
Table of Contents

Strings... 1
Building a String from Parts... 5
Substituting Variables into Strings... 6
Substituting Variables into an Existing String... 8
Reversing a String by Words or Characters.. 11
Representing Unprintable Characters.. 12
Converting Between Characters and Values... 14
Converting Between Strings and Symbols.. 15
Processing a String One Character at a Time.. 17
Processing a String One Word at a Time.. 19
Changing the Case of a String... 21
Managing Whitespace... 22
Testing Whether an Object Is String-Like.. 24
Getting the Parts of a String You Want.. 25
Handling International Encodings... 26
Word-Wrapping Lines of Text.. 28
Generating a Succession of Strings.. 30
Matching Strings with Regular Expressions.. 32
Replacing Multiple Patterns in a Single Pass... 34
Validating an Email Address.. 36
Classifying Text with a Bayesian Analyzer... 39

Chapter 1. Strings

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

1. Strings
Ruby is a programmer-friendly language. If you are already familiar with object oriented
programming, Ruby should quickly become second nature. If you've struggled with
learning object-oriented programming or are not familiar with it, Ruby should make more
sense to you than other object-oriented languages because Ruby's methods are consistently
named, concise, and generally act the way you expect.

Throughout this book, we demonstrate concepts through interactive Ruby sessions.
Strings are a good place to start because not only are they a useful data type, they're easy
to create and use. They provide a simple introduction to Ruby, a point of comparison
between Ruby and other languages you might know, and an approachable way to introduce
important Ruby concepts like duck typing (see Recipe 1.12), open classes (demonstrated
in Recipe 1.10), symbols (Recipe 1.7), and even Ruby gems (Recipe 1.20).

If you use Mac OS X or a Unix environment with Ruby installed, go to your command line
right now and type irb. If you're using Windows, you can download and install the One-
Click Installer from http://rubyforge.org/projects/rubyinstaller/, and do the same from
a command prompt (you can also run the fxri program, if that's more comfortable for
you). You've now entered an interactive Ruby shell, and you can follow along with the code
samples in most of this book's recipes.

Strings in Ruby are much like strings in other dynamic languages like Perl, Python and
PHP. They're not too much different from strings in Java and C. Ruby strings are dynamic,
mutable, and flexible. Get started with strings by typing this line into your interactive Ruby
session:

 string = "My first string"

You should see some output that looks like this:

 => "My first string"

You typed in a Ruby expression that created a string "My first string", and assigned it to
the variable string. The value of that expression is just the new value of string, which
is what your interactive Ruby session printed out on the right side of the arrow. Throughout
this book, we'll represent this kind of interaction in the following form:[1]

[1] Yes, this was covered in the Preface, but not everyone reads the Preface.

Chapter 1. Strings Page 1 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://rubyforge.org/projects/rubyinstaller/

 string = "My first string" # => "My first string"

In Ruby, everything that can be assigned to a variable is an object. Here, the variable
string points to an object of class String. That class defines over a hundred built-in
methods: named pieces of code that examine and manipulate the string. We'll explore
some of these throughout the chapter, and indeed the entire book. Let's try out one now:
String#length, which returns the number of bytes in a string. Here's a Ruby method
call:

 string.length # => 15

Many programming languages make you put parentheses after a method call:

 string.length() # => 15

In Ruby, parentheses are almost always optional. They're especially optional in this case,
since we're not passing any arguments into String#length. If you're passing arguments
into a method, it's often more readable to enclose the argument list in parentheses:

 string.count 'i' # => 2 # "i" occurs twice.
 string.count('i') # => 2

The return value of a method call is itself an object. In the case of String#length, the
return value is the number 15, an instance of the Fixnum class. We can call a method on
this object as well:

 string.length.next # => 16

Let's take a more complicated case: a string that contains non-ASCII characters. This string
contains the French phrase "il était une fois," encoded as UTF-8:[2]

[2] "\xc3\xa9" is a Ruby string representation of the UTF-8 encoding of the Unicode character é.

 french_string = "il \xc3\xa9tait une fois" # => "il \303\251tait une fois"

Many programming languages (notably Java) treat a string as a series of characters. Ruby
treats a string as a series of bytes. The French string contains 14 letters and 3 spaces, so
you might think Ruby would say the length of the string is 17. But one of the letters (the e
with acute accent) is represented as two bytes, and that's what Ruby counts:

 french_string.length # => 18

Chapter 1. Strings Page 2 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For more on handling different encodings, see Recipe 1.14 and Recipe 11.12. For more on
this specific problem, see Recipe 1.8

You can represent special characters in strings (like the binary data in the French string)
with string escaping. Ruby does different types of string escaping depending on how you
create the string. When you enclose a string in double quotes, you can encode binary data
into the string (as in the French example above), and you can encode newlines with the
code "\n", as in other programming languages:

 puts "This string\ncontains a newline"
 # This string
 # contains a newline

When you enclose a string in single quotes, the only special codes you can use are "\'" to
get a literal single quote, and "\\" to get a literal backslash:

 puts 'it may look like this string contains a newline\nbut it doesn\'t'
 # it may look like this string contains a newline\nbut it doesn't

 puts 'Here is a backslash: \\'
 # Here is a backslash: \

This is covered in more detail in Recipe 1.5. Also see Recipes 1.2 and 1.3 for more examples
of the more spectacular substitutions double-quoted strings can do.

Another useful way to initialize strings is with the "here documents" style:

 long_string = <<EOF
 Here is a long string
 With many paragraphs
 EOF
 # => "Here is a long string\nWith many paragraphs\n"

 puts long_string
 # Here is a long string
 # With many paragraphs

Like most of Ruby's built-in classes, Ruby's strings define the same functionality in several
different ways, so that you can use the idiom you prefer. Say you want to get a substring
of a larger string (as in Recipe 1.13). If you're an object-oriented programming purist, you
can use the String#slice method:

 string # => "My first string"
 string.slice(3, 5) # => "first"

But if you're coming from C, and you think of a string as an array of bytes, Ruby can
accommodate you. Selecting a single byte from a string returns that byte as a number.

Chapter 1. Strings Page 3 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-12#rubyckbk-CHP-11-SECT-12

 string.chr + string.chr + string.chr + string.chr + string.chr
 # => "first"

And if you come from Python, and you like that language's slice notation, you can just as
easily chop up the string that way:

 string[3, 5] # => "first"

Unlike in most programming languages, Ruby strings are mutable: you can change them
after they are declared. Below we see the difference between the methods
String#upcase and String#upcase!:

 string.upcase # => "MY FIRST STRING"
 string # => "My first string"
 string.upcase! # => "MY FIRST STRING"
 string # => "MY FIRST STRING"

This is one of Ruby's syntactical conventions. "Dangerous" methods (generally those that
modify their object in place) usually have an exclamation mark at the end of their name.
Another syntactical convention is that predicates, methods that return a true/false value,
have a question mark at the end of their name (as in some varieties of Lisp):

 string.empty? # => false
 string.include? 'MY' # => true

This use of English punctuation to provide the programmer with information is an example
of Matz's design philosophy: that Ruby is a language primarily for humans to read and
write, and secondarily for computers to interpret.

An interactive Ruby session is an indispensable tool for learning and experimenting with
these methods. Again, we encourage you to type the sample code shown in these recipes
into an irb or fxri session, and try to build upon the examples as your knowledge of
Ruby grows.

Here are some extra resources for using strings in Ruby:

• You can get information about any built-in Ruby method with the ri command; for
instance, to see more about the String#upcase! method, issue the command ri
"String#upcase!" from the command line.

• "why the lucky stiff" has written an excellent introduction to installing Ruby, and using
irb and ri: http://poignantguide.net/ruby/expansion-pak-1.html

• For more information about the design philosophy behind Ruby, read an interview
with Yukihiro "Matz" Matsumoto, creator of Ruby: http://www.artima.com/intv/
ruby.html

Chapter 1. Strings Page 4 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://poignantguide.net/ruby/expansion-pak-1.html
http://www.artima.com/intv/ruby.html
http://www.artima.com/intv/ruby.html

Recipe 1.1. Building a String from Parts

Problem
You want to iterate over a data structure, building a string from it as you do.

Solution
There are two efficient solutions. The simplest solution is to start with an empty string,
and repeatedly append substrings onto it with the << operator:

 hash = { "key1" => "val1", "key2" => "val2" }
 string = ""
 hash.each { |k,v| string << "#{k} is #{v}\n" }
 puts string
 # key1 is val1
 # key2 is val2

This variant of the simple solution is slightly more efficient, but harder to read:

 string = ""
 hash.each { |k,v| string << k << " is " << v << "\n" }

If your data structure is an array, or easily transformed into an array, it's usually more
efficient to use Array#join:

 puts hash.keys.join("\n") + "\n"
 # key1
 # key2

Discussion
In languages like Python and Java, it's very inefficient to build a string by starting with an
empty string and adding each substring onto the end. In those languages, strings are
immutable, so adding one string to another builds an entirely new string. Doing this
multiple times creates a huge number of intermediary strings, each of which is only used
as a stepping stone to the next string. This wastes time and memory.

In those languages, the most efficient way to build a string is always to put the substrings
into an array or another mutable data structure, one that expands dynamically rather than
by implicitly creating entirely new objects. Once you're done processing the substrings,
you get a single string with the equivalent of Ruby's Array#join. In Java, this is the
purpose of the StringBuffer class.

Chapter 1. Strings Page 5 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In Ruby, though, strings are just as mutable as arrays. Just like arrays, they can expand as
needed, without using much time or memory. The fastest solution to this problem in Ruby
is usually to forgo a holding array and tack the substrings directly onto a base string.
Sometimes using Array#join is faster, but it's usually pretty close, and the <<
construction is generally easier to understand.

If efficiency is important to you, don't build a new string when you can append items onto
an existing string. Constructs like str << 'a' + 'b' or str << "#{var1}
#{var2}" create new strings that are immediately subsumed into the larger string. This
is exactly what you're trying to avoid. Use str << var1 <<''<< var2 instead.

On the other hand, you shouldn't modify strings that aren't yours. Sometimes safety
requires that you create a new string. When you define a method that takes a string as an
argument, you shouldn't modify that string by appending other strings onto it, unless that's
really the point of the method (and unless the method's name ends in an exclamation point,
so that callers know it modifies objects in place).

Another caveat: Array#join does not work precisely the same way as repeated appends
to a string. Array#join accepts a separator string that it inserts between every two
elements of the array. Unlike a simple string-building iteration over an array, it will not
insert the separator string after the last element in the array. This example illustrates the
difference:

 data = ['1', '2', '3']
 s = ''
 data.each { |x| s << x << ' and a '}
 s # => "1 and a 2 and a 3 and a "
 data.join(' and a ') # => "1 and a 2 and a 3"

To simulate the behavior of Array#join across an iteration, you can use
Enumerable#each_with_index and omit the separator on the last index. This only
works if you know how long the Enumerable is going to be:

 s = ""
 data.each_with_index { |x, i| s << x; s << "|" if i < data.length-1 }
 s # => "1|2|3"

Recipe 1.2. Substituting Variables into Strings

Problem
You want to create a string that contains a representation of a Ruby variable or expression.

Chapter 1. Strings Page 6 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
Within the string, enclose the variable or expression in curly brackets and prefix it with a
hash character.

 number = 5
 "The number is #{number}." # => "The number is 5."
 "The number is #{5}." # => "The number is 5."
 "The number after #{number} is #{number.next}."
 # => "The number after 5 is 6."
 "The number prior to #{number} is #{number-1}."
 # => "The number prior to 5 is 4."
 "We're ##{number}!" # => "We're #5!"

Discussion
When you define a string by putting it in double quotes, Ruby scans it for special
substitution codes. The most common case, so common that you might not even think
about it, is that Ruby substitutes a single newline character every time a string contains
slash followed by the letter n ("\n").

Ruby supports more complex string substitutions as well. Any text kept within the brackets
of the special marker #{} (that is, #{text in here}) is interpreted as a Ruby expression. The
result of that expression is substituted into the string that gets created. If the result of the
expression is not a string, Ruby calls its to_s method and uses that instead.

Once such a string is created, it is indistinguishable from a string created without using
the string interpolation feature:

 "#{number}" == '5' # => true

You can use string interpolation to run even large chunks of Ruby code inside a string. This
extreme example defines a class within a string; its result is the return value of a method
defined in the class. You should never have any reason to do this, but it shows the power
of this feature.

 %{Here is #{class InstantClass
 def bar
 "some text"
 end
 end
 InstantClass.new.bar
 }.}
 # => "Here is some text."

The code run in string interpolations runs in the same context as any other Ruby code in
the same location. To take the example above, the InstantClass class has now been
defined like any other class, and can be used outside the string that defines it.

Chapter 1. Strings Page 7 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If a string interpolation calls a method that has side effects, the side effects are triggered.
If a string definition sets a variable, that variable is accessible afterwards. It's bad form to
rely on this behavior, but you should be aware of it:

 "I've set x to #{x = 5; x += 1}." # => "I've set x to 6."
 x # => 6

To avoid triggering string interpolation, escape the hash characters or put the string in
single quotes.

 "\#{foo}" # => "\#{foo}"
 '#{foo}' # => "\#{foo}"

The "here document" construct is an alternative to the %{} construct, which is sometimes
more readable. It lets you define a multiline string that only ends when the Ruby parser
encounters a certain string on a line by iteself:

 name = "Mr. Lorum"
 email = <<END
 Dear #{name},

 Unfortunately we cannot process your insurance claim at this
 time. This is because we are a bakery, not an insurance company.

 Signed,
 Nil, Null, and None
 Bakers to Her Majesty the Singleton
 END

Ruby is pretty flexible about the string you can use to end the "here document":

 <<end_of_poem
 There once was a man from Peru
 Whose limericks stopped on line two
 end_of_poem
 # => "There once was a man from Peru\nWhose limericks stopped on line two\n"

See Also

• You can use the technique described in Recipe 1.3, "Substituting Variables into an
Existing String," to define a template string or object, and substitute in variables later

Recipe 1.3. Substituting Variables into an Existing String

Chapter 1. Strings Page 8 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You want to create a string that contains Ruby expressions or variable substitutions,
without actually performing the substitutions. You plan to substitute values into the string
later, possibly multiple times with different values each time.

Solution
There are two good solutions: printf-style strings, and ERB templates.

Ruby supports a printf-style string format like C's and Python's. Put printf directives
into a string and it becomes a template. You can interpolate values into it later using the
modulus operator:

 template = 'Oceania has always been at war with %s.'
 template % 'Eurasia' # => "Oceania has always been at war with Eurasia."
 template % 'Eastasia' # => "Oceania has always been at war with Eastasia."

 'To 2 decimal places: %.2f' % Math::PI # => "To 2 decimal places: 3.14"
 'Zero-padded: %.5d' % Math::PI # => "Zero-padded: 00003"

An ERB template looks something like JSP or PHP code. Most of it is treated as a normal
string, but certain control sequences are executed as Ruby code. The control sequence is
replaced with either the output of the Ruby code, or the value of its last expression:

 require 'erb'

 template = ERB.new %q{Chunky <%= food %>!}
 food = "bacon"
 template.result(binding) # => "Chunky bacon!"
 food = "peanut butter"
 template.result(binding) # => "Chunky peanut butter!"

You can omit the call to Kernel#binding if you're not in an irb session:

 puts template.result
 # Chunky peanut butter!

You may recognize this format from the .rhtml files used by Rails views: they use ERB
behind the scenes.

Discussion
An ERB template can reference variables like food before they're defined. When you call
ERB#result, or ERB#run, the template is executed according to the current values of
those variables.

Like JSP and PHP code, ERB templates can contain loops and conditionals. Here's a more
sophisticated template:

Chapter 1. Strings Page 9 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 template = %q{
 <% if problems.empty? %>
 Looks like your code is clean!
 <% else %>
 I found the following possible problems with your code:
 <% problems.each do |problem, line| %>
 * <%= problem %> on line <%= line %>
 <% end %>
 <% end %>}.gsub(/^\s+/, '')
 template = ERB.new(template, nil, '<>')

 problems = [["Use of is_a? instead of duck typing", 23],
 ["eval() is usually dangerous", 44]]
 template.run(binding)
 # I found the following possible problems with your code:
 # * Use of is_a? instead of duck typing on line 23
 # * eval() is usually dangerous on line 44

 problems = []
 template.run(binding)
 # Looks like your code is clean!

ERB is sophisticated, but neither it nor the printf-style strings look like the simple Ruby
string substitutions described in Recipe 1.2. There's an alternative. If you use single quotes
instead of double quotes to define a string with substitutions, the substitutions won't be
activated. You can then use this string as a template with eval:

 class String
 def substitute(binding=TOPLEVEL_BINDING)
 eval(%{"#{self}"}, binding)
 end
 end

 template = %q{Chunky #{food}!} # => "Chunky \#{food}!"

 food = 'bacon'
 template.substitute(binding) # => "Chunky bacon!"
 food = 'peanut butter'
 template.substitute(binding) # => "Chunky peanut butter!"

You must be very careful when using eval: if you use a variable in the wrong way, you
could give an attacker the ability to run arbitrary Ruby code in your eval statement. That
won't happen in this example since any possible value of food gets stuck into a string
definition before it's interpolated:

 food = '#{system("dir")}'
 puts template.substitute(binding)
 # Chunky #{system("dir")}!

See Also

• This recipe gives basic examples of ERB templates; for more complex examples, see
the documentation of the ERB class (http://www.ruby-doc.org/stdlib/libdoc/erb/
rdoc/classes/ERB.html)

• Recipe 1.2, "Substituting Variables into Strings"

Chapter 1. Strings Page 10 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html
http://www.ruby-doc.org/stdlib/libdoc/erb/rdoc/classes/ERB.html

• Recipe 10.12, "Evaluating Code in an Earlier Context," has more about Binding
objects

Recipe 1.4. Reversing a String by Words or Characters

Problem
The letters (or words) of your string are in the wrong order.

Solution
To create a new string that contains a reversed version of your original string, use the
reverse method. To reverse a string in place, use the reverse! method.

 s = ".sdrawkcab si gnirts sihT"
 s.reverse # => "This string is backwards."
 s # => ".sdrawkcab si gnirts sihT"

 s.reverse! # => "This string is backwards."
 s # => "This string is backwards."

To reverse the order of the words in a string, split the string into a list of
whitespaceseparated words, then join the list back into a string.

 s = "order. wrong the in are words These"
 s.split(/(\s+)/).reverse!.join('') # => "These words are in the wrong order."
 s.split(/\b/).reverse!.join('') # => "These words are in the wrong. order"

Discussion
The String#split method takes a regular expression to use as a separator. Each time
the separator matches part of the string, the portion of the string before the separator goes
into a list. split then resumes scanning the rest of the string. The result is a list of strings
found between instances of the separator. The regular expression /(\s+)/ matches one
or more whitespace characters; this splits the string on word boundaries, which works for
us because we want to reverse the order of the words.

The regular expression \b matches a word boundary. This is not the same as matching
whitespace, because it also matches punctuation. Note the difference in punctuation
between the two final examples in the Solution.

Because the regular expression /(\s+)/ includes a set of parentheses, the separator
strings themselves are included in the returned list. Therefore, when we join the strings
back together, we've preserved whitespace. This example shows the difference between
including the parentheses and omitting them:

Chapter 1. Strings Page 11 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-12#rubyckbk-CHP-10-SECT-12

 "Three little words".split(/\s+/) # => ["Three", "little", "words"]
 "Three little words".split(/(\s+)/)
 # => ["Three", " ", "little", " ", "words"]

See Also

• Recipe 1.9, "Processing a String One Word at a Time," has some regular expressions
for alternative definitions of "word"

• Recipe 1.11, "Managing Whitespace"
• Recipe 1.17, "Matching Strings with Regular Expressions"

Recipe 1.5. Representing Unprintable Characters

Problem
You need to make reference to a control character, a strange UTF-8 character, or some
other character that's not on your keyboard.

Solution
Ruby gives you a number of escaping mechanisms to refer to unprintable characters. By
using one of these mechanisms within a double-quoted string, you can put any binary
character into the string.

You can reference any any binary character by encoding its octal representation into the
format "\000", or its hexadecimal representation into the format "\x00".

 octal = "\000\001\010\020"
 octal.each_byte { |x| puts x }
 # 0
 # 1
 # 8
 # 16

 hexadecimal = "\x00\x01\x10\x20"
 hexadecimal.each_byte { |x| puts x }
 # 0
 # 1
 # 16
 # 32

This makes it possible to represent UTF-8 characters even when you can't type them or
display them in your terminal. Try running this program, and then opening the generated
file smiley.html in your web browser:

 open('smiley.html', 'wb') do |f|
 f << '<meta http-equiv="Content-Type" content="text/html;charset=UTF-8">'
 f << "\xe2\x98\xBA"
 end

Chapter 1. Strings Page 12 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The most common unprintable characters (such as newline) have special mneumonic
aliases consisting of a backslash and a letter.

 "\a" == "\x07" # => true # ASCII 0x07 = BEL (Sound system bell)
 "\b" == "\x08" # => true # ASCII 0x08 = BS (Backspace)
 "\e" == "\x1b" # => true # ASCII 0x1B = ESC (Escape)
 "\f" == "\x0c" # => true # ASCII 0x0C = FF (Form feed)
 "\n" == "\x0a" # => true # ASCII 0x0A = LF (Newline/line feed)
 "\r" == "\x0d" # => true # ASCII 0x0D = CR (Carriage return)
 "\t" == "\x09" # => true # ASCII 0x09 = HT (Tab/horizontal tab)
 "\v" == "\x0b" # => true # ASCII 0x0B = VT (Vertical tab)

Discussion
Ruby stores a string as a sequence of bytes. It makes no difference whether those bytes are
printable ASCII characters, binary characters, or a mix of the two.

When Ruby prints out a human-readable string representation of a binary character, it
uses the character's \xxx octal representation. Characters with special \x mneumonics
are printed as the mneumonic. Printable characters are output as their printable
representation, even if another representation was used to create the string.

 "\x10\x11\xfe\xff" # => "\020\021\376\377"
 "\x48\145\x6c\x6c\157\x0a" # => "Hello\n"

To avoid confusion with the mneumonic characters, a literal backslash in a string is
represented by two backslashes. For instance, the two-character string consisting of a
backslash and the 14th letter of the alphabet is represented as "\\n".

 "\\".size # => 1
 "\\" == "\x5c" # => true
 "\\n"[0] == ?\\ # => true
 "\\n"[1] == ?n # => true
 "\\n" =~ /\n/ # => nil

Ruby also provides special shortcuts for representing keyboard sequences like Control-C.
"\C-_x_" represents the sequence you get by holding down the control key and hitting
the x key, and "\M-_x_" represents the sequence you get by holding down the Alt (or
Meta) key and hitting the x key:

 "\C-a\C-b\C-c" # => "\001\002\003"
 "\M-a\M-b\M-c" # => "\341\342\343"

Shorthand representations of binary characters can be used whenever Ruby expects a
character. For instance, you can get the decimal byte number of a special character by
prefixing it with ?, and you can use shorthand representations in regular expression
character ranges.

Chapter 1. Strings Page 13 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 ?\C-a # => 1
 ?\M-z # => 250

 contains_control_chars = /[\C-a-\C-^]/
 'Foobar' =~ contains_control_chars # => nil
 "Foo\C-zbar" =~ contains_control_chars # => 3

 contains_upper_chars = /[\x80-\xff]/
 'Foobar' =~ contains_upper_chars # => nil
 "Foo\212bar" =~ contains_upper_chars # => 3

Here's a sinister application that scans logged keystrokes for special characters:

 def snoop_on_keylog(input)
 input.each_byte do |b|
 case b
 when ?\C-c; puts 'Control-C: stopped a process?'
 when ?\C-z; puts 'Control-Z: suspended a process?'
 when ?\n; puts 'Newline.'
 when ?\M-x; puts 'Meta-x: using Emacs?'
 end
 end
 end

 snoop_on_keylog("ls -ltR\003emacsHello\012\370rot13-other-window\012\032")
 # Control-C: stopped a process?
 # Newline.
 # Meta-x: using Emacs?
 # Newline.
 # Control-Z: suspended a process?

Special characters are only interpreted in strings delimited by double quotes, or strings
created with %{} or %Q{}. They are not interpreted in strings delimited by single quotes,
or strings created with %q{}. You can take advantage of this feature when you need to
display special characters to the end-user, or create a string containing a lot of backslashes.

 puts "foo\tbar"
 # foo bar
 puts %{foo\tbar}
 # foo bar
 puts %Q{foo\tbar}
 # foo bar

 puts 'foo\tbar'
 # foo\tbar
 puts %q{foo\tbar}
 # foo\tbar

If you come to Ruby from Python, this feature can take advantage of you, making you
wonder why the special characters in your single-quoted strings aren't treated as special.
If you need to create a string with special characters and a lot of embedded double quotes,
use the %{} construct.

Recipe 1.6. Converting Between Characters and Values

Chapter 1. Strings Page 14 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You want to see the ASCII code for a character, or transform an ASCII code into a string.

Solution
To see the ASCII code for a specific character as an integer, use the ? operator:

 ?a # => 97
 ?! # => 33
 ?\n # => 10

To see the integer value of a particular in a string, access it as though it were an element
of an array:

 'a'[0] # => 97
 'bad sound'[1] # => 97

To see the ASCII character corresponding to a given number, call its #chr method. This
returns a string containing only one character:

 97.chr # => "a"
 33.chr # => "!"
 10.chr # => "\n"
 0.chr # => "\000"
 256.chr # RangeError: 256 out of char range

Discussion
Though not technically an array, a string acts a lot like like an array of Fixnum objects:
one Fixnum for each byte in the string. Accessing a single element of the "array" yields a
Fixnum for the corresponding byte: for textual strings, this is an ASCII code. Calling
String#each_byte lets you iterate over the Fixnum objects that make up a string.

See Also

• Recipe 1.8, "Processing a String One Character at a Time"

Recipe 1.7. Converting Between Strings and Symbols

Problem
You want to get a string containing the label of a Ruby symbol, or get the Ruby symbol that
corresponds to a given string.

Chapter 1. Strings Page 15 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
To turn a symbol into a string, use Symbol#to_s, or Symbol#id2name, for which
to_s is an alias.

 :a_symbol.to_s # => "a_symbol"
 :AnotherSymbol.id2name # => "AnotherSymbol"
 :"Yet another symbol!".to_s # => "Yet another symbol!"

You usually reference a symbol by just typing its name. If you're given a string in code and
need to get the corresponding symbol, you can use String.intern:

 :dodecahedron.object_id # => 4565262
 symbol_name = "dodecahedron"
 symbol_name.intern # => :dodecahedron
 symbol_name.intern.object_id # => 4565262

Discussion
A Symbol is about the most basic Ruby object you can create. It's just a name and an
internal ID. Symbols are useful becase a given symbol name refers to the same object
throughout a Ruby program.

Symbols are often more efficient than strings. Two strings with the same contents are two
different objects (one of the strings might be modified later on, and become different), but
for any given name there is only one Symbol object. This can save both time and memory.

 "string".object_id # => 1503030
 "string".object_id # => 1500330
 :symbol.object_id # => 4569358
 :symbol.object_id # => 4569358

If you have n references to a name, you can keep all those references with only one symbol,
using only one object's worth of memory. With strings, the same code would use n different
objects, all containing the same data. It's also faster to compare two symbols than to
compare two strings, because Ruby only has to check the object IDs.

 "string1" == "string2" # => false
 :symbol1 == :symbol2 # => false

Finally, to quote Ruby hacker Jim Weirich on when to use a string versus a symbol:

• If the contents (the sequence of characters) of the object are important, use a string.
• If the identity of the object is important, use a symbol.

Chapter 1. Strings Page 16 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• See Recipe 5.1, "Using Symbols as Hash Keys" for one use of symbols
• Recipe 8.12, "Simulating Keyword Arguments," has another
• Chapter 10, especially Recipe 10.4, "Getting a Reference to a Method" and Recipe

10.10, "Avoiding Boilerplate Code with Metaprogramming"
• See http://glu.ttono.us/articles/2005/08/19/understanding-ruby-symbols for a

symbol primer

Recipe 1.8. Processing a String One Character at a Time

Problem
You want to process each character of a string individually.

Solution
If you're processing an ASCII document, then each byte corresponds to one character. Use
String#each_byte to yield each byte of a string as a number, which you can turn into
a one-character string:

 'foobar'.each_byte { |x| puts "#{x} = #{x.chr}" }
 # 102 = f
 # 111 = o
 # 111 = o
 # 98 = b
 # 97 = a
 # 114 = r

Use String#scan to yield each character of a string as a new one-character string:

 'foobar'.scan(/./) { |c| puts c }
 # f
 # o
 # o
 # b
 # a
 # r

Discussion
Since a string is a sequence of bytes, you might think that the String#each method would
iterate over the sequence, the way Array#each does. But String#each is actually used
to split a string on a given record separator (by default, the newline):

 "foo\nbar".each { |x| puts x }
 # foo
 # bar

Chapter 1. Strings Page 17 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-1#rubyckbk-CHP-5-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-12#rubyckbk-CHP-8-SECT-12
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10#rubyckbk-CHP-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-4#rubyckbk-CHP-10-SECT-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-10#rubyckbk-CHP-10-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-10#rubyckbk-CHP-10-SECT-10
http://glu.ttono.us/articles/2005/08/19/understanding-ruby-symbols

The string equivalent of Array#each method is actually each_byte. A string stores its
characters as a sequence of Fixnum objects, and each_bytes yields that sequence.

String#each_byte is faster than String#scan, so if you're processing an ASCII file,
you might want to use String#each_byte and convert to a string every number passed
into the code block (as seen in the Solution).

String#scan works by applying a given regular expression to a string, and yielding each
match to the code block you provide. The regular expression /./ matches every character
in the string, in turn.

If you have the $KCODE variable set correctly, then the scan technique will work on UTF-8
strings as well. This is the simplest way to sneak a notion of "character" into Ruby's byte-
based strings.

Here's a Ruby string containing the UTF-8 encoding of the French phrase "ça va":

 french = "\xc3\xa7a va"

Even if your terminal can't properly display the character "ç", you can see how the behavior
of String#scan changes when you make the regular expression Unicodeaware, or set
$KCODE so that Ruby handles all strings as UTF-8:

 french.scan(/./) { |c| puts c }
 #
 #
 # a
 #
 # v
 # a

 french.scan(/./u) { |c| puts c }
 # ç
 # a
 #
 # v
 # a

 $KCODE = 'u'
 french.scan(/./) { |c| puts c }
 # ç
 # a
 #
 # v
 # a

Once Ruby knows to treat strings as UTF-8 instead of ASCII, it starts treating the two bytes
representing the "ç" as a single character. Even if you can't see UTF-8, you can write
programs that handle it correctly.

Chapter 1. Strings Page 18 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 11.12, "Converting from One Encoding to Another"

Recipe 1.9. Processing a String One Word at a Time

Problem
You want to split a piece of text into words, and operate on each word.

Solution
First decide what you mean by "word." What separates one word from another? Only
whitespace? Whitespace or punctuation? Is "johnny-come-lately" one word or three? Build
a regular expression that matches a single word according to whatever definition you need
(there are some samples are in the Discussion).

Then pass that regular expression into String#scan. Every word it finds, it will yield to
a code block. The word_count method defined below takes a piece of text and creates a
histogram of word frequencies. Its regular expression considers a "word" to be a string of
Ruby identifier characters: letters, numbers, and underscores.

 class String
 def word_count
 frequencies = Hash.new(0)
 downcase.scan(/\w+/) { |word| frequencies[word] += 1 }
 return frequencies
 end
 end

 %{Dogs dogs dog dog dogs.}.word_count
 # => {"dogs"=>3, "dog"=>2}
 %{"I have no shame," I said.}.word_count
 # => {"no"=>1, "shame"=>1, "have"=>1, "said"=>1, "i"=>2}

Discussion
The regular expression /\w+/ is nice and simple, but you can probably do better for your
application's definition of "word." You probably don't consider two words separated by an
underscore to be a single word. Some English words, like "pan-fried" and "fo'c'sle", contain
embedded punctuation. Here are a few more definitions of "word" in regular expression
form:

 # Just like /\w+/, but doesn't consider underscore part of a word.
 /[0-9A-Za-z]/

 # Anything that's not whitespace is a word.
 /[^\S]+/

Chapter 1. Strings Page 19 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-12#rubyckbk-CHP-11-SECT-12

 # Accept dashes and apostrophes as parts of words.
 /[-'\w]+/

 # A pretty good heuristic for matching English words.
 /(\w+([-'.]\w+)*/

The last one deserves some explanation. It matches embedded punctuation within a word,
but not at the edges. "Work-in-progress" is recognized as a single word, and "—-never—-"
is recognized as the word "never" surrounded by punctuation. This regular expression can
even pick out abbreviations and acronyms such as "Ph.D" and "U.N.C.L.E.", though it can't
distinguish between the final period of an acronym and the period that ends a sentence.
This means that "E.F.F." will be recognized as the word "E.F.F" and then a nonword period.

Let's rewrite our word_count method to use that regular expression. We can't use the
original implementation, because its code block takes only one argument.
String#scan passes its code block one argument for each match group in the regular
expression, and our improved regular expression has two match groups. The first match
group is the one that actually contains the word. So we must rewrite word_count so that
its code block takes two arguments, and ignores the second one:

 class String
 def word_count
 frequencies = Hash.new(0)
 downcase.scan(/(\w+([-'.]\w+)*)/) { |word, ignore| frequencies[word] += 1 }
 return frequencies
 end
 end

 %{"That F.B.I. fella--he's quite the man-about-town."}.word_count
 # => {"quite"=>1, "f.b.i"=>1, "the"=>1, "fella"=>1, "that"=>1,
 # "man-about-town"=>1, "he's"=>1}

Note that the "\w" character set matches different things depending on the value of
$KCODE. By default, "\w" matches only characters that are part of ASCII words:

 french = "il \xc3\xa9tait une fois"
 french.word_count
 # => {"fois"=>1, "une"=>1, "tait"=>1, "il"=>1}

If you turn on Ruby's UTF-8 support, the "\w" character set matches more characters:

 $KCODE='u'
 french.word_count
 # => {"fois"=>1, "une"=>1, "était"=>1, "il"=>1}

The regular expression group \b matches a word boundary: that is, the last part of a word
before a piece of whitespace or punctuation. This is useful for String#split (see Recipe
1.4), but not so useful for String#scan.

Chapter 1. Strings Page 20 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 1.4, "Reversing a String by Words or Characters"
• The Facets core library defines a String#each_word method, using the regular

expression /([-'\w]+)/

Recipe 1.10. Changing the Case of a String

Problem
Your string is in the wrong case, or no particular case at all.

Solution
The String class provides a variety of case-shifting methods:

 s = 'HELLO, I am not here. I WENT to tHe MaRKEt.'
 s.upcase # => "HELLO, I AM NOT HERE. I WENT TO THE MARKET."
 s.downcase # => "hello, i am not here. i went to the market."
 s.swapcase # => "hello, i AM NOT HERE. i went TO ThE mArkeT."
 s.capitalize # => "Hello, i am not here. i went to the market."

Discussion
The upcase and downcase methods force all letters in the string to upper-or lowercase,
respectively. The swapcase method transforms uppercase letters into lowercase letters
and vice versa. The capitalize method makes the first character of the string uppercase,
if it's a letter, and makes all other letters in the string lowercase.

All four methods have corresponding methods that modify a string in place rather than
creating a new one: upcase!, downcase!, swapcase!, and capitalize!. Assuming
you don't need the original string, these methods will save memory, especially if the string
is large.

 un_banged = 'Hello world.'
 un_banged.upcase # => "HELLO WORLD."
 un_banged # => "Hello world."

 banged = 'Hello world.'
 banged.upcase! # => "HELLO WORLD."
 banged # => "HELLO WORLD."

To capitalize a string without lowercasing the rest of the string (for instance, because the
string contains proper nouns), you can modify the first character of the string in place.
This corresponds to the capitalize! method. If you want something more like
capitalize, you can create a new string out of the old one.

Chapter 1. Strings Page 21 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class String
 def capitalize_first_letter
 self[0].chr.capitalize + self[1, size]
 end

 def capitalize_first_letter!
 unless self[0] == (c = self[0,1].upcase[0])
 self[0] = c
 self
 end
 # Return nil if no change was made, like upcase! et al.
 end
 end

 s = 'i told Alice. She remembers now.'
 s.capitalize_first_letter # => "I told Alice. She remembers now."
 s # => "i told Alice. She remembers now."
 s.capitalize_first_letter!
 s # => "I told Alice. She remembers now."

To change the case of specific letters while leaving the rest alone, you can use the tr or
tr! methods, which translate one character into another:

 'LOWERCASE ALL VOWELS'.tr('AEIOU', 'aeiou')
 # => "LoWeRCaSe aLL VoWeLS"

 'Swap case of ALL VOWELS'.tr('AEIOUaeiou', 'aeiouAEIOU')
 # => "SwAp cAsE Of aLL VoWeLS"

See Also

• Recipe 1.18, "Replacing Multiple Patterns in a Single Pass"
• The Facets Core library adds a String#camelcase method; it also defines the case

predicates String#lowercase? and String#uppercase?

Recipe 1.11. Managing Whitespace

Problem
Your string contains too much whitespace, not enough whitespace, or the wrong kind of
whitespace.

Solution
Use strip to remove whitespace from the beginning and end of a string:

 " \tWhitespace at beginning and end. \t\n\n".strip

Add whitespace to one or both ends of a string with ljust, rjust, and center:

Chapter 1. Strings Page 22 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 s = "Some text."
 s.center(15)
 s.ljust(15)
 s.rjust(15)

Use the gsub method with a string or regular expression to make more complex changes,
such as to replace one type of whitespace with another.

 #Normalize Ruby source code by replacing tabs with spaces
 rubyCode.gsub("\t", " ")

 #Transform Windows-style newlines to Unix-style newlines
 "Line one\n\rLine two\n\r".gsub(\n\r", "\n")
 # => "Line one\nLine two\n"

 #Transform all runs of whitespace into a single space character
 "\n\rThis string\t\t\tuses\n all\tsorts\nof whitespace.".gsub(/\s+/," ")
 # => " This string uses all sorts of whitespace."

Discussion
What counts as whitespace? Any of these five characters: space, tab (\t), newline (\n),
linefeed (\r), and form feed (\f). The regular expression /\s/ matches any one character
from that set. The strip method strips any combination of those characters from the
beginning or end of a string.

In rare cases you may need to handle oddball "space" characters like backspace (\b or
\010) and vertical tab (\v or \012). These are not part of the \s character group in a
regular expression, so use a custom character group to catch these characters.

 " \bIt's whitespace, Jim,\vbut not as we know it.\n".gsub(/[\s\b\v]+/, " ")
 # => "It's whitespace, Jim, but not as we know it."

To remove whitespace from only one end of a string, use the lstrip or rstrip method:

 s = " Whitespace madness! "
 s.lstrip # => "Whitespace madness! "
 s.rstrip # => " Whitespace madness!"

The methods for adding whitespace to a string (center, ljust, and rjust) take a
single argument: the total length of the string they should return, counting the original
string and any added whitespace. If center can't center a string perfectly, it'll put one
extra space on the right:

 "four".center(5) # => "four "
 "four".center(6) # => " four "

Chapter 1. Strings Page 23 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Like most string-modifying methods, strip, gsub, lstrip, and rstrip have
counterparts strip!, gsub!, lstrip!, and rstrip!, which modify the string in place.

Recipe 1.12. Testing Whether an Object Is String-Like

Problem
You want to see whether you can treat an object as a string.

Solution
Check whether the object defines the to_str method.

 'A string'.respond_to? :to_str # => true
 Exception.new.respond_to? :to_str # => true
 4.respond_to? :to_str # => false

More generally, check whether the object defines the specific method of String you're
thinking about calling. If the object defines that method, the right thing to do is usually to
go ahead and call the method. This will make your code work in more places:

 def join_to_successor(s)
 raise ArgumentError, 'No successor method!' unless s.respond_to? :succ
 return "#{s}#{s.succ}"
 end

 join_to_successor('a') # => "ab"
 join_to_successor(4) # => "45"
 join_to_successor(4.01)
 # ArgumentError: No successor method!

If I'd checked s.is_a? String instead of s.respond_to? :succ, then I wouldn't
have been able to call join_to_successor on an integer.

Discussion
This is the simplest example of Ruby's philosophy of "duck typing:" if an object quacks like
a duck (or acts like a string), just go ahead and treat it as a duck (or a string). Whenever
possible, you should treat objects according to the methods they define rather than the
classes from which they inherit or the modules they include.

Calling obj.is_a? String will tell you whether an object derives from the String
class, but it will overlook objects that, though intended to be used as strings, don't inherit
from String.

Exceptions, for instance, are essentially strings that have extra information associated
with them. But they don't subclass class name "String". Code that uses is_a?

Chapter 1. Strings Page 24 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

String to check for stringness will overlook the essential stringness of Exceptions.
Many add-on Ruby modules define other classes that can act as strings: code that calls
is_a? String will break when given an instance of one of those classes.

The idea to take to heart here is the general rule of duck typing: to see whether provided
data implements a certain method, use respond_to? instead of checking the class. This
lets a future user (possibly yourself!) create new classes that offer the same capability,
without being tied down to the preexisting class structure. All you have to do is make the
method names match up.

See Also

• Chapter 8, especially the chapter introduction and Recipe 8.3, "Checking Class or
Module Membership"

Recipe 1.13. Getting the Parts of a String You Want

Problem
You want only certain pieces of a string.

Solution
To get a substring of a string, call its slice method, or use the array index operator (that
is, call the [] method). Either method accepts a Range describing which characters to
retrieve, or two Fixnum arguments: the index at which to start, and the length of the
substring to be extracted.

 s = 'My kingdom for a string!'
 s.slice(3,7) # => "kingdom"
 s[3,7] # => "kingdom"
 s[0,3] # => "My "
 s[11, 5] # => "for a"
 s[11, 17] # => "for a string!"

To get the first portion of a string that matches a regular expression, pass the regular
expression into slice or []:

 s[/.ing/] # => "king"
 s[/str.*/] # => "string!"

Chapter 1. Strings Page 25 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8#rubyckbk-CHP-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-3#rubyckbk-CHP-8-SECT-3

Discussion
To access a specific byte of a string as a Fixnum, pass only one argument (the zerobased
index of the character) into String#slice or [] method. To access a specific byte as a
single-character string, pass in its index and the number 1.

 s.slice(3) # => 107
 s[3] # => 107
 107.chr # => "k"
 s.slice(3,1) # => "k"
 s[3,1] # => "k"

To count from the end of the string instead of the beginning, use negative indexes:

 s.slice(-7,3) # => "str"
 s[-7,6] # => "string"

If the length of your proposed substring exceeds the length of the string, slice or [] will
return the entire string after that point. This leads to a simple shortcut for getting the
rightmost portion of a string:

 s[15…s.length] # => "a string!"

See Also

• Recipe 1.9, "Processing a String One Word at a Time"
• Recipe 1.17, "Matching Strings with Regular Expressions"

Recipe 1.14. Handling International Encodings

Problem
You need to handle strings that contain nonASCII characters: probably Unicode characters
encoded in UTF-8.

Solution
To use Unicode in Ruby, simply add the following to the beginning of code.

 $KCODE='u'
 require 'jcode'

You can also invoke the Ruby interpreter with arguments that do the same thing:

 $ ruby -Ku -rjcode

Chapter 1. Strings Page 26 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you use a Unix environment, you can add the arguments to the shebang line of your
Ruby application:

 #!/usr/bin/ruby -Ku -rjcode

The jcode library overrides most of the methods of String and makes them capable of
handling multibyte text. The exceptions are String#length, String#count, and
String#size, which are not overridden. Instead jcode defines three new methods:
String#jlength, string#jcount, and String#jsize.

Discussion
Consider a UTF-8 string that encodes six Unicode characters: efbca1 (A), efbca2 (B),
and so on up to UTF-8 efbca6 (F):

 string = "\xef\xbc\xa1" + "\xef\xbc\xa2" + "\xef\xbc\xa3" +
 "\xef\xbc\xa4" + "\xef\xbc\xa5" + "\xef\xbc\xa6"

The string contains 18 bytes that encode 6 characters:

 string.size # => 18
 string.jsize # => 6

String#count is a method that takes a strong of bytes, and counts how many times those
bytes occurs in the string. String#jcount takes a string of characters and counts how
many times those characters occur in the string:

 string.count "\xef\xbc\xa2" # => 13
 string.jcount "\xef\xbc\xa2" # => 1

String#count treats "\xef\xbc\xa2" as three separate bytes, and counts the number of
times each of those bytes shows up in the string. String#jcount treats the same string
as a single character, and looks for that character in the string, finding it only once.

 "\xef\xbc\xa2".length # => 3
 "\xef\xbc\xa2".jlength # => 1

Apart from these differences, Ruby handles most Unicode behind the scenes. Once you
have your data in UTF-8 format, you really don't have to worry. Given that Ruby's creator
Yukihiro Matsumoto is Japanese, it is no wonder that Ruby handles Unicode so elegantly.

Chapter 1. Strings Page 27 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• If you have text in some other encoding and need to convert it to UTF-8, use the
iconv library, as described in Recipe 11.2, "Extracting Data from a Document's Tree
Structure"

• There are several online search engines for Unicode characters; two good ones are at
http://isthisthingon.org/unicode/ and http://www.fileformat.info/info/unicode/
char/search.htm

Recipe 1.15. Word-Wrapping Lines of Text

Problem
You want to turn a string full of miscellaneous whitespace into a string formatted with
linebreaks at appropriate intervals, so that the text can be displayed in a window or sent
as an email.

Solution
The simplest way to add newlines to a piece of text is to use a regular expression like the
following.

 def wrap(s, width=78)
 s.gsub(/(.{1,#{width}})(\s+|\Z)/, "\\1\n")
 end

 wrap("This text is too short to be wrapped.")
 # => "This text is too short to be wrapped.\n"

 puts wrap("This text is not too short to be wrapped.", 20)
 # This text is not too
 # short to be wrapped.

 puts wrap("These ten-character columns are stifling my creativity!", 10)
 # These
 # ten-character
 # columns
 # are
 # stifling
 # my
 # creativity!

Discussion
The code given in the Solution preserves the original formatting of the string, inserting
additional line breaks where necessary. This works well when you want to preserve the
existing formatting while squishing everything into a smaller space:

 poetry = %q{It is an ancient Mariner,
 And he stoppeth one of three.
 "By thy long beard and glittering eye,

Chapter 1. Strings Page 28 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11-SECT-2#rubyckbk-CHP-11-SECT-2
http://isthisthingon.org/unicode/
http://www.fileformat.info/info/unicode/char/search.htm
http://www.fileformat.info/info/unicode/char/search.htm

 Now wherefore stopp'st thou me?}

 puts wrap(poetry, 20)
 # It is an ancient
 # Mariner,
 # And he stoppeth one
 # of three.
 # "By thy long beard
 # and glittering eye,
 # Now wherefore
 # stopp'st thou me?

But sometimes the existing whitespace isn't important, and preserving it makes the result
look bad:

 prose = %q{I find myself alone these days, more often than not,
 watching the rain run down nearby windows. How long has it been
 raining? The newspapers now print the total, but no one reads them
 anymore.}

 puts wrap(prose, 60)
 # I find myself alone these days, more often than not,
 # watching the rain run down nearby windows. How long has it
 # been
 # raining? The newspapers now print the total, but no one
 # reads them
 # anymore.

Looks pretty ragged. In this case, we want to get replace the original newlines with new
ones. The simplest way to do this is to preprocess the string with another regular
expression:

 def reformat_wrapped(s, width=78)
 s.gsub(/\s+/, " ").gsub(/(.{1,#{width}})(|\Z)/, "\\1\n")
 end

But regular expressions are relatively slow; it's much more efficient to tear the string apart
into words and rebuild it:

 def reformat_wrapped(s, width=78)
 lines = []
 line = ""
 s.split(/\s+/).each do |word|
 if line.size + word.size >= width
 lines << line
 line = word
 elsif line.empty?
 line = word
 else
 line << " " << word
 end
 end
 lines << line if line
 return lines.join "\n"
 end

 puts reformat_wrapped(prose, 60)
 # I find myself alone these days, more often than not,
 # watching the rain run down nearby windows. How long has it
 # been raining? The newspapers now print the total, but no one
 # reads them anymore.

Chapter 1. Strings Page 29 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The Facets Core library defines String#word_wrap and String#word_wrap!
methods

Recipe 1.16. Generating a Succession of Strings

Problem
You want to iterate over a series of alphabetically-increasing strings as you would over a
series of numbers.

Solution
If you know both the start and end points of your succession, you can simply create a range
and use Range#each, as you would for numbers:

 ('aa'..'ag').each { |x| puts x }
 # aa
 # ab
 # ac
 # ad
 # ae
 # af
 # ag

The method that generates the successor of a given string is String#succ. If you don't
know the end point of your succession, you can define a generator that uses succ, and
break from the generator when you're done.

 def endless_string_succession(start)
 while true
 yield start
 start = start.succ
 end
 end

This code iterates over an endless succession of strings, stopping when the last two letters
are the same:

 endless_string_succession('fol') do |x|
 puts x
 break if x[-1] == x[-2]
 end
 # fol
 # fom
 # fon
 # foo

Chapter 1. Strings Page 30 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Imagine a string as an odometer. Each character position of the string has a separate dial,
and the current odometer reading is your string. Each dial always shows the same kind of
character. A dial that starts out showing a number will always show a number. A character
that starts out showing an uppercase letter will always show an uppercase letter.

The string succession operation increments the odometer. It moves the rightmost dial
forward one space. This might make the rightmost dial wrap around to the beginning: if
that happens, the dial directly to its left is also moved forward one space. This might make
that dial wrap around to the beginning, and so on:

 '89999'.succ # => "90000"
 'nzzzz'.succ # => "oaaaa"

When the leftmost dial wraps around, a new dial is added to the left of the odometer. The
new dial is always of the same type as the old leftmost dial. If the old leftmost dial showed
capital letters, then so will the new leftmost dial:

 'Zzz'.succ # => "AAaa"

Lowercase letters wrap around from "z" to "a". If the first character is a lowercase letter,
then when it wraps around, an "a" is added on to the beginning of the string:

 'z'.succ # => "aa"
 'aa'.succ # => "ab"
 'zz'.succ # => "aaa"

Uppercase letters work in the same way: "Z" becomes "A". Lowercase and uppercase letters
never mix.

 'AA'.succ # => "AB"
 'AZ'.succ # => "BA"
 'ZZ'.succ # => "AAA"
 'aZ'.succ # => "bA"
 'Zz'.succ # => "AAa"

Digits in a string are treated as numbers, and wrap around from 9 to 0, just like a car
odometer.

 'foo19'.succ # => "foo20"
 'foo99'.succ # => "fop00"
 '99'.succ # => "100"
 '9Z99'.succ # => "10A00"

Chapter 1. Strings Page 31 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Characters other than alphanumerics are not incremented unless they are the only
characters in the string. They are simply ignored when calculating the succession, and
reproduced in the same positions in the new string. This lets you build formatting into the
strings you want to increment.

 '10-99'.succ # => "11-00"

When nonalphanumerics are the only characters in the string, they are incremented
according to ASCII order. Eventually an alphanumeric will show up, and the rules for
strings containing alphanumerics will take over.

 'a-a'.succ # => "a-b"
 'z-z'.succ # => "aa-a"
 'Hello!'.succ # => "Hellp!"
 %q{'zz'}.succ # => "'aaa'"
 %q{z'zz'}.succ # => "aa'aa'"
 '$$$$'.succ # => "$$$%"
 s = '!@-'
 13.times { puts s = s.succ }
 # !@.
 # !@/
 # !@0
 # !@1
 # !@2
 # …
 # !@8
 # !@9
 # !@10

There's no reverse version of String#succ. Matz, and the community as a whole, think
there's not enough demand for such a method to justify the work necessary to handle all
the edge cases. If you need to iterate over a succession of strings in reverse, your best bet
is to transform the range into an array and iterate over that in reverse:

 ("a".."e").to_a.reverse_each { |x| puts x }
 # e
 # d
 # c
 # b
 # a

See Also

• Recipe 2.15, "Generating a Sequence of Numbers"
• Recipe 3.4, "Iterating Over Dates"

Recipe 1.17. Matching Strings with Regular Expressions

Chapter 1. Strings Page 32 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-15#rubyckbk-CHP-2-SECT-15
http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-4#rubyckbk-CHP-3-SECT-4

Problem
You want to know whether or not a string matches a certain pattern.

Solution
You can usually describe the pattern as a regular expression. The =~ operator tests a string
against a regular expression:

 string = 'This is a 30-character string.'

 if string =~ /([0-9]+)-character/ and $1.to_i == string.length
 "Yes, there are #$1 characters in that string."
 end
 # => "Yes, there are 30 characters in that string."

You can also use Regexp#match:

 match = Regexp.compile('([0-9]+)-character').match(string)
 if match && match[1].to_i == string.length
 "Yes, there are #{match[1]} characters in that string."
 end
 # => "Yes, there are 30 characters in that string."

You can check a string against a series of regular expressions with a case statement:

 string = "123"

 case string
 when /^[a-zA-Z]+$/
 "Letters"
 when /^[0-9]+$/
 "Numbers"
 else
 "Mixed"
 end
 # => "Numbers"

Discussion
Regular expressions are a cryptic but powerful minilanguage for string matching and
substring extraction. They've been around for a long time in Unix utilities like sed, but
Perl was the first general-purpose programming language to include them. Now almost
all modern languages have support for Perl-style regular expression.

Ruby provides several ways of initializing regular expressions. The following are all
equivalent and create equivalent Regexp objects:

 /something/
 Regexp.new("something")
 Regexp.compile("something")
 %r{something}

Chapter 1. Strings Page 33 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The following modifiers are also of note.

Table 1-1.

Regexp::IGNORECASE i Makes matches case-insensitive.

Regexp::MULTILINE m
Normally, a regexp matches against a single line of a string. This will cause a regexp to treat line breaks
like any other character.

Regexp::EXTENDED x
This modifier lets you space out your regular expressions with whitespace and comments, making
them more legible.

Here's how to use these modifiers to create regular expressions:

 /something/mxi
 Regexp.new('something',
 Regexp::EXTENDED + Regexp::IGNORECASE + Regexp::MULTILINE)
 %r{something}mxi

Here's how the modifiers work:

 case_insensitive = /mangy/i
 case_insensitive =~ "I'm mangy!" # => 4
 case_insensitive =~ "Mangy Jones, at your service." # => 0

 multiline = /a.b/m
 multiline =~ "banana\nbanana" # => 5
 /a.b/ =~ "banana\nbanana" # => nil
 # But note:
 /a\nb/ =~ "banana\nbanana" # => 5

 extended = %r{ \ was # Match " was"
 \s # Match one whitespace character
 a # Match "a" }xi
 extended =~ "What was Alfred doing here?" # => 4
 extended =~ "My, that was a yummy mango." # => 8
 extended =~ "It was\n\n\na fool's errand" # => nil

See Also

• Mastering Regular Expressions by Jeffrey Friedl (O'Reilly) gives a concise
introduction to regular expressions, with many real-world examples

• RegExLib.com provides a searchable database of regular expressions (http://
regexlib.com/default.aspx)

• A Ruby-centric regular expression tutorial (http://www.regular-expressions.info/
ruby.html)

• ri Regexp
• Recipe 1.19, "Validating an Email Address"

Recipe 1.18. Replacing Multiple Patterns in a Single Pass

Chapter 1. Strings Page 34 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://regexlib.com/default.aspx
http://regexlib.com/default.aspx
http://www.regular-expressions.info/ruby.html
http://www.regular-expressions.info/ruby.html

Problem
You want to perform multiple, simultaneous search-and-replace operations on a string.

Solution
Use the Regexp.union method to aggregate the regular expressions you want to match
into one big regular expression that matches any of them. Pass the big regular expression
into String#gsub, along with a code block that takes a MatchData object. You can detect
which of your search terms actually triggered the regexp match, and choose the appropriate
replacement term:

 class String
 def mgsub(key_value_pairs=[].freeze)
 regexp_fragments = key_value_pairs.collect { |k,v| k }
 gsub(Regexp.union(*regexp_fragments)) do |match|
 key_value_pairs.detect{|k,v| k =~ match}[1]
 end
 end
 end

Here's a simple example:

 "GO HOME!".mgsub([[/.*GO/i, 'Home'], [/home/i, 'is where the heart is']])
 # => "Home is where the heart is!"

This example replaces all letters with pound signs, and all pound signs with the letter P:

 "Here is number #123".mgsub([[/[a-z]/i, '#'], [/#/, 'P']])
 # => "#### ## ###### P123"

Discussion
The naive solution is to simply string together multiple gsub calls. The following examples,
copied from the solution, show why this is often a bad idea:

 "GO HOME!".gsub(/.*GO/i, 'Home').gsub(/home/i, 'is where the heart is')
 # => "is where the heart is is where the heart is!"

 "Here is number #123".gsub(/[a-z]/i, "#").gsub(/#/, "P")
 # => "PPPP PP PPPPPP P123"

In both cases, our replacement strings turned out to match the search term of a later
gsub call. Our replacement strings were themselves subject to search-and-replace. In the
first example, the conflict can be fixed by reversing the order of the substitutions. The
second example shows a case where reversing the order won't help. You need to do all your
replacements in a single pass over the string.

Chapter 1. Strings Page 35 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The mgsub method will take a hash, but it's safer to pass in an array of key-value pairs.
This is because elements in a hash come out in no particular order, so you can't control
the order of substution. Here's a demonstration of the problem:

 "between".mgsub(/ee/ => 'AA', /e/ => 'E') # Bad code
 # => "bEtwEEn"

 "between".mgsub([[/ee/, 'AA'], [/e/, 'E']]) # Good code
 # => "bEtwAAn"

In the second example, the first substitution runs first. In the first example, it runs second
(and doesn't find anything to replace) because of a quirk of Ruby's Hash implementation.

If performance is important, you may want to rethink how you implement mgsub. The
more search and replace terms you add to the array of key-value pairs, the longer it will
take, because the detect method performs a set of regular expression checks for every
match found in the string.

See Also

• Recipe 1.17, "Matching Strings with Regular Expressions"
• Confused by the *regexp_fragments syntax in the call to Regexp.union? Take

a look at Recipe 8.11, "Accepting or Passing a Variable Number of Arguments"

Recipe 1.19. Validating an Email Address

Problem
You need to see whether an email address is valid.

Solution
Here's a sampling of valid email addresses you might encounter:

 test_addresses = [#The following are valid addresses according to RFC822.
 'joe@example.com', 'joe.bloggs@mail.example.com',
 'joe+ruby-mail@example.com', 'joe(and-mary)@example.museum',
 'joe@localhost',

Here are some invalid email addresses you might encounter:

 # Complete the list with some invalid addresses
 'joe', 'joe@', '@example.com',
 'joe@example@example.com',
 'joe and mary@example.com']

Chapter 1. Strings Page 36 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-11#rubyckbk-CHP-8-SECT-11

And here are some regular expressions that do an okay job of filtering out bad email
addresses. The first one does very basic checking for ill-formed addresses:

 valid = '[^ @]+' # Exclude characters always invalid in email addresses
 username_and_machine = /^#{valid}@#{valid}$/

 test_addresses.collect { |i| i =~ username_and_machine }
 # => [0, 0, 0, 0, 0, nil, nil, nil, nil, nil]

The second one prohibits the use of local-network addresses like "joe@localhost". Most
applications should prohibit such addresses.

 username_and_machine_with_tld = /^#{valid}@#{valid}\.#{valid}$/

 test_addresses.collect { |i| i =~ username_and_machine_with_tld }
 # => [0, 0, 0, 0, nil, nil, nil, nil, nil, nil]

However, the odds are good that you're solving the wrong problem.

Discussion
Most email address validation is done with naive regular expressions like the ones given
above. Unfortunately, these regular expressions are usually written too strictly, and reject
many email addresses. This is a common source of frustration for people with unusual
email addresses like joe(and-mary)@example.museum, or people taking advantage of
special features of email, as in joe+ruby-mail@example.com. The regular expressions
given above err on the opposite side: they'll accept some syntactically invalid email
addresses, but they won't reject valid addresses.

Why not give a simple regular expression that always works? Because there's no such thing.
The definition of the syntax is anything but simple. Perl hacker Paul Warren defined an
6343-character regular expression for Perl's Mail::RFC822::Address module, and even it
needs some preprocessing to accept absolutely every allowable email address. Warren's
regular expression will work unaltered in Ruby, but if you really want it, you should go
online and find it, because it would be foolish to try to type it in.

Check validity, not correctness
Even given a regular expression or other tool that infallibly separates the RFC822
compliant email addresses from the others, you can't check the validity of an email address
just by looking at it; you can only check its syntactic correctness.

It's easy to mistype your username or domain name, giving out a perfectly valid email
address that belongs to someone else. It's trivial for a malicious user to make up a valid
email address that doesn't work at all—I did it earlier with the joe@example.com
nonsense. !@ is a valid email address according to the regexp test, but no one in this
universe uses it. You can't even compare the top-level domain of an address against a static

Chapter 1. Strings Page 37 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mailto:joe(and-mary)@example.museum
mailto:joe+ruby-mail@example.com
mailto:joe@example.com

list, because new top-level domains are always being added. Syntactic validation of email
addresses is an enormous amount of work that only solves a small portion of the problem.

The only way to be certain that an email address is valid is to successfully send email to it.
The only way to be certain that an email address is the right one is to send email to it and
get the recipient to respond. You need to weigh this additional work (yours and the user's)
against the real value of a verified email address.

It used to be that a user's email address was closely associated with their online identity:
most people had only the email address their ISP gave them. Thanks to today's free web-
based email, that's no longer true. Email verification no longer works to prevent duplicate
accounts or to stop antisocial behavior online—if it ever did.

This is not to say that it's never useful to have a user's working email address, or that there's
no problem if people mistype their email addresses. To improve the quality of the addresses
your users enter, without rejecting valid addresses, you can do three things beyond
verifying with the permissive regular expressions given above:

1. Use a second naive regular expression, more restrictive than the ones given above,
but don't prohibit addresses that don't match. Only use the second regular expression
to advise the user that they may have mistyped their email address. This is not as
useful as it seems, because most typos involve changing one letter for another, rather
than introducing nonalphanumerics where they don't belong.

 def probably_valid?(email)
 valid = '[A-Za-z\d.+-]+' #Commonly encountered email address characters
 (email =~ /#{valid}@#{valid}\.#{valid}/) == 0
 end

 #These give the correct result.
 probably_valid? 'joe@example.com' # => true
 probably_valid? 'joe+ruby-mail@example.com' # => true
 probably_valid? 'joe.bloggs@mail.example.com' # => true
 probably_valid? 'joe@examplecom' # => false
 probably_valid? 'joe+ruby-mail@example.com' # => true
 probably_valid? 'joe@localhost' # => false

 # This address is valid, but probably_valid thinks it's not.
 probably_valid? 'joe(and-mary)@example.museum' # => false

 # This address is valid, but certainly wrong.
 probably_valid? 'joe@example.cpm' # => true

2. Extract from the alleged email address the hostname (the "example.com" of
joe@example.com), and do a DNS lookup to see if that hostname accepts email. A
hostname that has an MX DNS record is set up to receive mail. The following code
will catch most domain name misspellings, but it won't catch any username

Chapter 1. Strings Page 38 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mailto:joe@example.com

misspellings. It's also not guaranteed to parse the hostname correctly, again because
of the complexity of RFC822.

 require 'resolv'
 def valid_email_host?(email)
 hostname = email[(email =~ /@/)+1..email.length]
 valid = true
 begin
 Resolv::DNS.new.getresource(hostname, Resolv::DNS::Resource::IN::MX)
 rescue Resolv::ResolvError
 valid = false
 end
 return valid
 end

 #example.com is a real domain, but it won't accept mail
 valid_email_host?('joe@example.com') # => false

 #lcqkxjvoem.mil is not a real domain.
 valid_email_host?('joe@lcqkxjvoem.mil') # => false

 #oreilly.com exists and accepts mail, though there might not be a 'joe' there.
 valid_email_host?('joe@oreilly.com') # => true

3. Send email to the address the user input, and ask the user to verify receipt. For
instance, the email might contain a verification URL for the user to click on. This is
the only way to guarantee that the user entered a valid email address that they control.
See Recipes 14.5 and 15.19 for this.

This is overkill much of the time. It requires that you add special workflow to your
application, it significantly raises the barriers to use of your application, and it won't
always work. Some users have spam filters that will treat your test mail as junk, or
whitelist email systems that reject all email from unknown sources. Unless you really
need a user's working email address for your application to work, very simple email
validation should suffice.

See Also

• Recipe 14.5, "Sending Mail"
• Recipe 15.19, "Sending Mail with Rails"
• See the amazing colossal regular expression for email addresses at http://www.ex-

parrot.com/~pdw/Mail-RFC822-Address.html

Recipe 1.20. Classifying Text with a Bayesian Analyzer

Chapter 1. Strings Page 39 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-5#rubyckbk-CHP-14-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-19#rubyckbk-CHP-15-SECT-19
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-5#rubyckbk-CHP-14-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-15-SECT-19#rubyckbk-CHP-15-SECT-19
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html
http://www.ex-parrot.com/~pdw/Mail-RFC822-Address.html

Problem
You want to classify chunks of text by example: an email message is either spam or not
spam, a joke is either funny or not funny, and so on.

Solution
Use Lucas Carlson's Classifier library, available as the classifier gem. It provides
a naive Bayesian classifier, and one that implements Latent Semantic Indexing, a more
advanced technique.

The interface for the naive Bayesian classifier is very straightforward. You create a
Classifier::Bayes object with some classifications, and train it on text chunks whose
classification is known:

 require 'rubygems'
 require 'classifier'

 classifier = Classifier::Bayes.new('Spam', 'Not spam')

 classifier.train_spam 'are you in the market for viagra? we sell viagra'
 classifier.train_not_spam 'hi there, are we still on for lunch?'

You can then feed the classifier text chunks whose classification is unknown, and have it
guess:

 classifier.classify "we sell the cheapest viagra on the market"
 # => "Spam"
 classifier.classify "lunch sounds great"
 # => "Not spam"

Discussion
Bayesian analysis is based on probablities. When you train the classifier, you are giving it
a set of words and the classifier keeps track of how often words show up in each category.
In the simple spam filter built in the Solution, the frequency hash looks like the
@categories variable below:

 classifier
 # => #<Classifier::Bayes:0xb7cec7c8
 # @categories={:"Not spam"=>
 # { :lunch=>1, :for=>1, :there=>1,
 # :"?"=>1, :still=>1, :","=>1 },
 # :Spam=>
 # { :market=>1, :for=>1, :viagra=>2, :"?"=>1, :sell=>1 }
 # },
 # @total_words=12>

These hashes are used to build probability calculations. Note that since we mentioned the
word "viagra" twice in spam messages, there is a 2 in the "Spam" frequency hash for that

Chapter 1. Strings Page 40 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

word. That makes it more spam-like than other words like "for" (which also shows up in
nonspam) or "sell" (which only shows up once in spam). The classifier can apply these
probabilities to previously unseen text and guess at a classification for it.

The more text you use to train the classifier, the better it becomes at guessing. If you can
verify the classifier's guesses (for instance, by asking the user whether a message really
was spam), you should use that information to train the classifier with new data as it comes
in.

To save the state of the classifier for later use, you can use Madeleine persistence (Recipe
13.3), which writes the state of your classifier to your hard drive.

A few more notes about this type of classifier. A Bayesian classifier supports as many
categories as you want. "Spam" and "Not spam" are the most common, but you are not
limited to two. You can also use the generic train method instead of calling
train_[category_name]. Here's a classifier that has three categories and uses the
generic train method:

 classifier = Classifier::Bayes.new('Interesting', 'Funny', 'Dramatic')

 classifier.train 'Interesting', "Leaving reminds us of what we can part
 with and what we can't, then offers us something new to look forward
 to, to dream about."
 classifier.train 'Funny', "Knock knock. Who's there? Boo boo. Boo boo
 who? Don't cry, it is only a joke."
 classifier.train 'Dramatic', 'I love you! I hate you! Get out right
 now.'

 classifier.classify 'what!'
 # => "Dramatic"
 classifier.classify "who's on first?"
 # => "Funny"
 classifier.classify 'perchance to dream'
 # => "Interesting"

It's also possible to "untrain" a category if you make a mistake or change your mind later.

 classifier.untrain_funny "boo"
 classifier.untrain "Dramatic", "out"

See Also

• Recipe 13.3, "Persisting Objects with Madeleine"
• The README file for the Classifier library has an example of an LSI classifier
• Bishop (http://bishop.rubyforge.org/) is another Bayesian classifier, a port of

Python's Reverend; it's available as the bishop gem
• http://en.wikipedia.org/wiki/Naive_Bayes_classifier
• http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

Chapter 1. Strings Page 41 Return to Table of Contents

Chapter 1. Strings
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-3#rubyckbk-CHP-13-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-3#rubyckbk-CHP-13-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-13#rubyckbk-CHP-13-SECT-13
http://bishop.rubyforge.org/
http://en.wikipedia.org/wiki/Naive_Bayes_classifier
http://en.wikipedia.org/wiki/Latent_Semantic_Analysis

	Strings
	Building a String from Parts
	Substituting Variables into Strings
	Substituting Variables into an Existing String
	Reversing a String by Words or Characters
	Representing Unprintable Characters
	Converting Between Characters and Values
	Converting Between Strings and Symbols
	Processing a String One Character at a Time
	Processing a String One Word at a Time
	Changing the Case of a String
	Managing Whitespace
	Testing Whether an Object Is String-Like
	Getting the Parts of a String You Want
	Handling International Encodings
	Word-Wrapping Lines of Text
	Generating a Succession of Strings
	Matching Strings with Regular Expressions
	Replacing Multiple Patterns in a Single Pass
	Validating an Email Address
	Classifying Text with a Bayesian Analyzer

