
Table of Contents

Hashes... 1
Using Symbols as Hash Keys.. 3
Creating a Hash with a Default Value... 4
Adding Elements to a Hash.. 6
Removing Elements from a Hash... 9
Using an Array or Other Modifiable Object as a Hash Key.. 10
Keeping Multiple Values for the Same Hash Key... 13
Iterating Over a Hash.. 14
Iterating Over a Hash in Insertion Order.. 17
Printing a Hash.. 18
Inverting a Hash... 20
Choosing Randomly from a Weighted List... 22
Building a Histogram.. 24
Remapping the Keys and Values of a Hash.. 26
Extracting Portions of Hashes.. 27
Searching a Hash with Regular Expressions.. 28

Chapter 5. Hashes

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

5. Hashes
Hashes and arrays are the two basic "aggregate" data types supported by most modern
programming lagnguages. The basic interface of a hash is similar to that of an array. The
difference is that while an array stores items according to a numeric index, the index of a
hash can be any object at all.

Arrays and strings have been built into programming languages for decades, but built-in
hashes are a relatively recent development. Now that they're around, it's hard to live
without them: they're at least as useful as arrays.

You can create a Hash by calling Hash.new or by using one of the special sytaxes Hash[]
or {}. With the Hash[] syntax, you pass in the initial elements as comma-separated object
references. With the {} syntax, you pass in the initial contents as comma-separated key-
value pairs.

 empty = Hash.new # => {}
 empty ={} # => {}
 numbers = { 'two' => 2, 'eight' => 8} # => {"two"=>2, "eight"=>8}
 numbers = Hash['two', 2, 'eight', 8] # => {"two"=>2, "eight"=>8}

Once the hash is created, you can do hash lookups and element assignments using the
same syntax you would use to view and modify array elements:

 numbers["two"] # => 2
 numbers["ten"] = 10 # => 10
 numbers # => {"two"=>2, "eight"=>8, "ten"=>10}

You can get an array containing the keys or values of a hash with Hash#keys or
Hash#values. You can get the entire hash as an array with Hash#to_a:

 numbers.keys # => ["two", "eight", "ten"]
 numbers.values # => [2, 8, 10]
 numbers.to_a # => [["two", 2], ["eight", 8], ["ten", 10]]

Like an array, a hash contains references to objects, not copies of them. Modifications to
the original objects will affect all references to them:

 motto = "Don't tread on me"
 flag = { :motto => motto,
 :picture => "rattlesnake.png"}
 motto.upcase!
 flag[:motto] # => "DON'T TREAD ON ME"

Chapter 5. Hashes Page 1 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

The defining feature of an array is its ordering. Each element of an array is assigned a
Fixnum object as its key. The keys start from zero and there can never be gaps. In contrast,
a hash has no natural ordering, since its keys can be any objects at all. This feature make
hashes useful for storing lightly structured data or key-value pairs.

Consider some simple data for a person in an address book. For a side-by-side comparison
I'll represent identical data as an array, then as a hash:

 a = ["Maury", "Momento", "123 Elm St.", "West Covina", "CA"]
 h = { :first_name => "Maury",
 :last_name => "Momento",
 :address => "123 Elm St."
 :city => "West Covina",
 :state => "CA" }

The array version is more concise, and if you know the numeric index, you can retrieve
any element from it in constant time. The problem is knowing the index, and knowing what
it means. Other than inspecting the records, there's no way to know whether the element
at index 1 is a last name or a first name. Worse, if the array format changes to add an
apartment number between the street address and city, all code that uses a[3] or a[4]
will need to have its index changed.

The hash version doesn't have these problems. The last name will always be
at :last_name, and it's easy (for a human, anyway) to know what :last_name means.
Most of the time, hash lookups take no longer than array lookups.

The main advantage of a hash is that it's often easier to find what you're looking for.
Checking whether an array contains a certain value might require scanning the entire
array. To see whether a hash contains a value for a certain key, you only need to look up
that key. The set library (as seen in the previous chapter) exploits this behavior to
implement a class that looks like an array, but has the performance characteristics of a
hash.

The downside of using a hash is that since it has no natural ordering, it can't be sorted
except by turning it into an array first. There's also no guarantee of order when you iterate
over a hash. Here's a contrasting case, in which an array is obviously the right choice:

 a = [1, 4, 9, 16]
 h = { :one_squared => 1, two_squared => 4, three_squared => 9,
 :four_squared => 16 }

In this case, there's a numeric order to the entries, and giving them additional labels
distracts more than it helps.

Chapter 5. Hashes Page 2 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A hash in Ruby is actually implemented as an array. When you look up a key in a hash
(either to see what's associated with that key, or to associate a value with the key), Ruby
calculates the hash code of the key by calling its hash method. The result is used as a
numeric index in the array. Recipe 5.5 will help you with the most common problem related
to hash codes.

The performance of a hash depends a lot on the fact that it's very rare for two objects to
have the same hash code. If all objects in a hash had the same hash code, a hash would be
much slower than an array. Code like this would be a very bad idea:

 class BadIdea
 def hash
 100
 end
 end

Except for strings and other built-in objects, most objects have a hash code equivalent to
their internal object ID. As seen above, you can override Object#hash to change this,
but the only time you should need to do this is if your class also overrides Object#==. If
two objects are considered equal, they should also have the same hash code; otherwise,
they will behave strangely when you put them into hashes. Code like the fragment below
is a very good idea:

 class StringHolder
 attr_reader :string
 def initialize(s)
 @string = s
 end

 def ==(other)
 @string == other.string
 end

 def hash
 @string.hash
 end
 end
 a = StringHolder.new("The same string.")
 b = StringHolder.new("The same string.")
 a == b # => true
 a.hash # => -1007666862
 b.hash # => -1007666862

Recipe 5.1. Using Symbols as Hash Keys

Credit: Ben Giddings

Chapter 5. Hashes Page 3 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
When using a hash, you want the slight optimization you can get by using symbols as keys
instead of strings.

Solution
Whenever you would otherwise use a quoted string, use a symbol instead. A symbol can
be created by either using a colon in front of a word, like :keyname, or by transforming a
string to a symbol using String#intern.

 people = Hash.new
 people[:nickname] = 'Matz'
 people[:language] = 'Japanese'
 people['last name'.intern] = 'Matsumoto'
 people[:nickname] # => "Matz"
 people['nickname'.intern] # => "Matz"

Discussion
While 'name' and 'name' appear exactly identical, they're actually different. Each time you
create a quoted string in Ruby, you create a unique object. You can see this by looking at the
object_id method.

 'name'.object_id # => -605973716
 'name'.object_id # => -605976356
 'name'.object_id # => -605978996

By comparison, each instance of a symbol refers to a single object.

 :name.object_id # => 878862
 :name.object_id # => 878862
 'name'.intern.object_id # => 878862
 'name'.intern.object_id # => 878862

Using symbols instead of strings saves memory and time. It saves memory because there's
only one symbol instance, instead of many string instances. If you have many hashes that
contain the same keys, the memory savings adds up.

Using symbols as hash keys is faster because the hash value of a symbol is simply its object
ID. If you use strings in a hash, Ruby must calculate the hash value of a string each time
it's used as a hash key.

See Also

• Recipe 1.7, "Converting Between Strings and Symbols"

Chapter 5. Hashes Page 4 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-7#rubyckbk-CHP-1-SECT-7

Recipe 5.2. Creating a Hash with a Default Value

Credit: Ben Giddings

Problem
You're using a hash, and you don't want to get nil as a value when you look up a key that
isn't present in the hash. You want to get some more convenient value instead, possibly
one calculated dynamically.

Solution
A normal hash has a default value of nil:

 h = Hash.new
 h[1] # => nil
 h['do you have this string?'] # => nil

There are two ways of creating default values for hashes. If you want the default value to
be the same object for every hash key, pass that value into the Hash constructor.

 h = Hash.new("nope")
 h[1] # => "nope"
 h['do you have this string?'] # => "nope"

If you want the default value for a missing key to depend on the key or the current state of
the hash, pass a code block into the hash constructor. The block will be called each time
someone requests a missing key.

 h = Hash.new { |hash, key| (key.respond_to? :to_str) ? "nope" : nil }
 h[1] # => nil
 h['do you have this string'] # => "nope"

Discussion
The first type of custom default value is most useful when you want a default value of zero.
For example, this form can be used to calculate the frequency of certain words in a
paragraph of text:

 text = 'The rain in Spain falls mainly in the plain.'
 word_count_hash = Hash.new 0 # => {}
 text.split(/\W+/).each { |word| word_count_hash[word.downcase] += 1 }
 word_count_hash
 # => {"rain"=>1, "plain"=>1, "in"=>2, "mainly"=>1, "falls"=>1,
 # "the"=>2, "spain"=>1}

Chapter 5. Hashes Page 5 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

What if you wanted to make lists of the words starting with a given character? Your first
attempt might look like this:

 first_letter_hash = Hash.new []
 text.split(/\W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }
 first_letter_hash
 # => {}
 first_letter_hash["m"]
 # => ["The", "rain", "in", "Spain", "falls", "mainly", "in", "the", "plain"]

What's going on here? All those words don't start with "m"….

What happened is that the array you passed into the Hash constructor is being used for
every default value. first_letter_hash["m"] is now a reference to that array, as is
first_letter_hash["f"] and even first_letter_hash[1006].

This is a case where you need to pass in a block to the Hash constructor. The block is run
every time the Hash can't find a key. This way you can create a different array each time.

 first_letter_hash = Hash.new { |hash, key| hash[key] = [] }
 text.split(/\W+/).each { |word| first_letter_hash[word[0,1].downcase] << word }
 first_letter_hash
 # => {"m"=>["mainly"], "p"=>["plain"], "f"=>["falls"], "r"=>["rain"],
 # "s"=>["Spain"], "i"=>["in", "in"], "t"=>["The", "the"]}
 first_letter_hash["m"]
 # => ["mainly"]

When a letter can't be found in the hash, Ruby calls the block passed into the Hash
constructor. That block puts a new array into the hash, using the missing letter as the key.
Now the letter is bound to a unique array, and words can be added to that array normally.

Note that if you want to add the array to the hash so it can be used later, you must assign
it within the block of the Hash constructor. Otherwise you'll get a new, empty array every
time you access first_letter_hash["m"]. The words you want to append to the array
will be lost.

See Also

• This technique is used in recipes like Recipe 5.6, "Keeping Multiple Values for the
Same Hash Key," and Recipe 5.12, "Building a Histogram"

Recipe 5.3. Adding Elements to a Hash

Chapter 5. Hashes Page 6 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
You have some items, loose or in some other data structure, which you want to put into an
existing hash.

Solution
To add a single key-value pair, assign the value to the element lookup expression for the
key: that is, call hash[key]=value. Assignment will override any previous value for that
key.

 h = {}
 h["Greensleeves"] = "all my joy"
 h # => {"Greensleeves"=>"all my joy"}
 h["Greensleeves"] = "my delight"
 h # => {"Greensleeves"=>"my delight"}

Discussion
When you use a string as a hash key, the string is transparently copied and the copy is
frozen. This is to avoid confusion should you modify the string in place, then try to use its
original form to do a hash lookup:

 key = "Modify me if you can"
 h = { key => 1 }
 key.upcase! # => "MODIFY ME IF YOU CAN"
 h[key] # => nil
 h["Modify me if you can"] # => 1

 h.keys # => ["Modify me if you can"]
 h.keys[0].upcase!
 # TypeError: can't modify frozen string

To add an array of key-value pairs to a hash, either iterate over the array with
Array#each, or pass the hash into Array#inject. Using inject is slower but the code
is more concise.

 squares = [[1,1], [2,4], [3,9]]

 results = {}
 squares.each { |k,v| results[k] = v }
 results # => {1=>1, 2=>4, 3=>9}

 squares.inject({}) { |h, kv| h[kv[0]] = kv[1]; h }
 # => {1=>1, 2=>4, 3=>9}

To turn a flat array into the key-value pairs of a hash, iterate over the array elements two
at a time:

 class Array
 def into_hash(h)
 unless size % 2 == 0
 raise StandardError, "Expected array with even number of elements"

Chapter 5. Hashes Page 7 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 0.step(size-1, 2) { |x| h[self[x]] = self[x+1] }
 h
 end
 end

 squares = [1,1,2,3,4,9]
 results = {}
 squares.into_hash(results) # => {1=>1, 2=>3, 4=>9}

 [1,1,2].into_hash(results)
 # StandardError: Expected array with even number of elements

To insert into a hash every key-value from another hash, use Hash#merge!. If a key is
present in both hashes when a.merge!(b) is called, the value in b takes precedence over
the value in a.

 squares = { 1 => 1, 2 => 4, 3 => 9}
 cubes = { 3 => 27, 4 => 256, 5 => 3125}
 squares.merge!(cubes)
 squares # =>{5=>3125, 1=>1, 2=>4, 3=>27, 4=>256}
 cubes # =>{5=>3125, 3=>27, 4=>256}

Hash#merge! also has a nondestructive version, Hash#merge, which creates a new Hash
with elements from both parent hashes. Again, the hash passed in as an argument takes
precedence.

To completely replace the entire contents of one hash with the contents of another, use
Hash#replace.

 squares = { 1 => 1, 2 => 4, 3 => 9}
 cubes = { 1 => 1, 2 => 8, 3 => 27}
 squares.replace(cubes)
 squares # => {1=>1, 2=>8, 3=>27}

This is different from simply assigning the cubes hash to the squares variable name,
because cubes and squares are still separate hashes: they just happen to contain the
same elements right now. Changing cubes won't affect squares:

 cubes[4] = 64
 squares # => {1=>1, 2=>8, 3=>27}

Hash#replace is useful for reverting a Hash to known default values.

 defaults = {:verbose => true, :help_level => :beginner }
 args = {}
 requests.each do |request|
 args.replace(defaults)
 request.process(args) #The process method might modify the args Hash.
 end

Chapter 5. Hashes Page 8 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 4.12, "Building Up a Hash Using Injection," has more about the inject
method

• Recipe 5.1, "Using Symbols as Hash Keys," for a way to save memory when
constructing certain types of hashes

• Recipe 5.5, "Using an Array or Other Modifiable Object as a Hash Key," talks about
how to avoid another common case of confusion when a hash key is modified

Recipe 5.4. Removing Elements from a Hash

Problem
Certain elements of your hash have got to go!

Solution
Most of the time you want to remove a specific element of a hash. To do that, pass the key
into Hash#delete.

 h = {}
 h[1] = 10
 h # => {1=>10}
 h.delete(1)
 h # => {}

Discussion
Don't try to delete an element from a hash by mapping it to nil. It's true that, by default,
you get nil when you look up a key that's not in the hash, but there's a difference between
a key that's missing from the hash and a key that's present but mapped to nil.
Hash#has_key? will see a key mapped to nil, as will Hash#each and all other methods
except for a simple fetch:

 h = {}
 h[5] # => nil
 h[5] = 10
 h[5] # => 10
 h[5] = nil
 h[5] # => nil
 h.keys # => [5]
 h.delete(5)
 h.keys # => []

Hash#delete works well when you need to remove elements on an ad hoc basis, but
sometimes you need to go through the whole hash looking for things to remove. Use the

Chapter 5. Hashes Page 9 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-12#rubyckbk-CHP-4-SECT-12

Hash#delete_if iterator to delete key-value pairs for which a certain code block returns
true (Hash#reject works the same way, but it works on a copy of the Hash). The following
code deletes all key-value pairs with a certain value:

 class Hash
 def delete_value(value)
 delete_if { |k,v| v == value }
 end
 end

 h = {'apple' => 'green', 'potato' => 'red', 'sun' => 'yellow',
 'katydid' => 'green' }
 h.delete_value('green')
 h # => {"sun"=>"yellow", "potato"=>"red"}

This code implements the opposite of Hash#merge; it extracts one hash from another:

 class Hash
 def remove_hash(other_hash)
 delete_if { |k,v| other_hash[k] == v }
 end
 end

 squares = { 1 => 1, 2 => 4, 3 => 9 }
 doubles = { 1 => 2, 2 => 4, 3 => 6 }
 squares.remove_hash(doubles)
 squares # => {1=>1, 3=>9}

Finally, to wipe out the entire contents of a Hash, use Hash#clear:

 h = {}
 1.upto(1000) { |x| h[x] = x }
 h.keys.size # => 1000
 h.clear
 h # => {}

See Also

• Recipe 5.3, "Adding Elements to a Hash"
• Recipe 5.7, "Iterating Over a Hash"

Recipe 5.5. Using an Array or Other Modifiable Object as a Hash
Key

Problem
You want to use a modifiable built-in object (an array or a hash, but not a string) as a key
in a hash, even while you modify the object in place. A naive solution tends to lose hash
values once the keys are modified:

Chapter 5. Hashes Page 10 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 coordinates = [10, 5]
 treasure_map = { coordinates => 'jewels' }
 treasure_map[coordinates] # => "jewels"

 # Add a z-coordinate to indicate how deep the treasure is buried.
 coordinates << -5

 coordinates # => [10, 5, -5]
 treasure_map[coordinates] # => nil
 # Oh no!

Solution
The easiest solution is to call the Hash#rehash method every time you modify one of the
hash's keys. Hash#rehash will repair the broken treasure map defined above:

 treasure_map.rehash
 treasure_map[coordinates] # => "jewels"

If this is too much code, you might consider changing the definition of the object you use
as a hash key, so that modifications don't affect the way the hash treats it.

Suppose you want a reliably hashable Array class. If you want this behavior universally,
you can reopen the Array class and redefine hash to give you the new behavior. But it's
safer to define a subclass of Array that implements a reliable-hashing mixin, and to use
that subclass only for the Arrays you want to use as hash keys:

 module ReliablyHashable
 def hash
 return object_id
 end
 end

 class ReliablyHashableArray < Array
 include ReliablyHashable
 end

It's now possible to keep track of the jewels:

 coordinates = ReliablyHashableArray.new([10,5])
 treasure_map = { coordinates => 'jewels' }
 treasure_map[coordinates] # => "jewels"

 # Add a z-coordinate to indicate how deep the treasure is buried.
 coordinates.push(-5)

 treasure_map[coordinates] # => "jewels"

Discussion
Ruby performs hash lookups using not the key object itself but the object's hash code (an
integer obtained from the key by calling its hash method). The default implementation of

Chapter 5. Hashes Page 11 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

hash, in Object, uses an object's internal ID as its hash code. Array, Hash, and String
override this method to provide different behavior.

In the initial example, the hash code of [10,5] is 41 and the hash code of [10,5,–5] is–83.
The mapping of the coordinate list to 'jewels' is still present (it'll still show up in an iteration
over each_pair), but once you change the coordinate list, you can no longer use that
variable as a key.

You may also run into this problem when you use a hash or a string as a hash key, and then
modify the key in place. This happens because the hash implementations of many built-
in classes try to make sure that two objects that are "the same" (for instance, two distinct
arrays with the same contents, or two distinct but identical strings) get the same hash
value. When coordinates is [10,5], it has a hash code of 41, like any other Array
containing [10,5]. When coordinates is [10,5,–5] it has a hash code of–83, like any other
Array with those contents.

Because of the potential for confusion, some languages don't let you use arrays or hashes
as hash keys at all. Ruby lets you do it, but you have to face the consequences if the key
changes. Fortunately, you can dodge the consequences by overriding hash to work the way
you want.

Since an object's internal ID never changes, the Object implementation is what you want
to get reliable hashing. To get it back, you'll have to override or subclass the hash method of
Array or Hash (depending on what type of key you're having trouble with).

The implementations of hash given in the solution violate the principle that different
representations of the same data should have the same hash code. This means that two
ReliablyHashableArray objects will have different hash codes even if they have the
same contents. For instance:

 a = [1,2]
 b = a.clone
 a.hash # => 11
 b.hash # => 11
 a = ReliablyHashableArray.new([1,2])
 b = a.clone
 a.hash # => -606031406
 b.hash # => -606034266

If you want a particular value in a hash to be accessible by two different arrays with the
same contents, then you must key it to a regular array instead of a
ReliablyHashableArray. You can't have it both ways. If an object is to have the same
hash key as its earlier self, it can't also have the same hash key as another representation
of its current state.

Chapter 5. Hashes Page 12 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Another solution is to freeze your hash keys. Any frozen object can be reliably used as a
hash key, since you can't do anything to a frozen object that would cause its hash code to
change. Ruby uses this solution: when you use a string as a hash key, Ruby copies the
string, freezes the copy, and uses that as the actual hash key.

See Also

• Recipe 8.15, "Freezing an Object to Prevent Changes"

Recipe 5.6. Keeping Multiple Values for the Same Hash Key

Problem
You want to build a hash that might have duplicate values for some keys.

Solution
The simplest way is to create a hash that initializes missing values to empty arrays. You
can then append items onto the automatically created arrays:

 hash = Hash.new { |hash, key| hash[key] = [] }

 raw_data = [[1, 'a'], [1, 'b'], [1, 'c'],
 [2, 'a'], [2, ['b', 'c']],
 [3, 'c']]
 raw_data.each { |x,y| hash[x] << y }
 hash
 # => {1=>["a", "b", "c"], 2=>["a", ["b", "c"]], 3=>["c"]}

Discussion
A hash maps any given key to only one value, but that value can be an array. This is a
common phenomenon when reading data structures from the outside world. For instance,
a list of tasks with associated priorities may contain multiple items with the same priority.
Simply reading the tasks into a hash keyed on priority would create key collisions, and
obliterate all but one task with any given priority.

It's possible to subclass Hash to act like a normal hash until a key collision occurs, and
then start keeping an array of values for the key that suffered the collision:

 class MultiValuedHash < Hash
 def []=(key, value)
 if has_key?(key)
 super(key, [value, self[key]].flatten)
 else
 super
 end
 end
 end

Chapter 5. Hashes Page 13 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-15#rubyckbk-CHP-8-SECT-15

 hash = MultiValuedHash.new
 raw_data.each { |x,y| hash[x] = y }
 hash
 # => {1=>["c", "b", "a"], 2=>["b", "c", "a"], 3=>"c"}

This saves a little bit of memory, but it's harder to write code for this class than for one
that always keeps values in an array. There's also no way of knowing whether a value
[1,2,3] is a single array value or three numeric values.

See Also

• Recipe 5.2, "Creating a Hash with a Default Value," explains the technique of the
dynamic default value in more detail, and explains why you must initalize the empty
list within a code block—never within the arguments to Hash.new

Recipe 5.7. Iterating Over a Hash

Problem
You want to iterate over a hash's key-value pairs as though it were an array.

Solution
Most likely, the iterator you want is Hash#each_pair or Hash#each. These methods
yield every key-value pair in the hash:

 hash = { 1 => 'one', [1,2] => 'two', 'three' => 'three' }

 hash.each_pair { |key, value| puts "#{key.inspect} maps to #{value}"}
 # [1, 2] maps to two
 # "three" maps to three
 # 1 maps to one

Note that each and each_pair return the key-value pairs in an apparently random order.

Discussion
Hash#each_pair and Hash#each let you iterate over a hash as though it were an array
full of key-value pairs. Hash#each_pair is more commonly used and slightly more
efficient, but Hash#each is more array-like. Hash also provides several other iteration
methods that can be more efficient than each.

Use Hash#each_key if you only need the keys of a hash. In this example, a list has been
stored as a hash to allow for quick lookups (this is how the Set class works). The values
are irrelevant, but each_key can be used to iterate over the keys:

Chapter 5. Hashes Page 14 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 active_toggles = { 'super' => true, 'meta' => true, 'hyper' => true }
 active_toggles.each_key { |active| puts active }
 # hyper
 # meta
 # super

Use Hash#each_value if you only need the values of a hash. In this example,
each_value is used to summarize the results of a survey. Here it's the keys that are
irrelevant:

 favorite_colors = { 'Alice' => :red, 'Bob' => :violet, 'Mallory' => :blue,
 'Carol' => :blue, 'Dave' => :violet }

 summary = Hash.new 0
 favorite_colors.each_value { |x| summary[x] += 1 }
 summary
 # => {:red=>1, :violet=>2, :blue=>2}

Don't iterate over Hash#each_value looking for a particular value: it's simpler and faster
to use has_value? instead.

 hash = {}
 1.upto(10) { |x| hash[x] = x * x }
 hash.has_value? 49 # => true
 hash.has_value? 81 # => true
 hash.has_value? 50 # => false

Removing unprocessed elements from a hash during an iteration prevents those items
from being part of the iteration. However, adding elements to a hash during an iteration
will not make them part of the iteration.

Don't modify the keyset of a hash during an iteration, or you'll get undefined results and
possibly a RuntimeError:

 1.upto(100) { |x| hash[x] = true }
 hash.keys { |k| hash[k * 2] = true }
 # RuntimeError: hash modified during iteration

Using an array as intermediary
An alternative to using the hash iterators is to get an array of the keys, values, or key-value
pairs in the hash, and then work on the array. You can do this with the keys, values, and
to_a methods, respectively:

 hash = {1 => 2, 2 => 2, 3 => 10}
 hash.keys # => [1, 2, 3]
 hash.values # => [2, 2, 10]
 hash.to_a # => [[1, 2], [2, 2], [3, 10]]

Chapter 5. Hashes Page 15 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The most common use of keys and values is to iterate over a hash in a specific order. All of
Hash's iterators return items in a seemingly random order. If you want to iterate over a
hash in a certain order, the best strategy is usually to create an array from some portion
of the hash, sort the array, then iterate over it.

The most common case is to iterate over a hash according to some property of the keys.
To do this, sort the result of Hash#keys. Use the original hash to look up the value for a
key, if necessary.

 extensions = { 'Alice' => '104', 'Carol' => '210', 'Bob' => '110' }
 extensions.keys.sort.each do |k|
 puts "#{k} can be reached at extension ##{extensions[k]}"
 end
 # Alice can be reached at extension #104
 # Bob can be reached at extension #110
 # Carol can be reached at extension #210

Hash#values gives you the values of a hash, but that's not useful for iterating because
it's so expensive to find the key for a corresponding value (and if you only wanted the
values, you'd use each_value).

Hash#sort and Hash#sort_by turn a hash into an array of two-element subarrays (one
for each key-value pair), then sort the array of arrays however you like. Your custom sort
method can sort on the values, on the values and the keys, or on some relationship between
key and value. You can then iterate over the sorted array the same as you would with the
Hash.each iterator.

This code sorts a to-do list by priority, then alphabetically:

 to_do = { 'Clean car' => 5, 'Take kangaroo to vet' => 3,
 'Realign plasma conduit' => 3 }
 to_do.sort_by { |task, priority| [priority, task] }.each { |k,v| puts k }
 # Realign plasma conduit
 # Take kangaroo to vet
 # Clean car

This code sorts a hash full of number pairs according to the magnitude of the difference
between the key and the value:

 transform_results = { 4 => 8, 9 => 9, 10 => 6, 2 => 7, 6 => 5 }
 by_size_of_difference = transform_results.sort_by { |x, y| (x-y).abs }
 by_size_of_difference.each { |x, y| puts "f(#{x})=#{y}: difference #{y-x}" }
 # f(9)=9: difference 0
 # f(6)=5: difference -1
 # f(10)=6: difference -4
 # f(4)=8: difference 4
 # f(2)=7: difference 5

Chapter 5. Hashes Page 16 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• See Recipe 5.8, "Iterating Over a Hash in Insertion Order," for a more complex iterator
• Recipe 5.12, "Building a Histogram"
• Recipe 5.13, "Remapping the Keys and Values of a Hash"

Recipe 5.8. Iterating Over a Hash in Insertion Order

Problem
Iterations over a hash happen in a seemingly random order. Sorting the keys or values only
works if the keys or values are all mutually comparable. You'd like to iterate over a hash
in the order in which the elements were added to the hash.

Solution
Use the orderedhash library (see below for how to get it). Its OrderedHash class acts
like a hash, but it keeps the elements of the hash in insertion order.

 require 'orderedhash'
 h = OrderedHash.new
 h[1] = 1
 h["second"] = 2
 h[:third] = 3

 h.keys # => [1, "second", :third]
 h.values # => [1, 2, 3]
 h.each { |k,v| puts "The #{k} counting number is #{v}" }
 # The 1 counting number is 1
 # The second counting number is 2
 # The third counting number is 3

Discussion
OrderedHash is a subclass of Hash that also keeps an array of the keys in insertion order.
When you add a key-value pair to the hash, OrderedHash modifies both the underlying
hash and the array. When you ask for a specific hash element, you're using the hash. When
you ask for the keys or the values, the data comes from the array, and you get it in
insertion order.

Since OrderedHash is a real hash, it supports all the normal hash operations. But any
operation that modifies an OrderedHash may also modify the internal array, so it's slower
than just using a hash. OrderedHash#delete is especially slow, since it must perform
a linear search of the internal array to find the key being deleted. Hash#delete runs in
constant time, but OrderedHash#delete takes time proportionate to the size of the
hash.

Chapter 5. Hashes Page 17 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• You can get OrderedHash from the RAA at http://raa.ruby-lang.org/project/
orderedhash/; it's not available as a gem, and it has no setup.rb script, so you'll
need to distribute orderedhash.rb with your project, or copy it into your Ruby
library path

• There is a queuehash gem that provides much the same functionality, but it has worse
performance than OrderedHash

Recipe 5.9. Printing a Hash

Credit: Ben Giddings

Problem
You want to print out the contents of a Hash, but Kernel#puts doesn't give very useful
results.

 h = {}
 h[:name] = "Robert"
 h[:nickname] = "Bob"
 h[:age] = 43
 h[:email_addresses] = {:home => "bob@example.com",
 :work => "robert@example.com"}
 h
 # => {:email_addresses=>["bob@example.com", "robert@example.com"],
 # :nickname=>"Bob", :name=>"Robert", :age=>43}
 puts h
 # nicknameBobage43nameRobertemail_addresseshomebob@example.comworkrobert@example.com
 puts h[:email_addresses]
 # homebob@example.comworkrobert@example.com

Solution

In other recipes, we sometimes reformat the results or output of Ruby
statements so they'll look better on the printed page. In this recipe,
you'll see raw, unretouched output, so you can compare different ways
of printing hashes.

The easiest way to print a hash is to use Kernel#p. Kernel#p prints out the "inspected"
version of its arguments: the string you get by calling inspect on the hash. The

Chapter 5. Hashes Page 18 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://raa.ruby-lang.org/project/orderedhash/
http://raa.ruby-lang.org/project/orderedhash/

"inspected" version of an object often looks like Ruby source code for creating the object,
so it's usually readable:

 p h[:email_addresses]
 # {:home=>"bob@example.com", :work=>"robert@example.com"}

For small hashes intended for manual inspection, this may be all you need. However, there
are two difficulties. One is that Kernel#p only prints to stdout. The second is that the
printed version contains no newlines, making it difficult to read large hashes.

 p h
 # {:nickname=>"Bob", :age=>43, :name=>"Robert", :email_addresses=>{:home=>
 # "bob@example.com", :work=>"robert@example.com"}}

When the hash you're trying to print is too large, the pp ("pretty-print") module produces
very readable results:

 require 'pp'
 pp h[:email_addresses]
 # {:home=>"bob@example.com", :work=>"robert@example.com"}

 pp h
 # {:email_addresses=>{:home=>"bob@example.com", :work=>"robert@example.com"}
 # :nickname=>"Bob",
 # :name=>"Robert",
 # :age=>43}

Discussion
There are a number of ways of printing hash contents. The solution you choose depends
on the complexity of the hash you're trying to print, where you're trying to print the hash,
and your personal preferences. The best general-purpose solution is the pp library.

When a given hash element is too big to fit on one line, pp knows to put it on multiple lines.
Not only that, but (as with Hash#inspect), the output is valid Ruby syntax for creating
the hash: you can copy and paste it directly into a Ruby program to recreate the hash.

The pp library can also pretty-print to I/O streams besides standard output, and can print
to shorter lines (the default line length is 79). This example prints the hash to $stderr
and wraps at column 50:

 PP::pp(h, $stderr, 50)
 # {:nickname=>"Bob",
 # :email_addresses=>
 # {:home=>"bob@example.com",
 # :work=>"robert@example.com"},
 # :age=>43,
 # :name=>"Robert"}
 # => #<IO:0x2c8cc>

Chapter 5. Hashes Page 19 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You can also print hashes by converting them into YAML with the yaml library. YAML is
a human-readable markup language for describing data structures:

 require 'yaml'
 puts h.to_yaml
 # --
 # :nickname: Bob
 # :age: 43
 # :name: Robert
 # :email_addresses:
 # :home: bob@example.com
 # :work: robert@example.com

If none of these is suitable, you can print the hash out yourself by using Hash#each_pair
to iterate over the hash elements:

 h[:email_addresses].each_pair do |key, val|
 puts "#{key} => #{val}"
 end
 # home => bob@example.com
 # work => robert@example.com

See Also

• Recipe 8.10, "Getting a Human-Readable Printout of Any Object," covers the general
case of this problem

• Recipe 13.1, "Serializing Data with YAML"

Recipe 5.10. Inverting a Hash

Problem
Given a hash, you want to switch the keys and values. That is, you want to create a new
hash whose keys are the values of the old hash, and whose values are the keys of the old
hash. If the old hash mapped "human" to "wolf;" you want the new hash to map "wolf" to
"human."

Solution
The simplest technique is to use the Hash#invert method:

 phone_directory = { 'Alice' => '555-1212',
 'Bob' => '555-1313',
 'Mallory' => '111-1111' }
 phone_directory.invert
 # => {"111-1111"=>"Mallory", "555-1212"=>"Alice", "555-1313"=>"Bob"}

Chapter 5. Hashes Page 20 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-10#rubyckbk-CHP-8-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-1#rubyckbk-CHP-13-SECT-1

Discussion
Hash#invert probably won't do what you want if your hash maps more than one key to
the same value. Only one of the keys for that value will show up as a value in the inverted
hash:

 phone_directory = { 'Alice' => '555-1212',
 'Bob' => '555-1313',
 'Carol' => '555-1313',
 'Mallory' => '111-1111',
 'Ted' => '555-1212' }
 phone_directory.invert
 # => {"111-1111"=>"Mallory", "555-1212"=>"Ted", "555-1313"=>"Bob"}

To preserve all the data from the original hash, borrow the idea behind Recipe 5.6, and
write a version of invert that keeps an array of values for each key. The following is based
on code by Tilo Sloboda:

 class Hash
 def safe_invert
 new_hash = {}
 self.each do |k,v|
 if v.is_a? Array
 v.each { |x| new_hash.add_or_append(x, k) }
 else
 new_hash.add_or_append(v, k)
 end
 end
 return new_hash
 end

The add_or_append method a lot like the method MultivaluedHash#[]= defined in
Recipe 5.6:

 def add_or_append(key, value)
 if has_key?(key)
 self[key] = [value, self[key]].flatten
 else
 self[key] = value
 end
 end
 end

Here's safe_invert in action:

 phone_directory.safe_invert
 # => {"111-1111"=>"Mallory", "555-1212"=>["Ted", "Alice"],
 # "555-1313"=>["Bob", "Carol"]}

 phone_directory.safe_invert.safe_invert
 # => {"Alice"=>"555-1212", "Mallory"=>"111-1111", "Ted"=>"555-1212",
 # => "Carol"=>"555-1313", "Bob"=>"555-1313"}

Ideally, if you called an inversion method twice you'd always get the same data you started
with. The safe_invert method does better than invert on this score, but it's not

Chapter 5. Hashes Page 21 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

perfect. If your original hash used arrays as hash keys, safe_invert will act as if you'd
individually mapped each element in the array to the same value. Call safe_invert twice,
and the arrays will be gone.

See Also

• Recipe 5.5, "Using an Array or Other Modifiable Object as a Hash Key"
• "True Inversion of a Hash in Ruby," by Tilo Sloboda (http://www.unixgods.org/~tilo/

Ruby/invert_hash.html)
• The Facets library defines a Hash#inverse method much like safe_invert

Recipe 5.11. Choosing Randomly from a Weighted List

Problem
You want to pick a random element from a collection, where each element in the collection
has a different probability of being chosen.

Solution
Store the elements in a hash, mapped to their relative probabilities. The following code
will work with a hash whose keys are mapped to relative integer probabilities:

 def choose_weighted(weighted)
 sum = weighted.inject(0) do |sum, item_and_weight|
 sum += item_and_weight[1]
 end
 target = rand(sum)
 weighted.each do |item, weight|
 return item if target <= weight
 target -= weight
 end
 end

For instance, if all the keys in the hash map to 1, the keys will be chosen with equal
probability. If all the keys map to 1, except for one which maps to 10, that key will be picked
10 times more often than any single other key. This algorithm lets you simulate those
probability problems that begin like, "You have a box containing 51 black marbles and 17
white marbles…":

 marbles = { :black => 51, :white => 17 }
 3.times { puts choose_weighted(marbles) }
 # black
 # white
 # black

Chapter 5. Hashes Page 22 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.unixgods.org/~tilo/Ruby/invert_hash.html
http://www.unixgods.org/~tilo/Ruby/invert_hash.html

I'll use it to simulate a lottery in which the results have different probabilities of showing
up:

 lottery_probabilities = { "You've wasted your money!" => 1000,
 "You've won back the cost of your ticket!" => 50,
 "You've won two shiny zorkmids!" => 20,
 "You've won five zorkmids!" => 10,
 "You've won ten zorkmids!" => 5,
 "You've won a hundred zorkmids!" => 1 }

 # Let's buy some lottery tickets.
 5.times { puts choose_weighted(lottery_probabilities) }
 # You've wasted your money!
 # You've wasted your money!
 # You've wasted your money!
 # You've wasted your money!
 # You've won five zorkmids!

Discussion
An extremely naive solution would put the elements in a list and choose one at random.
This doesn't solve the problem because it ignores weights altogether: low-weight elements
will show up exactly as often as high-weight ones. A less naive solution would be to repeat
each element in the list a number of times proportional to its weight. Under this
implementation, our simulation of the marble box would contain :black 51 times
and :white 17 times, just like a real marble box. This is a common quick-and-dirty
solution, but it's hard to maintain, and it uses lots of memory.

The algorithm given above actually works the same way as the less naive solution: the
numeric weights stand in for multiple copies of the same object. Instead of picking one of
the 68 marbles, we pick a number between 0 and 67 inclusive. Since we know there are 51
black marbles, we simply decide that the numbers from 0 to 50 will represent black
marbles.

For the implementation given above to work, all the weights in the hash must be integers.
This isn't a big problem the first time you create a hash, but suppose that after the lottery
has been running for a while, you decide to add a new jackpot that's 10 times less common
than the 100-zorkmid jackpot. You'd like to give this new possibility a weight of 0.1, but
that won't work with the choose_weighted implementation. You'll need to give it a
weight of 1, and multiply all the existing weights by 10.

There is an alternative, though: normalize the weights so that they add up to 1. You can
then generate a random floating-point number between 0 and 1, and use a similar
algorithm to the one above. This approach lets you weight the hash keys using any numeric
objects you like, since normalization turns them all into small floating-point numbers
anyway.

 def normalize!(weighted)
 sum = weighted.inject(0) do |sum, item_and_weight|

Chapter 5. Hashes Page 23 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 sum += item_and_weight[1]
 end
 sum = sum.to_f
 weighted.each { |item, weight| weighted[item] = weight/sum }
 end

 lottery_probabilities["You've won five hundred zorkmids!"] = 0.1
 normalize!(lottery_probabilities)
 # => { "You've wasted your money!" => 0.920725531718995,
 # "You've won back the cost of your ticket!" => 0.0460362765859497,
 # "You've won two shiny zorkmids!" => 0.0184145106343799,
 # "You've won five zorkmids!" => 0.00920725531718995,
 # "You've won ten zorkmids!" => 0.00460362765859497,
 # "You've won a hundred zorkmids!" => 0.000920725531718995,
 # "You've won five hundred zorkmids!" => 9.20725531718995e-05 }

Once the weights have been normalized, we know that they sum to one (within the limits
of floating-point arithmetic). This simplifies the code that picks an element at random,
since we don't have to sum up the weights every time:

 def choose_weighted_assuming_unity(weighted)
 target = rand
 weighted.each do |item, weight|
 return item if target <= weight
 target -= weight
 end
 end

 5.times { puts choose_weighted_assuming_unity(lottery_probabilities) }
 # You've wasted your money!
 # You've wasted your money!
 # You've wasted your money!
 # You've wasted your money!
 # You've won back the cost of your ticket!

See Also

• Recipe 2.5, "Generating Random Numbers"
• Recipe 6.9, "Picking a Random Line from a File"

Recipe 5.12. Building a Histogram

Problem
You have an array that contains a lot of references to relatively few objects. You want to
create a histogram, or frequency map: something you can use to see how often a given
object shows up in the array.

Solution
Build the histogram in a hash, mapping each object found to the number of times it
appears.

Chapter 5. Hashes Page 24 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-5#rubyckbk-CHP-2-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-9#rubyckbk-CHP-6-SECT-9

 module Enumerable
 def to_histogram
 inject(Hash.new(0)) { |h, x| h[x] += 1; h}
 end
 end

 [1, 2, 2, 2, 3, 3].to_histogram
 # => {1=>1, 2=>3, 3=>2}

 ["a", "b", nil, "c", "b", nil, "a"].to_histogram
 # => {"a"=>2, "b"=>2, "c"=>1, nil=>2}

 "Aye\nNay\nNay\nAbstaining\nAye\nNay\nNot Present\n".to_histogram
 # => {"Abstaining\n"=>1, "Nay\n"=>3, "Not Present\n"=>1, "Aye\n"=>2}

 survey_results = { "Alice" => :red, "Bob" => :green, "Carol" => :green,
 "Mallory" => :blue }
 survey_results.values.to_histogram
 # => {:red=>1, :green=>2, :blue=>1}

Discussion
Making a histogram is an easy and fast (linear-time) way to summarize a dataset.
Histograms expose the relative popularity of the items in a dataset, so they're useful for
visualizing optimization problems and dividing the "head" from the "long tail."

Once you have a histogram, you can find the most or least common elements in the list,
sort the list by frequency of appearance, or see whether the distribution of items matches
your expectations. Many of the other recipes in this book build a histogram as a first step
towards a more complex algorithm.

Here's a quick way of visualizing a histogram as an ASCII chart. First, we convert the
histogram keys to their string representations so they can be sorted and printed. We also
store the histogram value for the key, since we can't do a histogram lookup later based on
the string value we'll be using.

 def draw_graph(histogram, char="#")
 pairs = histogram.keys.collect { |x| [x.to_s, histogram[x]] }.sort

Then we find the key with the longest string representation. We'll pad the rest of the
histogram rows to this length, so that the graph bars will line up correctly.

 largest_key_size = pairs.max { |x,y| x[0].size <=> y[0].size }[0].size

Then we print each key-value pair, padding with spaces as necessary.

 pairs.inject("") do |s,kv|
 s << "#{kv[0].ljust(largest_key_size)} |#{char*kv[1]}\n"
 end
 end

Chapter 5. Hashes Page 25 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a histogram of the color survey results from the Solution:

 puts draw_graph(survey_results.values.to_histogram)
 # blue |#
 # green |##
 # red |#

This code generates a bunch of random numbers, then graphs the random distribution:

 random = []
 100.times { random << rand(10) }
 puts draw_graph(random.to_histogram)
 # 0 |############
 # 1 |########
 # 2 |#######
 # 3 |#########
 # 4 |##########
 # 5 |#############
 # 6 |###############
 # 7 |########
 # 8 |#######
 # 9 |###########

See Also

• Recipe 2.8, "Finding Mean, Median, and Mode"
• Recipe 4.9, "Sorting an Array by Frequency of Appearance"

Recipe 5.13. Remapping the Keys and Values of a Hash

Problem
You have two hashes with common keys but differing values. You want to create a new
hash that maps the values of one hash to the values of another.

Solution

 class Hash
 def tied_with(hash)
 remap do |h,key,value|
 h[hash[key]] = value
 end.delete_if { |key,value| key.nil? || value.nil? }
 end

Here is the Hash#remap method:

 def remap(hash={})
 each { |k,v| yield hash, k, v }
 hash
 end
 end

Chapter 5. Hashes Page 26 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-8#rubyckbk-CHP-2-SECT-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-9#rubyckbk-CHP-4-SECT-9

Here's how to use Hash#tied_with to merge two hashes:

 a = {1 => 2, 3 => 4}
 b = {1 => 'foo', 3 => 'bar'}
 a.tied_with(b) # => {"foo"=>2, "bar"=>4}
 b.tied_with(a) # => {2=>"foo", 4=>"bar"}

Discussion
This remap method can be handy when you want to make a similar change to every item
in a hash. It is also a good example of using the yield method.

Hash#remap is conceptually similar to Hash#collect, but Hash#collect builds up a
nested array of key-value pairs, not a new hash.

See Also

• The Facets library defines methods Hash#update_each and
Hash#replace_each! for remapping the keys and values of a hash

Recipe 5.14. Extracting Portions of Hashes

Problem
You have a hash that contains a lot of values, but only a few of them are interesting. You
want to select the interesting values and ignore the rest.

Solution
You can use the Hash#select method to extract part of a hash that follows a certain rule.
Suppose you had a hash where the keys were Time objects representing a certain date, and
the values were the number of web site clicks for that given day. We'll simulate such as
hash with random data:

 require 'time'
 click_counts = {}
 1.upto(30) { |i| click_counts[Time.parse("2006-09-#{i}")] = 400 + rand(700) }
 p click_counts
 # {Sat Sep 23 00:00:00 EDT 2006=>803, Tue Sep 12 00:00:00 EDT 2006=>829,
 # Fri Sep 01 00:00:00 EDT 2006=>995, Mon Sep 25 00:00:00 EDT 2006=>587,
 # …

You might want to know the days when your click counts were low, to see if you could spot
a trend. Hash#select can do that for you:

 low_click_days = click_counts.select {|key, value| value < 450 }

Chapter 5. Hashes Page 27 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # [[Thu Sep 14 00:00:00 EDT 2006, 449], [Mon Sep 11 00:00:00 EDT 2006, 406],
 # [Sat Sep 02 00:00:00 EDT 2006, 440], [Mon Sep 04 00:00:00 EDT 2006, 431],
 # …

Discussion
The array returned by Hash#select contains a number of key-value pairs as two-element
arrays. The first element of one of these inner arrays is a key into the hash, and the second
element is the corresponding value. This is similar to how Hash#each yields a succession
of two-element arrays.

If you want another hash instead of an array of key-value pairs, you can use Hash#inject
instead of Hash#select. In the code below, kv is a two-element array containing a key-
value pair. kv[0] is a key from click_counts, and kv[1] is the corresponding value.

 low_click_days_hash = click_counts.inject({}) do |h, kv|
 k, v = kv
 h[k] = v if v < 450
 h
 end
 # => {Mon Sep 25 00:00:00 EDT 2006=>403,
 # Wed Sep 06 00:00:00 EDT 2006=>443,
 # Thu Sep 28 00:00:00 EDT 2006=>419}

You can also use the Hash.[] constructor to create a hash from the array result of
Hash#select:

 low_click_days_hash = Hash[*low_click_days.flatten]
 # => {Thu Sep 14 00:00:00 EDT 2006=>449, Mon Sep 11 00:00:00 EDT 2006=>406,
 # Sat Sep 02 00:00:00 EDT 2006=>440, Mon Sep 04 00:00:00 EDT 2006=>431,
 # …

See Also

• Recipe 4.13, "Extracting Portions of Arrays"

Recipe 5.15. Searching a Hash with Regular Expressions

Credit: Ben Giddings

Problem
You want to grep a hash: that is, find all keys and/or values in the hash that match a regular
expression.

Chapter 5. Hashes Page 28 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-13#rubyckbk-CHP-4-SECT-13

Solution
The fastest way to grep the keys of a hash is to get the keys as an array, and grep that:

 h = { "apple tree" => "plant", "ficus" => "plant",
 "shrew" => "animal", "plesiosaur" => "animal" }
 h.keys.grep /p/
 # => ["apple tree", "plesiosaur"]

The solution for grepping the values of a hash is similar (substitute Hash#values for
Hash#keys), unless you need to map the values back to the keys of the hash. If that's what
you need, the fastest way is to use Hash#each to get key-value pairs, and match the regular
expression against each value.

 h.inject([]) { |res, kv| res << kv if kv[1] =~ /p/; res }
 # => [["ficus", "plant"], ["apple tree", "plant"]]

The code is similar if you need to find key-value pairs where either the key or the value
matches a regular expression:

 class Hash
 def grep(pattern)
 inject([]) do |res, kv|
 res << kv if kv[0] =~ pattern or kv[1] =~ pattern
 res
 end
 end
 end

 h.grep(/pl/)
 # => [["ficus", "plant"], ["apple tree", "plant"], ["plesiosaur", "animal"]]
 h.grep(/plant/) # => [["ficus", "plant"], ["apple tree", "plant"]]
 h.grep(/i.*u/) # => [["ficus", "plant"], ["plesiosaur", "animal"]]

Discussion
Hash defines its own grep method, but it will never give you any results. Hash#grep is
inherited from Enumerable#grep, which tries to match the output of each against the
given regular expression. Hash#each returns a series of two-item arrays containing key-
value pairs, and an array will never match a regular expression. The Hash#grep
implementation above is more useful.

Hash#keys.grep and Hash#values.grep are more efficient than matching a regular
expression against each key or value in a Hash, but those methods create a new array
containing all the keys in the Hash. If memory usage is your primary concern, iterate over
each_key or each_value instead:

 res = []
 h.each_key { |k| res << k if k =~ /p/ }
 res # => ["apple tree", "plesiosaur"]

Chapter 5. Hashes Page 29 Return to Table of Contents

Chapter 5. Hashes
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Hashes
	Using Symbols as Hash Keys
	Creating a Hash with a Default Value
	Adding Elements to a Hash
	Removing Elements from a Hash
	Using an Array or Other Modifiable Object as a Hash Key
	Keeping Multiple Values for the Same Hash Key
	Iterating Over a Hash
	Iterating Over a Hash in Insertion Order
	Printing a Hash
	Inverting a Hash
	Choosing Randomly from a Weighted List
	Building a Histogram
	Remapping the Keys and Values of a Hash
	Extracting Portions of Hashes
	Searching a Hash with Regular Expressions

