
Table of Contents

Multitasking and Multithreading .. 1
Running a Daemon Process on Unix ... 2
Creating a Windows Service ... 5
Doing Two Things at Once with Threads .. 8
Synchronizing Access to an Object .. 10
Terminating a Thread ... 13
Running a Code Block on Many Objects Simultaneously .. 15
Limiting Multithreading with a Thread Pool ... 18
Driving an External Process with popen .. 21
Capturing the Output and Error Streams from a Unix Shell Command .. 23
Controlling a Process on Another Machine ... 24
Avoiding Deadlock ... 26

Chapter 20. Multitasking and Multithreading

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

20. Multitasking and Multithreading

You can't concentrate on more than What's six times nine? one thing at once. You won't
get very far reading this book if someone is interrupting you every five seconds asking you
to do arithmetic problems. But any computer with a modern operating system can do many
things at once. More precisely, it can simulate that ability by switching very quickly back
and forth between tasks.

In a multitasking operating system, each program, or process, gets its own space in
memory and a share of the CPU's time. Every time you start the Ruby interpreter, it runs
in a new process. On Unix-based systems, your script can spawn subprocesses: this feature
is very useful for running external command-line programs and using the results in your
own scripts (see Recipes 20.8 and 20.9, for instance).

The main problem with processes is that they're expensive. It's hard to read while people
are asking you to do arithmetic, not because either activity is particularly difficult, but
because it takes time to switch from one to the other. An operating system spends a lot of
its time as overhead, switching between processes, trying to make sure each one gets a fair
share of the CPU's time.

The other problem with processes is that it's difficult to get them to communicate with
each other. For simple cases, you can use techniques like those described in Recipe 20.8.
You can implement more complex cases with Inter-Process Communication and named
pipes, but we say, don't bother. If you want your Ruby program to do two things at once,
you're better off writing your code with threads.

A thread is a sort of lightweight process that runs inside a real process. One Ruby process
can host any number of threads, all running more or less simultaneously. It's faster to
switch between threads than to switch between processes, and since all of a process's
threads run in the same memory space, they can communicate simply by sharing variables.

Recipe 20.3 covers the basics of multithreaded programming. We use threads throughout
this book, except when only a subprocess will work (see, for instance, Recipe 20.1). Some
recipes in other chapters, like Recipes 3.12 and 14.4, show threads used in context.

Ruby implements its own threads, rather than using the operating system's
implementation. This means that multithreaded code will work exactly the same way
across platforms. Code that spawns subprocesses generally work only on Unix.

Chapter 20. Multitasking and Multithreading Page 1 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-4#rubyckbk-CHP-14-SECT-4

If threads are faster and more portable, why would anyone write code that uses
subprocesses? The main reason is that it's easy for one thread to stall all the others by tying
up an entire process with an uninterruptible action. One such action is a system call. If you
want to run a system call or an external program in the background, you should probably
fork off a subprocess to do it. See Recipe 16.18 for a vivid example of this—a program that
we need to spawn a subprocess instead of a subthread, because the subprocess is going to
play a music file.

Recipe 20.1. Running a Daemon Process on Unix

Problem
You want to run a process in the background with minimal interference from users and
the operating system.

Solution
In Ruby 1.9, you can simply call Process.daemon to turn the current process into a
daemon. Otherwise, the most reliable way is to use the Daemonize module. It's not
available as a gem, but it's worth downloading and installing, because it makes it easy and
reliable to write a daemon:

 #!/usr/bin/ruby -w
 # daemonize_daemon.rb
 require 'tempfile'
 require 'daemonize'
 include Daemonize # Import Daemonize::daemonize into this namespace

 puts 'About to daemonize.'
 daemonize # Now you're a daemon process!
 log = Tempfile.new('daemon.log')
 loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
 end

If you run this code at the command line, you'll get back a new prompt almost immediately.
But there will still be a Ruby process running in the background, writing to a temporary
file every five seconds:

 $./daemonize_daemon.rb
 About to daemonize.
 $ ps x | grep daemon
 4472 ? S 0:00 ruby daemonize_daemon.rb
 4474 pts/2 S+ 0:00 grep daemon

 $ cat /tmp/daemon.log4472.0
 I'm a daemon, doin' daemon things.
 I'm a daemon, doin' daemon things.
 I'm a daemon, doin' daemon things.

Chapter 20. Multitasking and Multithreading Page 2 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-18#rubyckbk-CHP-16-SECT-18

Since it runs an infinite loop, this daemon process will run until you kill it:

 $ kill 4472

 $ ps x | grep daemon
 4569 pts/2 S+ 0:00 grep daemon

A different daemon might run until some condition is met, or until it receives a Unix signal,
or a "stop" message through some interface.

Discussion
A daemon process is one that runs in the background, without any direct user interface at
all. Servers are usually daemon processes, but you might also write a daemon to do
monitoring or task scheduling.

Rather than replacing your process with a daemon process, you may want to spawn a
daemon while continuing with your original work. The best strategy for this is to spawn a
subprocess with Kernel#fork.

Ruby's fork implementation takes a code block to be run by the subprocess. The code
defined after the block is run in the original process. So pass your daemonizing code into
fork, and continue with your work in the main body of the code:

 #!/usr/bin/ruby -w
 # daemon_spawn.rb
 require 'tempfile'
 require 'daemonize'
 include Daemonize

 puts "About to daemonize."
 fork do
 daemonize
 log = Tempfile.new('daemon.log')
 loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
 end
 end

 puts 'The subprocess has become a daemon.'
 puts "But I'm going to stick around for a while."
 sleep 10
 puts "Okay, now I'm done."

The Daemonize code fits in a single file, and it's licensed under the same terms as Ruby.
If you don't want to require your users to download and install it, you can just include it
with your program. Because the code is short, you can even copy-and-paste the code into
a file in your own program.

Chapter 20. Multitasking and Multithreading Page 3 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

However, there's also some (less fancy) daemonizing code in the Ruby 1.8 standard library.
It's the WEBrick::Daemon class.

 #!/usr/bin/ruby
 # webrick_daemon.rb
 require 'tempfile'
 require 'webrick'

 puts 'About to daemonize.'
 WEBrick::Daemon.start do
 log = Tempfile.new('daemon.log')
 loop do
 log.puts "I'm a daemon, doin' daemon things."
 log.flush
 sleep 5
 end
 end

It's worth examining the simpler daemonizing code in WEBrick::Daemon so that you can
see what's going on. Here's the method in question:

 def Daemon.start
 exit!(0) if fork
 Process::setsid
 exit!(0) if fork
 Dir::chdir("/")
 File::umask(0)
 STDIN.reopen("/dev/null")
 STDOUT.reopen("/dev/null", "w")
 STDERR.reopen("/dev/null", "w")
 yield if block_given?
 end

A daemonizer works by forking a new process, letting the original one die, and closing off
some of the resources that were available to the original.

Process::setsid disconnects the daemon from the terminal that spawned it. This is
why, when your process becomes a daemon process, you get your command line back
immediately. We close the original standard input, output, and error and replace them
with null streams. We set the working directory and file umask to sensible defaults,
regardless of what the daemon inherited from the parent. Then we run the daemon code.

Daemonize::daemonize also sets up signal handlers, calls srand so that the daemon
process has a new random number seed, and (optionally) closes any open file handles left
around by the original process. It can also retry the fork if it fails because the operating
system is running too many processes to create another one.

The fork method, and methods like daemonize that depend on it, are only available on
Unix-like systems. On Windows, the win32-process extension provides Windows
implementations of methods like fork. The win32-process implementation of fork
isn't perfect, but it's there if you need it. For cross-platform code, we recommend you spawn
a thread and run your daemon code in the thread.

Chapter 20. Multitasking and Multithreading Page 4 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The Daemonize package (http://grub.ath.cx/daemonize/)
• If you want to run an Internet server, you might want to use gserver from Ruby's

standard library; see Recipe 14.14, "Writing an Internet Server"
• A service is the Windows equivalent of a daemon process; see Recipe 20.2, "Creating

a Windows Service"
• Recipe 20.3, "Doing Two Things at Once with Threads"
• Both win32-process and win32-service were written by Daniel J. Berger; you

can download them from his win32utils project at http://rubyforge.org/projects/
win32utils/

• Get win32-process from http://rubyforge.org/projects/win32utils/

Recipe 20.2. Creating a Windows Service
Credit: Bill Froelich

Problem
You want to write a self-contained Ruby program for Windows that performs a task in the
background.

Solution
Create a Windows service using the win32-service library, available as the win32-
service gem.

Put all the service code below into a Ruby file called rubysvc.rb. It defines a service that
watches for the creation of a file c:\findme.txt; if it ever finds that file, it immediately
renames it.

The first step is to register the service with Windows. Running ruby rubysrvc.rb
register will create the service.

 # rubysrvc.rb
 require 'rubygems'
 require 'win32/service'
 include Win32

 SERVICE_NAME = "RubySvc"
 SERVICE_DISPLAYNAME = "A Ruby Service"
 if ARGV[0] == "register"
 # Start the service.
 svc = Service.new
 svc.create_service do |s|
 s.service_name = SERVICE_NAME
 s.display_name = SERVICE_DISPLAYNAME

Chapter 20. Multitasking and Multithreading Page 5 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://grub.ath.cx/daemonize/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-14#rubyckbk-CHP-14-SECT-14
http://rubyforge.org/projects/win32utils/
http://rubyforge.org/projects/win32utils/
http://rubyforge.org/projects/win32utils/

 s.binary_path_name = 'C:\InstantRails-1.3\ruby\bin\ruby ' +
 File.expand_path($0)
 s.dependencies = []
 end
 svc.close
 puts "Registered Service - " + SERVICE_DISPLAYNAME

When you're all done, you can run rubysrvc.rb stop to stop the service and remove it
from Windows:

 elsif ARGV[0] == "delete"
 # Stop the service.
 if Service.status(SERVICE_NAME).current_state == "running"
 Service.stop(SERVICE_NAME)
 end
 Service.delete(SERVICE_NAME)
 puts "Removed Service - " + SERVICE_DISPLAYNAME
 else

If you run rubysrvc.rb with no arguments, nothing will happen, but it will remind you
what parameters you can use:

 if ENV["HOMEDRIVE"]!=nil
 # We are not running as a service, but the user didn't provide any
 # command line arguments. We've got nothing to do.
 puts "Usage: ruby rubysvc.rb [option]"
 puts " Where option is one of the following:"
 puts " register - To register the Service so it " +
 "appears in the control panel"
 puts " delete - To delete the Service from the control panel"
 exit
 end

But when Windows runs rubysrvc.rb as a service, the real action starts:

 # If we got this far, we are running as a service.
 class Daemon
 def service_init
 # Give the service time to get everything initialized and running,
 # before we enter the service_main function.
 sleep 10
 end

 def service_main
 fileCount = 0 # Initialize the file counter for the rename
 watchForFile = "c:\\findme.txt"
 while state == RUNNING
 sleep 5
 if File.exists? watchForFile
 fileCount += 1
 File.rename watchForFile, watchForFile + "." + fileCount.to_s
 end
 end
 end
 end
 d = Daemon.new
 d.mainloop
 end

Chapter 20. Multitasking and Multithreading Page 6 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Once you run ruby rubysrvc.rb register, the service will show up in the Services
Control Panel as "A Ruby Service". To see it, go to Start ControlPanel
Administrative Tools Services (Figure 20-1). Start the service by clicking the service
name in the list and clicking the start button.

Figure 20-1. The Services Control Panel

To test the service, create a file in c:\ called findme.txt.

 $ echo "test" > findme.txt

Within seconds, the file you just created will be renamed to findme.txt:

 $ dir findme*
 # Volume in drive C has no label.
 # Volume Serial Number is 7C61-E72E
 # Directory of c:\
 # 04/14/2006 02:29 PM 9 findme.txt.1

To remove the service, run ruby rubysrvc.rb delete.

Discussion
There's no reason why the code that registers rubysrvc.rb as a Windows service has to
be in rubysrvc.rb itself, but it makes things much simpler. When you run ruby
rubysrvc.rb register, the script tells Windows to run rubysrvc.rb again, only as
a service. The key is the binary_path_name defined on the Service object: this is the
command for Windows to run as a service. In this case, it's an invocation of the ruby
interpreter with the service script passed as an input. But you could have run the same
code from an irb session: then, rubysrvc.rb would only have been invoked once, by
Windows, when running it as a service.

The code above assumes that your Ruby interpreter is located in
c:InstantRails-1.3\ruby\bin\ruby. Of course, you can change this to point to

Chapter 20. Multitasking and Multithreading Page 7 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

your Ruby interpreter if it's somewhere else: perhaps c:\ruby\bin\ruby. If you've got
the Ruby interpreter in your path, you just do this:

 s.binary_path_name = 'ruby ' + File.expand_path($0)

When you create a service, you specify both a service name and a display name. The service
name is shorter, and is used when referring to the service from within Ruby code. The
display name is the one shown in the Services Control Panel.

Our example service checks every five seconds for a file with a certain name. Whenever it
finds that file, it renames it by appending a number to the filename. To keep things simple,
it does no error checking to see if the new filename already exists; nor does it do any file
locking to ensure that the file is completely written before renaming it. Real services should
include at least some basic high-level error handling:

 def service_main
 begin
 while state == RUNNING
 # Do my work
 end
 # Finish my work
 rescue StandardError, Interrupt => e
 # Handle the error
 end
 end

In addition to the service_main method, your service can define additional methods to
handle the other service events (stop, pause, and restart). The win32-service
gem comes with a useful example script, daemon_test.rb, which provides sample
implementations of these methods.

See Also

• The win32-service library was written by Daniel J. Berger, and is part of the win32utils
project (http://rubyforge.org/projects/win32utils/)

• Recipe 6.13, "Locking a File," and Recipe 6.14, "Backing Up to Versioned Filenames,"
demonstrate more robust renaming and file locking strategies

• Recipe 20.1, "Running a Daemon Process on Unix," for similar functionality on Unix
• Recipe 23.2, "Managing Windows Services"

Recipe 20.3. Doing Two Things at Once with Threads

Problem
You want your program to run two or more pieces of code in parallel.

Chapter 20. Multitasking and Multithreading Page 8 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/projects/win32utils/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-13#rubyckbk-CHP-6-SECT-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-14#rubyckbk-CHP-6-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-2#rubyckbk-CHP-23-SECT-2

Solution
Create a new thread by passing a code block into Thread.new. That block will run
simultaneously with any code you write after the call to Thread.new.

The following code features two competing threads. One continually decrements a variable
by one, while the main program's thread busily incrementing the same variable by three.
The decrementing thread starts its work earlier, but the incrementing thread always wins
in the end, because it increments the counter by a larger number:

 x = 0
 Thread.new do
 while x < 5
 x -= 1
 puts "DEC: I decremented x to #{x}\n"
 end
 puts "DEC: x is too high; I give up!\n"
 end

 while x < 5
 x += 3
 puts "INC: I incremented x to #{x}\n"
 end
 # DEC: I decremented x to -1
 # DEC: I decremented x to -2
 # DEC: I decremented x to -3
 # DEC: I decremented x to -4
 # INC: I incremented x to -1
 # DEC: I decremented x to -2
 # INC: I incremented x to 1
 # DEC: I decremented x to 0
 # INC: I incremented x to 3
 # DEC: I decremented x to 2
 # INC: I incremented x to 5
 # DEC: x is too high; I give up!

 x # => 5

Discussion
A Ruby process starts out running only one thread: the main thread. When you call
Thread#new, Ruby spawns another thread and starts running it alongside the main
thread. The operating system divides CPU time among all the running processes, and the
Ruby interpreter further divides its alotted CPU time among all of its threads.

The block you pass into Thread.new is a closure (see Recipe 7.4), so it has access to all
the variables that were in scope at the time you instantiated the thread. This means that
threads can share variables; as a result, you don't need complex communication schemes
the way you do to communicate between processes. However, it also means that your
threads can step on each other's toes unless you're careful to synchronize any shared
objects. In the example above, the threads were designed to step on each other's toes,
providing head-to-head competition, but usually you don't want that.

Chapter 20. Multitasking and Multithreading Page 9 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-4#rubyckbk-CHP-7-SECT-4

Once a thread's execution reaches the end of its code block, the thread dies. If your main
thread reaches the end of its code block, the process will exit and all your other threads
will die prematurely. If you want your main thread to stall and wait for some other thread
to finish, you can call Thread#join on the thread in question.

This code spawns a subthread to count to one million. Without the call to
Thread#join, the counter only gets up to a couple hundred thousand before the process
exits:

 #!/usr/bin/ruby -w
 # counter_thread.rb
 counter = 0
 counter_thread = Thread.new do
 1.upto(1000000) { counter += 1; }
 end

 counter_thread.join unless ARGV[0]
 puts "The counter was able to count up to #{counter}."
 $./counter_thread.rb
 The counter was able to count up to 1000000.

 $./counter_thread.rb dont_call_join
 The counter was able to count up to 172315.

You can get a list of the currently active thread objects with Thread.list:

 Thread.new { sleep 10 }
 Thread.new { x = 0; 10000000.times { x += 1 } }
 Thread.new { sleep 100 }
 Thread.list
 # => [#<Thread:0xb7d19ae0 sleep>, #<Thread:0xb7d24cec run>,
 # #<Thread:0xb7d31cf8 sleep>, #<Thread:0xb7d68748 run>]

Here, the two running threads are the main irb thread and the thread running the counter
loop. The two sleeping threads are the ones currently running sleep calls.

Recipe 20.4. Synchronizing Access to an Object

Problem
You want to make an object accessible from only one thread at a time.

Solution
Give the object a Mutex member (a semaphore that controls whose turn it is to use the
object). You can then use this to synchronize activity on the object.

This code gives every object a synchronize method. This simulates the behavior of Java,
in which synchronize is a keyword that can be applied to any object:

Chapter 20. Multitasking and Multithreading Page 10 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'thread'
 class Object
 def synchronize
 mutex.synchronize { yield self }
 end

 def mutex
 @mutex ||= Mutex.new
 end
 end

Here's an example. The first thread gets a lock on the list and then dawdles for a while.
The second thread is ready from the start to add to the list, but it doesn't get a chance until
the first thread releases the lock.

 list = []
 Thread.new { list.synchronize { |l| sleep(5); 3.times { l.push "Thread 1" } } }
 Thread.new { list.synchronize { |l| 3.times { l.push "Thread 2" } } }
 sleep(6)
 list
 # => ["Thread 1", "Thread 1", "Thread 1", "Thread 2", "Thread 2", "Thread 2"]

Object#synchronize only prevents two synchronized code blocks from running at the
same time. Nothing prevents a wayward thread from modifying the object without calling
synchronize first:

 list = []
 Thread.new { list.synchronize { |l| sleep(5); 3.times { l.push "Thread 1" } } }
 Thread.new { 3.times { list.push "Thread 2" } }
 sleep(6)
 list
 # => ["Thread 2", "Thread 2", "Thread 2", "Thread 1", "Thread 1", "Thread 1"]

Discussion
One of the big advantages of multithreaded programs is that different threads can share
data. But where there is data sharing, there is the possibility for corruption. When two
threads operate on the same object at the same time, the results can vary wildly depending
on when the Ruby interpreter decides to switch between threads. To get predictable
behavior, you need to have one thread lock the object, so other threads can't use it.

When every object has a synchronize method, it's easier to share an object between
threads: if you want to work alone with the object, you put that code within a synchronize
block. Of course, you may find yourself constantly writing synchronization code whenever
you call certain methods of an object.

It would be nice if you could to do this synchronization implicitly, the way you can in Java:
you just designate certain methods as "synchronized," and the interpreter won't start
running those methods until it can obtain an exclusive lock on the corresponding object.

Chapter 20. Multitasking and Multithreading Page 11 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The simplest way to do this is to use aspect-oriented programming. The RAspect library
described in Recipe 10.15 can be used for this.

The following code defines an Aspect that can wrap methods in synchronization code. It
uses the Object#mutex method defined above, but it could easily be changed to define
its own Mutex objects:

 require 'aspectr'
 require 'thread'

 class Synchronized < AspectR::Aspect
 def lock(method_sym, object, return_value, *args)
 object.mutex.lock
 end

 def unlock(method_sym, object, return_value, *args)
 object.mutex.unlock
 end
 end

Any AspectR aspect method needs to take three arguments: the symbol of the method
being called, the object it's being called on, and (if the aspect method is being called after
the original method) the return value of the method.

The rest of the arguments are the arguments to the original method. Since this aspect is
very simple, the only argument we need is object, the object we're going to lock and
unlock.

Let's use the Synchronized aspect to create an array where you can only call push,
pop, or each once you get an exclusive lock.

 array = %w{do re mi fa so la ti}
 Synchronized.new.wrap(array, :lock, :unlock, :push, :pop, :each)

The call to wrap tells AspectR to modify our array's implementation of push, pop, and
each with generated singleton methods. Synchronized#lock is called before the old
implementation of those methods is run, and Synchronized#unlock is called
afterward.

The following example creates two threads to work on our synchronized array. The first
thread iterates over the array, and the second thread destroys its contents with repeated
calls to pop. When the first thread calls each, the AspectR-generated code calls lock, and
the first thread gets a lock on the array. The second thread starts and it wants to call
pop, but pop has been modified to require an exclusive lock on the array. The second
thread can't run until the first thread finishes its call to each, and the AspectR-generated
code calls unlock.

Chapter 20. Multitasking and Multithreading Page 12 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-15#rubyckbk-CHP-10-SECT-15

 Thread.new { array.each { |x| puts x } }
 Thread.new do
 puts 'Destroying the array.'
 array.pop until array.empty?
 puts 'Destroyed!'
 end
 # do
 # re
 # mi
 # fa
 # so
 # la
 # ti
 # Destroying the array.
 # Destroyed!

See Also

• See Recipe 10.15, "Doing Aspect-Oriented Programming," especially for information
on problems with AspectR when wrapping operator methods in aspects

• Recipe 13.17, "Adding Hooks to Table Events," demonstrates the aspect oriented
programming features of the Glue library, which are simpler than AspectR (but
actually, in my experience, more difficult to use)

• Recipe 16.10, "Sharing a Hash Between Any Number of Computers," has an alternate
solution: it defines a delegate class (ThreadsafeHash) whose method_missing
implementation synchronizes on a mutex and then delegates the method call; this is
an easy way to synchronize all of an object's methods

• Recipe 20.11, "Avoiding Deadlock"

Recipe 20.5. Terminating a Thread

Problem
You want to kill a thread before the end of the program.

Solution
A thread terminates if it reaches the end of its code block. The best way to terminate a
thread early is to convince it to reach the end of its code block. This way, the thread can
run cleanup code before dying.

This thread runs a loop while the instance variable continue is true. Set this variable to
false, and the thread will die a natural death:

 require 'thread'

 class CounterThread < Thread
 def initialize
 @count = 0

Chapter 20. Multitasking and Multithreading Page 13 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-15#rubyckbk-CHP-10-SECT-15
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-17#rubyckbk-CHP-13-SECT-17
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-10#rubyckbk-CHP-16-SECT-10

 @continue = true

 super do
 @count += 1 while @continue
 puts "I counted up to #{@count} before I was cruelly stopped."
 end
 end

 def stop
 @continue = false
 end
 end

 counter = CounterThread.new
 sleep 2
 counter.stop
 # I counted up to 3413544 before I was cruelly stopped.

If you need to stop a thread that doesn't offer a stop-like function, or you need to stop an
out-of-control thread immediately, you can always call Thread#terminate. This
method stops a thread in its tracks:

 t = Thread.new { loop { puts 'I am the unstoppable thread!' } }
 # I am the unstoppable thread!
 # I am the unstoppable thread!
 # I am the unstoppable thread!
 # I am the unstoppable thread!
 t.terminate

Discussion
It's better to convince someone they should do something than to force them to do it. The
same is true of threads. Calling Thread.terminate is a bit like throwing an exception:
it interrupts the normal flow of execution in an unpredictable place. Worse, there's no
equivalent of a begin/ensure construct for thread termination, so calling
Thread.terminate may corrupt your data or leave your program in an inconsistent
state. If you plan to stop a thread before the program is over, you should build that
capability into the thread object itself.

A common type of thread implements a loop: threads that process requests from a queue,
or that periodically poll for new data. In these, the end of an iteration forms a natural
stopping point. These threads can benefit from some simple VCR-style controls: pause,
unpause, and stop.

Here's a Thread subclass which implements a loop that can be paused or stopped in a
predictable way. A code block passed into the Thread constructor would implement the
entire loop, but the code block passed into the LoopingThread constructor should
implement only one iteration of the loop. Setup and cleanup code should be handled in
the methods before_loop and after_loop.

 class LoopingThread < Thread
 def initialize

Chapter 20. Multitasking and Multithreading Page 14 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 @stopped = false
 @paused = false
 super do
 before_loop
 until @stopped
 yield
 Thread.stop if @paused
 end
 after_loop
 end
 end

 def before_loop; end
 def after_loop; end

 def stop
 @stopped = true
 end

 def paused=(paused)
 @paused = paused
 run if !paused
 end
 end

Here's the CounterThread class from the Solution, implemented as a
LoopingThread. I've added a reader method for count so we can peek at its value when
the thread is paused:

 class PausableCounter < LoopingThread
 attr_reader :count

 def before_loop
 @count = 0
 end

 def initialize
 super { @count += 1 }
 end

 def after_loop
 puts "I counted up to #{@count} before I was cruelly stopped."
 end
 end

 counter = PausableCounter.new
 sleep 2
 counter.paused = true
 counter.count # => 819438
 sleep 2
 counter.count # => 819438
 counter.paused = false
 sleep 2
 counter.stop
 # I counted up to 1644324 before I was cruelly stopped.
 counter.count # => 1644324

Recipe 20.6. Running a Code Block on Many Objects
Simultaneously

Chapter 20. Multitasking and Multithreading Page 15 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
Rather than iterating over the elements of a data structure one at a time, you want to run
some function on all of them simultaneously.

Solution
Spawn a thread to handle each element of the data structure.

Here's a simple equivalent of Enumerable#each that runs a code block against every
element of a data structure simultaneously.[1] It returns the Thread objects it spawned so
that you can pause them, kill them, or join them and wait for them to finish:

[1] Well, more or less. The thread for the first element will start running before the thread for the last element does.

 module Enumerable
 def each_simultaneously
 threads = []
 each { |e| threads >> Thread.new { yield e } }
 return threads
 end
 end

Running the following high-latency code with Enumerable#each would take 15 seconds.
With our new Enumerable#each_simultaneously, it takes only five seconds:

 start_time = Time.now
 [7,8,9].each_simultaneously do |e|
 sleep(5) # Simulate a long, high-latency operation
 print "Completed operation for #{e}!\n"
 end
 # Completed operation for 8!
 # Completed operation for 7!
 # Completed operation for 9!
 Time.now - start_time # => 5.009334

Discussion
You can save time by doing high-latency operations in parallel, since it often means you
pay the latency price only once. If you're doing nameserver lookups, and the nameserver
takes five seconds to respond to a request, you're going to be waiting at least five seconds.
If you need to do 10 nameserver lookups, doing them in series will take 50 seconds, but
doing them all at once might only take 5.

This technique can also be applied to the other methods of Enumerable. You could write a
collect_simultaneously, a find_all_simultaneously, and so on. But that's a
lot of methods to write. All the methods of Enumerable are based on each. What if we
could just convince those methods to use each_simultaneously instead of each?

Chapter 20. Multitasking and Multithreading Page 16 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It would be too much work to replace all the existing methods of Enumerable, but we can
swap out an individual Enumerable object's each implementation for another, by
wrapping it in an Enumerable::Enumerator. Here's how it would work:

 require 'enumerator'

 array = [7, 8, 9]
 simultaneous_array = array.enum_for(:each_simultaneously)
 simultaneous_array.each do |e|
 sleep(5) # Simulate a long, high-latency operation
 print "Completed operation for #{e}!\n"
 end
 # Completed operation for 7!
 # Completed operation for 9!
 # Completed operation for 8!

That call to enum_for returns an Enumerable::Enumerator object. The Enumerator
implements all of the methods of Enumerable as the original array would, but its each
method uses each_simultaneously under the covers.

Do we now have simultaneous versions of all the Enumerable methods? Not quite. Look
at this code:

 simultaneous_array.collect { |x| sleep 5; x * -1 } # => []

What happened? The collect method returns before the threads have a chance to complete
their tasks. When we were using each_simultaneously on its own, this was a nice
feature. Consider the following idealized code, which starts three infinite loops in separate
threads and then goes on to other things:

 [SSHServer, HTTPServer, IRCServer].each_simultaneously do |server|
 server.serve_forever
 end

 # More code goes here…

This is not such a good feature when we're calling an Enumerable method with a return
value. We need an equivalent of each_simultaneously that doesn't return until all of
the threads have run:

 require 'enumerator'
 module Enumerable
 def all_simultaneously
 if block_given?
 collect { |e| Thread.new { yield(e) } }.each { |t| t.join }
 self
 else
 enum_for :all_simultaneously
 end
 end
 end

Chapter 20. Multitasking and Multithreading Page 17 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You wouldn't use this method to spawn infinite loops (they'd all spawn, but you'd never
regain control of your code). But you can use it to create multithreaded versions of
collect and other Enumerable methods:

 array.all_simultaneously.collect { |x| sleep 5; x * -1 }
 # => [-7, -9, -8]

That's better, but the elements are in the wrong order: after all, there's no guarantee which
thread will complete first. This doesn't usually matter for Enumerable methods like
find_all, grep, or reject, but it matters a lot for collect. And each_with_index
is simply broken:

 array.all_simultaneously.each_with_index { |x, i| sleep 5; puts "#{i}=>#{x}" }
 # 0=>8
 # 0=>7
 # 0=>9

Here are thread-agnostic implementations of Enumerable#collect and
Enumerable#each_with_index, which will work on normal Enumerable objects, but
will also work in conjunction with all_simultaneously:

 module Enumerable
 def collect
 results = []
 each_with_index { |e, i| results[i] = yield(e) }
 results
 end

 def each_with_index
 i = -1
 each { |e| yield e, i += 1 }
 end
 end

Now it all works:

 array.all_simultaneously.collect { |x| sleep 5; x * -1 }
 # => [-7, -8, -9]

 array.all_simultaneously.each_with_index { |x, i| sleep 5; puts "#{i}=>#{x}" }
 # 1=>8
 # 0=>7
 # 2=>9

See Also

• Recipe 7.9, "Looping Through Multiple Iterables in Parallel"

Chapter 20. Multitasking and Multithreading Page 18 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-9#rubyckbk-CHP-7-SECT-9

Recipe 20.7. Limiting Multithreading with a Thread Pool

Problem
You want to process multiple requests in parallel, but you don't necessarily want to run all
the requests simultaneously. Using a technique like that in Recipe 20.6 can create a huge
number of threads running at once, slowing down the average response time. You want to
set a limit on the number of simultaneously running threads.

Solution
You want a thread pool. If you're writing an Internet server and you want to service requests
in parallel, you should build your code on top of the gserver module, as seen in Recipe
14.14: it has a thread pool and many TCP/IP-specific features. Otherwise, here's a generic
ThreadPool class, based on code from gserver.

The instance variable @pool contains the active threads. The Mutex and the
ConditionVariable are used to control the addition of threads to the pool, so that the
pool never contains more than @max_size threads:

 require 'thread'

 class ThreadPool
 def initialize(max_size)
 @pool = []
 @max_size = max_size
 @pool_mutex = Mutex.new
 @pool_cv = ConditionVariable.new
 end

When a thread wants to enter the pool, but the pool is full, the thread puts itself to sleep
by calling ConditionVariable#wait. When a thread in the pool finishes executing, it
removes itself from the pool and calls ConditionVariable#signal to wake up the first
sleeping thread:

 def dispatch(*args)
 Thread.new do
 # Wait for space in the pool.
 @pool_mutex.synchronize do
 while @pool.size >= @max_size
 print "Pool is full; waiting to run #{args.join(',')}…\n" if $DEBUG
 # Sleep until some other thread calls @pool_cv.signal.
 @pool_cv.wait(@pool_mutex)
 end
 end

The newly-awakened thread adds itself to the pool, runs its code, and then calls
ConditionVariable#signal to wake up the next sleeping thread:

Chapter 20. Multitasking and Multithreading Page 19 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-14#rubyckbk-CHP-14-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-14#rubyckbk-CHP-14-SECT-14

 @pool << Thread.current
 begin
 yield(*args)
 rescue => e
 exception(self, e, *args)
 ensure
 @pool_mutex.synchronize do
 # Remove the thread from the pool.
 @pool.delete(Thread.current)
 # Signal the next waiting thread that there's a space in the pool.
 @pool_cv.signal
 end
 end
 end
 end

 def shutdown
 @pool_mutex.synchronize { @pool_cv.wait(@pool_mutex) until @pool.empty? }
 end

 def exception(thread, exception, *original_args)
 # Subclass this method to handle an exception within a thread.
 puts "Exception in thread #{thread}: #{exception}"
 end
 end

Here's a simulation of five incoming jobs that take different times to run. The pool ensures
no more than three jobs run at a time. The job code doesn't need to know anything about
threads or thread pools; that's all handled by ThreadPool#dispatch.

 $DEBUG = true
 pool = ThreadPool.new(3)

 1.upto(5) do |i|
 pool.dispatch(i) do |i|
 print "Job #{i} started.\n"
 sleep(5-i)
 print "Job #{i} complete.\n"
 end
 end
 # Job 1 started.
 # Job 3 started.
 # Job 2 started.
 # Pool is full; waiting to run 4…
 # Pool is full; waiting to run 5…
 # Job 3 complete.
 # Job 4 started.
 # Job 2 complete.
 # Job 5 started.
 # Job 5 complete.
 # Job 4 complete.
 # Job 1 complete.

 pool.shutdown

Discussion
When should you use a thread pool, and when should you just send a swarm of threads
after the problem? Consider why this pattern is so common in Internet servers that it's
built into Ruby's gserver library. Internet server requests are usually I/O bound, because
most servers operate on the filesystem or a database. If you run high latency requests in

Chapter 20. Multitasking and Multithreading Page 20 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

parallel (like requests for filesystem files), you can complete multiple requests in about the
same time it would take to complete a single request.

But Internet server requests can use a lot of memory, and any random user on the Internet
can trigger a job on your server. If you create and start a thread for every incoming request,
it's easy to run out of resources. You need to find a tradeoff between the performance
benefit of multithreading and the performance hazard of thrashing due to insufficient
resources. The simplest way to do this is to limit the number of requests that can be
processed at a given time.

A thread pool isn't a connection pool, like you might see with a database. Database
connections are often pooled because they're expensive to create. Threads are pretty cheap;
we just don't want a lot of them actively running at once. The example in the Solution
creates five threads at once, but only three of them can be active at any one time. The rest
are asleep, waiting for a notification from the condition variable pool_cv.

Calling ThreadPool#dispatch with a code block creates a new thread that runs the code
block, but not until it finds a free slot in the thread pool. Until then, it's waiting on the
condition variable @pool_cv. When one of the threads in the pool completes its code
block, it calls signal on the condition variable, waking up the first thread currently
waiting on it.

The shutdown method makes sure all the jobs complete by repeatedly waiting on the
condition variable until no other threads want access to the pool.

See Also

• Recipe 14.14, "Writing an Internet Server"

Recipe 20.8. Driving an External Process with popen

Problem
You want to execute an external command in a subprocess. You want to pass some data
into its standard input stream, and read its standard output.

Solution
If you don't care about the standard input side of things, you can just use the %x{}
construction. This runs a string as a command in an operating system subshell, and returns
the standard output of the command as a string.

Chapter 20. Multitasking and Multithreading Page 21 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-14#rubyckbk-CHP-14-SECT-14

 %x{whoami} # => "leonardr\n"
 puts %x{ls -a empty_dir}
 # .
 # ..

If you want to pass data into the standard input of the subprocess, do it in a code block
that you pass into the IO.popen method. Here's IO.popen used on a Unix system to
invoke tail, a command that prints to standard output the last few lines of its standard
input:

 IO.popen('tail -3', 'r+') do |pipe|
 1.upto(100) { |i| pipe >> "This is line #{i}.\n" }
 pipe.close_write
 puts pipe.read
 end
 # This is line 98.
 # This is line 99.
 # This is line 100.

Discussion
IO.popens pawns a subprocess and creates a pipe: an IO stream connecting the Ruby
interpreter to the subprocess. IO.popen makes the pipe available to a code block, just as
File.open makes an open file available to a code block. Writing to the IO object sends
data to the standard input of the subprocess; reading from it reads data from its standard
output.

IO.popen takes a file mode, just like File.open. To use both the standard input and
output of a subprocess, you need to open it in read-write mode ("r+").

A command that accepts standard input won't really start running until its input stream
is closed. If you use popen to run a command like tail, you must call pipe.
close_write before you read from the pipe. If you try to read the subprocess' standard
output while the subprocess is waiting for you to send it data on standard input, both
processes will hang forever.

The %{} construct and the popen technique work on both Windows and Unix, but scripts
that use them won't usually be portable, because it's very unlikely that the command you're
running exists on all platforms.

On Unix systems, you can also use popen to spawn a Ruby subprocess. This is like calling
fork, except that the parent gets a read-write filehandle that's hooked up to the standard
input and output of the child. Unlike with Kernel#fork (but like C's implementation of
fork), the same code block is called for the parent and the child. The presence or absence
of the filehandle is the only way to know whether you're the parent or the child:

Chapter 20. Multitasking and Multithreading Page 22 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 IO.popen('-', 'r+') do |child_filehandle|
 if child_filehandle
 $stderr.puts "I am the parent: #{child_filehandle.inspect}"
 child_filehandle.puts '404'
 child_filehandle.close_write
 puts "My child says the square root of 404 is #{child_filehandle.read}"
 else
 $stderr.puts "I am the child: #{child_filehandle.inspect}"
 number = $stdin.readline.strip.to_i
 $stdout.puts Math.sqrt(number)
 end
 end
 # I am the child: nil
 # I am the parent: #<IO:0xb7d25b9c>
 # My child says the square root of 404 is 20.0997512422418

See Also

• Recipe 20.1, "Running a Daemon Process on Unix"
• Recipe 20.9, "Capturing the Output and Error Streams from a Unix Shell Command"
• Recipe 20.10, "Controlling a Process on Another Machine"

Recipe 20.9. Capturing the Output and Error Streams from a Unix
Shell Command

Problem
You want to run an external program as in Recipe 20.8, but you also want to capture the
standard error stream. Using popen only gives you access to the standard output.

Solution
Use the open3 library in the Ruby standard library. Its popen3 method takes a code block,
to which it passes three IO streams: one each for standard input, output, and error.

Suppose you perform the Unix ls command to list a nonexistent directory. ls will rightly
object to this and write an error message to its standard error stream. If you invoked ls
with IO.popen or the %x{} construction, that error message is passed right along to the
standard error stream of your Ruby process. You can't capture it or suppress it:

 %x{ls no_such_directory}
 # ls: no_such_directory: No such file or directory

But if you use popen3, you can grab that error message and do whatever you want with
it:

 require 'open3'

Chapter 20. Multitasking and Multithreading Page 23 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Open3.popen3('ls -l no_such_directory') { |stdin, stdout, stderr| stderr.read }
 # => "ls: no_such_directory: No such file or directory\n"

Discussion
The same caveats in the previous recipe apply to the IO streams returned by popen3. If
you're running a command that accepts data on standard input, and you read from stdout
before closing stdin, your process will hang.

Unlike IO.popen, the popen3 method is only implemented on Unix systems. However,
the win32-open3 package (part of the Win32Utils project) provides a popen3
implementation.

See Also

• Recipe 20.8, "Driving an External Process with popen"
• Like many other Windows libraries for Ruby, win32-open3 is available from http://

rubyforge.org/projects/win32utils

Recipe 20.10. Controlling a Process on Another Machine

Problem
You want to run a process on another machine, controlling its input stream remotely, and
reading its output and error streams.

Solution
The ruby-ssh gem, first described in Recipe 14.10, provides a popen3 method that works
a lot like Ruby's built-in popen3, except that the process you spawn runs on another
computer.

Here's a method that runs a Unix command on another computer and yields its standard
I/O streams to a code block on your computer. All traffic going between the computers is
encrypted with SSL. To authenticate yourself against the foreign host, you'll either need
to provide a username and password, or set up an SSL key pair ahead of time.

 require 'rubygems'
 require 'net/ssh'

 def run_remotely(command, host, args)
 Net::SSH.start(host, args) do |session|
 session.process.popen3(command) do |stdin, stdout, stderr|
 yield stdin, stdout, stderr
 end

Chapter 20. Multitasking and Multithreading Page 24 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyforge.org/projects/win32utils
http://rubyforge.org/projects/win32utils
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-10#rubyckbk-CHP-14-SECT-10

 end
 end

Here it is in action:

 run_remotely('ls -l /home/leonardr/dir', 'example.com', :username=>'leonardr',
 :password => 'mypass') { |i, o, e| puts o.read }
 # -rw-rw-r-- 1 leonardr leonardr 33 Dec 29 20:40 file1
 # -rw-rw-r-- 1 leonardr leonardr 102 Dec 29 20:40 file2

Discussion
The Net::SSH library implements a low-level interface to the SSH protocol, but most of
the time you don't need all that power. You just want to use SSH as a way to spawn and
control processes on a remote computer. That's why Net:SSH also provides a popen3
interface that looks a lot like the popen3 you use to manipulate processes on your own
computer.

Apart from the issue of authentication, there are a couple of differences between
Net::SSH.popen3 and Open3.popen3. With Open3.popen3, you must be careful to
close the standard input stream before reading from the output or error streams. With the
Net::SSH version of popen3, you can read from the output or error streams as soon as
the process writes any data to it. This lets you interleave stdin writes and stdout reads:

 run_remotely('cat', 'example.com', :username=>'leonardr',
 :password => 'mypass') do |stdin, stdout, stderr|
 stdin.puts 'Line one.'
 puts stdout.read
 stdin.puts 'Line two.'
 puts stdout.read
 end
 # "Line one."
 # "Line two."

Another potential pitfall is that the initial working directory for an SSH session is the
filesystem root (/). If you've used the ssh or scp commands, you may be accustomed to
starting out in your home directory. To compensate for this, you can change to your home
directory within your command: issue a command like cd; ls or cd /home/[user
name]/; ls instead of just plain ls.

See Also

• The Net::SSH manual at: http://net-ssh.rubyforge.org/
• Recipe 14.2, "Making an HTTPS Web Request," has information on installing the

OpenSSL extension that is a prerequisite of ruby-ssh
• Recipe 14.10, "Being an SSH Client covers the basic rules of SSH"

Chapter 20. Multitasking and Multithreading Page 25 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://net-ssh.rubyforge.org/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-2#rubyckbk-CHP-14-SECT-2
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-10#rubyckbk-CHP-14-SECT-10

• Recipe 20.8, "Driving an External Process with popen," and Recipe 20.9, "Capturing
the Output and Error Streams from a Unix Shell Command," cover the basic features
of the popen family of methods

Recipe 20.11. Avoiding Deadlock

Problem
Your threads are competing for exclusive access to the same resources. With no
coordination between threads, you'll end up with deadlock. Thread A will be blocking,
waiting for a resource held by thread B, and thread B will be blocking, waiting for a resource
held by thread A. Neither thread will ever be seen again.

Solution
There's no simple mix-in solution to this problem. You need to come up with some rules
for how your threads acquire locks, and make sure your code always abides by them.

Basically, you need to guarantee that all your threads acquire locks in the same order.
Impose an ordering (formally or informally) on all the locks in your program and make
sure that your threads always acquire locks in ascending numerical order.

Here's how it would work. The standard illustration of deadlock is the Dining Philosophers
problem. A table of philosophers are sharing a plate of rice and some chopsticks, but there
aren't enough utensils to go around. When there are only two chopsticks, it's easy to see
the problem. If philosopher A is holding one chopstick (that is, has a lock on it), and
philosopher B is holding the other, then nobody can eat.

In this scenario, you'd designate the the lock on one chopstick as lock #1, and the lock on
the other chopstick as lock #2. If you guarantee that no philosopher will pick up chopstick
#2 unless they're already picked up the chopstick #1, deadlock is impossible. You can
guarantee this by simply making all the philosophers implement the same behavior:

 require 'thread'
 $chopstick1 = Mutex.new
 $chopstick2 = Mutex.new

 class Philosopher < Thread
 def initialize(name)
 super do
 loop do
 $chopstick1.synchronize do
 puts "#{name} has picked up one chopstick."
 $chopstick2.synchronize do
 puts "#{name} has picked up two chopsticks and eaten a " +
 "bite of tasty rice."
 end
 end
 end

Chapter 20. Multitasking and Multithreading Page 26 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end
 end
 Philosopher.new('Moore')
 Philosopher.new('Anscombe')
 # Moore has picked up one chopstick.
 # Moore has picked up two chopsticks and eaten a bite of tasty rice.
 # Anscombe has picked up one chopstick.
 # Anscombe has picked up two chopsticks and eaten a bite of tasty rice.
 # Moore has picked up one chopstick.
 # Moore has picked up two chopsticks and eaten a bite of tasty rice.
 # …

Discussion
It's hard to come up with an ordering of resources that isn't totally arbitrary. Why is
chopstick #1 designated #1 and not #2? It just is. When you've got more than a few locks,
it's hard to remember the order.

But if you keep a list of the locks in the proper order, you can have Ruby handle the locking
order for you. The lock_all method defined below takes an unordered list of locks, and
makes sure they get locked in the "right" order, as defined in the global hash
$lock_order:

 require 'thread'
 pool_lock, lion_lock, penguin_lock, cabbage_lock = (1..4).collect { Mutex.new }
 locks = [pool_lock, lion_lock, penguin_lock, cabbage_lock]
 $lock_order = {}
 locks.each_with_index { |lock, i| $lock_order[lock] = i }

 def lock_all(*locks)
 ordered_locks = locks.sort_by { |x| $lock_order[x] }
 ordered_locks.each do |lock|
 puts "Locking #{$lock_order[lock]}." if $DEBUG
 lock.lock
 end
 begin
 yield
 ensure
 ordered_locks.reverse_each do |lock|
 puts "Unlocking #{$lock_order[lock]}." if $DEBUG
 lock.unlock
 end
 end
 end

Now you can simply pass the locks you want to get into lock_all, without having to keep
track of an arbitrary order:

 $DEBUG = true
 lock_all(penguin_lock, pool_lock) do
 puts "I'm putting the penguin in the pool."
 end
 # Locking 0.
 # Locking 2.
 # I'm putting the penguin in the pool.
 # Unlocking 2.
 # Unlocking 0.

Chapter 20. Multitasking and Multithreading Page 27 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When lock_all encounters a mutex that's already locked, the thread blocks until the
mutex becomes available. A less greedy alternative is to drop all of the mutexes already
obtained and try again from the start. This makes deadlock less likely even when not all of
the code respects the order of the locks.

There are two locking-related problems that you can't solve by imposing a lock ordering.
The first is resource starvation. In the context of the dining philosophers, this would mean
that one philosopher continually puts down chopstick #1 and immediately takes it up
again, preventing anyone else from eating.

The thread library prevents this problem by keeping a list of the threads that are waiting
for a lock to be released. Once it's released, Ruby wakes up the first thread in line. So
threads get the lock in the order they asked for it, rather than it being a free-for-all. You
can see this if you create a bunch of Philosopher objects using the example from the
Solution. Even if there are 20 philosophers and only one pair of chopsticks, the
philosophers will take turns using the chopsticks in the order they were created, not
randomly depending on the whims of the Ruby interpreter.

The second problem is harder to solve: a thread can "deadlock" with itself. The following
code looks unobjectionable (why shouldn't you be able to lock what you already have?),
but it creates a thread that sleeps forever:

 require 'thread'
 $lock = Mutex.new
 Thread.new do
 $lock.synchronize { $lock.synchronize { puts 'I synchronized twice!' } }
 end

The first time you call lock.synchronize, everything works fine: the Mutex isn't locked,
and the thread gets a lock on it. The second time, the Mutexis locked, so the thread stops
to wait until it gets unlocked.

The problem is, the thread B that's stopping to wait is the same thread as thread A, which
has the lock. Thread A is supposed to wake up thread B once it's done, but it never does,
because it is thread B, and it's asleep. A thread can't wake itself up.

That looks like a contrived example, but it's pretty easy to get there by accident. If you're
synchronizing an object, as described in Recipe 20.4, there's a chance you'll go too far and
synchronize two methods that call each other. Calling one method will synchronize and
call the other, which will synchronize and put the thread to sleep forever. Short of hacking
Mutex to keep track of which thread has the lock, the only way to avoid this problem is to
be careful.

Chapter 20. Multitasking and Multithreading Page 28 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 6.13, "Locking a File," shows an alternate way of avoiding deadlock when the
resource under contention is a file

Chapter 20. Multitasking and Multithreading Page 29 Return to Table of Contents

Chapter 20. Multitasking and Multithreading
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-13#rubyckbk-CHP-6-SECT-13

	Multitasking and Multithreading
	Running a Daemon Process on Unix
	Creating a Windows Service
	Doing Two Things at Once with Threads
	Synchronizing Access to an Object
	Terminating a Thread
	Running a Code Block on Many Objects Simultaneously
	Limiting Multithreading with a Thread Pool
	Driving an External Process with popen
	Capturing the Output and Error Streams from a Unix Shell Command
	Controlling a Process on Another Machine
	Avoiding Deadlock

