
Table of Contents

Objects and Classes8... 1
Managing Instance Data... 3
Managing Class Data... 6
Checking Class or Module Membership... 8
Writing an Inherited Class.. 10
Overloading Methods.. 12
Validating and Modifying Attribute Values.. 14
Defining a Virtual Attribute... 17
Delegating Method Calls to Another Object... 18
Converting and Coercing Objects to Different Types... 20
Getting a Human-Readable Printout of Any Object... 25
Accepting or Passing a Variable Number of Arguments.. 26
Simulating Keyword Arguments.. 28
Calling a Superclass's Method... 31
Creating an Abstract Method.. 33
Freezing an Object to Prevent Changes.. 35
Making a Copy of an Object.. 38
Declaring Constants.. 40
Implementing Class and Singleton Methods... 42
Controlling Access by Making Methods Private... 45

Chapter 8. Objects and Classes8

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

8. Objects and Classes8
Ruby is an object-oriented programming language; this chapter will show you what that
really means. Like all modern languages, Ruby supports object-oriented notions like
classes, inheiritance, and polymorphism. But Ruby goes further than other languages you
may have used. Some languages are strict and some are permissive; Ruby is one of the
most permissive languages around.

Strict languages enforce strong typing, usually at compile type: a variable defined as an
array can't be used as another data type. If a method takes an array as an argument, you
can't pass in an array-like object unless that object happens to be a subclass of the array
class or can be converted into an array.

Ruby enforces dynamic typing, or duck typing ("if it quacks like a duck, it is a duck"). A
strongly typed language enforces its typing everywhere, even when it's not needed. Ruby
enforces its duck typing relative to a particular task. If a variable quacks like a duck, it is
one—assuming you wanted to hear it quack. When you want "swims like a duck" instead,
duck typing will enforce the swimming, and not the quacking.

Here's an example. Consider the following three classes, Duck, Goose, and
DuckRecording:

 class Duck
 def quack
 'Quack!'
 end

 def swim
 'Paddle paddle paddle…'
 end
 end

 class Goose
 def honk
 'Honk!'
 end
 def swim
 'Splash splash splash…'
 end
 end

 class DuckRecording
 def quack
 play
 end

 def play
 'Quack!'
 end
 end

Chapter 8. Objects and Classes8 Page 1 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

If Ruby was a strongly typed language, a method that told a Duck to quack would fail when
given a DuckRecording. The following code is written in the hypothetical language
Strongly-Typed Ruby; it won't work in real Ruby.

 def make_it_quack(Duck duck)
 duck.quack
 end

 make_it_quack(Duck.new) # => "Quack!"
 make_it_quack(DuckRecording.new)
 # TypeException: object not of type Duck

If you were expecting a Duck, you wouldn't be able to tell a Goose to swim:

 def make_it_swim(Duck duck)
 duck.swim
 end

 make_it_swim(Duck.new) # => "Paddle paddle paddle…"
 make_it_swim(Goose.new)
 # TypeException: object not of type Goose

Since real Ruby uses duck typing, you can get a recording to quack or a goose to swim:

 def make_it_quack(duck)
 duck.quack
 end
 make_it_quack(Duck.new) # => "Quack!"
 make_it_quack(DuckRecording.new) # => "Quack!"

 def make_it_swim(duck)
 duck.swim
 end
 make_it_swim(Duck.new) # => "Paddle paddle paddle…"
 make_it_swim(Goose.new) # => "Splash splash splash…"

But you can't make a recording swim or a goose quack:

 make_it_quack(Goose.new)
 # NoMethodError: undefined method `quack' for #<Goose:0x2bb8a8>
 make_it_swim(DuckRecording.new)
 # NoMethodError: undefined method `swim' for #<DuckRecording:0x2b97d8>

Over time, strict languages develop workarounds for their strong typing (have you ever
done a cast when retrieving something from an Java collection?), and then workarounds
for the workarounds (have you ever created a parameterized Java collection using
generics?). Ruby just doesn't bother with any of it. If an object supports the method you're
trying to use, Ruby gets out of its way and lets it work.

Ruby's permissiveness is more a matter of attitude than a technical advancement. Python
lets you reopen a class after its original definition and modify it after the fact, but the
language syntax doesn't make many allowances for it. It's sort of a dirty little secret of the

Chapter 8. Objects and Classes8 Page 2 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

language. In Ruby, this behavior is not only allowed, it's encouraged. Some parts of the
standard library add functionality to built-in classes when imported, just to make it easier
for the programmer to write code. The Facets Core library adds dozens of convenience
methods to Ruby's standard classes. Ruby is proud of this capability, and urges
programmers to exploit it if it makes their lives easier.

Strict languages end up needing code generation tools that hide the restrictions and
complexities of the language. Ruby has code generation tools built right into the language,
saving you work while leaving complete control in your hands (see Chapter 10).

Is this chaotic? It can be. Does it matter? Only when it actually interferes with you getting
work done. In this chapter and the next two, we'll show you how to follow common
conventions, and how to impose order on the chaos when you need it. With Ruby you can
impose the right kind of order on your objects, tailored for your situation, not a one-size-
fits all that makes you jump through hoops most of the time.

These recipes are probably less relevant to the problems you're trying to solve than the
other ones in this book, but they're not less important. This chapter and the next two
provide a general-purpose toolbox for doing the dirty work of actual programming,
whatever your underlying purpose or algorithm. These are the chapters you should turn
to when you find yourself stymied by the Ruby language itself, or grinding through tedious
makework that Ruby's labor-saving techniques can eliminate. Every other chapter in this
book uses the ideas behind these recipes.

Recipe 8.1. Managing Instance Data

Problem
You want to associate a variable with an object. You may also want the variable to be
readable or writable from outside the object.

Solution
Within the code for the object's class, define a variable and prefix its name with an at sign (
@). When an object runs the code, a variable by that name will be stored within the object.

An instance of the Frog class defined below might eventually have two instance variables
stored within it, @name and @speaks_english:

 class Frog
 def initialize(name)
 @name = name
 end

 def speak
 # It's a well-known fact that only frogs with long names start out

Chapter 8. Objects and Classes8 Page 3 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10#rubyckbk-CHP-10

 # speaking English.
 @speaks_english ||= @name.size > 6
 @speaks_english ? "Hi. I'm #{@name}, the talking frog." : 'Ribbit.'
 end
 end

 Frog.new('Leonard').speak # => "Hi. I'm Leonard, the talking frog."

 lucas = Frog.new('Lucas')
 lucas.speak # => "Ribbit."

If you want to make an instance variable readable from outside the object, call the
attr_reader method on its symbol:

 lucas.name
 # NoMethodError: undefined method `name' for #<Frog:0xb7d0327c @speaks_english=true,
 @name="Lucas">

 class Frog
 attr_reader :name
 end
 lucas.name # => "Lucas"

Similarly, to make an instance variable readable and writable from outside the object, call
the attr_accessor method on its symbol:

 lucas.speaks_english = false
 # => NoMethodError: undefined method `speaks_english=' for #<Frog:0xb7d0327c @speaks_
 # english=false, @name="Lucas">

 class Frog
 attr_accessor :speaks_english
 end
 lucas.speaks_english = true
 lucas.speak # => "Hi. I'm Lucas, the talking frog."

Discussion
Some programming languages have complex rules about when one object can directly
access to another object's instance variables. Ruby has one simple rule: it's never allowed.
To get or set the value of an instance variable from outside the object that owns it, you
need to call an explicitly defined getter or setter method.

Basic getter and setter methods look like this:

 class Frog
 def speaks_english
 @speaks_english
 end

 def speaks_english=(value)
 @speaks_english = value
 end
 end

Chapter 8. Objects and Classes8 Page 4 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But it's boring and error-prone to write that yourself, so Ruby provides built-in decorator
methods like Module#attr_reader and Module#attr_accessor. These methods
use metaprogramming to generate custom getter and setter methods for your class. Calling
attr_reader :speaks_english generates the getter method speaks_english and
attaches it to your class. Calling attr_accessor :instance_variable generates
both the getter method speaks_english and the setter method speaks_english=.

There's also an attr_writer decorator method, which only generates a setter method,
but you won't use it very often. It doesn't usually make sense for an instance variable to be
writable from the outside, but not readable. You'll probably use it only when you plan to
write your own custom getter method instead of generating one.

Another slight difference between Ruby and some other programming languages: in Ruby,
instance variables (just like other variables) don't exist until they're defined. Below, note
how the @speaks_english variable isn't defined until the Frog#speak method gets
called:

 michael = Frog.new("Michael")
 # => #<Frog:0xb7cf14c8 @name="Michael">
 michael.speak # => "Hi. I'm Michael, the talking frog."
 michael
 # => #<Frog:0xb7cf14c8 @name="Michael", @speaks_english=true>

It's possible that one Frog object would have the @speaks_english instance variable
set while another one would not. If you call a getter method for an instance variable that's
not defined, you'll get nil. If this behavior is a problem, write an initialize that
initializes all your instance variables.

Given the symbol for an instance variable, you can retrieve the value with
Object#instance_variable_get, and set it with
Object#instance_variable_set.

Because this method ignores encapsulation, you should only use it in within the class itself:
say, within a call to Module#define_method.

This use of instance_variable_get violates encapsulation, since we're calling it from
outside the Frog class:

 michael.instance_variable_get("@name") # => "Michael"
 michael.instance_variable_set("@name", 'Bob')
 michael.name # => "Bob"

This use doesn't violate encapsulation (though there's no real need to call
define_method here):

Chapter 8. Objects and Classes8 Page 5 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Frog
 define_method(:scientific_name) do
 species = 'vulgaris'
 species = 'loquacious' if instance_variable_get('@speaks_english')
 "Rana #{species}"
 end
 end
 michael.scientific_name # => "Rana loquacious"

See Also

• Recipe 10.10, "Avoiding Boilerplate Code with Metaprogramming"

Recipe 8.2. Managing Class Data

Problem
Instead of storing a bit of data along with every instance of a class, you want to store a bit
of data along with the class itself.

Solution
Instance variables are prefixed by a single at sign; class variables are prefixed by two at
signs. This class contains both an instance variable and a class variable:

 class Warning
 @@translations = { :en => 'Wet Floor',
 :es => 'Piso Mojado' }

 def initialize(language=:en)
 @language = language
 end

 def warn
 @@translations[@language]
 end
 end

 Warning.new.warn # => "Wet Floor"
 Warning.new(:es).warn # => "Piso Mojado"

Discussion
Class variables store information that's applicable to the class itself, or applicable to every
instance of the class. They're often used to control, prevent, or react to the instantiation of
the class. A class variable in Ruby acts like a static variable in Java.

Here's an example that uses a class constant and a class variable to control when and how
a class can be instantiated:

 class Fate

Chapter 8. Objects and Classes8 Page 6 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-10#rubyckbk-CHP-10-SECT-10

 NAMES = ['Klotho', 'Atropos', 'Lachesis'].freeze
 @@number_instantiated = 0

 def initialize
 if @@number_instantiated >= NAMES.size
 raise ArgumentError, 'Sorry, there are only three Fates.'
 end
 @name = NAMES[@@number_instantiated]
 @@number_instantiated += 1
 puts "I give you… #{@name}!"
 end
 end

 Fate.new
 # I give you… Klotho!
 # => #<Fate:0xb7d2c348 @name="Klotho">

 Fate.new
 # I give you… Atropos!
 # => #<Fate:0xb7d28400 @name="Atropos">

 Fate.new
 # I give you… Lachesis!
 # => #<Fate:0xb7d22168 @name="Lachesis">

 Fate.new
 # ArgumentError: Sorry, there are only three Fates.

It's not considered good form to write setter or getter methods for class variables. You
won't usually need to expose any class-wide information apart from helpful constants, and
those you can expose with class constants such as NAMES above.

If you do want to write setter or getter methods for class variables, you can use the following
class-level equivalents of Module#attr_reader and Module#attr_writer. They use
metaprogramming to define new accessor methods: [1]

[1] In Ruby 1.9, Object#send can't be used to call private methods. You'll need to replace the calls to send with calls to Object#funcall.

 class Module
 def class_attr_reader(*symbols)
 symbols.each do |symbol|
 self.class.send(:define_method, symbol) do
 class_variable_get("@@#{symbol}")
 end
 end
 end

 def class_attr_writer(*symbols)
 symbols.each do |symbol|
 self.class.send(:define_method, "#{symbol}=") do |value|
 class_variable_set("@@#{symbol}", value)
 end
 end
 end

 def class_attr_accessor(*symbols)
 class_attr_reader(*symbols)
 class_attr_writer(*symbols)
 end
 end

Chapter 8. Objects and Classes8 Page 7 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here is Module#class_attr_reader being used to give the Fate class an accessor for
its class variable:

 Fate.number_instantiated
 # NoMethodError: undefined method `number_instantiated' for Fate:Class

 class Fate
 class_attr_reader :number_instantiated
 end
 Fate.number_instantiated # => 3

You can have both a class variable foo and an instance variable foo, but this will only end
up confusing you. For instance, the accessor method foo must retrieve one or the other.
If you call attr_accessor :foo and then class_attr_accessor :foo, the class
version will silently overwrite the instance version.

As with instance variables, you can bypass encapsulation and use class variables directly
with class_variable_get and class_variable_set. Also as with instance
variables, you should only do this from inside the class, usually within a define_method
call.

See Also

• If you want to create a singleton, don't mess around with class variables; instead, use
the singleton library from Ruby's standard library

• Recipe 8.18, "Implementing Class and Singleton Methods"
• Recipe 10.10, "Avoiding Boilerplate Code with Metaprogramming"

Recipe 8.3. Checking Class or Module Membership

Problem
You want to see if an object is of the right type for your purposes.

Solution
If you plan to call a specific method on the object, just check to see whether the object
reponds to that method:

 def send_as_package(obj)
 if obj.respond_to? :package
 packaged = obj.package

 else
 $stderr.puts "Not sure how to package a #{obj.class}."
 $stderr.puts 'Trying generic packager.'
 package = Package.new(obj)
 end

Chapter 8. Objects and Classes8 Page 8 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-10#rubyckbk-CHP-10-SECT-10

 send(package)
 end

If you really can only accept objects of one specific class, or objects that include one specific
module, use the is_a? predicate:

 def multiply_precisely(a, b)
 if a.is_a? Float or b.is_a? Float

 raise ArgumentError, "I can't do precise multiplication with floats."
 end
 a * b
 end

 multiply_precisely(4, 5) # => 20
 multiply_precisely(4.0, 5)
 # ArgumentError: I can't do precise multiplication with floats.

Discussion
Whenever possible, you should use duck typing (Object#respond_to?) in preference to
class typing (Object#is_a?). Duck typing is one of the great strengths of Ruby, but it
only works if everyone uses it. If you write a method that only accepts strings, instead of
accepting anything that supports to_str, then you've broken the duck typing illusion for
everyone who uses your code.

Sometimes you can't use duck typing, though, or sometimes you need to combine it with
class typing. Sometimes two different classes define the same method (especially one of
the operators) in completely different ways. Duck typing makes it possible to silently do
the right thing, but if you know that duck typing would silently do the wrong thing, a little
class typing won't hurt.

Here's a method that uses duck typing to see whether an operation is supported, and class
typing to cut short a possible problem before it occurs:

 def append_to_self(x)
 unless x.respond_to? :<<
 raise ArgumentError, "This object doesn't support the left-shift operator."
 end
 if x.is_a? Numeric
 raise ArgumentError,
 "The left-shift operator for this object doesn't do an append."
 end
 x << x
 end

 append_to_self('abc') # => "abcabc"
 append_to_self([1, 2, 3]) # => [1, 2, 3, […]]

 append_to_self({1 => 2})
 # ArgumentError: This object doesn't support the left-shift operator.

 append_to_self(5)
 # ArgumentError: The left-shift operator for this object doesn't do an append.
 5 << 5 # => 160
 # That is, 5 * (2 ** 5)

Chapter 8. Objects and Classes8 Page 9 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

An alternative solution approximates the functionality of Java's interfaces. You can create
a dummy module for a given capability, have all appropriate classes include it, and use
is_a? to check for inclusion of the module. This requires that each participating class
signal its ability to perform a certain task, but it doesn't tie you to any particular class
hierarchy, and it saves you from calling the wrong method just because it has the right
name.

 module ShiftMeansAppend
 def <<(x)
 end
 end

 class String
 include ShiftMeansAppend
 end

 class Array
 include ShiftMeansAppend
 end

 def append_to_self(x)
 unless x.is_a? ShiftMeansAppend
 raise ArgumentError, "I can't trust this object's left-shift operator."
 end
 x << x
 end
 append_to_self 4
 # ArgumentError: I can't trust this object's left-shift operator.

 append_to_self '4' # => "44"

See Also

• Recipe 1.12, "Testing Whether an Object Is String-Like"

Recipe 8.4. Writing an Inherited Class

Problem
You want to create a new class that extends or modifies the behavior of an existing class.

Solution
If you're writing a new method that conceptually belongs in the original class, you can
reopen the class and append your method to the class definition. You should only do this
if your method is generally useful, and you're sure it won't conflict with a method defined
by some library you include in the future.

This code adds a scramble method to Ruby's built-in String class (see Recipe 4.10 for
a faster way to sort randomly):

Chapter 8. Objects and Classes8 Page 10 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-12#rubyckbk-CHP-1-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-10#rubyckbk-CHP-4-SECT-10

 class String
 def scramble
 split(//).sort_by { rand }.join
 end
 end

 "I once was a normal string.".scramble
 # => "i arg cn lnws.Ioateosma n r"

If your method isn't generally useful, or you don't want to take the risk of modifying a class
after its initial creation, create a subclass of the original class. The subclass can override
its parent's methods, or add new ones. This is safer because the original class, and any code
that depended on it, is unaffected. This subclass of String adds one new method and
overrides one existing one:

 class UnpredictableString < String
 def scramble
 split (//).sort_by { rand }.join
 end

 def inspect
 scramble.inspect
 end
 end
 str = UnpredictableString.new("It was a dark and stormy night.")
 # => " hsar gsIo atr tkd naaniwdt.ym"
 str
 # => "ts dtnwIktsr oydnhgi .mara aa"

Discussion
All of Ruby's classes can be subclassed, though a few of them can't be usefully subclassed
(see Recipe 8.18 for information on how to deal with the holdouts).

Ruby programmers use subclassing less frequently than they would in other languages,
because it's often acceptable to simply reopen an existing class (even a built-in class) and
attach a new method. We do this throughout this book, adding useful new methods to
built-in classes rather than defining them in Kernel, or putting them in subclasses or
utility classes. Libraries like Rails and Facets Core do the same.

This improves the organization of your code. But the risk is that a library you include (or
a library included by one you include) will define the same method in the same built-in
class. Either the library will override your method (breaking your code), or you'll override
its method (breaking its code, which will break your code). There is no general solution to
this problem short of adopting naming conventions, or always subclassing and never
modifying preexisting classes.

You should certainly subclass if you're writing a method that isn't generally useful, or that
only applies to certain instances of a class. For instance, here's a method Array#sum that
adds up the elements of an array:

Chapter 8. Objects and Classes8 Page 11 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Array
 def sum(start_at=0)
 inject(start_at) { |sum, x| sum + x }
 end
 end

This works for arrays that contain only numbers (or that contain only strings), but it

 [79, 14, 2].sum # => 95
 ['so', 'fa'].sum('') # => "sofa"
 [79, 'so'].sum
 # TypeError: String can't be coerced into Fixnum

Maybe you should signal this by putting it in a subclass called NumericArray or
SummableArray:

 class NumericArray < Array
 def sum
 inject(0) { |sum, x| sum + x }
 end
 end

The NumericArray class doesn't actually do type checking to make sure it only contains
numeric objects, but since it's a different class, you and other programmers are less likely
to use sum where it's not appropriate.[2]

[2] This isn't a hard and fast rule. Array#sort won't work on arrays whose elements can't be mutually compared, but it would be a big inconvenience to put sort in
a subclass of Array or leave it out of the Ruby standard library. You might feel the same way about sum; but then, you're not the Ruby standard library.

You should also subclass if you want to override a method's behavior. In the
UnpredictableString example, I overrode the inspect method in my subclass. If I'd
just modified String#inspect, the rest of my program would have been thrown into
confusion. Rarely is it acceptable to override a method in place: one example would be if
you've written a drop-in implementation that's more efficient.

See Also

• Recipe 8.18, "Implementing Class and Singleton Methods," shows you how to extend
the behavior of a particular object after it's been created

• http://www.rubygarden.org/ruby?TheOpenNatureOfRuby

Recipe 8.5. Overloading Methods

Chapter 8. Objects and Classes8 Page 12 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubygarden.org/ruby?TheOpenNatureOfRuby

Problem
You want to create two different versions of a method with the same name: two methods
that differ in the arguments they take.

Solution
A Ruby class can have only one method with a given name. Within that single method,
though, you can put logic that branches depending on how many and what kinds of objects
were passed in as arguments.

Here's a Rectangle class that represents a rectangular shape on a grid. You can
instantiate a Rectangle in one of two ways: by passing in the coordinates of its top-left
and bottom-left corners, or by passing in its top-left corner along with its length and width.
There's only one initialize method, but you can act as though there were two.

 # The Rectangle constructor accepts arguments in either of the following forms:
 # Rectangle.new([x_top, y_left], length, width)
 # Rectangle.new([x_top, y_left], [x_bottom, y_right])
 class Rectangle
 def initialize(*args)
 case args.size
 when 2
 @top_left, @bottom_right = args
 when 3
 @top_left, length, width = args
 @bottom_right = [@top_left[0] + length, @top_left[1] - width]
 else
 raise ArgumentError, "This method takes either 2 or 3 arguments."
 end

 # Perform additional type/error checking on @top_left and
 # @bottom_right…
 end
 end

Here's the Rectangle constructor in action:

 `
 Rectangle.new([10, 23], [14, 13])
 # => #<Rectangle:0xb7d15828 @bottom_right=[14, 13], @top_left=[10, 23]>

 Rectangle.new([10, 23], 4, 10)
 # => #<Rectangle:0xb7d0da4c @bottom_right=[14, 13], @top_left=[10, 23]>

 Rectangle.new
 # => ArgumentError: This method takes either 2 or 3 arguments.

Discussion
In strongly typed languages like C++ and Java, you must often create multiple versions of
the same method with different arguments. For instance, Java's StringBuffer class
implements over 10 variants of its append method: one that takes a boolean, one that
takes a string, and so on.

Chapter 8. Objects and Classes8 Page 13 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby's equivalent of StringBuffer is StringIO, and its equivalent of the append
method is StringIO#<<. In Ruby, that method can only be defined once, but it can take
an object of any type. There's no need to write different versions of the method for taking
different kinds of object. If you need to do type checking (such as making sure the object
has a string representation), you put it in the method body rather than in the method
definition.

Ruby's loose typing eliminates most of the need for method overloading. Its default
arguments, variable-length argument lists, and (simulated) keyword arguments eliminate
most of the remaining cases. What's left? Mainly methods that can take two completely
different sets of arguments, like the Rectangle constructor given in the Solution.

To handle these, write a method that takes a variable number of arguments, and give it
some extra code at the front that figures out which set of arguments was passed.
Rectangle#initialize rejects argument lists that are of the wrong length. Additional
code could enforce duck typing to make sure that the arguments passed in are of the right
type. See Recipe 10.16 for simple ways to do argument validation.

See Also

• Recipe 8.11, "Accepting or Passing a Variable Number of Arguments"
• Recipe 8.12, "Simulating Keyword Arguments"
• Recipe 10.16, "Enforcing Software Contracts"

Recipe 8.6. Validating and Modifying Attribute Values

Problem
You want to let outside code set your objects' instance variables, but you also want to
impose some control over the values your variables are set to. You might want a chance to
validate new values before accepting them. Or you might want to accept values in a form
convenient to the caller, but transform them into a different form for internal storage.

Solution
Define your own setter method for each instance variable you want to control. The setter
method for an instance variable quantity would be called quantity=. When a user
issues a statement like object.quantity = 10, the method object#quantity= is
called with the argument 10.

It's up to the quantity= method to decide whether the instance variable quantity
should actually take the value 10. A setter method is free to raise an ArgumentException

Chapter 8. Objects and Classes8 Page 14 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-16#rubyckbk-CHP-10-SECT-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-16#rubyckbk-CHP-10-SECT-16

if it's passed an invalid value. It may also modify the provided value, massaging it into the
canonical form used by the class. If it can get an acceptable value, its last act should be to
modify the instance variable.

I'll define a class that keeps track of peoples' first and last names. It uses setter methods
to enforce two somewhat parochial rules: everyone must have both a first and a last name,
and everyone's first name must begin with a capital letter:

 class Name

 # Define default getter methods, but not setter methods.
 attr_reader :first, :last

 # When someone tries to set a first name, enforce rules about it.
 def first=(first)
 if first == nil or first.size == 0
 raise ArgumentError.new('Everyone must have a first name.')
 end
 first = first.dup
 first[0] = first[0].chr.capitalize
 @first = first
 end
 # When someone tries to set a last name, enforce rules about it.
 def last=(last)
 if last == nil or last.size == 0
 raise ArgumentError.new('Everyone must have a last name.')
 end
 @last = last
 end

 def full_name
 "#{@first} #{@last}"
 end

 # Delegate to the setter methods instead of setting the instance
 # variables directly.
 def initialize(first, last)
 self.first = first
 self.last = last
 end
 end

I've written the Name class so that the rules are enforced both in the constructor and after
the object has been created:

 jacob = Name.new('Jacob', 'Berendes')
 jacob.first = 'Mary Sue'
 jacob.full_name # => "Mary Sue Berendes"

 john = Name.new('john', 'von Neumann')
 john.full_name # => "John von Neumann"
 john.first = 'john'
 john.first # => "John"
 john.first = nil
 # ArgumentError: Everyone must have a first name.

 Name.new('Kero, international football star and performance artist', nil)
 # ArgumentError: Everyone must have a last name.

Chapter 8. Objects and Classes8 Page 15 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Ruby never lets one object access another object's instance variables. All you can do is call
methods. Ruby simulates instance variable access by making it easy to define getter and
setter methods whose names are based on the names of instance variables. When you
access object.my_var, you're actually calling a method called my_var, which (by
default) just happens to return a reference to the instance variable my_var.

Similarly, when you set a new value for object.my_var, you're actually passing that value
into a setter method called my_var=. That method might go ahead and stick your new
value into the instance variable my_var. It might accept your value, but silently clean it
up, convert it to another format, or otherwise modify it. It might be picky and reject your
value altogether by raising an ArgumentError.

When you're defining a class, you can have Ruby generate a setter method for one of your
instance variables by calling Module#atttr_writer or Module#attr_accessor on
the symbol for that variable. This saves you from having to write code, but the default setter
method lets anyone set the instance variable to any value at all:

 class SimpleContainer
 attr_accessor :value
 end

 c = SimpleContainer.new

 c.respond_to? "value=" # => true

 c.value = 10; c.value # => 10

 c.value = "some random value"; c.value # => "some random value"

 c.value = [nil, nil, nil]; c.value # => [nil, nil, nil]

A lot of the time, this kind of informality is just fine. But sometimes you don't trust the
data coming in through the setter methods. That's when you can define your own methods
to stop bad data before it infects your objects.

Within a class, you have direct access to the instance variables. You can simply assign to
an instance variable and the setter method won't be triggered. If you do want to trigger the
setter method, you'll have to call it explicitly. Note how, in the Name#initialize method
above, I call the first= and last= methods instead of assigning to @first and
@last. This makes sure the validation code gets run for the initial values of every Name
object. I can't just say first = first, because first is a variable name in that method.

See Also

• Recipe 8.1, "Managing Instance Data"

Chapter 8. Objects and Classes8 Page 16 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Recipe 13.14, "Validating Data with ActiveRecord"

Recipe 8.7. Defining a Virtual Attribute

Problem
You want to create accessor methods for an attribute that isn't directly backed by any
instance variable: it's a calculated value derived from one or more different instance
variables.

Solution
Define accessor methods for the attribute in terms of the instance variables that are actually
used. There need not be any relationship between the names of the accessor methods and
the names of the instance variables.

The following class exposes four accessor methods: degrees, degrees=, radians, and
radians=. But it only stores one instance variable: @radians.

 class Arc
 attr_accessor :radians

 def degrees
 @radians * 180 / Math::PI
 end

 def degrees=(degrees)
 @radians = degrees * Math::PI / 180
 end
 end

 arc = Arc.new
 arc.degrees = 180
 arc.radians # => 3.14159265358979
 arc.radians = Math::PI / 2
 arc.degrees # => 90.0

Discussion
Ruby accessor methods usually correspond to the names of the instance variables they
access, but this is nothing more than a convention. Outside code has no way of knowing
what your instance variables are called, or whether you have any at all, so you can create
accessors for virtual attributes with no risk of outside code thinking they're backed by real
instance variables.

See Also

• Recipe 2.9, "Converting Between Degrees and Radians"

Chapter 8. Objects and Classes8 Page 17 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-14#rubyckbk-CHP-13-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-9#rubyckbk-CHP-2-SECT-9

Recipe 8.8. Delegating Method Calls to Another Object

Problem
You'd like to delegate some of an object's method calls to a different object, or make one
object capable of "impersonating" another.

Solution
If you want to completely impersonate another object, or delegate most of one object's calls
to another, use the delegate library. It generates custom classes whose instances can
impersonate objects of any other class. These custom classes respond to all methods of the
class they shadow, but they don't do any work of their own apart from calling the same
method on some instance of the "real" class.

Here's some code that uses delegate to generate CardinalNumber, a class that acts
almost like a Fixnum. CardinalNumber defines the same methods as Fixnum does,
and it takes a genuine Fixnum as an argument to its constructor. It stores this object as a
member, and when you call any of Fixnum's methods on a CardinalNumber object, it
delegates that method call to the stored Fixnum. The only major exception is the to_s
method, which I've decided to override.

 require 'delegate'

 # An integer represented as an ordinal number (1st, 2nd, 3rd…), as
 # opposed to an ordinal number (1, 2, 3…) Generated by the
 # DelegateClass to have all the methods of the Fixnum class.
 class OrdinalNumber < DelegateClass(Fixnum)
 def to_s
 delegate_s = __getobj_ _.to_s
 check = abs
 if to_check == 11 or to_check == 12
 suffix = "th"
 else
 case check % 10
 when 1 then suffix = "st"
 when 2 then suffix = "nd"
 else suffix = "th"
 end
 end
 return delegate_s + suffix
 end
 end

 4.to_s # => "4"
 OrdinalNumber.new(4).to_s # => "4th"

 OrdinalNumber.new(102).to_s # => "102nd"
 OrdinalNumber.new(11).to_s # => "11th"
 OrdinalNumber.new(-21).to_s # => "-21st"

 OrdinalNumber.new(5).succ # => 6
 OrdinalNumber.new(5) + 6 # => 11
 OrdinalNumber.new(5) + OrdinalNumber.new(6) # => 11

Chapter 8. Objects and Classes8 Page 18 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The delegate library is useful when you want to extend the behavior of objects you don't
have much control over. Usually these are objects you're not in charge of instantiating—
they're instantiated by factory methods, or by Ruby itself. With delegate, you can create
a class that wraps an already existing object of another class and modifies its behavior.
You can do all of this without changing the original class. This is especially useful if the
original class has been frozen.

There are a few methods that delegate won't delegate: most of the ones in Kernel.
public_instance_methods. The most important one is is_a?. Code that explicitly
checks the type of your object will be able to see that it's not a real instance of the object
it's impersonating. Using is_a? instead of respond_to? is often bad Ruby practice, but
it happens pretty often, so you should be aware of it.

The Forwardable module is a little more precise and a little less discerning: it lets you
delegate any of an object's methods to another object. A class that extends Forwardable
can use the def_delegator decorator method, which takes as arguments an object
symbol and a method symbol. It defines a new method that delegates to the method of the
same name in the given object. There's also a def_delegators method, which takes
multiple method symbols as arguments and defines a delegator method for each one. By
calling def_delegator multiple times, you can have a single Forwardable delegate
different methods to different subobjects.

Here I'll use Forwardable to define a simple class that works like an array, but supports
none of Array's methods except the append operator, <<. Note how the << method defined
by def_delegator is passed through to modify the underlying array.

 class AppendOnlyArray
 extend Forwardable
 def initialize
 @array = []
 end

 def_delegator :@array, :<<
 end

 a = AppendOnlyArray
 a << 4
 a << 5
 a.size
 # => undefined method `size' for #<AppendOnlyArray:0xb7d23c5c @array=[4, 5]>

AppendOnlyArray is pretty useless, but the same principle makes Forwardable useful
if you want to expose only a portion of a class' interface. For instance, suppose you want
to create a data structure that works like a Hash, but only supports random access. You

Chapter 8. Objects and Classes8 Page 19 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

don't want to support keys, each, or any of the other ways of getting information out of
a hash without providing a key.

You could subclass Hash, then redefine or delete all the methods that you don't want to
support. Then you could worry a lot about having missed some of those methods. Or you
could define a subclass of Forwardable and define only the methods of Hash that you do
want to support.

 class RandomAccessHash
 extend Forwardable
 def initialize
 @delegate_to = {}
 end

 def_delegators :@delegate_to, :[], "[]="
 end

 balances_by_account_number = RandomAccessHash.new

 # Load balances from a database or something.
 balances_by_account_number["101240A"] = 412.60
 balances_by_account_number["104918J"] = 10339.94
 balances_by_account_number["108826N"] = 293.01

Random access works if you know the key, but anything else is forbidden:

 balances_by_account_number["104918J"] # => 10339.94
 balances_by_account_number.each do |number, balance|
 puts "I now know the balance for account #{number}: it's #{balance}"
 end
 # => NoMethodError: undefined method `each' for #<RandomAccessHash:0xb7d49078>

See Also

• An alternative to using SimpleDelegator to write delegator methods is to skip out
on the methods altogether, and instead implement a method_missing which does
the delegating. Recipe 2.13, "Simulating a Subclass of Fixnum," uses this technique.
You might especially find this recipe interesting if you'd like to make arithmetic on
CardinalNumber objects yield new CardinalNumber objects instead of Fixnum
objects.

Recipe 8.9. Converting and Coercing Objects to Different Types

Problem
You have an object of one type and you want to use it as though it were of another type.

Chapter 8. Objects and Classes8 Page 20 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-13#rubyckbk-CHP-2-SECT-13

Solution
You might not have to do anything at all. Ruby doesn't enforce type safety unless the
programmer has explicitly written it in. If your original class defines the same methods as
the class you were thinking of converting it to, you might be able to use your object as is.

If you do have to convert from one class to another, Ruby provides conversion methods
for most common paths:

 "4".to_i # => 4
 4.to_s # => "4"
 Time.now.to_f # => 1143572140.90932
 { "key1" => "value1", "key2" => "value2" }.to_a
 # => [["key1", "value1"], ["key2", "value2"]]

If all else fails, you might be able to manually create an instance of the new class, and set
its instance variables using the old data.

Discussion
Some programming languages have a "cast" operator that forces the compiler to treat an
object of one type like an object of another type. A cast is usually a programmer's assertion
that he knows more about the types of objects than the compiler. Ruby has no cast operator.
From Ruby's perspective, type checking is just an extra hoop you have to jump through. A
cast operator would make it easier to jump through that hoop, but Ruby omits the hoop
altogether.

Wherever you're tempted to cast an object to another type, you should be able to just do
nothing. If your object can be used as the other type, there's no problem: if not, then casting
it to that type wouldn't have helped anyway.

Here's a concrete example. You probably don't need to convert a hash into an array just so
you can pass it into an iteration method that expects an array. If that method only calls
each on its argument, it doesn't really "expect an array:" it expects a reasonable
implementation of each. Ruby hashes provide that implementation just as well as arrays.

 def print_each(array)
 array.each { |x| puts x.inspect }
 end

 hash = { "pickled peppers" => "peck of",
 "sick sheep" => "sixth" }
 print_each(hash.to_a)
 # ["sick sheep", "sixth"]
 # ["pickled peppers", "peck of"]

 print_each(hash)
 # ["sick sheep", "sixth"]
 # ["pickled peppers", "peck of"]

Chapter 8. Objects and Classes8 Page 21 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby does provide methods for converting one data type into another. These methods
follow the naming convention to_[other type], and they usually create a brand new
object of the new type, but containing the old data. They are generally used when you want
to use some method of the new data type, or display or store the data in another format.

In the case of print_each, not converting the hash to an array gives the same results as
converting, and the code is shorter and faster when it doesn't do the conversion. But
converting a hash into an array of key-value pairs does let you call methods defined by
Array but not by Hash. If what you really want is an array—something ordered, something
you can modify with push and pop—there's no reason not to convert to an array and stop
using the hash.

 array = hash.to_a
 # => [["sick sheep", "sixth"], ["pickled peppers", "peck of"]]

 # Print out a tongue-twisting invoice.
 until array.empty?
 item, quantity = array.pop
 puts "#{quantity} #{item}"
 end
 # peck of pickled peppers
 # sixth sick sheep

Some methods convert one data type to another as a side effect: for instance, sorting a hash
implicitly converts it into an array, since hashes have no notion of ordering.

 hash.sort
 # => [["pickled peppers", "peck of"], ["sick sheep", "sixth"]]

Number conversion and coercion
Most of the commonly used conversion methods in stock Ruby are in the number classes.
This makes sense because arithmetic operations can give different results depending on
the numeric types of the inputs. This is one place where Ruby's conversion methods are
used as a substitute for casting. Here, to_f is used to force Ruby to perform floating-point
division instead of integer division:

 3/4 # => 0
 3/4.to_f # => 0.75

Integers and floating-point numbers have to_i and to_f methods to convert back and
forth between each other. BigDecimal or Rational objects define the same methods;
they also define some brand new conversion methods: to_d to convert a number to
BigDecimal, and to_r to convert a number to Rational. To convert to or from
Rational objects you just have to require 'rational'. To convert to or from
BigDecimal objects you must require 'bigdecimal' and also
require 'bigdecimal/utils'.

Chapter 8. Objects and Classes8 Page 22 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'rational'
 Rational(1, 3).to_f # => 0.333333333333333
 Rational(11, 5).to_i # => 2
 2.to_r # => Rational(2, 1)

Here's a table that shows how to convert between Ruby's basic numeric types.

Table 8-1.

 Integer Floating-point BigDecimal Rational

Integer to_i(identity) to_f to_r.to_d to_r

Float to_i(decimal discard) to_f (new) to_d to_d.to_r (include bigdecimal/util)

BigDecimal to_i to_f to_d (new) to_r (include bigdecimal/util)

Rational to_i(dec discard) to_f (approx) to_d (include bigdecimal/util) to_r (identity)

Two cases deserve special mention. You can't convert a floating-point number directly into
rational number, but you can do it through BigDecimal. The result will be imprecise,
because floating-point numbers are imprecise.

 require 'bigdecimal'
 require 'bigdecimal/util'

 one_third = 1/3.0 # => 0.333333333333333
 one_third.to_r
 # NoMethodError: undefined method `to_r' for 0.333333333333333:Float
 one_third.to_d.to_r # => Rational(333333333333333, 1000000000000000)

Similarly, the best way to convert an Integer to a BigDecimal is to convert it to a rational
number first.

 20.to_d
 # NoMethodError: undefined method `to_d' for 20:Fixnum
 20.to_r.to_d # => #<BigDecimal:b7bfd214,'0.2E2',4(48)>

When it needs to perform arithmetic operations on two numbers of different types, Ruby
uses a method called coerce. Every numeric type implements a coerce method that
takes a single number as its argument. It returns an array of two numbers: the object itself
and the argument passed into coerce. Either or both numbers might undergo a
conversion, but whatever happens, both the numbers in the return array must be of the
same type. The arithmetic operation is performed on these two numbers, coerced into the
same type.

This way, the authors of numeric classes don't have to make their arithmetic operations
support operations on objects of different types. If they implement coerce, they know
that their arithmetic operations will only be passed in another object of the same type.

Chapter 8. Objects and Classes8 Page 23 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is easiest to see for the Complex class. Below, every input to coerce is transformed
into an equivalent complex number so that it can be used in arithmetic operations along
with the complex number i:

 require 'complex'
 i = Complex(0, 1) # => Complex(0, 1)
 i.coerce(3) # => [Complex(3, 0), Complex(0, 1)]
 i.coerce(2.5) # => [Complex(2.5, 0), Complex(0, 1)]

This, incidentally, is why 3/4 uses integer division but 3/4.to_f uses floating-point
division. 3.coerce(4) returns two integer objects, so the arithmetic methods of Fixnum
are used. 3.coerce(4.0) returns two floating-point numbers, so the arithmetic methods
of Float are used.

Other conversion methods
All Ruby objects define conversion methods to_s and inspect, which give a string
representation of the object. Usually inspect is the more readable of the two formats.

 [1, 2, 3].to_s # => "123"
 [1, 2, 3].inspect # => "[1, 2, 3]"

Here's a grab bag of other notable conversion methods found within the Ruby standard
library. This should give you a picture of what Ruby conversion methods typically do.

• MatchData#to_a creates an array containing the match groups of a regular
expression match.

• Matrix#to_a converts a mathematical matrix into a nested array.
• Enumerable#to_a iterates over any enumerable object and collects the results in

an array.
• Net::HTTPHeader#to_hash returns a hash mapping the names of HTTP headers

to their values.
• String#to_f and String#to_i parse strings into numeric objects. Including the
bigdecimal/util library will define String#to_d, which parses a string into a
BigDecimal object.

• Including the yaml library will define to_yaml methods for all of Ruby's built-in
classes: Array#to_yaml, String#to_yaml, and so on.

See Also

• Recipe 1.12, "Testing Whether an Object Is String-Like"
• Recipe 2.1, "Parsing a Number from a String"
• Recipe 8.10, "Getting a Human-Readable Printout of Any Object"

Chapter 8. Objects and Classes8 Page 24 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-12#rubyckbk-CHP-1-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-1#rubyckbk-CHP-2-SECT-1

Recipe 8.10. Getting a Human-Readable Printout of Any Object

Problem
You want to look at a natural-looking rendition of a given object.

Solution
Use Object#inspect. Nearly all the time, this method will give you something more
readable than simply printing out the object or converting it into a string.

 a = [1,2,3]
 puts a
 # 1
 # 2
 # 3

 puts a.to_s
 # 123

 puts a.inspect
 # [1, 2, 3]
 puts /foo/
 # (?-mix:foo)
 puts /foo/.inspect
 # /foo/
 f = File.open('foo', 'a')
 puts f
 # #<File:0xb7c31c30>
 puts f.inspect
 # #<File:foo>

Discussion
Even very complex data structures can be inspected and come out looking just like they
would in Ruby code to define that data structure. In some cases, you can even run the
output of inspect through eval to recreate the object.

 periodic_table = [{ :symbol => "H", :name => "hydrogen", :weight => 1.007 },
 { :symbol => "Rg", :name => "roentgenium", :weight => 272 }]
 puts periodic_table.inspect
 # [{:symbol=>"H", :name=>"hydrogen", :weight=>1.007},
 # {:symbol=>"Rg", :name=>"roentgenium", :weight=>272}]

 eval(periodic_table.inspect)[0]
 # => {:symbol=>"H", :name=>"hydrogen", :weight=>1.007}

By default, an object's inspect method works the same way as its to_s method.[3] Unless
your classes override inspect, inspecting one of your objects will yield a boring and not
terribly helpful string, containing only the object's class name, object_id, and instance
variables:

Chapter 8. Objects and Classes8 Page 25 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[3] Contrary to what ri Object#inspect says, Object#inspect does not delegate to the Object#to_s method: it just happens to work a lot like
Object#to_s. If you only override to_s, inspect won't be affected.

 class Dog
 def initialize(name, age)
 @name = name
 @age = age * 7 #Compensate for dog years
 end
 end

 spot = Dog.new("Spot", 2.1)
 spot.inspect
 # => "#<Dog:0xb7c16bec @name="Spot", @age=14.7>"

That's why you'll help out your future self by defining useful inspect methods that give
relevant information about the objects you'll be instantiating.

 class Dog
 def inspect
 "<A Dog named #{@name} who's #{@age} in dog years.>"
 end
 def to_s
 inspect
 end
 end
 spot.inspect
 # => "<A Dog named Spot who's 14.7 in dog years.>"

Or, if you believe in being able to eval the output of inspect:

 class Dog
 def inspect
 %{Dog.new("#{@name}", #{@age/7})}
 end
 end
 spot.inspect
 # => "Dog.new("Spot", 2.1)"
 eval(spot.inspect).inspect
 # => "Dog.new("Spot", 2.1)"

Just don't automatically eval the output of inspect, because, as always, that's
dangerous:

 strange_dog_name = %{Spot", 0); puts "Executing arbitrary Ruby…"; puts("}
 spot = Dog.new(strange_dog_name, 0)
 puts spot.inspect
 # Dog.new("Spot", 0); puts "Executing arbitrary Ruby…"; puts("", 0)
 eval(spot.inspect)
 # Executing arbitrary Ruby…
 #
 # 0

Recipe 8.11. Accepting or Passing a Variable Number of Arguments

Chapter 8. Objects and Classes8 Page 26 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You want to write a method that can accept any number of arguments. Or maybe you want
to pass the contents of an array as arguments into such a method, rather than passing in
the array itself as a single argument.

Solution
To accept any number of arguments to your method, prefix the last argument name with
an asterisk. When the method is called, all the "extra" arguments will be collected in a list
and passed in as that argument:

 def sum(*numbers)
 puts "I'm about to sum the array #{numbers.inspect}"
 numbers.inject(0) { |sum, x| sum += x }
 end

 sum(1, 2, 10)
 # I'm about to sum the array [1, 2, 10]
 # => 13

 sum(2, -2, 2, -2, 2, -2, 2, -2, 2)
 # I'm about to sum the array [2, -2, 2, -2, 2, -2, 2, -2, 2]
 # => 2

 sum
 # I'm about to sum the array []
 # => 0

To pass an array of arguments into a method, use the asterisk signifier before the array
you want to be turned into "extra" arguments:

 to_sum = []
 1.upto(10) { |x| to_sum << x }
 sum(*to_sum)
 # I'm about to sum the array [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 # => 55

Bad things happen if you forget the asterisk: your entire array is treated as a single "extra"
argument:

 sum(to_sum)
 # I'm about to sum the array [[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
 # TypeError: Array can't be coerced into Fixnum

Discussion
Why make a method take a variable number of arguments, instead of just having it take a
single array? It's basically for the convenience of the user. Consider the Kernel#printf
method, which takes one fixed argument (a format string), and then a variable number of
inputs to the format string:

Chapter 8. Objects and Classes8 Page 27 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 printf('%s | %s', 'left', 'right')
 # left | right

It's very rare that the caller of printf already has her inputs lying around in an array.
Fortunately, Ruby is happy to create the array on the user's behalf. If the caller does already
have an array of inputs, it's easy to pass the contents of that array as "extra" arguments by
sticking the asterisk onto the appropriate variable name:

 inputs = ['left', 'right']
 printf('%s | %s', *inputs)
 # left | right

As you can see, a method can take a fixed number of "normal" arguments and then a
variable number of "extra" arguments. When defining such a method, just make sure that
the last argument is the one you prefix with the asterisk:

 def format_list(header, footer='', *data)
 puts header
 puts (line = '-' * header.size)
 puts data.join("\n")
 puts line
 puts footer
 end
 cozies = 21
 gaskets = 10
 format_list("Yesterday's productivity numbers:", 'Congratulations!',
 "#{cozies} slime mold cozies", "#{gaskets} Sierpinski gaskets")
 # Yesterday's productivity numbers:
 # --------------------------------
 # 21 slime mold cozies
 # 10 Sierpinski gaskets
 # --------------------------------
 # Congratulations!

You can use the asterisk trick to call methods that don't take a variable number of
arguments. You just need to make sure that the array you're using has enough elements
to provide values for all of the method's required arguments.

You'll find this especially useful for constructors that take many arguments. The following
code initializes four Range objects from four arrays of constructor arguments:

 ranges = [[1, 10], [1, 6, true], [25, 100, false], [6, 9]]
 ranges.collect { |l| Range.new(*l) }
 # => [1..10, 1…6, 25..100, 6..9]

Recipe 8.12. Simulating Keyword Arguments

Chapter 8. Objects and Classes8 Page 28 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
A function or method can accept many optional arguments. You want to let callers pass in
only the arguments they have values for, but Ruby doesn't support keyword arguments as
Python and Lisp do.

Solution
Write your function to accept as its final argument a map of symbols to values. Consult the
map as necessary to see what arguments were passed in.

 def fun_with_text(text, args={})
 text = text.upcase if args[:upcase]
 text = text.downcase if args[:downcase]
 if args[:find] and args[:replace]
 text = text.gsub(args[:find], args[:replace])
 end
 text = text.slice(0, args[:truncate_at]) if args[:truncate_at]
 return text
 end

Ruby has syntactic sugar that lets you define a hash inside a function call without putting
it in curly brackets. This makes the code look more natural:

 fun_with_text("Foobar", {:upcase => true, :truncate_at => 5})
 # => "FOOBA"
 fun_with_text("Foobar", :upcase => true, :truncate_at => 5)
 # => "FOOBA"
 fun_with_text("Foobar", :find => /(o+)/, :replace => '\1d', :downcase => true)
 # => "foodbar"

Discussion
This simple code works well in most cases, but it has a couple of shortcomings compared
to "real" keyword arguments. These simulated keyword arguments don't work like regular
arguments because they're hidden inside a hash. You can't reject an argument that's not
part of the "signature," and you can't force a caller to provide a particular keyword
argument.

Each of these problems is easy to work around (for instance, does a required argument
really need to be a keyword argument?), but it's best to define the workaround code in a
mixin so you only have to do it once. The following code is based on a KeywordProcessor
module by Gavin Sinclair:

 ###
 # This mix-in module lets methods match a caller's hash of keyword
 # parameters against a hash the method keeps, mapping keyword
 # arguments to default parameter values.
 #
 # If the caller leaves out a keyword parameter whose default value is
 # :MANDATORY (a constant in this module), then an error is raised.
 #
 # If the caller provides keyword parameters which have no

Chapter 8. Objects and Classes8 Page 29 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # corresponding keyword arguments, an error is raised.
 #
 module KeywordProcessor
 MANDATORY = :MANDATORY

 def process_params(params, defaults)
 # Reject params not present in defaults.
 params.keys.each do |key|
 unless defaults.has_key? key
 raise ArgumentError, "No such keyword argument: #{key}"
 end
 end
 result = defaults.dup.update(params)

 # Ensure mandatory params are given.
 unfilled = result.select { |k,v| v == MANDATORY }.map { |k,v| k.inspect }
 unless unfilled.empty?
 msg = "Mandatory keyword parameter(s) not given: #{unfilled.join(', ')}"
 raise ArgumentError, msg
 end

 return result
 end
 end

Here's KeywordProcessor in action. Note how I set a default other than nil for a
keyword argument, by defining it in the default value of args:

 class TextCanvas
 include KeywordProcessor

 def render(text, args={}.freeze)
 args = process_params(args, {:font => 'New Reykjavik Solemn', :size => 36,
 :bold => false, :x => :MANDATORY,
 :y => :MANDATORY }.freeze)
 # …
 puts "DEBUG: Found font #{args[:font]} in catalog."
 # …
 end
 end

 canvas = TextCanvas.new

 canvas.render('Hello', :x => 4, :y => 100)
 # DEBUG: Found font New Reykjavik Solemn in catalog.

 canvas.render('Hello', :x => 4, :y => 100, :font => 'Lacherlich')
 # DEBUG: Found font Lacherlich in catalog.

 canvas.render('Hello', :font => "Lacherlich")
 # ArgumentError: Mandatory keyword parameter(s) not given: :x, :y

 canvas.render('Hello', :x => 4, :y => 100, :italic => true)
 # ArgumentError: No such keyword argument: italic

Ruby 2.0 will, hopefully, have full support for keyword arguments.

See Also

• Recipe 8.8, "Delegating Method Calls to Another Object"

Chapter 8. Objects and Classes8 Page 30 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• The KeywordProcessor module is based on the one in "Emulating Keyword
Arguments in Ruby"; I modified it to be less oriented around the initialize method
(http://www.rubygarden.org/ruby?KeywordArguments)

Recipe 8.13. Calling a Superclass's Method

Problem
When overriding a class's method in a subclass, you want to extend or decorate the
behavior of the superclass, rather than totally replacing it.

Solution
Use the super keyword to call the superclass implementation of the current method.

When you call super with no arguments, the arguments to your method are passed to the
superclass method exactly as they were recieved by the subclass. Here's a Recipe class
that defines (among other things) a cook method.

 class Recipe
 # … The rest of the Recipe implementation goes here.
 def cook(stove, cooking_time)
 dish = prepare_ingredients
 stove << dish
 wait_for(cooking_time)
 return dish
 end
 end

Here's a subclass of Recipe that tacks some extra behavior onto the recipe. It passes all
of its arguments directly into super:

 class RecipeWithExtraGarlic < Recipe
 def cook(stove, cooking_time)

 5.times { add_ingredient(Garlic.new.chop) }
 super
 end
 end

A subclass implementation can also choose to pass arguments into super. This way, a
subclass can accept different arguments from its superclass implementation:

 class BakingRecipe < Recipe
 def cook(cooking_time, oven_temperature=350)
 oven = Oven.new(oven_temperature)
 super(oven, cooking_time)
 end
 end

Chapter 8. Objects and Classes8 Page 31 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubygarden.org/ruby?KeywordArguments

Discussion
You can call super at any time in the body of a method—before, during, or after calling
other code. This is in contrast to languages like Java, where you must call super in the
method's first statement or never call it at all. If you need to, you can even call super
multiple times within a single method.

Often you want to create a subclass method that exposes exactly the same interface as its
parent. You can use the *args constructor to make the subclass method accept any
arguments at all, then call super with no arguments to pass all those arguments (as well
as any attached code block) into the superclass implementation. Let the superclass deal
with any problems with the arguments.

The String#gsub method exposes a fairly complicated interface, but the String
subclass defined here doesn't need to know anything about it:

 class MyString < String
 def gsub(*args)
 return "#{super} -- This string modified by MyString#gsub (TM)"
 end
 end
 str = MyString.new("Here's my string")
 str.gsub("my", "a")
 # => "Here's a string -- This string modified by MyString#gsub (TM)"

 str.gsub(/m| s/) { |match| match.strip.capitalize }
 # => "Here's MyString -- This string modified by MyString#gsub (TM)"

If the subclass method takes arguments but the superclass method takes none, be sure to
invoke super with an empty pair of parentheses. Usually you don't have to do this in Ruby,
but super is not a real method call. If you invoke super without parentheses, it will pass
all the subclass arguments into the superclass implementation, which won't be able to
handle them.

In the example below, calling just super would result in an ArgumentError: it would
pass a numeric argument into String#succ!, which takes no arguments:

 class MyString
 def succ!(skip=1)
 skip.times { super() }
 self
 end
 end

 str = MyString.new('a')
 str.succ!(3) # => "d"

Invoking super works for class methods as well as instance methods:

Chapter 8. Objects and Classes8 Page 32 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class MyFile < File
 def MyFile.ftype(*args)
 return "The type is #{super}."
 end
 end

 File.ftype("/bin") # => "directory"
 MyFile.ftype("/bin") # => "The type is directory."

Recipe 8.14. Creating an Abstract Method

Problem
You want to define a method of a class, but leave it for subclasses to fill in the actual
implementations.

Solution
Define the method normally, but have it do nothing except raise a
NotImplementedError:

 class Shape2D
 def area
 raise NotImplementedError.
 new("#{self.class.name}#area is an abstract method.")
 end
 end

 Shape2D.new.area
 # NotImplementedError: Shape2D#area is an abstract method.

A subclass can redefine the method with a concrete implementation:

 class Square < Shape2D
 def initialize(length)
 @length = length
 end

 def area
 @length ** 2
 end
 end

 Square.new(10).area # => 100

Discussion
Ruby doesn't have a built-in notion of an abstract method or class, and though it has many
built-in classes that might be considered "abstract," it doesn't enforce this abstractness the
way C++ and Java do. For instance, you can instantiate an instance of Object or
Numeric, even though those classes don't do anything by themselves.

Chapter 8. Objects and Classes8 Page 33 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In general, this is in the spirit of Ruby. But it's sometimes useful to define a superclass
method that every subclass is expected to implement. The NotImplementedError error
is the standard way of conveying that a method is not there, whether it's abstract or just
an unimplemented stub.

Unlike other programming languages, Ruby will let you instantiate a class that defines an
abstract method. You won't have any problems until you actually call the abstract method;
even then, you can catch the NotImplementedError and recover. If you want, you can
make an entire class abstract by making its initialize method raise a
NotImplementedError. Then no one will be able to create instances of your class:[4]

[4] Of course, unless you freeze the class afterwards, someone else can reopen your class, define an empty initialize, and then create instances of your class.

 class Shape2D
 def initialize
 raise NotImplementedError.
 new("#{self.class.name} is an abstract class.")
 end
 end

 Shape2D.new
 # NotImplementedError: Shape2D is an abstract class.

We can do the same thing in less code by defining a decorator method of Class that creates
an abstract method by the given name.

 class Class
 def abstract(*args)
 args.each do |method_name|

 define_method(method_name) do |*args|
 if method_name == :initialize
 msg = "#{self.class.name} is an abstract class."
 else
 msg = "#{self.class.name}##{method_name} is an abstract method."
 end
 raise NotImplementedError.new(msg)

 end
 end
 end
 end

Here's an abstract class that defines an abstract method move:

 class Animal
 abstract :initialize, :move
 end

 Animal.new
 # NotImplementedError: Animal is an abstract class.

Here's a concrete subclass that doesn't bother to define an implementation for the abstract
method:

Chapter 8. Objects and Classes8 Page 34 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Sponge < Animal
 def initialize
 @type = :Sponge
 end
 end

 sponge = Sponge.new
 sponge.move
 # NotImplementedError: Sponge#move is an abstract method.

Here's a concrete subclass that implements the abstract method:

 class Cheetah < Animal
 def initialize
 @type = :Cheetah
 end

 def move
 "Running!"
 end
 end

 Cheetah.new.move
 # => "Running!"

Abstract methods declared in a class are, by convention, eventually defined in the
subclasses of that class. But Ruby doesn't enforce this either. An abstract method has a
definition; it just happens to be one that always throws an error.

Since Ruby lets you reopen classes and redefine methods later, the definition of a concrete
method can happen later in time instead of further down the inheritance tree. The Sponge
class defined above didn't have a move method, but we can add one now:

 class Sponge
 def move
 "Floating on ocean currents!"
 end
 end
 sponge.move
 # => "Floating on ocean currents!"

You can create an abstract singleton method, but there's not much point unless you intend
to fill it in later. Unlike instance methods, singleton methods aren't inherited by subclasses.
If you were to define Superclass.foo abstract, then define it for real as
Subclass.foo, you would have accomplished little: Superclass.foo would still exist
separately and would still be abstract.

Recipe 8.15. Freezing an Object to Prevent Changes

Problem
You want to prevent any further changes to the state of an object.

Chapter 8. Objects and Classes8 Page 35 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
Freeze the object with Object#freeze:

 frozen_string = 'Brrrr!'
 frozen_string.freeze
 frozen_string.gsub('r', 'a') # => "Baaaa!"
 frozen_string.gsub!('r', 'a')
 # TypeError: can't modify frozen string

Discussion
When an object is frozen, its instance variables are permanently bound to their current
values. The values themselves are not frozen: their instance variables can still be modified,
to the extent they were modifiable before:

 sequences = [[1,2,3], [1,2,4], [1,4,9]].freeze
 sequences << [2,3,5]
 # TypeError: can't modify frozen array
 sequences[2] << 16 # => [1, 4, 9, 16]

A frozen object cannot be unfrozen, and if cloned, the clone will also be frozen. Calling
Object#dup (as opposed to Object#clone) on a frozen object yields an unfrozen object
with the same instance variables.

 frozen_string.clone.frozen? # => true
 frozen_string.dup.frozen? # => false

Freezing an object does not prevent reassignment of any variables bound to that object.

 frozen_string = 'A new string.'
 frozen_string.frozen? # => false

To prevent objects from changing in ways confusing to the user or to the Ruby interpreter,
Ruby sometimes copies objects and freezes the copies. When you use a string as a hash
key, Ruby actually copies the string, freezes the copy, and uses the copy as the hash key:
that way, if the original string changes later on, the hash key isn't affected.

Constant objects are often frozen as a second line of defense against the object being
modified in place. You can freeze an object whenever you need a permanent reference to
an object; this is most commonly seen with strings:

 API_KEY = "100f7vo4gg".freeze

 API_KEY[0] = 4
 # TypeError: can't modify frozen string

 API_KEY = "400f7vo4gg"
 # warning: already initialized constant API_KEY

Chapter 8. Objects and Classes8 Page 36 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Frozen objects are also useful in multithreaded code. For instance, Ruby's internal file
operations work from a frozen copy of a filename instead of using the filename directly. If
another thread modifies the original filename in the middle of an operation that's supposed
to be atomic, there's no problem: Ruby wasn't relying on the original filename anyway.
You can adopt this copy-and-freeze pattern in multithreaded code to prevent a data
structure you're working on from being changed by another thread.

Another common programmer-level use of this feature is to freeze a class in order to
prevent future modifications to it (by yourself, other code running in the same
environment, or other people who use your code as a library). This is not quite the same
as the final construct in C# and Java, because you can still subclass a frozen class, and
override methods in the subclass. Calling freeze only stops the in-place modification of
a class. The simplest way to do it is to call freeze as the last statement in the class
definition:

 class MyClass
 def my_method
 puts "This is the only method allowed in MyClass."
 end
 freeze
 end

 class MyClass
 def my_method
 "I like this implementation of my_method better."
 end
 end
 # TypeError: can't modify frozen class

 class MyClass
 def my_other_method
 "Oops, I forgot to implement this method."
 end
 end
 # TypeError: can't modify frozen class

 class MySubclass < MyClass
 def my_method
 "This is only one of the methods available in MySubclass."
 end

 def my_other_method
 "This is the other one."
 end
 end

 MySubclass.new.my_method
 # => "This is only one of the methods available in MySubclass."

See Also

• Recipe 4.7, "Making Sure a Sorted Array Stays Sorted," defines a convenience method
for making a frozen copy of an object

• Recipe 5.5, "Using an Array or Other Modifiable Object as a Hash Key"

Chapter 8. Objects and Classes8 Page 37 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-7#rubyckbk-CHP-4-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-5#rubyckbk-CHP-5-SECT-5

• Recipe 8.16, "Making a Copy of an Object"
• Recipe 8.17, "Declaring Constants"

Recipe 8.16. Making a Copy of an Object

Problem
You want to make a copy of an existing object: a new object that can be modified separately
from the original.

Solution
Ruby provides two ways of doing this. If you only want to have to remember one way,
remember Object#clone:

 s1 = 'foo' # => "foo"
 s2 = s1.clone # => "foo"
 s1[0] = 'b'
 [s1, s2] # => ["boo", "foo"]

Discussion
Ruby has two object-copy methods: a quick one and a thorough one. The quick one,
Object#dup, creates a new instance of an object's class, then sets all of the new object's
instance variables so that they reference the same objects as the original does. Finally, it
makes the new object tainted if the old object was tainted.

The downside of dup is that it creates a new instance of the object's original class. If you
open up a specific object and give it a singleton method, you implicitly create a
metaclass, an anonymous subclass of the original class. Calling dup on the object will yield
a copy that lacks the singleton methods. The other object-copy method, Object#clone,
makes a copy of the metaclass and instantiates the copy, instead of instantiating the object's
original class.

 material = 'cotton'
 class << material
 def definition
 puts 'The better half of velour.'
 end
 end

 material.definition
 # The better half of velour.

 'cotton'.definition
 # NoMethodError: undefined method `definition' for "cotton":String

 material.clone.definition
 # The better half of velour.

Chapter 8. Objects and Classes8 Page 38 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 material.dup.definition
 # NoMethodError: undefined method `definition' for "cotton":String

Object#clone is also more strict about propagating Ruby's internal flags: it will
propagate both an object's "tainted?" flag and its "frozen?" flag. If you want to make an
unfrozen copy of a frozen object, you must use Object#dup.

Object#clone and Object#dup both perform shallow copies: they make copies of an
object without also copying its instance variables. You'll end up with two objects whose
instance variables point to the same objects. Modifications to one object's instance
variables will be visible in the other object. This can cause problems if you're not expecting
it:

 class StringHolder
 attr_reader :string
 def initialize(string)
 @string = string
 end
 end

 s1 = StringHolder.new('string')
 s2 = s1.dup
 s3 = s1.clone

 s1.string[1] = 'p'
 s2.string # => "spring"
 s3.string # => "spring"

If you want to do a deep copy, an easy (though not particularly quick) way is to serialize
the object to a binary string with Marshal, then load a new object from the string:

 class Object
 def deep_copy
 Marshal.load(Marshal.dump(self))
 end
 end

 s1 = StringHolder.new('string')
 s2 = s1.deep_copy
 s1.string[1] = 'p'
 s1.string # => "spring"
 s2.string # => "string"

Note that this will only work on an object that has no singleton methods:

 class << s1
 def definition
 puts "We hold strings so you don't have to."
 end
 end
 s1.deep_copy
 # TypeError: singleton can't be dumped

When an object is cloned or duplicated, Ruby creates a new instance of its class or
superclass, but without calling the initialize method. If you want to define some code

Chapter 8. Objects and Classes8 Page 39 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to run when an object is cloned or duplicated, define an initialize_copy method. This
is a hook method that gives you a chance to modify the copy before Ruby passes it back to
whoever called clone or dup. If you want to simulate a deep copy without using
Marshal, this is your chance to modify the copy's instance variables:

 class StringHolder
 def initialize_copy(from)
 @string = from.string.dup
 end
 end

 s1 = StringHolder.new('string')
 s2 = s1.dup
 s3 = s1.clone
 s1.string[1] = "p"
 s2.string # => "string"
 s3.string # => "string"

This table summarizes the differences between clone, dup, and the deep-copy technique
that uses Marshal.

Table 8-2.

 Object#clone Object#dup Deep copy with Marshal

Same instance variables? New references to the same objects New references to the same objects New objects

Same metaclass? Yes No Yes[5]

Same singleton methods? Yes No N/A[6]

Same frozen state? Yes No No

Same tainted state? Yes Yes Yes

[5] Marshal can't serialize an object whose metaclass is different from its original class.

[6] Marshal can't serialize an object whose metaclass is different from its original class.

See Also

• Recipe 13.2, "Serializing Data with Marshal"

Recipe 8.17. Declaring Constants

Problem
You want to prevent a variable from being assigned a different value after its initial
definition.

Chapter 8. Objects and Classes8 Page 40 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-2#rubyckbk-CHP-13-SECT-2

Solution
Declare the variable as a constant. You can't absolutely prohibit the variable from being
assigned a different value, but you can make Ruby generate a warning whenever that
happens.

 not_a_constant = 3
 not_a_constant = 10

 A_CONSTANT = 3
 A_CONSTANT = 10
 # warning: already initialized constant A_CONSTANT

Discussion
A constant variable is one whose name starts with a capital letter. By tradition, Ruby
constant names consist entirely of capital letters, numbers, and underscores. Constants
don't mesh well with Ruby's philosophy of unlimited changability: there's no way to
absolutely prevent someone from changing your constant. However, they are a useful
signal to the programmers who come after you, letting them know not to redefine a
constant without a very good reason.

Constants can occur anywhere in code. If they appear within a class or module, you can
access them from outside the class or module with the double-colon operator (::). The
name of the class or module qualifies the name of the constant, preventing confusion with
other constants that may have the same name but be defined in different scopes.

 CONST = 4

 module ConstModule
 CONST = 6
 end

 class ConstHolder
 CONST = 8

 def my_const
 return CONST
 end
 end

 CONST # => 4
 ConstModule::CONST # => 6
 ConstHolder::CONST # => 8
 ConstHolder.new.my_const # => 8

The thing that's constant about a constant is its reference to an object. If you change the
reference to point to a different object, you'll get a warning. Unfortunately, there's no way
to tell Ruby to treat the redeclaration of a constant as an error.

 E = 2.718281828 # => 2.718281828
 E = 6 # warning: already initialized constant E
 E # => 6

Chapter 8. Objects and Classes8 Page 41 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

However, you can use Module#remove_const as a sneaky way to "undeclare" a constant.
You can then declare the constant again, without even triggering a warning. Clearly, this
is potent and potentially dangerous stuff:

 # This should make things a lot simpler.
 module Math
 remove_const(:PI)
 PI = 3
 end
 Math::PI # => 3

If a constant points to a mutable object like an array or a string, the object itself can change
without triggering the constant warning. You can prevent this by freezing the object to
which the constant points:

 RGB_COLORS = [:red, :green, :blue] # => [:red, :green, :blue]
 RGB_COLORS << :purple # => [:red, :green, :blue, :purple]
 RGB_COLORS = [:red, :green, :blue]
 # warning: already initialized constant RGB_GOLORS
 RGB_COLORS # => [:red, :green, :blue]

 RGB_COLORS.freeze
 RGB_COLORS << :purple
 # TypeError: can't modify frozen array

Freezing operates on the object, not the reference. It does nothing to prevent a constant
reference from being assigned to another object.

 HOURS_PER_DAY = 24
 HOURS_PER_DAY.freeze # This does nothing since Fixnums are already immutable.

 HOURS_PER_DAY = 26
 # warning: already initialized constant HOURS_PER_DAY
 HOURS_PER_DAY # => 26

See Also

• Recipe 8.15, "Freezing an Object to Prevent Changes"

Recipe 8.18. Implementing Class and Singleton Methods

Problem
You want to associate a new method with a class (as opposed to the instances of that class),
or with a particular object (as opposed to other instances of the same class).

Chapter 8. Objects and Classes8 Page 42 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
To define a class method, prefix the method name with the class name in the method
definition. You can do this inside or outside of the class definition.

The Regexp.is_valid? method, defined below, checks whether a string can be compiled
into a regular expression. It doesn't make sense to call it on an already instantiated
Regexp, but it's clearly related functionality, so it belongs in the Regexp class (assuming
you don't mind adding a method to a core Ruby class).

 class Regexp
 def Regexp.is_valid?(str)
 begin
 compile(str)
 valid = true
 rescue RegexpError
 valid = false
 end
 end
 end
 Regexp.is_valid? "The horror!" # => true
 Regexp.is_valid? "The)horror!" # => false

Here's a Fixnum.random method that generates a random number in a specified range:

 def Fixnum.random(min, max)
 raise ArgumentError, "min > max" if min > max
 return min + rand(max-min+1)
 end
 Fixnum.random(10, 20) # => 13
 Fixnum.random(-5, 0) # => -5
 Fixnum.random(10, 10) # => 10
 Fixnum.random(20, 10)
 # ArgumentError: min > max

To define a method on one particular other object, prefix the method name with the
variable name when you define the method:

 company_name = 'Homegrown Software'
 def company_name.legalese
 return "#{self} is a registered trademark of ConglomCo International."
 end

 company_name.legalese
 # => "Homegrown Software is a registered trademark of ConglomCo International."
 'Some Other Company'.legalese
 # NoMethodError: undefined method `legalese' for "Some Other Company":String

Discussion
In Ruby, a singleton method is a method defined on one specific object, and not available
to other instances of the same class. This is kind of analagous to the Singleton pattern, in
which all access to a certain class goes through a single instance, but the name is more
confusing than helpful.

Chapter 8. Objects and Classes8 Page 43 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Class methods are actually a special case of singleton methods. The object on which you
define a new method is the Class object itself.

Some common types of class methods are listed here, along with illustrative examples
taken from Ruby's standard library:

• Methods that instantiate objects, and methods for retrieving an object that
implements the Singleton pattern. Examples: Regexp.compile, Date.parse,
Dir. open, and Marshal.load (which can instantiate objects of many different
types). Ruby's standard constructor, the new method, is another example.

• Utility or helper methods that use logic associated with a class, but don't require an
instance of that class to operate. Examples: Regexp.escape, Dir.entries,
File.basename.

• Accessors for class-level or Singleton data structures. Examples: Thread.current,
Struct.members, Dir.pwd.

• Methods that implicitly operate on an object that implements the Singleton pattern.
Examples: Dir.chdir, GC.disable and GC.enable, and all the methods of
Process.

When you define a singleton method on an object other than a class, it's usually to redefine
an existing method for a particular object, rather than to define a brand new method. This
behavior is common in frameworks, such as GUIs, where each individual object has
customized behavior. Singleton method definition is a cheap substitute for subclassing
when you only need to customize the behavior of a single object:

 class Button
 #A stub method to be overridden by subclasses or individual Button objects
 def pushed
 end
 end

 button_a = Button.new
 def button_a.pushed
 puts "You pushed me! I'm offended!"
 end

 button_b = Button.new
 def button_b.pushed
 puts "You pushed me; that's okay."
 end

 Button.new.pushed
 #

 button_a.pushed
 # You pushed me! I'm offended!

 button_b.pushed
 # You pushed me; that's okay.

Chapter 8. Objects and Classes8 Page 44 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When you define a method on a particular object, Ruby acts behind the scenes to transform
the object into an anonymous subclass of its former class. This new class is the one that
actually defines the new method or overrides the methods of its superclass.

Recipe 8.19. Controlling Access by Making Methods Private

Problem
You've refactored your code (or written it for the first time) and ended up a method that
should be marked for internal use only. You want to prevent outside objects from calling
such methods.

Solution
Use private as a statement before a method definition, and the method will not be
callable from outside the class that defined it. This class defines an initializer, a public
method, and a private method:

 class SecretNumber
 def initialize
 @secret = rand(20)
 end
 def hint
 puts "The number is #{"not " if secret <= 10}greater than 10."
 end

 private
 def secret
 @secret
 end
 end

 s = SecretNumber.new
 s.secret
 # NoMethodError: private method `secret' called for
 # #<SecretNumber:0xb7c2e83c @secret=19>

 s.hint
 # The number is greater than 10.

Unlike in many other programming languages, a private method in Ruby is accessible to
subclasses of the class that defines it:

 class LessSecretNumber < SecretNumber
 def hint
 lower = secret-rand(10)-1
 upper = secret+rand(10)+1
 "The number is somewhere between #{lower} and #{upper}."
 end
 end

 ls = LessSecretNumber.new
 ls.hint
 # => "The number is somewhere between -3 and 16."
 ls.hint
 # => "The number is somewhere between -1 and 15."

Chapter 8. Objects and Classes8 Page 45 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 ls.hint
 # => "The number is somewhere between -2 and 16."

Discussion
Like many parts of Ruby that look like special language features, Ruby's privacy keywords
are actually methods. In this case, they're methods of Module. When you call private,
protected, or public, the current module (remember that a class is just a special kind
of module) changes the rules it applies to newly defined methods from that point on.

Most languages that support method privacy make you put a keyword before every method
saying whether it's public, private, or protected. In Ruby, the special privacy methods act
as toggles. When you call the private keyword, all methods you define after that point
are declared as private, until the module definition ends or you call a different privacy
method. This makes it easy to group methods of the same privacy level—a good, general
programming practice:

 class MyClass
 def public_method1
 end

 def public_method2
 end

 protected

 def protected_method1
 end

 private

 def private_method1
 end

 def private_method2
 end
 end

Private and protected methods work a little differently in Ruby than in most other
programming languages. Suppose you have a class called Foo and a subclass SubFoo. In
languages like Java, SubFoo has no access to any private methods defined by Foo. As seen
in the Solution, Ruby provides no way to hide a class's methods from its subclasses. In this
way, Ruby's private works like Java's protected.

Suppose further that you have two instances of the Foo class, A and B. In languages like
Java, A and B can call each other's private methods. In Ruby, you need to use a protected
method for that. This is the main difference between private and protected methods in
Ruby.

In the example below, I try to add another type of hint to the LessSecretNumber class,
one that lets you compare the relative magnitudes of two secret numbers. It doesn't work

Chapter 8. Objects and Classes8 Page 46 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

because one LessSecretNumber can't call the private methods of another
LessSecretNumber:

 class LessSecretNumber
 def compare(other)
 if secret == other.secret
 comparison = "equal to"
 else
 comparison = secret > other.secret ? "greater than" : "less than"
 end
 "This secret number is #{comparison} the secret number you passed in."
 end
 end

 a = LessSecretNumber.new
 b = LessSecretNumber.new
 a.hint
 # => "The number is somewhere between 17 and 22."
 b.hint
 # => "The number is somewhere between 0 and 12."
 a.compare(b)
 # NoMethodError: private method `secret' called for
 # #<LessSecretNumber:0xb7bfe13c @secret=6>

But if I make make the secret method protected instead of private, the compare method
starts working. You can change the privacy of a method after the fact by passing its symbol
into one of the privacy methods:

 class SecretNumber
 protected :secret
 end
 a.compare(b)
 # => "This secret number is greater than the secret number you passed in."
 b.compare(a)
 # => "This secret number is less than the secret number you passed in."

Instance variables are always private: accessible by subclasses, but not from other objects,
even other objects of the same class. If you want to make an instance variable accessible
to the outside, you should define a getter method with the same name as the variable. This
method can be either protected or public.

You can trick a class into calling a private method from outside by passing the method's
symbol into Object#send (in Ruby 1.8) or Object#funcall (in Ruby 1.9). You'd better
have a really good reason for doing this.

 s.send(:secret) # => 19

See Also

• Recipe 8.2, "Managing Class Data," has a pretty good reason for using the
Object#send trick

Chapter 8. Objects and Classes8 Page 47 Return to Table of Contents

Chapter 8. Objects and Classes8
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Objects and Classes8
	Managing Instance Data
	Managing Class Data
	Checking Class or Module Membership
	Writing an Inherited Class
	Overloading Methods
	Validating and Modifying Attribute Values
	Defining a Virtual Attribute
	Delegating Method Calls to Another Object
	Converting and Coercing Objects to Different Types
	Getting a Human-Readable Printout of Any Object
	Accepting or Passing a Variable Number of Arguments
	Simulating Keyword Arguments
	Calling a Superclass's Method
	Creating an Abstract Method
	Freezing an Object to Prevent Changes
	Making a Copy of an Object
	Declaring Constants
	Implementing Class and Singleton Methods
	Controlling Access by Making Methods Private

