
Table of Contents

Numbers.. 1
Parsing a Number from a String... 2
Comparing Floating-Point Numbers.. 4
Representing Numbers to Arbitrary Precision... 7
Representing Rational Numbers... 11
Generating Random Numbers.. 12
Converting Between Numeric Bases... 14
Taking Logarithms... 15
Finding Mean, Median, and Mode.. 18
Converting Between Degrees and Radians... 21
Multiplying Matrices... 22
Solving a System of Linear Equations.. 26
Using Complex Numbers.. 29
Simulating a Subclass of Fixnum.. 32
Doing Math with Roman Numbers... 35
Generating a Sequence of Numbers... 40
Generating Prime Numbers.. 43
Checking a Credit Card Checksum.. 47

Chapter 2. Numbers

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2. Numbers
Numbers are as fundamental to computing as breath is to human life. Even programs that
have nothing to do with math need to count the items in a data structure, display average
running times, or use numbers as a source of randomness. Ruby makes it easy to represent
numbers, letting you breathe easy and tackle the harder problems of programming.

An issue that comes up when you're programming with numbers is that there are several
different implementations of "number," optimized for different purposes: 32bit integers,
floating-point numbers, and so on. Ruby tries to hide these details from you, but it's
important to know about them because they often manifest as mysteriously incorrect
calculations.[1]

[1] See, for instance, the Discussion section of Recipe 2.11, where it's revealed that Matrix#inverse doesn't work correctly on a matrix full of integers. This is because
Matrix#inverse uses division, and integer division works differently from floating-point division.

The first distinction is between small numbers and large ones. If you've used other
programming languages, you probably know that you must use different data types to hold
small numbers and large numbers (assuming that the language supports large numbers
at all). Ruby has different classes for small numbers (Fixnum) and large numbers
(Bignum), but you don't usually have to worry about the difference. When you type in a
number, Ruby sees how big it is and creates an object of the appropriate class.

 1000.class # => Fixnum
 10000000000.class # => Bignum
 (2**30 - 1).class # => Fixnum
 (2**30).class # => Bignum

When you perform arithmetic, Ruby automatically does any needed conversions. You don't
have to worry about the difference between small and large numbers:[2]

[2] Python also has this feature.

 small = 1000
 big = small ** 5 # => 1000000000000000
 big.class # => Bignum
 smaller = big / big # => 1
 smaller.class # => Fixnum

The other major distinction is between whole numbers (integers) and fractional numbers.
Like all modern programming languages, Ruby implements the IEEE floating-point
standard for representing fractional numbers. If you type a number that includes a decimal
point, Ruby creates a Float object instead of a Fixnum or Bignum:

Chapter 2. Numbers Page 1 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

 0.01.class # => Float
 1.0.class # => Float
 10000000000.00000000001.class # => Float

But floating-point numbers are imprecise (see Recipe 2.2), and they have their own size
limits, so Ruby also provides a class that can represent any number with a finite decimal
expansion (Recipe 2.3). There's also a class for numbers like two-thirds, which have an
infinite decimal expansion (Recipe 2.4), and a class for complex or "irrational" numbers
(Recipe 2.12).

Every kind of number in Ruby has its own class (Integer, Bignum, Complex, and so on),
which inherits from the Numeric class. All these classes implement the basic arithmetic
operations, and in most cases you can mix and match numbers of different types (see
Recipe 8.9 for more on how this works). You can reopen these classes to add new
capabilities to numbers (see, for instance, Recipe 2.17), but you can't usefully subclass
them.

Ruby provides simple ways of generating random numbers (Recipe 2.5) and sequences of
numbers (Recipe 2.15). This chapter also covers some simple mathematical algorithms
(Recipes 2.7 and 2.11) and statistics (Recipe 2.8).

Recipe 2.1. Parsing a Number from a String

Problem
Given a string that contains some representation of a number, you want to get the
corresponding integer or floating-point value.

Solution
Use String#to_i to turn a string into an integer. Use String#to_f to turn a string into
a floating-point number.

 '400'.to_i # => 400
 '3.14'.to_f # => 3.14
 '1.602e-19'.to_f # => 1.602e-19

Discussion
Unlike Perl and PHP, Ruby does not automatically make a number out of a string that
contains a number. You must explicitly call a conversion method that tells Ruby how you
want the string to be converted.

Chapter 2. Numbers Page 2 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-9#rubyckbk-CHP-8-SECT-9

Along with to_i and to_f, there are other ways to convert strings into numbers. If you
have a string that represents a hex or octal string, you can call String#hex or
String#oct to get the decimal equivalent. This is the same as passing the base of the
number into to_i:

 '405'.oct # => 261
 '405'.to_i(8) # => 261
 '405'.hex # => 1029
 '405'.to_i(16) # => 1029
 'fed'.hex # => 4077
 'fed'.to_i(16) # => 4077

If to_i, to_f, hex,or oct find a character that can't be part of the kind of number they're
looking for, they stop processing the string at that character and return the number so far.
If the string's first character is unusable, the result is zero.

 "13: a baker's dozen".to_i # => 13
 '1001 Nights'.to_i # => 1001
 'The 1000 Nights and a Night'.to_i # => 0
 '60.50 Misc. Agricultural Equipment'.to_f # => 60.5
 '$60.50'.to_f # => 0.0
 'Feed the monster!'.hex # => 65261
 'I fed the monster at Canoga Park Waterslides'.hex # => 0
 '0xA2Z'.hex # => 162
 '-10'.oct # => -8
 '-109'.oct # => -8
 '3.14'.to_i # => 3

Note especially that last example: the decimal point is just one more character that stops
processing of a string representing an integer.

If you want an exception when a string can't be completely parsed as a number, use
Integer() or Float():

 Integer('1001') # => 1001
 Integer('1001 nights')
 # ArgumentError: invalid value for Integer: "1001 nights"

 Float('99.44') # => 99.44
 Float('99.44% pure')
 # ArgumentError: invalid value for Float(): "99.44% pure"

To extract a number from within a larger string, use a regular expression. The
NumberParser class below contains regular expressions for extracting floating-point
strings, as well as decimal, octal, and hexadecimal numbers. Its extract_numbers
method uses String#scan to find all the numbers of a certain type in a string.

 class NumberParser
 @@number_regexps = {
 :to_i => /([+-]?[0-9]+)/,
 :to_f => /([+-]?([0-9]*\.)?[0-9]+(e[+-]?[0-9]+)?)/i,
 :oct => /([+-]?[0-7]+)/,
 :hex => /\b([+-]?(0x)?[0-9a-f]+)\b/i

Chapter 2. Numbers Page 3 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #The \b characters prevent every letter A-F in a word from being
 #considered a hexadecimal number.
 }

 def NumberParser.re(parsing_method=:to_i)
 re = @@number_regexps[parsing_method]
 raise ArgumentError, "No regexp for #{parsing_method.inspect}!" unless re
 return re
 end

 def extract(s, parsing_method=:to_i)
 numbers = []
 s.scan(NumberParser.re(parsing_method)) do |match|
 numbers << match[0].send(parsing_method)
 end
 numbers
 end
 end

Here it is in action:

 p = NumberParser.new

 pw = "Today's numbers are 104 and 391."
 NumberParser.re(:to_i).match(pw).captures # => ["104"]
 p.extract(pw, :to_i) # => [104, 391]

 p.extract('The 1000 nights and a night') # => [1000]
 p.extract('$60.50', :to_f) # => [60.5]
 p.extract('I fed the monster at Canoga Park Waterslides', :hex)
 # => [4077]
 p.extract('In octal, fifteen is 017.', :oct) # => [15]

 p.extract('From 0 to 10e60 in -2.4 seconds', :to_f)
 # => [0.0, 1.0e+61, -2.4]
 p.extract('From 0 to 10e60 in -2.4 seconds')
 # => [0, 10, 60, -2, 4]

If you want to extract more than one kind of number from a string, the most reliable
strategy is to stop using regular expressions and start using the scanf module, a free third-
party module that provides a parser similar to C's scanf function.

 require 'scanf'
 s = '0x10 4.44 10'.scanf('%x %f %d') # => [16, 4.44, 10]

See Also

• Recipe 2.6, "Converting Between Numeric Bases"
• Recipe 8.9, "Converting and Coercing Objects to Different Types"
• The scanf module (http://www.rubyhacker.com/code/scanf/)

Recipe 2.2. Comparing Floating-Point Numbers

Chapter 2. Numbers Page 4 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-9#rubyckbk-CHP-8-SECT-9
http://www.rubyhacker.com/code/scanf/

Problem
Floating-point numbers are not suitable for exact comparison. Often, two numbers that
should be equal are actually slightly different. The Ruby interpreter can make seemingly
nonsensical assertions when floating-point numbers are involved:

 1.8 + 0.1 # => 1.9
 1.8 + 0.1 == 1.9 # => false
 1.8 + 0.1 > 1.9 # => true

You want to do comparison operations approximately, so that floating-point numbers
infintesimally close together can be treated equally.

Solution
You can avoid this problem altogether by using BigDecimal numbers instead of floats
(see Recipe 2.3). BigDecimal numbers are completely precise, and work as well as as
floats for representing numbers that are relatively small and have few decimal places:
everyday numbers like the prices of fruits. But math on BigDecimal numbers is much
slower than math on floats. Databases have native support for floating-point numbers, but
not for BigDecimals. And floating-point numbers are simpler to create (simply type
10.2 in an interactive Ruby shell to get a Float object). BigDecimals can't totally
replace floats, and when you use floats it would be nice not to have to worry about tiny
differences between numbers when doing comparisons.

But how tiny is "tiny"? How large can the difference be between two numbers before they
should stop being considered equal? As numbers get larger, so does the range of floating-
point values that can reasonably be expected to model that number. 1.1 is probably not
"approximately equal" to 1.2, but 1020 + 0.1 is probably "approximately equal" to 1020 +
0.2.

The best solution is probably to compare the relative magnitudes of large numbers, and
the absolute magnitudes of small numbers. The following code accepts both two
thresholds: a relative threshold and an absolute threshold. Both default to
Float::EPSILON, the smallest possible difference between two Float objects. Two
floats are considered approximately equal if they are within absolute_epsilon of each
other, or if the difference between them is relative_epsilon times the magnitude of
the larger one.

 class Float
 def approx(other, relative_epsilon=Float::EPSILON, epsilon=Float::EPSILON)
 difference = other - self
 return true if difference.abs <= epsilon
 relative_error = (difference / (self > other ? self : other)).abs
 return relative_error <= relative_epsilon
 end
 end

Chapter 2. Numbers Page 5 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 100.2.approx(100.1 + 0.1) # => true
 10e10.approx(10e10+1e-5) # => true
 100.0.approx(100+1e-5) # => false

Discussion
Floating-point math is very precise but, due to the underlying storage mechanism for
Float objects, not very accurate. Many real numbers (such as 1.9) can't be represented
by the floating-point standard. Any attempt to represent such a number will end up using
one of the nearby numbers that does have a floating-point representation.

You don't normally see the difference between 1.9 and 1.8 + 0.1, because Float#to_s
rounds them both off to "1.9". You can see the difference by using Kernel#printf to
display the two expressions to many decimal places:

 printf("%.55f", 1.9)
 # 1.8999999999999999111821580299874767661094665527343750000
 printf("%.55f", 1.8 + 0.1)
 # 1.9000000000000001332267629550187848508358001708984375000

Both numbers straddle 1.9 from opposite ends, unable to accurately represent the number
they should both equal. Note that the difference between the two numbers is precisely
Float::EPSILON:

 Float::EPSILON # => 2.22044604925031e-16
 (1.8 + 0.1) - 1.9 # => 2.22044604925031e-16

This EPSILON's worth of inaccuracy is often too small to matter, but it does when you're
doing comparisons. 1.9+Float::EPSILON is not equal to 1.9-Float::EPSILON, even
if (in this case) both are attempts to represent the same number. This is why most floating-
point numbers are compared in relative terms.

The most efficient way to do a relative comparison is to see whether the two numbers differ
by more than an specified error range, using code like this:

 class Float
 def absolute_approx(other, epsilon=Float::EPSILON)
 return (other-self).abs <= epsilon
 end
 end

 (1.8 + 0.1).absolute_approx(1.9) # => true
 10e10.absolute_approx(10e10+1e-5) # => false

The default value of epsilon works well for numbers close to 0, but for larger numbers
the default value of epsilon will be too small. Any other value of epsilon you might
specify will only work well within a certain range.

Chapter 2. Numbers Page 6 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Thus, Float#approx, the recommended solution, compares both absolute and relative
magnitude. As numbers get bigger, so does the allowable margin of error for two numbers
to be considered "equal." Its default relative_epsilon allows numbers between 2 and
3 to differ by twice the value of Float::EPSILON. Numbers between 3 and 4 can differ
by three times the value of Float::EPSILON, and so on.

A very small value of relative_epsilon is good for mathematical operations, but if
your data comes from a real-world source like a scientific instrument, you can increase it.
For instance, a Ruby script may track changes in temperature read from a thermometer
that's only 99.9% accurate. In this case, relative_epsilon can be set to 0.001, and
everything beyond that point discarded as noise.

 98.6.approx(98.66) # => false
 98.6.approx(98.66, 0.001) # => true

See Also

• Recipe 2.3, "Representing Numbers to Arbitrary Precision," has more information on
BigDecimal numbers

• If you need to represent a fraction with an infinite decimal expansion, use a Rational
number (see Recipe 2.4, "Representing Rational Numbers")

• "Comparing floating-point numbers" by Bruce Dawson has an excellent (albeit C-
centric) overview of the tradeoffs involved in different ways of doing floating-point
comparisons (http://www.cygnus-software.com/papers/comparingfloats/
comparingfloats.htm)

Recipe 2.3. Representing Numbers to Arbitrary Precision

Problem
You're doing high-precision arithmetic, and floating-point numbers are not precise
enough.

Solution
A BigDecimal number can represent a real number to an arbitrary number of decimal
places.

 require 'bigdecimal'

 BigDecimal("10").to_s # => "0.1E2"
 BigDecimal("1000").to_s # => "0.1E4"
 BigDecimal("1000").to_s("F") # => "1000.0"

Chapter 2. Numbers Page 7 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm
http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm

 BigDecimal("0.123456789").to_s # => "0.123456789E0"

Compare how Float and BigDecimal store the same high-precision number:

 nm = "0.123456789012345678901234567890123456789"
 nm.to_f # => 0.123456789012346
 BigDecimal(nm).to_s
 # => "0.123456789012345678901234567890123456789E0"

Discussion
BigDecimal numbers store numbers in scientific notation format. A BigDecimal
consists of a sign (positive or negative), an arbitrarily large decimal fraction, and an
arbitrarily large exponent. This is similar to the way floating-point numbers are stored,
but a double-precision floating-point implementation like Ruby's cannot represent an
exponent less than Float::MIN_EXP (–1021) or greater than Float::MAX_EXP (1024).
Float objects also can't represent numbers at a greater precision than
Float::EPSILON, or about 2.2*10-16.

You can use BigDecimal#split to split a BigDecimal object into the parts of its
scientific-notation representation. It returns an array of four numbers: the sign (1 for
positive numbers,–1 for negative numbers), the fraction (as a string), the base of the
exponent (which is always 10), and the exponent itself.

 BigDecimal("105000").split
 # => [1, "105", 10, 6]
 # That is, 0.105*(10**6)

 BigDecimal("-0.005").split
 # => [-1, "5", 10, -2]
 # That is, -1 * (0.5*(10**-2))

A good way to test different precision settings is to create an infinitely repeating decimal
like 2/3, and see how much of it gets stored. By default, BigDecimals give 16 digits of
precision, roughly comparable to what a Float can give.

 (BigDecimal("2") / BigDecimal("3")).to_s
 # => "0.6666666666666667E0"

 2.0/3
 # => 0.666666666666667

You can store additional significant digits by passing in a second argument n to the
BigDecimal constructor. BigDecimal precision is allocated in chunks of four decimal
digits. Values of n from 1 to 4 make a BigDecimal use the default precision of 16 digits.
Values from 5 to 8 give 20 digits of precision, values from 9 to 12 give 24 digits, and so on:

Chapter 2. Numbers Page 8 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def two_thirds(precision)
 (BigDecimal("2", precision) / BigDecimal("3")).to_s
 end

 two_thirds(1) # => "0.6666666666666667E0"
 two_thirds(4) # => "0.6666666666666667E0"
 two_thirds(5) # => "0.66666666666666666667E0"
 two_thirds(9) # => "0.666666666666666666666667E0"
 two_thirds(13) # => "0.6666666666666666666666666667E0"

Not all of a number's significant digits may be used. For instance, Ruby considers
BigDecimal("2") and BigDecimal("2.000000000000") to be equal, even though the
second one has many more significant digits.

You can inspect the precision of a number with BigDecimal#precs. This method returns
an array of two elements: the number of significant digits actually being used, and the toal
number of significant digits. Again, since significant digits are allocated in blocks of four,
both of these numbers will be multiples of four.

 BigDecimal("2").precs # => [4, 8]
 BigDecimal("2.000000000000").precs # => [4, 20]
 BigDecimal("2.000000000001").precs # => [16, 20]

If you use the standard arithmetic operators on BigDecimals, the result is a BigDecimal
accurate to the largest possible number of digits. Dividing or multiplying one BigDecimal
by another yields a BigDecimal with more digits of precision than either of its parents,
just as would happen on a pocket calculator.

 (a = BigDecimal("2.01")).precs # => [8, 8]
 (b = BigDecimal("3.01")).precs # => [8, 8]

 (product = a * b).to_s("F") # => "6.0501"
 product.precs # => [8, 24]

To specify the number of significant digits that should be retained in an arithmetic
operation, you can use the methods add, sub, mul, and div instead of the arithmetic
operators.

 two_thirds = (BigDecimal("2", 13) / 3)
 two_thirds.to_s # => "0.666666666666666666666666666666666667E0"

 (two_thirds + 1).to_s # => "0.1666666666666666666666666666666666667E1"

 two_thirds.add(1, 1).to_s # => "0.2E1"
 two_thirds.add(1, 4).to_s # => "0.1667E1"

Either way, BigDecimal math is significantly slower than floating-point math. Not only
are BigDecimals allowed to have more significant digits than floats, but BigDecimals
are stored as an array of decimal digits, while floats are stored in a binary encoding and
manipulated with binary arithmetic.

Chapter 2. Numbers Page 9 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The BigMath module in the Ruby standard library defines methods for performing
arbitrary-precision mathematical operations on BigDecimal objects. It defines power-
related methods like sqrt, log, and exp, and trigonometric methods like sin, cos, and
atan.

All of these methods take as an argument a number prec indicating how many digits of
precision to retain. They may return a BigDecimal with more than prec significant
digits, but only prec of those digits are guaranteed to be accurate.

 require 'bigdecimal/math'
 include BigMath
 two = BigDecimal("2")
 BigMath::sqrt(two, 10).to_s("F") # => "1.4142135623730950488016883515"

That code gives 28 decimal places, but only 10 are guaranteed accurate (because we passed
in an n of 10), and only 24 are actually accurate. The square root of 2 to 28 decimal places
is actually 1.4142135623730950488016887242. We can get rid of the inaccurate digits
with BigDecimal#round:

 BigMath::sqrt(two, 10).round(10).to_s("F") # => "1.4142135624"

We can also get a more precise number by increasing n:

 BigMath::sqrt(two, 28).round(28).to_s("F") # => "1.4142135623730950488016887242"

BigMath also annotates BigDecimal with class methods BigDecimal.PI and
BigDecimal.E. These methods construct BigDecimals of those transcendental
numbers at any level of precision.

 Math::PI # => 3.14159265358979
 Math::PI.class # => Float
 BigDecimal.PI(1).to_s # => "0.31415926535897932364198143965603E1"
 BigDecimal.PI(20).to_s
 # => "0.3141592653589793238462643383279502883919859293521427E1"

See Also

• At the time of writing, BigMath::log was very slow for BigDecimals larger than
about 10; see Recipe 2.7, "Taking Logarithms," for a much faster implementation

• See Recipe 2.4, "Representing Rational Numbers," if you need to exactly represent a
rational number with an infinite decimal expansion, like 2/3

• The BigDecimal library reference is extremely useful; if you look at the generated
RDoc for the Ruby standard library, BigDecimal looks almost undocumented, but
it actually has a comprehensive reference file (in English and Japanese): it's just not

Chapter 2. Numbers Page 10 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

in RDoc format, so it doesn't get picked up; this document is available in the Ruby
source package, or do a web search for "BigDecimal: An extension library for Ruby"

Recipe 2.4. Representing Rational Numbers

Problem
You want to precisely represent a rational number like 2/3, one that has no finite decimal
expansion.

Solution
Use a Rational object; it represents a rational number as an integer numerator and
denominator.

 float = 2.0/3.0 # => 0.666666666666667
 float * 100 # => 66.6666666666667
 float * 100 / 42 # => 1.58730158730159

 require 'rational'
 rational = Rational(2, 3) # => Rational(2, 3)
 rational.to_f # => 0.666666666666667
 rational * 100 # => Rational(200, 3)
 rational * 100 / 42 # => Rational(100, 63)

Discussion
Rational objects can store numbers that can't be represented in any other form, and
arithmetic on Rational objects is completely precise.

Since the numerator and denominator of a Rational can be Bignums, a Rational object
can also represent numbers larger and smaller than those you can represent in floating-
point. But math on BigDecimal objects is faster than on Rationals. BigDecimal
objects are also usually easier to work with than Rationals, because most of us think of
numbers in terms of their decimal expansions.

You should only use Rational objects when you need to represent rational numbers with
perfect accuracy. When you do, be sure to use only Rationals, Fixnums, and Bignums
in your calculations. Don't use any BigDecimals or floating-point numbers: arithmetic
operations between a Rational and those types will return floating-point numbers, and
you'll have lost precision forever.

 10 + Rational(2,3) # => Rational(32, 3)
 require 'bigdecimal'
 BigDecimal('10') + Rational(2,3) # => 10.6666666666667

Chapter 2. Numbers Page 11 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The methods in Ruby's Math module implement operations like square root, which usually
give irrational results. When you pass a Rational number into one of the methods in the
Math module, you get a floating-point number back:

 Math::sqrt(Rational(2,3)) # => 0.816496580927726
 Math::sqrt(Rational(25,1)) # => 5.0
 Math::log10(Rational(100, 1)) # => 2.0

The mathn library adds miscellaneous functionality to Ruby's math functions. Among
other things, it modifies the Math::sqrt method so that if you pass in a square number,
you get a Fixnum back instead of a Float. This preserves precision whenever possible:

 require 'mathn'
 Math::sqrt(Rational(2,3)) # => 0.816496580927726
 Math::sqrt(Rational(25,1)) # => 5
 Math::sqrt(25) # => 5
 Math::sqrt(25.0) # => 5.0

See Also

• The rfloat third-party library lets you use a Float-like interface that's actually
backed by Rational (http://blade.nagaokaut.ac.jp/~sinara/ruby/rfloat/)

• RCR 320 proposes better interoperability between Rationals and floating-point
numbers, including a Rational#approximate method that will let you convert the
floating-point number 0.1 into Rational(1, 10) (http://www.rcrchive.net/rcr/
show/320)

Recipe 2.5. Generating Random Numbers

Problem
You want to generate pseudorandom numbers, select items from a data structure at
random, or repeatedly generate the same "random" numbers for testing purposes.

Solution
Use the Kernel#rand function with no arguments to select a psuedorandom floating-
point number from a uniform distribution between 0 and 1.

 rand # => 0.517297883846589
 rand # => 0.946962603814814

Pass in a single integer argument n to Kernel#rand, and it returns an integer between 0
and n–1:

Chapter 2. Numbers Page 12 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://blade.nagaokaut.ac.jp/~sinara/ruby/rfloat/
http://www.rcrchive.net/rcr/show/320
http://www.rcrchive.net/rcr/show/320

 rand(5) # => 0
 rand(5) # => 4
 rand(5) # => 3
 rand(1000) # => 39

Discussion
You can use the single-argument form of Kernel#rand to build many common tasks
based on randomness. For instance, this code selects a random item from an array.

 a = ['item1', 'item2', 'item3']
 a[rand(a.size)] # => "item3"

To select a random key or value from a hash, turn the keys or values into an array and
select one at random.

 m = { :key1 => 'value1',
 :key2 => 'value2',
 :key3 => 'value3' }
 values = m.values
 values[rand(values.size)] # => "value1"

This code generates pronounceable nonsense words:

 def random_word
 letters = { ?v => 'aeiou',
 ?c => 'bcdfghjklmnprstvwyz' }
 word = ''
 'cvcvcvc'.each_byte do |x|
 source = letters[x]
 word << source[rand(source.length)].chr
 end
 return word
 end

 random_word # => "josuyip"
 random_word # => "haramic"

The Ruby interpreter initializes its random number generator on startup, using a seed
derived from the current time and the process number. To reliably generate the same
random numbers over and over again, you can set the random number seed manually by
calling the Kernel#srand function with the integer argument of your choice. This is
useful when you're writing automated tests of "random" functionality:

 #Some random numbers based on process number and current time
 rand(1000) # => 187
 rand(1000) # => 551
 rand(1000) # => 911

 #Start the seed with the number 1
 srand 1
 rand(1000) # => 37
 rand(1000) # => 235
 rand(1000) # => 908

Chapter 2. Numbers Page 13 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #Reset the seed to its previous state
 srand 1
 rand(1000) # => 37
 rand(1000) # => 235
 rand(1000) # => 908

See Also

• Recipe 4.10, "Shuffling an Array"
• Recipe 5.11, "Choosing Randomly from a Weighted List"
• Recipe 6.9, "Picking a Random Line from a File"
• The Facets library implements many methods for making random selections from

data structures: Array#pick, Array#rand_subset, Hash#rand_pair, and so
on; it also defines String.random for generating random strings

• Christian Neukirchen's rand.rb also implements many random selection methods
(http://chneukirchen.org/blog/static/projects/rand.html)

Recipe 2.6. Converting Between Numeric Bases

Problem
You want to convert numbers from one base to another.

Solution
You can convert specific binary, octal, or hexadecimal numbers to decimal by representing
them with the 0b, 0o, or 0x prefixes:

 0b100 # => 4
 0o100 # => 64
 0x100 # => 256

You can also convert between decimal numbers and string representations of those
numbers in any base from 2 to 36. Simply pass the base into String#to_i or
Integer#to_s.

Here are some conversions between string representations of numbers in various bases,
and the corresponding decimal numbers:

 "1045".to_i(10) # => 1045
 "-1001001".to_i(2) # => -73
 "abc".to_i(16) # => 2748
 "abc".to_i(20) # => 4232
 "number".to_i(36) # => 1442151747
 "zz1z".to_i(36) # => 1678391
 "abcdef".to_i(16) # => 11259375
 "AbCdEf".to_i(16) # => 11259375

Chapter 2. Numbers Page 14 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-10#rubyckbk-CHP-4-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-11#rubyckbk-CHP-5-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-9#rubyckbk-CHP-6-SECT-9
http://chneukirchen.org/blog/static/projects/rand.html

Here are some reverse conversions of decimal numbers to the strings that represent those
numbers in various bases:

 42.to_s(10) # => "42"
 -100.to_s(2) # => "-1100100"
 255.to_s(16) # => "ff"
 1442151747.to_s(36) # => "number"

Some invalid conversions:

 "6".to_i(2) # => 0
 "0".to_i(1) # ArgumentError: illegal radix 1
 40.to_s(37) # ArgumentError: illegal radix 37

Discussion
String#to_i can parse and Integer#to_s can create a string representation in every
common integer base: from binary (the familiar base 2, which uses only the digits 0 and
1) to hexatridecimal (base 36). Hexatridecimal uses the digits 0–9 and the letters a–z; it's
sometimes used to generate alphanumeric mneumonics for long numbers.

The only commonly used counting systems with bases higher than 36 are the variants of
base-64 encoding used in applications like MIME mail attachments. These usually encode
strings, not numbers; to encode a string in MIME-style base-64, use the base64 library.

See Also

• Recipe 12.5, "Adding Graphical Context with Sparklines," and Recipe 14.5, "Sending
Mail," show how to use the base64 library

Recipe 2.7. Taking Logarithms

Problem
You want to take the logarithm of a number, possibly a huge one.

Solution
Math.log calculates the natural log of a number: that is, the log base e.

 Math.log(1) # => 0.0
 Math.log(Math::E) # => 1.0
 Math.log(10) # => 2.30258509299405
 Math::E ** Math.log(25) # => 25.0

Chapter 2. Numbers Page 15 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-5#rubyckbk-CHP-12-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-5#rubyckbk-CHP-14-SECT-5

Math.log10 calculates the log base 10 of a number:

 Math.log10(1) # => 0.0
 Math.log10(10) # => 1.0
 Math.log10(10.1) # => 1.00432137378264
 Math.log10(1000) # => 3.0
 10 ** Math.log10(25) # => 25.0

To calculate a logarithm in some other base, use the fact that, for any bases b1 and b2,
logb1(x) = logb2(x) / logb2(k).

 module Math
 def Math.logb(num, base)
 log(num) / log(base)
 end
 end

Discussion
A logarithm function inverts an exponentiation function. The log base k of x,or logk(x), is
the number that gives x when raised to the k power. That is, Math. log10(1000)==3.0
because 10 cubed is 1000.Math.log(Math::E)==1 because e to the first power is e.

The logarithm functions for all numeric bases are related (you can get from one base to
another by dividing by a constant factor), but they're used for different purposes.

Scientific applications often use the natural log: this is the fastest log implementation in
Ruby. The log base 10 is often used to visualize datasets that span many orders of
magnitude, such as the pH scale for acidity and the Richter scale for earthquake intensity.
Analyses of algorithms often use the log base 2, or binary logarithm.

If you intend to do a lot of algorithms in a base that Ruby doesn't support natively, you can
speed up the calculation by precalculating the dividend:

 dividend = Math.log(2)
 (1..6).collect { |x| Math.log(x) / dividend }
 # => [0.0, 1.0, 1.58496250072116, 2.0, 2.32192809488736, 2.58496250072116]

The logarithm functions in Math will only accept integers or floating-point numbers, not
BigDecimal or Bignum objects. This is inconvenient since logarithms are often used to
make extremely large numbers managable. The BigMath module has a function to take
the natural logarithm of a BigDecimal number, but it's very slow.

Here's a fast drop-in replacement for BigMath::log that exploits the logarithmic identity
log(x*y)==log(x) + log(y). It decomposes a BigDecimal into three much smaller

Chapter 2. Numbers Page 16 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

numbers, and operates on those numbers. This avoids the cases that give BigMath::log
such poor performance.

 require 'bigdecimal'
 require 'bigdecimal/math'
 require 'bigdecimal/util'

 module BigMath
 alias :log_slow :log
 def log(x, prec)
 if x <= 0 || prec <= 0
 raise ArgumentError, "Zero or negative argument for log"
 end
 return x if x.infinite? || x.nan?
 sign, fraction, power, exponent = x.split
 fraction = BigDecimal(".#{fraction}")
 power = power.to_s.to_d
 log_slow(fraction, prec) + (log_slow(power, prec) * exponent)
 end
 end

Like BigMath::log, this implementation returns a BigMath accurate to at least prec
digits, but containing some additional digits which might not be accurate. To avoid giving
the impression that the result is more accurate than it is, you can round the number to prec
digits with BigDecimal#round.

 include BigMath

 number = BigDecimal("1234.5678")
 Math.log(number) # => 7.11847622829779

 prec = 50
 BigMath.log_slow(number, prec).round(prec).to_s("F")
 # => "7.11847622829778629250879253638708184134073214145175"

 BigMath.log(number, prec).round(prec).to_s("F")
 # => "7.11847622829778629250879253638708184134073214145175"
 BigMath.log(number ** 1000, prec).round(prec).to_s("F")
 # => "7118.47622829778629250879253638708184134073214145175161"

As before, calculate a log other than the natural log by dividing by BigMath.log(base)
or BigMath.log_slow(base).

 huge_number = BigDecimal("1000") ** 1000
 base = BigDecimal("10")
 BigMath.log(huge_number, 100) / BigMath.log(base, 100)).to_f
 # => 3000.0

How does it work? The internal representation of a BigDecimal is as a number in
scientific notation: fraction*10**power. Because log(x*y)=log(x) + log(y),
the log of such a number is log(fraction) + log(10**power).

10**power is just 10 multiplied by itself power times (that is, 10*10*10*…*10). Again,
log(x*y)=log(x) + log(y), so log(10*10*10*…*10)=log(10)+log(10) +

Chapter 2. Numbers Page 17 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

log(10)+…+log(10),or log(10)*power. This means we can take the logarithm of a
huge BigDecimal by taking the logarithm of its (very small) fractional portion and the
logarithm of 10.

See Also

• Mathematicians used to spend years constructing tables of logarithms for scientific
and engineering applications; so if you find yourself doing a boring job, be glad you
don't have to do that (see http://en.wikipedia.org/wiki/
Logarithm#Tables_of_logarithms)

Recipe 2.8. Finding Mean, Median, and Mode

Problem
You want to find the average of an array of numbers: its mean, median, or mode.

Solution
Usually when people speak of the "average" of a set of numbers they're referring to its
mean, or arithmetic mean. The mean is the sum of the elements divided by the number of
elements.

 def mean(array)
 array.inject(array.inject(0) { |sum, x| sum += x } / array.size.to_f
 end

 mean([1,2,3,4]) # => 2.5
 mean([100,100,100,100.1]) # => 100.025
 mean([-100, 100]) # => 0.0
 mean([3,3,3,3]) # => 3.00

The median is the item x such that half the items in the array are greater than x and the
other half are less than x. Consider a sorted array: if it contains an odd number of elements,
the median is the one in the middle. If the array contains an even number of elements, the
median is defined as the mean of the two middle elements.

 def median(array, already_sorted=false)
 return nil if array.empty?
 array = array.sort unless already_sorted
 m_pos = array.size / 2
 return array.size % 2 == 1 ? array[m_pos] : mean(array[m_pos-1..m_pos])
 end

 median([1,2,3,4,5]) # => 3
 median([5,3,2,1,4]) # => 3
 median([1,2,3,4]) # => 2.5
 median([1,1,2,3,4]) # => 2
 median([2,3,-100,100]) # => 2.5
 median([1, 1, 10, 100, 1000]) # => 10

Chapter 2. Numbers Page 18 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://en.wikipedia.org/wiki/Logarithm#Tables_of_logarithms
http://en.wikipedia.org/wiki/Logarithm#Tables_of_logarithms

The mode is the single most popular item in the array. If a list contains no repeated items,
it is not considered to have a mode. If an array contains multiple items at the maximum
frequency, it is "multimodal." Depending on your application, you might handle each mode
separately, or you might just pick one arbitrarily.

 def modes(array, find_all=true)
 histogram = array.inject(Hash.new(0)) { |h, n| h[n] += 1; h }
 modes = nil
 histogram.each_pair do |item, times|
 modes << item if modes && times == modes[0] and find_all
 modes = [times, item] if (!modes && times>1) or (modes && times>modes[0])
 end
 return modes ? modes[1…modes.size] : modes
 end

 modes([1,2,3,4]) # => nil
 modes([1,1,2,3,4]) # => [1]
 modes([1,1,2,2,3,4]) # => [1, 2]
 modes([1,1,2,2,3,4,4]) # => [1, 2, 4]
 modes([1,1,2,2,3,4,4], false) # => [1]
 modes([1,1,2,2,3,4,4,4,4,4]) # => [4]

Discussion
The mean is the most popular type of average. It's simple to calculate and to understand.
The implementation of mean given above always returns a floating-point number object.
It's a good general-purpose implementation because it lets you pass in an array of Fixnums
and get a fractional average, instead of one rounded to the nearest integer. If you want to
find the mean of an array of BigDecimal or Rational objects, you should use an
implementation of mean that omits the final to_f call:

 def mean_without_float_conversion(array)
 array.inject(0) { |x, sum| sum += x } / array.size
 end
 require 'rational'
 numbers = [Rational(2,3), Rational(3,4), Rational(6,7)]
 mean(numbers)
 # => 0.757936507936508
 mean_without_float_conversion(numbers)
 # => Rational(191, 252)

The median is mainly useful when a small proportion of outliers in the dataset would make
the mean misleading. For instance, government statistics usually show "median household
income" instead of "mean household income." Otherwise, a few super-wealthy households
would make everyone else look much richer than they are. The example below
demonstrates how the mean can be skewed by a few very high or very low outliers.

 mean([1, 100, 100000]) # => 33367.0
 median([1, 100, 100000]) # => 100

 mean([1, 100, -1000000]) # => -333299.666666667
 median([1, 100, -1000000]) # => 1

Chapter 2. Numbers Page 19 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The mode is the only definition of "average" that can be applied to arrays of arbitrary
objects. Since the mean is calculated using arithmetic, an array can only be said to have a
mean if all of its members are numeric. The median involves only comparisons, except
when the array contains an even number of elements: then, calculating the median requires
that you calculate the mean.

If you defined some other way to take the median of an array with an even number of
elements, you could take the median of Arrays of strings:

 median(["a", "z", "b", "l", "m", "j", "b"])
 # => "j"
 median(["a", "b", "c", "d"])
 # TypeError: String can't be coerced into Fixnum

The standard deviation

A concept related to the mean is the standard deviation, a quantity that measures how
close the dataset as a whole is to the mean. When a mean is distorted by high or low outliers,
the corresponding standard deviation is high. When the numbers in a dataset cluster
closely around the mean, the standard deviation is low. You won't be fooled by a misleading
mean if you also look at the standard deviation.

 def mean_and_standard_deviation(array)
 m = mean(array)
 variance = array.inject(0) { |variance, x| variance += (x - m) ** 2 }
 return m, Math.sqrt(variance/(array.size-1))
 end

 #All the items in the list are close to the mean, so the standard
 #deviation is low.
 mean_and_standard_deviation([1,2,3,1,1,2,1])
 # => [1.57142857142857, 0.786795792469443]
 #The outlier increases the mean, but also increases the standard deviation.
 mean_and_standard_deviation([1,2,3,1,1,2,1000])
 # => [144.285714285714, 377.33526837801]

A good rule of thumb is that two-thirds (about 68 percent) of the items in a dataset are
within one standard deviation of the mean, and almost all (about 95 percent) of the items
are within two standard deviations of the mean.

See Also

• "Programmers Need to Learn Statistics or I Will Kill Them All," by Zed Shaw (http://
www.zedshaw.com/blog/programming/programmer_stats.html)

• More Ruby implementations of simple statistical measures (http://dada.perl.it/
shootout/moments.ruby.html)

• To do more complex statistical analysis in Ruby, try the Ruby bindings to the GNU
Scientific Library (http://ruby-gsl.sourceforge.net/)

Chapter 2. Numbers Page 20 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.zedshaw.com/blog/programming/programmer_stats.html
http://www.zedshaw.com/blog/programming/programmer_stats.html
http://dada.perl.it/shootout/moments.ruby.html
http://dada.perl.it/shootout/moments.ruby.html
http://ruby-gsl.sourceforge.net/

• The Stats class in the Mongrel web server (http://mongrel.rubyforge.org)
implements other algorithms for calculating mean and standard deviation, which are
faster if you need to repeatedly calculate the mean of a growing series

Recipe 2.9. Converting Between Degrees and Radians

Problem
The trigonometry functions in Ruby's Math library take input in radians (2π radians in a
circle). Most real-world applications measure angles in degrees (360 degrees in a circle).
You want an easy way to do trigonometry with degrees.

Solution
The simplest solution is to define a conversion method in Numeric that will convert a
number of degrees into radians.

 class Numeric
 def degrees
 self * Math::PI / 180
 end
 end

You can then treat any numeric object as a number of degrees and convert it into the
corresponding number of radians, by calling its degrees method. Trigonometry on the
result will work as you'd expect:

 90.degrees # => 1.5707963267949
 Math::tan(45.degrees) # => 1.0
 Math::cos(90.degrees) # => 6.12303176911189e-17
 Math::sin(90.degrees) # => 1.0
 Math::sin(89.9.degrees) # => 0.999998476913288

 Math::sin(45.degrees) # => 0.707106781186547
 Math::cos(45.degrees) # => 0.707106781186548

Discussion
I named the conversion method degrees by analogy to the methods like hours defined
by Rails. This makes the code easy to read, but if you look at the actual numbers, it's not
obvious why 45.degrees should equal the floating-point number 0.785398163397448.

If this troubles you, you could name the method something like
degrees_to_radians. Or you could use Lucas Carlson's units gem, which lets you
define customized unit conversions, and tracks which unit is being used for a particular
number.

Chapter 2. Numbers Page 21 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://mongrel.rubyforge.org

 require 'rubygems'
 require 'units/base'

 class Numeric
 remove_method(:degrees) # Remove the implementation given in the Solution
 add_unit_conversions(:angle => { :radians => 1, :degrees => Math::PI/180 })
 add_unit_aliases(:angle => { :degrees => [:degree], :radians => [:radian] })
 end

 90.degrees # => 90.0
 90.degrees.unit # => :degrees
 90.degrees.to_radians # => 1.5707963267949
 90.degrees.to_radians.unit # => :radians

 1.degree.to_radians # => 0.0174532925199433
 1.radian.to_degrees # => 57.2957795130823

The units you define with the units gem do nothing but make your code more readable.
The trigonometry methods don't understand the units you've defined, so you'll still have
to give them numbers in radians.

 # Don't do this:
 Math::sin(90.degrees) # => 0.893996663600558

 # Do this:
 Math::sin(90.degrees.to_radians) # => 1.0

Of course, you could also change the trigonometry methods to be aware of units:

 class << Math
 alias old_sin sin
 def sin(x)
 old_sin(x.unit == :degrees ? x.to_radians : x)
 end
 end

 90.degrees # => 90.0
 Math::sin(90.degrees) # => 1.0
 Math::sin(Math::PI/2.radians) # => 1.0
 Math::sin(Math::PI/2) # => 1.0

That's probably overkill, though.

See Also

• Recipe 8.9, "Converting and Coercing Objects to Different Types"
• The Facets More library (available as the facets_more gem) also has a Units

module

Recipe 2.10. Multiplying Matrices

Chapter 2. Numbers Page 22 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-9#rubyckbk-CHP-8-SECT-9

Problem
You want to turn arrays of arrays of numbers into mathematical matrices, and multiply
the matrices together.

Solution
You can create Matrix objects from arrays of arrays, and multiply them together with the
* operator:

 require 'matrix'
 require 'mathn'

 a1 = [[1, 1, 0, 1],
 [2, 0, 1, 2],
 [3, 1, 1, 2]]
 m1 = Matrix[*a1]
 # => Matrix[[1, 1, 0, 1], [2, 0, 1, 2], [3, 1, 1, 2]]

 a2 = [[1, 0],
 [3, 1],
 [1, 0],
 [2, 2.5]]
 m2 = Matrix[*a2]
 # => Matrix[[1, 0], [3, 1], [1, 0], [2, 2.5]]

 m1 * m2
 # => Matrix[[6, 3.5], [7, 5.0], [11, 6.0]]

Note the unusual syntax for creating a Matrix object: you pass the rows of the matrix into
the array indexing operator, not into Matrix#new (which is private).

Discussion
Ruby's Matrix class overloads the arithmetic operators to support all the basic matrix
arithmetic operations, including multiplication, between matrices of compatible
dimension. If you perform an arithmetic operation on incompatible matrices, you'll get an
ExceptionForMatrix::ErrDimensionMismatch.

Multiplying one matrix by another is simple enough, but multiplying a chain of matrices
together can be faster or slower depending on the order in which you do the multiplications.
This follows from the fact that multiplying a matrix with dimensions K x M, by a matrix
with dimensions MxN, requires K * M * N operations and gives a matrix with dimension
K * N. If K is large for some matrix, you can save time by waiting til the end before doing
multiplications involving that matrix.

Consider three matrices A, B, and C, which you want to multiply together. A has 100 rows
and 20 columns. B has 20 rows and 10 columns. C has 10 rows and one column.

Since matrix multiplication is associative, you'll get the same results whether you multiply
A by B and then the result by C, or multiply B by C and then the result by A. But multiplying

Chapter 2. Numbers Page 23 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A by B requires 20,000 operations (100 * 20 * 10), and multiplying (AB) by C requires
another 1,000 (100 * 10 * 1). Multiplying B by C only requires 200 operations (20 * 10 *
1), and multiplying the result by A requires 2,000 more (100 * 20 * 1). It's almost 10 times
faster to multiply A(BC) instead of the naive order of (AB)C.

That kind of potential savings justifies doing some up-front work to find the best order for
the multiplication. Here is a method that recursively figures out the most efficient
multiplication order for a list of Matrix objects, and another method that actually carries
out the multiplications. They share an array containing information about where to divide
up the list of matrices: where to place the parentheses, if you will.

 class Matrix
 def self.multiply(*matrices)
 cache = []
 matrices.size.times { cache << [nil] * matrices.size }
 best_split(cache, 0, matrices.size-1, *matrices)
 multiply_following_cache(cache, 0, matrices.size-1, *matrices)
 end

Because the methods that do the actual work pass around recursion arguments that the
end user doesn't care about, I've created Matrix.multiply, a wrapper method for the
methods that do the real work. These methods are defined below (Matrix.best_split
and Matrix.multiply_following_cache).
Matrix.multiply_following_cache assumes that the optimal way to multiply that
list of Matrix objects has already been found and encoded in a variable cache. It
recursively performs the matrix multiplications in the optimal order, as determined by the
cache.

 :private
 def self.multiply_following_cache(cache, chunk_start, chunk_end, *matrices)
 if chunk_end == chunk_start
 # There's only one matrix in the list; no need to multiply.
 return matrices[chunk_start]
 elsif chunk_end-chunk_start == 1
 # There are only two matrices in the list; just multiply them together.
 lhs, rhs = matrices[chunk_start..chunk_end]
 else
 # There are more than two matrices in the list. Look in the
 # cache to see where the optimal split is located. Multiply
 # together all matrices to the left of the split (recursively,
 # in the optimal order) to get our equation's left-hand
 # side. Similarly for all matrices to the right of the split, to
 # get our right-hand side.
 split_after = cache[chunk_start][chunk_end][1]
 lhs = multiply_following_cache(cache, chunk_start, split_after, *matrices)
 rhs = multiply_following_cache(cache, split_after+1, chunk_end, *matrices)
 end

 # Begin debug code: this illustrates the order of multiplication,
 # showing the matrices in terms of their dimensions rather than their
 # (possibly enormous) contents.
 if $DEBUG
 lhs_dim = "#{lhs.row_size}x#{lhs.column_size}"
 rhs_dim = "#{rhs.row_size}x#{rhs.column_size}"
 cost = lhs.row_size * lhs.column_size * rhs.column_size
 puts "Multiplying #{lhs_dim} by #{rhs_dim}: cost #{cost}"

Chapter 2. Numbers Page 24 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end

 # Do a matrix multiplication of the two matrices, whether they are
 # the only two matrices in the list or whether they were obtained
 # through two recursive calls.
 return lhs * rhs
 end

Finally, here's the method that actually figures out the best way of splitting up the
multiplcations. It builds the cache used by the multiply_following_cache method
defined above. It also uses the cache as it builds it, so that it doesn't solve the same
subproblems over and over again.

 def self.best_split(cache, chunk_start, chunk_end, *matrices)
 if chunk_end == chunk_start
 cache[chunk_start][chunk_end] = [0, nil]
 end
 return cache[chunk_start][chunk_end] if cache[chunk_start][chunk_end]

 #Try splitting the chunk at each possible location and find the
 #minimum cost of doing the split there. Then pick the smallest of
 #the minimum costs: that's where the split should actually happen.
 minimum_costs = []
 chunk_start.upto(chunk_end-1) do |split_after|
 lhs_cost = best_split(cache, chunk_start, split_after, *matrices)[0]
 rhs_cost = best_split(cache, split_after+1, chunk_end, *matrices)[0]

 lhs_rows = matrices[chunk_start].row_size
 rhs_rows = matrices[split_after+1].row_size
 rhs_cols = matrices[chunk_end].column_size
 merge_cost = lhs_rows * rhs_rows * rhs_cols
 cost = lhs_cost + rhs_cost + merge_cost
 minimum_costs << cost
 end
 minimum = minimum_costs.min
 minimum_index = chunk_start + minimum_costs.index(minimum)
 return cache[chunk_start][chunk_end] = [minimum, minimum_index]
 end
 end

A simple test confirms the example set of matrices spelled out earlier. Remember that we
had a 100 x 20 matrix (A), a 20 x 10 matrix (B), and a 20 x 1 matrix (C). Our method should
be able to figure out that it's faster to multiply A(BC) than the naive multiplication (AB)C.
Since we don't care about the contents of the matrices, just the dimensions, we'll first define
some helper methods that make it easy to generate matrices with specific dimensions but
random contents.

 class Matrix
 # Creates a randomly populated matrix with the given dimensions.
 def self.with_dimensions(rows, cols)
 a = []
 rows.times { a << []; cols.times { a[-1] << rand(10) } }
 return Matrix[*a]
 end

 # Creates an array of matrices that can be multiplied together
 def self.multipliable_chain(*rows)
 matrices = []
 0.upto(rows.size-2) do |i|
 matrices << Matrix.with_dimensions(rows[i], rows[i+1])
 end

Chapter 2. Numbers Page 25 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 return matrices
 end
 end

After all that, the test is kind of anticlimactic:

 # Create an array of matrices 100x20, 20x10, 10x1.
 chain = Matrix.multipliable_chain(100, 20, 10, 1)

 # Multiply those matrices two different ways, giving the same result.
 Matrix.multiply(*chain) == (chain[0] * chain[1] * chain[2])
 # Multiplying 20x10 by 10x1: cost 200
 # Multiplying 100x20 by 20x1: cost 2000
 # => true

We can use the Benchmark library to verify that matrix multiplication goes much faster
when we do the multiplications in the right order:

 # We'll generate the dimensions and contents of the matrices randomly,
 # so no one can accuse us of cheating.
 dimensions = []
 10.times { dimensions << rand(90)+10 }
 chain = Matrix.multipliable_chain(*dimensions)

 require 'benchmark'
 result_1 = nil
 result_2 = nil
 Benchmark.bm(11) do |b|
 b.report("Unoptimized") do
 result_1 = chain[0]
 chain[1..chain.size].each { |c| result_1 *= c }
 end
 b.report("Optimized") { result_2 = Matrix.multiply(*chain) }
 end
 # user system total real
 # Unoptimized 4.350000 0.400000 4.750000 (11.104857)
 # Optimized 1.410000 0.110000 1.520000 (3.559470)

 # Both multiplications give the same result.
 result_1 == result_2 # => true

See Also

• Recipe 2.11, "Solving a System of Linear Equations," uses matrices to solve linear
equations

• For more on benchmarking, see Recipe 17.13, "Benchmarking Competing Solutions"

Recipe 2.11. Solving a System of Linear Equations

Problem
You have a number of linear equations (that is, equations that look like "2x + 10y + 8z =
54"), and you want to figure out the solution: the values of x, y, and z. You have as many
equations as you have variables, so you can be certain of a unique solution.

Chapter 2. Numbers Page 26 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-13#rubyckbk-CHP-17-SECT-13

Solution
Create two Matrix objects. The first Matrix should contain the coefficients of your
equations (the 2, 10, and 8 of "2x + 10y + 8z = 54"), and the second should contain the
constant results (the 54 of the same equation). The numbers in both matrices should be
represented as floating-point numbers, rational numbers, or BigDecimal objects:
anything other than plain Ruby integers.

Then invert the coefficient matrix with Matrix#inverse, and multiply the result by the
matrix full of constants. The result will be a third Matrix containing the solutions to your
equations.

For instance, consider these three linear equations in three variables:

 2x + 10y + 8z = 54
 7y + 4z = 30
 5x + 5y + 5z = 35

To solve these equations, create the two matrices:

 require 'matrix'
 require 'rational'
 coefficients = [[2, 10, 8], [0, 7, 4], [5, 5, 5]].collect! do |row|
 row.collect! { |x| Rational(x) }
 end
 coefficients = Matrix[*coefficients]
 # => Matrix[[Rational(2, 1), Rational(10, 1), Rational(8, 1)],
 # => [Rational(0, 1), Rational(7, 1), Rational(4, 1)],
 # => [Rational(5, 1), Rational(5, 1), Rational(5, 1)]]

 constants = Matrix[[Rational(54)], [Rational(30)], [Rational(35)]]

Take the inverse of the coefficient matrix, and multiply it by the results matrix. The result
will be a matrix containing the values for your variables.

 solutions = coefficients.inverse * constants
 # => Matrix[[Rational(1, 1)], [Rational(2, 1)], [Rational(4, 1)]]

This means that, in terms of the original equations, x=1, y=2, and z=4.

Discussion
This may seem like magic, but it's analagous to how you might use algebra to solve a single
equation in a single variable. Such an equation looks something like Ax = B: for instance,

6x = 18. To solve for x, you divide both sides by the coefficient:

The sixes on the left side of the equation cancel out, and you can show that x is 18/6, or 3.

Chapter 2. Numbers Page 27 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In that case there's only one coefficient and one constant. With n equations in n variables,
you have n2 coefficients and n constants, but by packing them into matrices you can solve
the problem in the same way.

Here's a side-by-side comparision of the set of equations from the Solution, and the
corresponding matrices created in order to solve the system of equations.

 2x + 10y + 8z = 54 | [2 10 8] [x] [54]
 x + 7y + 4z = 31 | [1 7 4] [y] = [31]
 5x + 5y + 5z = 35 | [5 5 5] [z] [35]

If you think of each matrix as a single value, this looks exactly like an equation in a single
variable. It's Ax = B, only this time A, x, and B are matrices. Again you can solve the problem
by dividing both sides by A: x = B/A. This time, you'll use matrix division instead of scalar
division, and your result will be a matrix of solutions instead of a single solution.

For numbers, dividing B by A is equivalent to multiplying B by the inverse of A. For
instance, 9/3 equals 9 * 1/3. The same is true of matrices. To divide a matrix B by another
matrix A, you multiply B by the inverse of A.

The Matrix class overloads the division operator to do multiplication by the inverse, so
you might wonder why we don't just use that. The problem is that Matrix#/ calculates
B/A as B*A.inverse, and what we want is A.inverse*B. Matrix multiplication isn't
commutative, and so neither is division. The developers of the Matrix class had to pick
an order to do the multiplication, and they chose the one that won't work for solving a
system of equations.

For the most accurate results, you should use Rational or BigDecimal numbers to
represent your coefficients and values. You should never use integers. Calling
Matrix#inverse on a matrix full of integers will do the inversion using integer division.
The result will be totally inaccurate, and you won't get the right solutions to your equations.

Here's a demonstration of the problem. Multiplying a matrix by its inverse should get you
an identity matrix, full of zeros but with ones going down the right diagonal. This is
analagous to the way multiplying 3 by 1/3 gets you 1.

When the matrix is full of rational numbers, this works fine:

 matrix = Matrix[[Rational(1), Rational(2)], [Rational(2), Rational(1)]]
 matrix.inverse
 # => Matrix[[Rational(-1, 3), Rational(2, 3)],
 # => [Rational(2, 3), Rational(-1, 3)]]

 matrix * matrix.inverse
 # => Matrix[[Rational(1, 1), Rational(0, 1)],
 # => [Rational(0, 1), Rational(1, 1)]]

Chapter 2. Numbers Page 28 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But if the matrix is full of integers, multiplying it by its inverse will give you a matrix that
looks nothing like an identity matrix.

 matrix = Matrix[[1, 2], [2, 1]]
 matrix.inverse
 # => Matrix[[-1, 1],
 # => [0, -1]]

 matrix * matrix.inverse
 # => Matrix[[-1, -1],
 # => [-2, 1]]

Inverting a matrix that contains floating-point numbers is a lesser mistake:
Matrix#inverse tends to magnify the inevitable floating-point rounding errors.
Multiplying a matrix full of floating-point numbers by its inverse will get you a matrix that's
almost, but not quite, an identity matrix.

 float_matrix = Matrix[[1.0, 2.0], [2.0, 1.0]]
 float_matrix.inverse
 # => Matrix[[-0.333333333333333, 0.666666666666667],
 # => [0.666666666666667, -0.333333333333333]]

 float_matrix * float_matrix.inverse
 # => Matrix[[1.0, 0.0],
 # => [1.11022302462516e-16, 1.0]]

See Also

• Recipe 2.10, "Multiplying Matrices"
• Another way of solving systems of linear equations is with Gauss-Jordan elimination;

Shin-ichiro Hara has written an algebra library for Ruby, which includes a module
for doing Gaussian elimination, along with lots of other linear algebra libraries
(http://blade.nagaokaut.ac.jp/~sinara/ruby/math/algebra/)

• There is also a package, called linalg, which provides Ruby bindings to the C/
Fortran LAPACK library for linear algebra (http://rubyforge.org/projects/linalg/)

Recipe 2.12. Using Complex Numbers

Problem
You want to represent complex ("imaginary") numbers and perform math on them.

Solution
Use the Complex class, defined in the complex library. All mathematical and
trigonometric operations are supported.

 require 'complex'

Chapter 2. Numbers Page 29 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://blade.nagaokaut.ac.jp/~sinara/ruby/math/algebra/
http://rubyforge.org/projects/linalg/

 Complex::I # => Complex(0, 1)

 a = Complex(1, 4) # => Complex(1, 4)
 a.real # => 1
 a.image # => 4

 b = Complex(1.5, 4.25) # => Complex(1.5, 4.25)
 b + 1.5 # => Complex(3.0, 4.25)
 b + 1.5*Complex::I # => Complex(1.5, 5.75)

 a - b # => Complex(-0.5, -0.25)
 a * b # => Complex(-15.5, 10.25)
 b.conjugate # => Complex(1.5, -4.25)
 Math::sin(b) # => Complex(34.9720129257216, 2.47902583958724)

Discussion
You can use two floating-point numbers to keep track of the real and complex parts of a
complex number, but that makes it complicated to do mathematical operations such as
multiplication. If you were to write functions to do these operations, you'd have more or
less reimplemented the Complex class. Complex simply keeps two instances of
Numeric, and implements the basic math operations on them, keeping them together as
a complex number. It also implements the complex-specific mathematical operation
Complex#conjugate.

Complex numbers have many uses in scientific applications, but probably their coolest
application is in drawing certain kinds of fractals. Here's a class that uses complex numbers
to calculate and draw a character-based representation of the Mandelbrot set, scaled to
whatever size your screen can handle.

 class Mandelbrot

 # Set up the Mandelbrot generator with the basic parameters for
 # deciding whether or not a point is in the set.

 def initialize(bailout=10, iterations=100)
 @bailout, @iterations = bailout, iterations
 end

A point (x,y) on the complex plane is in the Mandelbrot set unless a certain iterative
calculation tends to infinity. We can't calculate "tends towards infinity" exactly, but we can
iterate the calculation a certain number of times waiting for the result to exceed some "bail-
out" value.

If the result ever exceeds the bail-out value, Mandelbrot assumes the calculation goes all
the way to infinity, which takes it out of the Mandelbrot set. Otherwise, the iteration will
run through without exceeding the bail-out value. If that happens, Mandelbrot makes
the opposite assumption: the calculation for that point will never go to infinity, which puts
it in the Mandelbrot set.

Chapter 2. Numbers Page 30 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The default values for bailout and iterations are precise enough for small, chunky
ASCII renderings. If you want to make big posters of the Mandelbrot set, you should
increase these numbers.

Next, let's define a method that uses bailout and iterations to guess whether a
specific point on the complex plane belongs to the Mandelbrot set. The variable x is a
position on the real axis of the complex plane, and y is a position on the imaginary axis.

 # Performs the Mandelbrot operation @iterations times. If the
 # result exceeds @bailout, assume this point goes to infinity and
 # is not in the set. Otherwise, assume it is in the set.
 def mandelbrot(x, y)
 c = Complex(x, y)
 z = 0
 @iterations.times do |i|
 z = z**2 + c # This is the Mandelbrot operation.
 return false if z > @bailout
 end
 return true
 end

The most interesting part of the Mandelbrot set lives between–2 and 1 on the real axis of
the complex plane, and between–1 and 1 on the complex axis. The final method in
Mandelbrot produces an ASCII map of that portion of the complex plane. It maps each
point on an ASCII grid to a point on or near the Mandelbrot set. If Mandelbrot estimates
that point to be in the Mandelbrot set, it puts an asterisk in that part of the grid. Otherwise,
it puts a space there. The larger the grid, the more points are sampled and the more precise
the map.

 def render(x_size=80, y_size=24, inside_set="*", outside_set=" ")
 0.upto(y_size) do |y|
 0.upto(x_size) do |x|
 scaled_x = -2 + (3 * x / x_size.to_f)
 scaled_y = 1 + (-2 * y / y_size.to_f)
 print mandelbrot(scaled_x, scaled_y) ? inside_set : outside_set
 end
 puts
 end
 end
 end

Even at very small scales, the distinctive shape of the Mandelbrot set is visible.

 Mandelbrot.new.render(25, 10)
 # **
 # ****
 # ********
 # *** *********
 # *******************
 # *** *********
 # ********
 # ****
 # **

Chapter 2. Numbers Page 31 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The scaling equation, used to map the complex plane onto the terminal screen, is
similar to the equations used to scale data in Recipe 12.5, "Adding Graphical Context
with Sparklines," and Recipe 12.14, "Representing Data as MIDI Music"

Recipe 2.13. Simulating a Subclass of Fixnum

Problem
You want to create a class that acts like a subclass of Fixnum, Float, or one of Ruby's
other built-in numeric classes. This wondrous class can be used in arithmetic along with
real Integer or Float objects, and it will usually act like one of those objects, but it will
have a different representation or implement extra functionality.

Solution
Let's take a concrete example and consider the possibilities. Suppose you wanted to create
a class that acts just like Integer, except its string representation is a hexadecimal string
beginning with "0x". Where a Fixnum's string representation might be "208", this class
would represent 208 as "0xc8".

You could modify Integer#to_s to output a hexadecimal string. This would probably
drive you insane because it would change the behavior for all Integer objects. From that
point on, nearly all the numbers you use would have hexadecimal string representations.
You probably want hexadecimal string representations only for a few of your numbers.

This is a job for a subclass, but you can't usefully subclass Fixnum (the Discussion explains
why this is so). The only alternative is delegation. You need to create a class that contains
an instance of Fixnum, and almost always delegates method calls to that instance. The
only method calls it doesn't delegate should be the ones that it wants to override.

The simplest way to do this is to create a custom delegator class with the delegate library.
A class created with DelegateClass accepts another object in its constructor, and
delegates all methods to the corresponding methods of that object.

 require 'delegate'
 class HexNumber < DelegateClass(Fixnum)
 # The string representations of this class are hexadecimal numbers
 def to_s
 sign = self < 0 ? "-" : ""
 hex = abs.to_s(16)
 "#{sign}0x#{hex}"
 end

Chapter 2. Numbers Page 32 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-5#rubyckbk-CHP-12-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-12-SECT-14#rubyckbk-CHP-12-SECT-14

 def inspect
 to_s
 end
 end

 HexNumber.new(10) # => 0xa
 HexNumber.new(-10) # => -0xa
 HexNumber.new(1000000) # => 0xf4240
 HexNumber.new(1024 ** 10) # => 0x10000000000000000000000000

 HexNumber.new(10).succ # => 11
 HexNumber.new(10) * 2 # => 20

Discussion
Some object-oriented languages won't let you subclass the "basic" data types like integers.
Other languages implement those data types as classes, so you can subclass them, no
questions asked. Ruby implements numbers as classes (Integer, with its concrete
subclasses Fixnum and Bignum), and you can subclass those classes. If you try, though,
you'll quickly discover that your subclasses are useless: they don't have constructors.

Ruby jealously guards the creation of new Integer objects. This way it ensures that, for
instance, there can be only one Fixnum instance for a given number:

 100.object_id # => 201
 (10 * 10).object_id # => 201
 Fixnum.new(100)
 # NoMethodError: undefined method `new' for Fixnum:Class

You can have more than one Bignum object for a given number, but you can only create
them by exceeding the bounds of Fixnum. There's no Bignum constructor, either. The
same is true for Float.

 (10 ** 20).object_id # => -606073730
 ((10 ** 19) * 10).object_id # => -606079360
 Bignum.new(10 ** 20)
 # NoMethodError: undefined method `new' for Bignum:Class

If you subclass Integer or one of its subclasses, you won't be able to create any instances
of your class—not because those classes aren't "real" classes, but because they don't really
have constructors. You might as well not bother.

So how can you create a custom number-like class without redefining all the methods of
Fixnum? You can't, really. The good news is that in Ruby, there's nothing painful about
redefining all the methods of Fixnum. The delegate library takes care of it for you. You
can use this library to generate a class that responds to all the same method calls as
Fixnum. It does this by delegating all those method calls to a Fixnum object it holds as a
member. You can then override those classes at your leisure, customizing behavior.

Chapter 2. Numbers Page 33 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Since most methods are delegated to the member Fixnum, you can perform math on
HexNumber objects, use succ and upto, create ranges, and do almost anything else you
can do with a Fixnum. Calling HexNumber#is_a?(Fixnum) will return false, but you
can change even that by manually overriding is_a?.

Alas, the illusion is spoiled somewhat by the fact that when you perform math on
HexNumber objects, you get Fixnum objects back.

 HexNumber.new(10) * 2 # => 20
 HexNumber.new(10) + HexNumber.new(200) # => 210

Is there a way to do math with HexNumber objects and get HexNumber objects as results?
There is, but it requires moving a little bit beyond the comfort of the delegate library.
Instead of simply delegating all our method calls to an Integer object, we want to delegate
the method calls, then intercept and modify the return values. If a method call on the
underlying Integer object returns an Integer or a collection of Integers, we want to
convert it into a HexNumber object or a collection of HexNumbers.

The easiest way to delegate all methods is to create a class that's nearly empty and define a
method_missing method. Here's a second HexNumber class that silently converts the
results of mathematical operations (and any other Integer result from a method of
Integer) into HexNumber objects. It uses the BasicObject class from the Facets More
library (available as the facets-more gem): a class that defines almost no methods at
all. This lets us delegate almost everything to Integer.

 require 'rubygems'
 require 'facet/basicobject'

 class BetterHexNumber < BasicObject

 def initialize(integer)
 @value = integer
 end

 # Delegate all methods to the stored integer value. If the result is a
 # Integer, transform it into a BetterHexNumber object. If it's an
 # enumerable containing Integers, transform it into an enumerable
 # containing BetterHexNumber objects

 def method_missing(m, *args)
 super unless @value.respond_to?(m)
 hex_args = args.collect do |arg|
 arg.kind_of?(BetterHexNumber) ? arg.to_int : arg
 end
 result = @value.send(m, *hex_args)
 return result if m == :coerce
 case result
 when Integer
 BetterHexNumber.new(result)
 when Array
 result.collect do |element|
 element.kind_of?(Integer) ? BetterHexNumber.new(element) : element
 end
 else

Chapter 2. Numbers Page 34 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 result
 end
 end

 # We don't actually define any of the Fixnum methods in this class,
 # but from the perspective of an outside object we do respond to
 # them. What outside objects don't know won't hurt them, so we'll
 # claim that we actually implement the same methods as our delegate
 # object. Unless this method is defined, features like ranges won't
 # work.
 def respond_to?(method_name)
 super or @value.respond_to? method_name
 end

 # Convert the number to a hex string, ignoring any other base
 # that might have been passed in.
 def to_s(*args)
 hex = @value.abs.to_s(16)
 sign = self < 0 ? "-" : ""
 "#{sign}0x#{hex}"
 end

 def inspect
 to_s
 end
 end

Now we can do arithmetic with BetterHexNumber objects, and get BetterHexNumber
object back:

 hundred = BetterHexNumber.new(100) # => 0x64
 hundred + 5 # => 0x69
 hundred + BetterHexNumber.new(5) # => 0x69
 hundred.succ # => 0x65
 hundred / 5 # => 0x14
 hundred * -10 # => -0x3e8
 hundred.divmod(3) # => [0x21, 0x1]
 (hundred…hundred+3).collect # => [0x64, 0x65, 0x66]

A BetterHexNumber even claims to be a Fixnum, and to respond to all the methods of
Fixnum! The only way to know it's not is to call is_a?.

 hundred.class # => Fixnum
 hundred.respond_to? :succ # => true
 hundred.is_a? Fixnum # => false

See Also

• Recipe 2.6, "Converting Between Numeric Bases"
• Recipe 2.14, "Doing Math with Roman Numbers"
• Recipe 8.8, "Delegating Method Calls to Another Object"
• Recipe 10.8, "Responding to Calls to Undefined Methods"

Recipe 2.14. Doing Math with Roman Numbers

Chapter 2. Numbers Page 35 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-8#rubyckbk-CHP-8-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-8#rubyckbk-CHP-10-SECT-8

Problem
You want to convert between Arabic and Roman numbers, or do arithmetic with Roman
numbers and get Roman numbers as your result.

Solution
The simplest way to define a Roman class that acts like Fixnum is to have its instances
delegate most of their method calls to a real Fixnum (as seen in the previous recipe, Recipe
2.13). First we'll implement a container for the Fixnum delegate, and methods to convert
between Roman and Arabic numbers:

 class Roman
 # These arrays map all distinct substrings of Roman numbers
 # to their Arabic equivalents, and vice versa.
 @@roman_to_arabic = [['M', 1000], ['CM', 900], ['D', 500], ['CD', 400],
 ['C', 100], ['XC', 90], ['L', 50], ['XL', 40], ['X', 10], ['IX', 9],
 ['V', 5], ['IV', 4], ['I', 1]]
 @@arabic_to_roman = @@roman_to_arabic.collect { |x| x.reverse }.reverse

 # The Roman symbol for 5000 (a V with a bar over it) is not in
 # ASCII nor Unicode, so we won't represent numbers larger than 3999.
 MAX = 3999

 def initialize(number)
 if number.respond_to? :to_str
 @value = Roman.to_arabic(number)
 else
 Roman.assert_within_range(number)
 @value = number
 end
 end

 # Raise an exception if a number is too large or small to be represented
 # as a Roman number.
 def Roman.assert_within_range(number)
 unless number.between?(1, MAX)
 msg = "#{number} can't be represented as a Roman number."
 raise RangeError.new(msg)
 end
 end

 #Find the Fixnum value of a string containing a Roman number.
 def Roman.to_arabic(s)
 value = s
 if s.respond_to? :to_str
 c = s.dup
 value = 0
 invalid = ArgumentError.new("Invalid Roman number: #{s}")
 value_of_previous_number = MAX+1
 value_from_previous_number = 0
 @@roman_to_arabic.each_with_index do |(roman, arabic), i|
 value_from_this_number = 0
 while c.index(roman) == 0
 value_from_this_number += arabic
 if value_from_this_number >= value_of_previous_number
 raise invalid
 end
 c = c[roman.size..s.size]
 end

 #This one's a little tricky. We reject numbers like "IVI" and
 #"IXV", because they use the subtractive notation and then
 #tack on a number that makes the total overshoot the number
 #they'd have gotten without using the subtractive

Chapter 2. Numbers Page 36 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #notation. Those numbers should be V and XIV, respectively.
 if i > 2 and @@roman_to_arabic[i-1][0].size > 1 and
 value_from_this_number + value_from_previous_number >=
 @@roman_to_arabic[i-2][1]
 raise invalid
 end

 value += value_from_this_number
 value_from_previous_number = value_from_this_number
 value_of_previous_number = arabic
 break if c.size == 0
 end
 raise invalid if c.size > 0
 end
 return value
 end

 def to_arabic
 @value
 end
 #Render a Fixnum as a string depiction of a Roman number
 def to_roman
 value = to_arabic
 Roman.assert_within_range(value)
 repr = ""
 @@arabic_to_roman.reverse_each do |arabic, roman|
 num, value = value.divmod(arabic)
 repr << roman * num
 end
 repr
 end

Next, we'll make the class respond to all of Fixnum's methods by implementing a
method_missing that delegates to our internal Fixnum object. This is substantially the
same method_missing as in Recipe 2.13 Whenever possible, we'll transform the results
of a delegated method into Roman objects, so that operations on Roman objects will yield
other Roman objects.

 # Delegate all methods to the stored integer value. If the result is
 # a Integer, transform it into a Roman object. If it's an array
 # containing Integers, transform it into an array containing Roman
 # objects.
 def method_missing(m, *args)
 super unless @value.respond_to?(m)
 hex_args = args.collect do |arg|
 arg.kind_of?(Roman) ? arg.to_int : arg
 end
 result = @value.send(m, *hex_args)
 return result if m == :coerce
 begin
 case result
 when Integer
 Roman.new(result)
 when Array
 result.collect do |element|
 element.kind_of?(Integer) ? Roman.new(element) : element
 end
 else
 result
 end
 rescue RangeError
 # Too big or small to fit in a Roman number. Use the original number
 result
 end
 end

Chapter 2. Numbers Page 37 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The only methods that won't trigger method_missing are methods like to_s, which
we're going to override with our own implementations:

 def respond_to?(method_name)
 super or @value.respond_to? method_name
 end

 def to_s
 to_roman
 end

 def inspect
 to_s
 end
 end

We'll also add methods to Fixnum and String that make it easy to create Roman objects:

 class Fixnum
 def to_roman
 Roman.new(self)
 end
 end

 class String
 def to_roman
 Roman.new(self)
 end
 end

Now we're ready to put the Roman class through its paces:

 72.to_roman # => LXXII
 444.to_roman # => CDXLIV
 1979.to_roman # => MCMLXXIX
 'MCMXLVIII'.to_roman # => MCMXLVIII

 Roman.to_arabic('MCMLXXIX') # => 1979
 'MMI'.to_roman.to_arabic # => 2001

 'MMI'.to_roman + 3 # => MMIV
 'MCMXLVIII'.to_roman # => MCMXLVIII
 612.to_roman * 3.to_roman # => MDCCCXXXVI
 (612.to_roman * 3).divmod('VII'.to_roman) # => [CCLXII, II]
 612.to_roman * 10000 # => 6120000 # Too big
 612.to_roman * 0 # => 0 # Too small

 'MCMXCIX'.to_roman.succ # => MM

 ('I'.to_roman..'X'.to_roman).collect
 # => [I, II, III, IV, V, VI, VII, VIII, IX, X]

Here are some invalid Roman numbers that the Roman class rejects:

 'IIII'.to_roman
 # ArgumentError: Invalid Roman number: IIII
 'IVI'.to_roman
 # ArgumentError: Invalid Roman number: IVI
 'IXV'.to_roman
 # ArgumentError: Invalid Roman number: IXV
 'MCMM'.to_roman

Chapter 2. Numbers Page 38 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # ArgumentError: Invalid Roman number: MCMM
 'CIVVM'.to_roman
 # ArgumentError: Invalid Roman number: CIVVM
 -10.to_roman
 # RangeError: -10 can't be represented as a Roman number.
 50000.to_roman
 # RangeError: 50000 can't be represented as a Roman number.

Discussion
The rules for constructing Roman numbers are more complex than those for constructing
positional numbers such as the Arabic numbers we use. An algorithm for parsing an Arabic
number can scan from the left, looking at each character in isolation. If you were to scan
a Roman number from the left one character at a time, you'd often find yourself having to
backtrack, because what you thought was "XI" (11) would frequently turn out to be "XIV"
(14).

The simplest way to parse a Roman number is to adapt the algorithm so that (for instance)
"IV" as treated as its own "character," distinct from "I" and "V". If you have a list of all
these "characters" and their Arabic values, you can scan a Roman number from left to right
with a greedy algorithm that keeps a running total. Since there are few of these "characters"
(only 13 of them, for numbers up to 3,999), and none of them are longer than 2 letters,
this algorithm is workable. To generate a Roman number from an Arabic number, you can
reverse the process.

The Roman class given in the Solution works like Fixnum, thanks to the method_missing
strategy first explained in Recipe 2.13. This lets you do math entirely in Roman numbers,
except when a result is out of the supported range of the Roman class.

Since this Roman implementation only supports 3999 distinct numbers, you could make
the implementation more efficient by pregenerating all of them and retrieving them from
a cache as needed. The given implementation lets you extend the implementation to handle
larger numbers: you just need to decide on a representation for the larger Roman
characters that will work for your encoding.

The Roman numeral for 5,000 (a V with a bar over it) isn't present in ASCII, but there are
Unicode characters U+2181 (the Roman numeral 5,000) and U+2182 (the Roman numeral
10,000), so that's the obvious choice for representing Roman numbers up to 39,999. If
you're outputting to HTML, you can use a CSS style to put a bar above "V", "X", and so on.
If you're stuck with ASCII, you might choose "_V" to represent 5,000, "_X" to represent
10,000, and so on. Whatever you chose, you'd add the appropriate "characters" to the
roman_to_arabic array (remembering to add "M_V" and "_V_X" as well as "_V" and
"_X"), increment MAX, and suddenly be able to instantiate Roman objects for large
numbers.

Chapter 2. Numbers Page 39 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Roman#to_arabic method implements the "new" rules for Roman numbers: that
is, the ones standardized in the Middle Ages. It rejects certain number representations,
like IIII, used by the Romans themselves.

Roman numbers are common as toy or contest problems, but it's rare that a programmer
will have to treat a Roman number as a number, as opposed to a funny-looking string. In
parts of Europe, centuries and the month section of dates are written using Roman
numbers. Apart from that, outline generation is probably the only real-world application
where a programmer needs to treat a Roman number as a number. Outlines need several
of visually distinct ways to represent the counting numbers, and Roman numbers (upper-
and lowercase) provide two of them.

If you're generating an outline in plain text, you can use Roman#succ to generate a
succession of Roman numbers. If your outline is in HTML format, though, you don't need
to know anything about Roman numbers at all. Just give an tag a CSS style of list-
style-type:lower-roman or list-style-type:upper-roman. Output the
elements of your outline as tags inside the tag. All modern browsers will do
the right thing:

 <ol style="list-style-type:lower-roman">
 Primus
 Secundis
 Tertius

See Also

• Recipe 2.13, "Simulating a Subclass of Fixnum"
• An episode of the Ruby Quiz focused on algorithms for converting between Roman

and Arabic numbers; one solution uses an elegant technique to make it easier to create
Roman numbers from within Ruby: it overrides Object#const_ missing to
convert any undefined constant into a Roman number; this lets you issue a statement
like XI + IX, and get XX as the result (http://www.rubyquiz.com/quiz22.html)

Recipe 2.15. Generating a Sequence of Numbers

Problem
You want to iterate over a (possibly infinite) sequence of numbers the way you can iterate
over an array or a range.

Chapter 2. Numbers Page 40 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubyquiz.com/quiz22.html

Solution
Write a generator function that yields each number in the sequence.

 def fibonacci(limit = nil)
 seed1 = 0
 seed2 = 1
 while not limit or seed2 <= limit
 yield seed2
 seed1, seed2 = seed2, seed1 + seed2
 end
 end

 fibonacci(3) { |x| puts x }
 # 1
 # 1
 # 2
 # 3

 fibonacci(1) { |x| puts x }
 # 1
 # 1

 fibonacci { |x| break if x > 20; puts x }
 # 1
 # 1
 # 2
 # 3
 # 5
 # 8
 # 13

Discussion
A generator for a sequence of numbers works just like one that iterates over an array or
other data structure. The main difference is that iterations over a data structure usually
have a natural stopping point, whereas most common number sequences are infinite.

One strategy is to implement a method called each that yields the entire sequence. This
works especially well if the sequence is finite. If not, it's the responsibility of the code block
that consumes the sequence to stop the iteration with the break keyword.

Range#each is an example of an iterator over a finite sequence, while Prime#each
enumerates the infinite set of prime numbers. Range#each is implemented in C, but
here's a (much slower) pure Ruby implementation for study. This code uses self.begin
and self.end to call Range#begin and Range#end, because begin and end are
reserved words in Ruby.

 class Range
 def each_slow
 x = self.begin
 while x <= self.end
 yield x
 x = x.succ
 end
 end
 end

Chapter 2. Numbers Page 41 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 (1..3).each_slow {|x| puts x}
 # 1
 # 2
 # 3

The other kind of sequence generator iterates over a finite portion of an infinite sequence.
These are methods like Fixnum#upto and Fixnum#step: they take a start and/ or an
end point as input, and generate a finite sequence within those boundaries.

 class Fixnum
 def double_upto(stop)
 x = self
 until x > stop
 yield x
 x = x * 2
 end
 end
 end
 10.double_upto(50) { |x| puts x }
 # 10
 # 20
 # 40

Most sequences move monotonically up or down, but it doesn't have to be that way:

 def oscillator
 x = 1
 while true
 yield x
 x *= -2
 end
 end
 oscillator { |x| puts x; break if x.abs > 50; }
 # 1
 # -2
 # 4
 # -8
 # 16
 # -32
 # 64

Though integer sequences are the most common, any type of number can be used in a
sequence. For instance, Float#step works just like Integer#step:

 1.5.step(2.0, 0.25) { |x| puts x }
 # => 1.5
 # => 1.75
 # => 2.0

Float objects don't have the resolution to represent every real number. Very small
differences between numbers are lost. This means that some Float sequences you might
think would go on forever will eventually end:

 def zeno(start, stop)
 distance = stop - start
 travelled = start
 while travelled < stop and distance > 0

Chapter 2. Numbers Page 42 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 yield travelled
 distance = distance / 2.0
 travelled += distance
 end
 end

 steps = 0
 zeno(0, 1) { steps += 1 }
 steps # => 54

See Also

• Recipe 1.16, "Generating a Succession of Strings"
• Recipe 2.16, "Generating Prime Numbers," shows optimizations for generating a very

well-studied number sequence
• Recipe 4.1, "Iterating Over an Array"
• Chapter 7 has more on this kind of generator method

Recipe 2.16. Generating Prime Numbers

Problem
You want to generate a sequence of prime numbers, or find all prime numbers below a
certain threshold.

Solution
Instantiate the Prime class to create a prime number generator. Call Prime#succ to get
the next prime number in the sequence.

 require 'mathn'
 primes = Prime.new
 primes.succ # => 2
 primes.succ # => 3

Use Prime#each to iterate over the prime numbers:

 primes.each { |x| puts x; break if x > 15; }
 # 5
 # 7
 # 11
 # 13
 # 17
 primes.succ # => 19

Discussion
Because prime numbers are both mathematically interesting and useful in cryptographic
applications, a lot of study has been lavished on them. Many algorithms have been devised

Chapter 2. Numbers Page 43 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-16#rubyckbk-CHP-1-SECT-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-1#rubyckbk-CHP-4-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-7#rubyckbk-CHP-7

for generating prime numbers and determining whether a number is prime. The code in
this recipe walks a line between efficiency and ease of implementation.

The best-known prime number algorithm is the Sieve of Eratosthenes, which finds all
primes in a certain range by iterating over that range multiple times. On the first pass, it
eliminates every even number greater than 2, on the second pass every third number after
3, on the third pass every fifth number after 5, and so on. This implementation of the Sieve
is based on a sample program packaged with the Ruby distribution:

 def sieve(max=100)
 sieve = []
 (2..max).each { |i| sieve[i] = i }
 (2..Math.sqrt(max)).each do |i|
 (i*i).step(max, i) { |j| sieve[j] = nil } if sieve[i]
 end
 sieve.compact
 end

 sieve(10)
 # => [2, 3, 5, 7]
 sieve(100000).size
 # => 9592

The Sieve is a fast way to find the primes smaller than a certain number, but it's memory-
inefficient and it's not suitable for generating an infinite sequence of prime numbers. It's
also not very compatible with the Ruby idiom of generator methods. This is where the
Prime class comes in.

A Prime object stores the current state of one iteration over the set of primes. It contains
all information necessary to calculate the next prime number in the sequence.
Prime#each repeatedly calls Prime#succ and yields it up to whatever code block was
passed in.

Ruby 1.9 has an efficient implementation of Prime#each, but Ruby 1.8 has a very slow
implementation. The following code is based on the 1.9 implementation, and it illustrates
many of the simple tricks that drastically speed up algorithms that find or use primes. You
can use this code, or just paste the code from Ruby 1.9's mathn.rb into your 1.8 program.

The first trick is to share a single list of primes between all Prime objects by making it a
class variable. This makes it much faster to iterate over multiple Prime instances, but it
also uses more memory because the list of primes will never be garbage-collected.

We initialize the list with the first few prime numbers. This helps early performance a little
bit, but it's mainly to get rid of edge cases. The class variable @@check_next tracks the
next number we think might be prime.

 require 'mathn'

Chapter 2. Numbers Page 44 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Prime
 @@primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59,
 61, 67, 71, 73, 79, 83, 89, 97, 101]
 @@check_next = 103
 end

A number is prime if it has no factors: more precisely, if it has no prime factors between
2 and its square root. This code uses the list of prime numbers not only as a cache, but as
a data structure to help find larger prime numbers. Instead of checking all the possible
factors of a number, we only need to check some of the prime factors.

To avoid calculating square roots, we have @@limit track the largest prime number less
than the square root of @@check_next. We can decide when to increment it by calculating
squares instead of square roots:

 class Prime
 # @@primes[3] < sqrt(@@check_next) < @@primes[4]
 @@limit = 3

 # sqrt(121) == @@primes[4]
 @@increment_limit_at = 121
 end

Now we need a new implementation of Prime#succ. Starting from @@check_next, the
new implementation iterates over numbers until it finds one that's prime, then returns the
prime number. But it doesn't iterate over the numbers one at a time: we can do better than
that. It skips even numbers and numbers divisible by three, which are obviously not prime.

 class Prime
 def succ
 @index += 1
 while @index >= @@primes.length
 if @@check_next + 4 > @@increment_limit_at
 @@limit += 1
 @@increment_limit_at = @@primes[@@limit + 1] ** 2
 end
 add_if_prime
 @@check_next += 4
 add_if_prime
 @@check_next += 2
 end
 return @@primes[@index]
 end
 end

How does it do this? Well, consider a more formal definition of "even" and "divisible by
three." If x is congruent to 2 or 4, mod 6 (that is, if x % 6 is 2 or 4), then x is even and not
prime. If x is congruent to 3, mod 6, then x is divisible by 3 and not prime. If x is congruent
to 1 or 5, mod 6, then x might be prime.

Our starting point is @@check_next, which starts out at 103. 103 is congruent to 1, mod
6, so it might be prime. Adding 4 gives us 107, a number congruent to 5, mod 6. We skipped
two even numbers (104 and 106) and a number divisible by 3 (105). Adding 2 to 107 skips

Chapter 2. Numbers Page 45 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

another even number and gives us 109. Like 103, 109 is congruent to 1, mod 6. We can add
4 and 2 again to get two more numbers that might be prime. By continually adding 4 and
then 2 to @@check_next, we can skip over the numbers that are obviously not prime.

Although all Prime objects share a list of primes, each object should start yielding primes
from the beginning of the list:

 class Prime
 def initialize
 @index = -1
 end
 end

Finally, here's the method that actually checks @@check_next for primality, by looking
for a prime factor of that number between 5 and @@limit. We don't have to check 2 and
3 because succ skips numbers divisible by 2 and 3. If no prime factor is found, the number
is prime: we add it to the class-wide list of primes, where it can be returned by succ or
yielded to a code block by each.

 class Prime
 private
 def add_if_prime
 factor = @@primes[2..@@limit].find { |prime| @@check_next % prime == 0 }
 @@primes << @@check_next unless factor
 end
 end
 end

Here's the new Prime class in action, finding the ten-thousandth prime:

 primes = Prime.new
 p = nil
 10000.times { p = primes.succ }
 p # => 104729

Checking primality
The simplest way to check whether a particular number is prime is to generate all the
primes up to that number and see whether the number itself is generated as a prime.

 class Prime
 def prime?(n)
 succ() while @seed < n
 return @primes.member?(n)
 end
 end

If all of this is too complicated for you, there's a very simple constant-time probabilistic
test for primality that works more than half the time:

 def probably_prime?(x)

Chapter 2. Numbers Page 46 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 x < 8
 end

 probably_prime? 2 # => true
 probably_prime? 5 # => true

 probably_prime? 6 # => true
 probably_prime? 7 # => true
 probably_prime? 8 # => false
 probably_prime? 100000 # => false

See Also

• Recipe 2.15, "Generating a Sequence of Numbers"
• K. Kodama has written a number of simple and advanced primality tests in Ruby

(http://www.math.kobe-u.ac.jp/~kodama/tips-prime.html)

Recipe 2.17. Checking a Credit Card Checksum

Problem
You want to know whether a credit card number was entered correctly.

Solution
The last digit of every credit card is a checksum digit. You can compare the other digits
against the checksum to catch mistakes someone might make when typing their credit card
number.

Lucas Carlson's CreditCard library, available as the creditcard gem, contains Ruby
implementations of the checksum algorithms. It adds methods to the String and
Integer classes to check the internal consistency of a credit card number:

 require 'rubygems'
 require 'creditcard'

 '5276 4400 6542 1319'.creditcard? # => true
 '5276440065421313'.creditcard? # => false
 1276440065421319.creditcard? # => false

CreditCard can also determine which brand of credit card a certain number is for:

 5276440065421313.creditcard_type # => "mastercard"

Chapter 2. Numbers Page 47 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.math.kobe-u.ac.jp/~kodama/tips-prime.html

Discussion
The CreditCard library uses a well-known algorithm for finding the checksum digit of a
credit card. If you can't or don't want to install the creditcard gem, you can just
implement the algorithm yourself:

 module CreditCard
 def creditcard?
 numbers = self.to_s.gsub(/[^\d]+/, '').split(//)

 checksum = 0
 0.upto numbers.length do |i|
 weight = numbers[-1*(i+2)].to_i * (2 - (i%2))

 checksum += weight % 9
 end

 return numbers[-1].to_i == 10 - checksum % 10
 end
 end

 class String
 include CreditCard
 end

 class Integer
 include CreditCard
 end

 '5276 4400 6542 1319'.creditcard? # => true

How does it work? First, it converts the object to an array of numbers:

 numbers = '5276 4400 6542 1319'.gsub(/[^\d]+/, '').split(//)
 # => ["5", "2", "7", "6", "4", "4", "0", "0",
 # => "6", "5", "4", "2", "1", "3", "1", "9"]

It then calculates a weight for each number based on its position, and adds that weight to
a running checksum:

 checksum = 0
 0.upto numbers.length do |i|
 weight = numbers[-1*(i+2)].to_i * (2 - (i%2))
 checksum += weight % 9
 end
 checksum # => 51

If the last number of the card is equal to 10 minus the last digit of the checksum, the number
is self-consistent:

 numbers[-1].to_i == 10 - checksum % 10 # => true

A self-consistent credit card number is just a number with a certain mathematical property.
It can catch typos, but there's no guarantee that a real credit card exists with that number.

Chapter 2. Numbers Page 48 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To check that, you need to use a payment gateway like Authorize.net, and a gateway library
like Payment::AuthorizeNet.

See Also

• Recipe 16.8, "Charging a Credit Card"

Chapter 2. Numbers Page 49 Return to Table of Contents

Chapter 2. Numbers
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-8#rubyckbk-CHP-16-SECT-8

	Numbers
	Parsing a Number from a String
	Comparing Floating-Point Numbers
	Representing Numbers to Arbitrary Precision
	Representing Rational Numbers
	Generating Random Numbers
	Converting Between Numeric Bases
	Taking Logarithms
	Finding Mean, Median, and Mode
	Converting Between Degrees and Radians
	Multiplying Matrices
	Solving a System of Linear Equations
	Using Complex Numbers
	Simulating a Subclass of Fixnum
	Doing Math with Roman Numbers
	Generating a Sequence of Numbers
	Generating Prime Numbers
	Checking a Credit Card Checksum

