
Table of Contents

Testing, Debugging, Optimizing, and Documenting 1
Running Code Only in Debug Mode ... 1
Raising an Exception .. 4
Handling an Exception ... 6
Rerunning After an Exception ... 8
Adding Logging to Your Application .. 10
Creating and Understanding Tracebacks ... 12
Writing Unit Tests .. 14
Running Unit Tests ... 17
Testing Code That Uses External Resources ... 20
Using breakpoint to Inspect and Change the State of Your Application .. 24
Documenting Your Application ... 27
Profiling Your Application .. 31
Benchmarking Competing Solutions ... 34
Running Multiple Analysis Tools at Once ... 36
Who's Calling That Method? A Call Graph Analyzer .. 38

Chapter 17. Testing, Debugging, Optimizing, and Documenting

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

17. Testing, Debugging, Optimizing, and
Documenting

The recipes in previous chapters focus on writing code to do what you want. This chapter
focuses on verifying that your code really works, and on fixing it when it breaks. We start
off simple and move to more advanced debugging techniques.

What happens when your program has a bug? The best-case scenario is that you discover
the bug before it affects anyone, including other developers. That's the goal of unit tests
(Recipe 17.7). Ruby and the Ruby community promote a philosophy of writing automated
tests as (or even before) you write the corresponding functionality. At every stage of
development, you know that your program works, and if you make a change that breaks
something, you know about it immediately. These tests can replace much boring manual
testing and bug hunting.

Suppose a bug slips past your tests, and you only discover it in production. How's it going
to manifest itself? If you're lucky, you'll see an exception: a notification from some piece
of Ruby code that something is wrong.

Exceptions interrupt the normal flow of execution, and, if not handled, will crash the
program. The good news is that they give you a place in the code to start debugging. It's
worse if a bug doesn't cause an exception, because you'll only notice its byproducts: corrupt
data or even security violations. We show code for handling exceptions (Recipes 17.3 and
17.4) and for creating your own (Recipe 17.2).

Successful debugging means reproducing the bug in an environment where you can poke
at it. This may mean dropping from a running program into an irb session (Recipe
17.10), or it may be as simple as adding diagnostic messages that make the program show
its work (Recipe 17.1).

Even a program that has no noticeable bugs may run too slowly or use too many resources.
Ruby provides two tools for doing performance optimization: a profiler (Recipe 17.12) and
a benchmarking suite (Recipe 17.13). It's easy to create your own analysis tools by writing
a trace function that hooks into the Ruby interpreter as it runs. The call graph tracker
presented at chapter's end (Recipe 17.15) exploits this feature.

Recipe 17.1. Running Code Only in Debug Mode

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 1 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

Problem
You want to print out debugging messages or run some sanity-checking code, but only
while you're developing your application;, not when you're running it in production.

Solution
Run the code only if the global variable $DEBUG is true. You can trigger debug mode by
passing in the --debug switch to the Ruby interpreter, or you can set the variable $DEBUG
to true within your code.

Here's a Ruby program to divide two random numbers. It contains a trivial bug. It usually
runs to completion, but sometimes it crashes. A line of debug code has been added to give
some more visibility into the internal workings of the program:

 #!/usr/bin/env ruby
 # divide.rb
 numerator = rand(100)
 denominator = rand(10)
 $stderr.puts "Dividing #{numerator} by #{denominator}" if $DEBUG
 puts numerator / denominator

When run with the --debug flag, the debug message is printed to standard error:

 $./divide.rb --debug
 Dividing 64 by 9
 7

 $./divide.rb --debug
 Dividing 93 by 2
 46

 $./divide.rb --debug
 Dividing 54 by 0
 Exception `ZeroDivisionError' at divide_buggy.rb:6 - divided by 0
 divide_buggy.rb:6:in `/': divided by 0 (ZeroDivisionError)
 from divide_buggy.rb:6

Once the bug is fixed, you can go back to running the script normally, and the debug
message won't show up:

 $./divide.rb
 24

Discussion
This is a common technique when a "real" debugger is too much trouble. It's usually used
to send debug messages to standard error, but you can put any code at all within a $DEBUG
conditional. For instance, many Ruby libraries have their own "verbose", "debug level", or "
debug mode" settings: you can choose to set these other variables appropriately only when
$DEBUG is true.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 2 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 require 'fileutils'
 FileUtils.cp('source', 'destination', $DEBUG)

If your code is running deep within a framework, you may not have immediate access to
the standard error stream of the process. You can always have your debug code write to a
temporary logfile, and monitor the file.

Use of $DEBUG costs a little speed, but except in tight loops it's not noticeable. At the cost
of a little more speed, you can save yourself some typing by defining convenience methods
like this one:

 def pdebug(str)
 $stderr.puts('DEBUG: ' + str) if $DEBUG
 end

 pdebug "Dividing #{numerator} by #{denominator}"

Once you've fixed the bug and you no longer need the debugging code, it's better to put it
into a conditional than to simply remove it. If the problem recurs later, you'll find yourself
adding the debugging code right back in.

Sometimes commenting out the debugging code is better than putting it into a conditional.
It's more difficult to hunt down all the commented-out code, but you can pick and choose
which pieces of code to uncomment. With the $DEBUG technique, it's all or nothing.

It doesn't have to be all or nothing, though. $DEBUG starts out a boolean but it doesn't have
to stay that way: you can make it a numeric "debug level". Instead of doing something if
$DEBUG, you can check whether $DEBUG is greater than a certain number. A very
important piece of debug code might be associated with a debug level of 1; a relatively
unused piece might have a debug level of 5. Setting $DEBUG to zero would turn off
debugging altogether.

Here are some convenience methods that make it easy to use $DEBUG as either a boolean
or a numeric value:

 def debug(if_level)
 yield if ($DEBUG == true) || ($DEBUG && $DEBUG >= if_level)
 end

 def pdebug(str, if_level=1)
 debug(if_level) { $stderr.puts "DEBUG: " + str }
 end

One final note: make sure that you put the --debug switch on the command line before
the name of your Ruby script. It's an argument to the Ruby interpreter, nottoyour script.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 3 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 17.5, "Adding Logging to Your Application," demonstrates a named system of
debug levels; in fact, if your debug messages are mainly diagnostic, you might want
to implement them as log messages

Recipe 17.2. Raising an Exception

Credit: Steve Arneil

Problem
An error has occurred and your code can't keep running. You want to indicate the error
and let some other piece of code handle it.

Solution
Raise an exception by calling the Kernel#raise method with a description of the error.
Calling the raise method interrupts the flow of execution.

The following method raises an exception whenever it's called. Its second message will
never be printed:

 def raise_exception
 puts 'I am before the raise.'
 raise 'An error has occurred.'
 puts 'I am after the raise.'
 end

 raise_exception
 # I am before the raise.
 # RuntimeError: An error has occurred

Discussion
Here's a method, inverse, that returns the inverse of a number x. It does some basic
error checking by raising an exception unless x is a number:

 def inverse(x)
 raise "Argument is not numeric" unless x.is_a? Numeric
 1.0 / x
 end

When you pass in a reasonable value of x, all is well:

 inverse(2) # => 0.5

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 4 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When x is not a number, the method raises an exception:

 inverse('not a number')
 # RuntimeError: Argument is not numeric

An exception is an object, and the Kernel#raise method creates an instance of an
exception class. By default, Kernel#raise creates an exception of RuntimeError class,
which is a subclass of StandardError. This in turn is a subclass of Exception, the
superclass of all exception classes. You can list all the standard exception classes by starting
a Ruby session and executing code like this:

 ObjectSpace.each_object(Class) do |x|
 puts x if x.ancestors.member? Exception
 end

This variant lists only the better-known exception classes:

 ObjectSpace.each_object(Class) { |x| puts x if x.name =~ /Error$/ }
 # SystemStackError
 # LocalJumpError
 # EOFError
 # IOError
 # RegexpError
 # …

To raise an exception of a specific class, you can pass in the class name as an argument to
raise. RuntimeError is kind of generic for the inverse method's check against x.
The problem is there is actually a problem with one of the arguments passed into the
method. A more aptly named exception class for that check would be ArgumentError:

 def inverse(x)
 raise ArgumentError, 'Argument is not numeric' unless x.is_a? Numeric
 1.0 / x
 end

To be even more specific about an error, you can define your own Exception subclass:

 class NotInvertibleError < StandardError
 end

The implementation of inverse method would then become:

 def inverse(x)
 raise NotInvertibleError, 'Argument is not numeric' unless x.is_a? Numeric
 1.0 / x
 end

 inverse('not a number')
 # NotInvertibleError: Argument is not numeric

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 5 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In some other programming languages, exceptions are "thrown." In Ruby, they are not
thrown but "raised." Ruby does have a Kernel#throw method, but it has nothing to do
with exceptions. See Recipe 7.8 for an example of throw, as opposed to raise.

See Also

• Recipe 7.8, "Stopping an Iteration"
• Recipe 17.2, "Raising an Exception"
• Recipe 17.3, "Handling an Exception"

Recipe 17.3. Handling an Exception

Credit: Steve Arneil

Problem
You want to handle or recover from a raised exception.

Solution
Rescue the exception with a begin/rescue block. The code you put into the rescue
clause should handle the exception and allow the program to continue executing.

This code demonstrates the rescue clause:

 def raise_and_rescue
 begin
 puts 'I am before the raise.'
 raise 'An error has occurred.'
 puts 'I am after the raise.'
 rescue
 puts 'I am rescued!'
 end
 puts 'I am after the begin block.'
 end

 raise_and_rescue
 # I am before the raise.
 # I am rescued!
 # I am after the begin block.

The exception doesn't stop the program from running to completion, but the code that was
interrupted by the exception never gets run. Once the exception is handled, execution
continues immediately after the begin block that spawned it.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 6 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-8#rubyckbk-CHP-7-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-8#rubyckbk-CHP-7-SECT-8

Discussion
You can handle an exception with a rescue block if you know how to recover from the
exception, if you want to display it in a nonstandard way, or if you know that the exception
is not really a problem. You can solve the problem, present it to the end user, or just ignore
it and forge ahead.

By default, a rescue clause rescues exceptions of class StandardError or its subclasses.
Mentioning a specific class in a rescue statement will make it rescue exceptions of that
class and its subclasses.

Here's a method, do_it, that calls the Kernel#eval method to run some Ruby code
passed to it. If the code cannot be run (because it's not valid Ruby), eval raises an
exception—a SyntaxError. This exception is not a subclass of StandardError; it's a
subclass of ScriptError, which is a subclass of Exception.

 def do_it(code)
 eval(code)
 rescue
 puts "Cannot do it!"
 end

 do_it('puts 1 + 1')
 # 2

 do_it('puts 1 +')
 # SyntaxError: (eval):1:in `do_it': compile error

That rescue block never gets called because SyntaxError is not a subclass of
StandardError. We need to tell our rescue block to rescue us from SyntaxError, or
else from one of its superclasses, ScriptError and Exception:

 def do_it(code)
 eval(code)
 rescue SyntaxError
 puts "Cannot do it!"
 end

 do_it('puts 1 +')
 # Cannot do it!

You can stack rescue clauses in a begin/rescue block. Exceptions not handled by one
rescue clause will trickle down to the next:

 begin
 # …
 rescue OneTypeOfException
 # …
 rescue AnotherTypeOfException
 # …
 end

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 7 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you want to interrogate a rescued exception, you can map the Exception object to a
variable within the rescue clause. Exception objects have useful methods like message
and backtrace:

 begin
 raise 'A test exception.'
 rescue Exception => e
 puts e.message
 puts e.backtrace.inspect
 end
 # ["(irb):33:in `irb_binding'",
 # "/usr/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'",
 # ":0"]

You can also use the special variable $! within a rescue block to refer to the most recently
raised Exception. If you do a require 'English', you can use the $ERROR_INFO
variable, which is easier to remember.

 require 'English'
 begin
 raise 'Another test exception.'
 rescue Exception
 puts $!.message
 puts $ERROR_INFO.message
 end
 # Another test exception.
 # Another test exception.

Since $! is a global variable, and might be changed at any time by another thread, it's safer
to map each Exception object you rescue to an object.

See Also

• Recipe 17.2, "Raising an Exception"
• Recipe 17.4, "Rerunning After an Exception"

Recipe 17.4. Rerunning After an Exception
Credit: Steve Arneil

Problem
You want to rerun some code that raised an exception, having (hopefully) fixed the problem
that caused it in the first place.

Solution
Retry the code that failed by executing a retry statement within a rescue clause of a
code block. retry reruns the block from the beginning.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 8 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a demonstration of the retry statement. The first time the code block runs, it raises
an exception. The exception is rescued, the problem is "fixed," and the code runs to
completion the second time:

 def rescue_and_retry
 error_fixed = false
 begin
 puts 'I am before the raise in the begin block.'
 raise 'An error has occurred!' unless error_fixed
 puts 'I am after the raise in the begin block.'
 rescue
 puts 'An exception was thrown! Retrying…'
 error_fixed = true
 retry
 end
 puts 'I am after the begin block.'
 end
 rescue_and_retry
 # I am before the raise in the begin block.
 # An exception was thrown! Retrying…
 # I am before the raise in the begin block.
 # I am after the raise in the begin block.
 # I am after the begin block.

Discussion
Here's a method, check_connection, that checks if you are connected to the Internet.
It will try to connect to a url up to max_tries times. This method uses a retry clause
to retry connecting until it successfully completes a connection, or until it runs out of tries:

 require 'open-uri'

 def check_connection(max_tries=2, url='http://www.ruby-lang.org/')
 tries = 0
 begin
 tries += 1
 puts 'Checking connection…'
 open(url) { puts 'Connection OK.' }
 rescue Exception
 puts 'Connection not OK!'
 retry unless tries >= max_tries
 end
 end

 check_connection
 # Checking connection…
 # Connection OK.

 check_connection(2, 'http://this.is.a.fake.url/')
 # Checking connection…
 # Connection not OK!
 # Checking connection…
 # Connection not OK!

See Also

• Recipe 17.2, "Raising an Exception"
• Recipe 17.3, "Handling an Exception"

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 9 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 17.5. Adding Logging to Your Application

Problem
You want to make your application log events or diagnostic data to a file or stream. You
want verbose logging when your application is in development, and more taciturn logging
when in production.

Solution
Use the logger library in the Ruby standard library. Use its Logger class to send logging
data to a file or other output stream.

In most cases, you'll share a single Logger object throughout your application, as a global
variable or module constant:

 require 'logger'
 $LOG = Logger.new($stderr)

You can then call the instance methods of Logger to send messages to the log at various
levels of severity. From least to most severe, the instance methods are Logger#debug,
Logger#info, Logger#warn, Logger#error, and Logger#fatal.

This code uses the application's logger to print a debugging message, and (at a higher
severity) as part of error-handling code.

 def divide(numerator, denominator)
 $LOG.debug("Numerator: #{numerator}, denominator #{denominator}")
 begin
 result = numerator / denominator
 rescue Exception => e
 $LOG.error "Error in division!: #{e}"
 result = nil
 end
 return result
 end

 divide(10, 2)
 # D, [2006-03-31T19:35:01.043938 #18088] DEBUG -- : Numerator: 10, denominator 2
 # => 5

 divide(10, 0)
 # D, [2006-03-31T19:35:01.045230 #18088] DEBUG -- : Numerator: 10, denominator 0
 # E, [2006-03-31T19:35:01.045495 #18088] ERROR -- : Error in division!: divided by 0
 # => nil

To change the log level, simply assign the appropriate constant to level:

 $LOG.level = Logger::ERROR

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 10 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now our logger will ignore all log messages except those with severity ERROR or FATAL:

 divide(10, 2)
 # => 5

 divide(10, 0)
 # E, [2006-03-31T19:35:01.047861 #18088] ERROR -- : Error in division!: divided by 0
 # => nil

Discussion
Ruby's standard logging system works like Java's oft-imitated Log4J. The Logger object
centralizes all the decisions about whether a particular message is important enough to be
written to the log. When you write code, you simply assume that all the messages will be
logged. At runtime, you can get a more or a less verbose log by changing the log level. A
production application usually has a log level of Logger::INFO or Logger::WARN.

The DEBUG log level is useful for step-by-step diagnostics of a complex task. The ERROR
level is often used when handling exceptions: if the program can't solve a problem, it logs
the exception rather than crash and expects a human administrator to deal with it. The
FATAL level should only be used when the program cannot recover from a problem, and
is about to crash or exit.

If your log is being stored in a file, you can have Logger rotate or replace the log file when
it get too big, or once a certain amount of time has elapsed:

 # Keep data for the current month only
 Logger.new('this_month.log', 'monthly')

 # Keep data for today and the past 20 days.
 Logger.new('application.log', 20, 'daily')

 # Start the log over whenever the log exceeds 100 megabytes in size.
 Logger.new('application.log', 0, 100 * 1024 * 1024)

If the default log entries are too verbose for you, you have a couple of options. The simplest
is to set datetime_format to a more concise date format. This code gets rid of the
milliseconds:

 $LOG.datetime_format = '%Y-%m-%d %H:%M:%S'
 $LOG.error('This is a little shorter.')
 # E, [2006-03-31T19:35:01#17339] ERROR -- : This is a little shorter.

If that's not enough for you, you can replace the call method that formats a message for
the log:

 class Logger
 class Formatter
 Format = "%s [%s] %s %s\n"
 def call(severity, time, progname, msg)

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 11 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Format % [severity, format_datetime(time), progname, msg]
 end
 end
 end

 $LOG.error('This is much shorter.')
 # ERROR [2006-03-31T19:35:01.058646] This is much shorter.

See Also

• The standard library documentation for the logger library

Recipe 17.6. Creating and Understanding Tracebacks

Problem
You are debugging a program, and need to understand the stack traces that come with
Ruby exceptions. Or you need to see which path the Ruby interpreter took to get to a certain
line of code.

Solution
You can call the Kernel#caller method at any time to look at the Ruby interpreter's
current call stack. The call stack is represented as a list of strings.

This Ruby program simulates a company with a top-down management style: one method
delegates to another, which calls yet another. The method at the bottom can use caller
to look upwards and see the methods that called it:

 1 #!/usr/bin/ruby -w
 2 # delegation.rb
 3 class CEO
 4 def CEO.new_vision
 5 Manager.implement_vision
 6 end
 7 end
 8
 9 class Manager
 10 def Manager.implement_vision
 11 Engineer.do_work
 12 end
 13 end
 14
 15 class Engineer
 16 def Engineer.do_work
 17 puts 'How did I get here?'
 18 first = true
 19 caller.each do |c|
 20 puts %{#{(first ? 'I' : ' which')} was called by "#{c}"}
 21 first = false
 22 end
 23 end
 24 end
 25
 26 CEO.new_vision

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 12 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Running this program illustrates the path the interpreter takes to Engineer.do_work:

 $./delegation.rb
 How did I get here?
 I was called by "delegation.rb:11:in `implement_vision'"
 which was called by "delegation.rb:5:in `new_vision'"
 which was called by "delegation.rb:26"

Discussion
Each string in a traceback shows which line of Ruby code made some method call. The first
bit of the traceback given above shows that Engineer.do_work was called by
Manager.implement_vision on line 11 of the program. The second line shows how
Manager.implement_vision was called, and so on.

Remember the stack trace displayed when a Ruby script raises an exception? It's the same
one you can get any time by calling Kernel#caller. In fact, if you rescue an exception
and assign it to a variable, you can get its traceback as an array of strings— the equivalent
of calling caller on the line that triggered the exception:

 def raise_exception
 raise Exception, 'You wanted me to raise an exception, so…'
 end

 begin
 raise_exception
 rescue Exception => e
 puts "Backtrace of the exception:\n #{e.backtrace.join("\n ")}"
 end
 # Backtrace of the exception:
 # (irb):2:in `raise_exception'
 # (irb):5:in `irb_binding'
 # /usr/lib/ruby/1.8/irb/workspace.rb:52:in `irb_binding'
 # :0

Note the slight differences between a backtrace generated from a Ruby script and one
generated during an irb session.

If you've used languages like Python, you might long for "real" backtrace objects. About
the best you can do is to parse the strings of a Ruby backtrace with a regular expression. The
parse_caller method below extracts the files, lines, and method names from a Ruby
backtrace. It works in both Ruby programs and irb sessions.

 CALLER_RE = /(.*):([0-9]+)(:in \`(.*)')?/
 def parse_caller(l)
 l.collect do |c|
 captures = CALLER_RE.match(c)
 [captures[1], captures[2], captures[4]]
 end
 end

 begin
 raise_exception

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 13 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 rescue Exception => e
 puts "Exception history:"
 first = true
 parse_caller(e.backtrace).each do |file, line, method|
 puts %{ #{first ? "L" : "because l"}ine #{line} in "#{file}"} +
 %{ called "#{method}" }
 first = false
 end
 end
 # Exception history:
 # Line 2 in "(irb)" called "raise_exception"
 # because line 24 in "(irb)" called "irb_binding"
 # because line 52 in "/usr/lib/ruby/1.8/irb/workspace.rb" called "irb_binding"
 # because line 0 in "" called ""

See Also

• Recipe 17.3, "Handling an Exception"

Recipe 17.7. Writing Unit Tests

Credit: Steve Arneil

Problem
You want to write some unit tests for your software, to guarantee its correctness now and
in the future.

Solution
Use Test::Unit, the Ruby unit testing framework, from the Ruby standard library.

Consider a simple class for storing the name of a person. The Person class shown below
stores a first name, a last name, and an age: a person's full name is available as a computed
value. This code might go into a Ruby script called app/person.rb:

 # app/person.rb
 class Person
 attr_accessor :first_name, :last_name, :age

 def initialize(first_name, last_name, age)
 raise ArgumentError, "Invalid age: #{age}" unless age > 0
 @first_name, @last_name, @age = first_name, last_name, age
 end

 def full_name
 first_name + ' ' + last_name
 end
 end

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 14 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now, let's write some unit tests for this class. By convention, these would go into the file
test/person_test.rb.

First, require the Person class itself and the Test::Unit framework:

 # test/person_test.rb
 require File.join(File.dirname(__FILE__), '..', 'app', 'person')
 require 'test/unit'

Next, extend the framework class Test::Unit::TestCase with a class to contain the
actual tests. Each test should be written as a method of the test class, and each test method
should begin with the prefix test. Each test should make one or more assertions:
statements about the code which must be true for the code to be correct. Below are three
test methods, each making one assertion:

 class PersonTest < Test::Unit::TestCase
 def test_first_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Nathaniel', person.first_name
 end

 def test_last_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Talbott', person.last_name
 end

 def test_full_name
 person = Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 'Nathaniel Talbott', person.full_name
 end

 def test_age person =
 Person.new('Nathaniel', 'Talbott', 25)
 assert_equal 25, person.age
 assert_raise(ArgumentError) { Person.new('Nathaniel', 'Talbott', -4) }
 assert_raise(ArgumentError) { Person.new('Nathaniel', 'Talbott', 'four') }
 end
 end

This code is somewhat redundant; see below for a way to fix that issue. For now, let's run
our four tests, by running person_test.rb as a script:

 $ ruby test/person_test.rb
 Loaded suite test/person_test
 Started
 ….
 Finished in 0.008837 seconds.

 4 tests, 6 assertions, 0 failures, 0 errors

Great! All the tests passed.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 15 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The PersonTest class defined above works, but it's got some redundant and inefficient
code. Each of the four tests starts by creating a Person object, but they could all share the
same Person object. The test_age method needs to create some additional, invalid
Person objects to verify the error checking, but there's no reason why it can't share the
same "normal" Person object as the other three test methods.

Test::Unit makes it possible to refactor shareable code into a method named setup.
If a test class has a setup method, it will be called before any of the assertion methods.
Conversely, any clean-up code that is required after each test method runs can be placed
in a method named teardown.

Here's a new implementation of PersonTest that uses setup and class constants to
remove the duplicate code:

 # person2.rb
 require File.join(File.dirname(__FILE__), '..', 'app', 'person')
 require 'test/unit'

 class PersonTest < Test::Unit::TestCase
 FIRST_NAME, LAST_NAME, AGE = 'Nathaniel', 'Talbott', 25

 def setup
 @person = Person.new(FIRST_NAME, LAST_NAME, AGE)
 end

 def test_first_name
 assert_equal FIRST_NAME, @person.first_name
 end

 def test_last_name
 assert_equal LAST_NAME, @person.last_name
 end

 def test_full_name
 assert_equal FIRST_NAME + ' ' + LAST_NAME, @person.full_name
 end

 def test_age
 assert_equal 25, @person.age
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, -4) }
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, 'four') }
 end
 end

There are lots of assertion methods besides the assert_equal and assert_raise
method used in the test classes above: assert_not_equal, assert_nil, and more
exotic methods like assert_respond_to. All the assertion methods are defined in the
Test::Unit::Assertions module, which is mixed into the
Test::Unit::TestCase class.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 16 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The simplest assertion method is just plain assert. It causes the test method to fail unless
it's passed a value other than false or nil:

 def test_first_name
 assert(FIRST_NAME == @person.first_name)
 end

assert is the most basic assertion method. All the other assertion methods can be defined
in terms of it:

 def assert_equal(expected, actual)
 assert(expected == actual)
 end

So, if you can't decide (or remember) which particular assertion method to use, you can
always use assert.

See Also

• ri Test::Unit
• The documentation for the Test::Unit library is also online at http://www.ruby-

doc.org/stdlib/libdoc/test/unit/rdoc/index.html
• Recipe 15.22, "Unit Testing Your Web Site"
• Recipe 17.8, "Running Unit Tests"
• Recipe 19.1, "Automatically Running Unit Tests"

Recipe 17.8. Running Unit Tests
Credit: Steve Arneil

Problem
You want to run some or all of the unit tests you've written.

Solution
This solution uses the example test class PersonTest from the previous recipe, Recipe
17.7. In that scenario, this code lives in a file test/person_test.rb, and the code to be
tested lives in app/person.rb. Here's test/person_test.rb again:

 # person_test.rb
 require File.join(File.dirname(__FILE__), '..', 'app', 'person')
 require 'test/unit'

 class PersonTest < Test::Unit::TestCase
 FIRST_NAME, LAST_NAME, AGE = 'Nathaniel', 'Talbott', 25

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 17 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/index.html
http://www.ruby-doc.org/stdlib/libdoc/test/unit/rdoc/index.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-22#rubyckbk-CHP-15-SECT-22
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-1#rubyckbk-CHP-19-SECT-1

 def setup
 @person = Person.new(FIRST_NAME, LAST_NAME, AGE)
 end

 def test_first_name
 assert_equal FIRST_NAME, @person.first_name
 end

 def test_last_name
 assert_equal LAST_NAME, @person.last_name
 end

 def test_full_name
 assert_equal FIRST_NAME + ' ' + LAST_NAME, @person.full_name
 end
 def test_age
 assert_equal 25, @person.age
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, -4) }
 assert_raise(ArgumentError) { Person.new(FIRST_NAME, LAST_NAME, 'four') }
 end
 end

As seen in the previous recipe, the simplest solution is to run the script that contains the
tests as a Ruby script:

 $ ruby test/person_test.rb
 Loaded suite test/person_test
 Started
 ….
 Finished in 0.008955 seconds.

 4 tests, 6 assertions, 0 failures, 0 errors

But the person_test.rb script also accepts command-line arguments. You can use the
--name option to choose which test methods to run, and the --verbose option to print
each test method as it's run:

 $ ruby test/person_test.rb --verbose --name test_first_name \
 --name test_last_name
 Loaded suite test/person_test
 Started
 test_first_name(PersonTest): .
 test_last_name(PersonTest): .

 Finished in 0.012567 seconds.

 2 tests, 2 assertions, 0 failures, 0 errors

Discussion
How do the tests run when person_test.rb doesn't appear to do anything but define a
class? How can person_test.rb accept command-line arguments? We wrote that file,
and we didn't put in any command-line parsing code.

It all happens behind the scenes. When we required the Test::Unit framework, it passed
a block into the method method Kernel#at_exit. This block is guaranteed to be called
before the Ruby interpreter exits. It looks like this:

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 18 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 $ tail -5 /usr/local/lib/ruby/1.8/test/unit.rb
 at_exit do
 unless $! || Test::Unit.run?
 exit Test::Unit::AutoRunner.run
 end
 end

Once the code in person_test.rb defines its test class, the Ruby interpreter exits: but
first, it runs that block, which triggers the AutoRunner test runner. This does the
command-line parsing, the execution of the tests in PersonTest, and all the rest of it.

Here are a few more helpful options to a unit test script.

The --name option can be used with a regular expression to choose the test methods to
run.

 $ ruby test/person_test.rb --verbose --name '/test_f/'
 Loaded suite test/person_test
 Started
 test_first_name(PersonTest): .
 test_full_name(PersonTest): .

 Finished in 0.014891 seconds.

 2 tests, 2 assertions, 0 failures, 0 errors

The Test::Unit framework can be also be loaded alone to run tests in the current
directory and its subdirectories. Use the --pattern option with a regular expression to
select the test files to run:

 $ ruby -rtest/unit -e0 -- --pattern '/_test/'
 Loaded suite .
 Started
 …
 Finished in 0.009329 seconds.

 4 tests, 6 assertions, 0 failures, 0 errors

To list all the available Test::Unit options, use the --help option:

 $ ruby test/person_test.rb --help

Additional options are available when the Test::Unit framework is run standalone.
Again, use the --help option:

 $ ruby -rtest/unit -e0 -- --help

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 19 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• ri Test::Unit
• Recipe 15.22, "Unit Testing Your Web Site"
• Recipe 17.7, "Writing Unit Tests"
• Recipe 19.1, "Automatically Running Unit Tests"

Recipe 17.9. Testing Code That Uses External Resources

Credit: John-Mason Shackelford

Problem
You want to test code without triggering its real-world side effects. For instance, you want
to test a piece of code that makes an expensive network connection, or irreversibly modifies
a file.

Solution
Sometimes you can set up an alternate data source to use for testing (Rails does this for
the application database), but doing that makes your tests slower and imposes a setup
burden on other developers. Instead, you can use Jim Weirich's FlexMock library, available
as the flexmock gem.

Here's some code that performs a destructive operation on a live data source:

 class VersionControlMaintenance

 DAY_SECONDS = 60 * 60 * 24

 def initialize(vcs)
 @vcs = vcs
 end

 def purge_old_labels(age_in_days)
 @vcs.connect
 old_labels = @vcs.label_list.select do |label|
 label['date'] <= Time.now - age_in_days * DAY_SECONDS
 end
 @vcs.label_delete(*old_labels.collect{|label| label['name']})
 @vcs.disconnect
 end
 end

This code would be difficult to test by conventional means, with the vcs variable pointing
to a live version control repository. But with FlexMock, it's simple to define a mock vcs
object that can impersonate a real one.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 20 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-22#rubyckbk-CHP-15-SECT-22
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-1#rubyckbk-CHP-19-SECT-1

Here's a unit test for VersionControlMaintenance#purge_old_labels that uses
Flex-Mock, instead of modifying a real version control repository. First, we set up some
dummy labels:

 require 'rubygems'
 require 'flexmock'
 require 'test/unit'

 class VersionControlMaintenanceTest < Test::Unit::TestCase

 DAY_SECONDS = 60 * 60 * 24
 LONG_AGO = Time.now - DAY_SECONDS * 3
 RECENT = Time.now - DAY_SECONDS * 1
 LABEL_LIST = [
 { 'name' => 'L1', 'date' => LONG_AGO },
 { 'name' => 'L2', 'date' => RECENT }
]

We use FlexMock to define an object that expects a certain series of method calls:

 def test_purge
 FlexMock.use("vcs") do |vcs|
 vcs.should_receive(:connect).with_no_args.once.ordered
 vcs.should_receive(:label_list).with_no_args.
 and_return(LABEL_LIST).once.ordered

 vcs.should_receive(:label_delete).
 with('L1').once.ordered

 vcs.should_receive(:disconnect).with_no_args.once.ordered

Then we pass our mock object into the class we want to test, and call purge_old_labels
normally:

 v = VersionControlMaintenance.new(vcs)
 v.purge_old_labels(2)

 # The mock calls will be automatically varified as we exit the
 # @FlexMock.use@ block.
 end
 end
 end

Discussion
FlexMock lets you script the behavior of an object so that it acts like the object you don't
want to actually call. To set up a mock object, call FlexMock.use, passing in a textual
label for the mock object, and a code block. Within the code block, call should_receive
to tell the mock object to expect a call to a certain method.

You can then call with to specify the arguments the mock object should expect on that
method call, and call and_returns to specify the return value. A call to #once indicates
that the tested code should call the method only one time, and #ordered indicates that
the tested code must call these mock methods in the order in which they are defined.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 21 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

After the code block is executed, FlexMock verifies that the mock object's expectations
were met. If they weren't (the methods weren't called in the right order, or they were called
with the wrong arguments), it raises a TestFailedError as any Test::Unit assertion
would.

The example above tells Ruby how we expect purge_old_labels to work. It should call
the version control system's connect method, and then label_list. When this
happens, the mock object returns some dummy labels. The code being tested is then
expected to call label_delete with "L1" as the sole parameter.

This is the crucial point of this test. If purge_old_labels is broken, it might decide to
pass both "L1" and "L2" into label_delete (even though "L2" is too recent a label to be
deleted). Or it might decide not to call label_delete at all (even though "L1" is an old
label that ought to be deleted). Either way, FlexMock will notice that purge_old_labels
did not behave as expected, and the test will fail. This works without you having to write
any explicit Test::Unit assertions.

FlexMock lives up to its name. Not only can you tell a mock object to expect a given method
call is expected once and only once, you have a number of other options, summarized in
Tables 17-1 and 17-2.

Table 17-1. From the RDoc

Specifier Meaning Modifiers allowed?

zero_or_more_times Declares that the message may be sent zero or more times (default, equivalent to
at_least.never) No

once Declares that the message is only sent once Yes
twice Declares that the message is only sent twice Yes
never Declares that the message is never sent Yes
times(n) Declares that the message is sent n times Yes

Table 17-2. From the RDoc

Modifier Meaning

at_least
Modifies the immediately following message count declarator to mean that the message must be sent at least that
number of times; for instance, at_least.once means that the message is expected at least once but may be sent
more than once

at_most Similar to at_least, but puts an upper limit on the number of messages

Both the at_least and at_most modifiers may be specified on the same expectation.

Besides listing a mock method's expected parameters using with(arglist), you can
also use with_any_args (the default) and with_no_args. With

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 22 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

should_ignore_missing, you can indicate that it's okay for the tested code to call
methods that you didn't explicitly define on the mock object. The mock object will respond
to the undefnied method, and return nil.

Especially handy is FlexMock's support for specifying return values as a block. This
allows us to simulate an exception, or complex behavior on repeated invocations.

 # Simulate an exception in the mocked object.
 mock.should_receive(:connect).and_return{ raise ConnectionFailed.new }

 # Simulate a spotty connection: the first attempt fails
 # but when the exception handler retries, we connect.
 i = 0
 mock.should_receive(:connect).twice.
 and_return{ i += 1; raise ConnectionFailed.new unless i > 1 }
 end

Test-driven development usually produces a design that makes it easy to substitute mock
objects for external dependencies. But occasionally, circumstances call for special magic.
In such cases Jim Weirich's class_intercepter.rb is a welcome ally.

The class below instantiates an object which connects to an external data source. We can't
touch this data source when we're testing the code.

 class ChangeHistoryReport
 def date_range(label1, label2)
 vc = VersionControl.new
 vc.connect
 dates = [label1, label2].collect do |label|
 vc.fetch_label(label).files.sort_by{|f|f['date']}.last['date']
 end
 vc.disconnect
 return dates
 end
 end

How can we test this code? We could refactor it—introduce a factory or a dependency
injection scheme. Then we could substitute in a mock object (although in this case, we'd
simply move the complex operations to another method). But if we are sure we "aren't
going to need it" (as the saying goes) and since we are programming in Ruby and not a less
flexible language, we can test the code as is.

As before, we call FlexMock.use to define a mock object:

 require 'class_intercepter'
 require 'test/unit'
 class ChangeHistoryReportTest < Test::Unit::TestCase
 def test_date_range
 FlexMock.use('vc') do |vc|
 # initialize the mock
 vc.should_receive(:connect).once.ordered
 vc.should_receive(:fetch_label).with(LABEL1).once.ordered
 vc.should_receive(:fetch_label).with(LABEL2).once.ordered

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 23 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 vc.should_receive(:disconnect).once.ordered
 vc.should_receive(:new).and_return(vc)

Here's the twist: we reach into the ChangeHistoryReport class and tell it to use our
mock class whenever it wants to use the VersionControl class:

 ChangeHistoryReport.use_class(:VersionControl, vc) do

Now we can use a ChangeHistoryReport object without worrying that it will operate
against any real version control repository. As before, the FlexMock framework takes care
of making the actual assertions.

 c = ChangeHistoryReport.new
 c.date_range(LABEL1, LABEL2)
 end
 end
 end
 end

See Also

• The FlexMock generated RDoc (http://onestepback.org/software/flexmock/)
• class_intercepter.rb (http://onestepback.org/articles/depinj/ci/

class_intercepter_rb.html)
• Alternatives to FlexMock include RSpec (http://rspec.rubyforge.org/) and Test::

Unit::Mock (http://www.deveiate.org/projects/Test-Unit-Mock/)
• Jim Weirich's presentation on Dependency Injection is closely related to testing with

mock objects (http://onestepback.org/articles/depinj/)
• Kent Beck's classic Test Driven Development: By Example (Addison-Wesley) is a

must read; even the seasoned TD developer will benefit from Kent's helpful patterns
section at the back of the book

Recipe 17.10. Using breakpoint to Inspect and Change the State of
Your Application

Problem
You're debugging an application, and would like to be able to stop the program at any point
and inspect the application's state (variables, data structures, etc.). You'd also like to be
able to modify the application's state before restarting it.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 24 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://onestepback.org/software/flexmock/
http://onestepback.org/articles/depinj/ci/class_intercepter_rb.html
http://onestepback.org/articles/depinj/ci/class_intercepter_rb.html
http://rspec.rubyforge.org/
http://www.deveiate.org/projects/Test-Unit-Mock/
http://onestepback.org/articles/depinj/

Solution
Use the breakpoint library, available as the ruby-breakpoint gem.

Once you require 'breakpoint', you can call the breakpoint method from
anywhere in your application. When the execution hits the breakpoint call, the
application turns into an interactive Ruby session.

Here's a short Ruby program:

 #!/usr/bin/ruby -w
 # breakpoint_test.rb
 require 'rubygems'
 require 'breakpoint'

 class Foo
 def initialize(init_value)
 @instance_var = init_value
 end

 def bar
 test_var = @instance_var
 puts 'About to hit the breakpoint!'
 breakpoint
 puts 'HERE ARE SOME VARIABLES:'
 puts "test_var: #{test_var}, @instance_var: #{@instance_var}"
 end
 end

 f = Foo.new('When in the course')
 f.bar

When you run the application, you quickly hit the call to breakpoint in Foo#bar. This
drops you into an irb session:

 $ ruby breakpoint_test.rb
 About to hit the breakpoint!
 Executing break point at breakpoint_test.rb:14 in `bar'
 irb(#<Foo:0xb7452464>):001:0>

Once you quit the irb session, the program continues on its way:

 irb(#<Foo:0xb7452a18>):001:0> quit
 HERE ARE SOME VARIABLES:
 test_var: When in the course, @instance_var: When in the course

But there's a lot you can do within that irb session before you quit. You can look at the array
local_variables, which enumerates all variables local to the current method. You can
also look at and modify any of the variables that are currently in scope, including instance
variables, class variables, and globals:

 $ ruby breakpoint_test.rb
 About to hit the breakpoint!
 Executing break point at breakpoint_test.rb:14 in `bar'

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 25 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 irb(#<Foo:0xb7452464>):001:0> local_variables
 => ["test_var", "_"]
 irb(#<Foo:0xb7452428>):002:0> test_var
 => "When in the course"
 irb(#<Foo:0xb7452428>):003:0> @instance_var
 => "When in the course"
 irb(#<Foo:0xb7452428>):004:0> @instance_var = 'of human events'
 => "of human events"

As before, once you quit the irb session, the program continues running:

 irb(#<Foo:0xb7452428>):005:0> quit
 HERE ARE SOME VARIABLES:
 test_var: When in the course, @instance_var: of human events

Because we changed the variable @instance_variable within our breakpoint, the puts
in the program reports the new value after we leave the breakpoint session.

Discussion
There is another way to access a breakpoint. Instead of calling breakpoint directly, you can
pass a code block into assert. If the block evaluates to false, assert executes a
breakpoint. Let's say you want to execute a breakpoint only if the instance variable
@instance_variable has a certain value. Here's how:

 #!/usr/bin/ruby -w
 # breakpoint_test_2.rb
 require 'rubygems'
 require 'breakpoint'

 class Foo
 def initialize(init_value)
 @instance_var = init_value
 end

 def bar
 test_var = @instance_var
 puts 'About to hit the breakpoint! (maybe)'
 assert { @instance_var == 'This is another fine mess' }
 puts 'HERE ARE SOME VARIABLES:'
 puts "test_var: #{test_var}, @instance_var: #{@instance_var}"
 end
 end

 Foo.new('When in the course').bar # This will NOT cause a breakpoint
 Foo.new('This is another fine mess').bar # This will NOT cause a breakpoint

 $ ruby breakpoint_test_2.rb
 About to hit the breakpoint! (maybe)
 HERE ARE SOME VARIABLES:
 test_var: When in the course, @instance_var: When in the course
 About to hit the breakpoint! (maybe)
 Assert failed at breakpoint_test_2.rb:14 in `bar'. Executing implicit breakpoint.
 irb(#<Foo:0xb7452450>):001:0> @instance_var
 => "This is another fine mess"
 irb(#<Foo:0xb7452450>):002:0> quit
 HERE ARE SOME VARIABLES:
 test_var: This is another fine mess, @instance_var: This is another fine mess

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 26 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

By using assert, you can enter an interactive irb session only when the state of your
application is worth inspecting.

Recipe 17.11. Documenting Your Application

Problem
You want to create a set of API documentation for your application. You might want to go
so far as to keep all your documentation in the same files as your source code.

Solution
It's good programming practice to preface each of your methods, classes, and modules
with a comment that lets the reader know what's going on. Ruby rewards this behavior by
making it easy to transform those comments into a set of HTML pages that document your
code. This is similar to Java's JavaDoc, Python's PyDoc, and Perl's Pod.

Here's a simple example. Suppose your application contains only one file, sum.rb, which
defines only one method:

 def sum(*terms)
 terms.inject(0) { |sum, term| sum + term}
 end

To document this application, use Ruby comments to document the method, and also to
document the file as a whole:

 # Just a simple file that defines a sum method.

 # Takes any number of numeric terms and returns the sum.
 # sum(1, 2, 3) # => 6
 # sum(1, -1, 10) # => 10
 # sum(1.5, 0.2, 0.3, 1) # => 3.0
 def sum(*terms)
 terms.inject(0) { |sum, term| sum + term}
 end

Change into the directory containing the sum.rb file, and run the rdoc command.

 $ rdoc
 sum.rb: .
 Generating HTML…

 Files: 1
 Classes: 0
 Modules: 0
 Methods: 1
 Elapsed: 0.101s

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 27 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The rdoc command creates a doc/ subdirectory beneath the current directory. It parses
every Ruby file it can find in or below the current directory, and generates HTML files from
the Ruby code and the comments that document it.

The index.html file in the doc/ subdirectory is a frameset that lets users navigate the
files of your application. Since the example only uses one file (sum.rb), the most
interesting thing about its generated documentation is what RDoc has done with the
comments (Figure 17-1).

Discussion
RDoc parses a set of Ruby files, cross-references them, and generates a web site that
captures the class and module structure, and the comments you wrote while you were
coding.

Generated RDoc makes for a useful reference to your classes and methods, but it's not a
substitute for handwritten examples or tutorials. Of course, RDoc comments can contain
handwritten examples or tutorials. This will help your users and also help you keep your
documentation together with your code.

Notice that when I wrote examples for the sum method, I indented them a little from the
text above them:

 # Takes any number of numeric terms and returns the sum.
 # sum(1, 2, 3) # => 6

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 28 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 17-1. RDoc comments

RDoc picked up on this extra indentation and displayed my examples as Ruby code, in a
fixed-width font. This is one of many RDoc conventions for improving the looks of the
rendered HTML. As with wiki markup, the goal of the RDoc conventions is to allow text
to render nicely as HTML while being easy to read and edit as plain text (Figure 17-2).

 # =A whirlwind tour of SimpleMarkup
 #
 # ==You can mark up text
 #
 # * *Bold* a single word or a section
 # * _Emphasize_ a single word <i>or a section</i>
 # * Use a <tt>fixed-width font</tt> for a section or a +word+
 # * URLs are automatically linked: https://www.example.com/foo.html
 #
 # ==Or create lists
 #
 # Types of lists:
 # * Unordered lists (like this one, and the one above)
 # * Ordered lists
 # 1. Line
 # 2. Square
 # 3. Cube
 # * Definition-style labelled lists (useful for argument lists)
 # [pos] Coordinates of the center of the circle ([x, y])
 # [radius] Radius of the circle, in pixels
 # * Table-style labelled lists
 # Author:: Sophie Aurus
 # Homepage:: http://www.example.com

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 29 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 17-2. Plain text

There are also several special RDoc directives that go into comments on the same line as
a method, class, or module definition. The most common is :nodoc:, which is used if you
want to hide something from RDoc. You can and should put an RDoc-style comment even
on a :nodoc: method or class, so that people reading your Ruby code will know what it
does.

 # This class and its contents are hidden from RDoc; here's what it does:
 # …
 #
 class HiddenClass # :nodoc:
 # …
 end

Private methods don't show up in RDoc generated documentation—that would usually just
mean clutter. If you want one particular private method to show up in the documentation
(probably for the benefit of people subclassing your class), use the :doc: directive; it's the
opposite of the :nodoc: directive: [1]

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 30 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[1] If you want all private methods to show up in the documentation, pass the --all argument to the rdoc command. The rdoc command supports many command-
line arguments, giving you control over the rules for generating the documentation and the layout of the results.

 class MyClass
 private

 def hidden_method
 end

 def visible_method # :doc:
 end
 end

If a comment mentions another class, method, or source file, RDoc will try to locate and
turn it into a hyperlinked cross-reference. To indicate that a method name is a method
name and not just a random word, prefix it with a hash symbol or use its fully qualified
name (MyClass.class_method or MyClass#instance_method:

 # The SimplePolynomial class represents polynomials in one variable
 # and can perform most common operations on them.
 #
 # See especially #solve and #derivative. For multivariate polynomials,
 # see MultivariatePolynomial (especially
 # MultivariatePolynomial#simplify, which may return a
 # SimplePolynomial), and much of calculus.rb.

Other ways of creating RDoc
The Ruby gem installation process generates a set of RDoc files for every gem it installs.
If you package your software as a gem, anyone who installs it will automatically get the
RDoc files as well.

You can also create RDoc files programatically from a Ruby program, by creating and
scripting RDoc objects. The rdoc command itself is nothing more than Ruby code such
as the following, along with some error handling:

 #!/usr/bin/ruby
 # rdoc.rb
 require 'rdoc/rdoc'
 RDoc::RDoc.new.document(ARGV)

See Also

• Recipe 18.5, "Reading Documentation for Installed Gems"
• The RDoc documentation covers all the markup conventions and directives in detail

(http://rdoc.sourceforge.net/doc/)
• http://rdoc.sourceforge.net/doc/files/markup/simple_markup_rb.html

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 31 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-18-SECT-5#rubyckbk-CHP-18-SECT-5
http://rdoc.sourceforge.net/doc/
http://rdoc.sourceforge.net/doc/files/markup/simple_markup_rb.html

Recipe 17.12. Profiling Your Application

Problem
You want to find the slowest parts of your application, and speed them up.

Solution
Include the Ruby profiler in your application with include 'profile' and the profiler
will start tracking and timing every subsequent method call. When the application exits,
the profiler will print a report to your program's standard error stream.

Here's a program that contains a performance flaw:

 #!/usr/bin/env ruby
 # sequence_counter.rb
 require 'profile'

 total = 0
 # Count the letter sequences containing an a, b, or c.
 ('a'..'zz').each do |seq|
 ['a', 'b', 'c'].each do |i|
 if seq.index(i)
 total += 1
 break
 end
 end
 end
 puts "Total: #{total}"

When the program is run, the profiler shows the parts of the program that are most
important to optimize:

 $ ruby sequence_counter.rb
 Total: 150
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 54.55 0.30 0.30 702 0.43 0.50 Array#each
 32.73 0.48 0.18 1 180.00 550.00 Range#each
 7.27 0.52 0.04 1952 0.02 0.02 String#index
 3.64 0.54 0.02 702 0.03 0.03 String#succ
 1.82 0.55 0.01 150 0.07 0.07 Fixnum#+
 …

The program takes about 0.3 seconds to run, and most of that is spent in Array#each.
What if we replaced that code with an equivalent regular expression?

 #!/usr/bin/env ruby
 # sequence_counter2.rb
 require 'profile'

 total = 0
 # Count the letter sequences containing an a, b, or c.
 ('a'..'zz').each {|seq| total +=1 if seq =~ /[abc]/ }
 puts "Total: #{total}"

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 32 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Running this program yields a much better result:

 $ ruby sequence_counter2.rb
 Total: 150
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 83.33 0.05 0.05 1 50.00 60.00 Range#each
 16.67 0.06 0.01 150 0.07 0.07 Fixnum#+
 0.00 0.06 0.00 1 0.00 0.00 Fixnum#to_s
 …

The new version takes only 0.05 seconds to run, and as near as the profiler can measure,
it's running nearly as fast as an empty iterator over the range 'a'..'zz'.

Discussion
You might think that regex_counter2.rb has a performance problem of its own. After
all, it initializes the regular expression /[abc]/ within a loop, which seems to indicate
that it's being initialized multiple times. The natural instinct of the optimizing programmer
is to move that definition outside the loop; surely that would be more efficient.

 re = /[abc]/
 ('a'..'zz').each {|seq| total +=1 if seq =~ re }

But it's not (try it!). The profiler actually shows a decrease in performance when the regular
expression is assigned to a variable outside the loop. The Ruby interpreter is doing some
optimization behind the scenes, and the code with an "obvious" performance problem
beats the more complex "optimized" version.[2] There is a general lesson here: the problem
is often not where you think it is, and empirical data always beats guesswork.

[2] Of course, a regular expression is a pretty simple object. If you've got a loop that builds a million-element data structure, or reads the same file over and over, the
Ruby interpreter can't help you. Move that sucker out of the loop. If you make this kind of mistake, it'll show up in the profiler.

Ruby's profiler is a fairly blunt tool (it's written in only about 60 lines of Ruby), and to
instrument it for anything but a simple command-line application, you'll need to do some
work. It helps if your code has unit tests, because profiler tests require a lot of the same
scaffolding as unit tests. You can even build up a library of profiler test scripts to go with
your unit tests, although the profiler output is difficult to analyze automatically.

If you know that some particular operation is slow, you can write code that stresstests that
operation (the way you might write a unit test), and run only that code with the profiler.
To stress-test sequence_counter2.rb, you might change it to operate on a larger range
like ('a'..'zzzz'). Big datasets make performance problems more visible.

If you don't know which operations are slow, pick the most common operations and
instrument them on large datasets. If you're writing an XML library, write a profiler script
that loads and parses an enormous file, and one that turns an enormous data structure

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 33 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

into XML. If you've got no ideas at all, run the profiler on your unit test suite and look for
problems. The tests that run slowly may be exercising problematic parts of your program.

The profiler results are ordered with the most time-consuming method calls first. To
optimize your code, go from the top of the profiler results and address each call in turn.
See why your script led to so many calls of that method, and what you can do about it.
Either change the underlying code path so it doesn't call that method so many times, or
optimize the method itself. If the method is one you wrote, you can optimize it by profiling
it in isolation.

The timing data given by the profiler isn't terribly accurate,[3] but it should be good enough
to find problem areas. If you want a more reliable estimate of how long some code takes
to run, try the benchmark library, or run your script using the Unix time command.

[3] Note the timing inconsistencies in the examples above. Somehow the entire original sequence_counter.rb runs in 0.30 seconds, but when you ignore all the
Array#each calls, the cumulative time jumps up to 0.48 seconds.

The Ruby profiler sets the interpreter's trace function (by passing a code block into
Kernel#set_trace_func), so if your program uses a trace function of its own, using
the profiler will overwrite the old function. This probably won't affect you, because the
trace function is mainly used by profilers and other analysis tools.

See Also
If the profiler says your problem is in a commonly-called method like Array#each, you
need to somehow figure out which calls to the method are the problematic ones; see Recipe
17.15, "Who's Calling That Method? A Call Graph Analyzer"

Recipe 17.13. Benchmarking Competing Solutions

Problem
You want to see which of two solutions to a problem is faster. You might want to compare
two different algorithms, or two libraries that do the same thing.

Solution
Use the benchmark library to time the tasks you want to run. The Benchmark.bm method
gives you an object that can report on how long it takes for code blocks to run.

Let's explore whether the member? method is faster on arrays or hashes. First, we create
a large array and a large hash with the same data, and define a method that exercises the
member? method:

 RANGE = (0..1000)

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 34 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 array = RANGE.to_a
 hash = RANGE.inject({}) { |h,i| h[i] = true; h }

 def test_member?(data)
 RANGE.each { |i| data.member? i }
 end

Next, we call Benchmark.bm to set up a series of timing tests. The first test calls
test_member? on the array; the second one calls it on the hash. The results are printed
in a tabular form to standard error:

 require 'benchmark'

 Benchmark.bm(5) do |timer|
 timer.report('Array') { test_member?(array) }
 timer.report('Hash') { test_member?(hash) }
 end
 # user system total real
 # Array 0.260000 0.060000 0.320000 (0.332583)
 # Hash 0.010000 0.000000 0.010000 (0.001242)

As you'd expect, member? is much faster on a hash.

Discussion
What do the different times mean? The real time is "wall clock" time: the number of
seconds that passed in the real world between the start of the test and its completion. This
time is actually not very useful, because it includes time during which the CPU was running
some other process. If your system is operating under a heavy load, the Ruby interpreter
will get less of the CPU's attention and the real times won't reflect the actual performance
of your benchmarks. You only need real times when you're measuring user-visible
performance on a running system.

The user time is time actually spent running the Ruby interpreter, and the system time
is time spent in system calls spawned by the interpreter. If your test does a lot of I/O, its
system time will tend to be large; if it does a lot of processing, its user time will tend to
be large. The most useful time is probably total, the sum of the user and system times.

When two operations take almost exactly the same time, you can make the difference more
visible by putting a times loop within the code block passed to report. For instance,
array lookup and hash lookup are both very fast operations that take too little time to
measure. But by timing thousands of lookup operations instead of just one, we can see that
hash lookups are a tiny bit slower than array lookups:

 Benchmark.bm(5) do |timer|
 timer.report('Array') { 1000.times { RANGE.each { |i| array[i] } } }
 timer.report('Hash') { 1000.times { RANGE.each { |i| hash[i] } } }
 end
 # user system total real
 # Array 0.950000 0.210000 1.160000 (1.175042)
 # Hash 1.010000 0.210000 1.220000 (1.221090)

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 35 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you want to measure one operation instead of comparing several operations to each
other, use Benchmark#measure. It returns an object that you can interrogate to get the
times, or print out to get a listing in the same format as Benchmark.bm. This code
demonstrates that I/O-bound code has a larger system time:

 def write_to_file
 File.open('out', 'w') { |f| f.write('a') }
 end

 puts Benchmark.measure { 10000.times { write_to_file } }
 # 0.120000 0.360000 0.480000 (0.500653)

Recall that the real time can be distorted by the CPU doing things other than running
your Ruby process. The user and system times can also be distorted by the Ruby
interpreter doing things besides running your program. For instance, time spent doing
garbage collection is counted by benchmark as time spent running Ruby code.

To get around these problems, use the Benchmark.bmbm method. It runs each of your
timing tests twice. The first time is just a rehearsal to get the interpreter into a stable state.
Nothing can completely isolate the time spent running benchmarks from other tasks of
the Ruby interpreter, but bmbm should be good enough for most purposes.

See Also

• The standard library documentation for the benchmark library has lots of
information about varying the format of benchmark reports

Recipe 17.14. Running Multiple Analysis Tools at Once

Problem
You want to combine two analysis tools, like the Ruby profiler and the Ruby tracer. But
when one tool calls set_trace_func, it overwrites the trace function left by the other.

Solution
Change set_trace_func so that it keeps an array of trace functions instead of just one.
Here's a library called multitrace.rb that makes it possible:

 # multitrace.rb
 $TRACE_FUNCS = []

 alias :set_single_trace_func :set_trace_func
 def set_trace_func(proc)
 if (proc == nil)

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 36 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 $TRACE_FUNCS.clear
 else
 $TRACE_FUNCS << proc
 end
 end

 trace_all = Proc.new do |event, file, line, symbol, binding, klass|
 $TRACE_FUNCS.each { |p| p.call(event, file, line, symbol, binding, klass)}
 end
 set_single_trace_func trace_all

 def unset_trace_func(proc)
 $TRACE_FUNCS.delete(proc)
 end

Now you can run any number of analysis tools simultaneously. However, when one of the
tools stops, they will all stop:

 #!/usr/bin/ruby -w
 # paranoia.rb
 require 'multitrace'
 require 'profile'
 require 'tracer'

 Tracer.on
 puts "I feel like I'm being watched."

This program's nervousness is well-justified, since its every move is being tracked by the
Ruby tracer and timed by the Ruby profiler:

 $ ruby paranoia.rb
 #0:./multitrace.rb:9:Array:<: $TRACE_FUNCS << proc
 #0:./multitrace.rb:11:Object:<: end
 #0:paranoia.rb:9::-: puts "I feel like I'm being watched."
 #0:paranoia.rb:9:Kernel:>: puts "I feel like I'm being watched."
 …
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 0.00 0.00 0.00 1 0.00 0.00 Kernel.require
 0.00 0.00 0.00 1 0.00 0.00 Fixnum#==
 0.00 0.00 0.00 1 0.00 0.00 String#scan
 …

Without the include 'multitrace' at the beginning, only the profiler will run: its
trace function will override the tracer's.

Discussion
This example illustrates yet again how you can benefit by replacing some built-in part of
Ruby. The multitrace library creates a drop-in replacement for set_trace_func that
lets you run multiple analyzers at once. You probably don't really want to run the tracer
and the analyzer simultaneously, since they're both monolithic tools. But if you've written
some smaller, more modular analysis tools, you're more likely to want to run more than
one during a single run of a program.

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 37 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The standard way of stopping a tracer is to pass nil into set_trace_func. Our new
set_trace_func will accept nil, but it has no way of knowing which trace function you
want to stop.[4] It has no choice but to remove all of them. Of course, if you're writing your
own trace functions, and you know multitrace will be in place, you don't need to pass
nil into set_trace_func. You can call unset_trace_func to remove one particular
trace function, without stopping the rest.

[4] Well, you could do this by taking a snapshot of the call stack every time set_trace_func was called with a Proc object. When set_trace_func was called with
nil, you could look at the call stack at that point (see Recipe 17.6), and only remove the Proc object(s) inserted by the same file. For instance, if a nil call comes in from
profiler.rb, you could remove only the Proc object(s) inserted by calls coming from profiler.rb. This is probably not worth the trouble.

See Also

• The tracer function created in Recipe 17.15, "Who's Calling That Method? A Call Graph
Analyzer," is the kind of lightweight analysis tool I'd like to see more of: one that it
makes sense to run in conjunction with others

Recipe 17.15. Who's Calling That Method? A Call Graph Analyzer
Suppose you're profiling a program such as the one in Recipe 17.12, and the profiler says
that the top culprit is Array#each. That is, your program spends more time iterating over
arrays than doing any one other thing:

 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 12.19 2.74 2.74 4930 0.56 0.77 Array#each

This points you in the right direction, but where do you go from here? Most programs are
full of calls to Array#each. To optimize your program, you need to know which lines of
code are responsible for most of the Array#each calls. Ruby's profiler can't give tell you
which line of code called a problem method, but it's easy to write a different profiler that
can.

The heart of any Ruby profiler is a Proc object passed into the
Kernel#set_trace_func method. This is a hook into the Ruby interpreter itself: if you
set a trace function, it's called every time the Ruby interpreter does something interesting
like call a method.

Here's the start of a CallTracker class. It initializes a hash-based data structure that
tracks "interesting" classes and methods. It assumes that we pass a method tally_calls
into set_trace_func; we'll define tally_calls a little later.

 class CallTracker

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 38 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Initialize and start the trace.
 def initialize(show_stack_depth=1)
 @show_stack_depth = show_stack_depth
 @to_trace = Hash.new { |h,k| h[k] = {} }
 start
 at_exit { stop }
 end

 # Register a class/method combination as being interesting. Subsequent calls
 # to the method will be tallied by tally_calls.
 def register(klass, method_symbol)
 @to_trace[klass][method_symbol] = {}
 end

 # Tells the Ruby interpreter to call tally_calls whenever it's about to
 # do anything interesting.
 def start
 set_trace_func method(:tally_calls).to_proc
 end

 # Stops the profiler, and prints a report of the interesting calls made
 # while it was running.
 def stop(out=$stderr)
 set_trace_func nil
 report(out)
 end

Now let's define the missing methods tally_calls and report. The Proc object passed
into set_trace_func needs to take six arguments, but this analyzer only cares about
three of them:

event

Lets us know what the interpreter is doing. We only care about "call" and "c-call"
events, which let us know that the interpreter is calling a Ruby method or a C method.

klass

The Class object that defines the method being called.

symbol

The name of the method as a Symbol.

The tally_calls method looks up the class and name of the method being called to see
if it's one of the methods being tracked. If so, it grabs the current call stack with
Kernel#caller, and notes where in the execution path the method was called:

 # If the interpreter is about to call a method we find interesting,
 # increment the count for that method.
 def tally_calls(event, file, line, symbol, binding, klass)
 if @to_trace[klass] and @to_trace[klass][symbol] and
 (event == 'call' or event =='c-call')
 stack = caller

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 39 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 stack = stack[1..(@show_stack_depth ? @show_stack_depth : stack.size)]
 @to_trace[klass][symbol][stack] ||= 0
 @to_trace[klass][symbol][stack] += 1
 end
 end

All that's left is the method that prints the report. It sorts the results by execution path (as
indicated by the stack traces), so the more often a method is called from a certain line of
code, the higher in the report that line of code will show up:

 # Prints a report of the lines of code that called interesting
 # methods, sorted so that the the most active lines of code show up
 # first.
 def report(out=$stderr)
 first = true
 @to_trace.each do |klass, symbols|
 symbols.each do |symbol, calls|
 total = calls.inject(0) { |sum, ct| sum + ct[1] }
 padding = total.to_s.size
 separator = (klass.is_a? Class) ? '#' : '.'
 plural = (total == 1) ? '' : 's'
 stack_join = "\n" + (' ' * (padding+2))
 first ? first = false : out.puts
 out.puts "#{total} call#{plural} to #{klass}#{separator}#{symbol}"
 (calls.sort_by { |caller, times| -times }).each do |caller, times|
 out.puts " %#{padding}.d #{caller.join(stack_join)}" % times
 end
 end
 end
 end
 end

Here's the analyzer in action. It analyses my use of the Rubyful Soup HTML parser (which
I was working on optimizing) to see which lines of code are responsible for calling
Array#each. It shows three main places to look for optimizations:

 require 'rubygems'
 require 'rubyful_soup'
 tracker = CallTracker.new
 tracker.register(Array, :each)

 BeautifulSoup.new(open('test.html') { |f| f.read })
 tracker.stop($stdout)
 # 4930 calls to Array#each
 # 1671 ./rubyful_soup.rb:715:in `pop_to_tag'
 # 1631 ./rubyful_soup.rb:567:in `unknown_starttag'
 # 1627 ./rubyful_soup.rb:751:in `smart_pop'
 # 1 ./rubyful_soup.rb:510:in `feed'

By default, the CallTracker shows only the single line of code that called the
"interesting" method. You can get more of the call stack by passing a larger
show_stack_depth into the CallTracker initializer.

See Also

• Recipe 17.6, "Creating and Understanding Tracebacks"
• Recipe 17.12, "Profiling Your Application"

Chapter 17. Testing, Debugging, Optimizing, and Documenting Page 40 Return to Table of Contents

Chapter 17. Testing, Debugging, Optimizing, and Documenting
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Testing, Debugging, Optimizing, and Documenting
	Running Code Only in Debug Mode
	Raising an Exception
	Handling an Exception
	Rerunning After an Exception
	Adding Logging to Your Application
	Creating and Understanding Tracebacks
	Writing Unit Tests
	Running Unit Tests
	Testing Code That Uses External Resources
	Using breakpoint to Inspect and Change the State of Your Application
	Documenting Your Application
	Profiling Your Application
	Benchmarking Competing Solutions
	Running Multiple Analysis Tools at Once
	Who's Calling That Method? A Call Graph Analyzer

