
Table of Contents

Graphics and Other File Formats .. 1
Thumbnailing Images ... 1
Adding Text to an Image .. 4
Converting One Image Format to Another .. 8
Graphing Data .. 10
Adding Graphical Context with Sparklines .. 14
Strongly Encrypting Data ... 17
Parsing Comma-Separated Data .. 19
Parsing Not-Quite-Comma-Separated Data .. 22
Generating and Parsing Excel Spreadsheets ... 24
Compressing and Archiving Files with Gzip and Tar .. 26
Reading and Writing ZIP Files .. 28
Reading and Writing Configuration Files ... 30
Generating PDF Files .. 31
Representing Data as MIDI Music .. 36

Chapter 12. Graphics and Other File Formats

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

12. Graphics and Other File Formats
Hundreds of standards exist for storing structured data in text or binary files. Some of
these are so popular that we've devoted entire chapters to them (Chapters 11 and 13). Some
are so simple that you can process them with the ad hoc techniques listed in Chapters 1 and
6. This chapter is a grab bag that tries to cover the rest of the field.

We focus especially on graphics, probably the most common binary files. Ruby lacks a
mature image manipulation library like the Python Imaging Library, but it does have
bindings to ImageMagick and GraphicsMagick, popular and stable C libraries. The
RMagick library provides the same interface against ImageMagick and GraphicsMagick,
so it doesn't matter which one you use.

You can get RMagick by installing the RMagick or Rmagick-win32 gem. Unfortunately,
the C libraries themselves are difficult to install: they have a lot of dependencies, especially
if you want to process image formats like GIF and PostScript. The installation FAQ can
help (http://rmagick.rubyforge.org/install-faq.html). On Debian GNU/Linux, you can
just install the imagemagick package and then the RMagick gem.

The first recipes in this chapter show how to use RMagick to manipulate and convert
images (on the question of finding images, see Recipe 16.2). Then it gets miscellaneous:
we cover encryption, archive formats, Excel spreadsheets, and music files. We don't have
space to cover every popular file format, but this chapter should give you an idea of what's
out there. If this chapter lacks a recipe on your file format of choice, you may be able to
find a Ruby library for it on the RAA, or by doing a web search for ruby[file format
name].

Recipe 12.1. Thumbnailing Images

Credit: Antonio Cangiano

Problem
Given an image, you want to create a smaller image to serve as a thumbnail.

Chapter 12. Graphics and Other File Formats Page 1 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-11#rubyckbk-CHP-11
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13#rubyckbk-CHP-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-1#rubyckbk-CHP-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6#rubyckbk-CHP-6
http://rmagick.rubyforge.org/install-faq.html
http://safari.oreilly.com/0596523696/rubyckbk-CHP-16-SECT-2#rubyckbk-CHP-16-SECT-2

Solution
Use RMagick, available from the rmagick or rmagick-win32 gems. Its Magick module
gives you a simple but versatile way to manipulate images. The class Magick::Image lets
you resize images four different ways: with resize, scale, sample, or thumbnail.

All four methods accept a pair integer values, corresponding to the width and height in
pixels of the thumbnail you want. Here's an example that uses resize: it takes the file
myimage.jpg and makes a thumbnail of it 100 pixels wide by 100 pixels tall:

 require 'rubygems'
 require 'RMagick'

 img = Magick::Image.read('myimage.jpg').first
 width, height = 100, 100
 thumb = img.resize(width, height)
 thumb.write('mythumbnail.jpg')

Discussion
The class method Image.read, used in the Solution, receives an image filename as an
argument and returns an array of Image objects.[1] You obtain the first (and, usually, only)
element through Array#first.

[1] Why an array? Because you can pass in an animated GIF or a multilayered image file to Image.read. If you do, the array will contain an Image object for each
image in the animated GIF, or for each layer in the multilayered file.

The code given in the Solution produces a thumbnail that is 100 pixels by 100, no matter
what dimensions the original image had. If the original image was a square, its proportions
will be maintained. But if the initial image was a rectangle, squishing it into a 100 x 100
box will distort it.

If all your thumbnails need to be the same size, you might be willing to live with this
distortion. But to maintain the proportions between the longest and shortest dimensions,
you should define your thumbnail's width and height in terms of the original image's aspect
ratio. You can get the image's original width and height by using its accessor methods,
Magick::Image#columns and Magick::Image#rows.

A simpler solution is to pass resize a floating-point number as a scaling factor. This
changes the image's size without altering the aspect ratio. Here's how to generate an image
that is 15% the size of the original:

 scale_factor = 0.15
 thumb = img.resize(scale_factor)
 thumb.write("mythumbnail.jpg")

Chapter 12. Graphics and Other File Formats Page 2 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

To impose a maximum size on an image without altering its aspect ratio, use
change_geometry:

 def thumb_no_bigger_than(img, width, height)
 img.change_geometry("#{width}x#{height}") do |cols, rows, img|
 img.resize(cols, rows)
 end
 end

 img.rows # => 470
 img.columns # => 892
 thumb = thumb_no_bigger_than(img, 100, 100)
 thumb.rows # => 53
 thumb.columns # => 100

There are other ways of getting a thumbnail besides using resize. All of the following
lines give you some kind of thumbnail. The methods used below also have equivalent
methods (like scale!) that modify an Image object in place:

 thumb = img.scale(width, height)
 thumb = img.scale(scale_factor)
 thumb = img.sample(width, height)
 thumb = img.sample(scale_factor)
 thumb = img.thumbnail(width, height)
 thumb = img.thumbnail(scale_factor)

You might also want to generate a thumbnail by cropping an image, rather than resizing
it. The following code extracts an 80 x 100 pixel rectangle taken from the center of the
image:

 thumb = img.crop(Magick::CenterGravity, 80, 100)

Which of these methods should you use? Magick::Image#resize is the most advanced
method, because it accepts two optional arguments: filter and blur. When you specify
a filter, you alter the resizing algorithm's tradeoff between speed and quality. Refer to the
RMagick guide for a complete list of available filters.

The second optional argument, blur, is a floating-point number that can be used to blur
(values greater than 1) or sharpen (values less than 1) your image as it's resized. Blurring
an image is a way to hide visual artifacts created by the thumbnailing process.

The scale method is simpler than resize, because it accepts only a width and height
pair, or a scale factor. When you want to generate a thumbnail that's 10% the size of your
original image or smaller, thumbnail is faster than resize.

Finally, sample scales images with pixel sampling. Unlike the other methods, it doesn't
introduce any new colors through interpolation.

Chapter 12. Graphics and Other File Formats Page 3 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The best advice is to try these methods out with your images. Through trial and error, you
can determine what works best for your application.

Using crop means approaching the problem in a different way. crop only includes a
portion of the original image in the thumbnail. crop has several signatures, each of which
requires the output image's width and height:

 # With an x, y offset relative to the upper-left corner:
 thumb = img.crop(x, y, width, height)
 # With a GravityType and the x, y offset:
 thumb = img.crop(Magick::WestGravity, x, y, width, height)

 # With a GravityType:
 thumb = img.crop(Magick::EastGravity, width, height)

GravityType is a constant that lets you specify the position of the region that needs to
be cropped. The available options are quite self-explanatory.

Be aware that the x and y offset passed to the method crop(gravity, x, y, width,
height) are not always calculated from the upper-left corner, but that they depend on the
GravityType being used. Refer to the crop documentation for specific details.

You may also want to enforce rules on your list of images so that they all match. For
example, you may require all your thumbnails to be smaller than 80 x 100 pixels, or you
might want them to all have an equal width of 120 pixels. You may even decide that all
images smaller than a certain limit should not be resized at all. For details on techniques
for this, see the RMagick documentation of the Image#change_geometry method.

See Also

• This chapter's introduction discusses installing RMagick

Recipe 12.2. Adding Text to an Image

Credit: Antonio Cangiano

Problem
You want to add some text to an image—perhaps a caption or a copyright statement.

Chapter 12. Graphics and Other File Formats Page 4 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
Create an RMagick Draw object and call its annotate method, passing in your image and
the text.

The following code adds the copyright string '© NPS' to the bottom-right corner of the
canyon.png image. It also specifies the font, the text color and size, and other features
of the text:

 require 'rubygems'
 require 'RMagick'

 img = Magick::Image.read('canyon.png').first
 my_text = "\251 NPS"

 copyright = Magick::Draw.new
 copyright.annotate(img, 0, 0, 3, 18, my_text) do
 self.font = 'Helvetica'
 self.pointsize = 12
 self.font_weight = Magick::BoldWeight
 self.fill = 'white'
 self.gravity = Magick::SouthEastGravity
 end
 img.write('canyoncopyrighted.png')

The resulting image looks like Figure 12-1.

Figure 12-1. With a copyright message in the bottom-right corner

Discussion
The annotate method takes a code block that sets properties on the Magick::Draw
object, describing how the annotation should be done. You can also set the properties on

Chapter 12. Graphics and Other File Formats Page 5 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the Draw object before calling annotate. This code works the same as the code given in
the Solution:

 require 'rubygems'
 require 'RMagick'

 img = Magick::Image.read("canyon.png").first
 my_text = '\251 NPS'

 copyright = Magick::Draw.new
 copyright.font = 'Helvetica'
 copyright.pointsize = 12
 copyright.font_weight = Magick::BoldWeight
 copyright.fill = 'white'
 copyright.gravity = Magick::SouthEastGravity
 copyright.annotate(img, 0, 0, 3, 18, my_text)
 img.write('canyoncopyrighted.png')

What do these attributes do?

• The font attribute selects the font type from among those installed on your system.
You can also specify the path to a specific font that is in a nonstandard location (e.g.,
"/home/antonio/Arial.ttf").

• pointsize is the font size in points (the default is 12). By default, there is one pixel
per point, so you can just specify the font size in pixels.

• font_weight accepts a WeightType constant. This can be a number (100, 200,
300,…900), BoldWeight (equivalent to 700), or the default of NormalWeight
(equivalent to 400).

• If you need your text to be italicized, you can set the font_style attribute to
Magick::ItalicStyle.

• fill defines the text color. The default is "black". You can use X or SVG color names
(such as "white", "red", "gray85", and "salmon"), or you can express the color in terms
of RGB values (such as "#fff" or "#ffffff"—two of the most common formats)

• gravity controls which part of the image will contain the annotated text, subject to
the arguments passed in to annotate. SouthEastGravity means that offsets will
be calculated from the bottom-right corner of the image.

Draw#annotate itself takes six arguments:

• The Image object, or else an ImageList containing the images you want to annotate.
• The width and height of the rectangle in which the text is to be positioned.
• The x and y offsets of the text, relative to that rectangle and to the gravity of the
Draw object.

• The text to be written.

In the Solution I wrote:

 copyright.annotate(img, 0, 0, 3, 15, my_text)

Chapter 12. Graphics and Other File Formats Page 6 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The width and height are zeros, which indicates that annotate should use the whole
image as its annotation rectangle. Earlier I gave the Draw object a gravity attribute of
SouthEastGravity. This means that annotate will position the text at the bottom-
right corner of the rectangle: that is, at the bottom-right corner of the image itself. The
offsets of 3 and 18 indicate that the text should start vertically 18 pixels from the bottom
of the box, and end horizontally 3 pixels from the right border of the box.

To position the text in the center of the image, I just change the gravity:

 copyright.gravity = Magick::CenterGravity
 copyright.annotate(img, 0, 0, 0, 0, my_text)

Note that I didn't have to specify any offsets: CenterGravity orients the text to be is in
the exact center of the image (Figure 12-2). Specifying offsets would only move the text
off-center.

The Magick library does substitutions for various special characters: for instance, the
string "%t" will be replaced with the filename of the image. For more information about
special characters, GravityType constants, and other annotate attributes that can let
you fully customize the text appearance, refer to the RMagick documentation.

Figure 12-2. With a copyright message in the center of the image

See Also

• RMagick Documentation (http://studio.imagemagick.org/RMagick/doc/)

Chapter 12. Graphics and Other File Formats Page 7 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://studio.imagemagick.org/RMagick/doc/

• On converting points to pixels (http://redux.imagemagick.org/RMagick/doc/
draw.html#get_type_metrics)

• SVG color keywords list (http://www.w3.org/TR/SVG/types.html#ColorKeywords)
• This chapter's introduction gives instructions on installing RMagick

Recipe 12.3. Converting One Image Format to Another
Credit: Antonio Cangiano

Problem
You want to convert an image to a different format.

Solution
With RMagick, you can just read in the file and write it out with a different extension. This
code converts a PNG file to JPEG format:

 require 'rubygems'
 require 'RMagick'

 img = Magick::Image.read('myimage.png').first
 img.write('myimage.jpg')

Discussion
As seen in the previous two recipes, Magick::Image.read receives the PNG image and
returns an array of Image objects, from which we select the first and only image.

RMagick lets us convert the file into a JPEG by simply changing the filename's extension
when we call the write method.

The underlying C library, ImageMagick or GraphicsMagick, has three ways of determining
the format of image files:

• Checking an explicitly specified format prefix: for example, "GIF:myimage.jpg"
indicates that the file myimage contains a GIF image, even though the file extension
says otherwise.

• Looking inside the file for a "magic number", a set of bytes that indicates the format.
• Checking the file extension: for example, "myphoto.gif" is presumably a GIF file.

Although the format prefix takes precedence over the magic number, RMagick won't be
fooled by an incorrect prefix. Eventually it will have to parse the image file, and the format
mismatch will be revealed:

Chapter 12. Graphics and Other File Formats Page 8 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://redux.imagemagick.org/RMagick/doc/draw.html#get_type_metrics
http://redux.imagemagick.org/RMagick/doc/draw.html#get_type_metrics
http://www.w3.org/TR/SVG/types.html#ColorKeywords

 Magick::Image.read("JPG:myimage.png")
 # Magick::ImageMagickError: Not a JPEG file: starts with 0x89 0x50 `myimage.png':

When you write an image to an output file, you can choose the output format by specifying
a file extension or a prefix.

 img = Magick::Image.read("myimage.png").first
 img.write("myimage.jpg") # Writes a JPEG
 img.write("myimage.gif") # Writes a GIF
 img.write("JPG:myimage") # Writes a JPEG
 img.write("JPG:myimage.gif") # Writes a JPEG

You can also get or set the file format of an image by calling the Image#format or
Image#format= methods:

 img.format # => "PNG"
 img.format = "GIF"
 img.format # => "GIF"

Of course, RMagick can't read to and write from every graphical file format in existence.
How can you tell whether your version of RMagick knows how to write a particular file
format?

You can query RMagick's capabilities by calling Magick.formats. This method returns
a hash that maps an image format to a four-character code:

 Magick.formats["GIF"] # => "*rw+"
 Magick.formats["JPG"] # => "*rw-"
 Magick.formats["AVI"] # => "*r--"
 Magick.formats["PS"] # => " rw+"

The code represents the things that RMagick can do with that file format:

• The first character is an asterisk if RMagick has native blob support for that format.
If not, the first character is a space. RMagick can convert most image formats into a
generic string format (with Image#to_blob)that can be stored in the database as a
BLOB and converted back into an Image object with Image.from_blob.

The second character is "r" if RMagick knows how to read files in that format.
Otherwise, it's a minus sign.

• The third character is "w" if RMagick knows how to write files in that format.
Otherwise, it's a minus sign.

• The final character is "+" if RMagick knows how to cram multiple images into a single
file (as in an animated GIF).

Chapter 12. Graphics and Other File Formats Page 9 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a little bit of metaprogramming that adds four predicate methods to Magick, one
for each element of the four-character code. You can use these methods instead of parsing
the code string:

 module Magick
 [["native_blob?", ?*], ["readable?", ?r],
 ["writable?", ?w], ["multi_image?", ?+]].each_with_index do |m, i|
 define_method(m[0]) do |format|
 code = formats[format]
 return code && code[i] == m[1]
 end
 module_function(m[0])
 end
 end

This code demonstrates that the GIF file format supports multi-image files, but the JPG
format doesn't:

 Magick.multi_image? 'GIF' # => true
 Magick.multi_image? 'JPG' # => false

ImageMagick and GraphicsMagick support the most common image formats (over 90
in total). However, they delegate support for many of these formats to external libraries
or programs, which you may need to install separately. For instance, to read or write
Postscript files, you'll need to have the Ghostscript program installed.

See Also

• RMagick Documentation (http://studio.imagemagick.org/RMagick/doc/)
• List of supported ImageMagick formats (http://www.imagemagick.org/script/

formats.php)

Recipe 12.4. Graphing Data

Problem
You want to convert a bunch of data into a graph; usually a line chart, bar chart, or pie
chart.

Solution
Use the Gruff library, written by Geoffrey Grosenbach. Install the gruff gem and build a
Gruff object corresponding to the type of graph you want (for instance, Gruff::Line,
Gruff::Bar,or Gruff::Pie). Add a dataset to the graph by passing data a label and
an array of data points.

Chapter 12. Graphics and Other File Formats Page 10 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://studio.imagemagick.org/RMagick/doc/
http://www.imagemagick.org/script/formats.php
http://www.imagemagick.org/script/formats.php

Here's code to create a graph that compares the running times of different sorts of
algorithms:

 require 'rubygems'
 require 'gruff'

 g = Gruff::Line.new(600) # The graph will be 600 pixels wide.
 g.title = 'Algorithm running times'
 g.theme_37signals # The best-looking theme, in my opinion.

 range = (1..101)
 g.data('Constant', range.collect { 1 })
 g.data('O(log n)', range.collect { |x| Math::log(x) / Math::log(2) })
 g.data('O(n)', range.collect { |x| x })
 g.data('O(n log n)', range.collect { |x| x * Math::log(x) / Math::log(2) })

 g.labels = {10 => 'n=10', 50 => 'n=50', 100 => 'n=100' }
 g.write('algorithms.png')

Figure 12-3 shows the graph it produces.

Figure 12-3. A line chart

Here's code to create a pie chart (shown in Figure 12-4). Note that the numbers given for the
datasets don't have to add up to 100. Gruff automatically scales the the pie chart to display
the right proportions.

Chapter 12. Graphics and Other File Formats Page 11 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 p = Gruff::Pie.new
 p.theme_monochrome
 p.title = "Survey: the value of pi"
 p.data('"About three"', [3])
 p.data('3.14', [8])
 p.data('3.1415', [11])
 p.data('22/7', [8])

 p.write('pipie.png')

Figure 12-4. A pi chart

Discussion
Most of the time, programmers who need a graphing library need a simple graphing
library: one that lets them easily produce a quick pie, line, or bar graph. Gruff works well
for graphing simple datasets, but it doesn't have the functionality of a fullfledged math
program.

Gruff's interface for customizing the display of datasets also leaves something to be desired.
Instead of letting you tweak the colors individually, it provides a number of themes that

Chapter 12. Graphics and Other File Formats Page 12 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

package together a background image, a text color, and a number of colors used in the
graphs. Unfortunately, most of the provided themes are ugly (theme_37signals is
pretty nice, though).

Here's a custom theme that makes monochrome graphs whose "colors" can be fairly easily
distinguished. It takes advantage of the fact that it's easy to distinguish dark shades of gray
from light shades, and that lighter shades are more easily distinguishable from one
another. The graphs in this recipe were actually created with this theme_monochrome,
so that the "colors" would be more easily distinguishable in a printed book.

 class Gruff::Base
 def theme_monochrome
 reset_themes
 @colors = "6E9C7ADB".scan(/./).collect { |c| "##{c * 6}"}
 @marker_color = 'black'
 @base_image = render_gradiated_background('white', 'white')
 end
 end

This code adds writer methods for the various colors, letting you modify the current theme
on an ad hoc basis. colors sets the colors used to differentiate datasets from each other.
marker_color method sets the color of the title and axis labels. background sets the
background to a solid color, or to a gradient between two colors.

 class Gruff::Base
 def colors=(colors)
 @colors = colors
 end

 def marker_color=(color)
 @marker_color = color
 end

 def background=(color1, color2=nil)
 color2 ||= color1
 @base_image = render_gradiated_background(color1, color2)
 end
 end

See Also

• The Gruff homepage (http://nubyonrails.topfunky.com/pages/gruff)
• A couple of other Ruby graphing libraries deserve mention:

o MRPlot is useful for plotting mathematical functions; its default implementation
works on top of RMagick (http://harderware.bleedingmind.com/index.php?
l=en&p=mrplot)

o The SVG::Graph library doesn't need any external libraries and produces
beautiful SVG graphs; unfortunately, not many programs have support for SVG
graphics, although newer versions of Firefox do (http://www.germane-
software.com/software/SVG/SVG::Graph/)

Chapter 12. Graphics and Other File Formats Page 13 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://nubyonrails.topfunky.com/pages/gruff
http://harderware.bleedingmind.com/index.php?l=en&p=mrplot
http://harderware.bleedingmind.com/index.php?l=en&p=mrplot
http://www.germane-software.com/software/SVG/SVG::Graph/
http://www.germane-software.com/software/SVG/SVG::Graph/

Recipe 12.5. Adding Graphical Context with Sparklines

Problem
You want to display a small bit of statistical context—a trend or a set of percentages—in
the middle of a piece of text, without breaking up the flow of the text.

Solution
Install the sparklines gem (written by Geoffrey Grosenbach)and create a sparkline: a
tiny embedded graphic that can go next to a piece of text without being too intrusive. If
you're creating an HTML page, the image doesn't even need to have its own file: it can be
embedded directly in the HTML.

This code creates a sparkline for a company's stock price, and embeds it in HTML after
the company's stock symbol:

 require 'rubygems'
 require 'sparklines'
 require 'base64'

 def embedded_sparkline
 %{}
 end

 # This method scales data so that the smallest item becomes 0 and the
 # largest becomes 100.
 def scale(data)
 min, max = data.min, data.max
 data.collect { |x| (x - min) / (max - min) * 100}
 end

 # Randomly generate closing prices for the past month.
 prices = [rand(10)]
 30.times { prices << prices.last + (rand - 0.5) }

 # Generate HTML containing a stock graph as an embedded sparkline.
 sparkline = embedded_sparkline { Sparklines.plot(scale(prices)) }
 open('stock.html', 'w') do |f|
 f << "Is EvilCorp (NASDAQ:EVIL #{sparkline}) poised for a comeback?"
 end

This code generates HTML that renders as shown in Figure 12-5.

Figure 12-5. A stock price history sparkline

Since it has no labels, the meaning of the sparkline must be determined from context. In
this case, the graphic follows a stock symbol, so you can guess that it graphs the stock price.

Chapter 12. Graphics and Other File Formats Page 14 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In a different context, the sparkline for EvilCorp might be the company's reported earnings
over time, or the results of a poll that tracks public opinion of the company.

Embedded sparklines won't show up in Internet Explorer, but if you're using Rails you can
use the sparklines_generator gem to put cross-browser sparklines in your views.

Discussion
Sparklines are a way of graphically conveying information that would take lots of text to
explain. They were invented by interface expert Edward Tufte, who describes them as
"intense, simple, word-sized graphics." As implemented in the Ruby Sparklines library, a
sparkline displays a small graph that shows a set of related numbers or a single percentage.

Sparklines are especially useful for annotating text with statistical summaries. We humans
are visual creatures: when we read a text with sparklines, we come away with a better feel
for the underlying numbers because we can visualize them as we read.

Sparklines are good at showing trends and making anomalies obvious. With sparklines,
you can distinguish a winning sports team from a losing one at a glance, or notice an
abnormally large expense report. Since neither the sparklines nor their axes are labelled,
sparklines are not so good at displaying multifaceted information or absolute quantities.

Because sparklines show trends better than absolute values, it's often useful to scale your
data so that it takes up the entire width of the sparkline (as in the stock price examples).
But if you want to compare two sparklines to each other (for instance, to compare the stock
prices of two companies), you shouldn't scale the data.

The Sparklines library can create several types of graph. Here's some code that annotates
a politician's stump speech with small pie charts representing polling data. Only two colors
are allowed in a sparklines pie chart: we'll choose a dark color to represent the percentage
of people who agree with a statement, and a light color to represent the percentage who
disagree. At a glance, the politician can see which parts of the speech are working and
which need to be retooled.

 agree_percentages = [55, 71, 44, 55, 81, 68]

 speech = %{This country faces a crisis and a crossroads. %s Our taxes
 are too high %s and our poodles are too well-groomed. %s Our children
 learn less in school %s and listen to louder music at home. %s The
 Internet scares me. %s}

 open('speech.html', 'w') do |f|
 sparklines = agree_percentages.collect do |p|
 embedded_sparkline do
 Sparklines.plot([p], :type => 'pie', :remain_color => 'pink',
 :share_color=>'blue',
 :background_color=>'transparent')
 end
 end

Chapter 12. Graphics and Other File Formats Page 15 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 f << speech % sparklines
 end

The resulting HTML file renders as shown in Figure 12-6.

Figure 12-6. A speech, annotated with poll result sparklines

The result of Sparklines.plot is a binary string containing an image in PNG format.
The string can be written to a PNG file on disk, or it can be encoded with the Base64 library
and embedded into a web page. The total size of speech.html, with six embedded
sparklines, is about six kilobytes. Unfortunately, the Internet Explorer browser doesn't
support the trick that lets you embed small images into a web page.

Sparklines in Rails Views
If you're using Rails, you can install the sparklines_generator gem on top of
sparklines. This gem provides a controller and a helper that let you incorporate
sparklines into your views, without having to worry about encoding the files or being
incompatible with IE.

To add sparklines to your application, run this command to give yourself a sparklines
controller:

 $./script/generate sparklines
 create app/controllers/sparklines_controller.rb
 create app/helpers/sparklines_helper.rb

Add a require 'sparklines' statement to your config/environment.rb file, and
call helper :sparklines from any controllers in which you want to use sparklines. You
can then call the sparkline_tag method from within your views.

A view that renders part of an annotated speech might look like this:

 This country faces a crisis and a crossroads.

 <%= sparkline_tag [55, 10, 10, 20, 30], :type => "pie", :remain_color=>"pink",
 :share_color => "blue", :background_color => "transparent" %>

That view generates HTML that looks like this:

 This country faces a crisis and a crossroads.

Chapter 12. Graphics and Other File Formats Page 16 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <img
 src="/sparklines?share_color=blue&remain_color=pink&results=55&type=pie&background_
 color=transparent"
 class="sparkline" alt="Sparkline Graph" />

Instead of embedding the sparkline within the HTML page (which won't work in IE), we
call out to the sparklines controller, whose only purpose is to generate image files of
sparklines on demand. This image is displayed like any other external image fetched
through HTTP.

See Also

• The home page for the Sparklines library, which includes a tutorial on installation and
use within Rails (http://nubyonrails.com/articles/2005/07/28/sparklines-graph-
library-for-ruby)

• The sparklines gem requires RMagick; a pure Ruby implementation with fewer
features is available (http://redhanded.hobix.com/inspect/
sparklinesForMinimalists.html)

• Sparklines are described in Edward Tufte's book, Beautiful Evidence (Graphics Pr);
you can see a version of the sparklines chapter from that book online (http://
www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1)

Recipe 12.6. Strongly Encrypting Data

Problem
You want to encrypt some data: to keep it private, or to keep it safe when sent through an
insecure medium like email.

Solution
There are at least two good symmetric-key cryptography libraries for Ruby: Pelle
Braendgaard's EzCrypto (available as the ezcrypto gem)and Richard Kernahan's Crypt
(a third-party download).

EzCrypto is a user-friendly Ruby wrapper around the OpenSSL library, which you may
need to install separately. Here's how to encrypt and decrypt a string with EzCrypto:

 require 'rubygems'
 require 'ezcrypto'

 plaintext = '24.9195N 17.821E'

 ezcrypto_key = EzCrypto::Key.with_password 'My secret key', 'salt string'
 ezcrypto_ciphertext = ezcrypto_key.encrypt(plaintext)
 # => "F\262\260\273\217\tR\351\362-\021-a\336\324Qc…"

Chapter 12. Graphics and Other File Formats Page 17 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://nubyonrails.com/articles/2005/07/28/sparklines-graph-library-for-ruby
http://nubyonrails.com/articles/2005/07/28/sparklines-graph-library-for-ruby
http://redhanded.hobix.com/inspect/sparklinesForMinimalists.html
http://redhanded.hobix.com/inspect/sparklinesForMinimalists.html
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1
http://www.edwardtufte.com/bboard/q-and-a-fetch-msg?msg_id=0001OR&topic_id=1

 ezcrypto_key.decrypt(ezcrypto_ciphertext)
 # => "24.9195N 17.821E"

The Crypt library gives each encryption algorithm its own class, so you need to decide
which you want to use. I'll use the AES/Rijndael algorithm: all the other algorithms have
the same interface.[2]

[2] The Crypt::IDEA class works a little differently, but that algorithm is patented, so you shouldn't use it anyway.

 require 'crypt/rijndael'

 aes_key = Crypt::Rijndael.new('My secret key')
 aes_cyphertext = aes_key.encrypt_string(plaintext)
 # => "\e\003\203\030]\203\t\346…"

 aes_key.decrypt_string(aes_cyphertext)
 # => "24.9195N 17.821E"

Discussion
EzCrypto is available as a gem (ezcrypto), and it's fast because the actual encryption and
decryption happens in the C OpenSSL libraries. Crypt is a pure Ruby implementation, so
it's slower, but you don't have to worry about OpenSSL being installed.

EzCrypto and Crypt both implement several symmetric key algorithms. With EzCrypto,
you can also specify the algorithm to use when you create an EzCrypto key. With Crypt,
you need to instantiate the appropriate algorithm's class:

 # EzCrypto example
 blowfish_key = EzCrypto::Key.with_password('My secret password', 'salt string',
 :algorithm=>'blowfish')
 # Crypt example
 require 'crypt/blowfish'
 blowfish_key = Crypt::Blowfish.new('My secret password')

The Crypt classes provide some convenience methods for encrypting and decrypting files
and streams. The encrypt_file method takes two filenames: it reads from one file,
encrypts the data, and writes ciphertext to the other. The encrypt_stream method is a
little more general: it reads plaintext from one I0 object and writes ciphertext to the other.

All the algorithms supported by Crypt and EzCrypto are symmetric-key algorithms: you
must use the same key to encrypt and decrypt the data. This is simple when you're only
encrypting data so that you can decrypt it later, but it's not so simple when you're sending
encrypted data to someone else. You need to securely share the key with the other person
ahead of time, or you need to use public-key algorithms like the ones provided by the Ruby
PKCS implementation.

There was some controversy about whether this recipe should even be included in this
Cookbook. A little knowledge is a dangerous thing, and a little is all we can impart in the

Chapter 12. Graphics and Other File Formats Page 18 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

space we have for a recipe. Simply using an encryption algorithm won't automatically make
your data secure. It won't be secure if you use a lousy password (like, say, "My secret
password", as in the examples above).

Further, your data won't be secure if you store your keys on disk the wrong way. It won't
be secure if your computer doesn't have a reliable enough source of random numbers.
When you prompt the user for their password, the operating system might pick that
moment to swap to disk the chunk of memory that contains the password, where an
attacker could find it. Even experts frequently make mistakes when they're writing
cryptography code.

That said, a strong encryption algorithm is better than a weak one, and trying to write your
own algorithm is just about the worst mistake you can make. All we ask that you be careful.
Instead of worrying about writing an algorithm to encrypt your data, get a book on security
and focus your efforts on making sure you use the existing algorithms correctly.

See Also

• Download the Crypt library from http://crypt.rubyforge.org/, and install it by running
ruby install.rb

• The EzCrypto documentation (http://ezcrypto.rubyforge.org/)
• The Ruby OpenSSL project (http://www.nongnu.org/rubypki/)
• The Ruby PKCS project homepage (http://dev.ctor.org/pkcs1)

Recipe 12.7. Parsing Comma-Separated Data

Problem
You have a plain-text string in a comma-delimited format. You need to parse this string,
either to build a data structure or to perform some operation on the data and write it back
out.

Solution
The built-in csv library can parse most common character-delimited formats. The
FasterCSV library, available as the fastercsv gem, improves on csv's performance and
interface. I'll show you both, but I recommend fastercsv unless you can't use any
software at all outside the standard library.

CSV::Reader.parse and FasterCSV.parse work the same way: they accept a string
or an open file as an argument, and yield each parsed row of the comma-delimited file as

Chapter 12. Graphics and Other File Formats Page 19 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://crypt.rubyforge.org/
http://ezcrypto.rubyforge.org/
http://www.nongnu.org/rubypki/
http://dev.ctor.org/pkcs1

an array. The csv yields a Row object that acts like an array full of Column objects.
FasterCSV just yields an array of strings.

 require 'csv'
 primary_colors = "red,green,blue\nred,yellow,blue"

 CSV::Reader.parse(primary_colors) { |row| row.each { |cell| puts cell }}
 # red
 # green
 # blue
 # red
 # yellow
 # blue

 require 'rubygems'
 require 'faster_csv'
 shakespeare = %{Sweet are the uses of adversity,As You Like It
 "We few, we happy few",Henry V
 "Seems, madam! nay it is; I know not ""seems.""",Hamlet}

 FasterCSV.parse(shakespeare) { |row| puts "'#{row[0]}' -- #{row[1]}"}
 # 'Sweet are the uses of adversity' -- As You Like It
 # 'We few, we happy few' -- Henry V
 # 'Seems, madam! nay it is; I know not "seems."' -- Hamlet

Discussion
Comma-delimited formats are among the most basic portable file formats. Unfortunately,
they're also among the least standardized. There are many different formats, and some are
internally inconsistent.

FasterCSV and the csv library can't parse every comma-delimited format, but they will
parse common formats like the one used by Microsoft Excel, and they're your best tool for
making sense of the myriad.

FasterCSV and csv both model a comma-delimited file as a nested array of strings. The
csv library's CSV class uses Row objects and Column objects instead of arrays and strings,
but it's the same idea. The terminology is from the spreadsheet world—understand-ably,
since a CSV file is a common way of portably storing spreadsheet data.

The complications begin when the spreadsheet cells themselves contain commas or
newlines. The standard way to handle this when exporting to comma-delimited format is
to surround those cells with double quotes. Then the question becomes what to do with
cells that contain double-quote characters. Both Ruby CSV libraries assume that double-
quote characters are escaped by doubling, turning each " into "", as in the Hamlet
quotation:

 %{"Seems, madam! nay it is; I know not ""seems.""",Hamlet}

Chapter 12. Graphics and Other File Formats Page 20 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you're certain that there are no commas or newlines embedded in your data, and thus
no need for quote handling, you can use String#split to parse delimited records more
quickly than csv. To output to this format, you can use Array#join:

 def parse_delimited_naive(input, fieldsep=',', rowsep="\n")
 input.split(rowsep).inject([]) do |arr, line|
 arr << line.split(fieldsep)
 end
 end

 def join_delimited_naive(structure, fieldsep=',', rowsep="\n")
 rows = structure.inject([]) do |arr, parsed_line|
 arr << parsed_line.join(fieldsep)
 end
 rows.join(rowsep)
 end

 parse_delimited_naive("1,2,3,4\n5,6,7,8")
 # => [["1", "2", "3", "4"], ["5", "6", "7", "8"]]

 join_delimited_naive(parse_delimited_naive("1,2,3,4\n5,6,7,8"))
 # => "1,2,3,4\n5,6,7,8"

 parse_delimited_naive('1;2;3;4|5;6;7;8', ';', '|')
 # => [["1", "2", "3", "4"], ["5", "6", "7", "8"]]

 parse_delimited_naive('1,"2,3",4')
 # => [["1", ""2", "3"", "4"]]

This is not recommended unless you wrote all the relevant code yourself, or can manually
inspect the code as well as the dataset. Just because you haven't seen any quoted cells yet
doesn't mean there won't be any in the future. When in doubt, use csv or fastercsv.
Handwritten CSV generators and parsers are a leading cause of bad data.

To create a comma-delimited file, open an output file with CSV.open or
FasterCSV.open, and append a series of arrays to the resulting file-like object. Every
array you append will be converted to a comma-delimited row in the destination file.

 data = [[1,2,3],['A','B','C'],['do','re','mi']]

 writer = FasterCSV.open('first3.csv', 'w')
 data.each { |x| writer << x }
 writer.close
 puts open('first3.csv').read()
 # 1,2,3
 # A,B,C
 # do,re,mi

 data = []
 FasterCSV.foreach('first3.csv') { |row| data << row }
 data
 # => [["1", "2", "3"], ["A", "B", "C"], ["do", "re", "mi"]]

See Also

• The FasterCSV documentation (http://fastercsv.rubyforge.org/)
• Chapter 11

Chapter 12. Graphics and Other File Formats Page 21 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://fastercsv.rubyforge.org/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-11#rubyckbk-CHP-11

Recipe 12.8. Parsing Not-Quite-Comma-Separated Data

Problem
You need to parse a plain-text string or file that's in a format similar to commadelimited
format, but its delimiters are some strings other than commas and newlines.

Solution
When you call a CSV::Reader method, you can specify strings to act as a row separator
(the string between each Row) and a field separator (the string between each Column).
You can do the same with simulated keyword arguments passed into
FasterCSV.parse. This should let you parse most formats similar to the comma-
delimited format:

 require 'csv'

 pipe_separated="1|2ENDa|bEND"

 CSV::Reader.parse(pipe_separated, '|', 'END') { |r| r.each { |c| puts c } }
 # 1
 # 2
 # a
 # b

 require 'rubygems'
 require 'faster_csv'
 FasterCSV.parse(pipe_separated, :col_sep=>'|', :row_sep=>'END') do |r|
 r.each { |c| puts c }
 end
 # 1
 # 2
 # a
 # b

Discussion
Value-delimited formats tend to differ along three axes:

• The field separator (usually a single comma)
• The row separator (usually a single newline)
• The quote character (usually a double quote)

Like Reader methods, Writer methods accept custom values for the field and row
separators.

 data = [[1,2,3],['A','B','C'],['do','re','mi']]

 open('first3.csv', 'w') do |output|
 CSV::Writer.generate(output, ':', '-END-') do |writer|
 data.each { |x| writer << x }
 end

Chapter 12. Graphics and Other File Formats Page 22 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 open('first3.csv') { |input| input.read() }
 # => "1:2:3-END-A:B:C-END-do:re:mi-END-"

 FasterCSV.open('first3.csv', 'w', :col_sep=>':', :row_sep=>'-END-') do |output|
 data.each { |x| output << x }
 end
 open('first3.csv') { |input| input.read() }
 # => "1:2:3-END-A:B:C-END-do:re:mi-END-"

It's rare that you'll need to override the quote character, and neither csv nor fastercsv
will let you do it. Both libraries' quote characters are hardcoded to the double-quote
character. If you need to parse a format that has different quote character, the simplest
thing to do is subclass FasterCSV and override its init_parsers method.

Change the regular expression assigned to @parsers[:csv_row], replacing all double
quotes with the quote character you want. The most common alternate quote character is
the single quote: to get that, you'd have an init_parsers method like this:

 class MyFasterCSV < FasterCSV
 def init_parsers(options)
 super
 @parsers[:csv_row] =
 / \G(?:^|#{Regexp.escape(@col_sep)}) # anchor the match
 (?: '((?>[^']*)(?>''[^']*)*)' # find quoted fields
 | # … or …
 ([^'#{Regexp.escape(@col_sep)}]*) # unquoted fields
)/x
 end
 end
 MyFasterCSV.parse("1,'2,3',4") { |r| puts r }
 # 1
 # 2,3
 # 4

Some value-delimited files are simply corrupt: they were generated by programs that didn't
think to escape quote marks or to quote cells with embedded delimiters. Neither csv nor
fastercsv can parse these files, because they're ambiguous or invalid.

 missing_quotes=%{20051002, Alice says, "I saw that!"}
 CSV::Reader.parse(missing_quotes) { |r| r.each { |c| puts c } }
 # CSV::IllegalFormatError: CSV::IllegalFormatError

 unescaped_quotes=%{20051002, "Alice says, "I saw that!""}
 FasterCSV.parse(unescaped_quotes) { |r| r.each { |c| puts c } }
 # FasterCSV::MalformedCSVError: Unclosed quoted field.

Your best strategy for dealing with this kind of file is to use regular expressions to massage
the data into a form that fastercsv can parse, or to parse it with String#split and
deal with any quoting problems afterwards. In either case, your code will have to work with
the particular quirks of the data you're trying to parse.

Chapter 12. Graphics and Other File Formats Page 23 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 12.7, "Parsing Comma-Separated Data"

Recipe 12.9. Generating and Parsing Excel Spreadsheets

Problem
Your program needs to parse data from Excel spreadsheets, or generate new Excel
spreadsheets.

Solution
To generate Excel files, use the spreadsheet library, available as a third-party gem (see
the See Also section below for where to get it). With it you can create simple Excel
spreadsheets. As of this writing, spreadsheet does not support formulas or large
spreadsheets (seven megabytes is the limit).

This code creates an Excel spreadsheet containing some random numbers with a total, and
saves it to disk:

 require 'rubygems'
 require 'spreadsheet/excel'

 SUM_SPREADSHEET = 'sum.xls'
 workbook = Spreadsheet::Excel.new(SUM_SPREADSHEET)
 worksheet = workbook.add_worksheet('Random numbers and their sum.')
 sum = 0
 random_numbers = (0..9).collect { rand(100) }
 worksheet.write_column(0, 0, random_numbers)

 format = workbook.add_format(:bold => true)
 worksheet.write(10, 0, "Sum:", format)
 worksheet.write(10, 1, random_numbers.inject(0) { |sum, x| sum + x })
 workbook.close

To parse an Excel file, use the parseexcel library, also available as a third-party
download. It can parse simple data out of the Excel file format. This code parses the Excel
file generated by the previous code:

 require 'parseexcel/parser'
 workbook = Spreadsheet::ParseExcel::Parser.new.parse(SUM_SPREADSHEET)

 worksheet = workbook.worksheet(0)
 sum = (0..9).inject(0) do |sum, row|

 sum + worksheet.cell(row, 0).value.to_i
 end

 worksheet.cell(10, 0).value # => "Sum:"
 worksheet.cell(10, 1).value # => 602.0
 sum # => 602

Chapter 12. Graphics and Other File Formats Page 24 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Like spreadsheet, parseexcel doesn't recognize spreadsheet formulas.

Discussion
The comma-separated file is the lingua franca for spreadsheet data, but sometimes you
must deal with real spreadsheet files. You can save other people's time by accepting their
Excel spreadsheets as input, instead of insisting they convert everything to CSV for you.
And nothing impresses manager types like an automatically generated spreadsheet file
they can poke at.

The spreadsheet and parseexcel libraries are only suitable for creating or parsing
simple spreadsheets: more or less the ones that export well to comma-delimited format.
If you want to handle more complex Excel files from Ruby, you have a couple options. The
POI Java library can write various Microsoft Office files, and it has Ruby bindings. If you're
running on a Windows computer that has Excel installed, you can use Ruby's built-in
win32ole library to communicate with the Excel installation.

Hopefully this will be fixed by the time you read this, but just in case: spreadsheets
generated with spreadsheet may show up as black-on-black in some spreadsheet
programs (Gnumeric is one). This is because spreadsheet generates workbooks with a
default format that specifies no background color. So each spreadsheet program uses its
default color, and some of them make unfortunate choices. Here's a subclass of Workbook
that specifies default text and background colors, so that you don't end up with a black-
on-black spreadsheet:

 class ExcelWithBackground < Spreadsheet::Excel
 def initialize(*args)
 super(*args)
 @format = Format.new(:bg_color => 'white', :fg_color => 'black')
 end
 end

 workbook = ExcelWithBackground.new(SUM_SPREADSHEET)
 # …

See Also

• You can download parseexcel from http://download.ywesee.com/parseexcel/
• The spreadsheet homepage is at http://rubyspreadsheet.sourceforge.net/; it's

available as a gem (http://prdownloads.sourceforge.net/rubyspreadsheet/), but
since it's not hosted on RubyForge, you can't just install it with gem install
spreadsheet-excel: you must download the gem and run gem install on the
local gem file

• POI (http://jakarta.apache.org/poi/index.html) and its Ruby bindings (http://
jakarta.apache.org/poi/poi-ruby.html)

Chapter 12. Graphics and Other File Formats Page 25 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://download.ywesee.com/parseexcel/
http://rubyspreadsheet.sourceforge.net/
http://prdownloads.sourceforge.net/rubyspreadsheet/
http://jakarta.apache.org/poi/index.html
http://jakarta.apache.org/poi/poi-ruby.html
http://jakarta.apache.org/poi/poi-ruby.html

• Information on scripting Excel in Ruby (http://www.rubygarden.org/ruby?
ScriptingExcel)

• The "Ruby and Microsoft Windows" chapter in the Pickaxe Book—Programming
Ruby by Dave Thomas, with Chad Fowler and Andy Hunt (Pragmatic Bookshelf)

Recipe 12.10. Compressing and Archiving Files with Gzip and Tar

Problem
You want to write compressed data to a file to save space, or uncompress the contents of
a compressed file. If you're compressing data, you might want to compress multiple files
into a single archive file.

Solution
The most common compression format on Unix systems is gzip. Ruby's zlib library lets
you read to and write from gzipped I/O streams as though they were normal files. The most
useful classes in this library are GzipWriter and GzipReader.[3]

[3] The compressed strings in these examples are actually larger than the originals. This is because I used very short strings to save space in the book, and short strings
don't compress well. Any compression technique introduces some overhead; with gzip, you don't actually save any space by compressing a text string of less than about
100 bytes.

Here's GzipWriter being used to create a compressed file, and GzipReader
decompressing the same file:

 require 'zlib'

 file = 'compressed.gz'
 Zlib::GzipWriter.open(file) do |gzip|
 gzip << "For my next trick, I'll be written to a compressed file."
 gzip.close
 end

 open(file, 'rb') { |f| f.read(10) }
 # => "\037\213\010\000\201\2766D\000\003"

 Zlib::GzipReader.open(file) { |gzip| gzip.read }
 # => "For my next trick, I'll be written to a compressed file."

Discussion
GzipWriter and GzipReader are most commonly used to write to files on disk, but you
can wrap any file-like object in the appropriate class and automatically compress
everything you write to it, or decompress everything you read from it.

The following code works the same way as the compression code in the Solution, but it's
more flexible: the File object that's passed into the Zlib::GzipWriter constructor
could just as easily be a Socket or other file-like object.

Chapter 12. Graphics and Other File Formats Page 26 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.rubygarden.org/ruby?ScriptingExcel
http://www.rubygarden.org/ruby?ScriptingExcel

 open('compressed.gz', 'wb') do |file|
 gzip = Zlib::GzipWriter.new(file)
 gzip << "For my next trick, I'll be written to a compressed file."
 gzip.close
 end

If you need to compress or decompress a string, use the Zlib::Deflate or
Zlib::Inflate classes rather than constructing a StringI0 object:

 deflated = Zlib::Deflate.deflate("I'm a compressed string.")
 # => "x\234\363T\317UHTH…"
 Zlib::Inflate.inflate(deflated)
 # => "I'm a compressed string."

Tar files

Gzip compresses a single file. What if you want to smash multiple files together into a single
archive file? The standard archive format for Unix is tar, and tar files are sometimes called
tarballs. A tarball might also be compressed with gzip to save space, but on Unix the
archiving and the compression are separate steps (unlike on Windows, where a ZIP file
both archives multiple files and compresses them).

The Minitar library is the simplest way to create tarballs in pure Ruby. It's available as the
archive-tar-minitar gem.[4]

[4] The RubyGems package defines the Gem::Package::TarWriter and Gem::Package::TarReader classes, which expose an interface similar to Minitar's. You
can use these classes if you're fanatical about minimizing your dependencies, but I don't recommend it. These classes only implement the bare-bones functionality
necessary to pack and unpack gem-like tarballs, and they also make your code look like it has something to do with RubyGems.

Here's some code that creates a tarball containing two files and a directory. Note the Unix
permission modes (0644, 0755, and 0600). These are the permissions the files will have
when they're extracted, perhaps by the Unix tar command.

 require 'rubygems'
 require 'archive/tar/minitar'

 open('tarball.tar', 'wb') do |f|
 Archive::Tar::Minitar::Writer.open(f) do |w|

 w.add_file('file1', :mode => 0644, :mtime => Time.now) do |stream, io|
 stream.write('This is file 1.')
 end

 w.mkdir('subdirectory', :mode => 0755, :mtime => Time.now)

 w.add_file('subdirectory/file2', :mode => 0600,
 :mtime => Time.now) do |stream, io|
 stream.write('This is file 2.')
 end
 end
 end

Chapter 12. Graphics and Other File Formats Page 27 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's a method that reads a tarball and print out its contents:

 def browse_tarball(filename)
 open(filename, 'rb') do |f|
 Archive::Tar::Minitar::Reader.open(f).each do |entry|
 puts %{I see a file "#{entry.name}" that's #{entry.size} bytes long.}
 end
 end
 end

 browse_tarball('tarball.tar')
 # I see a file "file1" that's 15 bytes long.
 # I see a file "subdirectory" that's 0 bytes long.
 # I see a file "subdirectory/file2" that's 15 bytes long.

And here's a simple method for archiving a number of disk files into a compressed tarball.
Note how the Minitar Writer is wrapped within a GzipWriter, which automatically
compresses the data as it's written. Minitar doesn't have to know about the
GzipWriter, because all file-like objects look more or less the same.

 def make_tarball(destination, *paths)
 Zlib::GzipWriter.open(destination) do |gzip|
 out = Archive::Tar::Minitar::Output.new(gzip)
 paths.each do |file|
 puts "Packing #{file}"
 Archive::Tar::Minitar.pack_file(file, out)
 end
 out.close
 end
 end

This code creates some files and tars them up:

 Dir.mkdir('colors')
 paths = ['colors/burgundy', 'colors/beige', 'colors/clear']
 paths.each do |path|
 open(path, 'w') do |f|
 f.puts %{This is a dummy file.}
 end
 end

 make_tarball('new_tarball.tgz', *paths)

 # Packing colors/burgundy
 # Packing colors/beige
 # Packing colors/clear
 # => #<File:new_tarball.tgz (closed)>

See Also

• On Windows, both compression and archiving are usually handled with ZIP files; see
the next recipe, Recipe 12.11, "Reading and Writing ZIP Files," for details

• Recipe 14.3, "Customizing HTTP Request Headers," uses zlib to decompress the
gzipped body of a response from a web server

Chapter 12. Graphics and Other File Formats Page 28 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-3#rubyckbk-CHP-14-SECT-3

Recipe 12.11. Reading and Writing ZIP Files

Problem
You want to create or examine a ZIP archive from within Ruby code.

Solution
Use the rubyzip gem. Its Zip module gives you several ways of putting files into ZIP
archives, and taking them out again. The simplest interface is the
Zip::ZipFileSystem, which duplicates most of the File and Dir operations within
the context of a ZIP file. You can use this to create ZIP files:

 require 'rubygems'
 require 'zip/zipfilesystem'

 Zip::ZipFile.open('zipfile.zip', Zip::ZipFile::CREATE) do |zip|
 zip.file.open('file1', 'w') { |f1| f1 << 'This is file 1.' }
 zip.dir.mkdir('subdirectory')
 zip.file.open('subdirectory/file2', 'w') { |f1| f1 << 'This is file 2.' }
 end

You can use the same interface to read a ZIP file. Here's a method that uses the equivalent of
Dir#foreach to recursively print out the contents of a ZIP file:

 def process_zipfile(zip, path='')
 if zip.file.file? path
 puts %{#{path}: "#{zip.read(path)}"}
 else
 unless path.empty?
 path += '/'
 puts path
 end
 zip.dir.foreach(path) do |filename|
 process_zipfile(zip, path + filename)
 end
 end
 end

And here it is running against the ZIP file I just created:

 Zip::ZipFile.open('zipfile.zip') do |zip|
 process_zipfile(zip)
 end
 # subdirectory/
 # subdirectory/file2: "This is file 2."
 # file1: "This is file 1."

Discussion
ZIP, or PKZip, is the most popular compression format on Windows. As seen in the
previous recipe, Unix separates the tasks of stuffing several files into a single archive

Chapter 12. Graphics and Other File Formats Page 29 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(tar), and compressing the resulting file (gzip). On Windows, ZIP files perform both tasks.
If you want to compress a single file, you need to put it into a ZIP file all by itself.

The rubyzip library provides several interfaces for creating and reading ZIP files.
Zip::ZipFileSystem is the easiest for most programmers: in the example above,
zip.file has about the same interface as the File class, and zip.dir is similar to the
Dir class. The analogy holds because a ZIP file actually contains a tiny filesystem inside it.
[5]

[5] This is how Windows XP's Explorer can let you browse a ZIP file as though it were a directory tree.

If you're porting Java code, or you're already familiar with Java's java.util.zip library,
you might prefer the Zip::ZipFile class. It more or less duplicates Java's ZipFile class
in a Ruby idiom. Here it is being used to create the same ZIP file I created in the Solution:

 Zip::ZipFile.open('zipfile2.zip', Zip::ZipFile::CREATE) do |zip|
 zip.get_output_stream('file1') { |f| f << 'This is file 1.' }
 zip.mkdir('subdirectory')
 zip.get_output_stream('subdirectory/file2') { |f| f << 'This is file 2.' }
 end

See Also

• The RDoc for the rubyzip gem (http://rubyzip.sourceforge.net/)

Recipe 12.12. Reading and Writing Configuration Files

Problem
You want to store your application's configuration on disk, in a format parseable by Ruby
but easily editable by someone with a text editor.

Solution
Put your configuration into a data structure, and write the data structure to disk as YAML.
So long as you only use built-in Ruby data types (strings, numbers, arrays, hashes, and so
on), the YAML file will be human-readable and -editable.

 require 'yaml'
 configuration = { 'color' => 'blue',
 'font' => 'Septimus',
 'font-size' => 7 }
 open('text.cfg', 'w') { |f| YAML.dump(configuration, f) }

 open('text.cfg') { |f| puts f.read }
 # --
 # font-size: 7
 # color: blue

Chapter 12. Graphics and Other File Formats Page 30 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://rubyzip.sourceforge.net/

 # font: Septimus

 open('text.cfg') { |f| YAML.load(f) }
 # => {"font-size"=>7, "color"=>"blue", "font"=>"Septimus"}

It's easy for a user to edit this: it's just a colon-separated, line-delimited set of key names
and values. Not a problem, even for a relatively unsophisticated user.

Discussion
YAML is a serialization format, designed to store data structures to disk and read them
back later. But there's no reason why the data structures can't be modified by other
programs while they're on disk. Since simple YAML files are human-editable, they make
good configuration files.

A YAML file typically contains a single data structure. The most common structures for
configuration data are a hash (seen in the Solution) and an array of hashes.

 configuration = [{ 'name' => 'Alice', 'donation' => 50 },
 { 'name' => 'Bob', 'donation' => 15, 'currency' => "EUR" }]
 open('donors.cfg', 'w') { |f| YAML.dump(configuration, f) }
 open('donors.cfg') { |f| puts f.read }
 # ---
 # - name: Alice
 # donation: 50
 # - name: Bob
 # donation: 15
 # currency: EUR

In Recipe 5.1 we advise saving memory by using symbols as hash keys instead of strings.
If your hash is going to be converted into human-editable YAML, you should always use
strings. Otherwise, people editing the YAML may become confused. Compare the following
two bits of YAML:

 puts { 'measurements' => 'metric' }.to_yaml
 # ---
 # measurements: metric
 puts { :measurements => :metric }.to_yaml
 # ---
 # :measurements: :metric

Outside the context of a Ruby program, the symbol :measurements is too easy to confuse
with the string ":measurements".

See Also

• Recipe 13.1, "Serializing Data with YAML"

Chapter 12. Graphics and Other File Formats Page 31 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-1#rubyckbk-CHP-5-SECT-1
http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-1#rubyckbk-CHP-13-SECT-1

Recipe 12.13. Generating PDF Files

Problem
You want to create a text or graphical document as a PDF, where you have complete control
over the layout.

Solution
Use Austin Zeigler's PDF::Writer library, available as the pdf-writer gem. Its API
gives you fine-grained control over the placement of text, images, and shapes.

This code uses PDF::Writer to produce a simple flyer with an image and a border (Figure
12-7). It assumes you've got a graphic called sue.png to insert into the document:

Figure 12-7. The flyer

 require 'rubygems'
 require 'pdf/writer' # => false

 # Putting "false" on the next line suppresses a huge output dump when
 # you run this code in irb.
 pdf = PDF::Writer.new; false

 pdf.text("LOST\nDINOSAUR", :justification => :center, :font_size => 42,
 :left => 50, :right => 50)
 pdf.image("sue.png", :left=> 100, :justification => :center, :resize => 0.75)
 pdf.text(%{Three-year-old <i>Tyrannosaurus rex</i>\nSpayed\nResponds to "Sue"},
 :left => 80, :font_size => 20, :justification => :left)
 pdf.text("(555) 010-7829", :justification => :center, :font_size => 36)

Chapter 12. Graphics and Other File Formats Page 32 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 pdf.rectangle(pdf.left_margin + 25, pdf.y-25,
 pdf.margin_width-50, pdf.margin_height-pdf.y+50).stroke; false

 pdf.save_as('flyer.pdf')

Discussion
So long as you're only calling Writer#text and Writer#image, PDF generation is easy.
PDF automatically adds new text and images to the bottom of the current text, creating
new pages as needed.

It gets tricky when you want to do something more complex, like draw shapes. Then you
need to specify the placement and dimensions in coordinates.

Take as an example the Writer#rectangle call in the Solution:

 pdf.rectangle(pdf.left_margin, pdf.y-25,
 pdf.margin_width, pdf.margin_height-pdf.y+25).stroke

The first two arguments are coordinates: the left edge of the rectangle and the bottom edge
of the rectangle. The second two arguments are the width and height of the rectangle.

The width is simple enough: my box starts at the left margin and its width is
pdf.margin_widthuser space units.[6] That is, my box takes up the entire width of
the page except for the margin. The height is a little more tricky, because I do my own
margins (25 user space units above and below the text), and because PDF coordinates start
from the bottom-left of the page, not the top-left. Think of a Cartesian plane: the point
(0,0)is below the point (0,1)and left of the point (1,0). That's how it is on a PDF page.

[6] A PDF user space unit is 1/72 of an inch.

Writer#y gives you the current position of the PDF::Writer "cursor:" the y-coordinate
of the space directly under the most recently added text or image. I use this to place the
bottom of the box just under the text.

If you want to generate many PDF documents from a template, you don't need to generate
the whole document from scratch each time. You can create a PDF::Writer containing
the skeleton of a document (say, just the corporate letterhead), then use Marshal.dump
to save it to a binary string. You can then use Marshal.load as many times as necessary
to get new documents, and fill in the blanks separately for each document.[7]

[7] Yes, this is kind of hacky. The best we can say is that the author of PDF::Writer himself recommends it (see "Creating Printable Documents with Ruby," cited in
the following See Also section).

Here's a Ruby class that generates personalized certificates of achievement. We generate
the PDF ahead of time with generate_pdf, leaving a blank space for the name. We can

Chapter 12. Graphics and Other File Formats Page 33 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

then fill in names by calling award_to. Instead of rerunning the PDF generation code
every time, award_to copies the predefined PDF over and over again by loading it from
its marshalled format.

 require 'rubygems'
 require 'pdf/writer'

 class Certificate

 def initialize(achievement)
 @without_name = Marshal.dump(generate_pdf(achievement))
 end

 def award_to(name)
 pdf = Marshal.load(@without_name)
 pdf.move_pointer(-225)
 pdf.text("<i>#{name}</i>", :font_size => 64,
 :justification => :center)
 return pdf
 end

 private
 def generate_pdf(achievement)
 pdf = PDF::Writer.new(:orientation => :landscape)
 pdf.info.title = "Certificate of Achievement"
 draw_border(pdf, 10, 12, 16, 18)
 draw_text(pdf, achievement)
 return pdf
 end

 def draw_border(pdf, *px_pos)
 px_pos.each do |px|
 pdf.rectangle(px, px, pdf.page_width - (px * 2),
 pdf.page_height - (px * 2)).stroke
 end
 end

 def draw_text(pdf, achievement)
 pdf.select_font "Times-Roman"
 pdf.text("\n", :font_size => 52)
 pdf.text("Certificate of Achievement\n", :justification => :center)
 pdf.text("\n", :font_size => 18)
 pdf.text("hereby granted to\n", :justification => :center)
 pdf.text("\n\n", :font_size => 64)
 pdf.text("in recognition of achieving the status of",
 :font_size => 18, :justification => :center)
 pdf.text(achievement, :font_size => 64, :justification => :center)
 end
 end

Now we can create a certificate and award it to many different people:

 certificate = Certificate.new('Ruby Hacker'); false
 ['Tricia Ball', 'Marty Wise', 'Dung Nguyen'].each do |name|
 certificate.award_to(name).save_as("#{name}.pdf")
 end

Figure 12-8 shows what Tricia Ball.pdf looks like.

Chapter 12. Graphics and Other File Formats Page 34 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 12-8. Congratulations!

This recipe only scratches the surface of what you can do with the PDF::Writer library.
Fortunately, there's an excellent manual and RDoc documentation. Although the library
provides a lot of classes, most of the methods you want will be in PDF::Writer and the
mixin PDF::Writer::Graphics.

See Also

• The PDF::Writer homepage (http://ruby-pdf.rubyforge.org/pdf-writer/)
• Generated RDoc (http://ruby-pdf.rubyforge.org/pdf-writer/doc/index.html)
• "Creating Printable Documents with Ruby," published in artima's Ruby Code &

Style, provides a helpful overview of the library as well as many links to PDF releated
resources (http://www.artima.com/rubycs/articles/pdf_writerP.html)

• The pdf-writer gem includes the source for the manual (manual.pwd)and a script
(bin/techbook)that turns it into PDF format; the manual is also available online
(http://ruby-pdf.rubyforge.org/pdf-writer/manual/index.html)

• If you want to read a PDF file and extract its text, try Hannes Wyss's rpdf2txt library
(http://raa.ruby-lang.org/project/rpdf2txt/)

• Recipe 8.16 for more about the Marshal technique for copying an object
• The Certificate class is used again in Recipe 14.19, "Running Servlets with

WEBrick"

Chapter 12. Graphics and Other File Formats Page 35 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://ruby-pdf.rubyforge.org/pdf-writer/
http://ruby-pdf.rubyforge.org/pdf-writer/doc/index.html
http://www.artima.com/rubycs/articles/pdf_writerP.html
http://ruby-pdf.rubyforge.org/pdf-writer/manual/index.html
http://raa.ruby-lang.org/project/rpdf2txt/
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-16#rubyckbk-CHP-8-SECT-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-14-SECT-19#rubyckbk-CHP-14-SECT-19

Recipe 12.14. Representing Data as MIDI Music

Problem
You want to represent a series of data points as a musical piece, or just create music
algorithmically.

Solution
Jim Menard's midilib library makes it easy to generate MIDI music files from Ruby. It's
available as the midilib gem.

Here's a simple method for visualizing a list of numbers as a piano piece. The largest
number in the list is mapped to the highest note on the piano keyboard (MIDI note 108),
and the smallest number to the lowest note (MIDI note 21).

 require 'rubygems'
 require 'midilib' # => false

 class Array
 def to_midi(file, note_length='eighth')

 midi_max = 108.0
 midi_min = 21.0

 low, high = min, max
 song = MIDI::Sequence.new

 # Create a new track to hold the melody, running at 120 beats per minute.
 song.tracks << (melody = MIDI::Track.new(song))
 melody.events << MIDI::Tempo.new(MIDI::Tempo.bpm_to_mpq(120))

 # Tell channel zero to use the "piano" sound.
 melody.events << MIDI::ProgramChange.new(0, 0)

 # Create a series of note events that play on channel zero.
 each do |number|
 midi_note = (midi_min + ((number-midi_min) * (midi_max-low)/high)).to_i
 melody.events << MIDI::NoteOnEvent.new(0, midi_note, 127, 0)
 melody.events << MIDI::NoteOffEvent.new(0, midi_note, 127,
 song.note_to_delta(note_length))
 end

 open(file, 'w') { |f| song.write(f) }
 end
 end

Now you can get an audible representation of any list of numbers:

 ((1..100).collect { |x| x ** 2 }).to_midi('squares.mid')

Chapter 12. Graphics and Other File Formats Page 36 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
The midilib library provides a set of classes for modeling a MIDI file: you can parse a
MIDI file, modify it with Ruby code, and write it back to disk.

A MIDI file is modeled by a Sequence object, which contains Track objects. A track is a
mainly a series of Event objects: for instance, each note in the piece has a NoteOnEvent
and a NoteOffEvent.

Array#to_midi works by transforming each number in the array into a corresponding
MIDI note. A standard piano keyboard can produce notes ranging from MIDI note 21 to
MIDI note 108, with middle C being at MIDI note 60. Array#to_midi scales the values
of the array to fit into this range as closely as possible, using the same formula you'd use
to convert between two temperature scales.

Working directly with the MIDI classes is difficult, especially if you want to compose music
instead of just transfering a data stream into MIDI note events. Here's a subclass of
MIDI::Track that provides some simplifying assumptions and some higher-level
musical functions, making it easy to compose simple multitrack tunes. Each TimedTrack
uses its own MIDI channel and makes sounds from only one instrument. A TimedTrack
can sound chords (this is very difficult with stock midilib), and instead of having to
remember the MIDI note range, you can refer to notes in terms of half-steps away from
middle C.

 class TimedTrack < MIDI::Track
 MIDDLE_C = 60
 @@channel_counter=0

 def initialize(number, song)
 super(number)
 @sequence = song
 @time = 0
 @channel = @@channel_counter
 @@channel_counter += 1
 end

 # Tell this track's channel to use the given instrument, and
 # also set the track's instrument display name.
 def instrument=(instrument)
 @events << MIDI::ProgramChange.new(@channel, instrument)
 super(MIDI::GM_PATCH_NAMES[instrument])
 end

 # Add one or more notes to sound simultaneously. Increments the per-track
 # timer so that subsequent notes will sound after this one finishes.
 def add_notes(offsets, velocity=127, duration='quarter')
 offsets = [offsets] unless offsets.respond_to? :each
 offsets.each do |offset|
 event(MIDI::NoteOnEvent.new(@channel, MIDDLE_C + offset, velocity))
 end
 @time += @sequence.note_to_delta(duration)
 offsets.each do |offset|
 event(MIDI::NoteOffEvent.new(@channel, MIDDLE_C + offset, velocity))
 end
 recalc_delta_from_times

Chapter 12. Graphics and Other File Formats Page 37 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end

 # Uses add_notes to sound a chord (a major triad in root position), using the
 # given note as the low note. Like add_notes, increments the per-track timer.
 def add_major_triad(low_note, velocity=127, duration='quarter')
 add_notes([0, 4, 7].collect { |x| x + low_note }, velocity, duration)
 end

 private

 def event(event)
 @events << event
 event.time_from_start = @time
 end
 end

Here's a script to write a randomly generated composition with two tracks. The melody
track (a trumpet)takes a random walk around the musical scale, and the harmony track
(an organ) plays a matching chord at the beginning of each measure.

 song = MIDI::Sequence.new
 song.tracks << (melody = TimedTrack.new(0, song))
 song.tracks << (background = TimedTrack.new(1, song))

 melody.instrument = 56 # Trumpet
 background.instrument = 19 # Church organ

 melody.events << MIDI::Tempo.new(MIDI::Tempo.bpm_to_mpq(120))
 melody.events << MIDI::MetaEvent.new(MIDI::META_SEQ_NAME,
 'A random Ruby composition')

 # Some musically pleasing intervals: thirds and fifths.
 intervals = [-5, -1, 0, 4, 7]

 # Start at middle C.
 note = 0
 # Create 8 measures of music in 4/4 time
 (8*4).times do |i|
 note += intervals[rand(intervals.size)]

 #Reset to middle C if we go out of the MIDI range
 note = 0 if note < -39 or note > 48

 # Add a quarter note on every beat.
 melody.add_notes(note, 127, 'quarter')

 # Add a chord of whole notes at the beginning of each measure.
 background.add_major_triad(note, 50, 'whole') if i % 4 == 0
 end

 open('random.mid', 'w') { |f| song.write(f) }

See Also

• midilib has a comprehensive set of RDoc, available online at http://
midilib.rubyforge.org/

• The library's examples/ directory has several good programs that demonstrate how
to create and "play" MIDI files

• The TimedTrack class presented takes several ideas from Emanuel Borsboom's Midi
Scripter application; the Midi Scripter generates MIDI files from Ruby code that

Chapter 12. Graphics and Other File Formats Page 38 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://midilib.rubyforge.org/
http://midilib.rubyforge.org/

incorporates musical notation—it's not really designed for use as a library, but it would
make a good one (http://www.epiphyte.ca/downloads/midi_scripter/
README.html)

• The names of the standard MIDI instrument and drum sounds are kept in the arrays
MIDI::GM_PATCH_NAMES and MIDI::GM_DRUM_NOTE_NAMES; this isn't as useful
as it could be, because you'll usually end up referring to instruments by their numeric
IDs; the Wikipedia has a good mapping of numbers to names (http://
en.wikipedia.org/wiki/General_MIDI#Program_change_events)

Chapter 12. Graphics and Other File Formats Page 39 Return to Table of Contents

Chapter 12. Graphics and Other File Formats
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.epiphyte.ca/downloads/midi_scripter/README.html
http://www.epiphyte.ca/downloads/midi_scripter/README.html
http://en.wikipedia.org/wiki/General_MIDI#Program_change_events
http://en.wikipedia.org/wiki/General_MIDI#Program_change_events

	Graphics and Other File Formats
	Thumbnailing Images
	Adding Text to an Image
	Converting One Image Format to Another
	Graphing Data
	Adding Graphical Context with Sparklines
	Strongly Encrypting Data
	Parsing Comma-Separated Data
	Parsing Not-Quite-Comma-Separated Data
	Generating and Parsing Excel Spreadsheets
	Compressing and Archiving Files with Gzip and Tar
	Reading and Writing ZIP Files
	Reading and Writing Configuration Files
	Generating PDF Files
	Representing Data as MIDI Music

