reject! removes all items from an array that match a code block, but it doesn't
return the removed items, so it won't do for a destructive equivalent of

Chapter 4. Arrays Page 30 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Enumerable#find_all. This implementation of a method called extract! picks up
where Array#reject! leaves off:

 class Array
 def extract!
 ary = self.dup
 self.reject! { |x| yield x }
 ary - self
 end
 end

 a = ("a".."h").to_a
 a.extract! { |x| x < "e" && x != "b" } # => ["a", "c", "d"]
 a # => ["b", "e", "f", "g", "h"]

Finally, a convenience method called grep_extract! provides a method that
destructively approximates the behavior of Enumerable#grep.

 class Array
 def grep_extract!(re)
 extract! { |x| re.match(x) }
 end
 end

 a = ("a".."h").to_a
 a.grep_extract!(/[aeiou]/) # => ["a", "e"]
 a # => ["b", "c", "d", "f", "g", "h"]

See Also

• Strings support the array lookup operator, slice, slice!, and all the methods of
Enumerable, so you can treat them like arrays in many respects; see Recipe 1.13,
"Getting the Parts of a String You Want"

Recipe 4.14. Computing Set Operations on Arrays

Problem
You want to find the union, intersection, difference, or Cartesian product of two arrays, or
the complement of a single array with respect to some universe.

Solution
Array objects have overloaded arithmetic and logical operators to provide the three
simplest set operations:

 #Union
 [1,2,3] | [1,4,5] # => [1, 2, 3, 4, 5]

 #Intersection
 [1,2,3] & [1,4,5] # => [1]

Chapter 4. Arrays Page 31 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-13#rubyckbk-CHP-1-SECT-13

 #Difference
 [1,2,3] - [1,4,5] # => [2, 3]

Set objects overload the same operators, as well as the exclusive-or operator (^).If you
already have Arrays, though, it's more efficient to deconstruct the XOR operation into its
three component operations.

 require 'set'
 a = [1,2,3]
 b = [3,4,5]
 a.to_set ^ b.to_set # => #<Set: {5, 1, 2, 4}>
 (a | b) - (a & b) # => [1, 2, 4, 5]

Discussion
Set objects are intended to model mathematical sets: where arrays are ordered and can
contain duplicate entries, Sets model an unordered collection of unique items. Set not
only overrides operators for set operations, it provides English-language aliases for the
three most common operators: Set#union, Set#intersection, and
Set#difference. An array can only perform a set operation on another array, but a Set
can perform a set operation on any Enumerable.

 array = [1,2,3]
 set = [3,4,5].to_s
 array & set # => TypeError: can't convert Set into Array
 set & array # => #<Set: {3}>

You might think that Set objects would be optimized for set operations, but they're actually
optimized for constant-time membership checks (internally, a Set is based on a hash). Set
union is faster when the left-hand object is a Set object, but intersection and difference
are significantly faster when both objects are arrays. It's not worth it to convert arrays into
Sets just so you can say you performed set operations on Set objects.

The union and intersection set operations remove duplicate entries from arrays. The
difference operation does not remove duplicate entries from an array except as part of a
subtraction.

 [3,3] & [3,3] # => [3]
 [3,3] | [3,3] # => [3]
 [1,2,3,3] - [1] # => [2, 3, 3]
 [1,2,3,3] - [3] # => [1, 2]
 [1,2,3,3] - [2,2,3] # => [1]

Complement
If you want the complement of an array with respect to some small universe, create that
universe and use the difference operation:

Chapter 4. Arrays Page 32 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 u = [:red, :orange, :yellow, :green, :blue, :indigo, :violet]
 a = [:red, :blue]
 u - a # => [:orange, :yellow, :green, :indigo, :violet]

More often, the relevant universe is infinite (the set of natural numbers)or extremely large
(the set of three-letter strings). The best strategy here is to define a generator and use it to
iterate through the complement. Be sure to break when you're done; you don't want to
iterate over an infinite set.

 def natural_numbers_except(exclude)
 exclude_map = {}
 exclude.each { |x| exclude_map[x] = true }
 x = 1
 while true
 yield x unless exclude_map[x]
 x = x.succ
 end
 end

 natural_numbers_except([2,3,6,7]) do |x|
 break if x > 10
 puts x
 end
 # 1
 # 4
 # 5
 # 8
 # 9
 # 10

Cartesian product
To get the Cartesian product of two arrays, write a nested iteration over both lists and
append each pair of items to a new array. This code is attached to Enumerable so you can
also use it with Sets or any other Enumerable.

 module Enumberable
 def cartesian(other)
 res = []
 each { |x| other.each { |y| res << [x, y] } }
 return res
 end
 end

 [1,2,3].cartesian(["a",5,6])
 # => [[1, "a"], [1, 5], [1, 6],
 # [2, "a"], [2, 5], [2, 6],
 # [3, "a"], [3, 5], [3, 6]

This version uses Enumerable#inject to make the code more concise; however, the
original version is more efficient.

 module Enumerable
 def cartesian(other)
 inject([]) { |res, x| other.inject(res) { |res, y| res << [x,y] } }
 end
 end

Chapter 4. Arrays Page 33 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• See Recipe 2.5, "Generating Random Numbers," for an example (constructing a deck
of cards from suits and ranks)that could benefit from a function to calculate the
Cartesian product

• Recipe 2.10, "Multiplying Matrices"

Recipe 4.15. Partitioning or Classifying a Set

Problem
You want to partition a Set or array based on some attribute of its elements. All elements
that go "together" in some code-specific sense should be grouped together in distinct data
structures. For instance, if you're partitioning by color, all the green objects in a Set should
be grouped together, separate from the group of all the red objects in the Set.

Solution
Use Set#divide, passing in a code block that returns the partition of the object it's
passed. The result will be a new Set containing a number of partitioned subsets of your
original Set.

The code block can accept either a single argument or two arguments.[3] The single-
argument version examines each object to see which subset it should go into.

[3] This is analogous to the one-argument code block passed into Enumerable#sort_by and the two-argument code block passed into Array#sort.

 require 'set'
 s = Set.new((1..10).collect)
 # => #<Set: {5, 6, 1, 7, 2, 8, 3, 9, 4, 10}>

 # Divide the set into the "true" subset and the "false" subset: that
 # is, the "less than 5" subset and the "not less than 5" subset.
 s.divide { |x| x < 5 }
 # => #<Set: {#<Set: {5, 6, 7, 8, 9, 10}>, #<Set: {1, 2, 3, 4}>}>

 # Divide the set into the "0" subset and the "1" subset: that is, the
 # "even" subset and the "odd" subset.
 s.divide { |x| x % 2 }
 # => #<Set: {#<Set: {6, 2, 8, 4, 10}>, #<Set: {5, 1, 7, 3, 9}>}>

 s = Set.new([1, 2, 3, 'a', 'b', 'c', -1.0, -2.0, -3.0])
 # Divide the set into the "String subset, the "Fixnum" subset, and the
 # "Float" subset.
 s.divide { |x| x.class }
 # => #<Set: {#<Set: {"a", "b", "c"}>,
 # => #<Set: {1, 2, 3}>,
 # => #<Set: {-1.0, -3.0, -2.0}>}>

Chapter 4. Arrays Page 34 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-5#rubyckbk-CHP-2-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-10#rubyckbk-CHP-2-SECT-10

For the two-argument code block version of Set#divide, the code block should return
true if both the arguments it has been passed should be put into the same subset.

 s = [1, 2, 3, -1, -2, -4].to_set

 # Divide the set into sets of numbers with the same absolute value.
 s.divide { |x,y| x.abs == y.abs }
 # => #<Set: {#<Set: {-1, 1}>,
 # => #<Set: {2, -2}>,
 # => #<Set: {-4}>,
 # => #<Set: {3}>}>

 # Divide the set into sets of adjacent numbers
 s.divide { |x,y| (x-y).abs == 1 }
 # => #<Set: {#<Set: {1, 2, 3}>,
 # => #<Set: {-1}>,
 # => #<Set: {-4, -3}>}>

If you want to classify the subsets by the values they have in common, use Set#classify
instead of Set#divide. It works like Set#divide, but it returns a hash that maps the
names of the subsets to the subsets themselves.

 s.classify { |x| x.class }
 # => {String=>#<Set: {"a", "b", "c"}>,
 # => Fixnum=>#<Set: {1, 2, 3}>,
 # => Float=>#<Set: {-1.0, -3.0, -2.0}>}

Discussion
The version of Set#divide that takes a two-argument code block uses the tsort library
to turn the Set into a directed graph. The nodes in the graph are the items in the Set. Two
nodes x and y in the graph are connected with a vertex (one-way arrow) if the code block
returns true when passed |x,y|. For the Set and the two-argument code block given in
the example above, the graph looks like Figure 4-1.

Figure 4-1. The set {1, 2, 3, -1, -2, -4} graphed according to the code block that checks adjacency

Chapter 4. Arrays Page 35 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Set partitions returned by Set#divide are the strongly connected components of
this graph, obtained by iterating over
TSort#each_strongly_connected_component. A strongly connected component is
a set of nodes such that, starting from any node in the component, you can follow the one-
way arrows and get to any other node in the component.

Visually speaking, the strongly connected components are the "clumps" in the graph. 1 and
3 are in the same strongly connected component as 2, because starting from 3 you can
follow one-way arrows through 2 and get to 1. Starting from 1, you can follow one-way
arrows through 2 and get to 3. This makes 1, 2, and 3 part of the same Set partition, even
though there are no direct connections between 1 and 3.

In most real-world scenarios (including all the examples above), the one-way arrows will
be symmetrical: if the code returns true for |x,y|, it will also return true for |y,x|.
Set#divide will work even if this isn't true. Consider a Set and a divide code block
like the following:

 connections = { 1 => 2, 2 => 3, 3 => 1, 4 => 1 }
 [1,2,3,4].to_set.divide { |x,y| connections[x] == y }
 # => #<Set: {#<Set: {1, 2, 3}>, #<Set: {4}>}>

The corresponding graph looks like Figure 4-2.

Figure 4-2. The set {1,2,3,4} graphed according to the connection hash

You can get to any other node from 4 by following one-way arrows, but you can't get to 4
from any of the other nodes. This puts 4 is in a strongly connected component—and a Set
partition—all by itself. 1, 2, and 3 form a second strongly connected component—and a
second Set partition—because you can get from any of them to any of them by following
one-way arrows.

Chapter 4. Arrays Page 36 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Implementation for arrays
If you're starting with an array instead of a Set, it's easy to simulate Set#classify (and
the single-argument block form of Set#divide)with a hash. In fact, the code below is
almost identical to the current Ruby implementation of Set#classify.

 class Array
 def classify
 require 'set'
 h = {}
 each do |i|
 x = yield(i)
 (h[x] ||= self.class.new) << i
 end
 h
 end

 def divide(&block)
 Set.new(classify(&block).values)
 end
 end

 [1,1,2,6,6,7,101].divide { |x| x % 2 }
 # => #<Set: {[2, 6, 6], [1, 1, 7, 101]}>

There's no simple way to implement a version of Array#divide that takes a two-
argument block. The TSort class is Set-like, in that it won't create two different nodes
for the same object. The simplest solution is to convert the array into a Set to remove any
duplicate values, divide the Set normally, then convert the partitioned subsets into
arrays, adding back the duplicate values as you go:

 class Array
 def divide(&block)
 if block.arity == 2
 counts = inject({}) { |h, x| h[x] ||= 0; h[x] += 1; h}
 to_set.divide(&block).inject([]) do |divided, set|
 divided << set.inject([]) do |partition, e|
 counts[e].times { partition << e }
 partition
 end
 end
 else
 Set.new(classify(&block).values)
 end
 end
 end

 [1,1,2,6,6,7,101].divide { |x,y| (x-y).abs == 1 }
 # => [[101], [1, 1, 2], [6, 6, 7]]

Is it worth it? You decide.

Chapter 4. Arrays Page 37 Return to Table of Contents

Chapter 4. Arrays
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Arrays
	Iterating Over an Array
	Rearranging Values Without Using Temporary Variables
	Stripping Duplicate Elements from an Array
	Reversing an Array
	Sorting an Array
	Ignoring Case When Sorting Strings
	Making Sure a Sorted Array Stays Sorted
	Summing the Items of an Array
	Sorting an Array by Frequency of Appearance
	Shuffling an Array
	Getting the N Smallest Items of an Array
	Building Up a Hash Using Injection
	Extracting Portions of Arrays
	Computing Set Operations on Arrays
	Partitioning or Classifying a Set

