
Table of Contents

Web Development: Ruby on Rails.. 1
Writing a Simple Rails Application to Show System Status... 3
Passing Data from the Controller to the View.. 7
Creating a Layout for Your Header and Footer.. 9
Redirecting to a Different Location... 12
Displaying Templates with Render... 14
Integrating a Database with Your Rails Application... 17
Understanding Pluralization Rules.. 20
Creating a Login System... 22
Storing Hashed User Passwords in the Database.. 26
Escaping HTML and JavaScript for Display.. 28
Setting and Retrieving Session Information.. 29
Setting and Retrieving Cookies... 32
Extracting Code into Helper Functions.. 34
Refactoring the View into Partial Snippets of Views.. 36
Adding DHTML Effects with script.aculo.us.. 39
Generating Forms for Manipulating Model Objects.. 42
Creating an Ajax Form.. 46
Exposing Web Services on Your Web Site.. 49
Sending Mail with Rails... 51
Automatically Sending Error Messages to Your Email.. 54
Documenting Your Web Site... 56
Unit Testing Your Web Site... 57
Using breakpoint in Your Web Application... 60

Chapter 15. Web Development: Ruby on Rails

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

15. Web Development: Ruby on Rails
Ruby on Rails is unquestionably Ruby's killer app. It can take a lot of credit for lifting Ruby
from obscurity outside its native Japan. No other programming language can boast a
simple web application framework that also has almost all of that language's developer
mindshare.[1] This chapter demonstrates the principles underlying basic Rails usage (in
recipes like Recipe 15.6), gives Rails implementations of common web application patterns
(Recipes 15.4 and 15.8) and shows how to use standard Ruby tools from within Rails
(Recipes 15.22 and 15.23).

[1] Python, for instance, has several excellent web application frameworks, but that's just the problem. It has several, and a powerful community is fractured on the
issue of which to use. Ruby has no major web application frameworks apart from Rails. In a sense, Ruby's former obscurity is what made the dominance of Rails possible.

Despite its quality and popularity, Rails does not bring anything new to web development.
Its foundations are in standard programming patterns like ActiveRecord and Model-View-
Controller. It reuses many preexisting Ruby libraries (like Rake and ERb). The power of
Rails is in combining these standard techniques with a ruthless dedication to automating
menial tasks, and to asserting resonable default behaviors.

If Rails has a secret, it's the power of naming conventions. The vast majority of web
applications are CRUD applications: create, read, update, and delete information from a
database. In these types of applications, Rails shines. You start with a database schema
and with almost no code, but Rails ties together many pieces with naming conventions and
shortcuts. This lets you put meat on your application very quickly.

Because so many settings and names can be sensibly derived from other pieces of
information, Rails has much less "paperwork" than other frameworks. Data that's implicit
in the code or the database schema doesn't need to be specified anywhere else. An essential
part of this system is the ActiveSupport system for pluralizing nouns (Recipe 15.7).

Where naming conventions can't do the job, Rails uses decorator methods to declare
relationships between objects. This happens within the Ruby classes affected by those
relationships, not in a bloated XML configuration file. The result is a smaller, simpler to
understand, and more flexible application.

As mentioned above, Rails is built on top of common Ruby libraries, and many of them
are also covered elsewhere in this book. These libraries include ActiveRecord (much of
Chapter 13, but especially Recipe 13.11), ActionMailer (Recipe 14.5), ERb (Recipe 1.3), Rake
(Chapter 19), and Test::Unit (Recipe 17.7). Some of these predate Rails, and some were
written for Rails but can be used outside of it. The opposite is also true: since a Rails

Chapter 15. Web Development: Ruby on Rails Page 1 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13#rubyckbk-CHP-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-11#rubyckbk-CHP-13-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-5#rubyckbk-CHP-14-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19#rubyckbk-CHP-19
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-7#rubyckbk-CHP-17-SECT-7

application can be used for many purposes, nearly every recipe in this book is useful within
a Rails program.

Rails is available as the rails gem, which contains libraries and the rails command-
line program. This is the program you run to create a Rails application. When you invoke
this program (for instance, with rails mywebapp), Rails generates a directory structure
for your web application, complete with a WEBrick testing server and unit testing
framework. When you use the script/generate script to jumpstart the creation of your
application, Rails will populate this directory structure with more files. The code generated
by these scripts is minimal and equivalent to the code generated by most IDEs when
starting a project.

The architecture of Rails is the popular Model-View-Controller architecture. This divides
the web application into three predictably named parts. We'll cover them in detail
throughout this chapter, but here's an introductory reference.

The model is a representation of the dataset used by the application. This is usually a set
of Ruby classes, subclasses of ActiveRecord::Base, each corresponding to a table in
the application database. The first serious model in this chapter shows up in Recipe 15.6.
To generate a model for a certain database table, invoke script/generate model with
the name of the table, like so:

 $ script/generate model users

This creates a file called app/models/users.rb, which defines a User ActiveRecord class
as well as the basic structure to unit test that model. It does not create the actual database
table.

The controller is a Ruby class (a subclass of ActionController::Base) whose methods
define operations on the model. Each operation is defined as a method of the controller.

To generate a controller, invoke script/generate controller with the name of the
controller, and the actions you want to expose:

 $ script/generate controller user add delete login logout

This command creates a file app/controllers/user_controller.rb, which defines
a class UserController. The class defines four stub methods: add, delete,
login, and logout, each corresponding to an action the end user can perform on the
objects of the underlying User model. It also creates the template for functionally unit
testing your controller.

Chapter 15. Web Development: Ruby on Rails Page 2 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The controller shows up in the very first recipe of this chapter (Recipe 15.1).

The view is the user interface for the application. It's contained in a set of ERb templates,
stored in .rhtml files. Most importantly, there is usually one .rhtml file for each action of
each controller: this is the web interface for that particular action. The same command
that created the UserController class above also created four files in app/views/user/:
add.rhtml, delete.rhtml, login.rhtml, and logout.rhtml. As with the UserController
class, these start out as stub files; your job is to customize them to present an interface to
your application.

Like the controller, the view shows up in the first recipe of this chapter, Recipe 15.1. Recipes
like 15.3, 15.5, and 15.14 show how to customize your views.

This division is not arbitrary. If you restrict code that changes the database to the model,
it's easy to unit test that code and audit it for security problems. By moving all of your
processing code into the controller, you separate the display of the user interface from its
internal workings. The most obvious benefit of this is that you can have a UI designer
modify your view templates without making them work around a lot of Ruby code.

The best recipes for learning how Model-View-Controller works are Recipe 15.2, which
explores the relationship between the controller and the view; and Recipe 15.16, which
combines all three.

Here are some more resources for getting started with Rails:

• This book's sister publication, Rails Cookbook by Rob Orsini (O'Reilly), covers Rails
problems in more detail, as does Rails Recipes by Chad Fowler (Pragmatic
Programmers)

• Agile Web Development with Rails by Dave Thomas, David Hansson, Leon Breedt,
Mike Clark, Thomas Fuchs, and Andrea Schwarz (Pragmatic Programmers) is the
standard reference for Rails programmers

• The Ruby on Rails web site at http://www.rubyonrails.com/, especially the RDoc
documentation (http://api.rubyonrails.org/) and wiki (http://
wiki.rubyonrails.com/)

Recipe 15.1. Writing a Simple Rails Application to Show System
Status

Problem
You would like to get started with Rails by building a very simple application.

Chapter 15. Web Development: Ruby on Rails Page 3 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubyonrails.com/
http://api.rubyonrails.org/
http://wiki.rubyonrails.com/
http://wiki.rubyonrails.com/

Solution
This example displays the running processes on a Unix system. If you're developing on
Windows, you can substitute some other command (such as the output of a dir) or just
have your application print a static message.

First, make sure you have the rails gem installed.

To create a Rails application, run the rails command and pass in the name of your
application. Our application will be called "status".

 $ rails status
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 …

A Rails application needs at least two parts: a controller and a view. Our controller will
get information about the system, and our view will display it.

You can generate a controller and the corresponding view with the generate script. The
following invocation defines a controller and view that implement a single action called
index. This will be the main (and only) screen of our application.

 $ cd status
 $./script/generate controller status index
 exists app/controllers/
 exists app/helpers/
 create app/views/status
 exists test/functional/
 create app/controllers/status_controller.rb
 create test/functional/status_controller_test.rb
 create app/helpers/status_helper.rb
 create app/views/status/index.rhtml

The generated controller is in the Ruby source file app/controllers/
status_controller.rb. That file defines a class StatusController that
implements the index action as an empty method called index. Fill out the index
method so that it exposes the objects you want to use in the view:

 class StatusController < ApplicationController
 def index
 # This variable won't be accessible to the view, since it is local
 # to this method
 time = Time.now

 # These variables will be accessible in the view, since they are
 # instance variables of the StatusController.
 @time = time
 @ps = `ps aux`

Chapter 15. Web Development: Ruby on Rails Page 4 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end

The generated view is in app/views/status/index.rhtml. It starts out as a static
HTML snippet. Change it to an ERb template that uses the instance variables set in
StatusController#index:

 <h1>Processes running at <%= @time %></h1>
 <pre><%= @ps %></pre>

Now our application is complete. To run it, start up the Rails server with the following
command:

 $./script/server
 => Booting WEBrick…
 => Rails application started on http://0.0.0.0:3000
 => Ctrl-C to shutdown server; call with --help for options
 …

You can see the application by visiting http://localhost:3000/status/.

Of course, you wouldn't expose this application to the outside world because it might give
an attacker information about your system.

Discussion
The first thing you should notice about a Rails application is that you do not create separate
code files for every URL. Rails uses an architecture in which the controller (a Ruby source
file) and a view (an ERb template in an .rhtml file) team up to serve a number of
actions. Each action handles some of the URLs on your site.

Consider a URL like http://www.example.com/hello/world. To serve that URL in your
Rails application, you'd create a hello controller and give it an action called world.

 $./script/generate controller hello world

Your controller class would have a world method, and your views/hello directory would
have a world.rhtml file containing the view.

 class HelloController < ApplicationController
 def world
 end
 end

Chapter 15. Web Development: Ruby on Rails Page 5 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.example.com/hello/world

Visiting http://www.example.com/hello/world would invoke the
HelloController#world method, interpret the world.rhtml template to obtain some
HTML output, and serve that output to the client.

The default action for a controller is index, just as the default page in a directory of a static
web server is index.html. So visiting http://www.example.com/hello/ is the same as
visiting http://www.example.com/hello/index/.

As mentioned above, a view file is only the main snippet of the final page served by Rails.
It's not a full HTML page, and you should never put <html> or <body> tags inside it (see
Recipe 15.3). Since a view file is an ERB template, you should also never call puts or print
inside a view. ERB was introduced in Recipe 1.3, but it's worth exploring here within the
context of a Rails application.

To insert the value of a Ruby expression into an ERB template, use the <%= %> directive.
Here's a possible world.rhtml view for our hello action:

 <p>Several increasingly silly ways of displaying "Hello world!":</p>

 <p><%= "Hello world!" %></p>
 <p><%= "Hello" + "world!" %></p>
 <p><%= w = "world"
 "Hello #{w}!" %></p>
 <p><%= 'H' + ?e.chr + ('l' * 2) %><%=('o word!').gsub('d', 'ld')%></p>

The last example is excessive, but it proves a point. You shouldn't have to put so much
Ruby code in your view template (it should probably go into your controller, or you'll end
up with sloppy PHP-like code), but it's possible if you need to do it.

The equals sign in the ERb directive means that the output is to be printed. If you want to
execute a command without output, omit the equals sign and use the <% %> directive.

 <% hello = "Hello" %>
 <% world = "world!" %>
 <%= hello %> <%= world %>

A view and a controller may be based on nothing more than some data obtained from
within Ruby code (like the current time and the output of ps aux). But most real-world
views and controllers are based on a model: a set of database tables containing data that
the view displays and the controller manipulates. This is the famous "Model-View-
Controller" architecture, and it's by no means unique to Rails.

See Also

• Recipe 1.3, "Substituting Variables into an Existing String," has more on ERB
• Recipe 15.3, "Creating a Layout for Your Header and Footer"

Chapter 15. Web Development: Ruby on Rails Page 6 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.example.com/hello/world
http://www.example.com/hello/
http://www.example.com/hello/index/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3

Recipe 15.2. Passing Data from the Controller to the View

Problem
You want to pass data between a controller and its views.

Solution
The view is an ERB template that is interpreted within the context of its controller object.
A view cannot call any of the controller's methods, but it can access the controller's instance
variables. To pass data to the view, set an instance variable of the controller.

Here's a NovelController class, to be put into app/controllers/
novel_controller.rb. You can generate stubs for it by running script/generate
controller novel index.

 class NovelController < ApplicationController
 def index
 @title = 'Shattered View: A Novel on Rails'
 one_plus_one = 1 + 1
 increment_counter one_plus_one
 end

 def helper_method
 @help_message = "I see you've come to me for help."
 end

 private

 def increment_counter(by)
 @counter ||= 0
 @counter += by
 end
 end

Since this is the Novel controller and the index action, the corresponding view is in app/
views/novel/index.rhtml.

 <h1><%= @title %></h1>

 <p>I looked up, but saw only the number <%= @counter %>.</p>

 <p>"What are you doing here?" I asked sharply. "Was it <%=
 @counter.succ %> who sent you?"</p>

The view is interpreted after NovelController#index is run. Here's what the view can
and can't access:

Chapter 15. Web Development: Ruby on Rails Page 7 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• It can access the instance variables @title and @counter, because they've been
defined on the NovelController object by the time NovelController#index
finishes running.

• It can call instance methods of the instance variables @title and @counter.
• It cannot access the instance variable @help_message, because that variable is

defined by the method helper_method, which never gets called.
• It cannot access the variable one_plus_one, because that's not an instance variable:

it's local to the index method.
• Even though it runs in the context of NovelController, it cannot call any method of
NovelController—neither helper_method nor set_another_variable. Nor
can it call index again.

Discussion
The action method of a controller is responsible for creating and storing (in instance
variables) all the objects the view will need to do its job. These variables might be as simple
as strings, or they might be complex helper classes. Either way, most of your application's
logic should be in the controller. It's okay to do things in the view like iterate over data
structures, but most of the work should happen in the controller or in one of the objects it
exposes through an instance variable.

Rails instantiates a new NovelController object for every request. This means you can't
persist data between requests by putting it in controller instance variables. No matter how
many times you reload the page, the @counter variable will never be more than two. Every
time increment_counter is called, it's called on a brand new NovelController
object.

Like any Ruby class, a Rails controller can define class variables and constants, but they
will not be available to the view. Consider a NovelController that looks like this:

 class NovelController < ApplicationController
 @@numbers = [1, 2, 3]
 TITLE = 'Revenge of the Counting Numbers'
 end

Neither @@numbers nor TITLE are accessible from within any of this controller's views.
They can only be used by the controller methods.

However, contants defined outside of the context of a controller are accessible to every
view. This is useful if you want to declare the web site's name in one easy-to-change
location. The config/environment.rb file is a good place to define these constants:

 # config/environment.rb

Chapter 15. Web Development: Ruby on Rails Page 8 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 AUTHOR = 'Lucas Carlson'
 …

It is almost always a bad idea to use global variables in object-oriented programming. But
Ruby does have them, and a global variable will be available to any view once it's been
defined. They will be universally available whether they were defined within the scope of
the action, the controller, or outside of any scope.

 $one = 1
 class NovelController < ApplicationController
 $two = 2
 def sequel
 $three = 3
 end
 end

Here's a view, sequel.rhtml, that uses those three global variables:

 Here they come, the counting numbers, <%= $one %>, <%= $two %>, <%= $three %>.

Recipe 15.3. Creating a Layout for Your Header and Footer

Problem
You want to create a header and footer for every page on your web application. Certain
pages should have special headers and footers, and you may want to dynamically
determine which header and footer to use for a given request.

Solution
Many web applications let you define header and footer files, and automatically include
those files at the top and bottom of every page. Rails inverts this pattern. A single file called
contains both the header and footer, and the contents of each particular page are inserted
into this file.

To apply a layout to every page in your web application, create a file called app/views/
layouts/application.rhtml. It should look something like this:

 <html>
 <head>
 <title>My Website</title>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
 </html>

Chapter 15. Web Development: Ruby on Rails Page 9 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The key piece of information in any layout file is the directive <%=
content_for_layout %>. This is replaced by the content of each individual page.

You can make customized layouts for each controller independently by creating files in the
app/views/layouts folder. For example, app/views/layouts/status.rhtml is the layout for
the status controller, StatusController. The layout file for PriceController
would be price.rhtml.

Customized layouts override the site-wide layout; they don't add to it.

Discussion
Just like your main view templates, your layout templates have access to all the instance
variables set by the action. Anything you can do in a view, you can do in a layout template.
This means you can do things like set the page title dynamically in the action, and then use
it in the layout:

 class StatusController < ActionController:Base
 def index
 @title = "System Status"
 end
 end

Now the application.rhtml file can access @title like this:

 <html>
 <head>
 <title>My Website - <%= @title %></title>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
 </html>

application.rhtml doesn't just happen to be the default layout template for a Rails
application's controllers. It happens this way because every controller inherits from
ApplicationController. By default, a layout's name is derived from the name of the
controller's class. So ApplicationController turns into application.rhtml. If
you had a controller named MyFunkyController, the default filename for the layout
would be app/views/layouts/my_funky.rhtml. If that file didn't exist, Rails would
look for a layout corresponding to the superclass of MyFunkyController, and find it in
app/views/layouts/application.rhtml.

To change a controller's layout file, call its layout method:

 class FooController < ActionController:Base
 # Force the layout for /foo to be app/views/layouts/bar.rhtml,
 # not app/view/layouts/foo.rhtml.

Chapter 15. Web Development: Ruby on Rails Page 10 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 layout 'bar'
 end

If you're using the render method in one of your actions (see Recipe 15.5), you can pass
in a :layout argument to render and give that action a different layout from the rest of
the controller. In this example, most actions of the FooController use bar.rhtml for
their layout, but the count action uses count.rhtml:

 class FooController < ActionController:Base
 layout 'bar'

 def count
 @data = [1,2,3]
 render :layout => 'count'
 end
 end

You can even have an action without a layout. This code gives all of FooController's
actions a layout of bar.html, except for the count action, which has no layout at all: it's
responsible for all of its own HTML.

 class FooController < ActionController:Base
 layout 'bar', :except => 'count'
 end

If you need to calculate the layout file dynamically, pass a method symbol into the layout
method. This tells layout to call a method on each request; the return value of this method
defines the layout file. The method can call action_name to determine the action name
of the current request.

 class FooController < ActionController:Base
 layout :figure_out_layout

 private

 def figure_out_layout
 if action_name =~ /pretty/
 'pretty' # use pretty.rhtml for the layout
 else
 'standard' # use standard.rhtml
 end
 end
 end

Finally, layout accepts a lambda function as an argument. This lets you dynamically
decide on a layout with less code:

 class FooController < ActionController:Base
 layout lambda { |controller| controller.logged_in? ? 'user' : 'guest' }
 end

Chapter 15. Web Development: Ruby on Rails Page 11 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It's freeing for both the programmer and the designer to use a layout file instead of separate
headers and footers: it's easier to see the whole picture. But if you need to use explicit
headers and footers, you can. Create files called app/views/layouts/_
header.rhtml and app/views/layouts/_footer.rhtml. The underscores
indicate that they are "partials" (see Recipe 15.14). To use them, set your actions up to use
no layout at all, and write the following code in your view files:

 <%= render :partial => 'layouts/header' %>
 … your view's content goes here …
 <%= render :partial => 'layouts/footer' %>

See Also

• Recipe 15.5, "Displaying Templates with Render"
• Recipe 15.14, "Refactoring the View into Partial Snippets of Views"

Recipe 15.4. Redirecting to a Different Location

Problem
You want to redirect your user to another of your application's actions, or to an external
URL.

Solution
The class ActionController::Base (superclass of ApplicationController)
defines a method called redirect_to, which performs an HTTP redirect. To redirect to
another site, you can pass it a URL as a string. To redirect to a different action in your
application, pass it a hash that specifies the controller, action, and ID.

Here's a BureaucracyController that shuffles incoming requests to and fro between
various actions, finally sending the client to an external site:

 class BureaucracyController < ApplicationController
 def index
 redirect_to :controller => 'bureaucracy', :action => 'reservation_window'
 end

 def reservation_window
 redirect_to :action => 'claim_your_form', :id => 123
 end

 def claim_your_form
 redirect_to :action => 'fill_out_your_form', :id => params[:id]
 end

 def fill_out_your_form
 redirect_to :action => 'form_processing'
 end

Chapter 15. Web Development: Ruby on Rails Page 12 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def form_processing
 redirect_to "http://www.dmv.org/"
 end
 end

If you run the Rails server and hit http://localhost:3000/bureaucracy/ in your browser,
you'll end up at http://www.dmv.org/. The Rails server log will show the chain of HTTP
requests you made to get there:

 "GET /bureaucracy HTTP/1.1" 302
 "GET /bureaucracy/reservation_window HTTP/1.1" 302
 "GET /bureaucracy/claim_your_form/123 HTTP/1.1" 302
 "GET /bureaucracy/fill_out_your_form/123 HTTP/1.1" 302
 "GET /bureaucracy/form_processing HTTP/1.1" 302

You don't need to create view templates for all of these actions, because the body of an
HTTP redirect isn't displayed by the web browser.

Discussion
The redirect_to method uses smart defaults. If you give it a hash that doesn't specify
a controller, it assumes you want to move to another action in the same controller. If you
leave out the action, it assumes you are talking about the index action.

From the simple redirects given in the Solution, you might think that calling
redirect_to actually stops the action method in place and does an immediate HTTP
redirect. This is not true. The action method continues to run until it ends or you call return.
The redirect_to method doesn't do a redirect: it tells Rails to do a redirect once the
action method has finished running.

Here's an illustration of the problem. You might think that the call to redirect_to below
prevents the method do_something_dangerous from being called.

 class DangerController < ApplicationController
 def index
 redirect_to (:action => 'safety') unless params[:i_like_danger]
 do_something_dangerous
 end

 # …
 end

But it doesn't. The only way to stop an action method from running all the way to the end
is to call return.[2] What you really want to do is this:

[2] You could throw an exception, but then your redirect wouldn't happen: the user would see an exception screen instead.

 class DangerController < ApplicationController
 def index
 redirect_to (:action => 'safety') and return unless params[:i_like_danger]

Chapter 15. Web Development: Ruby on Rails Page 13 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.dmv.org/

 do_something_dangerous
 end
 end

Notice the and return at the end of redirect_to. It's very rare that you'll want to
execute code after telling Rails to redirect the user to another page. To avoid problems,
make a habit of adding and return at the end of calls to redirect_to or render.

See Also

• The generated RDoc for the methods
ApplicationController::Base#redirect_to and
ApplicationController::Base#url_for

Recipe 15.5. Displaying Templates with Render

Problem
Rails's default mapping of one action method to one view template is not flexible enough
for you. You want to customize the template that gets rendered for a particular action by
calling Rails's rendering code directly.

Solution
Rendering happens in the ActionController::Base#render method. Rails's default
behavior is to call render after the action method runs, mapping the action to a
corresponding view template. The foo action gets mapped to the foo.rhtml template.

You can call render from within an action method to make Rails render a different
template. This controller defines two actions, both of which are rendered using the
shopping_list.rhtml template:

 class ListController < ApplicationController
 def index
 @list = ['papaya', 'polio vaccine']
 render :action => 'shopping_list'
 end

 def shopping_list
 @list = ['cotton balls', 'amino acids', 'pie']
 end
 end

By default, render assumes that you are talking about the controller and action that are
running when render is called. If you call render with no arguments, Rails will work the

Chapter 15. Web Development: Ruby on Rails Page 14 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

same way it usually does. But specifying 'shopping_list' as the view overrides this
default, and makes the index action use the shopping_list.rhtml template, just like
the shopping_list action does.

Discussion
Although they use the same template, visiting the index action is not the same as visiting
the shopping_list action. They display different lists, because index defines a different
list from shopping_list.

Recall from Recipe 15.4 that the redirect method doesn't perform an immediate HTTP
redirect. It tells Rails to do a redirect once the current action method finishes running.
Similarly, the render method doesn't do the rendering immediately. It only tells Rails
which template to render when the action is complete.

Consider this example:

 class ListController < ApplicationController
 def index
 render :action => 'shopping_list'
 @budget = 87.50
 end

 def shopping_list
 @list = ['lizard food', 'baking soda']
 end
 end

You might think that calling index sets @list but not @budget. Actually, the reverse is
true. Calling index sets @budget but not @list.

The @budget variable gets set because render does not stop the execution of the current
action. Calling render is like sealing a message in an envelope that gets opened by Rails
at some point in the future. You're still free to set instance variables and make other method
calls. Once your action method returns, Rails will open the envelope and use the rendering
strategy contained within.

The @list variable does not get set because the render call does not call the
shopping_list action. It just makes the existing action, index, use the
shopping_list.rhtml template instead of the index.rhtml template. There doesn't
even need to be a shopping_list action: there just has to be a template named
shopping_list.rhtml.

If you do want to invoke one action from another, you can invoke the action method
explicitly. This code will make index set both @budget and @list:

Chapter 15. Web Development: Ruby on Rails Page 15 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class ListController < ApplicationController
 def index
 shopping_list and render :action => 'shopping_list'
 @budget = 87.50
 end
 end

Another consequence of this "envelope" behavior is that you must never call render twice
within a single client request (the same goes for render's cousin redirect_to, which
also seals a message in an envelope).

If you write code like the following, Rails will complain. You're giving it two sealed
envelopes, and it doesn't know which to open:

 class ListController < ApplicationController
 def plain_and_fancy
 render :action => 'plain_list'
 render :action => 'fancy_list'
 end
 end

But the following code is fine, because any given request will only trigger one branch of the
if/else clause. Whatever happens, render will only be called once per request.

 class ListController < ApplicationController
 def plain_or_fancy
 if params[:fancy]
 render :action => 'fancy_list'
 else
 render :action => 'plain_list'
 end
 end
 end

With redirect_to, if you want to force your action method to stop running, you can put a
return statement immediately after your call to render. This code does not set the
@budget variable, because execution never gets past the return statement:

 class ListController < ApplicationController
 def index
 render :action => 'shopping_list' and return
 @budget = 87.50 # This line won't be run.
 end
 end

See Also

• Recipe 15.4, "Redirecting to a Different Location"
• Recipe 15.14, "Refactoring the View into Partial Snippets of Views," shows examples

of calling render within a view template

Chapter 15. Web Development: Ruby on Rails Page 16 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 15.6. Integrating a Database with Your Rails Application

Problem
You want your web application to store persistent data in a relational database.

Solution
The hardest part is setting things up: creating your database and hooking Rails up to it.
Once that's done, database access is as simple as writing Ruby code.

To tell Rails how to access your database, open your application's config/
database.yml file. Assuming your Rails application is called mywebapp, it should look
something like this:

 development:
 adapter: mysql
 database: mywebapp_development
 host: localhost
 username: root
 password:

 test:
 adapter: mysql
 database: mywebapp_test
 host: localhost
 username: root
 password:

 production:
 adapter: mysql
 database: mywebapp
 host: localhost
 username: root
 password:

For now, just make sure the development section contains a valid username and
password, and that it mentions the correct adapter name for your type of database (see
Chapter 13 for the list).

Now create a database table. As with so much else, Rails does a lot of the database work
automatically if you follow its conventions. You can override the conventions if necessary,
but for now it's easiest to go along with them.

The name of the table must be a pluralized noun: for instance, "people", "tasks", "items".

The table must contain an auto-incrementing primary key field called id.

For this example, use a database tool or a CREATE DATABASE SQL command to create a
mywebapp_development database (see the chapter introduction for Chapter 13 if you

Chapter 15. Web Development: Ruby on Rails Page 17 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13#rubyckbk-CHP-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13#rubyckbk-CHP-13

need help doing this). Then create a table in that database called people. Here's the SQL
to create a people table in MySQL; you can adapt it for your database.

 use mywebapp_development;

 DROP TABLE IF EXISTS 'people';
 CREATE TABLE 'people' (
 'id' INT(11) NOT NULL AUTO_INCREMENT,
 'name' VARCHAR(255),
 'email' VARCHAR(255),
 PRIMARY KEY (id)
) ENGINE=InnoDB;

Now go to the command line, change into the web application's root directory, and type ./
script/generate model Person. This generates a Ruby class that knows how to
manipulate the people table.

 $./script/generate model Person
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/person.rb
 create test/unit/person_test.rb
 create test/fixtures/people.yml

Notice that your model is named Person, even though the table was named people. If
you abide by its conventions, Rails automatically handles these pluralizations for you (see
Recipe 15.7 for details).

Your web application now has access to the people table, via the Person class. Again
from the command line, run this command:

 $./script/runner 'Person.create(:name => "John Doe", \
 :email => "john@doe.com")'

That code creates a new entry in the people table. (If you've read Recipe 13.11, you'll
recognize this as ActiveRecord code.)

To access this person from your application, create a new controller and a view to go along
with it:

 $./script/generate controller people list
 exists app/controllers/
 exists app/helpers/
 create app/views/people
 exists test/functional/
 create app/controllers/people_controller.rb
 create test/functional/people_controller_test.rb
 create app/helpers/people_helper.rb
 create app/views/people/list.rhtml

Chapter 15. Web Development: Ruby on Rails Page 18 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-11#rubyckbk-CHP-13-SECT-11

Edit app/view/people/list.rhtml so it looks like this:

 <!-- list.rhtml -->

 <% Person.find(:all).each do |person| %>
 Name: <%= person.name %>, Email: <%= person.email %
 >
 <% end %>

Start the Rails server, visit http://localhost:3000/people/list/, and you'll see John Doe
listed.

The Person model class is accessible from all parts of your Rails application: your
controllers, views, helpers, and mailers.

Discussion
Up until now, the applications created in these recipes have been using only controllers
and views.[3] The Person class, and its underlying database table, give us for the first time
the Model portion of the Model-View-Controller triangle.

[3] More precisely, our models have been embedded in our controllers, as ad hoc data structures like hardcoded shopping lists.

A relational database is usually the best place to store real-world models, but it's difficult
to program a relational database directly. Rails uses the ActiveRecord library to hide the
people table behind a Person class. Methods like Person.find let you search the
person database table without writing SQL; the results are automatically converted into
Person objects. The basics of ActiveRecord are covered in Recipe 13.11.

The Person.find method takes a lot of optional arguments. If you pass it an integer, it will
look for the person entry whose unique ID is that integer, and return an appropriate
Person object. The :all and :first symbols grab all entries from the table (an array of
Person objects), or only the first person that matches. You can limit or order your dataset
by specifying :limit or :order; you can even set raw SQL conditions
via :conditions.

Here's how to find the first five entries in the people table that have email addresses. The
result will be a list containing five Person objects, ordered by their name fields.

 Person.find(:all,
 :limit => 5,
 :order => 'name',
 :conditions => 'email IS NOT NULL')

The three different sections of config/database.yml specify the three different
databases used at different times by your Rails application:

Chapter 15. Web Development: Ruby on Rails Page 19 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-11#rubyckbk-CHP-13-SECT-11

Development database

The database you use when working on the application. Generally filled with test data.

Test database

A scratch database used by the unit testing framework when running tests for your
application. Its data is populated automatically by the unit testing framework.

Production database

The database mode to use when your web site is running with live data.

Unless you explicitly setup Rails to run in production or test mode, it defaults to
development mode. So to get started, you only need to make sure the development
portion of database.yml is set up correctly.

See Also

• Chapter 13
• Recipe 13.11, "Using Object Relational Mapping with ActiveRecord"
• Recipe 13.13, "Building Queries Programmatically"
• Recipe 13.14, "Validating Data with ActiveRecord"
• ActiveRecord can't do everything that SQL can. For complex database operations,

you'll need to use DBI or one of the Ruby bindings to specific kinds of database; these
topics too are covered in Recipe 13.15, "Preventing SQL Injection Attacks," which gives
more on the format of the database.yml file

Recipe 15.7. Understanding Pluralization Rules

Problem
You want to understand and customize Rails's rules for automatically pluralizing nouns.

Solution
You can use Rails' pluralization functionality in any part of your application, but
ActiveRecord is the only major part of Rails that does pluralization automatically.
ActiveRecord generally expects table names to be pluralized noun phrases and the
corresponding model classes to be singular versions of the same noun phrases.

Chapter 15. Web Development: Ruby on Rails Page 20 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13#rubyckbk-CHP-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-11#rubyckbk-CHP-13-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-13#rubyckbk-CHP-13-SECT-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-14#rubyckbk-CHP-13-SECT-14
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-15#rubyckbk-CHP-13-SECT-15

So when you create a model class, you should always use a singular name. Rails
automatically pluralizes:

• The corresponding table name for the model
• has_many relations
• has_and_belongs_to_many relations

For example, if you create a LineItem model, the table name automatically becomes
line_items. Note also that the table name has been lowercased, and the word break
indicated by the original camelcase is now conveyed with an underscore.

If you then create an Order model, the corresponding table needs to be called orders. If
you want to describe an order that has many line items, the code would look like this:

 class Order < ActiveRecord::Base
 has_many :line_items
 end

Like the name of the table it references, the symbol used in the has_many relation is
pluralized and underscored. The same goes for the other relationships between tables, like
has_and_belongs_to_many.

Discussion
ActiveRecord pluralizes these names to make your code read more like an English
sentence: has_many :line_items can be read "has many line items". If pluralization
confuses you, you can disable it by setting
ActiveRecord::Base.pluralize_table_names to false. In Rails, the simplest way
to do this is to put the following code in config/environment.rb:

 Rails::Initializer.run do |config|
 config.active_record.pluralize_table_names = false
 end

If your application knows specific words that ActiveRecord does not know how to pluralize,
you can define your own pluralization rules by manipulating the Inflector class. Let's
say that the plural of "foo" is "fooze", and you've build an application to manage fooze. In
Rails, you can specify this transformation by putting the following code in config/
environment.rb:

 Inflector.inflections do |inflect|
 inflect.plural /^(foo)$/i, '\1ze'
 inflect.singular /^(foo)ze/i, '\1'
 end

Chapter 15. Web Development: Ruby on Rails Page 21 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this case, it's simpler to use the irregular method:

 Inflector.inflections do |inflect|
 inflect.irregular 'foo', 'fooze'
 end

If you have nouns that should never be inflected (usually because they are mass nouns, or
because their plural form is the same as their singular form), you can pass them into the
uncountable method:

 Inflector.inflections do |inflect|
 inflect.uncountable ['status', 'furniture', 'fish', 'sheep']
 end

The Inflector class is part of the activesupport gem, and you can use it outside of
ActiveRecord or Rails as a general way of pluralizing English words. Here's a stand

 require 'rubygems'
 require 'active_support/core_ext'

 'blob'.pluralize # => "blobs"
 'child'.pluralize # => "children"
 'octopus'.pluralize # => "octopi"
 'octopi'.singularize # => "octopus"
 'people'.singularize # => "person"

 'goose'.pluralize # => "gooses"
 Inflector.inflections { |i| i.irregular 'goose', 'geese' }
 'goose'.pluralize # => "geese"

 'moose'.pluralize # => "mooses"
 Inflector.inflections { |i| i.uncountable 'moose' }
 'moose'.pluralize # => "moose"

See Also

• Recipe 13.11, "Using Object Relational Mapping with ActiveRecord"

Recipe 15.8. Creating a Login System

Problem
You want your application to support a login system based on user accounts. Users will
log in with a unique username and password, as in most commercial and community web
sites.

Chapter 15. Web Development: Ruby on Rails Page 22 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-11#rubyckbk-CHP-13-SECT-11

Solution
Create a users table that contains nonnull username and password fields. The SQL to
create this table should look something like this MySQL example:

 use mywebapp_development;
 DROP TABLE IF EXISTS `users`;
 CREATE TABLE `users` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(255) NOT NULL,
 `password` VARCHAR(40) NOT NULL,
 PRIMARY KEY (`id`)
);

Enter the main directory of the application and generate a User model corresponding to
this table:

 $./script/generate model User
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb
 create test/unit/user_test.rb
 create test/fixtures/users.yml

Open the generated file app/models/user.rb and edit it to look like this:

 class User < ActiveRecord::Base
 validates_uniqueness_of :username
 validates_confirmation_of :password, :on => :create
 validates_length_of :password, :within => 5..40

 # If a user matching the credentials is found, returns the User object.
 # If no matching user is found, returns nil.
 def self.authenticate(user_info)
 find_by_username_and_password(user_info[:username],
 user_info[:password])
 end
 end

Now you've got a User class that represents a user account, and a way of validating a
username and password against the one stored in the database.

Discussion
The simple User model given in the Solution defines a method for doing username/
password validation, and some validation rules that impose limitations on the data to be
stored in the users table. These validation rules tell User to:

• Ensure that each username is unique. No two users can have the same username.
• Ensure that, whenever the password attribute is being set, the
password_confirmation attribute has the same value.

• Ensure that the value of the password attribute is between 5 and 40 characters long.

Chapter 15. Web Development: Ruby on Rails Page 23 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now let's create a controller for this model. It'll have a login action to display the login
page, a process_login action to check the username and password, and a logout
action to deauthenticate a logged-in session. So that the user accounts will actually do
something, we'll also add a my_account action:

 $./script/generate controller user login process_login logout my_account
 exists app/controllers/
 exists app/helpers/
 create app/views/user
 exists test/functional/
 create app/controllers/user_controller.rb
 create test/functional/user_controller_test.rb
 create app/helpers/user_helper.rb
 create app/views/user/login.rhtml
 create app/views/user/process_login.rhtml
 create app/views/user/logout.rhtml

Edit app/controllers/user_controller.rb to define the three actions:

 class UserController < ApplicationController
 def login
 @user = User.new
 @user.username = params[:username]
 end

 def process_login
 if user = User.authenticate(params[:user])
 session[:id] = user.id # Remember the user's id during this session
 redirect_to session[:return_to] || '/'
 else
 flash[:error] = 'Invalid login.'
 redirect_to :action => 'login', :username => params[:user][:username]
 end
 end

 def logout
 reset_session
 flash[:message] = 'Logged out.'
 redirect_to :action => 'login'
 end

 def my_account
 end
 end

Now for the views. The process_login and logout actions just redirect to other actions,
so we only need views for login and my_account. Here's a view for login:

 <!-- app/views/user/login.rhtml -->
 <% if @flash[:message] %><div><%= @flash[:message] %></div><% end %>
 <% if @flash[:error] %><div><%= @flash[:error] %></div><% end %>

 <%= form_tag :action => 'process_login' %>
 Username: <%= text_field "user", "username" %>

 Password: <%= password_field "user", "password" %>

 <%= submit_tag %>
 <%= end_form_tag %>

Chapter 15. Web Development: Ruby on Rails Page 24 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The @flash instance variable is a hashlike object used to store temporary messages for
the user between actions. When the logout action sets flash[:message] and redirects
to login, or process_login sets flash[:error] and redirects to login, the results
are available to the view of the login action. Then they get cleared out.

Here's a very simple view for my_account:

 <!-- app/views/user/my_account.rhtml -->
 <h1>Account Info</h1>

 <p>Your username is <%= User.find(session[:id]).username %>

Create an entry in the users table, start the server, and you'll find that you can log in from
http://localhost:3000/user/login, and view your account information from http://
localhost:3000/user/my_account.

 $./script/runner 'User.create(:username => "johndoe", \
 :password => "changeme")'

There's just one missing piece: you can visit the my_account action even if you're not
logged in. We don't have a way to close off an action to unauthenticated users. Add the
following code to your app/controllers/application.rb file:

 class ApplicationController < ActionController::Base
 before_filter :set_user

 protected
 def set_user
 @user = User.find(session[:id]) if @user.nil? && session[:id]
 end

 def login_required
 return true if @user
 access_denied
 return false
 end

 def access_denied
 session[:return_to] = request.request_uri
 flash[:error] = 'Oops. You need to login before you can view that page.'
 redirect_to :controller => 'user', :action => 'login'
 end
 end

This code defines two filters, set_user and login_required, which you can apply to
actions or controllers. The set_user filter is run on every action (because we pass it into
before_filter in ApplicationController, the superclass of all our controllers).
The set_user method sets the instance variable @user if the user is logged in. Now
information about the logged-in user (if any) is available throughout your application.
Action methods and views can use this instance variable like any other. This is useful even

Chapter 15. Web Development: Ruby on Rails Page 25 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

for actions that don't require login: for instance, your main layout view might display the
name of the logged-in user (if any) on every page.

You can prohibit unauthenticated users from using a specific action or controller by
passing the symbol for the login_required method into before_filter. Here's how
to protect the my_account action defined in app/controllers/user_controller.rb:

 class UserController < ApplicationController
 before_filter :login_required, :only => :my_account
 end

Now if you try to use the my_account action without being logged in, you'll be redirected
to the login page.

See Also

• Recipe 13.14, "Validating Data with ActiveRecord"
• Recipe 15.6, "Integrating a Database with Your Rails Application"
• Recipe 15.9, "Storing Hashed User Passwords in the Database"
• Recipe 15.11, "Setting and Retrieving Session Information"
• Rather than doing this work yourself, you can install the login_generator gem

and use its login generator: it will give your application a User model and a
controller that implements a password-based authentication system; see http://
wiki.rubyonrails.com/rails/pages/LoginGenerator; also see http://
wiki.rubyonrails.com/rails/pages/AvailableGenerators for other generators
(including the more sophisticated model_security_generator)

Recipe 15.9. Storing Hashed User Passwords in the Database

Problem
The database table defined in Recipe 15.8 stores users' passwords as plain text. This is a
bad idea: if someone compromises the database, she will have all of your users' passwords.
It's best to store a secure hash of the password instead. That way, you don't have the
password (so no one can steal it), but you can verify that a user knows his password.

Solution
Recreate the users table from Recipe 15.8 so that instead of a password field, it has a
hashed_password field. Here's some MySQL code to do that:

 use mywebapp_development;
 DROP TABLE IF EXISTS `users`;

Chapter 15. Web Development: Ruby on Rails Page 26 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-14#rubyckbk-CHP-13-SECT-14
http://wiki.rubyonrails.com/rails/pages/LoginGenerator
http://wiki.rubyonrails.com/rails/pages/LoginGenerator
http://wiki.rubyonrails.com/rails/pages/AvailableGenerators
http://wiki.rubyonrails.com/rails/pages/AvailableGenerators

 CREATE TABLE `users` (
 `id` INT(11) NOT NULL AUTO_INCREMENT,
 `username` VARCHAR(255) NOT NULL,
 `hashed_password` VARCHAR(40) NOT NULL,
 PRIMARY KEY (id)
);

Open the file app/models/user.rb created in Recipe 15.8, and edit it to look like this:

 require 'sha1'

 class User < ActiveRecord::Base
 attr_accessor :password
 attr_protected :hashed_password
 validates_uniqueness_of :username
 validates_confirmation_of :password,
 :if => lambda { |user| user.new_record? or not user.password.blank? }
 validates_length_of :password, :within => 5..40,
 :if => lambda { |user| user.new_record? or not user.password.blank? }

 def self.hashed(str)
 SHA1.new(str).to_s
 end

 # If a user matching the credentials is found, returns the User object.
 # If no matching user is found, returns nil.
 def self.authenticate(user_info)
 user = find_by_username(user_info[:username])
 if user && user.hashed_password == hashed(user_info[:password])
 return user
 end
 end

 private
 before_save :update_password

 # Updates the hashed_password if a plain password was provided.
 def update_password
 if not password.blank?
 self.hashed_password = self.class.hashed(password)
 end
 end
 end

Once you do this, your application will work as before (though you'll have to convert any
preexisting user accounts to the new password format). You don't need to modify any of
the controller or view code, because the User.authenticate method works the same
way it did before. This is one of the benefits of separating business logic from presentation
logic.

Discussion
There are now three pieces to our user model. The first is the enhanced validation code.
The user model now:

• Provides getters and setters for the password attribute.
• Makes sure that the hashed_password field in the database can't be accessed from

the outside.
• Ensures that each user has a unique username.

Chapter 15. Web Development: Ruby on Rails Page 27 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When a new user is created, or when the password is changed, User ensures:

• That the value of the password_confirmation attribute is equal to the value of the
password attribute.

• That the password is between 5 and 40 characters long.

The second section of code defines User class methods as before. We add one new class-
level method, hashed, which performs the hashing function on a plaintext password. If
we want to change hashing mechanisms in the future, we only have to change this method
(and migrate any existing passwords).

The third piece of code in the model is a private instance method, update_password,
which synchronizes the plaintext password attribute with the hashed version in the
database. The call to before_save sets up this method to be called before a User object
is saved to the database. This way you can change a user's password by setting password
to its plaintext value, instead of doing the hash yourself.

See Also

• Recipe 13.14, "Validating Data with ActiveRecord"
• Recipe 15.8, "Creating a Login System"

Recipe 15.10. Escaping HTML and JavaScript for Display

Problem
You want to display data that might contain HTML or JavaScript without making browsers
render it as HTML or interpret the JavaScript. This is especially important when displaying
data entered by users.

Solution
Pass a string of data into the h() helper function to escape its HTML entities. That is,
instead of this:

 <%= @data %>

Write this:

 <%=h @data %>

Chapter 15. Web Development: Ruby on Rails Page 28 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-14#rubyckbk-CHP-13-SECT-14

The h() helper function converts the following characters into their HTML entity
equivalents: ampersand (&), double quote ("), left angle bracket (<), and right angle
bracket (>).

Discussion
You won't find the definition for the h() helper function anywhere in the Rails source
code, because it's a shortcut for ERb's built-in helper function html_escape().

JavaScript is deployed within HTML tags like <SCRIPT>, so escaping an HTML string will
neutralize any JavaScript in the HTML. However, sometimes you need to escape just the
JavaScript in a string. Rails adds a helper function called escape_javascript() that
you can use. This function doesn't do much: it just turns line breaks into the string
"\n", and adds backslashes before single and double quotes. This is handy when you want
to use arbitrary data in your own JavaScript code:

 <!-- index.rhtml -->
 <script lang="javascript">
 var text = "<%= escape_javascript @javascript_alert_text %>";
 alert(text);
 </script>

See Also

• Chapter 11

Recipe 15.11. Setting and Retrieving Session Information

Problem
You want to associate some data with each distinct web client that's using your application.
The data needs to persist across HTTP requests.

Solution
You can use cookies (see Recipe 15.12) but it's usually simpler to put the data in a user's
session. Every visitor to your Rails site is automatically given a session cookie. Rails keys
the value of the cookie to a hash of arbitrary data on the server.

Throughout your entire Rails application, in controllers, views, helpers, and mailers, you
can access this hash by calling a method called session. The objects stored in this hash
are persisted across requests by the same web browser.

This code in a controller tracks the time of a client's first visit to your web site:

Chapter 15. Web Development: Ruby on Rails Page 29 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11#rubyckbk-CHP-11

 class IndexController < ApplicationController
 def index
 session[:first_time] ||= Time.now
 end
 end

Within your view, you can write the following code to display the time:[4]

[4] The helper function time_ago_in_words() calculates how long it's been since a certain time and returns English text such as "about a minute" or "5 hours" or
"2 days". This is a nice, easy way to give the user a perspective on what a date means.

 <!-- index.rhtml -->
 You first visited this site on <%= session[:first_time] %>.

 That was <%= time_ago_in_words session[:first_time] %> ago.

Discussion
Cookies and sessions are very similar. They both store persistent data about a visitor to
your site. They both let you implement stateful operations on top of HTTP, which has no
state of its own. The main difference between cookies and sessions is that with cookies, all
the data is stored on your visitors' computers in little cookie files. With sessions, all the
data is stored on the web server. The client only keeps a small session cookie, which
contains a unique ID that's tied to the data on the server. No personal data is ever stored
on the visitor's computer.

There are a number of reasons why you might want to use sessions instead of cookies:

• A cookie can only store four kilobytes of data.
• A cookie can only store a string value.
• If you store personal information in a cookie, it can be intercepted unless all of a

client's requests are encrypted with SSL. Even then, cross-site scripting attacks may
be able to read the client cookie and retrieve the sensitive information.

On the other hand, cookies are useful when:

• The information is not sensitive and not very large.
• You don't want to store session information about each visitor on your server.
• You need speed from your application, and not every page needs to access the session

data.

Generally, it's a better idea to use sessions than to store data in cookies.

You can include model objects in your session: this can save a lot of trouble over retrieving
the same objects from the database on every request. However, if you are going to do this,
it's a good idea to list in your application controller all the models you'll be putting into

Chapter 15. Web Development: Ruby on Rails Page 30 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the session. This reduces the risk that Rails won't be able to deserialize the objects when
retrieving them from the session store.

 class ApplicationController < ActionController::Base
 model :user, :ticket, :item, :history
 end

Then you can put ActiveRecord objects into a session:

 class IndexController < ApplicationController
 def index
 session[:user] ||= User.find(params[:id])
 end
 end

If your site doesn't need to store any information in sessions, you can disable the feature
by adding the following code to your app/controllers/application.rb file:

 class ApplicationController < ActionController::Base
 session :off
 end

As you may have guessed, you can also use the session method to turn sessions off for a
single controller:

 class MyController < ApplicationController
 session :off
 end

You can even bring it down to an action level:

 class MyController < ApplicationController
 session :off, :only => ['index']

 def index
 #This action will not have any sessions available to it
 end
 end

The session interface is intended for data that persists over many actions, possibly over
the user's entire visit to the site. If you just need to pass an object (like a status message)
to the next action, it's simpler to use the flash construct described in Recipe 15.8:

 flash[:error] = 'Invalid login.'

By default, Rails sessions are stored on the server via the PStore mechanism. This
mechanism uses Marshal to serialize session data to temporary files. This approach works
well for small sites, but if your site will be getting a lot of visitors or you need to run your

Chapter 15. Web Development: Ruby on Rails Page 31 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Rails application concurrently on multiple servers, you should explore some of the
alternatives.

The three main alternatives are ActiveRecordStore, DRbStore, and
MemCacheStore. ActiveRecordStore keeps session information in a database table:
you can set up the table by running rake create_sessions_table on the command
line. Both DRbStore and MemCacheStore create an in-memory hash that's accessible
over the network, but they use different libraries.

Ruby comes with a standard library called DRb that allows you to share objects (including
hashes) over the network. Ruby also has a binding to the Memcached daemon, which has
been used to help scale web sites like Slashdot and LiveJournal. Memcached works like a
direct store into RAM, and can be distributed automatically over various computers
without any special configuration.

To change the session storing mechanism, edit your config/environment.rb file like this:

 Rails::Initializer.run do |config|
 config.action_controller.session_store = :active_record_store
 end

See Also

• Recipe 15.8, "Creating a Login System," has an example using flash
• Recipe 15.12, "Setting and Retrieving Cookies"
• Recipe 16.10, "Sharing a Hash Between Any Number of Computers"
• Recipe 16.16, "Storing Data on Distributed RAM with MemCached"
• http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionOptions

Recipe 15.12. Setting and Retrieving Cookies

Problem
You want to set a cookie from within Rails.

Solution
Recall from Recipe 15.11 that all Rails controllers, views, helpers, and mailers have access
to a method called sessions that returns a hash of the current client's session
information. Your controllers, helpers, and mailers (but not your views) also have access
to a method called cookies, which returns a hash of the current client's HTTP cookies.

Chapter 15. Web Development: Ruby on Rails Page 32 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-10#rubyckbk-CHP-16-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-16#rubyckbk-CHP-16-SECT-16
http://wiki.rubyonrails.com/rails/pages/HowtoChangeSessionOptions

To set a cookie for a user, simply set a key/value pair in that hash. For example, to keep
track of how many pages a visitor has looked at, you might set a "visits" cookie:

 class ApplicationController < ActionController::Base
 before_filter :count_visits

 private

 def count_visits
 value = (cookies[:visits] || '0').to_i
 cookies[:visits] = (value + 1).to_s
 @visits = cookies[:visits]
 end
 end

The call to before_filter tells Rails to run this method before calling any action
method. The private declaration makes sure that Rails doesn't think the count_visits
method is itself an action method that the public can view.

Since cookies are not directly available to views, count_visits makes the value of
the :visits cookie available as the instance variable @visits. This variable can be
accessed from a view:

 <!-- index.rhtml -->
 You've visited this website's pages <%= @visits %> time(s).

HTTP cookie values can only be strings. Rails can automatically convert some values to
strings, but it's safest to store only string values in cookies. If you need to store objects
that can't easily be converted to and from strings, you should probably store them in the
session hash instead.

Discussion
There may be times when you want more control over your cookies. For instance, Rails
cookies expire by default when the user closes their browser session. If you want to change
the browser expiration time, you can give cookies a hash that contains an :expires key
and a time to expire the cookie. The following cookie will expire after one hour:[5]

[5] Rails extends Ruby's numeric classes to include some very helpful methods (like the hour method shown here). These methods convert the given unit to seconds.
For example, Time.now + 1.hour is the same as Time.now + 3600, since 1.hour returns the number of seconds in an hour. Other helpful methods include
minutes, hours, days, months, weeks, and years. Since they all convert to numbers of seconds, you can even add them together like 1.week + 3.days.

 cookies[:user_id] = { :value => '123', :expires => Time.now + 1.hour}

Here are some other options for a cookie hash passed into cookies.

The domain to which this cookie applies:

 :domain

Chapter 15. Web Development: Ruby on Rails Page 33 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The URL path to which this cookie applies (by default, the cookie applies to the entire
domain: this means that if you host multiple applications on the same domain, their
cookies may conflict):

 :path

Whether this cookie is secure (secure cookies are only transmitted over HTTPS
connections; the default is false):

 :secure

Finally, Rails provides a quick and easy way to delete cookies:

 cookies.delete :user_id

Of course, every Ruby hash implements a delete method, but the cookies hash is a little
different. It includes special code so that not only does calling delete remove a key-value
pair from the cookies hash, it removes the corresponding cookie from the user's browser.

See Also

• Recipe 3.5, "Doing Date Arithmetic"
• Recipe 15.11, "Setting and Retrieving Session Information," has a discussion of when

to use cookies and when to use session

Recipe 15.13. Extracting Code into Helper Functions

Problem
Your views are getting cluttered with Ruby code.

Solution
Let's create a controller with a fairly complex view to see how this can happen:

 $./scripts/generate controller list index
 exists app/controllers/
 exists app/helpers/
 create app/views/list
 exists test/functional/
 create app/controllers/list_controller.rb
 create test/functional/list_controller_test.rb
 create app/helpers/list_helper.rb
 create app/views/list/index.rhtml

Chapter 15. Web Development: Ruby on Rails Page 34 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-5#rubyckbk-CHP-3-SECT-5

Edit app/controllers/list_controller.rb to look like this:

 class ListController < ApplicationController
 def index
 @list = [1, "string", :symbol, ['list']]
 end
 end

Edit app/views/list/index.rhtml to contain the following code. It iterates over each
element in @list, and prints out its index and the SHA1 hash of its object ID:

 <!-- app/views/list/index.rhtml -->

 <% @list.each_with_index do |item, i| %>
 <li class="<%= i%2==0 ? 'even' : 'odd' %>"><%= i %>:
 <%= SHA1.new(item.id.to_s) %>
 <% end %>

This is pretty messy, but if you've done much web programming it should also look sadly
familiar.

To clean up this code, we're going to move some of it into the helper for the controller. In
this case, the controller is called list, so its helper lives in app/helpers/
list_helper.rb.

Let's create a helper function called create_li. Given an object and its position in the
list, this function creates an tag suitable for use in the index view:

 module ListHelper
 def create_li(item, i)
 %{<li class="#{ i%2==0 ? 'even' : 'odd' }">#{i}:
 #{SHA1.new(item.id.to_s)}}
 end
 end

The list controller's views have access to all the functions defined in ListHelper. We
can clean up the index view like so:

 <!-- app/views/list/index.rhtml -->

 <% @list.each_with_index do |item, i| %>
 <%= create_li(item, i) %>
 <% end %>

Your helper functions can do anything you can normally do from within a view, so they
are a great way to abstract out the heavy lifting.

Chapter 15. Web Development: Ruby on Rails Page 35 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The purpose of helper functions is to create more maintainable code, and to enforce a good
division of labor between the programmers and the UI designers. Maintainable code is
easier for the programmers to work on, and when it's in helper functions it's out of the way
of the designers, who can tweak the HTML here and there without having to sifting through
code.

A good rule of thumb for when to use helpers is to read the code aloud. If it sounds like
nonsense to someone familiar with HTML, or it makes up more than a short English
sentence, hide it in a helper.

The flip side of this is that you should minimize the amount of HTML generated from
within the helpers. That way the UI designers, or other people familiar with HTML, won't
wander your code, wondering where to find the bit of HTML that needs tweaking.

Although helper functions are useful and used very often, Rails also provides partials,
another way of extracting code into smaller chunks.

See Also
Recipe 15.14, "Refactoring the View into Partial Snippets of Views," has more on partials

Recipe 15.14. Refactoring the View into Partial Snippets of Views

Problem
Your view doesn't contain a lot of Ruby code, but it's still becoming more complicated than
you'd like. You'd like to refactor the view logic into separate, reusable templates.

Solution
You can refactor a view template into multiple templates called partials. One template can
include another by calling the render method, first seen in Recipe 15.5.

Let's start with a more complex version of the view shown in Recipe 15.5:

 <!-- app/views/list/shopping_list.rhtml -->
 <h2>My shopping list</h2>

 <% @list.each do |item| %>
 <%= item.name %>
 <%= link_to 'Delete', {:action => 'delete', :id => item.id},
 :post => true %>

 <% end %>

Chapter 15. Web Development: Ruby on Rails Page 36 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <h2>Add a new item</h2>

 <%= form_tag :action => 'new' %>
 Item: <%= text_field "product", "name" %>

 <%= submit_tag "Add new item" %>
 <%= end_form_tag %>

Here's the corresponding controller class, and a dummy ListItem class to serve as the
model:

 # app/controllers/list_controller.rb
 class ListController < ActionController::Base
 def shopping_list
 @list = [ListItem.new(4, 'aspirin'), ListItem.new(199, 'succotash')]
 end

 # Other actions go here: add, delete, etc.
 # …
 end

 class ListItem
 def initialize(id, name)
 @id, @name = id, name
 end
 end

The view has two parts: the first part lists all the items, and the second part prints a form
to add a new item. An obvious first step is to split out the new item form.

We can do this by creating a partial view to print the new item form. To do this, create a
new file within app/views/list/ called _new_item_form.rhtml. The underscore in front
of the filename indicates that it is a partial view, not a full-fledged view for an action called
new_item_form. Here's the partial file.

 <!-- app/views/list/_new_item_form.rhtml -->

 <%= form_tag :action => 'new' %>
 Item: <%= text_field "item", "value" %>

 <%= submit_tag "Add new item" %>
 <%= end_form_tag %>

To include a partial, call the render method from within a template. Here is the
_new_item_form partial integrated into the main view. The view looks exactly the same,
but the code is better organized.

 <!-- app/views/list/shopping_list.rhtml -->
 <h2>My shopping list</h2>

 <% @list.each do |item| %>
 <%= item.name %>
 <%= link_to 'Delete', {:action => 'delete', :id => item.id},
 :post => true %>

 <% end %>

Chapter 15. Web Development: Ruby on Rails Page 37 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <%= render :partial => 'new_item_form' %>

Even though the filename starts with an underscore, when you call the partial, you omit
the underscore.

Discussion
Partial views inherit all the instance variables provided by the controller, so they have
access to the same instance variables as the parent view. That's why we didn't have to
change any of the form code for the _new_item_form partial.

We can create a second partial to factor out the code that prints the tag for each list
item. Here's _list_item.rhtml:

 <!-- app/views/list/_list_item.rhtml -->
 <%= list_item.name %>
 <%= link_to 'Delete', {:action => 'delete', :id => list_item.id},
 :post => true %>

And here's the revised main view:

 <!-- app/views/list/shopping_list.rhtml -->
 <h2>My shopping list</h2>

 <% @list.each do |item| %>
 <%= render :partial => 'list_item', :locals => {:list_item => item} %>
 <% end %>

 <%= render :partial => 'new_item_form' %>

Partial views do not inherit local variables from their parent view, so the item variable
needs to be passed in to the partial, in a special hash called :locals. It's accessible in the
partial as list_item, because that's the name it was given in the hash.

This scenario, iterating over an Enumerable and rendering a partial for each element, is
very common in web applications, so Rails provides a shortcut. We can simplify our main
view even more by passing our array into render (as the :collection parameter) and
having it do the iteration for us:

 <!-- app/views/list/shopping_list.rhtml -->
 <h2>My shopping list</h2>

 <%= render :collection => @list, :partial => 'list_item' %>

 <%= render :partial => 'new_item_form' %>

Chapter 15. Web Development: Ruby on Rails Page 38 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The partial is rendered once for every element in @list. Each list element is made
available as the local variable list_item. In case you haven't guessed, this name comes
from the name of the partial itself: render automatically gives _foo.rhtml a local
variable called foo.

list_item_counter is another variable that is set automatically (again, the name
mirrors the name of the template). list_item_counter is the current item's index in
the collection undergoing iteration. This variable can be handy if you want alternating list
items to show up in different styles:

 <!-- app/views/list/_list_item.rhtml -->
 <%= list_item.name %>
 <% css_class = list_item_counter % 2 == 0 ? 'a' : 'b' %>
 <%= link_to 'Delete', {:action => 'delete', :id => list_item.id},
 {'class' => css_class}, :post => true %>

When there's no collection present, you can pass a single object into a partial by specifying
an :object argument to render. This is simpler than creating a whole hash of :locals
just to pass one object. As with :collection, the object will be made available as a local
variable whose name is based on the name of the partial.

Here's an example: we'll send the shopping list into the new_item_form.rhtml partial,
so that the new item form can print a more verbose message. Here's the change to
shopping_list.rhtml:

 <%= render :partial => 'new_item_form', :object => @list %>

Here's the new version of _new_item_form.rhtml:

 <!-- app/views/list/_new_item_form.rhtml -->
 <h2>Add a new item to the <%= new_item_form.size %> already in this
 list</h2>
 <%= form_tag :action => 'new' %>
 Item: <%= text_field "product", "name" %>
 <%= submit_tag "Add new item" %>
 <%= end_form_tag %>

See Also

• Recipe 15.5, "Displaying Templates with Render"

Recipe 15.15. Adding DHTML Effects with script.aculo.us

Chapter 15. Web Development: Ruby on Rails Page 39 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You want to add fancy effects such as fades to your application, without writing any
JavaScript.

Solution
Every Rails application comes bundled with some JavaScript libraries that allow you to
create Ajax and DHTML effects. You don't even have to write JavaScript to enable DHTML
in your Rails web site.

First edit your main layout template (see Recipe 15.3) to call javascript_include_tag
within your <HEAD> tag:

 <!-- app/views/layouts/application.rhtml -->

 <html>
 <head>
 <title>My Web App</title>
 <%= javascript_include_tag "prototype", "effects" %>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
 </html>

Now within your views you can call the visual_effect method to accomplish the
DHTML tricks found in the script.aculo.us library.

Here's an example of the "highlight" effect:

 <p id="important">Here is some important text, it will be highlighted
 when the page loads.</p>

 <script type="text/javascript">
 <%= visual_effect(:highlight, "important", :duration => 1.5) %>
 </script>

Here's an example of the "fade" effect:

 <p id="deleted">Here is some old text, it will fade away when the page
 loads.</p>
 <script type="text/javascript">
 <%= visual_effect(:fade, "deleted", :duration => 1.0) %>
 </script>

Discussion
The sample code snippets above are triggered when the page loads, because they're
enclosed in <SCRIPT> tags. In a real application, you'll probably display text effects in
response to user actions: deleted items might fade away, or the selection of one item might

Chapter 15. Web Development: Ruby on Rails Page 40 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

highlight related items. Here's an image that gets squished when you click the link below
it:

 <%=link_to_function("Squish the bug!", visual_effect(:squish, "to-squish"))%>

The JavaScript code generated by the visual_effect method looks a lot like the
arguments you passed into the method. For instance, this piece of a Rails view:

 <script type="text/javascript">
 <%= visual_effect(:fade, 'deleted-text', :duration => 1.0) %>
 </script>

Generates this JavaScript:

 <script type="text/javascript">
 new Effect.Fade("deleted-text", {duration:1.0});
 </script>

This similarity means that documentation for the script.aculo.us library is almost
directly applicable to visual_effect. It also means that if you feel more comfortable
writing straight JavaScript, your code will still be fairly understandable to someone who
knows visual_effect.

The following table lists many of the effects available in Rails 1.0.

Table 15-1.

JavaScript initialization Rails initialization

new Effect.Highlight visual_effect(:highlight)

new Effect.Appear visual_effect(:appear)

new Effect.Fade visual_effect(:fade)

new Effect.Puff visual_effect(:puff)

new Effect.BlindDown visual_effect(:blind_down)

new Effect.BlindUp visual_effect(:blind_up)

new Effect.SwitchOff visual_effect(:switch_off)

new Effect.SlideDown visual_effect(:slide_down)

new Effect.SlideUp visual_effect(:slide_up)

new Effect.DropOut visual_effect(:drop_out)

new Effect.Shake visual_effect(:shake)

new Effect.Pulsate visual_effect(:pulsate)

new Effect.Squish visual_effect(:squish)

new Effect.Fold visual_effect(:fold)

new Effect.Grow visual_effect(:grow)

new Effect.Shrink visual_effect(:shrink)

new Effect.ScrollTo visual_effect(:scroll_to)

Chapter 15. Web Development: Ruby on Rails Page 41 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• The script.aculo.us demo (http://wiki.script.aculo.us/scriptaculous/show/
CombinationEffectsDemo)

• Recipe 15.3, "Creating a Layout for Your Header and Footer," has more on layout
templates

• Recipe 15.17, "Creating an Ajax Form"

Recipe 15.16. Generating Forms for Manipulating Model Objects

Problem
You want to define actions that let a user create or edit objects stored in the database.

Solution
Let's create a simple model, and then build forms for it. Here's some MySQL code to create
a table of key-value pairs:

 use mywebapp_development;
 DROP TABLE IF EXISTS items;
 CREATE TABLE `items` (
 `id` int(11) NOT NULL auto_increment,
 `name` varchar(255) NOT NULL default '',
 `value` varchar(40) NOT NULL default '[empty]',
 PRIMARY KEY (`id`)
);

Now, from the command line, create the model class, along with a controller and views:

 $./script/generate model Item
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/item.rb
 create test/unit/item_test.rb
 create test/fixtures/items.yml
 create db/migrate
 create db/migrate/001_create_items.rb
 $./script/generate controller items new create edit
 exists app/controllers/
 exists app/helpers/
 create app/views/items
 exists test/functional/
 create app/controllers/items_controller.rb
 create test/functional/items_controller_test.rb
 create app/helpers/items_helper.rb
 create app/views/items/new.rhtml
 create app/views/items/edit.rhtml

The first step is to customize a view. Let's start with app/views/items/new.rhtml. Edit it
to look like this:

Chapter 15. Web Development: Ruby on Rails Page 42 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo
http://wiki.script.aculo.us/scriptaculous/show/CombinationEffectsDemo

 <!-- app/views/items/new.rhtml -->

 <%= form_tag :action => "create" %>
 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
 <%= end_form_tag %>

All these method calls generate HTML: form_tag opens a <FORM> tag, submit_tag
generates a submit button, and so on. You can type out the same HTML by hand and Rails
won't care, but it's easier to make method calls, and it makes your templates neater.

The text_field call is a little more involved. It creates an <INPUT> tag that shows up
in the HTML form as a text entry field. But it also binds the value of that field to one of the
members of the @item instance variable. This code creates a text entry field that's bound
to the name member of @item:

 <%= text_field "item", "name" %>

But what's the @item instance variable? Well, it's not defined yet, because we're still using
the generated controller. If you try to access the page /items/new page right now, you
may get an error complaining about an unexpected nil value. The nil value is the @item
variable, which gets used (in text_field calls) without ever being defined.

Let's customize the ItemsController class so that the new action sets the @item
instance variable properly. We'll also implement the create action so that something
actually happens when the user hits the submit button on our generated form.

 class ItemsController < ApplicationController
 def new
 @item = Item.new
 end

 def create
 @item = Item.create(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
 end

Now if you access the /items/new page, you'll see what you'd expect: a form with two text
entry fields. The "Name" field will be blank, and the "Value" field will contain the default
database value of "[empty]".

Fill out the form and submit, and a new row will be created in the items table. You'll be
redirected to the edit action, which doesn't exist yet. Let's create it now. Here's the
controller part (note the similarity between ItemsController#edit and
ItemsController#create above):

Chapter 15. Web Development: Ruby on Rails Page 43 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class ItemsController < ApplicationController
 def edit
 @item = Item.find(params[:id])

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
 end
 end

In fact, the edit action is so similar to the create action that its form can be almost
identical. The only differences are in the arguments to form_tag:

 <!-- app/views/items/edit.rhtml -->

 <%= form_tag :action => "edit", :id => @item.id %>
 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
 <%= end_form_tag %>

Discussion
This is probably the most common day-to-day task faced by web developers. It's so
common that Rails comes with a tool called scaffold that generates this kind of code for
you. If you'd invoked generate this way instead of with the arguments given above, Rails
would have generate code for the actions given in the Solution, plus a few more:

 $./script/generate scaffold Items

Starting off with scaffolding doesn't mean you can get away with not knowing how Rails
form generation works, because you'll definitely want to customize the scaffolding code.

There are two places in our code where magic happens. The first is the text_field call
in the view, which is explained in the Solution. It binds a member of an object
(@item.name, for instance) to an HTML form control. If you view the source of the /
items/new page, you will see that the form fields look something like this:

 Name: <input type="text" name="item[name]" value="" />

 Value <input type="text" name="item[value]" value="[empty]" />

These special field names are used by the second piece of magic, located in the calls to
Item.create (in new) and Item#update_attributes. In both cases, an Item object
is fed a hash of new values for its members. This hash is embedded into the params hash,
which contains CGI form values.

Chapter 15. Web Development: Ruby on Rails Page 44 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The names of the HTML form fields (item[name] and item[value]) translate into a
params hash that looks like this:

 {
 :item => {
 :name => "Name of the item",
 :value => "Value of the item"
 },
 :controller => "items",
 :action => "create"
 }

So this line of code:

 Item.create(params[:item])

is effectively the same as this line:

 Item.create(:name => "Name of the item", :value => "Value of the item")

The call to Item#update_attributes in the edit action works exactly the same way.

As mentioned above, the views for edit and new are very similar, differing only in the
destination of the form. With some minor refactoring, we can remove one of the view files
completely.

A call to <%= form_tag %> without any parameters at all sets the form destination to
the current URL. Let's change the new.rhtml file appropriately:

 <!-- app/views/items/new.rhtml -->
 <%= form_tag %>

 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
 <%= end_form_tag %>

Now the new.rhtml view is suitable for use by both new and edit. We just need to change
the new action to call the create method (since the form doesn't go there anymore), and
change the edit action to render new.rhtml instead of edit.rhtml (which can be
removed):

 class ItemsController < ApplicationController
 def new
 @item = Item.new
 create if request.post?
 end

 def edit
 @item = Item.find(params[:id])

Chapter 15. Web Development: Ruby on Rails Page 45 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id and return
 end
 render :action => 'new'
 end
 end

Remember from Recipe 15.5 that a render call only specifies the template file to be used.
The render call in edit won't actually call the new method, so we don't need to worry
about the new method overwriting our value of @item.

In real life, there would be enough differences in the content surrounding the add and
edit forms to a separate view for each action. However, there's usually enough similarity
between the forms themselves that they can be refactored into a single partial view (see
Recipe 15.14) which both views share. This is a great example of the DRY (Don't Repeat
Yourself) principle. If there is a single form for both the add and edit views, it's easier
and less error-prone to maintain that form as the database schema changes.

See Also

• Recipe 15.5, "Displaying Templates with Render"
• Recipe 15.14, "Refactoring the View into Partial Snippets of Views"

Recipe 15.17. Creating an Ajax Form

Problem
You want to build a web application that's responsive and easy to use. You don't want your
users to spend lots of time waiting around for the browser to redraw the screen.

Solution
You can use JavaScript to make the browser's XMLHTTPRequest object send data to the
server, without dragging the user through the familiar (but slow) page refresh. This
technique is called Ajax,[6] and Rails makes it easy to use Ajax without writing or knowing
any JavaScript.

[6] This doesn't quite stand for Asynchronous JavaScript and XML. The origins of the term Ajax are now a part of computing mythology, but it is not an acronym.

Before you can do Ajax in your web application, you must edit your application's main
layout template so that it calls the javascript_include_tag method within its
<HEAD> tag. This is the same change made in Recipe 15.15:

 <!-- app/views/layouts/application.rhtml -->

Chapter 15. Web Development: Ruby on Rails Page 46 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <html>
 <head>
 <title>My Web App</title>
 <%= javascript_include_tag "prototype", "effects" %>
 </head>
 <body>
 <%= @content_for_layout %>
 </body>
 </html>

Let's change the application from Recipe 15.16 so that the new action is AJAXenabled (if
you followed that recipe all the way through, and made the edit action use new.rhtml
instead of edit.rhtml, you'll need to undo that change and make edit use its own view
template).

We'll start with the view template. Edit app/views/items/new.rhtml to look like this:

 <!-- app/views/items/new.rhtml -->
 <div id="show_item"></div>

 <%= form_remote_tag :url => { :action => :create },
 :update => "show_item",
 :complete => visual_effect(:highlight, "show_item") %>

 Name: <%= text_field "item", "name" %>

 Value: <%= text_field "item", "value" %>

 <%= submit_tag %>
 <%= end_form_tag %>

Those small changes make a standard HTML form into an Ajax form. The main difference
is that we call form_remote_tag instead of form_tag. The other differences are the
arguments we pass into that method.

The first change is that we put the :action parameter inside a hash passed into the :url
option. Ajax forms have more options associated with them than a normal form, so you
can't describe its form action as simply as you can with form_tag.

When the user clicks the submit button, the form values are serialized and sent to the
destination action (in this case, create) in the background. The create action processes
the form submission as before, and returns a snippet of HTML.

What happens to this HTML? That's what the :update option is for. It tells Rails to take
the result of the form submission, and stick it into the element with the HTML ID of
"show_item". This is why we added that <div id="show_item"> tag to the top of the
template: that's where the response from the server goes.

The last change to the new.rhtml view is the :complete option. This is a callback
argument: it lets you specify a string of JavaScript code that will be run once an Ajax request
is complete. We use it to highlight the response from the server once it shows up.

Chapter 15. Web Development: Ruby on Rails Page 47 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

That's the view. We also need to modify the create action in the controller so that when
you make an Ajax form submission, the server returns a snippet of HTML. This is the
snippet that's inserted into the "show_item" element on the browser side. If you make a
regular (nonAjax) form submission, the server can behave as it does in Recipe 15.16, and
send an HTTP redirect.[7] Here's what the controller class needs to look like:

[7] This will happen if someone's using your application with JavaScript turned off.

 class ItemsController < ApplicationController
 def new
 @item = Item.new
 end

 def create
 @item = Item.create(params[:item])
 if request.xml_http_request?
 render :action => 'show', :layout => false
 else
 redirect_to :action => 'edit', :id => @item.id
 end
 end

 def edit
 @item = Item.find(params[:id])

 if request.post?
 @item.update_attributes(params[:item])
 redirect_to :action => 'edit', :id => @item.id
 end
 end
 end

This code references a new view, show. It's the tiny HTML snippet that's returned by the
server, and stuck into the "show_element" tag by the web browser. We need to define it:

 <!-- app/views/items/show.rhtml -->

 Your most recently created item:

 Name: <%= @item.name %>

 Value: <%= @item.value %>

 <hr>

Now when you use http://localhost:3000/items/new to add new items to the database,
you won't be redirected to the edit action. You'll stay on the new page, and the results of
your form submission will be displayed above the form. This makes it easy to create many
new items at once.

Discussion
Recipe 15.16 shows how to submit data to a form in the traditional way: the user clicks a
"submit" button, the browser sends a request to the server, the server returns a response
page, and the browser renders the response page.

Chapter 15. Web Development: Ruby on Rails Page 48 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recently, sites like Gmail and Google Maps have popularized techniques for sending and
receiving data without a page refresh. Collectively, these techniques are called Ajax. Ajax
is a very useful tool for improving your application's response time and usability.

An Ajax request is a real HTTP request to one of your application's actions, and you can
deal with it as you would any other request. Most of the time, though, you won't be
returning a full HTML page. You'll just be returning a snippet of data. The web browser
will be sending the Ajax request in the context of a full web page (which you served up
earlier) that knows how to handle the response snippet.

You can define JavaScript callbacks at several points throughout the lifecycle of an Ajax
request. One callback, :complete, was used above to highlight the snippet after inserting
it into the page. This table lists the other callbacks.

Table 15-2.

Callback name Callback description

:loading Called when the web browser begins to load the remote document.

:loaded Called when the browser has finished loading the remote document.

:interactive Called when the user can interact with the remote document, even if it has not finished loading.

:success Called when the XMLHttpRequest is completed, and the HTTP status code is in the 2XX range.

:failure Called when the XMLHttpRequest is completed, and the HTTP status code is not in the 2XX range.

:complete Called when the XMLHttpRequest is complete. If :successand/or :failure are also present, runs after they do.

Recipe 15.18. Exposing Web Services on Your Web Site

Problem
You want to offer SOAP and XML-RPC web services from your web application.

Solution
Rails comes with a built-in web service generator that makes it easy to expose a controller's
actions as web services. You don't have to spend time writing WSDL files or even really
know how SOAP and XML-RPC work.

Here's a simple example. First, follow the directions in Recipe 15.16 to create a database
table named items, and to generate a model for that table. Don't generate a controller.

Now, run this from the command line:

 ./script/generate web_service Item add edit fetch
 create app/apis/
 exists app/controllers/
 exists test/functional/
 create app/apis/item_api.rb

Chapter 15. Web Development: Ruby on Rails Page 49 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 create app/controllers/item_controller.rb
 create test/functional/item_api_test.rb

This creates an item controller that supports three actions: add, edit, and fetch. But
instead of web application actions with .rhtml views, these are web service actions that
you access with SOAP or XML-RPC.

A Ruby method doesn't care about the data types of the objects it accepts as arguments,
or the data type of its return value. But a SOAP or XML-RPC web service method does
care. To expose a Ruby method through a SOAP or XML-RPC interface, we need to define
type information for its signature. Open up the file app/apis/item_api.rb and edit it to
look like this:

 class ItemApi < ActionWebService::API::Base
 api_method :add, :expects => [:string, :string], :returns => [:int]
 api_method :edit, :expects => [:int, :string, :string], :returns => [:bool]
 api_method :fetch, :expects => [:int], :returns => [Item]
 end

Now we need to implement the actual web service interface. Open app/controllers/
item_controller.rb and edit it to look like this:

 class ItemController < ApplicationController
 wsdl_service_name 'Item'

 def add(name, value)
 Item.create(:name => name, :value => value).id
 end

 def edit(id, name, value)
 Item.find(id).update_attributes(:name => name, :value => value)
 end

 def fetch(id)
 Item.find(id)
 end
 end

Discussion
The item controller now implements SOAP and XML-RPC web services for the items
table. This controller can live alongside an items controller that implements a traditional
web interface.[8]

[8] 'You can even add your web interface actions to the ItemController class. Then a single controller will implement both the traditional web interface and the web
service interface. But you can't define a web application action with the same name as a web service action, because a controller class can contain only one method with
a given name.

The URL to the XML-RPC API is http://www.yourserver.com/item/api, and the URL to
the SOAP API is http://www.yourserver.com/item/service.wsdl. To test these services,
here's a short Ruby script that calls the web service methods through a SOAP client:

 require 'soap/wsdlDriver'

Chapter 15. Web Development: Ruby on Rails Page 50 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 wsdl = "http://localhost:3000/item/service.wsdl"
 item_server = SOAP::WSDLDriverFactory.new(wsdl).create_rpc_driver

 item_id = item_server.add('foo', 'bar')

 if item_server.edit(item_id, 'John', 'Doe')
 puts 'Hey, it worked!'
 else
 puts 'Back to the drawing board…'
 end
 # Hey, it worked!

 item = item_server.fetch(item_id)
 item.class # => SOAP::Mapping::Object
 item.name # => "John"
 item.value # => "Doe"

Here's the XML-RPC equivalent:

 require 'xmlrpc/client'
 item_server = XMLRPC::Client.new2('http://localhost:3000/item/api')

 item_id = item_server.call('Add', 'foo', "bar")
 if item_server.call('Edit', item_id, 'John', 'Doe')
 puts 'Hey, it worked!'
 else
 puts 'Back to the drawing board…'
 end
 # Hey, it worked!

 item = item_server.call('Fetch', item_id)
 # => {"name"=>"John", "id"=>2, "value"=>"Doe"}
 item.class # => Hash

See Also

• Matt Biddulph's article "REST on Rails" describes how to create REST-style web
services on top of Rails (http://www.xml.com/pub/a/2005/11/02/rest-on-
rails.html)

• Recipe 16.3, "Writing an XML-RPC Client," and Recipe 16.4, "Writing a SOAP Client"
• Recipe 16.5, "Writing a SOAP Server," shows a nonRails implementation of SOAP web

services

Recipe 15.19. Sending Mail with Rails

Problem
You want to send an email from within your Rails application: perhaps a confirmation of
an order, or notification that some action has been taken on a user's behalf.

Chapter 15. Web Development: Ruby on Rails Page 51 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.xml.com/pub/a/2005/11/02/rest-on-rails.html
http://www.xml.com/pub/a/2005/11/02/rest-on-rails.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-3#rubyckbk-CHP-16-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-4#rubyckbk-CHP-16-SECT-4
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-5#rubyckbk-CHP-16-SECT-5

Solution
The first is to generate some mailer infrastructure. Go to the application's base directory
and type this command:

 ./script/generate mailer Notification welcome
 exists app/models/
 create app/views/notification
 exists test/unit/
 create test/fixtures/notification
 create app/models/notification.rb
 create test/unit/notification_test.rb
 create app/views/notification/welcome.rhtml
 create test/fixtures/notification/welcome

We're giving the name "Notification" to the mailing center of the application; it's somewhat
analogous to a controller in the web interface. The mailer is set up to generate a single
email, called "welcome": this is analagous to an action with a view template.

Now open app/models/notification.rb and edit it to look like this:

 class Notification < ActionMailer::Base
 def welcome(user, sent_at=Time.now)
 @subject = 'A Friendly Welcome'
 @recipients = user.email
 @from = 'admin@mysite.com'
 @sent_on = sent_at
 @body = {
 :user => user,
 :sent_on => sent_at
 }
 attachment 'text/plain' do |a|
 a.body = File.read('rules.txt')
 end
 end
 end

The subject of the email is "A Friendly Welcome", and it's sent to the user's email address
from the address "admin@mysite.com". It's got an attachment taken from the disk file
rules.txt (relative to the root directory of your Rails application).

Although the file notification.rb is within the models/ directory, it acts like a
controller in that each of its email messages has an associated view template. The view for
the welcome email is in app/views/notification/welcome.rhtml, and it acts
almost the same as the view of a normal controller.

The most important difference is that mailer views do not have access to the instance
variables of the mailer. To set instance variables for mailers, you pass a hash of those
variables to the body method. The keys become instance variable names and the values
become their values. In notification.rb, we make two instance variables available to
the welcome view, @user and @sent_on. Here's the view itself:

Chapter 15. Web Development: Ruby on Rails Page 52 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <!-- app/views/notification/welcome.rhtml -->

 Hello, <%= @user.name %>, and thanks for signing up at <%= @sent_on
 %>. Please print out the attached set of rules and keep them in a
 prominent place; they help keep our community running smoothly. Be
 sure to pay special attention to sections II.4 ("Assignment of
 Intellectual Property Rights") and XIV.21.a ("Dispute Resolution
 Through Ritual Combat").

To send the welcome email from your Rails application, add the following code to either
a controller, a model, or an observer:

 Notification.deliver_welcome(user)

Here, the user variable can be any object that implements #name and #email, the two
methods called in the welcome method and in the template.

Discussion
You never call the Notification#welcome method directly. In fact,
Notification#welcome is not even available, since it's an instance method, and you
never instantiate a Notification object directly. The ActionMailer::Base class
defines a method_missing implementation that looks at all calls to undefined class
methods. This is why you call deliver_welcome even though you never defined it.

The welcome.rhtml template given above generates plaintext email. To send HTML
emails, simply add the following code to Notification#welcome:

 content_type 'text/html'

Now your templates can generate HTML; email clients will recognize the format of the
email and render it appropriately.

Sometimes you'll want more control over the delivery process—for example, when you're
unit-testing your ActionMailer classes. Instead of calling deliver_welcome to send out
an email, you can call create_welcome to get the email as a Ruby object. These "create"
methods return TMail objects, which you can examine or manipulate as necessary.

If your local web server is incapable of sending email, you can modify environment.rb
to contact a remote SMTP server:

 Rails::Initializer.run do |config|
 config.action_mailer.server_settings = {
 :address => 'someserver.com',
 :user_name => 'uname',
 :password => 'passwd',
 :authentication => 'cram_md5'

Chapter 15. Web Development: Ruby on Rails Page 53 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 }
 end

See Also

• Recipe 10.8, "Responding to Calls to Undefined Methods"
• Recipe 14.5, "Sending Mail," has more on ActionMailer and SMTP settings

Recipe 15.20. Automatically Sending Error Messages to Your Email

Problem
You want to receive a descriptive email message every time one of your users encounters
an application error.

Solution
Any errors that occur while running your application are sent to the
ActionController::Base#log_error method. If you've set up a mailer (as shown in
Recipe 15.19) you can override this method and have it send mail to you. Your code should
look something like this:

 class ApplicationController < ActionController::Base

 private
 def log_error(exception)
 super
 Notification.deliver_error_message(exception,
 clean_backtrace(exception),
 session.instance_variable_get("@data"),
 params,
 request.env
)
 end
 end

That code rounds up a wide variety of information about the state of the Rails request at
the time of the failure. It captures the exception object, the corresponding backtrace, the
session data, the CGI request parameters, and the values of all environment variables.

The overridden log_error calls Notification.deliver_error_messsage, which
assumes you've created a mailer called "Notification", and defined the method
Notification.error_message. Here's the implementation:

 class Notification < ActionMailer::Base
 def error_message(exception, trace, session, params, env, sent_on = Time.now)
 @recipients = 'me@mydomain.com'
 @from = 'error@mydomain.com'
 @subject = "Error message: #{env['REQUEST_URI']}"

Chapter 15. Web Development: Ruby on Rails Page 54 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-10-SECT-8#rubyckbk-CHP-10-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-5#rubyckbk-CHP-14-SECT-5

 @sent_on = sent_on
 @body = {
 :exception => exception,
 :trace => trace,
 :session => session,
 :params => params,
 :env => env
 }
 end
 end

The template for this email looks like this:

 <!-- app/views/notification/error_message.rhtml -->

 Time: <%= Time.now %>
 Message: <%= @exception.message %>
 Location: <%= @env['REQUEST_URI'] %>
 Action: <%= @params.delete('action') %></td></tr>
 Controller: <%= @params.delete('controller') %></td></tr>
 Query: <%= @env['QUERY_STRING'] %></td></tr>
 Method: <%= @env['REQUEST_METHOD'] %></td></tr>
 SSL: <%= @env['SERVER_PORT'].to_i == 443 ? "true" : "false" %>
 Agent: <%= @env['HTTP_USER_AGENT'] %>

 Backtrace
 <%= @trace.to_a.join("</p>\n<p>") %>

 Params
 <% @params.each do |key, val| -%>
 * <%= key %>: <%= val.to_yaml %>
 <% end -%>
 Session
 <% @session.each do |key, val| -%>
 * <%= key %>: <%= val.to_yaml %>
 <% end -%>

 Environment
 <% @env.each do |key, val| -%>
 * <%= key %>: <%= val %>
 <% end -%>

Discussion
ActionController::Base#log_error gives you the flexibility to handle errors
however you like. This is especially useful if your Rails application is hosted on a machine
to which you have limited access: you can have errors sent to you, instead of written to a
file you might not be able to see. Or you might prefer to record the errors in a database, so
that you can look for patterns.

The method ApplicationController#log_error is declared private to avoid
confusion. If it weren't private, all of the controllers would think they had a log_error
action defined. Users would be able to visit /<controller>/log_error and get Rails
to act strangely.

See Also

• Recipe 15.19, "Sending Mail with Rails"

Chapter 15. Web Development: Ruby on Rails Page 55 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Recipe 15.21. Documenting Your Web Site

Problem
You want to document the controllers, models, and helpers of your web application so that
the developers responsible for maintaining the application can understand how it works.

Solution
As with any other Ruby program, you document a Rails application by adding specially-
formatted commands to your code. Here's how to add documentation to the
FooController class and one of its methods:

 # The FooController controller contains miscellaneous functionality
 # rejected from other controllers.
 class FooController < ApplicationController
 # The set_random action sets the @random_number instance variable
 # to a random number.
 def set_random
 @random_number = rand*rand
 end
 end

The documentation for classes and methods goes before their declaration, not after.

When you've finished adding documentation comments to your application, go to your
Rails application's root directory and issue the rake appdoc command:

 $ rake appdoc

This Rake task runs RDoc for your Rails application and generates a directory called doc/
app. This directory contains a web site with the aggregate of all your documentation
comments, cross-referenced against the source code. Open the doc/app/index.rhtml
file in any web browser, and you can browse the generated documentation.

Discussion
Your RDoc comments can contain markup and special directives: you can describe your
arguments in definition lists, and hide a class or method from documentation with
the :nodoc: directive. This is covered in Recipe 17.11.

The only difference between Rails applications and other Ruby programs is that Rails
comes with a Rakefile that defines an appdoc task. You don't have to find or write one
yourself.

Chapter 15. Web Development: Ruby on Rails Page 56 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-11#rubyckbk-CHP-17-SECT-11

You probably already put inline comments inside your methods, describing the action as
it happens. Since the RDoc documentation contains a formatted version of the original
source code, these comments will be visible to people going through the RDoc. These
comments are formatted as Ruby source code, though, not as RDoc markup.

See Also

• Recipe 17.11, "Documenting Your Application"
• Chapter 19, especially Recipe 19.2, "Automatically Generating Documentation"
• The RDoc for RDoc (http://rdoc.sourceforge.net/doc/index.html)

Recipe 15.22. Unit Testing Your Web Site

Problem
You want to create a suite of automated tests that test the functionality of your Rails
application.

Solution
Rails can't write your test code any more than it can write your views and controllers for
you, but it does make it easy to organize and run your automated tests.

When you use the ./script/generate command to create controllers and models, not
only do you save time, but you also get a generated framework for unit and functional tests.
You can get pretty good test coverage by filling in the framework with tests for the
functionality you write.

So far, all the examples in this chapter have run against a Rails application's development
database, so you only needed to make sure that the development section of your config/
database.yml file was set up correctly. Unit test code runs on your application's test
database, so now you need to set up your test section as well. Your mywebapp_test
database doesn't have to have any tables in it, but it must exist and be accessible to Rails.

When you generate a model with the generate script, Rails also generates a unit test
script for the model in the test directory. It also creates a fixture, a YAML file containing
test data to be loaded into the mywebapp_test database. This is the data against which
your unit tests will run:

 ./script/generate model User
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/user.rb

Chapter 15. Web Development: Ruby on Rails Page 57 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-11#rubyckbk-CHP-17-SECT-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19#rubyckbk-CHP-19
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19-SECT-2#rubyckbk-CHP-19-SECT-2
http://rdoc.sourceforge.net/doc/index.html

 create test/unit/user_test.rb
 create test/fixtures/users.yml
 create db/migrate
 create db/migrate/001_create_users.rb

When you generate a controller with generate, Rails creates a functional test script for
the controller:

 ./script/generate users list
 exists app/controllers/
 exists app/helpers/
 create app/views/users
 exists test/functional/
 create app/controllers/users_controller.rb
 create test/functional/users_controller_test.rb
 create app/helpers/users_helper.rb
 create app/views/users/list.rhtml

As you write code in the model and controller classes, you'll write corresponding tests in
these files.

To run the unit and functional tests, invoke the rake command in your home directory.
The default Rake task runs all of your tests. If you run it immediately after generating your
test files, it'll look something like this:

 $ rake
 (in /home/lucas/mywebapp)
 /usr/bin/ruby1.8 "test/unit/user_test.rb"
 Started
 .
 Finished in 0.048702 seconds.
 1 tests, 1 assertions, 0 failures, 0 errors
 /usr/bin/ruby1.8 "test/functional/users_controller_test.rb"
 Started
 .
 Finished in 0.024615 seconds.

 1 tests, 1 assertions, 0 failures, 0 errors

Discussion
All the lessons for writing unit tests in other languages and in other Ruby programs (see
Recipe 17.7) apply to Rails. Rails does some accounting for you, and it defines some useful
new assertions (see below), but you still have to do the work. The rewards are the same,
too: you can modify and refactor your code with confidence, knowing that if something
breaks, your tests will break. You'll hear about the problem immediately and you'll be able
to fix it more quickly.

Let's see what Rails has generated for us. Here's a generated test/unit/user_test.rb:

 require File.dirname(__FILE__) + '/../test_helper'

 class UserTest < Test::Unit::TestCase
 fixtures :users

Chapter 15. Web Development: Ruby on Rails Page 58 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-7#rubyckbk-CHP-17-SECT-7

 # Replace this with your real tests.
 def test_truth
 assert true
 end
 end

A good start, but test_truth is kind of tautological. Here's a slightly more realistic test:

 class UserTest
 def test_first
 assert_kind_of User, users(:first)
 end
 end

This code fetches the first element from the users table, and asserts that ActiveRecord
turns it into a User object. This isn't testing our User code (we haven't written any) so
much as it's testing Rails and ActiveRecord, but it shows you the kind of assertion that
makes for good unit tests.

But how does users(:first) return anything? The test suite runs against the
mywebapp_test database, and we didn't even put any tables in it, much less sample data.

We didn't, but Rails did. When you run the test suite, Rails copies the schema of the
development database to the test database. Instead of running every test against whatever
data happens to exist in the development database, Rails loads special test data from YAML
files called fixtures. The fixture files contain whatever database data you need to test:
objects that only exist to be deleted by a test, strange relationships between rows in
different tables, or anything else you need.

In the example above, the fixture for the users table was loaded by the line
fixtures :users. Here's the generated fixture for the User model, in test/fixtures/
users.yml:

 first:
 id: 1
 another:
 id: 2

Before running the unit tests, Rails reads this file, creates two rows in the users table,
and defines aliases for them (:first and :another) so you can refer to them in your
unit tests. It then defines the users method (like so much else, this method name is based
on the name of the model). In test_first, the call to users(:first) retrieves the User
object corresponding to :first in the fixture: the object with ID 1.

Here's another unit test:

Chapter 15. Web Development: Ruby on Rails Page 59 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class UserTest
 def test_another
 assert_kind_of User, users(:another)
 assert_equal 2, users(:another).id
 assert_not_equal users(:first), users(:another)
 end
 end

Rails adds the following Rails-specific assertions to Ruby's Test::Unit:

• assert_dom_equal
• assert_dom_not_equal
• assert_generates
• assert_no_tag
• assert_recognizes
• assert_redirected_to
• assert_response
• assert_routing
• assert_tag
• assert_template
• assert_valid

See Also

• "Testing the Rails" is a guide to unit and functional testing in Rails (http://
manuals.rubyonrails.com/read/book/5)

• Rails 1.1 supports integration testing as well, for testing the interactions between
controllers and actions; see http://rubyonrails.com/rails/classes/ActionController/
IntegrationTest.html and http://jamis.jamisbuck.org/articles/2006/03/09/
integration-testing-in-rails-1-1

• The ZenTest library inclues Test::Rails, which lets you write separate tests for your
views and controllers (http://rubyforge.org/projects/zentest/)

• Read about fixtures at http://ar.rubyonrails.org/classes/Fixtures.html
• Read about the assertions that Rails adds to Test::Unit at http://

rails.rubyonrails.com/classes/Test/Unit/Assertions.html
• Recipe 15.6, "Integrating a Database with Your Rails Application"
• Recipe 17.7, "Writing Unit Tests"
• Chapter 19

Recipe 15.23. Using breakpoint in Your Web Application

Chapter 15. Web Development: Ruby on Rails Page 60 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://manuals.rubyonrails.com/read/book/5
http://manuals.rubyonrails.com/read/book/5
http://rubyonrails.com/rails/classes/ActionController/IntegrationTest.html
http://rubyonrails.com/rails/classes/ActionController/IntegrationTest.html
http://jamis.jamisbuck.org/articles/2006/03/09/integration-testing-in-rails-1-1
http://jamis.jamisbuck.org/articles/2006/03/09/integration-testing-in-rails-1-1
http://rubyforge.org/projects/zentest/
http://ar.rubyonrails.org/classes/Fixtures.html
http://rails.rubyonrails.com/classes/Test/Unit/Assertions.html
http://rails.rubyonrails.com/classes/Test/Unit/Assertions.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-7#rubyckbk-CHP-17-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-19#rubyckbk-CHP-19

Problem
Your Rails application has a bug that you can't find using log messages. You need a heavy-
duty debugging tool that lets you inspect the full state of your application at any given
point.

Solution
The breakpoint library lets you stop the flow of code and drop into irb, an interactive
Ruby session. Within irb you can inspect the variables local to the current scope, modify
those variables, and resume execution of the normal flow of code. If you have ever spent
hours trying to track down a bug by placing logging messages everywhere, you'll find that
breakpoint gives you a much easier and more straightforward way to debug.

But how can you run an interactive console program from a web application? The answer
is to have a console program running beforehand, listening for calls from the Rails server.

The first step is to run ./script/breakpointer on the command line. This command
starts a server that listens over the network for breakpoint calls from the Rails server. Keep
this program running in a terminal window: this is where the irb session will start up:

 $./script/breakpointer
 No connection to breakpoint service at druby://localhost:42531
 Tries to connect will be made every 2 seconds…

To trigger an irb session, you can call the breakpoint method anywhere you like from
your Rails application—within a model, controller, or helper method. When execution
reaches that point, processing of the incoming client request will stop, and an irb session
will start in your terminal. When you quit the session, processing of the request will
resume.

Discussion
Here's an example. Let's say you've written the following controller, and you're having
trouble modifying the name attribute of an Item object.

 class ItemsController < ApplicationController
 def update
 @item = Item.find(params[:id])
 @item.value = '[default]'
 @item.name = params[:name]
 @item.save
 render :text => 'Saved'
 end
 end

You can put a breakpoint call in the Item class, like this:

Chapter 15. Web Development: Ruby on Rails Page 61 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Item < ActiveRecord::Base
 attr_accessor :name, :value

 def name=(name)
 super
 breakpoint
 end
 end

Accessing the URL http://localhost:3000/items/update/123?name=Foo calls Item-
Controller#update, which finds Item number 123 and then calls its name= method.
The call to name= triggers the breakpoint. Instead of rendering the text "Saved", the site
seems to hang and become unresponsive to requests.

But if you return to the terminal running the breakpointer server, you'll see that an
interactive Ruby session has started. This session allows you to play with all the local
variables and methods at the point where the breakpoint was called:

 Executing break point "Item#name=" at item.rb:4 in `name='
 irb:001:0> local_variables
 => ["name", "value", "_", "__"]
 irb:002:0> [name, value]
 => ["Foo", "[default]"]
 irb:003:0> [@name, @value]
 => ["Foo", "[default]"]
 irb:004:0> self
 => #<Item:0x292fbe8 @name="Foo", @value="[default]">
 irb:005:0> self.value = "Bar"
 => "Bar"
 irb:006:0> save
 => true
 irb:006:0> exit
 Server exited. Closing connection…

Once you finish, type exit to terminate the interactive Ruby session. The Rails application
continues running at the place it left off, rendering "Saved" as expected.

By default, breakpoints are named for the method in which they appear. You can pass a
string into breakpoint to get a more descriptive name. This is especially helpful if one
method contains several breakpoints:

 breakpoint "Trying to set Item#name, just called super"

Instead of calling breakpoint directly, you can also call assert, a method which takes
a code block. If the block evaluates to false, Ruby calls breakpoint; otherwise, things
continue as normal. Using assert lets you set breakpoints that are only called when
something goes wrong (called "conditional breakpoints" in traditional debuggers):

 1.upto 10 do |i|
 assert { Person.find(i) }
 p = Person.find(i)

Chapter 15. Web Development: Ruby on Rails Page 62 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 p.update_attribute(:name, 'Lucas')
 end

If all of the required Person objects are found, the breakpoint is never called, because
Person.find always returns true. If one of the Person objects is missing, Ruby calls the
breakpoint method and you get an irb session to investigate.

Breakpoint is a powerful tool that can vastly simplify your debugging process. It can be
hard to understand the true power of it until you try it yourself, so go through the solution
with your own code to toy around with it.

See Also

• Recipe 17.10, "Using breakpoint to Inspect and Change the State of Your Application,"
covers breakpoint in more detail.

• http://wiki.rubyonrails.com/rails/show/HowtoDebugWithBreakpoint

Chapter 15. Web Development: Ruby on Rails Page 63 Return to Table of Contents

Chapter 15. Web Development: Ruby on Rails
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-10#rubyckbk-CHP-17-SECT-10
http://wiki.rubyonrails.com/rails/show/HowtoDebugWithBreakpoint

	Web Development: Ruby on Rails
	Writing a Simple Rails Application to Show System Status
	Passing Data from the Controller to the View
	Creating a Layout for Your Header and Footer
	Redirecting to a Different Location
	Displaying Templates with Render
	Integrating a Database with Your Rails Application
	Understanding Pluralization Rules
	Creating a Login System
	Storing Hashed User Passwords in the Database
	Escaping HTML and JavaScript for Display
	Setting and Retrieving Session Information
	Setting and Retrieving Cookies
	Extracting Code into Helper Functions
	Refactoring the View into Partial Snippets of Views
	Adding DHTML Effects with script.aculo.us
	Generating Forms for Manipulating Model Objects
	Creating an Ajax Form
	Exposing Web Services on Your Web Site
	Sending Mail with Rails
	Automatically Sending Error Messages to Your Email
	Documenting Your Web Site
	Unit Testing Your Web Site
	Using breakpoint in Your Web Application

