
Table of Contents

Internet Services .. 1
Grabbing the Contents of a Web Page ... 2
Making an HTTPS Web Request ... 4
Customizing HTTP Request Headers .. 6
Performing DNS Queries ... 8
Sending Mail ... 10
Reading Mail with IMAP .. 14
Reading Mail with POP3 .. 18
Being an FTP Client .. 22
Being a Telnet Client .. 24
Being an SSH Client ... 27
Copying a File to Another Machine ... 29
Being a BitTorrent Client .. 31
Pinging a Machine .. 33
Writing an Internet Server ... 34
Parsing URLs .. 36
Writing a CGI Script ... 39
Setting Cookies and Other HTTP Response Headers ... 42
Handling File Uploads via CGI .. 45
Running Servlets with WEBrick .. 48
A Real-World HTTP Client .. 53

Chapter 14. Internet Services

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

14. Internet Services
Network programming is hard. The C socket library is the standard way of writing Internet
clients and servers. It's like the file API descibed in Chapter 6, with its special flags and
meager abstraction, only much more complicated. It's a shame because networked
applications are the coolest kind of application. Only computer nerds like you and me care
about XML or the best way to sort a list, but everyone uses Internet applications.

Fortunately, network programming is easy. Ruby provides bindings to the C socket library
(in socket), but you'll probably never need to use them. Existing Ruby libraries (some in
the standard distribution) can speak every popular high-level Internet protocol.

The most popular Internet service is, of course, the Web, and Ruby's most popular Internet
library (or any kind of library, actually) is the Rails framework. We've devoted the entire
next chapter to Rails (Chapter 15) so that we can cover other technologies here.

Apart from Rails, most of the interesting stuff you can do with Ruby happens on the client
end. We start with a set of recipes for requesting web pages (Recipes 14.1, 14.2, and 14.3),
which are brought together at the end of the chapter with Recipe 14.20. Combine these
recipes with one from Chapter 11 (probably Recipe 11.5), and you can make your own spider
or web browser.

Then we present Ruby clients for the most popular Internet protocols. Ruby can do just
about everything you do online: send and receive email, perform nameserver queries, even
transfer files with FTP, SCP, or BitTorrent. With the Ruby interfaces, you can write custom
clients for these protocols, or integrate them into larger programs.

It's less likely that you'll be writing your own server in Ruby. A server only exists to service
clients, so there's not much you can do but faithfully implement the appropriate protocol.
If you do write a server, it'll probably be for a custom protocol, one for which no other
server exists.

Ruby provides two basic servers that you can use as a starting point. The gserver library
described in Recipe 14.14 provides a generic framework for almost any kind of Internet
server. Here you do have to do some socket programming, but only the easy parts.
gserver takes care of all the socket-specific details, and you can just treat the sockets like
read-write IO objects. You can use the techniques described in Chapter 6 to communicate
with your clients.

Chapter 14. Internet Services Page 1 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6#rubyckbk-CHP-6
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15#rubyckbk-CHP-15
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11#rubyckbk-CHP-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-5#rubyckbk-CHP-11-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6#rubyckbk-CHP-6

The other basic server is WEBrick, a simple but powerful web server that's used as the
basis for Rails and the Ruby SOAP server. If you've built a protocol on top of HTTP,
WEBrick makes a good starting point for a server. Recipe 14.19 shows how to use WEBrick
to hook pieces of Ruby code up to the Web.

Apart from Rails, web services are the major network-related topic not covered in this
chapter. As with Rails, this is because they have their own chapter: Chapter 16.

Recipe 14.1. Grabbing the Contents of a Web Page

Problem
You want to display or process a specific web page.

Solution
The simplest solution is to use the open-uri library. It lets you open a web page as though
it were a file. This code fetches the oreilly.com homepage and prints out the first part
of it:

 require 'open-uri'
 puts open('http://www.oreilly.com/').read(200)
 # <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 # "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 # <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">

For more complex applications, you'll need to use the net/http library. Use
Net::HTTP.get_response to make an HTTP request and get the response as a
Net::HTTPResponse object containing the response code, headers, and body.

 require 'net/http'
 response = Net::HTTP.get_response('www.oreilly.com', '/about/')
 response.code # => "200"
 response.body.size # => 21835
 response['Content-type']
 # => "text/html; charset=ISO-8859-1"
 puts response.body[0,200]
 # <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 # "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 #
 #
 # <html>
 # <head>
 # <meta http-equiv="content-type" content="text/html; c

Rather than passing in the hostname, port, and path as separate arguments, it's usually
easier to create URI objects from URL strings and pass those into the Net::HTTP methods.

 require 'uri'

Chapter 14. Internet Services Page 2 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-16#rubyckbk-CHP-16

 Net::HTTP.get(URI.parse("http://www.oreilly.com"))
 Net::HTTP.get_response(URI.parse("http://www.oreilly.com/about/"))

Discussion
If you just want the text of the page, use get. If you also want the response code or the
values of the HTTP response headers, use get_reponse.

The get_response method returns some HTTPResponse subclass of
Net:HTTPResponse, which contains all information about an HTTP response. There's
one subclass for every response code defined in the HTTP standard; for instance, HTTPOK
for the 200 response code, HTTPMovedPermanently for the 301 response code, and
HTTPNotFound for the 404 response code. There's also an HTTPUnknown subclass for
any response codes not defined in HTTP.

The only difference between these subclasses is the class name and the code member. You
can check the response code of an HTTP response by comparing specific classes with
is_a?, or by checking the result of HTTPResponse#code, which returns a String:

 puts "Success!" if response.is_a? Net::HTTPOK
 # Success!

 puts case response.code[0] # Check the first byte of the response code.
 when ?1 then "Status code indicates an HTTP informational response."
 when ?2 then "Status code indicates success."
 when ?3 then "Status code indicates redirection."
 when ?4 then "Status code indicates client error."
 when ?5 then "Status code indicates server error."
 else "Non-standard status code."
 end
 # Status code indicates success.

You can get the value of an HTTP response header by treating HTTPResponse as a hash,
passing the header name into HTTPResponse#[]. The only difference from a real Hash
is that the names of the headers are case-insensitive. Like a hash, HTTPResponse supports
the iteration methods #each, #each_key, and #each_value:

 response['Server']
 # => "Apache/1.3.34 (Unix) PHP/4.3.11 mod_perl/1.29"
 response['SERVER']
 # => "Apache/1.3.34 (Unix) PHP/4.3.11 mod_perl/1.29"

 response.each_key { |key| puts key }
 # x-cache
 # p3p
 # content-type
 # date
 # server
 # transfer-encoding

Chapter 14. Internet Services Page 3 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you do a request by calling NET::HTTP.get_response with no code block, Ruby will
read the body of the web page into a string, which you can fetch with the
HTTPResponse::body method. If you like, you can process the body as you read it, one
segment at a time, by passing a code block to HTTPResponse::read_body:

 Net::HTTP.get_response('www.oreilly.com', '/about/') do |response|
 response.read_body do |segment|
 puts "Received segment of #{segment.size} byte(s)!"
 end
 end
 # Received segment of 614 byte(s)!
 # Received segment of 1024 byte(s)!
 # Received segment of 848 byte(s)!
 # Received segment of 1024 byte(s)!
 # …

Note that you can only call read_body once per request. Also, there are no guarantees
that a segment won't end in the middle of an HTML tag name or some other inconvenient
place, so this is best for applications where you're not handing the web page as structured
data: for instance, when you're simply piping it to some other source.

See Also

• Recipe 14.2, "Making an HTTPS Web Request"
• Recipe 14.3, "Customizing HTTP Request Headers"
• Recipe 14.20, "A Real-World HTTP Client," covers a lot of edge cases you'll need to

handle if you want to write a general-purpose client
• Most HTML you'll find on the web is invalid, so to parse it you'll need the tricks

described in Recipe 11.5, "Parsing Invalid Markup"

Recipe 14.2. Making an HTTPS Web Request

Problem
You want to connect to an HTTPS web site, one whose traffic is encrypted using SSL.

Solution
You need the OpenSSL extension to Ruby. You'll know if it's installed if you can require
the net/httpslibrary without getting a LoadError.

 require 'net/https' # => true

You can't make HTTPS requests with the convenience methods described in Recipe 14.1,
but you can use the Net::HTTP::Get and Net::HTTP::Post class described in Recipe

Chapter 14. Internet Services Page 4 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-5#rubyckbk-CHP-11-SECT-5

14.3. To make an HTTPS request, just instantiate a Net::HTTP object and set its use_ssl
member to true.

In this example, I try to download a page from a web server that only accepts HTTPS
connections. Instead of listening on port 80 like a normal web server, this server listens
on port 443 and expects an encrypted request. I can only connect with a Net::HTTP
instance that has the use_ssl flag set.

 require 'net/http'
 uri = URI.parse("https://www.donotcall.gov/")

 request = Net::HTTP.new(uri.host, uri.port)
 response = request.get("/")
 # Errno::ECONNRESET: Connection reset by peer

 require 'net/https'
 request.use_ssl = true
 request.verify_mode = OpenSSL::SSL::VERIFY_NONE
 response = request.get("/")
 # => #<Net::HTTPOK 200 OK readbody=true>
 response.body.size # => 6537

Discussion
The default Ruby installation for Windows includes the OpenSSL extension, but if you're
on a Unix system, you might have to install it yourself. On Debian GNU/Linux, the package
name is libopenssl-ruby[Ruby version]: for instance, libopenssl-ruby1.8.
You might need to download the extension from the Ruby PKI homepage (see below), and
compile and install it with Make.

Setting verify_mode to OpenSSL:SSL::VERIFY_NONE suppresses some warnings, but
the warnings are kind of serious: they mean that OpenSSL won't verify the server's
certificate or proof of identity. Your conversation with the server will be confidential, but
you won't be able to definitively authenticate the server: it might be an imposter.

You can have OpenSSL verify server certificates if you keep a few trusted certificates on
your computer. You don't need a certificate for every server you might possibly access. You
just need certificates for a few "certificate authorities:" the organizations that actually sign
most other certificates. Since web browsers need these certificates too, you probably
already have a bunch of them installed, although maybe not in a format that Ruby can use
(if you don't have them, see below).

On Debian GNU/Linux, the ca-certificates package installs a set of trusted server
certificates into the directory /etc/ssl/certs. I can set my request object's ca_path
to that directory, and set its verify_mode to OpenSSL::SSL::VERIFY_PEER. Now
OpenSSL can verify that I'm actually talking to the web server at donotcall.gov, and not an
imposter.

Chapter 14. Internet Services Page 5 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 request = Net::HTTP.new(uri.host, uri.port)
 request.use_ssl = true
 request.ca_path = "/etc/ssl/certs/"
 request.verify_mode = OpenSSL::SSL::VERIFY_PEER
 response = request.get("/")
 # => #<Net::HTTPOK 200 OK readbody=true>

The SSL certificate for www.donotcall.gov (http://www.donotcall.gov) happens to be
signed by Network Solutions. I already have Network Solutions' certificate installed on my
computer, so I can verify the signature. If I trust Network Solutions, I can trust
donotcall.gov.

See Also

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• HTTPS is just one more thing a robust web client needs to support; Recipe 14.20, "A

Real-World HTTP Client," shows how to integrate it into a general framework
• The Ruby OpenSSL project homepage (http://www.nongnu.org/rubypki/)
• The (unofficial) Mozilla Certificate FAQ provides a good introduction to SSL

certificates (http://www.hecker.org/mozilla/ca-certificate-faq/background-info)
• If you don't have any certs on your system or they're not in a format you can give to

Ruby, you can download a bundle of all the certs recognized by the Mozilla web
browser; instead of setting ca_path to a directory, you'll set ca_file to the location
of the file you download (http://curl.haxx.se/docs/caextract.html)

• You can create your own server certificates with the QuickCert program; your
certificates won't be recognized by any certificate authority, but if you control the
clients as well as the server, you can manually install the server certificate on every
client (http://segment7.net/projects/ruby/QuickCert/)

Recipe 14.3. Customizing HTTP Request Headers

Problem
When you make an HTTP request, you want to specify custom HTTP headers like "User-
Agent" or "Accept-Language".

Solution
Pass in a Hash of header values to Net::HTTP#get or Net::HTTP#post:

 require 'net/http'
 require 'uri'

 #A simple wrapper method that accepts either strings or URI objects
 #and performs an HTTP GET.
 module Net

Chapter 14. Internet Services Page 6 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.donotcall.gov
http://www.donotcall.gov
http://www.nongnu.org/rubypki/
http://www.hecker.org/mozilla/ca-certificate-faq/background-info
http://curl.haxx.se/docs/caextract.html
http://segment7.net/projects/ruby/QuickCert/

 class HTTP
 def HTTP.get_with_headers(uri, headers=nil)
 uri = URI.parse(uri) if uri.respond_to? :to_str
 start(uri.host, uri.port) do |http|
 return http.get(uri.path, headers)
 end
 end
 end
 end

 #Let's get a web page in German.
 res = Net::HTTP.get_with_headers('http://www.google.com/',
 {'Accept-Language' => 'de'})

 #Check a bit of the body to make sure it's really in German.
 s = res.body.size
 res.body[s-200..s-140]
 # => "ngebote - Alles \374ber Google</"

Discussion
Usually you can retrieve the web pages you want without specifying any custom HTTP
headers. As you start performing more complicated interactions with web servers, you'll
find yourself customizing the headers more.

For instance, if you write a web spider or client, you'll want it to send a "User-Agent" header
on every request, identifying itself to the web server. Unlike the HTTP client libraries for
other programming languages, the net/http library doesn't send a "User-Agent" header
by default; it's your reponsibility to send one.

 Net::HTTP.get_with_headers(url, {'User-Agent' => 'Ruby Web Browser v1.0'})

You can often save bandwidth (at the expense of computer time) by sending an "Accept-
Encoding" header, requesting that a web server compress data before sending it to you.
Gzip compression is the most common way a server compresses HTTP response data; you
can reverse it with Ruby's zlib library:

 uncompressed = Net::HTTP.get_with_headers('http://www.cnn.com/')
 uncompressed.body.size
 # => 65150

 gzipped = Net::HTTP.get_with_headers('http://www.cnn.com/',
 {'Accept-Encoding' => 'gzip'})
 gzipped['Content-Encoding']
 # => "gzip"
 gzipped.body.size
 # => 14600

 require 'zlib'
 require 'stringio'
 body_io = StringIO.new(gzipped.body)
 unzipped_body = Zlib::GzipReader.new(body_io).read()
 unzipped_body.size
 # => 65150

Chapter 14. Internet Services Page 7 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you want to build up a HTTP request with multiple values for the same HTTP header,
you can construct a Net::HTTP::Get (or Net::HTTP::Post) object and call the
add_field method multiple times. The example in the Solution used the "Accept-
Language" header to request a document in a specific language. The following code fetches
the same URL, but its "Accept-Language" header indicates that it will accept a document
written in any of four different dialects:

 uri = URI.parse('http://www.google.com/')

 request = Net::HTTP::Get.new(uri.path)
 ['en_us', 'en', 'en_gb', 'ja'].each do |language|
 request.add_field('Accept-Language', language)
 end
 request['Accept-Language']
 # => "en_us, en, en_gb, ja"

 Net::HTTP.start(uri.host, uri.port) do |http|
 response = http.request(request)
 # … process the HTTPResponse object here
 end

See Also

• Recipe 12.10, "Compressing and Archiving Files with Gzip and Tar," for more about
the zlib library

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• Recipe 14.20, "A Real-World HTTP Client," covers a lot of edge cases you'll need to

handle if you want to write a general-purpose client
• REST web services often use the value of the "Accept" header to provide multiple

representations of the same resource; Joe Gregorio's article "Should you use Content
Negotiation in your Web Services?" explains why it's a better idea to provide a different
URL for each representation (http://bitworking.org/news/
WebServicesAndContentNegotiation)

• Recipe 16.1 for more on REST web services

Recipe 14.4. Performing DNS Queries

Problem
You want to find the IP address corresponding to a domain name, or see whether a domain
provides a certain service (such as an email server).

Chapter 14. Internet Services Page 8 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-10#rubyckbk-CHP-12-SECT-10
http://bitworking.org/news/WebServicesAndContentNegotiation
http://bitworking.org/news/WebServicesAndContentNegotiation
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-1#rubyckbk-CHP-16-SECT-1

Solution
Use the Resolv::DNS class in the standard resolv library to perform DNS lookups. The
most commonly used method is DNS#each_address, which iterates over the IP
addresses assigned to a domain name.

 require 'resolv'
 Resolv::DNS.new.each_address("oreilly.com") { |addr| puts addr }
 # 208.201.239.36
 # 208.201.239.37

Discussion
If you need to check the existence of a particular type of DNS record (such as a MX record
for a mail server), use DNS#getresources or the iterator DNS#each_resource. Both
methods take a domain name and a class denoting a type of DNS record. They perform a
DNS lookup and, for each matching DNS record, return an instance of the given class.

These are the three most common classes:

DNS::Resource::IN::A

Indicates a DNS record pointing to an IP address for the domain.

DNS::RESOURCE::IN::NS

Indicates a DNS record pointing to a DNS nameserver.

DNS::Resource::IN::MX

Indicates a DNS record pointing to a mail server.

This code finds the mail servers and name servers responsible for oreilly.com:

 dns = Resolv::DNS.new
 domain = "oreilly.com"
 dns.each_resource(domain, Resolv::DNS::Resource::IN::MX) do |mail_server|
 puts mail_server.exchange
 end
 # smtp1.oreilly.com
 # smtp2.oreilly.com

 dns.each_resource(domain, Resolv::DNS::Resource::IN::NS) do |nameserver|
 puts nameserver.name
 end
 # a.auth-ns.sonic.net
 # b.auth-ns.sonic.net
 # c.auth-ns.sonic.net
 # ns.oreilly.com

Chapter 14. Internet Services Page 9 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If your application needs to do a lot of DNS lookups, you can greatly speed things up by
creating a separate thread for each lookup. Most of the time spent doing a DNS lookup is
spent connecting to the network, so doing all the lookups in parallel can save a lot of time.
If you do this, you should include the resolv-replace library along with resolv, to
make sure your DNS lookups are thread-safe.

Here's some code that sees which one-letter .com domains (a.com, b.com, etc.) are mapped
to IP addresses. It runs all 26DNS queries at once, in 26 threads, and summarizes the
results.

 require 'resolv-replace'
 def multiple_lookup(*names)
 dns = Resolv::DNS.new
 results = {}
 threads = []
 names.each do |name|
 threads << Thread.new(name) do |name|
 begin
 dns.each_address(name) { |a| (results[name] ||= []) << a }
 rescue Resolv::ResolvError
 results[name] = nil
 end
 end
 end
 threads.each { |t| t.join }
 return results
 end

 domains = ("a".."z").collect { |l| l + '.com' }
 multiple_lookup(*domains).each do |name, addresses|
 if addresses
 puts "#{name}: #{addresses.size} address#{addresses.size == 1 ? "" : "es"}"
 end
 end
 # x.com: 4 addresses
 # z.com: 1 address
 # q.com: 1 address

See Also

• Chapter 20 uses a DNS lookup of an MX record to check whether the domain of an
email address is valid

• A DNS lookup is the classic example of a high-latency operation; much of Chapter 20
deals with ways of making high-latency operations run more quickly: see especially
Recipe 20.3, "Doing Two Things at Once with Threads," and Recipe 20.6, "Running
a Code Block on Many Objects Simultaneously"

Recipe 14.5. Sending Mail

Chapter 14. Internet Services Page 10 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-3#rubyckbk-CHP-20-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-6#rubyckbk-CHP-20-SECT-6

Problem
You want to send an email message, either an autogenerated one or one entered in by an
end user.

Solution
First you need to turn the parts of the email message into a single string, representing the
whole message complete with headers and/or attachments. You can construct the string
manually or use a number of libraries, including RubyMail, TMail, and ActionMailer. Since
ActionMailer is one of the dependencies of Rails, I'll use it throughout this recipe.
ActionMailer uses TMail under the covers, and it's provided by the actionmailer gem.

Here, I use ActionMailer to construct a simple, single-part email message:

 require 'rubygems'
 require 'action_mailer'

 class SimpleMailer < ActionMailer::Base
 def simple_message(recipient)
 from 'leonardr@example.org'
 recipients recipient
 subject 'A single-part message for you'
 body 'This message has a plain text body.'
 end
 end

ActionMailer then makes two new methods available for generating this kind of email
message: SimpleMailer.create_simple_message, which returns the email
message as a data structure, and SimpleMailer.deliver_simple_message, which
actually sends the message.

 puts SimpleMailer.create_simple_message('lucas@example.com')
 # From: leonardr@example.org
 # To: lucas@example.com
 # Subject: A single-part message for you
 # Content-Type: text/plain; charset=utf-8
 #
 # This message has a plain text body.

To deliver the message, call deliver_simple_message instead of
create_simple_message. First, though, you'll need to tell ActionMailer about your
SMTP server. If you're sending mail from example.org and you've got an SMTP server
on the local machine, you might send a message this way:

 ActionMailer::Base.server_settings = { :address => 'localhost',
 :port => 25, # 25 is the default
 :domain => 'example.org' }

 SimpleMailer.deliver_simple_message('lucas@example.com')

Chapter 14. Internet Services Page 11 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you're using your ISP's SMTP server, you'll probably need to send authentication
information so the server knows you're not a spammer. Your ActionMailer setup will
probably look like this:

 ActionMailer::Base.server_settings = { :address => 'smtp.example.org',
 :port => 25,
 :domain => 'example.org',
 :user_name => 'leonardr@example.org',
 :password => 'my_password',
 :authentication => :login }

 SimpleMailer.deliver_simple_message('lucas@example.com')

Discussion
Unless you're writing a general-purpose mail client, you probably won't be letting your
users compose emails from scratch. More likely, you'll define a template for every type of
email your application might send, and fill it in with custom data every time you send a
message.[1]

[1] You can use ActionMailer even if you are writing a general-purpose mail client (just write a single hook method called custom_messge that takes a whole lot of
arguments), but you might prefer to drop down a level and use TMail or RubyMail.

This is what ActionMailer is designed for. The simple_message method defined above
is actually a hook method that makes ActionMailer respond to two other methods:
create_simple_message and deliver_simple_message. The hook method
defines the headers and body of a message template, the create_ method instantiates
the template with specific values, and the deliver_ method actually delivers the email.
You never call simple_message directly.

Within your hook method, you can set most of the standard email headers by calling a
method of the same name (subject, cc, and so on). You can also set custom headers
by modifying the @headers instance variable:

 class SimpleMailer
 def headerful_message
 @headers['A custom header'] = 'Its value'
 body 'Body'
 end
 end

 puts SimpleMailer.create_headerful_message
 # Content-Type: text/plain; charset=utf-8
 # A custom header: Its value
 #
 # Body

You can create a multipart message with attachments by passing the MIME type of the
attachment into the attachment method.

Chapter 14. Internet Services Page 12 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a method that creates a message containing a dump of the files in a directory
(perhaps a bunch of logfiles). It uses the mime-types gem to determine the probable
MIME type of a file, based on its filename:

 require 'mime/types'

 class SimpleMailer
 def directory_dump_message(recipient, directory)
 from 'directory-dump@example.org'
 recipients recipient
 subject "Dump of #{directory}"
 body %{Here are the files currently in "#{directory}":}

 Dir.new(directory).each do |f|
 path = File.join(directory, f)
 if File.file? path
 mime_type = MIME::Types.of(f).first
 content_type = (mime_type ? mime_type.content_type :
 'application/binary')
 attachment(content_type) do |a|
 a.body = File.read(path)
 a.filename = f
 a.transfer_encoding = 'quoted-printable' if content_type =~ /^text\//
 end
 end
 end
 end
 end

 SimpleMailer.create_directory_dump_message('lucas@example.com',
 'email_test')

Here it is in action:

 Dir.mkdir('email_test')
 open('email_test/image.jpg', 'wb') { |f| f << "\377\330\377\340\000\020JFIF" }
 open('email_test/text.txt', 'w') { |f| f << "Here's some text." }

 puts SimpleMailer.create_directory_dump_message('lucas@example.com',
 'email_test')
 # From: directory-dump@example.org
 # To: lucas@example.com
 # Subject: Dump of email_test
 # Mime-Version: 1.0
 # Content-Type: multipart/mixed; boundary=mimepart_443d73ecc651_3ae1..fdbeb1ba4328
 #
 #
 # --mimepart_443d73ecc651_3ae1..fdbeb1ba4328
 # Content-Type: text/plain; charset=utf-8
 # Content-Disposition: inline
 #
 # Here are the files currently in "email_test":
 # --mimepart_443d73ecc651_3ae1..fdbeb1ba4328
 # Content-Type: image/jpeg; name=image.jpg
 # Content-Transfer-Encoding: Base64
 # Content-Disposition: attachment; filename=image.jpg
 #
 # /9j/4AAQSkZJRg==
 #
 # --mimepart_443d73ecc651_3ae1..fdbeb1ba4328
 # Content-Type: text/plain; name=text.txt
 # Content-Transfer-Encoding: Quoted-printable
 # Content-Disposition: attachment; filename=text.txt
 #
 # Here's some text.=

Chapter 14. Internet Services Page 13 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #
 # --mimepart_443d73ecc651_3ae1..fdbeb1ba4328--

If you're a minimalist, you can use the net/smtplibrary to send email without installing
any gems. There's nothing in the Ruby standard library to help you with creating the email
string, though; you'll have to build it manually. Once you've got the string, you can send it
as an email message with code like this:

 require 'net/smtp'
 Net::SMTP.start('smtp.example.org', 25, 'example.org',
 'leonardr@example.org', 'my_password', :login) do |smtp|
 smtp.send_message(message_string, from_address, to_address)
 end

Whether you use Net::SMTP or ActionMailer to deliver your mail, the possible SMTP
authentication schemes are represented with symbols (:login, :plain,
and :cram_md5). Any given SMTP server may support any or all of these schemes. Try
them one at a time, or ask your system administrator or ISP which one to use.

See Also

• Recipe 15.19, "Sending Mail with Rails," if you're using Rails
• The ActionMailer documentation (http://www.lickey.com/rubymail/rubymail/doc/

)
• The standard for email messages (RFC 2822)
• More ActionMailer examples (http://am.rubyonrails.com/classes/ActionMailer/

Base.html)

Recipe 14.6. Reading Mail with IMAP

Credit: John Wells

Problem
You want to connect to an IMAP server in order to read and manipulate the messages
stored there.

Solution
The net/imap.rb package, written by Shugo Maeda, is part of Ruby's standard library,
and provides a very capable base on which to build an IMAP-oriented email application.
In the following sections, I'll walk you through various ways of using this API to interact
with an IMAP server.

Chapter 14. Internet Services Page 14 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-19#rubyckbk-CHP-15-SECT-19
http://www.lickey.com/rubymail/rubymail/doc/
http://am.rubyonrails.com/classes/ActionMailer/Base.html
http://am.rubyonrails.com/classes/ActionMailer/Base.html

For this recipe, let's assume you have access to an IMAP server running at
mail.myhost.com on the standard IMAP port 143. Your username is, conveniently,
"username", and your password is "password".

To make the initial connection to the server, it's as simple as:

 require 'net/imap'

 conn = Net::IMAP.new('mail.myhost.com', 143)
 conn.login('username', 'password')

Assuming no error messages were received, you now have a connection to the IMAP server.
The Net::IMAP object puts all the capabilities of IMAP at your fingertips.

Before doing anything, though, you must tell the server which mailbox you're interested
in working with. On most IMAP servers, your default mailbox is called "INBOX". You can
change mailboxes with Net::IMAP#examine:

 conn.examine('INBOX')
 # Use Net::IMAP#select instead for read-only access

A search provides a good example of how a Net::IMAP object lets you interact with the
server. To search for all messages in the selected mailbox from a particular address, you
can use this code:

 conn.search(['FROM', 'jabba@huttfoundation.org']).each do |sequence|
 fetch_result = conn.fetch(sequence, 'ENVELOPE')
 envelope = fetch_result[0].attr['ENVELOPE']
 printf("%s - From: %s - To: %s - Subject: %s\n", envelope.date,
 envelope.from[0].name, envelope.to[0].name, envelope.subject)
 end
 # Wed Feb 08 14:07:21 EST 2006 - From: The Hutt Foundation - To: You - Subject: Bwah!
 # Wed Feb 08 11:21:19 EST 2006 - From: The Hutt Foundation - To: You - Subject: Go to
 # do wa IMAP

Discussion
The details of the IMAP protocol are a bit esoteric, and to really understand it you'll need
to read the RFC. That said, the code in the solution shouldn't be too hard to understand:
it uses the IMAP SEARCH command to find all messages with the FROM field set
to "jabba@huttfoundation.org".

The call to Net::IMAP#search returns an array of message sequence IDs: a key to a
message within the IMAP server. We iterate over these keys and send each one back to the
server, using IMAP's FETCH command to ask for the envelope (the headers) of each
message. Note that the Ruby method for an IMAP instruction often shares the instruction's
name, only in lowercase to keep with the Ruby way.

Chapter 14. Internet Services Page 15 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mailto:jabba@huttfoundation.org

The ENVELOPE parameter we pass to Net::IMAP#fetch tells the server to give us
summary information about the message by parsing the RFC2822 message headers. This
way we don't have to download the entire body of the message just to look at the headers.

You'll also notice that Net::IMAP#fetch returns an array, and that we access its first
element to get the information we're after. This is because Net::IMAP#fetch lets you to
pass an array of sequence numbers instead of just one. It returns an array of
Net::IMAP::FetchData objects with an element corresponding to each number passed
in. You get an array even if you only pass in one sequence number.

There are also other cool things you can do.

Check for new mail
You can see how many new messages have arrived by examining the responses sent by the
server when you select a mailbox. These are stored in a hash: the responses member of
your connection object. Per the IMAP spec, the value of RECENT is the number of new
messages unseen by any client. EXISTS tells how many total messages are in the box. Once
a client connects and opens the mailbox, the RECENT response will be unset, so you'll only
see a new message count the first time you run the command:

 puts "#{conn.responses["RECENT"]} new messages, #{conn.responses["EXISTS"]} total"
 # 10 new messages, 1022 total

Retrieve a UID for a particular message
The sequence number is part of a relative sequential numbering of all the messages in the
current mailbox. Sequence numbers get reassigned upon message deletion and other
operations, so they're not reliable over the long term. The UID is more like a primary key
for the message: it is assigned when a message arrives and is guaranteed not to be
reassigned or reused for the life of the mailbox. This makes it a more reliable way of making
sure you've got the right message:

 uids = conn.search(["FROM", "jabba@huttfoundation.org"]).collect do |sequence|
 fetch_result = conn.fetch(sequence, "UID")
 puts "UID: #{fetch_result[0].attr["UID"]}"
 end
 # UID: 203
 # UID: 206

Why are message UIDs useful? Consider the following scenario. We've just retrieved
message information for messages between January 2000 and January 2006. While
viewing the output, we saw a message that looked interesting, and noted the UID was 203.

To view the message body, we use code like this:

 puts conn.uid_fetch(203, 'BODY[TEXT]')[0].attr['BODY[TEXT]']

Chapter 14. Internet Services Page 16 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Reading headers made easy

In our first example in this recipe, we accessed message headers through use of the IMAP
ENVELOPE parameter. Because displaying envelope information is such a common task,
I prefer to take advantage of Ruby's open classes and add this functionality directly to
Net::IMAP:

 class Net::IMAP
 def get_msg_info(msg_sequence_num)
 # code we used above
 fetch_result = fetch(msg_sequence_num, '(UID ENVELOPE)')
 envelope = fetch_result[0].attr['ENVELOPE']
 uid = fetch_result[0].attr['UID']
 info = {'UID' => uid,
 'Date' => envelope.date,
 'From' => envelope.from[0].name,
 'To' => envelope.to[0].name,
 'Subject' => envelope.subject}
 end
 end

Now, we can make use of this code wherever it's convenient. For example, in this search
for all messages received in a certain date range:

 conn.search(['BEFORE', '01-Jan-2006',
 'SINCE', '01-Jan-2000']).each do |sequence|
 conn.get_msg_info(sequence).each {|key, val| puts "#{key}: #{val}" }
 end

Forwarding mail to a cell phone

As a final, somewhat practical example, let's say you're waiting for a very important email
from someone at huttfoundation.org. Let's also assume you have an SMTP server at the
same host as your IMAP server, running on port 25.

You'd like to have a program that could check your email every five minutes. If a new
message from anyone at huttfoundation.org is found, you'd like to forward that message
to your cell phone via SMS. The email address of your cell phone is
5555555555@mycellphoneprovider.com.

 #!/usr/bin/ruby -w
 # forward_important_messages.rb

 require 'net/imap'
 require 'net/smtp'

 address = 'huttfoundation.org'
 from = 'myhomeemail@my.mailhost.com'
 to = '5555555555@mycellphoneprovider.com'
 smtp_server = 'my.mailhost.com'

Chapter 14. Internet Services Page 17 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mailto:5555555555@mycellphoneprovider.com

 imap_server = 'my.mailhost.com'
 username = 'username'
 password = 'password'

 while true do
 conn = imap = Net::IMAP.new(imap_server, 143)
 conn.login(username, password)
 conn.select('INBOX')
 uids = conn.search(['FROM', address, 'UNSEEN']).each do |sequence|
 fetch_result = conn.fetch(sequence, 'BODY[TEXT]')
 text = fetch_result[0].attr['BODY[TEXT]']
 count = 1
 while(text.size > 0) do
 # SMS messages limited to 160 characters
 msg = text.slice!(0, 159)
 full_msg = "From: #{from}\n"
 full_msg += "To: #{to}\n"
 full_msg += "Subject: Found message from #{address} (#{count})!\n"
 full_msg += "Date: #{Time.now}\n"
 full_msg += msg + "\n"
 Net::SMTP.start(smtp_server, 25) do |smtp|
 smtp.send_message full_msg, from, to
 end
 count += 1
 end
 # set Seen flag, so our search won't find the message again
 conn.store(sequence, '+FLAGS', [:Seen])
 end
 conn.disconnect
 # Sleep for 5 minutes.
 sleep (60*60*5)
 end

This recipe should give you a hint of the power you have when you access IMAP mailboxes.
Please note that to really understand IMAP, you need to read the IMAP RFC, as well as
RFC2822, which describes the Internet Message Format. Multipart messages and MIME
types are beyond of the scope of this recipe, but are both something you'll deal with
regularly when accessing mailboxes.

See Also

• ri Net::IMAP
• The IMAP RFC (RFC3501) (http://www.faqs.org/rfcs/rfc3501.html)
• The Internet Message Format RFC (RFC2822) (http://www.faqs.org/rfcs/

rfc2822.html)
• Recipe 3.12, "Running a Code Block Periodically"
• Recipe 14.5, "Sending Mail"

Recipe 14.7. Reading Mail with POP3

Credit: John Wells

Chapter 14. Internet Services Page 18 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.faqs.org/rfcs/rfc3501.html
http://www.faqs.org/rfcs/rfc2822.html
http://www.faqs.org/rfcs/rfc2822.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12

Problem
You want to connect to an POP server in order to read and download the messages stored
there.

Solution
The net/pop.rb package, written by Minero Aoki, is part of Ruby's standard library, and
provides a foundation on which to build a POP (Post Office Protocol)-oriented email
application. As with the previous recipe on IMAP, we'll walk through some common ways
of accessing a mail server with the POP API.

For this recipe, we assume you have access to a POP3 server running at mail.myhost. com
on the standard POP3 port 110. Just as in the previous IMAP example, your username is
"username", and password is (yep) "password".

To make the initial connection to the server, it's as simple as:

 require 'net/pop'

 conn = Net::POP3.new('mail.myhost.com')
 conn.start('username', 'password')

If you receive no errors, you've got an open session to your POP3 server, and can use the
conn object to communicate with the server.

The following code acts like a typical POP3 client: having connected to the server, it
downloads all the new messages, and then deletes them from the server. The deletion is
commented out so you don't lose mail accidentally while testing this code:

 require 'net/pop'

 conn = Net::POP3.new('mail.myhost.com')
 conn.start('username', 'password')

 conn.mails.each do |msg|
 File.open(msg.uidl, 'w') { |f| f.write msg.pop }
 # msg.delete
 end

 conn.finish

Discussion
POP3 is a much simpler protocol than IMAP, and arguably a less powerful one. It doesn't
support the concept of folders, so there's no need to start off by selecting a particular folder
(like we did in the IMAP recipe). Once you start a session, you have immediate access to
all messages currently retained on the server.

Chapter 14. Internet Services Page 19 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

IMAP stores your folders and your messages on the server itself. This way you can access
the same messages and the same folders from different clients on different machines. For
example, you might go to work and access an IMAP folder with Mozilla Thunderbird, then
go home and access the same folder with a web-based mail client.

With POP3, there are no server-side folders. You're supposed to archive your messages on
the client side. If you use a POP3 client to download messages at work, when you get home
you won't be able to access those messages. They're on your work computer, not on the
POP3 server.

IMAP assigns a unique, unchanging ID to each message in the mailbox. By contrast, when
you start a POP3 session, POP3 gives each message a "sequence number" reflecting its
position in the mailbox at that time. The next time you connect to the POP3 server, the
same message may have a different sequence number, as new, incoming messages can
affect the sequencing. This is why POP3 clients typically download messages immediately
and delete them from the server.

If we want to go outside this basic pattern, and leave the messages on the server, how can
we keep track of messages from one connection to another? POP3 does provide a unique
string ID for each message: a Unique Identification Listing, or UIDL. You can use a UIDL
(which persists across POP3 sessions) to get a sequence number (which doesn't) and
retrieve a message across separate connections.

This code finds the IDs of email messages from a particular source:

 conn = Net::POP3.new('mail.myhost.com')
 conn.start('username', 'password')
 ids = conn.mails.collect {|msg| msg.uidl if msg.pop.match('jabba')}
 conn.finish
 # => ["UID2-1141260595", "UID3-1141260595"]

Now we have unique identifiers for each of our matching messages. Given these, we can
start a new POP3 session and use these UIDLs to retrieve each message individually:

 conn2 = Net::POP3.new('mail.myhost.com')
 conn.start('username', 'password')

 conn.each_mail {|msg| puts msg.pop if msg.uidl=='UID3-1141260595'}

 conn.finish
 # Return-Path: <jabba@huttfoundation.org>
 # X-Original-To: username@my.mailhost.com
 # Delivered-To: username@localhost
 # …

Here we call the method Net::POP3#each_mail to iterate over all the messages in the
mailbox. Each message is passed into the code block as a Net::POPMail message. We

Chapter 14. Internet Services Page 20 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

look at each message's UIDL and, when we find the message we want, we call
Net::POPMail#pop to print it out.

Forwarding mail to a cell phone

Let's revisit our example from the IMAP recipe. You're waiting for a very important email,
and you want to have it forwarded to your cell phone as soon as it comes in. You're able to
send mail through a SMTP server hosted on port 25 of the same machine as your POP3
server. The email address of your cell phone is 5555555555@mycellphoneprovider.com.

This program checks your POP3 server for new email every five minutes. If a new message
from anyone at huttfoundation.org is found, it forwards the message to your cell phone
via SMS.

 #!/usr/bin/env ruby
 # forward_important_messages.rb

 require 'net/pop'
 require 'net/smtp'

 $address = 'huttfoundation.org'
 $from = 'myhomeemail@my.mailhost.com'
 $to = '5555555555@mycellphoneprovider.com'
 smtp_server = 'my.mailhost.com'
 pop_server = 'my.mailhost.com'
 username = 'username'
 password = 'password'

 $found = Hash.new

 def send_msg (text)
 count = 1
 while(text.size > 0) do
 # SMS messages limited to 160 characters
 msg = text.slice!(0, 159)
 full_msg = "From: #{$from}\n"
 full_msg += "To: #{$to}\n"
 full_msg += "Subject: Found message from #{$address} (#{count})!\n"
 full_msg += "Date: #{Time.now}\n"
 full_msg += msg + "\n"
 Net::SMTP.start(smtp_server, 25) do |smtp|
 smtp.send_message full_msg, $from, $to
 end
 count += 1
 end
 end

 loop do
 conn = Net::POP3.new(pop_server)
 conn.start('username', 'password')

 uidls = conn.mails.collect do |msg|
 msg.uidl if msg.pop.match(/#{$address}/)
 end

 uidls.each do |one_id|
 if ! $found.has_key? one_id
 $found[one_id] = true
 conn.each_mail do |msg|
 send_msg(msg.uidl) if msg.uidl==one_id
 end

Chapter 14. Internet Services Page 21 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mailto:5555555555@mycellphoneprovider.com

 end
 end
 conn.finish
 # Sleep for 5 minutes.
 sleep (60*60*5)
 end

See Also

• Recipe 14.6, "Reading Mail with IMAP"
• RFC1939 describes the POP3 protocol

Recipe 14.8. Being an FTP Client

Problem
You want to automatically connect to an FTP server, and upload or download files.

Solution
Use the Net::FTP class. It provides a filesystem-like interface to an FTP server. In this
example, I log anonymously into a popular FTP site, browse one of its directories, and
download two of its files:

 require 'net/ftp'
 ftp = Net::FTP.open('ftp.ibiblio.org') do |ftp|
 ftp.login
 ftp.chdir('pub/linux/')
 ftp.list('*Linux*') { |file| puts file }
 puts

 puts 'Saving a text file to disk while processing it.'
 ftp.gettextfile('How-do-I-get-Linux') { |line| puts "! #{line}" }
 puts "Saved #{File.size 'How-do-I-get-Linux'} bytes."
 puts

 puts 'Saving a binary file to disk.'
 ftp.getbinaryfile('INDEX.whole.gz')
 puts "Saved #{File.size 'INDEX.whole.gz'} bytes."
 end
 # -rw-r--r-- 1 (?) users 16979001 Jan 1 11:31 00-find.Linux.gz
 # -rw-rw-r-- 1 (?) admin 73 Mar 9 2001 How-do-I-get-Linux

 # Saving a text file to disk while processing it.
 # !
 # ! Browse to http://metalab.unc.edu/linux/HOWTO/Installation-HOWTO.html
 # !
 # Saved 73 bytes.

 # Saving a binary file to disk.
 # Saved 213507 bytes.

Chapter 14. Internet Services Page 22 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Once the preferred way of storing and serving files through the Internet, FTP is being
largely superceded by SCP for copying files, the web for distributing files, and Bit-Torrent
for distributing very large files. There are still many anonymous FTP servers, though, and
many web hosting companies still expect you to upload your web pages through FTP.

The login method logs in to the server. Calling it without arguments logs you in
anonymously, which traditionally limits you to download privileges. Calling it with a
username and password logs you in to the server:

 ftp.login('leonardr', 'mypass')

The methods chdir and list let you navigate the FTP server's directory structure. They
work more or less like the Unix cd and ls commands (in fact, list is aliased to ls and
dir).

There are also two "get" methods and two "put" methods. The "get" methods are
getbinaryfile and gettextfile. They retrieve the named file from the FTP server
and write it to disk. The gettextfile method converts between platform-specific
newline formats as it downloads. This way you can download a text file from a Unix server
to your Windows machine, and have the Unix newlines automatically converted into
Windows newlines. On the other hand, if you use gettextfile on a binary file, you'll
probably corrupt the file as you download it.

You can specify a local name for the file and a block to process the data as it comes in. A
block passed into gettextfile will be called for each line of a downloaded file; a block
passed into getbinaryfile will be passed for each downloaded chunk.

A file you download with one of the "get" methods will be written to disk even if you pass
in a block to process it. If you want to process a file without writing it to disk, just define
some methods like these:

 class Net::FTP
 def processtextfile(remotefile)
 retrlines('RETR ' + remotefile) { |line| yield line }
 end

 def processbinaryfile(remotefile, blocksize=DEFAULT_BLOCKSIZE)
 retrbinary('RETR ' + remotefile, blocksize) { |data| yield data }
 end
 end

The two "put" methods are (you guessed it) puttextfile and putbinaryfile. They
are the exact opposites of their get counterparts: they take the path to a local file, and
write it to a file on the FTP server. They, too, can take a code block that processes each line

Chapter 14. Internet Services Page 23 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

or chunk of the file as it's read. This example automatically uploads the index.html file to
my ISP's hosted web space.

 require 'net/ftp'
 Net::FTP.open('myisp.example.com') do |ftp|
 ftp.login('leonardr', 'mypass')
 ftp.chdir('public_html')
 ftp.puttextfile('index.html')
 end

In general, you can't use the "put" methods if you're logged in as an anonymous user. Some
FTP servers do have special incoming/ directories to which anonymous users can upload
their submissions.

See Also

• ri Net::FTP

Recipe 14.9. Being a Telnet Client

Problem
You want to connect to a telnet service or use telnet to get low-level access to some other
kind of server.

Solution
Use the Net::Telnet module in the Ruby standard library.

The following code uses a Telnet object to simulate an HTTP client. It sends a raw HTTP
request to the web server at http://www.oreilly.com. Every chunk of data received from
the web server is passed into a code block, and its size is added to a tally. Eventually the
web server stops sending data, and the telnet session times out.

 require 'net/telnet'

 webserver = Net::Telnet::new('Host' => 'www.oreilly.com',
 'Port' => 80,
 'Telnetmode' => false)

 size = 0
 webserver.cmd("GET / HTTP/1.1\nHost: www.oreilly.com\n") do |c|
 size += c.size
 puts "Read #{c.size} bytes; total #{size}"
 end
 # Read 1431 bytes; total 1431
 # Read 1434 bytes; total 2865
 # Read 1441 bytes; total 4306
 # Read 1436 bytes; total 5742
 # …
 # Read 1430 bytes; total 39901

Chapter 14. Internet Services Page 24 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.oreilly.com

 # Read 2856 bytes; total 42757
 # /usr/lib/ruby/1.8/net/telnet.rb:551:in `waitfor':
 # timed out while waiting for more data (Timeout::Error)

Discussion
Telnet is a lightweight protocol devised for connecting to a generic service running on
another computer. For a long time, the most commonly exposed service was a Unix shell:
you would "telnet in" to a machine on the network, log in, and run shell commands on the
other machine as though it were local.

Because telnet is an insecure protocol, it's very rare now to use it for remote login. Everyone
uses SSH for that instead (see the next recipe). Telnet is still useful for two things:

1. As a diagnostic tool (as seen in the Solution). Telnet is very close to being a generic
TCP protocol. If you know, say, HTTP, you can connect to an HTTP server with telnet,
send it a raw HTTP request, and view the raw HTTP response.

2. As a client to text-based services other than remote shells: mainly old-school
entertainments like BBSes and MUDs.

Telnet objects implement a simple loop between you and some TCP server:

1. You send a string to the server.
2. You read data from the server a chunk at a time and process each chunk with a code

block. The continues until a chunk of data contains text that matches a regular
expression known as a prompt.

3. In response to the prompt, you send another string to the server. The loop restarts.

In this example, I script a Telnet object to log me in to a telnet-accessible BBS. I wait for
the BBS to send me strings that match certain prompts ("What is your name?" and
"password:"), and I send back strings of my own in response to the prompts.

 require 'net/telnet'

 bbs = Net::Telnet::new('Host' => 'bbs.example.com')

 puts bbs.waitfor(/What is your name\?/)
 # The Retro Telnet BBS
 # Where it's been 1986 since 1993.
 # Dr. Phineas Goodbody, proprietor
 #
 # What is your name? (NEW for new user)

 bbs.cmd('String'=>'leonardr', 'Match'=>/password:/) { |c| puts c }
 # Hello, leonardr. Please enter your password:

 bbs.cmd('my_password') { |c| puts c }
 # Welcome to the Retro Telnet BBS, leonardr.
 # Choose from the menu below:
 # …

Chapter 14. Internet Services Page 25 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The problem with this code is the "prompt" concept was designed for use with remote
shells. A Unix shell shows you a prompt after every command you run. The prompt always
ends in a dollar sign or some other character: it's easy for telnet to pick out a shell prompt
in the data stream. But no one uses telnet for remote shells anymore, so this is not very
useful. The BBS software defines a different prompt for every interaction: one prompt for
the name and a different one for the password. The web page grabber in the Solution
doesn't define a prompt at all, because there's no such thing in HTTP. For the type of
problem we still solve with telnet, prompts are a pain.

What's the alternative? Instead of having cmd wait for a prompt, you can just have it wait
for the server to go silent. Here's an implementation of the web page grabber from the
Solution, which stops reading from the server if it ever goes more than a tenth of a second
without receiving any data:

 require 'net/telnet'

 webserver = Net::Telnet::new('Host' => 'www.oreilly.com',
 'Port' => 80,
 'Waittime' => 0.1,
 'Prompt' => /.*/,
 'Telnetmode' => false)
 size = 0
 webserver.cmd("GET / HTTP/1.1\nHost: www.oreilly.com\n") do |c|
 size += c.size
 puts "Read #{c.size} bytes; total #{size}"
 end

Here, the prompt matches any string at all. The end of every data chunk is potentially the
"prompt" for the next command! But Telnet only acts on this if the server sends no more
data in the next tenth of a second.

When you have Telnet communicate with a server this way, you never know for sure if
you really got all the data. It's possible that the server just got really slow all of a sudden.
If that happens, you may lose data or it may end up read by your next call to cmd. The best
you can do is try to make your Waittime large enough so that this doesn't happen.

In this example, I use Telnet to script a bit of a text adventure game that's been made
available over the net. This example uses the same trick (a Prompt that matches anything)
as the previous one, but I've bumped up the Waittime because this server is slower than
the oreilly.com web server:

 require 'net/telnet'
 adventure = Net::Telnet::new('Host' => 'games.example.com',
 'Port' => 23266,
 'Waittime' => 2.0,
 'Prompt' => /.*/)

 commands = ['no', 'enter building', 'get lamp'] # And so on…
 commands.each do |command|
 adventure.cmd(command) { |c| print c }
 end

Chapter 14. Internet Services Page 26 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Welcome to Adventure!! Would you like instructions?
 # no
 #
 # You are standing at the end of a road before a small brick building.
 # Around you is a forest. A small stream flows out of the building and
 # down a gully.
 # enter building
 #
 # You are inside a building, a well house for a large spring.
 # There are some keys on the ground here.
 # There is a shiny brass lamp nearby.
 # There is food here.
 # There is a bottle of water here.
 #
 # get lamp
 # OK

See Also

• The Ruby documentation for the net/telnet standard library
• Recipe 14.10, "Being an SSH Client"
• The telnet text adventure is based on the version of Colossal Cave hosted at

forkexec.com; the site has lots of other games you can play via telnet (http://
games.forkexec.com/)

Recipe 14.10. Being an SSH Client

Problem
You want to securely send data or commands back and forth between your computer, and
another computer on which you have a shell account.

Solution
Use the Net::SSH module, which implements the SSH2 protocol. It's found in the net-
ssh gem, although some operating systems package it themselves.[2] It lets you implement
Ruby applications that work like the familiar ssh and scp.

[2] For instance, it's available on Debian GNU/Linux as the package libnet-ssh-ruby1.8.

You can start an SSH session by passing a hostname to Net::SSH::start, along with
your shell username and password on that host. If you have an SSH public/private key
pair set up between your computer and the remote host, you can omit the username and
password:

 require 'rubygems'
 require 'net/ssh'
 Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 # Manipulate your Net::SSH::Session object here…
 end

Chapter 14. Internet Services Page 27 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://games.forkexec.com/
http://games.forkexec.com/

Net::SSH::start takes a code block, to which it passes a Net::SSH::Session object.
You use the session object to send encrypted data between the machines, or to spawn
processes on the remote machine. When the code block ends, the SSH session is
automatically terminated.

Discussion
It seems strange now, but until the late 1990s, people routinely used unsecured protocols
like telnet to get shell access to remote machines. Remote access was so useful that we
were willing to jeopardize our electronic safety by sending our shell passwords (not to
mention all the data we looked at) unencrypted across the network. Fortunately, we don't
have to make that trade-off anymore. The SSH protocol makes it easy to send encrypted
traffic between machines, and the client tools ssh and scp have almost completely
replaced tools like RSH and nonanonymous FTP.

The Net::SSH library provides a low-level interface to the SSH2 protocol, but most of the
time you won't need it. Instead, you'll use one of the abstractions that make it easy to spawn
and control processes on a remote machine. The simplest abstraction is the popen3
method, which works like the local popen3 method in Ruby's open3 library. It's covered
in more detail in Recipe 20.10, but here's a simple example:

 Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 cmd = 'ls -l /home/leonardr/test_dir'
 session.process.popen3(cmd) do |stdin, stdout, stderr|
 puts stdout.read
 end
 end
 # -rw-rw-r-- 1 leonardr leonardr 33 Dec 29 20:40 file1
 # -rw-rw-r-- 1 leonardr leonardr 102 Dec 29 20:40 file2

You can run a sequence of commands in a single user shell by calling
session.shell.sync:

 Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 shell = session.shell.sync
 puts "Original working directory: #{shell.pwd.stdout}"
 shell.cd 'test_dir'
 puts "Working directory now: #{shell.pwd.stdout}"
 puts 'Directory contents:'
 puts shell.ls("-l").stdout
 shell.exit
 end
 # Original working directory: /home/leonardr
 # Working directory now: /home/leonardr/test_dir
 # Directory contents:
 # -rw-rw-r--1 leonardr leonardr 33 Dec 29 20:40 file1
 # -rw-rw-r--1 leonardr leonardr 102 Dec 29 20:40 file2

Chapter 14. Internet Services Page 28 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-10#rubyckbk-CHP-20-SECT-10

The main downside of a synchronized shell is that you usually can't pass standard input
data into the commands you run. There's no way to close the standard input stream, so
the process will hang forever waiting for more standard input.[3] To pass standard input
into a remote process, you should use popen3. With a little trickery, you can control
multiple processes simultaneously through your SSH connection; see Recipe 14.11 for
details.

[3] The exception is a command like bc, which terminates itself if it sees the line "quit\n" in its standard input. Commands like cat always look for more standard
input.

If your public/private key pair for a host is protected by a passphrase, you will be prompted
for the passphrase Net::SSH tries to make a connection to that host. This makes your key
more secure, but it will foil your plans to use Net::SSH in an automated script.

You can also use Net::SSH to do TCP/IP port forwarding. As of this writing, you can't use
it to do X11 forwarding.

See Also

• Recipe 20.10, "Controlling a Process on Another Machine," covers Net:SSH's
implementation of popen3 in more detail. Recipe 14.11 shows how to implement an
scp-like service on top of the Net:SSH API, but these three recipes together only
scratch the surface of what's possible with Net:SSH. The library manual (http://net-
ssh.rubyforge.org/) is comprehensive and easy to read; it covers many topics not
touched upon here, like low-level SSH2 operations, callback methods other than
on_success, port forwarding, and nonsynchonized user shells

• Recipe 14.2, "Making an HTTPS Web Request," has information on installing the
OpenSSL extension

• Learn more about public/private keys in the article "OpenSSH key management, Part
1" (http://www-128.ibm.com/developerworks/library/l-keyc.html)

Recipe 14.11. Copying a File to Another Machine

Problem
You want to programatically send files to another computer, the way the Unix scp
command does.

Solution
Use the Net:SSH library to get a secure shell connection to the other machine. Start a cat
process on the other machine, and write the file you want to copy to its standard input.

Chapter 14. Internet Services Page 29 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-10#rubyckbk-CHP-20-SECT-10
http://net-ssh.rubyforge.org/
http://net-ssh.rubyforge.org/
http://www-128.ibm.com/developerworks/library/l-keyc.html

 require 'rubygems'
 require 'net/ssh'

 def copy_file(session, source_path, destination_path=nil)
 destination_path ||= source_path
 cmd = %{cat > "#{destination_path.gsub('"', '\"')}"}
 session.process.popen3(cmd) do |i, o, e|
 puts "Copying #{source_path} to #{destination_path}… "
 open(source_path) { |f| i.write(f.read) }
 puts 'Done.'
 end
 end

 Net::SSH.start('example.com', :username=>'leonardr',
 :password=>'mypass') do |session|
 copy_file(session, '/home/leonardr/scripts/test.rb')
 copy_file(session, '/home/leonardr/scripts/"test".rb')
 end
 # Copying /home/leonardr/scripts/test.rb to /home/leonardr/scripts/test.rb…
 # Done.
 # Copying /home/leonardr/scripts/"test".rb to /home/leonardr/scripts/"test".rb…
 # Done.

Discussion
The scp command basically implements the old rcp protocol over a secured connection.
This code uses a shortcut to achieve the same result: it uses the high-level SSH interface
to spawn a process on the remote host which writes data to a file.

Since you can run multiple processes at once over your SSH session, you can copy multiple
files simultaneously. For every file you want to copy, you need to spawn a cat process:

 def do_copy(session, source_path, destination_path=nil)
 destination_path ||= source_path
 cmd = %{cat > "#{destination_path.gsub('"', '\"')}"}
 cat_process = session.process.open(cmd)

 cat_process.on_success do |p|
 p.write(open(source_path) { |f| f.read })
 p.close
 puts "Copied #{source_path} to #{destination_path}."
 end
 end

The call to session.process.open creates a process-like object that runs a cat
command on the remote system. The call to on_success registers a callback code block
with the process. That code block will run once the cat command has been set up and is
accepting standard input. Once that happens, it's safe to start writing data to the file on
the remote system.

Once you've set up all your copy operations, you should call session.loop to perform
all the copy operations simultaneously. The processes won't actually be initialized until
you call session.loop.

 Net::SSH.start('example.com', :username=>'leonardr',

Chapter 14. Internet Services Page 30 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 :password=>'mypass') do |session|
 do_copy(session, '/home/leonardr/scripts/test.rb')
 do_copy(session, '/home/leonardr/new_index.html',
 '/home/leonardr/public_html/index.html')
 session.loop
 end
 # Copied /home/leonardr/scripts/test.rb to /home/leonardr/scripts/test.rb
 # Copied /home/leonardr/new_index.html to /home/leonardr/public_html/index.html

Recipe 14.12. Being a BitTorrent Client

Problem
You want to write a Ruby script that downloads or shares large files with BitTorrent.

Solution
The third-party RubyTorrent library implements the BitTorrent protocol; you can use it
to write BitTorrent clients. The RubyTorrent package has no setup.rb file, so you'll need
to manually copy the files into your Ruby classpath or package them with your application.

The BitTorrent class acts as a BitTorrent client, so to download a torrent, all you have
to do is give it the path or URL to a .torrent file. This code will download the classic B-movie
Night of the Living Dead to the current working directory:

 require 'rubytorrent'
 file = 'http://publicdomaintorrents.com/bt/btdownload.php?type=torrent' +
 '&file=Night_of_the_Living_Dead.avi.torrent'
 client = RubyTorrent::BitTorrent.new(file)

Run this in irb, keep your session open, and in a few hours (or days), you'll have your
movie![4]

[4] That is, assuming the torrent is still active when you read this. Incidentally, Night of the Living Dead is in the public domain because of a mishap regarding the
copyright notice.

Discussion
BitTorrent is the most efficient way yet devised for sharing large files between lots of
people. As you download the file you're also sharing what you've downloaded with others:
the more people are trying to download the file, the faster it is for everyone.

RubyTorrent is a simple client library to the BitTorrent protocol. In its simplest form, you
simply construct a BitTorrent object with the URL or path to a torrent information file,
and wait for the download to complete. However, there's a lot more you can do to provide
a better user interface.

Chapter 14. Internet Services Page 31 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The BitTorrent object has several methods that let you keep track of the progress of the
download:

 client.num_active_peers # => 9
 # That is, 9 other people are downloading this file along with me.

 client.ulrate # => 517.638825414351
 client.dlrate # => 17532.608916979
 # That is, about 3 kb/sec uploading and 17 kb/sec downloading.

 client.percent_completed # => 0.25

You can also register code blocks to be run at certain points in the client's lifecycle. Here's
a more advanced BitTorrent client that registers code blocks to let the user know about
new and dropped peer connections. It also uses a thread to occasionally report on the
progress of the download. The user can specify which port to use when uploading data to
peers, and a maximum upload rate in kilobytes.

 #!/usr/bin/ruby
 # btclient.rb
 require 'rubytorrent'

 def download(torrent, destination=nil, local_port=6881, max_ul=40)
 client = RubyTorrent::BitTorrent.new(torrent, destination,
 :port => local_port,
 :ulratelim => max_ul * 1024)

 thread = Thread.new do
 until client.complete?
 if client.tracker
 puts '%s: %dk of %dk (%.2f%% complete)' % [Time.now,
 client.bytes_completed / 1024, client.total_bytes / 1024,
 client.percent_completed]
 sleep(60)
 else
 sleep(5)
 end
 end
 end

 client.on_event(self, :tracker_connected) do |src, url|
 puts "[Connected to tracker at #{url}]"
 end
 client.on_event(self, :added_peer) do |src, peer|
 puts "[Connected to #{peer}.]"
 end
 client.on_event(self, :removed_peer) do |src, peer|
 puts "[Lost connection to #{peer.name}.]"
 end
 client.on_event(self, :complete) do
 puts 'Download complete.'
 thread.kill
 client.shutdown
 end

 thread.join
 end

 download(*ARGV)

Chapter 14. Internet Services Page 32 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Get RubyTorrent at http://rubytorrent.rubyforge.org/; see especially the API
reference at http://rubytorrent.rubyforge.org/api.txt

• The btpeer.rb and rtpeer-ncurses.rb files in the RubyTorrent package provide
more in-depth client examples

• A few sources for interesting BitTorrent files:
o http://www.publicdomaintorrents.com/
o http://torrent.ibiblio.org/

Recipe 14.13. Pinging a Machine

Problem
You want to check whether a particular machine or domain name can be reached from
your computer.

Solution
Use Ruby's standard ping library. Its single method, Ping.pingecho, tries to get some
machine on the network to respond to its entreaties. It takes either a domain name or an
IP address, and returns true if it gets a response.

 require 'ping'

 ping.pingecho('oreilly.com') # => true

 # timeout of 10 seconds instead of the default 5 seconds
 Ping.pingecho('127.0.0.1', 10) # => true
 # ping port 80 instead of the default echo port
 Ping.pingecho('slashdot.org', 5, 80) # => true

 Ping.pingecho('no.such.domain') # => false
 Ping.pingecho('222.222.222.222') # => false

Discussion
Ping.pingecho performs a TCP echo: it tries to make a TCP connection to the given
machine, and if the machine responds (even if to refuse the connection) it means the
machine was reachable.

This is not the ICMP echo of the Unix ping command, but the difference almost never
matters. If you absolutely need an ICMP echo, you can invoke ping with a system call and
check the return value:

 system('ping -c1 www.oreilly.com')
 # 64 bytes from 208.201.239.36: icmp_seq=0 ttl=42 time=27.2 ms

Chapter 14. Internet Services Page 33 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubytorrent.rubyforge.org/
http://rubytorrent.rubyforge.org/api.txt
http://www.publicdomaintorrents.com/
http://torrent.ibiblio.org/

 #
 # --- www.oreilly.com ping statistics --
 # 1 packets transmitted, 1 packets received, 0% packet loss
 # round-trip min/avg/max = 27.2/27.2/27.2 ms
 # => true

If the domain has a DNS entry but can't be reached, Ping::pingecho may raise a
Timeout::Error instead of returning false.

Some very popular or very paranoid domains, such as microsoft.com, don't respond to
incoming ping requests. However, you can usually access the web server or some other
service on the domain. You can see whether such a domain is reachable by using one of
Ruby's other libraries:

 ping.pingecho('microsoft.com') # => false

 require 'net/http'
 Net::HTTP.start('microsoft.com') { 'success!' } # => "success!"
 Net::HTTP.start('no.such.domain') { "success!" }
 # SocketError: getaddrinfo: Name or service not known

Recipe 14.14. Writing an Internet Server

Problem
You want to run a server for a TCP/IP application-level protocol, but no one has written a
Ruby server for the protocol yet. This may be because it's a protocol you've made up.

Solution
Use the gserver library in Ruby's standard library. It implements a generic TCP/IP server
suitable for small to medium-sized tasks.

Here's a very simple chat server written with gserver. It has no end-user features to speak
of. People connect to the server with a telnet client, and are identified to each other only
by hostname. But it's a fully functional, multithreaded, logging server written in about 30
lines of Ruby.

 #!/usr/bin/ruby -w
 # chat.rb
 require 'gserver'

 class ChatServer < GServer

 def initialize(port=20606, host=GServer::DEFAULT_HOST)
 @clients = []
 super(port, host, Float::MAX, $stderr, true)
 end

 def serve(sock)
 begin
 @clients << sock

Chapter 14. Internet Services Page 34 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 hostname = sock.peeraddr[2] || sock.peeraddr[3]
 @clients.each do |c|
 c.puts "#{hostname} has joined the chat." unless c == sock
 end
 until sock.eof? do
 message = sock.gets.chomp
 break if message == "/quit"
 @clients.each { |c| c.puts "#{hostname}: #{message}" unless c == sock }
 end
 ensure
 @clients.delete(sock)
 @clients.each { |c| c.puts "#{hostname} has left the chat." }
 end
 end
 end

 server = ChatServer.new(*ARGV[0..2] || 20606)
 server.start(-1)
 server.join

Start the server in a Ruby session, and then use several instances of the telnet program to
connect to port 20606 (from several different hosts, if you can). Your telnet sessions will
be able to communicate with each other through the server. Your Ruby session will see a
log of the connections and disconnections.

Discussion
The GServer class wraps Ruby's underlying TCPServer class in a loop that continually
receives TCP connections and spawns new threads to process them. Each new thread
passes its TCP connection (a TCPSocket object) into the GServer#serve method, which
your subclass is responsible for providing.

The TCPSocket works like a bidirectional file. Writing to it pushes data to the client, and
reading from it reads data from the client. A server like the sample chat server reads one
line at a time from the client; a web server would read the entire request before sending
back any data.

In the chat server example, the server echoes one client's input to all the others. In most
applications, the client sockets won't even know about each other (think a web or FTP
server).

The GServer constructor deserves a closer look. Here's its signature, from
gserver.rb:

 def initialize(port, host = DEFAULT_HOST, maxConnections = 4,
 stdlog = $stderr, audit = false, debug = false)

The port and host should be familiar to you from other types of server. maxConnections
controls the maximum number of clients that can connect to the server at once. Because
a chat server is very high-latency, I set the number effectively to infinity in
ChatServer.

Chapter 14. Internet Services Page 35 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

stdlog is an IO object to be used as a log. You can write a timestamped entry to the log
by calling GServer#log. Setting audit to true turns on some default log messages: these
are displayed, for instance, whenever a client connects to or disconnects from the server.
Finally, setting debug to true means that, if your code throws an exception, the exception
object will be passed into GServer#error. You can override this method to do your own
error handling.

Gserver is easy to use, but not as efficient as a Ruby Internet server could be. For high-
performance servers, you'll want to use IO.select and TCPServer objects,
programming to the C sockets API.

See Also

• ri GServer

Recipe 14.15. Parsing URLs

Problem
You want to parse a string representation of a URL into a data structure that articulates
the parts of the URL.

Solution
URI.parse transforms a string describing a URL into a URI object.[5] The parts of the URL
can be determined by interrogating the URI object.

[5] The class name is URI, but I use both "URI" and "URL" because they are more or less interchangeable.

 require 'uri'

 URI.parse('https://www.example.com').scheme # => "https"
 URI.parse('http://www.example.com/').host # => "www.example.com"
 URI.parse('http://www.example.com:6060/').port # => 6060
 URI.parse('http://example.com/a/file.html').path # => "/a/file.html"

URI.split transforms a string into an array of URL parts. This is more efficient than
URI.parse, but you have to know which parts correspond to which slots in the array:

 URI.split('http://example.com/a/file.html')
 # => ["http", nil, "example.com", nil, nil, "/a/file.html", nil, nil, nil]

Chapter 14. Internet Services Page 36 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The URI module contains classes for five of the most popular URI schemas. Each one can
store in a structured format the data that makes up a URI for that schema. URI.parse
creates an instance of the appropriate class for a particular URL's scheme.

Every URI can be decomposed into a set of components, joined by constant strings. For
example: the components for a HTTP URI are the scheme ("http"), the hostname
("www.example.com (http://www.example.com)"), and so on. Each URI schema has its
own components, and each of Ruby's URI classes stores the names of its components in
an ordered array of symbols, called component:

 URI::HTTP.component
 # => [:scheme, :userinfo, :host, :port, :path, :query, :fragment]

 URI::MailTo.component
 # => [:scheme, :to, :headers]

Each of the components of a URI class has a corresponding accessor method, which you
can call to get one component of a URI. You can also instantiate a URI class directly (rather
than going through URI.parse) by passing in the appropriate component symbols as a
map of keyword arguments.

 URI::HTTP.build(:host => 'example.com', :path => '/a/file.html',
 :fragment => 'section_3').to_s
 # => "http://example.com/a/file.html#section_3"

The following debugging method iterates over the components handled by the scheme of
a given URI object, and prints the corresponding values:

 class URI::Generic
 def dump
 component.each do |m|
 puts "#{m}: #{send(m).inspect}"
 end
 end
 end

URI::HTTP and URI::HTTPS are the most commonly encountered subclasses of URI,
since most URIs are the URLs to web pages. Both classes provide the same interface.

 url = 'http://leonardr:pw@www.subdomain.example.com:6060' +
 '/cgi-bin/mycgi.cgi?key1=val1#anchor'
 URI.parse(url).dump
 # scheme: "http"
 # userinfo: "leonardr:pw"
 # host: "www.subdomain.example.com"
 # port: 6060
 # path: "/cgi-bin/mycgi.cgi"
 # query: "key1=val1"
 # fragment: "anchor"

Chapter 14. Internet Services Page 37 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.example.com
http://www.example.com

A URI::FTP object represents an FTP server, or a path to a file on an FTP server. The
typecode component indicates whether the file in question is text, binary, or a directory;
it typically won't be known unless you create a URI::FTP object and specify one.

 URI::parse('ftp://leonardr:password@ftp.example.com/a/file.txt').dump
 # scheme: "ftp"
 # userinfo: "leonardr:password"
 # host: "ftp.example.com"
 # port: 21
 # path: "/a/file.txt"
 # typecode: nil

A URI::Mailto represents an email address, or even an entire message to be sent to that
address. In addition to its component array, this class provides a method
(to_mailtext) that formats the URI as an email message.

 uri = URI::parse('mailto:leonardr@example.com?Subject=Hello&body=Hi!')
 uri.dump
 # scheme: "mailto"
 # to: "leonardr@example.com"
 # headers: [["Subject", "Hello"], ["body", "Hi!"]]

 puts uri.to_mailtext
 # To: leonardr@example.com
 # Subject: Hello
 #
 # Hi!

A URI::LDAP object contains a path to an LDAP server or a query against one:

 URI::parse("ldap://ldap.example.com").dump
 # scheme: "ldap"
 # host: "ldap.example.com"
 # port: 389
 # dn: nil
 # attributes: nil
 # scope: nil
 # filter: nil
 # extensions: nil

 URI::parse('ldap://ldap.example.com/o=Alice%20Exeter,c=US?extension').dump
 # scheme: "ldap"
 # host: "ldap.example.com"
 # port: 389
 # dn: "o=Alice%20Exeter,c=US"
 # attributes: "extension"
 # scope: nil
 # filter: nil
 # extensions: nil

The URI::Generic class, superclass of all of the above, is a catch-all class that holds URIs
with other schemes, or with no scheme at all. It holds much the same components as
URI::HTTP, although there's no guarantee that any of them will be non-nil for a given
URI::Generic object.

Chapter 14. Internet Services Page 38 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

URI::Generic also exposes two other components not used by any of its built-in sub-
classes. The first is opaque, which is the portion of a URL that couldn't be parsed (that is,
everything after the scheme):

 uri = URI.parse('tag:example.com,2006,my-tag')
 uri.scheme # => "tag"
 uri.opaque # => "example.com,2006,my-tag"

The second is registry, which is only used for URI schemes whose naming authority is
registry-based instead of server-based. It's likely that you'll never need to use
registry, since almost all URI schemes are server-based (for instance, HTTP, FTP, and
LDAP all use the DNS system to designate a host).

To combine the components of a URI object into a string, simply call to_s:

 uri = URI.parse('http://www.example.com/#anchor')
 uri.port = 8080
 uri.to_s # => "http://www.example.com:8080/#anchor"

See Also

• Recipe 11.13, "Extracting All the URLs from an HTML Document"
• ri URI

Recipe 14.16. Writing a CGI Script

Credit: Chetan Patil

Problem
You want to expose Ruby code through an existing web server, without having to do any
special configuration.

Solution
Most web servers are set up to run CGI scripts, and it's easy to write CGI scripts in Ruby.
Here's a simple CGI script that calls the Unix command ps, parses its results, and outputs
the list of running processes as an HTML document.[6] Anyone with access to the web server
can then look at the processes running on the system.

[6] On Windows, you could do this example by running some other command such as dir, listing the running Windows services as seen in Recipe 23.2, or just printing
a static message.

 #!/usr/bin/ruby

Chapter 14. Internet Services Page 39 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-13#rubyckbk-CHP-11-SECT-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-2#rubyckbk-CHP-23-SECT-2

 # ps.cgi

 processes = %x{ps aux}.collect do |proc|
 '<tr><td>' + proc.split(/\s+/, 11).join('</td><td>') + '</td></tr>'
 end

 puts 'Content-Type: text/html'
 # Output other HTTP headers here…
 puts "\n"

 title = %{Processes running on #{ENV['SERVER_NAME'] || `hostname`.strip}}
 puts <<-end
 <HTML>
 <HEAD><TITLE>#{title}</TITLE></HEAD>
 <BODY>
 <H1>#{title}</H1>
 <TABLE>
 #{processes.join("\n")}
 </TABLE>
 </BODY>
 </HTML>
 end

 exit 0

Discussion
CGI was the first major technology to add dynamic elements to the previously static Web.
A CGI resource is requested like any static HTML document, but behind the scenes the
web server executes an external program (in this case, a Ruby script) instead of serving a
file. The output of the program—text, HTML, or binary data—is sent as part of the HTTP
response to the browser.

CGI has a very simple interface, based on environment variables and standard input and
output; one that should be very familiar to writers of command-line programs. This
simplicity is CGI's weakness: it leaves too many things undefined. But when a Rails
application would be overkill, a CGI script might be the right size.

CGI programs typically reside in a special directory of the web server's web space (often
the /cgi-bin directory). On Unix systems, CGI files must be made executable by the web
server, and the first line of the script must point to the system's Ruby interpreter
(usually /usr/bin/ruby or /usr/local/bin/ruby).

A CGI script gets most of its input from environment variables like QUERY_STRING and
PATH_INFO, which are set by the web server. The web server also uses environment
variables to tell the script where and how it's being run: note how the sample script uses
ENV['SERVER_NAME'] to find the machine's hostname for display.

There are only a few restrictions on the output of a CGI script. Before the "real" output,
you need to send some HTTP headers. The only required header is Content-Type, which
tells the browser what MIME type to expect from the document the CGI is going to output.

Chapter 14. Internet Services Page 40 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is also your chance to set other HTTP headers, such as Contentlength, Expires,
Location, Pragma, and Status.

The headers are separated from the content by a blank line. If the blank line is missing,
the server may incorrectly interpret the entire data stream as a HTTP header—a leading
cause of errors. Other possible problems include:

• The first line of the file contains the wrong path to the Ruby executable.
• The permissions on the CGI script don't allow the web server to access or execute it.
• You used binary mode FTP to upload the script to your server from another platform,

and the server doesn't understand that platform's line endings: use text mode FTP
instead.

• The web server is not configured to run Ruby scripts as CGI, or to run CGI scripts at
all.

• The script contains a compile error. Try running it manually from the command line.

If you get the dreaded error "premature end of script headers" from your web server, these
issues are the first things to check.

Newer versions of Ruby include the CGI support library cgi. Except for extremely simple
CGIs, it's better to use this library than to simply write HTML to standard output. The CGI
class makes it easy to retrieve HTTP request parameters and to manage cookies. It also
provides custom methods for generating HTML, using Ruby code that has the same
structure as the eventual output.

Here's the code from ps.cgi, rewritten to use the CGI class. Instead of writing HTML,
we make the CGI class do it. CGI also takes care of the content type, since we're using the
default (text/html).

 #!/usr/bin/ruby
 # ps2.cgi

 require 'cgi'

 # New CGI object
 cgi = CGI.new('html3')
 processes = `ps aux`.collect { |proc| proc.split(/\s+/, 11) }

 title = %{Processes running on #{ENV['SERVER_NAME'] || %x{hostname}.strip}}

 cgi.out do
 cgi.html do
 cgi.head { cgi.title { title } } + cgi.body do
 cgi.table do
 (processes.collect do |fields|
 cgi.tr { fields.collect { |field| cgi.td { field } }.join " " }
 end).join "\n"
 end
 end
 end
 end

 exit 0

Chapter 14. Internet Services Page 41 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Since CGI allows any user to execute an external CGI program on your web server, security
is of paramount importance. Popular CGI hacks include corrupting the program's input
by inserting special characters in the QUERY_STRING, stealing confidential user data by
modifying the parameters posted to the CGI program, and launching denial-of-service
attacks to render the web server inoperable. CGI programs need to be carefully inspected
for possible bugs and exploits. A few simple techniques will improve your security: call
taint on external data, set your $SAFE variable to 1 or higher, and don't use methods like
eval, system, or popen unless you have to.

See Also

• The CGI documentation (http://hoohoo.ncsa.uiuc.edu/cgi/), especially the list of
environment variables (http://hoohoo.ncsa.uiuc.edu/cgi/env.html)

• Recipe 14.17, "Setting Cookies and Other HTTP Response Headers"
• Recipe 14.18, "Handling File Uploads via CGI"
• Chapter 15

Recipe 14.17. Setting Cookies and Other HTTP Response Headers

Credit: Mauro Cicio

Problem
You're writing a CGI program and you want to customize the HTTP headers you send in
response to a request. For instance, you may want to set a client-side cookie so that you
can track state between HTTP requests.

Solution
Pass a hash of headers into the CGI#out method that creates the HTTP response. Each
key of the hash is the name of a header to set, or a special value (like cookie), which the
CGI class knows how to interpret.

Here's a CGI script that demonstrates how to set some response headers, including a cookie
and a custom HTTP header called "Recipe Name".

First we process any incoming cookie. Every time you hit this CGI, the value stored in your
cookie will be incremented, and the date of your last visit will be reset.

 #!/usr/bin/ruby
 # headers.cgi

Chapter 14. Internet Services Page 42 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://hoohoo.ncsa.uiuc.edu/cgi/
http://hoohoo.ncsa.uiuc.edu/cgi/env.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15#rubyckbk-CHP-15

 require "cgi"
 cgi = CGI.new("html3")

 # Retrieve or create the "rubycookbook" cookie
 cookie = cgi.cookies['rubycookbook']
 cookie = CGI::Cookie.new('rubycookbook', 'hits=0',
 "last=#{Time.now}") if cookie.empty?

 # Read the values in the cookie for future use
 hits = cookie.value[0].split('=')[1]
 last = cookie.value[1].split('=')[1]

 # Set new values in the cookie
 cookie.value[0] = "hits=#{hits.succ}"
 cookie.value[1] = "last=#{Time.now}"

Next, we build a hash of HTTP headers, and send the headers by passing the hash into
CGI#out. We then generate the output document. Since the end user doesn't usually see
the HTTP headers they're served, we'll make them visible by repeating them in the output
document (Figure 14-1):

 # Create a hash of HTTP response headers.
 header = { 'status' => 'OK',
 'cookie' => [cookie],
 'Refresh' => 2,
 'Recipe Name' => 'Setting HTTP Response Headers',
 'server' => ENV['SERVER_SOFTWARE'] }

 cgi.out(header) do
 cgi.html('PRETTY' => ' ') do
 cgi.head { cgi.title { 'Setting HTTP Response Headers' } } +
 cgi.body do
 cgi.p('Your headers:') +
 cgi.pre{ cgi.header(header) } +
 cgi.pre do
 "Number of times your browser hit this cgi: #{hits}\n"+
 "Last connected: #{last}"
 end
 end
 end
 end

Chapter 14. Internet Services Page 43 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 14-1. This CGI lets you see the response headers, including the cookie

The Refresh header makes your web browser refresh the page every two seconds. You
can visit this CGI once and watch the number of hits (stored in the client-side cookie) start
to mount up.

Discussion
An HTTP Response consists of two sections (a header section and a body section) separated
by a blank line. The body contains the document to be rendered by the browser (usually
an HTML page) and the header carries metadata: information about the connection, the
response, and the document itself. The CGI#out method takes a hash representing the
HTTP headers, and a code block that generates the body.

CGI#out recognizes a few special values that make it easier to set custom headers. For
instance, the header hash in the example above maps the key "cookie" to a CGI::Cookie
object. CGI#out knows enough to turn cookie into the standard HTTP header Set-
Cookie, and to transform the CGI::Cookie object into a string rendition.

If CGI#out doesn't know about a certain key, it simply sends it as an HTTP header, as-is.
CGI#out has no special knowledge of our "Refresh" and "Recipe Name" headers, so it
writes them verbatim to the HTTP response. "Refresh" is a standard HTTP response
header recognized by most web browsers; "Recipe Name" is a header I made up for this
recipe, and web browsers should ignore it.

See Also

• The CGI documentation (http://www.ruby-doc.org/core/classes/CGI.html),
especially the list of recognized header keys and status codes

Chapter 14. Internet Services Page 44 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-doc.org/core/classes/CGI.html

Recipe 14.18. Handling File Uploads via CGI

Credit: Mauro Cicio

Problem
You want to let a visitor to your web site upload a file to the web server, either for storage
or processing.

Solution
The CGI class provides a simple interface for accessing data sent through HTTP file upload.
You can access an uploaded file through CGI#params as though it were any other CGI
form variable.

If the uploaded file size is smaller than 10 kilobytes, its contents are made available as a
StringIO object. Otherwise, the file is put into a Tempfile on disk: you can read the file
from disk and process it, or move it to a permanent location.

Here's a CGI that accepts file uploads and saves the files to a special directory on disk:

 #!/usr/bin/ruby
 # upload.rb

 # Save uploaded files to this directory
 UPLOAD_DIR = "/usr/local/www/uploads"

 require 'cgi'
 require 'stringio'

The CGI has two main parts: a method that prints a file upload form and a method that
processes the results of the form. The method that prints the form is very simple:

 def display_form(cgi)
 action = env['script_name']
 return <<EOF
 <form action="#{action}" method="post" enctype="multipart/form-data">
 File to Upload: <input type="file" name="file_name">

 Your email address: <input type="text" name="email_address"
 value="guest@example.com">

 <input type="submit" name="Submit" value="Submit Form">
 </form>
 EOF
 end

The method that processes the form is a little more complex:

 def process_form(cgi)
 email = cgi.params['email_address'][0]

Chapter 14. Internet Services Page 45 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 fileObj = cgi.params['file_name'][0]

 str = '<h1>Upload report</h1>' +
 "<p>Thanks for your upload, #{email.read}</p>"
 if fileObj
 path = fileObj.original_filename
 str += "Original Filename : #{path}" + cgi.br
 dest = File.join(UPLOAD_DIR, sanitize_filename(path))

 str += "Destination : #{dest}
"
 File.open(dest.untaint, 'wb') { |f| f << fileObj.read }

 # Delete the temporary file if one was created
 local_temp_file = fileObj.local_path()
 File.unlink(local_temp_file) if local_temp_file
 end
 return str
 end

The process_form method calls a method sanitize_filename to pick a new filename
based on the original. The new filename is stripped of characters in the upload file's name
that aren't valid on the server's filesystem. This is important for security reasons. It's also
important to pick a new name because Internet Explorer on Windows submits filenames
like "c:\hot\fondue.txt" where other browsers would submit "fondue.txt". We'll define that
method now:

 def sanitize_filename(path)
 if RUBY_PLATFORM =~ %r{unix|linux|solaris|freebsd}
 # Not required for unix platforms since all characters
 # are allowed (except for /, which is stripped out below).
 elsif RUBY_PLATFORM =~ %r{win32}
 # Replace illegal characters for NTFS with _
 path.gsub!(/[\x00-\x1f\/|?*]/,'_')
 else
 # Assume a very restrictive OS such as MSDOS
 path.gsub!(/[\/|\?*+\]\[\x00-\x1fa-z]/,'_')
 end

 # For files uploaded by Windows users, strip off the beginning path.
 return path.gsub(/^.*[\\\/]/, '')
 end

Finally we have the CGI code itself, which calls the appropriate method and prints out the
results in an HTML page:

 cgi = CGI.new('html3')
 if cgi.request_method !~ %r{POST}
 buf = display_form(cgi)
 else
 buf = process_form(cgi)
 end
 cgi.out() do
 cgi.html() do
 cgi.head{ cgi.title{'Upload Form'} } + cgi.body() { buf }
 end
 end

 exit 0

Chapter 14. Internet Services Page 46 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
This CGI script presents the user with a form that lets them choose a file from their local
system to upload. When the form is POSTed, CGI accepts the uploaded file data and stores
it as a CGI parameters. As with any other CGI parameter (like email_address), the
uploaded file is keyed off of the name of the HTML form element: in this case,
file_name.

If the file is larger than 10 kilobytes, it will be written to a temporary file and the contents of
CGI[:file_name] will be a Tempfile object. If the file is small, it will be kept directly
in memory as a StringIO object. Either way, the object will have a few methods not found
in normal Tempfile or StringIO objects. The most useful of these are
original_filename, content_type, and read.

The original_filename method returns the name of the file, as seen on the computer
of the user who uploaded it. The content_type method returns the MIME type of the
uploaded file, again as estimated by the computer that did the upload. You can use this to
restrict the types of file you'll accept as uploads (note, however, that a custom client can
lie about the content type):

 # Limit uploads to BMP files.
 raise 'Wrong type!' unless fileObj.content_type =~ %r{image/bmp}

Every StringIO object supports a read method that simply returns the contents of the
underlying string. For the sake of a uniform interface, a Tempfile object created by file
upload also has a read method that returns the contents of a file. For most applications,
you don't need to check whether you've got a StringIO or a Tempfile: you can just call
read and get the data. However, a Tempfile can be quite large—there's a reason it was
written to disk in the first place—so don't do this unless you trust your users or have a lot
of memory. Otherwise, check the size of a Tempfile with File.size and read it a block
at a time.

To see where a Tempfile is located on disk, call its local_path method. If you plan to
write the uploaded file to disk, it's more efficient to move a Tempfile with
FileUtils.mv than to read it into memory and immediately write it back to another
location.

Temporary files are deleted when the Ruby interpreter exits, but some web frameworks
keep a single Ruby interpreter around indefinitely. If you're not careful, a long-running
application can fill up your disk or partition with old temporary files. Within a CGI script,
you should explicitly delete temporary files when you're done with them—except, of course,
the ones you move to permanent positions elsewhere on the filesystem.

Chapter 14. Internet Services Page 47 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• RFC1867 describes HTTP file upload
• For more on the StringIO and Tempfile classes used to store uploaded files, see

Recipe 6.8, "Writing to a Temporary File," and Recipe 6.15, "Pretending a String Is a
File"

• http://wiki.rubyonrails.com/rails/pages/HowtoUploadFiles

Recipe 14.19. Running Servlets with WEBrick

Credit: John-Mason Shackelford

Problem
You want to embed a server in your Ruby application. Your project is not a traditional web
application, or else it's too small to justify the use of a framework like Rails or Nitro.

Solution
Write a custom servlet for WEBrick, a web server implemented in Ruby and included in
the standard library.[7]

[7] Don't confuse WEBrick servlets with Java servlets. The concepts are similar, but they don't implement the same API.

Configure WEBrick by creating a new HTTPServer instance and mouting servlets. The
default FileHandler acts like a "normal" web server: it serves a URL-space
corresponding to a directory on disk. It delegates requests for *.cgi files to the
CGIHandler, renders *.rhtml files with ERb using the ERBHandler servlet, and serves
other files (such as static HTML files) as they are.

This server mounts three servlets on a server running on port 8000 on your local machine.
Each servlet serves documents, CGI scripts, and .rhtml templates from a different
directory on disk:

 #!/usr/bin/ruby
 # simple_servlet_server.rb
 require 'webrick'
 include WEBrick

 s = HTTPServer.new(:Port => 8000)
 # Add a mime type for *.rhtml files
 HTTPUtils::DefaultMimeTypes.store('rhtml', 'text/html')

 # Required for CGI on Windows; unnecessary on Unix/Linux
 s.config.store(:CGIInterpreter, "#{HTTPServlet::CGIHandler::Ruby}")

Chapter 14. Internet Services Page 48 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-8#rubyckbk-CHP-6-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-15#rubyckbk-CHP-6-SECT-15
http://wiki.rubyonrails.com/rails/pages/HowtoUploadFiles

 # Mount servlets
 s.mount('/', HTTPServlet::FileHandler, '/var/www/html')
 s.mount('/bruce', HTTPServlet::FileHandler, '/home/dibbbr/htdoc')
 s.mount('/marty', HTTPServlet::FileHandler, '/home/wisema/htdoc')

 # Trap signals so as to shutdown cleanly.
 ['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
 end

 # Start the server and block on input.
 s.start

Discussion
WEBrick is robust, mature, and easy to extend. Beyond serving static HTML pages,
WEBrick supports traditional CGI scripts, ERb-based templating like PHP or JSP, and
custom servlet classes. While most of WEBrick's API is oriented toward responding to
HTTP requests, you can also use it to implement servers that speak another protocol. (For
more on this capability, see the Daytime server example on the WEBrick home page.)

The first two arguments to HTTPServer#mount (the mount directory and servlet class)
are used by the mount method itself; any additional arguments are simply passed along
to the servlet. This way, you can configure a servlet while you mount it; the FileHandler
servlet requires an argument telling it which directory on disk contains the web content.

When a client requests a URL, WEBrick tries to match it against the entries in its mounting
table. The mounting order is irrelevant. Where multiple mount locations might apply to a
single directory, WEBrick picks the longest match.

When the request is for a directory (like http://localhost/bruce/), the server looks for the
files index.html, index.htm, index.cgi, or index.rhtml. This is configurable via
the :DirectoryIndex configuration parameter. The snippet below adds another file to
the list of directory index files:

 s.config.store(:DirectoryIndex,
 s.config[:DirectoryIndex] << "default.htm")

When the standard handlers provided by WEBrick won't work for you, write a custom
servlet. Rubyists have written custom WEBrick servlets to handle SOAP and XML-RPC
services, implement a WebDAV server, process eruby templates instead of ERb templates,
and fork processes to distribute load on machines with multiple CPUs.

To write your own WEBrick servlet, simply subclass
HTTPServlet::AbstractServlet and write do_ methods corresponding to the HTTP
methods you wish to handle. Then mount your servlet class as shown in the Solution. The

Chapter 14. Internet Services Page 49 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

following example handles HTTP GET requests via the do_GET method, and POSTs via
an alias. HEAD and OPTIONS requests are implemented in the AbstractServlet itself.

 #!/usr/bin/ruby
 # custom_servlet_server.rb
 require 'webrick'
 include WEBrick

 class CustomServlet < HTTPServlet::AbstractServlet
 def do_GET(request, response)
 response.status = 200 # Success
 response.body = "Hello World"
 response['Content-Type'] = 'text/plain'
 end

 # Respond with an HTTP POST just as we do for the HTTP GET.
 alias :do_POST :do_GET
 end

 # Mount servlets.
 s = HTTPServer.new(:Port => 8001)
 s.mount('/tricia', CustomServlet)

 # Trap signals so as to shutdown cleanly.
 ['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
 end

 # Start the server and block on input.
 s.start

Start that server, visit http://localhost:8001/tricia/, and you'll see the string "Hello
World".

Beyond defining handlers for arbitrary HTTP methods and configuring custom servlets
with mount options, we can also control how often servlet instances are initialized.
Ordinarily, a new servlet instance is instantiated for every request. Since each request has
its own instance of the servlet class, you are free to write custom servlets without worrying
about the servlet's state and thread safety (unless, of course, you share resources between
servlet instances).

But you can get faster request handling—at the expense of a slower startup time—by
moving some work out of the do_ methods and into the sevlet's initialize method.
Instead of creating a new servlet instance with every request, you can override the class
method HTTPServlet::AbstractServlet.get_instance and manage a pool of
servlet instances. This works especially well when your request handling methods are
reentrant, so that you can avoid cost costly thread synchronization.

The following example uses code from Recipe 12.13 to serve up a certificate of completion
to the individual named by the HTTP request. We use the templating approach discussed
in the PDF recipe to prepare most of the certificate ahead of time. During request handling,
we do nothing but fill in the recipient's name.

Chapter 14. Internet Services Page 50 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-13#rubyckbk-CHP-12-SECT-13

The PooledServlet class below does the work of pooling the servlet handlers:

 #!/usr/bin/ruby
 # certificate_server.rb
 require 'webrick'
 require 'thread'
 require 'cgi'

 include WEBrick

 class PooledServlet < HTTPServlet::AbstractServlet

 INIT_MUTEX = Mutex.new
 SERVLET_POOL = []

 @@pool_size = 2

 # Create a single instance of the servlet to avoid repeating the costly
 # initialization.
 def self.get_instance(config, *options)
 unless SERVLET_POOL.size == @@pool_size
 INIT_MUTEX.synchronize do
 SERVLET_POOL.clear
 @@pool_size.times{ SERVLET_POOL << new(config, *options) }
 end
 end
 s = SERVLET_POOL.find{|s| ! s.busy?} while s.nil?
 return s
 end

 def self.pool_size(size)
 @@pool_size = size
 end

 def busy?
 @busy
 end

 def service(req, res)
 @busy = true
 super
 @busy = false
 end
 end

Note that by placing the synchronize block within the unless block, we expose
ourselves to the possibility that, when the server first starts up, the servlet pool may be
initialized more than once. But it's not really a problem if that does happen, and if we put
the synchronize block there we don't have to synchronize on every single request.

You've heard it before: "Avoid premature optimization." Assumptions about the impact of
the servlet pool size on memory consumption and performance often prove to be wrong,
given the complexities introduced by garbage collection and the variation in the efficiency
of various operations on different platforms. Code first, tune later.

Here's the application-specific code. The file certificate_pdf.rb should contain the
Certificate class defined in the Discussion of Recipe 12.13.

When the servlet is initialized, we generate the PDF certificate, leaving the name blank:

Chapter 14. Internet Services Page 51 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-13#rubyckbk-CHP-12-SECT-13

 require 'certificate_pdf'

 class PDFCertificateServlet < PooledServlet

 pool_size 10

 def initialize(server, *options)
 super
 @certificate = Certificate.new(options.first)
 end

When the client makes a request, we load the certificate, fill in the name, and send it as
the body of the HTTP response:

 def do_GET(request, response)
 if name = request.query['name']
 filled_in = @certificate.award_to(CGI.unescape(name))

 response.body = filled_in.render
 response.status = 200 # Success
 response['Content-Type'] = 'application/pdf'
 response['Size'] = response.body.size
 else
 raise HTTPStatus::Forbidden.new("missing attribute: 'name'")
 end
 end

The rest of the code should look familiar by now:

 # Respond with an HTTP POST just as we do for the HTTP GET
 alias :do_POST :do_GET
 end

 # Mount servlets
 s = HTTPServer.new(:Port => 8002)
 s.mount('/', PDFCertificateServlet, 'Ruby Hacker')

 # Trap signals so as to shutdown cleanly.
 ['TERM', 'INT'].each do |signal|
 trap(signal){ s.shutdown }
 end
 # Start the server and block on input.
 s.start

Start this server, and you can visit http://localhost:8002/?name=My+Name to get a
customized PDF certificate.

The code above illustrates many other basic features of WEBrick: access to request
parameters, servlet configuration at mount time, use of a servlet pool to handle expensive
operations up front, and error pages.

Besides HTTPStatus::Forbidden, demonstrated above, WEBrick provides exceptions
for each of the HTTP 1.1 status codes. The classes are not listed in the RDoc, but you can
infer them from HTTPStatus::StatusMessage table. The class names correspond to
the names given in the WC3 reference listed below.

Chapter 14. Internet Services Page 52 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 12.13, "Generating PDF Files," for the CertificatePDF class used by the
certificate server

• WEBrick's web site (http://webrick.org/) offers a number of examples as well as links
to related libraries

• Mongrel is an up-and-coming Ruby web server that might be the next WEBrick
(http://mongrel.rubyforge.org/)

• The RDoc is available online at http://www.ruby-doc.org/stdlib/libdoc/webrick/
rdoc/index.html

• Gnome's Guide to WEBrick at http://microjet.ath.cx/webrickguide/html/
html_webrick.html provides the most comprehensive coverage of WEBrick beyond
the RDoc and the source itself; the Guide is available in both html and PDF formats

• Eric Hodel has written a couple of short articles on WEBrick servlets and working
with HTTP cookies (http://segment7.net/projects/ruby/WEBrick/index.html)

• An article on the Linux Journal web site, "At the Forge—Getting Started with Ruby,"
provides a basic introduction to Ruby CGI and WEBrick servlets (http://
www.linuxjournal.com/article/8356)

• For a complete list of HTTP 1.1 status codes and explanations as to what they mean, see
http://www.w.org/Protocols/rfc2616/rfc2616-sec10.html

Recipe 14.20. A Real-World HTTP Client
The first three recipes in this chapter cover different ways of fetching web pages. The
techniques they describe work well if you just need to fetch one specific web page, but in
the interests of simplicity they omit some details you'll need to consider when writing a
web spider, a web browser, or any other serious HTTP client. This recipe creates a library
that deals with the details.

Mixed HTTP and HTTPS

Any general client will have to be able to make both HTTP and HTTPS requests. But
the simple Net:HTTP methods that work in Recipe 14.1 can't be used to make HTTPS
requests. Our library will use use HTTPRequest objects for everything. If the user
requests a URL that uses the "https" scheme, we'll flip the request object's use_ssl
switch, as seen in Recipe 14.2.

Redirects

Lots of things can go wrong with an HTTP request: the page might have moved, it
might require authentication, or it might simply be gone. Most HTTP errors call for

Chapter 14. Internet Services Page 53 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-13#rubyckbk-CHP-12-SECT-13
http://webrick.org/
http://mongrel.rubyforge.org/
http://www.ruby-doc.org/stdlib/libdoc/webrick/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/webrick/rdoc/index.html
http://microjet.ath.cx/webrickguide/html/html_webrick.html
http://microjet.ath.cx/webrickguide/html/html_webrick.html
http://segment7.net/projects/ruby/WEBrick/index.html
http://www.linuxjournal.com/article/8356
http://www.linuxjournal.com/article/8356
http://www.w.org/Protocols/rfc2616/rfc2616-sec10.html

higher-level handling or human intervention, but when a page has moved, a smart
client can automatically follow it to its new location.

Our library will automatically follow redirects that provide "Location" fields in their
responses. It'll prevent infinite redirect loops by refusing to visit a URL it's already
visited. It'll prevent infinite redirect chains by limiting the number of redirects. After
all the redirects are followed, it'll make the final URI available as a member of the
response object.

Proxies

Users use HTTP proxies to make high-latency connections work faster, surf
anonymously, and evade censorship. Each individual client program needs to be
programmed to use a proxy, and it's an easy feature to overlook if you don't use a proxy
yourself. Fortunately, it's easy to support proxies in Ruby: the Proxy class will create
a custom Net::HTTP subclass that works through a certain proxy.

This library defines a single new method: Net::HTTP.fetch, an all-singing, all-dancing
factory for HTTPRequest objects. It silently handles HTTPS URLs (assuming you have
net/https installed) and HTTP redirects, and it transparently handles proxies. This
might go into a file called http_fetch.rb:

 require 'net/http'
 require 'set'

 class Net::HTTPResponse
 attr_accessor :final_uri
 end

 module Net
 begin
 require 'net/https'
 HTTPS_SUPPORTED = true
 rescue LoadError
 HTTPS_SUPPORTED = false
 end

 class HTTP
 # Makes an HTTP request and returns the HTTPResponse object.
 # Args: :proxy_host, :proxy_port, :action (:get, :post, etc.),
 # :data (for :post action), :max_redirects.
 def HTTP.fetch(uri, args={}.freeze, &before_fetching)
 # Process the arguments with default values
 uri = URI.parse(uri) unless uri.is_a? URI
 proxy_host = args[:proxy_host]
 proxy_port = args[:proxy_port] || 80
 action = args[:action] || :get
 data = args[:data]
 max_redirects = args[:max_redirects] || 10

We will always work on a Proxy object, even if no proxy is specified. A Proxy with no
proxy_host makes direct HTTP connections. This way, the code works the same way
whether we're actually using an HTTP proxy or not:

Chapter 14. Internet Services Page 54 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Use a proxy class to create the request object
 proxy_class = Proxy(proxy_host, proxy_port)
 request = proxy_class.new(uri.host, uri.port)

We will use SSL to handle URLs of the "https" scheme. Note that we do not set any
certificate paths here, or do any other SSL configuration. If you want to do that, you'll need
to pass an appropriate code block into fetch (see below for an example):

 request.use_ssl = true if HTTPS_SUPPORTED and uri.scheme == 'https'
 yield request if block_given?

Now we activate the request and get an HTTPResponse object back:

 response = request.send(action, uri.path, data)

Our HTTPResponse object might be a document, it might be an error, or it might be a
redirect. If it's a redirect, we can make things easier for the caller of this method by
following the redirect. This piece of the method finds the redirected URL and sends it into
a recursive fetch call, after making sure that we aren't stuck in an infinite loop or an
endless chain of redirects:

 urls_seen = args[:_urls_seen] || Set.new
 if response.is_a?(Net::HTTPRedirection) # Redirect
 if urls_seen.size < max_redirects && response['Location']
 urls_seen << uri
 new_uri = URI.parse(response['Location'])
 break if urls_seen.member? new_uri # Infinite redirect loop

 # Request the new location just as we did the old one.
 new_args = args.dup
 puts "Redirecting to #{new_uri}" if $DEBUG
 new_args[:_urls_seen] = urls_seen
 response = HTTP.fetch(new_uri, new_args, &before_fetching)
 end
 else # No redirect
 response.final_uri = uri
 end
 return response
 end
 end
 end

That's pretty dense code, but it ties a lot of functionality into a single method with a
relatively simple API. Here's a simple example, in which Net::HTTP.fetch silently
follows an HTTP redirect. Note the final_uri is different from the original URI.

 response = Net::HTTP.fetch("http://google.com/")
 puts "#{response.final_uri} body is #{response.body.size} bytes."
 # http://www.google.com/ body is 2444 bytes.

Chapter 14. Internet Services Page 55 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

With fetch, redirects work even through proxies. This example accesses the Google
homepage through a public HTTP proxy in Singapore. When it requests "http://
google.com/", it's redirected to "http://www.google.com/", as in the previous example.
But when Google notices that the IP address is coming from Singapore, it sends another
redirect:

 response = Net::HTTP.fetch("http://google.com/",
 :proxy_host => "164.78.252.199")
 puts "#{response.final_uri} body is #{response.body.size} bytes."
 # http://www.google.com.sg/ body is 2853 bytes.

There are HTTPS proxies as well. This code uses an HTTPS proxy in the U.S. to make a
secure connection to "https://paypal.com/". It's redirected to "https://paypal.com/us/".
The second request is secured in the same way as the one that caused the redirect. Note
that this code will only work if you have the Ruby SSL library installed.

 response = Net::HTTP.fetch("https://paypal.com/",
 :proxy_host => "209.40.194.8") do |request|
 request.ca_path = "/etc/ssl/certs/"
 request.verify_mode = OpenSSL::SSL::VERIFY_PEER
 end
 puts "#{response.final_uri} body is #{response.body.size} bytes."
 # https://paypal.com/us/ body is 16978 bytes.

How does this work? The code block is actually called twice: once before
requesting "https://paypal.com/" and once before requesting "https://paypal.com/us/".
This is what fetch's code block is for: it's run on the HTTPRequest object before the
request is actually made. If the code block were only called once, then the second request
wouldn't have access to any certificates.

Net::HTTP.fetch will follow redirects served by the web server, but it won't follow
redirects contained in the META tags of an HTML document. To follow those redirects,
you'll have to parse the document as HTML.

See Also

• Recipe 14.1, "Grabbing the Contents of a Web Page"
• Recipe 14.2, "Making an HTTPS Web Request"
• Recipe 14.3, "Customizing HTTP Request Headers"
• Several web sites have lists of public HTTP and HTTPS proxies (for instance, http://

www.samair.ru/proxy/ and http://tools.rosinstrument.com/proxy/); if you want to
set up a proxy on your local network, Squid is a good choice (http://www.squid-
cache.org/)

Chapter 14. Internet Services Page 56 Return to Table of Contents

Chapter 14. Internet Services
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://google.com/
http://google.com/
http://www.google.com/
https://paypal.com/
https://paypal.com/us/
https://paypal.com/
https://paypal.com/us/
http://www.samair.ru/proxy/
http://www.samair.ru/proxy/
http://tools.rosinstrument.com/proxy/
http://www.squid-cache.org/
http://www.squid-cache.org/

	Internet Services
	Grabbing the Contents of a Web Page
	Making an HTTPS Web Request
	Customizing HTTP Request Headers
	Performing DNS Queries
	Sending Mail
	Reading Mail with IMAP
	Reading Mail with POP3
	Being an FTP Client
	Being a Telnet Client
	Being an SSH Client
	Copying a File to Another Machine
	Being a BitTorrent Client
	Pinging a Machine
	Writing an Internet Server
	Parsing URLs
	Writing a CGI Script
	Setting Cookies and Other HTTP Response Headers
	Handling File Uploads via CGI
	Running Servlets with WEBrick
	A Real-World HTTP Client

