
Table of Contents

Databases and Persistence .. 1
Serializing Data with YAML ... 4
Serializing Data with Marshal .. 7
Persisting Objects with Madeleine ... 9
Indexing Unstructured Text with SimpleSearch ... 12
Indexing Structured Text with Ferret .. 13
Using Berkeley DB Databases .. 17
Controlling MySQL on Unix ... 19
Finding the Number of Rows Returned by a Query .. 20
Talking Directly to a MySQL Database .. 22
Talking Directly to a PostgreSQL Database ... 24
Using Object Relational Mapping with ActiveRecord ... 27
Using Object Relational Mapping with Og ... 31
Building Queries Programmatically ... 35
Validating Data with ActiveRecord .. 39
Preventing SQL Injection Attacks .. 41
Using Transactions in ActiveRecord .. 44
Adding Hooks to Table Events ... 46
Adding Taggability with a Database Mixin .. 49

Chapter 13. Databases and Persistence

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

13. Databases and Persistence
We all want to leave behind something that will outlast us, and Ruby processes are no
exception. Every program you write leaves some record of its activity, even if it's just data
written to standard output. Most larger programs take this one step further: they store
data from one run in a structured file, so that on another run they can pick up where they
left off. There are a number of ways to persist data, from simple to insanely complex.

Simple persistence mechanisms like YAML let you write Ruby data structures to disk and
load them back later. This is great for simple programs that don't handle much data. Your
program can store its entire state in a disk file, and load the file on its next invocation to
pick up where it left off. If you never keep more data than can fit into memory, the simplest
way to make it permanent is to store it with YAML, Marshal, or Madeleine, and reload it
later (see Recipes 13.1, 13.2, and 13.3). Madeleine also lets you revisit the prior states of
your data.

If your dataset won't fit in memory, you need a database: a way of storing data on disk
(usually in an indexed binary format) and retrieving parts of it quickly. The Berkeley
database is the simplest database we cover: it operates like a hash, albeit a hash potentially
much bigger than any you could keep in memory (Recipe 13.6).

But when most people think of a "database" they think of a relational database: MySQL,
Postgres, Oracle, SQLite, or the like. A persistence mechanism stores data as Ruby data
structures, and a Berkeley DB stores data as a hash of strings. But relational databases
store data in the form of structured records with typed fields.

Because the tables of a relational database can have a complex structure and contain
gigabytes of data, their contents are not accessed like normal Ruby data structures. Instead
they're queried with SQL, a special programming language based on relational algebra.
Most of the development time that goes into Ruby database libraries is spent trying to hide
this fact. Several libraries hide the details of communication between a Ruby program and
a SQL database; the balance of this chapter is devoted to showing how to use them.

Every relational database exposes a C API, and Ruby bindings to each API are available.
We show you how to use the two most popular open source databases: MySQL (Recipe
13.9) and Postgres (Recipe 13.10).[1] But every database has different bindings, and speaks
a slightly different variant of SQL. Fortunately, there are other libraries that hide these
differences behind a layer of abstraction. Once you install the bindings, you can install
abstraction layers atop them and rely on the abstraction layer to keep track of the
differences between databases.

Chapter 13. Databases and Persistence Page 1 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

[1] SQLite deserves an honorable mention because, unlike other relational databases, it doesn't require a server to run. The client code can directly query the database
file. This makes things a lot easier to set up. Note that SQLite has two incompatible file formats (version 2 and version 3), and a gem exists for each version. You probably
want the sqlite3-ruby gem.

Ruby's simplest database abstraction library is DBI (it's modeled after Perl's DBI module).
It does nothing more than provide a uniform interface to the different database bindings.
You still have to write all the SQL yourself (and if you're serious about database neutrality,
you must use the lowest common denominator of SQL), but you only have to learn a single
binding API.

The more popular database abstraction libraries are ActiveRecord (the library of choice
for Rails applications) and Og. Not only do these libraries hide the differences between
databases, they hide most of the actual SQL. The database tables are represented as Ruby
classes, the rows in the database tables as instances of those classes. You can find, create,
and modify database rows by manipulating normal-looking Ruby objects. Neither Og nor
ActiveRecord can do everything that raw SQL can, so you may also need to use DBI or one
of the database-specific bindings.

One standard argument for database abstraction layers is that they make it easy to switch
an application's underlying database without having to rewrite all the code. They certainly
do make this easier, but it almost never happens.[2] The real advantage is that with
abstraction layers, you don't have to learn all the different database bindings. Even if you
never change databases for any given project, throughout your career you'll find yourself
using different databases on different projects. Learning how to use a database abstraction
layer can save you from having to learn multiple database-specific bindings.

[2] What does happen is that you may write a product designed to work with whatever database the user has installed. You can't always require that your users run a
specific database.

Whether you use ActiveRecord, Og, DBI, or database-specific bindings, you'll need an
actual database for your code to connect to. The recipes in this chapter assume you've got
a database called cookbook and that you connect to it with the username
"cookbook_user" and the password "password".

Here's how to set up cookbook as a MySQL database:

 $ mysql -u root
 Welcome to the MySQL monitor. Commands end with ; or \g.

 Your MySQL connection id is 6 to server version: 4.0.24_Debian-10-log

 Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

 mysql> create database cookbook;
 Query OK, 1 row affected (0.00 sec)

 mysql> grant all privileges on cookbook.* to 'cookbook_user'@'localhost' identified
 by 'password';
 Query OK, 0 rows affected (0.00 sec)

Chapter 13. Databases and Persistence Page 2 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's how to set cookbook up as a Postgres database (you'll probably need to run these
commands as the postgres user):

 $ createuser
 Enter name of user to add: cookbook_user
 Enter password for new user: password
 Enter it again: password
 Shall the new user be allowed to create databases? (y/n) y
 Shall the new user be allowed to create more new users? (y/n) n
 CREATE USER

 $ createdb cookbook
 CREATE DATABASE

To avoid showing you the database connection code in every single recipe, we've factored
it out into a library. If you want to run the code in this chapter's recipes, you should put
the following code in a file called cookbook_dbconnect.rb. Keep it in the directory
where you keep the recipe code, or somewhere in your library include path, so that
require 'cookbook_dbconnect' will work.

This file defines database connection functions for DBI, ActiveRecord, and Og:

 # cookbook_dbconnect.rb
 require 'rubygems'
 require 'dbi'
 require 'active_record'
 require 'og'

The with_db method gets a database connection through DBI and runs a code block in
the context of that connection:

 def with_db
 DBI.connect("dbi:Mysql:cookbook:localhost",
 "cookbook_user", "password") do |c|
 yield c
 end
 end

The activerecord_connect method only needs to be called once at the beginning of a
program: after that, ActiveRecord will acquire database connections as needed.

 def activerecord_connect
 ActiveRecord::Base.establish_connection(:adapter => "mysql",
 :host => "localhost",
 :username => "cookbook_user",
 :password => "password",
 :database => "cookbook")
 end

For your reference, this table presents the ActiveRecord adapter names for various kinds
of databases.

Chapter 13. Databases and Persistence Page 3 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 13-1.

Database Adapter name

MySQL mysql

PostgreSQL postgresql

Oracle oci

Microsoft SQL Server sqlserver

SQLite 2 sqlite

SQLite 3 sqlite3

DB2 db2

The og_connect also needs to be called only once. One caveat: you must call it after
you've defined the classes for your Og data model.

 def og_connect
 Og.setup({ :destroy => false,
 :store => :mysql,
 :user => "cookbook_user",
 :password => "password",
 :name => "cookbook" })
 end

This version of cookbook_dbconnect assumes you're running against a MySQL
database. For a different database, you just need to change the database name so that DBI,
ActiveRecord, and Og know which adapter they should use.

Here are some resources for more information about databases in Ruby:

• http://ruby-dbi.rubyforge.org/
• http://www.rubyonrails.org/show/ActiveRecord
• http://www.rubygarden.com/index.cgi/Libraries/og_tutorial.rdoc

Recipe 13.1. Serializing Data with YAML

Problem
You want to serialize a data structure and use it later. You may want to send the data
structure to a file, then load it into a program written in a different programming language.

Solution
The simplest way is to use the built-in yaml library. When you require yaml, all Ruby
objects sprout to_yaml methods that convert them to the YAML serialization format. A
YAML string is human-readable, and it intuitively corresponds to the object from which
it was derived:

Chapter 13. Databases and Persistence Page 4 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://ruby-dbi.rubyforge.org/
http://www.rubyonrails.org/show/ActiveRecord
http://www.rubygarden.com/index.cgi/Libraries/og_tutorial.rdoc

 require 'yaml'

 10.to_yaml # => "--- 10\n"
 'ten'.to_yaml # => "--- ten\n"
 '10'.to_yaml # => "--- \"10\"\n"

Arrays are represented as bulleted lists:

 puts %w{Brush up your Shakespeare}.to_yaml
 # --
 # - Brush
 # - up
 # - your
 # - Shakespeare

Hashes are represented as colon-separated key-value pairs:

 puts ({ 'star' => 'hydrogen', 'gold bar' => 'gold' }).to_yaml
 # --
 # star: hydrogen
 # gold bar: gold

More complex Ruby objects are represented in terms of their classes and member
variables:

 require 'set'
 puts Set.new([1, 2, 3]).to_yaml
 # --- !ruby/object:Set
 # hash:
 # 1: true
 # 2: true
 # 3: true

You can dump a data structure to a file with YAML.dump, and load it back with
YAML.load:

 users = [{:name => 'Bob', :permissions => ['Read']},
 {:name => 'Alice', :permissions => ['Read', 'Write']}]

 # Serialize
 open('users', 'w') { |f| YAML.dump(users, f) }

 # And deserialize
 users2 = open("users") { |f| YAML.load(f) }
 # => [{:permissions=>["Read"], :name=>"Bob"},
 # {:permissions=>["Read", "Write"], :name=>"Alice"}]

YAML implementations are available for Perl, Python, Java, PHP, JavaScript, and OCaml,
so if you stick to the "standard" data types (strings, arrays, and so on), the serialized file
will be portable across programming languages.

Chapter 13. Databases and Persistence Page 5 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
If you've ever used Python's pickle module or serialized a Java object, you know how
convenient it is to be able to dump an object to disk and load it back later. You don't have
to define a custom data format or write an XML generator: you just shove the object into
a file or a database, and read it back later. The only downside is that the serialized file is
usually a binary mess that can only be understood by the serialization library.

YAML is a human-readable and somewhat cross-language serialization standard. Its
format describes the simple data structures common to all modern programming
languages. YAML can serialize and deserialize any combination of strings, booleans,
numbers, dates and times, arrays (possibly nested arrays), and hashes (again, possibly
nested ones).

You can also use YAML to serialize Ruby-specific objects: symbols, ranges, and regular
expressions. Indeed, you can use YAML to serialize instances of custom classes: YAML
serializes the class of the object and the values of its instance variables. There's no
guarantee, though, that other programming languages will understand what you mean.[3]

[3] Ruby can also read YAML descriptions of Perl's regular expressions.

Not only is YAML human-readable, it's human-writable. You can write YAML files in a
text editor and load them into Ruby as objects. If you're having trouble with the YAML
representation of a particular data structure, your best bet is to define a simple version of
that data structure in an irb session, dump it to YAML, and work from there.

 quiz_question = ['What color is Raedon?', ['Blue', 'Albino', '*Yellow']]
 puts quiz_question.to_yaml
 # --
 # - What color is Raedon?
 # - - Blue
 # - Albino
 # - "*Yellow"

Before you get drunk with power, you should know that YAML shares the limitations of
other serialization schemes. Most obviously, you can only deserialize objects in an
environment like the one in which you serialized them. Suppose you convert a Set object
to YAML in one Ruby session:

 require 'yaml'
 require 'set'
 set = Set.new([1, 2, 3])
 open("set", "w") { |f| YAML.dump(set, f) }

In another Ruby session, you might try to convert the YAML back into a Set, without first
requiring the set library:

Chapter 13. Databases and Persistence Page 6 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Bad code -- don't try this!
 require 'yaml'
 set = open("set") { |f| YAML.load(f) }
 # => #<YAML::Object:0xb7bd8620 @ivars={"hash"=>{1=>true, 2=>true, 3=>true}},
 # @class="Set">

Instead of a Set, you've got an unresolved object of class YAML::Object. The set has
been loaded from the file and deserialized, but Ruby can't resolve its class name.

YAML can only serialize data; it can't serialize Ruby code or system resources (such as
filehandles or open sockets). This means some objects can't be fully converted to YAML.
The following code successfully serializes and deserializes a File object, but the
deserialized File isn't open and doesn't point to anything in particular:

 handle = open('a_file', 'w')
 handle.path
 # => "a_file"

 handle2 = YAML.load(YAML.dump(handle))
 # => #<File:0xb7bd9a58>
 handle2.path
 # IOError: uninitialized stream

The essence of the File object—its handle to a file on disk, granted by the operating system
—has been lost.

Objects that contain Ruby code will lose their code when dumped to YAML. This means
that Proc and Binding objects will turn up empty. Objects with singleton methods will
be dumped without them. Classes can't be dumped to YAML at all.

But these are all edge cases. Most data structures, even complex ones, can be serialized to
YAML and stay readable to boot.

See Also

• Ruby standard library documentation for the yaml library
• The YAML web page (http://www.yaml.org/)
• Recipe 12.12, "Reading and Writing Configuration Files"
• An episode of the Ruby Quiz focused on creating a serializable Proc object (http://

www.rubyquiz.com/quiz38.html)

Recipe 13.2. Serializing Data with Marshal

Chapter 13. Databases and Persistence Page 7 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.yaml.org/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-12#rubyckbk-CHP-12-SECT-12
http://www.rubyquiz.com/quiz38.html
http://www.rubyquiz.com/quiz38.html

Problem
You want to serialize a data structure to disk faster than YAML can do it. You don't care
about the readability of the serialized data structure, or portability to other programming
languages.

Solution
Use the Marshal module, built into Ruby. It works more or less like YAML, but it's much
faster. The Marshal.dump method transforms a data structure into a binary string, which
you can write to a file and reconstitute later with Marshal.load.

 Marshal.dump(10) # => "\004\010i\017"
 Marshal.dump('ten') # => "\004\010\"\010ten"
 Marshal.dump('10') # => "\004\010\"\a10"

 Marshal.load(Marshal.dump(%w{Brush up your Shakespeare}))
 # => ["Brush", "up", "your", "Shakespeare"]

 require 'set'
 Marshal.load(Marshal.dump(Set.new([1, 2, 3])))
 # => #<Set: {1, 2, 3}>

Discussion
Marshal is what most programmers coming from other languages expect from a serializer.
It's fast (much faster than yaml), and it produces unreadable blobs of binary data. It can
serialize almost anything that yaml can (see Recipe 13.1 for examples), and it can also
handle a few cases that yaml can't. For instance, you can use Marshal to serialize a
reference to a class:

 Marshal.dump(Set) # =>"\004\010c\010Set"

Note that the serialized version of Set is little more than a reference to the class. Like
YAML, Marshal depends on the presence of the original classes, and you can't deserialize
a reference to a class you don't have.[4] With YAML, you'll get an unresolved
YAML::Object; with Marshal, you get an ArgumentError:

[4] This also means that if you add methods to a class, then serialize the class, your methods don't get saved.

 #!/usr/bin/ruby -w

 Marshal.load("\004\010c\010Set")
 # ArgumentError: undefined class/module Set

Like YAML, Marshal only serializes data structures. It can't serialize Ruby code (like Proc
objects), or resources allocated by other processes (like filehandles or database
connections). However, the two libraries differ in their error handling. YAML tends to

Chapter 13. Databases and Persistence Page 8 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

serialize as much as it can: it can serialize a File object, but when you deserialize it, you
get an object that doesn't point to any actual file. Marshal just gives you an error when you
try to serialize a file:

 open('output', 'w') { |f| Marshal.dump(f) }
 # TypeError: can't dump File

See Also

• Recipe 13.1, "Serializing Data with YAML," has more on serialization in general

Recipe 13.3. Persisting Objects with Madeleine

Problem
You want to store objects in RAM and persist them between independent executions of
the program. This will let your program recall its state indefinitely and access it very
quickly.

Solution
Use the Madeleine library available as the madeleine gem. It transparently persists any
Ruby object that can be serialized with Marshal. Unlike a conventional database
persistence layer, Madeleine keeps all of its objects in RAM at all times.

To use Madeleine, you have to decide which objects in your system need to be serialized,
and which ones you might have saved to a database traditionally. Here's a simple
Madeleine-backed program for conducting yes/no polls, in which agreement adds one to
a total and disagreement subtracts one:

 #!/usr/bin/ruby -w
 # poll.rb
 require 'rubygems'
 require 'madeleine'

 class Poll
 attr_accessor :name
 attr_reader :total

 def initialize(name)
 @name = name
 @total = 0
 end

 def agree
 @total += 1
 end

 def disagree
 @total -= 1

Chapter 13. Databases and Persistence Page 9 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end

So far there's been no Madeleine code, just a normal class with instance variables and
accessors. But how will we store the state of the poll between invocations of the polling
program? Since instances of the Poll class can be serialized with Marshall, we can wrap
a Poll object in a MadeleineSnapshot, and keep it in a file:

 poll = SnapshotMadeleine.new('poll_data') do
 Poll.new('Is Ruby great?')
 end

The system accessor retrieves the object wrapped by MadeleineSnapshot:

 if ARGV[0] == 'agree'
 poll.system.agree
 elsif ARGV[0] == 'disagree'
 poll.system.disagree
 end

 puts "Name: #{poll.system.name}"
 puts "Total: #{poll.system.total}"

You can save the current state of the object with take_snapshot:

 poll.take_snapshot

Here are a few sample runs of the poll.rb program:

 $ ruby poll.rb agree
 Name: Is Ruby great?
 Total: 1

 $ ruby poll.rb agree
 Name: Is Ruby great?
 Total: 2

 $ ruby poll.rb disagree
 Name: Is Ruby great?
 Total: 1

Discussion
Recall this piece of code:

 poll = SnapshotMadeleine.new('poll_data') do
 Poll.new('Is Ruby great?')
 end

Chapter 13. Databases and Persistence Page 10 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The first time that code is run, Madeleine creates a directory called poll_data. Then it
runs the code block. The result of the code block is the object whose state will be tracked
in the poll_data directory.

On subsequent runs, the poll_data directory already exists, and Madeleine loads the
current state of the Poll object from the latest snapshot in the directory. It doesn't run
the code block.

Here are the contents of poll_data after we run the program three times:

 $ ls poll_data
 000000000000000000001.snapshot
 000000000000000000002.snapshot
 000000000000000000003.snapshot

Every time we call poll.take_snapshot, Madeleine serializes the Poll object to a
snapshot file in poll_data. If the data ever gets corrupted, you can remove the corrupted
snapshot files and revert to a previous version of the data.

A clever trick for programs like our poll application is to use Kernel#at_exit to
automatically save the state of an object when the program ends. This way, even if your
program is killed by a Unix signal, or throws an exception, your data will be saved.[5]

[5] Of course, these things might happen when your data is in an inconsistent state and you don't want it to be saved.

 at_exit { poll.take_snapshot }

In applications where a process runs indefinitely, you can save snapshots at regular
intervals by spawning a separate thread:

 def save_recurring_snapshots(madeleine_object, time_interval)
 loop do
 madeleine_object.take_snapshot
 sleep time_interval
 end
 end

 Thread.new { save_recurring_snapshots(poll, 24*60*60) }

See Also

• Recipe 3.12, "Running a Code Block Periodically"
• Recipe 13.2, "Serializing Data with Marshal"
• The Madeleine design rules document lays out the conditions your code must meet if

you want to snapshot it with Madeleine (http://madeleine.sourceforge.net/docs/
designRules.html)

Chapter 13. Databases and Persistence Page 11 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12
http://madeleine.sourceforge.net/docs/designRules.html
http://madeleine.sourceforge.net/docs/designRules.html

• The RDoc documentation for Madeleine (http://madeleine.sourceforge.net/docs/
api/)

• For more on the technique of object prevalence, see the web site for the Prevayler Java
project, especially the "Articles" section (http://www.prevayler.org/wiki.jsp)

Recipe 13.4. Indexing Unstructured Text with SimpleSearch

Problem
You want to index a number of texts and do quick keyword searches on them.

Solution
Use the SimpleSearch library, available in the SimpleSearch gem.

Here's how to create and save an index:

 require 'rubygems'
 require 'search/simple'

 contents = Search::Simple::Contents.new
 contents << Search::Simple::Content.
 new('In the beginning God created the heavens…',
 'Genesis.txt', Time.now)
 contents << Search::Simple::Content.new('Call me Ishmael…',
 'MobyDick.txt', Time.now)
 contents << Search::Simple::Content.new('Marley was dead to begin with…',
 'AChristmasCarol.txt', Time.now)

 searcher = Search::Simple::Searcher.load(contents, 'index_file')

Here's how to load and search an existing index:

 require 'rubygems'
 require 'search/simple'

 searcher = nil
 open('index_file') do |f|
 searcher = Search::Simple::Searcher.new(Marshal.load(f), Marshal.load(f),
 'index_file')
 end

 searcher.find_words(['begin']).results.collect { |result| result.name }
 # => ["AChristmasCarol.txt", "Genesis.txt"]

Discussion
SimpleSearch is a library that makes it easy to do fast keyword searching on unstructured
text documents. The index itself is represented by a Searcher object, and each
document you feed it is a Content object.

Chapter 13. Databases and Persistence Page 12 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://madeleine.sourceforge.net/docs/api/
http://madeleine.sourceforge.net/docs/api/
http://www.prevayler.org/wiki.jsp

To create an index, you must first construct a number of Content objects and a Contents
object to contain them. A Content object contains a piece of text, a unique identifier for
that text (often a filename, though it could also be a database ID or a URL), and the time
at which the text was last modified. Searcher.load transforms a Contents object into
a searchable index that gets serialized to disk with Marshal.

The indexer analyzes the text you gives it, removes stop words (like "a"), truncates words
to their roots (so "beginning" becomes "begin"), and puts every word of the text into binary
data structures. Given a set of words to find and a set of words to exclude, SimpleSearch
uses these structures to quickly find a set of documents.

Here's how to add some new documents to an existing index:

 class Search::Simple::Searcher
 def add_contents(contents)
 Search::Simple::Searcher.create_indices(contents, @dict,
 @document_vectors)
 dump # Re-serialize the file
 end
 end

 contents = Search::Simple::Contents.new
 contents << Search::Simple::Content.new('A spectre is haunting Europe…',
 'TheCommunistManifesto.txt', Time.now)
 searcher.add_contents(contents)
 searcher.find_words(['spectre']).results[0].name
 # => "TheCommunistManifesto.txt"

SimpleSearch doesn't support incremental indexing. If you update or delete a document,
you must recreate the entire index from scratch.

See Also

• The SimpleSearch home page (http://www.chadfowler.com/SimpleSearch/)
• The sample application within the SimpleSearch gem: search-simple.rb
• Recipe 13.2, "Serializing Data with Marshal"
• For a more sophisticated indexer, see Recipe 13.5, "Indexing Structured Text with

Ferret"

Recipe 13.5. Indexing Structured Text with Ferret

Problem
You want to perform searches on structured text. For instance, you might want to search
just the headline of a news story, or just the body.

Chapter 13. Databases and Persistence Page 13 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.chadfowler.com/SimpleSearch/

Discussion
The Ferret library can tokenize and search structured data. It's a pure Ruby port of Java's
Lucene library, and it's available as the ferret gem.

Here's how to create and populate an index with Ferret. I'll create a searchable index of
useful Ruby packages, stored as a set of binary files in the ruby_packages/ directory.

 require 'rubygems'
 require 'ferret'

 PACKAGE_INDEX_DIR = 'ruby_packages/'
 Dir.mkdir(PACKAGE_INDEX_DIR) unless File.directory? PACKAGE_INDEX_DIR
 index = Ferret::Index::Index.new(:path => PACKAGE_INDEX_DIR,
 :default_search_field => 'name|description')
 index << { :name => 'SimpleSearch',
 :description => 'A simple indexing library.',
 :supports_structured_data => false,
 :complexity => 2 }
 index << { :name => 'Ferret',
 :description => 'A Ruby port of the Lucene library.
 More powerful than SimpleSearch',
 :supports_structured_data => true,
 :complexity => 5 }

By default, queries against this index will search the "name" and "description" fields, but
you can search against any field:

 index.search_each('library') do |doc_id, score|
 puts index.doc(doc_id).field('name').data
 end
 # SimpleSearch
 # Ferret

 index.search_each('description:powerful AND supports_structured_data:true') do
 |doc_id, score|
 puts index.doc(doc_id).field("name").data
 end
 # Ferret

 index.search_each("complexity:<5") do |doc_id, score|
 puts index.doc(doc_id).field("name").data
 end
 # SimpleSearch

Discussion
When should you use Ferret instead of SimpleText? SimpleText is good for unstructured
data like plain text. Ferret excels at searching structured data, the kind you find in
databases.

Relational databases are good at finding exact field matches, but not very good at locating
keywords within large strings. Ferret works best when you need full text search but you
want to keep some of the document structure. I've also had great success using Ferret[6] to
bring together data from disparate sources (some in databases, some not) into one
structured, searchable index.

Chapter 13. Databases and Persistence Page 14 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[6] Actually, I was using Lucene. Same idea.

There are two things you can do with Ferret: add text to the index, and query the index.
Ferret offers you a lot of control over both activities. I'll briefly cover the most interesting
features.

You can feed an index by passing in a hash of field names to values, or you can feed it fully
formed Ferret::Document objects. This gives you more control over which fields you'd
like to index. Here, I'll create an index of news stories taken from a hypothetical database:

 # This include will cut down on the length of the Field:: constants below.
 include Ferret::Document

 def index_story(index, db_id, headline, story)
 doc = Document.new
 doc << Field.new("db_id", db_id, Field::Store::YES, Field::Index::NO)
 doc << Field.new("headline", headline, Field::Store::YES, Field::Index::TOKENIZED)
 doc << Field.new("story", story, Field::Store::NO, Field::Index::TOKENIZED)
 index << doc
 end

 STORY_INDEX_DIR = 'news_stories/'
 Dir.mkdir(STORY_INDEX_DIR) unless File.directory? STORY_INDEX_DIR
 index = Ferret::Index::Index.new(:path => STORY_INDEX_DIR)

 index_story(index, 1, "Lizardoids Control the Media, Sources Say",
 "Don't count on reading this story in your local paper anytime
 soon, because …")

 index_story(index, 2, "Where Are My Pants? An Editorial",
 "This is an outrage. The lizardoids have gone too far! …")

In this case, I'm storing the database ID in the Document, but I'm not indexing it. I don't
want anyone to search on it, but I need some way of tying a Document in the index to a
record in the database. That way, when someone does a search, I can print out the headline
and provide a link to the original story.

I treat the body of the story exactly the opposite way: the words get indexed, but the original
text is not stored and can't be recovered from the Document object. I'm not going to be
displaying the text of the story along with my search results, and the text is already in the
database, so why store it again in the index?

The simplest way to search a Ferret index is with Index#search_each, as demonstrated
in the Solution. This takes a query and a code block. For each document that matched the
search query, it yields the document ID and a number between 0 and 1, representing the
quality of the match.

You can get more information about the search results by calling search instead of
search_each. This gives you a Ferret::Search::TopDocs object that contains the
search results, as well as useful information like how many documents were matched. Call
each on a TopDocs object and it'll act just as if you'd called search_each.

Chapter 13. Databases and Persistence Page 15 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's some code that does a search and prints the results:

 def search_news(index, query)
 results = index.search(query)
 puts "#{results.size} article(s) matched:"

 results.each do |doc_id, score|
 story = index.doc(doc_id)
 puts " #{story.field("headline").data} (score: #{score})"
 puts " http://www.example.com/news/#{story.field("db_id").data}"
 puts
 end
 end

 search_news(index, "pants editorial")
 # 1 article(s) matched:
 # Where Are My Pants? An Editorial (score: 0.0908329636861293)
 # http://www.example.com/news/2

You can weight the fields differently to fine-tune the results. This query makes a match in
the headline count twice as much as a match in the story:

 search_news(index, "headline:lizardoids^1 OR story:lizardoids^0.5")
 # 2 article(s) matched:
 # Lizardoids Control the Media, Sources Say (score: 0.195655948031232)
 # http://www.example.com/news/1
 #
 # Where Are My Pants? An Editorial (score: 0.0838525491562421)
 # http://www.example.com/news/2

Queries can be strings or Ferret::Search::Query objects. Pass in a string, and it just
gets parsed and turned into a Query. The main advantage of creating your own Query
objects is that you can put a user-friendly interface on your search functionality, instead
of making people always construct Ferret queries by hand. The weighted_query method
defined below takes a single keyword and creates a Query object equivalent to the rather
complicated weighted query given above:

 def weighted_query(term)
 query = Ferret::Search::BooleanQuery.new
 query << term_clause("headline", term, 1)
 query << term_clause("story", term, 0.5)
 end

 def term_clause(field, term, weight)
 t = Ferret::Search::TermQuery.new(Ferret::Index::Term.new(field, term))
 t.boost = weight
 return Ferret::Search::BooleanClause.new(t)
 end

Ferret can be clumsy to use. It's got a lot of features to learn, and sometimes it seems like
you spend all your time composing small objects into bigger objects (as in
weighted_query above, which creates instances of four different classes). This is partly
because Ferret is so flexible, and partly because the API comes mainly from Java. But
nothing else works as well for searching structured text.

Chapter 13. Databases and Persistence Page 16 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The Ferret homepage (http://ferret.davebalmain.com/)
• The Ferret Query Language, described in the RDoc for the QueryParser class

(http://ferret.davebalmain.com/api/classes/Ferret/QueryParser.html)
• Apache Lucene, the basis for Ferret, lives at http://lucene.apache.org/java/

Recipe 13.6. Using Berkeley DB Databases

Problem
You want a simple, fast database that doesn't need a server to run.

Solution
Ruby's standard dbm library lets you store a database in a set of standalone binary files.
It's not a SQL database: it's more like a fast disk-based hash that only stores strings.

 require 'dbm'

 DBM.new('random_thoughts') do |db|
 db['tape measure'] =
 "What if there was a tape measure you could use as a yo-yo?"
 db[23] = "Fnord."
 end

 DBM.open('random_thoughts') do |db|
 puts db['tape measure']
 puts db['23']
 end
 # What if there was a tape measure you could use as a yo-yo?
 # Fnord.

 DBM.open('random_thoughts') { |db| db[23] }
 # TypeError: can't convert Fixnum into String

 Dir['random_thoughts.*']
 # => ["random_thoughts.pag", "random_thoughts.dir"]

Discussion
The venerable Berkeley DB format lets you store enormous associative datasets on disk
and quickly access them by key. It dates from before programming languages had built-in
hash structures, so it's not as useful as it used to be. In fact, if your hash is small enough
to fit in memory, it's faster to simply use a Ruby hash that you serialize to disk with
Marshal.

If you do need to use a DBM object, you can treat it almost exactly like a Ruby hash: it
supports most of the same methods.

Chapter 13. Databases and Persistence Page 17 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://ferret.davebalmain.com/
http://ferret.davebalmain.com/api/classes/Ferret/QueryParser.html
http://lucene.apache.org/java/

There are many, many implementations of the Berkeley DB, and the file formats differ
widely between versions, so DBM files are not very portable. If you're creating your own
databases, you should use the generic dbm library. It provides a uniform interface to all
the DBM implementations, using the best library you have installed on your computer.[7]

[7] Actually, it uses the best DBM library you had installed when you installed the dbm Ruby extension.

Ruby also provides gdbm and sdbm libraries, interfaces to specific database formats, but
you should only need these if you're trying to load a Berkeley DB file produced by some
other program.

There's also the SleepyCat library, a more ambitious implementation of the Berkeley DB
that implements features of traditional databases like transactions and locking. Its Ruby
bindings are available as a third-party download. It's still much closer to a disk-based data
structure than to a relational database, and the basic interface is similar to that of dbm,
though less Ruby-idiomatic:

 require 'bdb'

 db = BDB::Hash.create('random_thoughts2.db', nil, BDB::CREATE)
 db['Why do we park on a driveway but'] = 'it never rains but it pours.'
 db.close

 db = BDB::Hash.open('random_thoughts2.db', nil, 'r')
 db['Why do we park on a driveway but']
 # => "it never rains but it pours."
 db.close

The SleepyCat library provides several different hashlike data structures. If you want a
hash whose keys stay sorted alphabetically, you can create a BDB::Btree instead of a
BDB::Hash:

 db = BDB::Btree.create('element_reviews.db', nil, BDB::CREATE)
 db['earth'] = 'My personal favorite element.'
 db['water'] = 'An oldie but a goodie.'
 db['air'] = 'A good weekend element when you're bored with other elements.'
 db['fire'] = 'Perhaps the most overrated element.'

 db.each { |k,v| puts k }
 # air
 # earth
 # fire
 # water

 db['water'] # => "An oldie but a goodie."
 db.close

See Also

• On Debian GNU/Linux, the DBM extensions to Ruby come in separate packages from
Ruby itself: libdbm-ruby, libgdbm-ruby, and libsdbm-ruby

Chapter 13. Databases and Persistence Page 18 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• You can get the Ruby binding to the Sleepycat library at http://moulon.inra.fr/ruby/
bdb.html

• Confused by all the different, mutually incompatible implementations of the Berkeley
DB idea? Try reading "Unix Incompatibility Notes: DBM Hash Libraries" (http://
www.unixpapa.com/incnote/dbm.html)

• If you need a relational database that doesn't require a server to run, try SQLite: it
keeps its databases in standalone files, and you can use it with ActiveRecord or DBI;
its Ruby binding is packaged as the sqlite3-ruby gem, and its home page is at
http://www.sqlite.org/

Recipe 13.7. Controlling MySQL on Unix

Problem
The standard Ruby database interfaces assume you're connecting to a preexisting
database, and that you already have access to this database. You want to create and
administer MySQL databases from within Ruby.

Solution
Sam Ruby came up with an elegant solution to this problem. The mysql method defined
below opens up a pipe to a MySQL client program and sends SQL input to it:

 def mysql(opts, stream)
 IO.popen("mysql #{opts}", 'w') { |io| io.puts stream }
 end

You can use this technique to create, delete, and administer MySQL databases:

 mysql '-u root -p[password]', <<-end
 drop database if exists website_db;
 create database website_db;
 grant all on website_db.* to #{`id -un`.strip}@localhost;
 end

Discussion
This solution looks so elegant because of the <<-end declaration, which allows you to end
the string the same way you end a code block.

One shortcoming of this solution is that the IO.popen call opens up a one-way
communication with the MySQL client. This makes it difficult to call SQL commands and
get the results back. If that's what you need, you can use IO.popen interactively; see
Recipe 23.1.

Chapter 13. Databases and Persistence Page 19 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://moulon.inra.fr/ruby/bdb.html
http://moulon.inra.fr/ruby/bdb.html
http://www.unixpapa.com/incnote/dbm.html
http://www.unixpapa.com/incnote/dbm.html
http://www.sqlite.org/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-1#rubyckbk-CHP-23-SECT-1

See Also

• Recipe 23.1, "Scripting an External Program"

Recipe 13.8. Finding the Number of Rows Returned by a Query

Problem
Writing a DBI program, you want an efficient way to see how many rows were returned by
a query.

Solution
A do command returns the number of rows affected by the command, so that one's easy.
To demonstrate, I'll create a database table that keeps track of my prized collection of
lowercase letters:

 require 'cookbook_dbconnect'

 with_db do |c|

 c.do %{drop table if exists letters}

 c.do %{create table letters(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 letter CHAR(1) NOT NULL)}
 letter_sql = ('a'..'z').collect.join('"),("')

 c.do %{insert into letters(letter) values ("#{letter_sql}")}
 end
 # => 26

When you execute a query, you get back a StatementHandle object representing the
request. If you're using a MySQL database, you can call rows on this object to get the
number of rows in the result set:

 vowel_query = %{select id from letters where letter in ("a","e","i","o","u")}
 with_db do |c|
 h = c.execute vowel_query
 "My collection contains #{h.rows} vowels."
 end
 # => "My collection contains 5 vowels."

If you're not using MySQL, things are a bit trickier. The simplest thing to do is simply
retrieve all the rows as an array, then use the array's size as the number of rows:

 with_db do |c|
 vowels = c.select_all(vowel_query)
 "My collection still contains #{vowels.size} vowels."
 end
 # => "My collection still contains 5 vowels."

Chapter 13. Databases and Persistence Page 20 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-1#rubyckbk-CHP-23-SECT-1

But this can be disastrously inefficient; see below for details.

Discussion
When you select some items out of a Ruby array, say with Array#grep, Ruby gives you
the results in a brand new array. Once the array has been created, there's no cost to
checking its size by calling Array#size.

A database query acts differently. Your query might have matched millions of rows, and
each result might contain kilobytes of data. This is why normally you iterate over a result
set instead of using select_all to get it as an array. Getting the whole result set at once
might use a huge amount of memory, which is why using select_all can be disastrous.

You've got two other options. If you're going to be iterating over the entire dataset anyway,
and you don't need the count until you're all done, you can count the rows as you go. This
will save memory over the fetch_all approach:

 with_db do |c|
 rows = 0

 c.execute(vowel_query).each do |row|
 rows += 1
 # Process the row…
 end
 "Yup, all #{rows} vowels are still there."
 end
 # => "Yup, all 5 vowels are still there."

Otherwise, your only choice is to run two queries: the actual query, and a slightly modified
version of the query that uses SELECT COUNT instead of SELECT. A method like this will
work for simple cases (cases that don't contain GROUP BY statements). It uses a regular
expression to turn a SELECT query into a SELECT COUNT query, runs both queries, and
returns both the count and the query handle.

 module DBI
 class DatabaseHandle
 def execute_with_count(query, *args)
 re = /^\s*select .* from/i
 count_query = query.sub(re, 'select count(*) from')
 count = select_one(count_query)
 [count, execute(query)]
 end
 end
 end

 with_db do |c|
 count, handle = c.execute_with_count(vowel_query)
 puts "I can't believe none of the #{count} vowels " +
 "have been stolen from my collection!"

 puts 'Here they are in the database:'
 handle.each do |r|
 puts "Row #{r['id']}"
 end
 end

Chapter 13. Databases and Persistence Page 21 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # I can't believe none of the 5 vowels have been stolen from my collection!
 # Here they are in the database:
 # Row 1
 # Row 5
 # Row 9
 # Row 15
 # Row 21

See Also

• The Ruby DBI tutorial describes the MySQL rows trick but says not to depend on it;
we figure as long as you know about the alternatives, you're not dependent on the
database-specific shortcut (http://www.kitebird.com/articles/ruby-dbi.html)

Recipe 13.9. Talking Directly to a MySQL Database

Problem
You want to send SQL queries and commands directly to a MySQL database.

Solution
Do you really need to do this? Almost all the time, it's better to use the generic DBI library.
The biggest exception is when you're writing a a Rails application, and you need to run a
SQL command that you can't express with ActiveRecord.[8]

[8] You could use DBI with ActiveRecord, but most Rails programmers go straight to the database.

If you really want to communicate directly with MySQL, use the Ruby bindings to the
MySQL client library (found in the mysql gem). It provides an interface that's pretty
similar to DBI's.

Here's a MySQL-specific version of the method with_db, defined in this chapter's
introduction. It returns a Mysql object, which you can use to run queries or get server
information.

 require 'rubygems'
 require 'mysql'

 def with_db
 dbh = Mysql.real_connect('localhost', 'cookbook_user', 'password',
 'cookbook')
 begin
 yield dbh
 ensure
 dbh.close
 end
 end

Chapter 13. Databases and Persistence Page 22 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.kitebird.com/articles/ruby-dbi.html

The Mysql#query method runs any SQL statement, whether it's a SELECT query or
something else. When it runs a query, the return value is a result-set object (a
MysqlRes); otherwise, it's nil. Here it is running some SQL commands:

 with_db do |db|
 db.query('drop table if exists secrets')
 db.query('create table secrets(id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 secret LONGTEXT)')
 db.query(%{insert into secrets(secret) values
 ("Oh, MySQL, you're the only one who really understands me.")})
 end

And here's a query:

 with_db do |db|
 res = db.query('select * from secrets')
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 res.free
 end
 # 1: Oh, MySQL, you're the only one who really understands me.

Discussion
Like the database connection itself, the result set you get from query wants to be closed
when you're done with it. This calls for yet another instance of the pattern seen in
with_db, in which setup and cleanup are delegated to a method that takes a code block.
Here's some code that alters query to take a code block:

 class Mysql
 alias :query_no_block :query
 def query(sql)
 res = query_no_block(sql)
 return res unless block_given?
 begin
 yield res
 ensure
 res.free if res
 end
 end
 end

Now we can write more concise query code, and not have to worry about freeing the result
set:

 with_db do |db|
 db.query('select * from secrets') do |res|
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 end
 end
 # 1: Oh, MySQL, you're the only one who really understands me.

The method MysqlRes#each yields you the rows of a result set as arrays.
MysqlRes#each_hash also gives you one row at a time, but in hash form: you can access

Chapter 13. Databases and Persistence Page 23 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a row's fields by name instead of position. MysqlRes#num_rows gives you the number
of rows matched by a query.

 with_db do |db|
 db.query('select * from secrets') do |res|
 puts "#{res.num_rows} row(s) matched:"
 res.each_hash do |hash|
 hash.each { |k,v| puts " #{k} = #{v}" }
 end
 end
 end
 # 1 row(s) matched:
 # id = 1
 # secret = Oh, MySQL, you're the only one who really understands me.

The MySQL interface provides no protection against SQL injection attacks. If you're
sending SQL containing the values of possibly tainted variables, you'll need to quote those
values yourself.

See Also

• Recipe 13.15, "Preventing SQL Injection Attacks," for more on SQL injection
• "Using the Ruby MySQL Module" (http://www.kitebird.com/articles/ruby-

mysql.html)
• MySQL bindings (http://www.tmtm.org/en/mysql/ruby/)

Recipe 13.10. Talking Directly to a PostgreSQL Database

Problem
You want to send SQL queries and commands directly to a PostgreSQL database.

Solution
As with the MySQL recipe preceding this one, ask: do you really need to do this? The generic
DBI library usually works just fine. As before, the main exception is when you need to make
low-level SQL calls from within a Rails application.

There are two APIs for communicating with a PostgreSQL database, and both are available
as gems. The postgres gem provides a Ruby binding to the C client library, and the
postgres-pr gem provides a pure Ruby interface.

Here's a Postgres-specific version of the method with_db, defined in the chapter intro. It
returns a PGconn object, which you can use to run queries or get server information. This
code assumes you're accessing the database through TCP/IP on port 5432 of your local
machine.

Chapter 13. Databases and Persistence Page 24 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.kitebird.com/articles/ruby-mysql.html
http://www.kitebird.com/articles/ruby-mysql.html
http://www.tmtm.org/en/mysql/ruby/

 require 'rubygems'
 require 'postgres'

 def with_db
 db = PGconn.connect('localhost', 5432, '', '', 'cookbook',
 'cookbook_user', 'password')
 begin
 yield db
 ensure
 db.close
 end
 end

The PGconn#exec method runs any SQL statement, whether it's a SELECT query or
something else. When it runs a query, the return value is a result-set object (a
PGresult); otherwise, it's nil. Here it is running some SQL commands:

 with_db do |db|
 begin
 db.exec('drop table secrets')
 rescue PGError
 # Unlike MySQL, Postgres does not have a "drop table unless exists"
 # command. We can simulate it by issuing a "drop table" command and
 # ignoring any error due to the table not existing in the first place.
 # This is essentialy what MySQL's "drop table unless exists" does.
 end

 db.exec('create table secrets(id SERIAL PRIMARY KEY,
 secret TEXT)')
 db.exec(%{insert into secrets(secret) values
 ('Oh, Postgres, you\\'re the only one who really understands me.')})
 end

Here's a query:

 with_db do |db|
 res = db.query('select * from secrets')
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 end
 # 1: Oh, Postgres, you're the only one who really understands me.

Discussion
Note the slight differences between the Postgres implementation of SQL and the MySQL
implementation. The "drop table if exists" syntax is MySQL-specific. Postgres names the
data types differently, and expects string values to be single-quoted.

Like the database connection itself, the result set you get from exec wants to be closed
when you're done with it. As we did with query in the MySQL binding, we can alter exec
to take an optional code block and do the cleanup for us:

 class PGconn
 alias :exec_no_block :exec
 def exec(sql)
 res = exec_no_block(sql)
 return res unless block_given?

Chapter 13. Databases and Persistence Page 25 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 begin
 yield res
 ensure
 res.clear if res
 end
 end
 end

Now we can write more concise query code, and not have to worry about freeing the result
set:

 with_db do |db|
 db.exec('select * from secrets') do |res|
 res.each { |row| puts "#{row[0]}: #{row[1]}" }
 end
 end
 # 1: Oh, Postgres, you're the only one who really understands me.

The method PGresult#each yields you the rows of a result set as arrays, and
PGresult#num_tuples gives you the number of rows matched by a query. The Postgres
database binding has no equivalent of the MySQL binding's each_hash, but you can write
one pretty easily:

 class PGresult
 def each_hash
 f = fields
 each do |array|
 hash = {}
 fields.each_with_index do |field, i|
 hash[field] = array[i]
 end
 yield hash
 end
 end
 end

Here it is in action:

 with_db do |db|
 db.exec("select * from secrets") do |res|
 puts "#{res.num_tuples} row(s) matched:"
 res.each_hash do |hash|
 hash.each { |k,v| puts " #{k} = #{v}" }
 end
 end
 end
 # 1 row(s) matched:
 # id = 1
 # secret = Oh, Postgres, you're the only one who really understands me.

See Also

• The Postgres reference (http://www.postgresql.org/docs/manuals/)
• The reference for the Ruby Postgres binding (http://ruby.scripting.ca/postgres/)

Chapter 13. Databases and Persistence Page 26 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.postgresql.org/docs/manuals/
http://ruby.scripting.ca/postgres/

• If you can't get the native Postgres binding installed, try the postgres-pr gem; it
implements a pure Ruby client to the Postgres server, with more or less the same
interface as the native binding

• The PGconn.quote method helps you defend against SQL injection attacks; see
Recipe 13.15, "Preventing SQL Injection Attacks," for more

Recipe 13.11. Using Object Relational Mapping with ActiveRecord

Problem
You want to store data in a database without having to use SQL to access it.

Solution
Use the ActiveRecord library, available as the activerecord gem. It automatically
defines Ruby classes that access the contents of database tables.

As an example, let's create two tables in the MySQL database cookbook (see the chapter
introduction for more on creating the database itself). The blog_posts table, defined
below in SQL, models a simple weblog containing a number of posts. Each blog post can
have a number of comments, so we also define a comments table.

 use cookbook;

 DROP TABLE IF EXISTS blog_posts;
 CREATE TABLE blog_posts (
 id INT(11) NOT NULL AUTO_INCREMENT,
 title VARCHAR(200),
 content TEXT,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

 DROP TABLE IF EXISTS comments;
 CREATE TABLE comments (
 id INT(11) NOT NULL AUTO_INCREMENT,
 blog_post_id INT(11),
 author VARCHAR(200),
 content TEXT,
 PRIMARY KEY (id)
) ENGINE=InnoDB;

Here are two Ruby classes to represent those tables, and the relationship between them:

 require 'cookbook_dbconnect'
 activerecord_connect # See chapter introduction

 class BlogPost < ActiveRecord::Base
 has_many :comments
 end

 class Comment < ActiveRecord::Base
 belongs_to :blog_post
 end

Chapter 13. Databases and Persistence Page 27 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now you can create entries in the tables without writing any SQL:

 post = BlogPost.create(:title => 'First post',
 :content => "Here are some pictures of our iguana.")

 comment = Comment.create(:blog_post => post, :author => 'Alice',
 :content => "That's one cute iguana!")

 post.comments.create(:author => 'Bob', :content => 'Thank you, Alice!')

You can also query the tables, relate blog posts to their comments, and relate comments
back to their blog posts:

 blog_post = BlogPost.find(:first)

 puts %{#{blog_post.comments.size} comments for "#{blog_post.title}"}
 # 2 comments for "First post"

 blog_post.comments.each do |comment|
 puts "Comment author: #{comment.author}"
 puts "Comment: #{comment.content}"
 end
 # Comment author: Alice
 # Comment: That's one cute iguana!
 # Comment author: Bob
 # Comment: Thank you, Alice!

 first_comment = Comment.find(:first)
 puts %{The first comment was made on "#{first_comment.blog_post.title}"}
 # The first comment was made on "First post"

Discussion
ActiveRecord uses naming conventions, database introspection, and metaprogramming
to hide much of the work involved in defining a Ruby class that corresponds to a database
table. All you have to do is define the classes (BlogPost and Comment, in our example)
and the relationships between them (BlogPost has_many :comments, Comment
belongs_to :blog_post).

Our tables are designed to fit ActiveRecord's conventions about table and field names. The
table names are lowercase, pluralized noun phrases, with underscores separating the
words. The table names blog_posts and comments correspond to the Ruby classes
BlogPost and Comment.

Also notice that each table has an autoincremented id field named id. This is a convention
defined by ActiveRecord. Foreign key references are also named by convention:
blog_post_id refers to the id field of the blog_posts table. It's possible to change
ActiveRecord's assumptions about naming, but it's simpler to just design your tables to fit
the default assumptions.

Chapter 13. Databases and Persistence Page 28 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For "normal" columns, the ones that don't participate in relationships with other tables,
you don't need to do anything special. ActiveRecord examines the database tables
themselves to find out which columns are available. This is how we were able to use
accessor methods for blog_posts.title without explicitly defining them: we defined
them in the database, and ActiveRecord picked them up.

Relationships between tables are defined within Ruby code, using decorator methods.
Again, naming conventions simplify the work. The call to the has_many decorator in the
BlogPost definition creates a one-to-many relationship between blog posts and
comments. You can then call BlogPost#comments to get an array full of comments for
a particular post. The call to belongs_to in the Comment definition creates the same
relationship in reverse.

There are two more decorator methods that describe relationships between tables. One of
them is the has_one association, which is rarely used: if there's a one-to-one relationship
between the rows in two tables, then you should probably just merge the tables.

The other decorator is has_and_belongs_to_many, which lets you join two different
tables with an intermediate join table. This lets you create many-to-many relationships,
common in (to take one example) permissioning systems.

For an example of has_and_belongs_to_many, let's make our blog a collaborative
effort. We'll add an users table to contain the posts' authors' names, and fix it so that each
blog post can have multiple authors. Of course, each author can also contribute to multiple
posts, so we've got a many-to-many relationship between users and blog posts.

 use cookbook;

 DROP TABLE IF EXISTS users;
 CREATE TABLE users (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(200),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

Because a blog post can have multiple authors, we can't just add an author_id field to the
blog_posts table. That would only give us space for a single author per blog post. Instead,
we create a join table that maps authors to blog posts.

 use cookbook;

 DROP TABLE IF EXISTS blog_posts_users;
 CREATE TABLE blog_posts_users (
 blog_post_id INT(11),
 user_id INT(11)
) ENGINE=InnoDB;

Chapter 13. Databases and Persistence Page 29 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's another naming convention. ActiveRecord expects you to name a join table with
the names of the tables that it joins, concatenated together with underscores. It expects
the table names to be in alphabetical order (in this case, the blog_posts table comes
before the users table).

Now we can create a User class that mirrors the users table, and modify the BlogPost
class to reflect its new relationship with users:

 class User < ActiveRecord::Base
 has_and_belongs_to_many :blog_posts
 end

 class BlogPost < ActiveRecord::Base
 has_and_belongs_to_many :authors, :class_name => 'User'
 has_many :comments, :dependent => true
 end

The has_and_belongs_to_many decorator method defines methods that navigate the
join table. We specify the :class_name argument because otherwise ActiveRecord has
no idea which ActiveRecord class corresponds to an "authors" relationship.
Without :class_name, it would look for a nonexistent Author class.

With the relationships in place, it's easy to find blog posts for an author, and authors for
a blog post:

 # Retroactively make Bob and Carol the collaborative authors of our
 # first blog post.
 User.create(:name => 'Bob', :blog_posts => [post])
 User.create(:name => 'Carol', :blog_posts => [post])

 author = User.find(:first)
 puts "#{author.name} has made #{author.blog_posts.size} blog post(s)."
 # Bob has made 1 blog post(s).

 puts %{The blog post "#{post.title}" has #{post.authors.size} author(s).}
 # The blog post "First post" has 2 author(s).

As with the has_many or belongs_to relationships, the has_and_belongs_to_many
relationship gives you a create method that lets you create new items and their
relationships to other items:

 author.blog_posts.create(:title => 'Second post',
 :content => 'We have some cats as well.')

And since the blog_posts method returns an array-like object, you can iterate over it to
find all the blog posts to which a given user contributed:

 author.blog_posts.each do |post|
 puts %{#{author.name}'s blog post "#{post.title}" } +
 "has #{post.comments.size} comments."
 end

Chapter 13. Databases and Persistence Page 30 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Bob's blog post "First post" has 2 comments.
 # Bob's blog post "Second post" has 0 comments.

If you want to delete an item from the database, you can use the destroy method available
to all ActiveRecord objects:

 BlogPost.find(:first).destroy

However, deleting a blog post does not automatically remove all the comments associated
with that blog post. You must tell ActiveRecord that comments cannot exist independently
of a blog post, like so:

 class BlogPost < ActiveRecord::Base
 has_many :comments, :dependent => destroy
 end

Why doesn't ActiveRecord do this automatically? Because it's not always a good idea. Think
about authors: unlike comments, authors can exist independently of a blog post. Deleting
a blog post shouldn't automatically delete all of its authors. ActiveRecord depends on you
to make this kind of judgment, using your knowledge about your application.

See Also

• http://rails.rubyonrails.com/classes/ActiveRecord/Associations/
ClassMethods.html

• Recipe 15.7, "Understanding Pluralization Rules," for more on the connection between
the table name and the ActiveRecord class name

Recipe 13.12. Using Object Relational Mapping with Og

Credit: Mauro Cicio

Problem
You want to store data in a database, without having to use SQL to create or access the
database.

Solution
Use the Og (ObjectGraph) library, available as the og gem. Where ActiveRecord has a
database-centric approach to object-relational mapping, Og is Ruby-centric. With
ActiveRecord, you define the database schema ahead of time and have the library figure

Chapter 13. Databases and Persistence Page 31 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rails.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html
http://rails.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-7#rubyckbk-CHP-15-SECT-7

out what the Ruby objects should look like. With Og, you define the Ruby objects and let
the library take care of creating the database schema.

The only restriction Og imposes on your class definitions is that you must use special
versions of the decorator methods for adding attribute accessors. For instance, instead of
calling attribute to define accessor methods, you call property.

Here we define a basic schema for a weblog program, like that defined in Recipe 13.11:

 require 'cookbook_dbconnect'
 require 'og'

 class BlogPost
 property :title, :content, String
 end

 class Comment
 property :author, :content, String
 belongs_to :og_post, BlogPost
 end

 # Now that Comment's been defined, add a reference to it in BlogPost.
 class BlogPost
 has_many :comments, Comment
 end

After defining the schema, we call the og_connect method defined in the chapter
introduction. Og automatically creates any necessary database tables:

 og_connect
 # Og uses the Mysql store.
 # Created table 'ogcomment'.
 # Created table 'ogblogpost'.

Now we can create a blog post and some comments:

 post = BlogPost.new
 post.title = "First post"
 post.content = "Here are some pictures of our iguana."
 post.save!

 [["Alice", "That's one cute iguana!"],
 ["Bob", "Thank you, Alice!"]].each do |author, content|
 comment = Comment.new
 comment.blog_post = post
 comment.author = author
 comment.content = content
 comment.save!
 end

As with ActiveRecord, we can query the tables, relate blog posts to their comments, and
relate comments back to their blog posts:

 post = BlogPost.first
 puts %{#{post.comments.size} comments for "#{post.title}"}
 # 2 comments for "First post"

Chapter 13. Databases and Persistence Page 32 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 post.comments.each do |comment|
 puts "Comment author: #{comment.author}"
 puts "Comment: #{comment.content}"
 end
 # Comment author: Alice
 # Comment: That's one cute iguana!
 # Comment author: Bob
 # Comment: Thank you, Alice!

 puts %{The first comment was made on "#{Comment.first.blog_post.title}"}
 # The first comment was made on "First post"

Discussion
Like the ActiveRecord library, Og implements Martin Fowler's Active Record Pattern.
While ActiveRecord does this by making all classes derive from the base class
ActiveRecord::Base, Og does it by using custom attribute accessors instead of the
traditional Ruby accessors. In this example, Comment and BlogPost are POR (Plain Old
Ruby) classes, with accessor methods like author and author=, but those methods were
defined with Og decorators instead of the standard Ruby decorators. This table shows the
mapping between the two sets of decorators.

Table 13-2.

Standard Ruby accessors Og accessors

attribute roperty

attr_accessor prop_accessor

attr_reader prop_reader

attr_writer prop_writer

Each of the Og decorator methods takes a Ruby class as its last argument: String,
Integer, or the like. Og uses this to define the type of the corresponding database row.
You can also specify Object as a field type, and Og will transparently store YAML
representations of arbitrary Ruby objects in the corresponding database field.

ActiveRecord defines all kinds of conventions about how you're supposed to name your
database tables and fields. Og doesn't care: it names database tables and fields that
correspond to the names you use in your Ruby code.

Just as with ActiveRecord, relationships between Og tables are defined within Ruby code,
using decorator methods. The API is almost exactly the same as ActiveRecord's. In the
Solution section, we saw how to create a one-to-many relationship between blog posts and
comments: by calling belongs_to in Comment and has_many in BlogPost. This
relationship makes it possible to simply call BlogPost#comments and get an array of
comments on a post.

Chapter 13. Databases and Persistence Page 33 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Og defines two more decorator methods for describing relationships between tables. One
of them is the has_one association, which is rarely used: if there's a one-to-one
relationship between the rows in two tables, then you should probably just merge the
tables.

The other decorator is many_to_many, which lets you to join two different tables with an
intermediate join table. This lets you create many-to-many relationships, common in (to
take one example) permissioning systems.

For an example of many_to_many, let's make our blog a collaborative effort. We'll add a
User class that holds the posts' authors' names, and fix it so that each blog post can have
multiple authors. Of course, each author can also contribute to multiple posts, so we've
got a many-to-many relationship between users and blog posts. Og needs to know the class
definition in order to create the necessary database tables, so the following code snippet
should appear before the og_connect invocation in your program:

 class Person
 property :name, String
 many_to_many :posts, BlogPost
 end

The many_to_many decorator tells Og to create a table to store the people, and a join table
to map authors to their blog posts. It also defines methods that navigate the join table, as
we'll see in a moment.

Of course, the many-to-many relationship goes both ways: BlogPost has a many-to-many
relationship to Person. So add a many_to_many call to the definition of BlogPost (this,
too, must show up before your og_connect call):

 class BlogPost
 many_to_many :authors, Person
 end

With these relationships in place, it's easy to find blog posts for an author, and authors for
a blog post:

 og_connect

 # Retroactively make Bob and Carol the collaborative authors of our
 # first blog post.
 ['Bob', 'Carol'].each do |name|
 p = Person.new
 p.name = name
 p.save
 end
 Person.find_by_name('Bob').add_post(post)
 Person.find_by_name('Carol').add_post(post)

 author = Person.first
 puts "#{author.name} has made #{author.posts.size} blog post(s)."

Chapter 13. Databases and Persistence Page 34 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Bob has made 1 blog post(s).

 puts %{The blog post "#{post.title}" has #{post.authors.size} author(s).}
 # The blog post "First post" has 2 author(s).

To add an anonymous BlogPost on the fly, use the add_post method as follows:

 author.add_post(BlogPost.create_with({
 :title => 'Second post',
 :content => 'We have some cats as well.'
 }))

Since Person posts returns an array-like object, you can iterate over it to find all the
blog posts to which a given user contributed:

 author.posts.each do |post|
 puts %{#{author.name}'s blog post "#{post.title}" has #{post.comments.size}
 comments.}
 end

 # Bob's blog post "First post" has 2 comments.
 # Bob's blog post "Second post" has 0 comments.

If you want to delete an object from the database, you can use the delete method available
to all Og database objects:

 BlogPost.first.delete

Deleting a blog post will automatically remove all the comments associated with that blog
post. This automatic deletion (i.e., cascade deletion) is not always a good idea. For instance,
we don't want the authors of a blog post to be deleted when the post itself is deleted! We
can avoid the cascade deletion by passing false in as an argument to the delete method:

 BlogPost.first.delete(false)

If you want some associated objects (like comments) to get cascade-deleted, and other
objects (like authors) to be left alone, the best strategy is to implement the cascade yourself,
in post-delete hooks.

See Also

• The Active Record pattern is described in Patterns of Enterprise Application
Architecture by Martin Fowler (Addison-Wesley)

Recipe 13.13. Building Queries Programmatically

Chapter 13. Databases and Persistence Page 35 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You have to write fragments of SQL to pass parameters into an ActiveRecord query. You'd
like to dispense with SQL altogether, and represent the query paramaters as a Ruby data
structure.

Solution
Here's a simple solution. The method ActiveRecord::Base.find_by_map defined
below picks up where find leaves off. Normally a query is represented by a SQL fragment,
passed in as the :conditions argument. Here, the :conditions argument contains a
mapping of database field names to the desired values:

 require 'cookbook_dbconnect'

 class ActiveRecord::Base
 def self.find_by_map(id, args={}.freeze)
 sql = []
 values = []
 args[:conditions].each do |field, value|
 sql << "#{field} = ?"
 values << value
 end if args[:conditions]
 args[:conditions] = [sql.join(' AND '), values]
 find(id, args)
 end
 end

Here's find_by_map in action, using the BlogPost class first seen in Recipe 13.11:

 activerecord_connect

 class BlogPost < ActiveRecord::Base
 end

 BlogPost.create(:title => 'Game Review: Foosball Carnage',
 :content => 'Four stars!')
 BlogPost.create(:title => 'Movie Review: Foosball Carnage: The Movie',
 :content => 'Zero stars!')

 BlogPost.find_by_map(:first,
 :conditions => {:title =>
 'Game Review: Foosball Carnage' }
).content
 # => "Four stars!"

Discussion
ActiveRecord saves you from having to write a lot of SQL, but you still have to write out
the equivalent of a SQL WHERE clause every time you call
ActiveRecord::Base#find. The find_by_map method lets you define those queries
as Ruby hashes.

Chapter 13. Databases and Persistence Page 36 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But find_by_map only lets you run one type of query: the kind where you're restricting
fields of the database to specific values. What if you want to do a query that matches a field
with the LIKE construct, or combine multiple clauses into a single query with AND or OR?

A hash can only represent a very simple SQL query, but the Criteria object, below, can
represent almost any WHERE clause. The implementation is more complex but the idea
is the same. We define a data structure that can represent the WHERE clause of a SQL
query, and a way of converting the data structure into a real WHERE clause.

Here's the basic class. A Criteria acts like a hash, except it maps a field name to a value
and a SQL operator. Instead of mapping :title to 'Game Review: Foosball
Carnage', you can map it to ['%Foosball%', 'LIKE']. Each Criteria object can be
chained to other objects as part of an AND or OR clause.

 class Criteria < Hash
 def initialize(values)
 values.each { |k,v| add(k, *v) }
 @or_criteria = nil
 @and_criteria = nil
 end

 :private
 attr_accessor :or_criteria, :and_criteria

 :public
 def add(field, value, operation='=')
 self[field] = [value, operation]
 end

 def or(criteria)
 c = self
 while c.or_criteria != nil
 break if c == criteria
 c = c.or_criteria
 end

 c.or_criteria = criteria
 return self
 end

 def and(criteria)
 c = self
 while c.and_criteria != nil
 break if c == criteria
 c = c.and_criteria
 end

 c.and_criteria = criteria
 return self
 end

This method turns a Criteria object, and any other objects to which it's chained, into a
SQL string with substitutions, and an array of values to use in the substitutions:

 class Criteria
 def to_where_clause
 sql = []
 values = []
 each do |field, value|

Chapter 13. Databases and Persistence Page 37 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if value.respond_to? :to_str
 value, operation = value, '='
 else
 value, operation = value[0..1]
 end
 sql << "#{field} #{operation} ?"
 values << value
 end
 sql = '(' + sql.join(' AND ') + ')'

 if or_criteria
 or_where = or_criteria.to_where_clause
 sql = "(#{sql} OR #{or_where.shift})"
 values += or_where
 end

 if and_criteria
 and_where = and_criteria.to_where_clause
 sql = "(#{sql} AND #{and_where.shift})"
 values += and_where
 end
 return values.unshift(sql)
 end
 end

Now it's simple to write a version of find that accepts a Criteria:

 class ActiveRecord::Base
 def self.find_by_criteria(id, criteria, args={}.freeze)
 args = args.dup
 args[:conditions] = criteria.to_where_clause
 find(id, args)
 end
 end

Here's Criteria used to express a complex SQL WHERE clause with a little bit of Ruby
code. This query searches the blog_post table for reviews of bad movies and good games.
The movies and the games must not be about the game of cricket.

 review = Criteria.new(:title => ['%Review%', 'LIKE'])
 bad_movie = Criteria.new(:title => ["%Movie%", 'LIKE'],
 :content => 'Zero stars!')
 good_game = Criteria.new(:title => ['%Game%', 'LIKE'],
 :content => 'Four stars!')
 no_cricket = Criteria.new(:title => ['%Cricket%', 'NOT LIKE'])

 review.and(bad_movie.or(good_game)).and(no_cricket)
 review.to_where_clause
 # => ["((title LIKE ?) AND
 # (((content = ? AND title LIKE ?) OR (content = ? AND title LIKE ?))
 # AND (title NOT LIKE ?)))",
 # "%Review%", "Zero stars!", "%Movie%", "Four stars!", "%Game%",
 # "%Cricket%"]

 BlogPost.find_by_criteria(:all, review).each { |post| puts post.title }
 # Game Review: Foosball Carnage
 # Movie Review: Foosball Carnage: The Movie

The technique is a general one. It's easier for a human to construct Ruby data structures
than to write valid SQL clauses, so write code to convert the one into the other. You can
use this technique wherever any library expects you to write SQL.

Chapter 13. Databases and Persistence Page 38 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For instance, the find method expects SQL fragments representing a query's ORDER BY
or GROUP BY clause. You could represent each as an array of fields, and generate the SQL
as needed.

 # Just an idea…
 order_by = [[:title, 'ASC']]

See Also

• The Criteria class is inspired by the one in the Torque ORM library for Java (http://
db.apache.org/torque/)

Recipe 13.14. Validating Data with ActiveRecord

Problem
You want to prevent bad data from getting into your ActiveRecord data objects, whether
the source of the data is clueless users or buggy code.

Solution
The simplest way is to use the methods defined by the ActiveRecord::Validations
module. Each of these methods (validates_length_of,
validates_presence_of, and so on) performs one kind of validation. You can use them
to declare restrictions on the data in your object's fields.

Let's add some validation code to the Comment class for the weblog application first seen in
Recipe 13.11. Recall that a Comment object has two main fields: the name of the author,
and the text of the comment. We'll reject any comment that leaves either field blank. We'll
also reject comments that are too long, and comments whose body contains any string
from a customizable list of profane words.

 require 'cookbook_dbconnect'
 activerecord_connect

 class Comment < ActiveRecord::Base
 @@profanity = %w{trot krip}
 @@no_profanity_re = Regexp.new('^(?!.*(' + @@profanity.join('|') + '))')

 validates_presence_of %w{author}
 validates_length_of :content, :in => 1..200
 validates_format_of :content, :with => @@no_profanity_re,
 :message => 'contains profanity'
 end

Comment objects that don't fit these criteria won't be saved to the database.

Chapter 13. Databases and Persistence Page 39 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://db.apache.org/torque/
http://db.apache.org/torque/

 comment = Comment.create
 comment.errors.on 'author' # => "can't be blank"
 comment.errors['content']
 # => "is too short (minimum is 1 characters)"
 comment.save # => false

 comment = Comment.create(:content => 'x' * 1000)
 comment.errors['content']
 # => "is too long (maximum is 200 characters)"

 comment = Comment.create(:author => 'Alice',
 :content => "About what I'd expect from a trotting krip such as yourself!")
 comment.errors.count # => 1
 comment.errors.each_full { |msg| puts msg }
 # Content contains profanity

 comment = Comment.create(:author => 'Alice', :content => 'I disagree!')
 comment.save # => true

Discussion
Every ActiveRecord record has an associated ActiveRecord::Errors object, which
starts out empty. Before the record is saved to the database, all the predefined restrictions
for that class of object are checked. Every problem encountered while applying the
restrictions adds an entry to the Errors object.

If, at the end of this trial by ordeal, the Errors object is still empty, ActiveRecord presumes
the data is valid, and saves the object to the database.

ActiveRecord's Validations module provides many methods that implement validation
rules. Apart from the examples given above, the validates_numericality_of method
requires an integer value (or a floating-point value if you specify :integer => false).
The requires_inclusion_of method will reject any value not found in a predefined
list of acceptable values.

If the predefined validation rules aren't enough for you, you can also write a custom
validation rule using validate_each. For instance, you might validate URL fields by
fetching the URLs and making sure they're valid.

The method Errors#each_full prepends each error message with the corresponding
field name. This is why the actual error messages look like "is empty" and "contains
profanity": so each_full will yield "Author is empty" and "Content contains profanity".

ActiveRecord assumes you named your fields so that these messages will be readable. You
can customize the messages by passing in keyword arguments like :message, but then
you'll need to access the messages with Errors#each instead of Errors#each_full.
Here's an alternate implementation of the Comment validation rules that customizes the
messages:

Chapter 13. Databases and Persistence Page 40 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'cookbook_dbconnect'
 activerecord_connect

 class Comment < ActiveRecord::Base
 @@profanity = %w{trot krip}
 @@no_profanity_re = Regexp.new('^(?!.*(' + @@profanity.join('|') + '))')

 validates_presence_of %w{author}, :message => 'Please enter your name.'
 validates_length_of :content, :in => 1..200,
 :too_short => 'Please enter a comment.',
 :too_long => 'Comments are limited to 200 characters.'
 validates_format_of :content, :with => @@no_profanity_re,
 :message => 'Try to express yourself without profanity.'
 end

The declarative validation style should be flexible enough for you, but you can do custom
validation by defining a validate method. Your implementation is responsible for
checking the current state of an object, and populating the Errors object with any
appropriate error messages.

Sometimes new objects have different validation rules from existing objects. You can
selectively apply a validation rule by passing it the :on option. Pass in :on
=> :create, and the validation rule will only be triggered the first time an object is saved
to the database. Pass in :on => :update, and the validation rule will be triggered every
time except the first. You can also define the custom validation methods
validate_on_add and validate_on_update as well as just plain validate.

See Also

• Recipe 1.19, "Validating an Email Address"
• Recipe 8.6, "Validating and Modifying Attribute Values"
• The built-in validation methods (http://rubyonrails.org/api/classes/ActiveRecord/

Validations/ClassMethods.html)
• Some sample validate implementations (http://rubyonrails.org/api/classes/

ActiveRecord/Validations.html)
• The Errors class defines a few helper methods for doing validation in a validate

implementation (http://rubyonrails.org/api/classes/ActiveRecord/Errors.html)
• Og defines some declarative validation methods, similar to ActiveRecord's (http://

www.nitrohq.com/view/Validation/Og)

Recipe 13.15. Preventing SQL Injection Attacks

Problem
You want to harden your code against SQL injection attacks, whether in DBI or
ActiveRecord code.

Chapter 13. Databases and Persistence Page 41 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-19#rubyckbk-CHP-1-SECT-19
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-6#rubyckbk-CHP-8-SECT-6
http://rubyonrails.org/api/classes/ActiveRecord/Validations/ClassMethods.html
http://rubyonrails.org/api/classes/ActiveRecord/Validations/ClassMethods.html
http://rubyonrails.org/api/classes/ActiveRecord/Validations.html
http://rubyonrails.org/api/classes/ActiveRecord/Validations.html
http://rubyonrails.org/api/classes/ActiveRecord/Errors.html
http://www.nitrohq.com/view/Validation/Og
http://www.nitrohq.com/view/Validation/Og

Solution
With both ActiveRecord and DBI applications, you should create your SQL with question
marks where variable interpolations should go. Pass in the variables along with the SQL to
DatabaseHandle#execute, and the database will make sure the values are properly
quoted.

Let's work against a simple database table tracking people's names:

 use cookbook;

 DROP TABLE IF EXISTS names;
 CREATE TABLE names (
 first VARCHAR(200),
 last VARCHAR(200)
) ENGINE=InnoDB;

 INSERT INTO names values ('Leonard', 'Richardson'),
 ('Lucas', 'Carlson'),
 ('Michael', 'Loukides');

Here's a simple script that searches against that table. It's been hardened against SQL
injection attacks with three techniques:

 #!/usr/bin/ruby
 # no_sql_injection.rb

 require 'cookbook_dbconnect'
 activerecord_connect
 class Name < ActiveRecord::Base; end

 print 'Enter a last name to search for: '
 search_for = readline.chomp

 # Technique 1: use ActiveRecord question marks
 conditions = ["last = ?", search_for]

 Name.find(:all, :conditions => conditions).each do |r|
 puts %{Matched "#{r.first} #{r.last} with ActiveRecord question marks"}
 end

 # Technique 2: use ActiveRecord named variables
 conditions = ["last = :last", {:last => search_for}]

 Name.find(:all, :conditions => conditions).each do |r|
 puts %{Matched "#{r.first} #{r.last}" with ActiveRecord named variables}
 end

 # Technique 3: use DBI question marks
 with_db do |db|
 sql = 'SELECT first, last FROM names WHERE last = ?'

 db.execute(sql, [search_for]).fetch_hash do |r|
 puts %{Matched "#{r['first']} #{r['last']}" with DBI question marks}
 end
 end

 puts "Done"

Here's how this script looks in use:

Chapter 13. Databases and Persistence Page 42 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 $ ruby no_sql_injection.rb
 Enter a last name to search for: Richardson
 Matched "Leonard Richardson" with ActiveRecord question marks
 Matched "Leonard Richardson" with ActiveRecord named variables
 Matched "Leonard Richardson" with DBI question marks
 Done

 # See the Discussion if you're not sure how this attack is supposed to work.
 $ ruby no_sql_injection.rb
 Enter a last name to search for: " or 1=1
 Done

Discussion
SQL is a programming lanuage, and running SQL is like calling eval on a string of Ruby
code. Unless you have complete control over the entire SQL string and all the variables
interpolated into it, you need to be very careful. Just one mistake can leave you open to
information leakage or database corruption.

Here's a naive version of sql_injection.rb that's vulnerable to an injection attack. If
you habitually write code like this, you may be in trouble:

 #!/usr/bin/ruby
 # sql_injection.rb
 require 'cookbook_dbconnect'

 print "Enter a last name to search for: "
 search_for = readline.chomp
 query = %{select first, last from names where last="#{search_for}"}
 puts query if $DEBUG
 with_db do |db|
 db.execute(query).fetch_hash do |r|
 puts %{Matched "#{r['first']} #{r['last']}"}
 end
 end

Looks fine, right?

 $ ruby -d sql_injection.rb
 Enter a last name to search for: Richardson
 select first_name, last_name from people where last_name="Richardson"
 Matched "Leonard Richardson"

Not necessarily. Whatever I type is simply being stuck into a SQL statement. What if I
typed as my "query" part of a SQL WHERE clause? One that, when combined with the
original WHERE clause, matched anything and everything?

 $ ruby -d sql_injection.rb
 Enter a last name to search for: " or 1=1
 select first_name, last_name from people where last_name="" or 1=1
 Matched "Leonard Richardson"
 Matched "Lucas Carlson"
 Matched "Michael Loukides"

Chapter 13. Databases and Persistence Page 43 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

I can see every name in the table.

This is just one example. SQL injection attacks can also alter or delete data from a database.

The correct version of this program, the one described in the Solution, quotes my attempt
at a SQL injection attack. My attack is executed as a normal query: the program looks for
people (or robots, I guess) whose last name is the string " or 1=1. Quoting the data makes
the application do what you want it to do every time, no matter what kind of weird data a
user can come up with.

DBI will not run two SQL commands in a single do or execute call, so certain types of
SQL injection attacks are impossible with DBI. You can hijack a SELECT statement to make
it select something else, but unlike with some other systems, you can't make a SELECT also
do an UPDATE or DELETE. An attacker can't use SQL injection to drop database tables
unless your application already runs a DROP TABLE command somewhere.

You don't usually write full-blown SQL statements with ActiveRecord, but you do write
conditions: snippets of SQL that get turned into to the WHERE clauses of SELECT or UPDATE
statements. Whenever you write SQL, you must take these precautions.

See Also

• "Securing your Rails application" in the Ruby on Rails manual (http://
manuals.rubyonrails.com/read/chapter/43)

• The RDoc for the ActiveRecord::Base class
• "SQL Injection Attacks by Example" is a readable introduction to this topic (http://

www.unixwiz.net/techtips/sql-injection.html)
• "Using the Ruby DBI Module" has a section on quoting (http://www.kitebird.com/

articles/ruby-dbi.html#TOC_8)

Recipe 13.16. Using Transactions in ActiveRecord

Problem
You want to perform database operations as a group: if one of the operations fails, it should
be as though none of them had ever happened.

Solution
Include active_record/transactions, and you'll give each ActiveRecord class a
transaction method. This method starts a database transaction, runs a code block, then

Chapter 13. Databases and Persistence Page 44 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://manuals.rubyonrails.com/read/chapter/43
http://manuals.rubyonrails.com/read/chapter/43
http://www.unixwiz.net/techtips/sql-injection.html
http://www.unixwiz.net/techtips/sql-injection.html
http://www.kitebird.com/articles/ruby-dbi.html#TOC_8
http://www.kitebird.com/articles/ruby-dbi.html#TOC_8

commits the transaction. If the code block throws an exception, the database transaction
is rolled back.

Here's some simple initialization code to give ActiveRecord access to the database tables
for the weblog system first seen in Recipe 13.11:

 require 'cookbook_dbconnect'
 activerecord_connect # See chapter introduction

 class User < ActiveRecord::Base
 has_and_belongs_to_many :blog_posts
 end

 class BlogPost < ActiveRecord::Base
 has_and_belongs_to_many :authors, :class_name => 'User'
 end

The create_from_new_author method below creates a new entry in the users table,
then associates it with a new entry in the blog_posts table. But there's a 50% chance
that an exception will be thrown right after the new author is created. If that happens, the
author creation is rolled back: in effect, it never happened.

 require 'active_record/transactions'

 class BlogPost
 def BlogPost.create_from_new_author(author_name, title, content)
 transaction do
 author = User.create(:name => author_name)
 raise 'Random failure!' if rand(2) == 0
 create(:authors => [author], :title => title, :content => content)
 end
 end
 end

Since the whole operation is enclosed within a transaction block, an exception won't
leave the database in a state where the author has been created but the blog entry hasn't:

 BlogPost.create_from_new_author('Carol', 'The End Is Near',
 'A few more facts of doom…')
 # => #<BlogPost:0xb78b7c7c … >

 # The method succeeded; Carol's in the database:
 User.find(:first, :conditions=>"name='Carol'")
 # => #<User:0xb7888ae4 @attributes={"name"=>"Carol", … }>

 # Let's do another one…
 BlogPost.create_from_new_author('David', 'The End: A Rebuttal',
 'The end is actually quite far away…')
 # RuntimeError: Random failure!

 # The method failed; David's not in the database:
 User.find(:first, :conditions=>"name='David'")
 # => nil

Chapter 13. Databases and Persistence Page 45 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
You should use database transactions whenever one database operation puts the database
into an inconsistent state, and a second operation brings the database back into
consistency. All kinds of things can go wrong between the first and second operation. The
database server might crash or your application might throw an exception. The Ruby
interpreter might decide to stop running your thread for an arbitrarily long time, giving
other threads a chance to marvel at the inconsistent state of the database. An inconsistent
database can cause problems that are very difficult to debug and fix.

ActiveRecord's transactions piggyback on top of database transactions, so they'll only work
if your database supports transactions. Most databases do these days; chances are you
won't have trouble unless you're using a MySQL database and not using InnoDB tables.
However, most of the open source databases don't support nestedtransactions, so you're
limited to one transaction at a time with a given database connection.

In addition to a code block, the transaction method can take a number of ActiveRecord
objects. These are the objects that participate in the transaction. If the transaction fails,
then not only will the database be restored to its previous state, so will the member
variables of the objects.

This is useful if you're defining a method that modifies ActiveRecord objects themselves,
not just the database representations of those objects. For instance, a shopping cart object
might keep a running total that's consulted by the application, but not stored in the
database.

See Also

• http://wiki.rubyonrails.com/rails/pages/HowToUseTransactions
• http://rubyonrails.org/api/classes/ActiveRecord/Transactions/ClassMethods.html

Recipe 13.17. Adding Hooks to Table Events

Problem
You want to run some code whenever a database row is added, updated, or deleted. For
instance, you might want to send out email whenever a new blog post is created.

Chapter 13. Databases and Persistence Page 46 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://wiki.rubyonrails.com/rails/pages/HowToUseTransactions
http://rubyonrails.org/api/classes/ActiveRecord/Transactions/ClassMethods.html

Solution
For Og, use the aspect-oriented features of Glue::Aspect. You can use its before and
after methods to register code blocks that run before or after any Og method. The
methods you're most likely to wrap are og_insert, og_update, and og_delete.

In the following code, I take the BlogPost class first defined in Recipe 13.12, and give its
og_insert method an aspect that sends out email:

 require 'cookbook_dbconnect'
 require 'og'
 require 'glue/aspects'

 class BlogPost
 property :title, :content, String
 after :on => :og_insert do |post|
 puts %{Sending email notification of new post "#{post.title}"}
 # Actually send the email here…
 end
 end

 og_connect
 post = BlogPost.new
 post.title = 'Robots are taking over'
 post.content = 'Think about it! When was the last time you saw another human?'
 post.save!
 # Sending email notification of new post "Robots are taking over"

This technique works with ActiveRecord as well (since aspect-oriented programming is a
generic technique), but ActiveRecord defines two different approaches: callbacks and the
ActiveRecord::Observer class.

Any ActiveRecord::Base subclass can define a number of callback methods:
before_find, after_save, and so on. These methods run before or after the
corresponding ActiveRecord methods. Here's an callback-based ActiveRecord
implementation of the Og example, running against the blog_posttable first defined in
Recipe 13.11. If you ran the previous example in a session, quit it now and start a new
session.

 require 'cookbook_dbconnect'
 activerecord_connect

 class BlogPost < ActiveRecord::Base
 def after_create
 puts %{Sending email notification of new blog post "#{title}"}
 # Actually send the email here…
 end
 end

 post = BlogPost.create(:title => 'Robots: Gentle Yet Misunderstood',
 :content => 'Popular misconceptions about robERROR 40')
 # Sending email notification of new blog post "Robots: Gentle Yet Misunderstood

Chapter 13. Databases and Persistence Page 47 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
ActiveRecord's callback interface is simple, but it's got a big disadvantage compared to
Og's. You can attach multiple aspects to a single method, but you can only define a callback
method once.

This makes little difference when you only want the callback method to do one thing. But
suppose that in addition to sending email whenever a blog post is created, you also want
to notify people of new posts through an instant messenger client, and to regenerate static
syndication feeds to reflect the new post.

If you used a callback, you'd have to lump all of that code together in after_create.
With aspects, each piece of functionality can go into a separate aspect. It's easy to add
more, or to disable a single one without affecting the others. Aspects keep auxilliary code
from cluttering up your core data classes.

Fortunately, ActiveRecord provides a strategy other than the callback methods. You can
define a subclass of ActiveRecord::Observer, which implements any of the callback
methods, and use the observe decorator to attach it to the classes you want to watch.
Multiple Observers can watch a single class, so you can split up the work.

Here's a third example of the email notification code. Again, start a new session if you're
following this recipe inirb.

 require 'cookbook_dbconnect'
 activerecord_connect

 class BlogPost < ActiveRecord::Base
 end

 class MailObserver < ActiveRecord::Observer
 observe BlogPost
 def after_create(post)
 puts %{Sending email notification of new blog post "#{post.title}"}
 # Actually send the email here.
 end
 end
 ActiveRecord::Base.observers = MailObserver

 post = BlogPost.new(:title => "ERROR 40",
 :content => "ERROR ERROR ERROR ERROR ERROR")
 post.save
 # Sending email notification of new blog post "ERROR 40"

Note the call to ActiveRecord::Base.observers=. Calling this method starts the
observer running. You can call ActiveRecord::Base.observers= whenever you need
to add one or more Observers. Despite the implication of the method name, calling it
twice won't overwrite one set of observers with another.

Chapter 13. Databases and Persistence Page 48 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In a Rails application, observers are traditionally started by putting code like the following
in the environment.rb file:

 # environment.rb
 config.active_record.observers = MailObserver

When working with ActiveRecord, if you want to attach an Observer to a specific
ActiveRecord class, you can name it after that class: for instance, BlogPostObserver
will automatically observe the BlogPost class. Obviously, this only works for a single
Observer.

See Also

• Recipe 10.15
• ActiveRecord callbacks documentation (http://rubyonrails.org/api/classes/

ActiveRecord/Callbacks.html)
• ActiveRecord Observer documentation (http://rails.rubyonrails.com/classes/

ActiveRecord/Observer.html)
• Og used to define a class called Og::Observer that worked like ActiveRecord's
ActiveRecord::Observer, but it's been deprecated in favor of aspects; some of
the documentation for Og::Observer is still online, so be careful not to get confused

Recipe 13.18. Adding Taggability with a Database Mixin

Problem
Without writing a lot of code, you want to make one of your database tables "taggable"—
make it possible to add short strings describing a particular item in the table.

Solution
Og comes complete with a tagging mixin. Just call is Taggable on every class you want
to be taggable. Og will create all the necessary tables.

Here's the BlogPost class from Recipe 13.12, only this time it's Taggable. Og
automatically creates a Tag class and the necessary database tables:

 require 'cookbook_dbconnect'
 require 'og'
 require 'glue/taggable'

 class BlogPost
 is Taggable
 property :title, :content, String
 end

Chapter 13. Databases and Persistence Page 49 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-15#rubyckbk-CHP-10-SECT-15
http://rubyonrails.org/api/classes/ActiveRecord/Callbacks.html
http://rubyonrails.org/api/classes/ActiveRecord/Callbacks.html
http://rails.rubyonrails.com/classes/ActiveRecord/Observer.html
http://rails.rubyonrails.com/classes/ActiveRecord/Observer.html

 og_connect

 # Now we can play around with tags.
 post = BlogPost.new
 post.title = 'Some more facts about video games'
 post.tag(['editorial', 'games'])

 BlogPost.find_with_tags('games').each { |puts| puts post.title }
 # Some more facts about video games

 Tag.find_by_name('editorial').blog_posts.each { |post| puts post.title }
 # Some more facts about video games

To get this feature in ActiveRecord, you'll need to install the acts_as_taggable gem,
and you must create the database tables yourself. Here are the tables necessary to add tags
to the ActiveRecord BlogPost class (first described in Recipe 13.11): a generic tags table
and a join table connecting it to blog_posts.

 DROP TABLE IF EXISTS tags;
 CREATE TABLE tags (
 id INT(11) NOT NULL AUTO_INCREMENT,
 name VARCHAR(32),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

 DROP TABLE IF EXISTS tags_blog_posts;
 CREATE TABLE tags_blog_posts (
 tag_id INT(11),
 blog_post_id INT(11)
) ENGINE=InnoDB;

Note that the join table violates the normal ActiveRecord naming rule. It's called
tags_blog_posts, even though alphabetical ordering of its component tables would
make it blog_posts_tags. ActiveRecord does this so all of your application's
tags_jointables will show up together in a sorted list. If you want to call the table
blog_posts_tags instead, you'll need to pass the name as the :join_table parameter
when you call the acts_as_taggable decorator below.

Here's the ActiveRecord code that makes BlogPost taggable. If you ran the previous
example, run this one in a newirbsession so that you can define a newBlogPostclass.

 require 'cookbook_dbconnect'
 require 'taggable'
 activerecord_connect

 class Tag < ActiveRecord::Base
 end

 class BlogPost < ActiveRecord::Base
 acts_as_taggable
 end

 # Now we can play around with tags.
 post = BlogPost.create(:title => 'Some more facts about inflation.')
 post.tag(['editorial', 'economics'])

 BlogPost.find_tagged_with(:any=>'editorial').each { |post| puts post.title }
 # Some more facts about inflation.

Chapter 13. Databases and Persistence Page 50 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
A mixin class like Enumerable is an easy way to add a lot of functionality to an existing
class without writing much code. Database mixins work the same way: you can add new
objects and relationships to your data model without having to write a lot of database code.
Of course, you'll still need to decide how to incorporate tags into your user interface.

The Og and ActiveRecord tagging mixins work the same way, although the Og mixin hides
the details. In addition to your original database table (the one you want to tag), you need
a table that contains tags, and a join table connecting the tags to the tagged. Whether you
use Og or ActiveRecord, the database schema looks something like Figure 13-1.

Figure 13-1. BlogPosts are associated with Tags through a join table

The tagging mixin saves you from having to write code for managing the tag table, and the
original table's relationship with it.

But there are two ways to tag something, and we've only covered one. You add tags to
BlogPost if you want one set of tags for each blog post, probably set by the author of the
post. The tags act as canonical categories. What if you want to create a tag system where
everyone has their own set of tags for blog posts? Instead of a single system imposed by
the authors, every user gets to define a categorization system that makes sense to them.

When you do this, the application doesn't tag a blog post itself. It tags one person's
relationship to a blog post. The schema looks something like Figure 13-2.

Chapter 13. Databases and Persistence Page 51 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 13-2. When tags are per-user, the join table associates BlogPosts, Tags, and People

Let's implement per-user tagging in ActiveRecord. Instead of making the
tags_blog_posts table connect a blog post directly to a tag, we'll have it connect a tag,
a blog post, and a person.

 DROP TABLE IF EXISTS tags_blog_posts;
 CREATE TABLE tags_blog_posts (
 tag_id INT(11),
 blog_post_id INT(11),
 created_by_id INT(11)
) ENGINE=InnoDB;

Here's the Ruby code. First, some setup we've seen before:

 require 'cookbook_dbconnect'
 require 'taggable'
 activerecord_connect

 class Tag < ActiveRecord::Base
 end

 class Person < ActiveRecord::Base
 end

When each blog post had one set of tags, we called acts_as_taggable with no
arguments, and the BlogPost class was associated directly with the Tag class. This time,
we tell acts_as_taggable that BlogPost objects are associated with Tag through the
TagBlogPost class:

 # ActiveRecord will automatically define the TagBlogPost class when
 # we reference it.
 class BlogPost < ActiveRecord::Base

Chapter 13. Databases and Persistence Page 52 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 acts_as_taggable :join_class_name => 'TagBlogPost'
 end

Now we tell TagBlogPost that it's associated with the Person class: every TagBlogPost
represents one person's opinions about a single blog post:

 # Specify that a TagBlogPost is associated with a specific user.
 class TagBlogPost
 belongs_to :created_by, :class_name => 'Person',
 :foreign_key => 'created_by_id'
 end

Now each Person can have their own set of tags on each BlogPost:

 post = BlogPost.create(:title => 'My visit to the steel mill.')
 alice = Person.create(:name=>"Alice")
 post.tag(['travelogue', 'metal', 'interesting'],
 :attributes => { :created_by => alice })

 alices_interests = BlogPost.find_tagged_with(:all => 'interesting',
 :condition => "tags_people.created_by_id = #{alice.id}")
 alices_interests.each { |article| puts article.title }
 # My visit to the steel mill.

Og and ActiveRecord each come with several common mixins. For instance, you can use
a mixin to model parent-child relationships between tables (Og is Hierarchical,
ActiveRecord acts_as_tree and acts_as_nested_set), or to treat the rows of a table
as an ordered lists (Og is Orderable, ActiveRecord acts_as_list). These can save you
a lot of time.

See Also

• The built-in ActiveRecord mixins are all in the ActiveRecord::Acts module; see
the generated documentation at http://rubyonrails.org/api/

• The taggable reference for ActiveRecord (http://taggable.rubyforge.org/)

Chapter 13. Databases and Persistence Page 53 Return to Table of Contents

Chapter 13. Databases and Persistence
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyonrails.org/api/
http://taggable.rubyforge.org/

	Databases and Persistence
	Serializing Data with YAML
	Serializing Data with Marshal
	Persisting Objects with Madeleine
	Indexing Unstructured Text with SimpleSearch
	Indexing Structured Text with Ferret
	Using Berkeley DB Databases
	Controlling MySQL on Unix
	Finding the Number of Rows Returned by a Query
	Talking Directly to a MySQL Database
	Talking Directly to a PostgreSQL Database
	Using Object Relational Mapping with ActiveRecord
	Using Object Relational Mapping with Og
	Building Queries Programmatically
	Validating Data with ActiveRecord
	Preventing SQL Injection Attacks
	Using Transactions in ActiveRecord
	Adding Hooks to Table Events
	Adding Taggability with a Database Mixin

