
Table of Contents

Reflection and Metaprogramming... 1
Finding an Object's Class and Superclass... 1
Listing an Object's Methods.. 3
Listing Methods Unique to an Object... 5
Getting a Reference to a Method.. 7
Fixing Bugs in Someone Else's Class.. 9
Listening for Changes to a Class.. 11
Checking Whether an Object Has Necessary Attributes.. 13
Responding to Calls to Undefined Methods... 15
Automatically Initializing Instance Variables... 19
Avoiding Boilerplate Code with Metaprogramming.. 20
Metaprogramming with String Evaluations... 23
Evaluating Code in an Earlier Context... 25
Undefining a Method.. 26
Aliasing Methods... 29
Doing Aspect-Oriented Programming.. 32
Enforcing Software Contracts... 35

Chapter 10. Reflection and Metaprogramming

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

10. Reflection and Metaprogramming

In a dynamic language like Ruby, few pieces are static. Classes can grow new methods and
lose the ones they had before. Methods can be defined manually, or automatically with
well-written code.

Probably the most interesting aspect of the Ruby programming philosophy is its use of
reflection and metaprogramming to save the programmer from having to write repetitive
code. In this chapter, we will teach you the ways and the joys of these techniques.

Reflection lets you treat classes and methods as objects. With reflection you can see which
methods you can call on an object (Recipes 10.2 and 10.3). You can grab one of its methods
as an object (Recipe 10.4), and call it or pass it in to another method as a code block. You
can get references to the class an object implements and the modules it includes, and print
out its inheritance structure (Recipe 10.1). Reflection is especially useful when you're
interactively examining an unfamiliar object or class structure.

Metaprogramming is to programming as programming is to doing a task by hand. If you
need to sort a file of a hundred lines, you don't open it up in a text editor and start shuffling
the lines: you write a program to do the sort. By the same token, if you need to give a Ruby
class a hundred similar methods, you shouldn't just start writing the methods one at a
time. You should write Ruby code that defines the methods for you (Recipe 10.10). Or you
should make your class capable of intercepting calls to those methods: this way, you can
implement the methods without ever defining them at all (Recipe 10.8).

Methods you've seen already, like attr_reader, use metaprogramming to define custom
methods according to your specifications. Recipe 8.2 created a few more of these
"decorator" methods; Recipe 10.16 in this chapter shows a more complex example of the
same principle.

You can metaprogram in Ruby either by writing normal Ruby code that uses a lot of
reflection, or by generating a string that contains Ruby code, and evaluating the string.
Writing normal Ruby code with reflection is generally safer, but sometimes the reflection
just gets to be too much and you need to evaluate a string. We provide a demonstration
recipe for each technique (Recipes 10.10 and 10.11).

Recipe 10.1. Finding an Object's Class and Superclass

Chapter 10. Reflection and Metaprogramming Page 1 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-2#rubyckbk-CHP-8-SECT-2

Problem
Given a class, you want an object corresponding to its class, or to the parent of its class.

Solution
Use the Object#class method to get the class of an object as a Class object. Use
Class#superclass to get the parent Class of a Class object:

 'a string'.class # => String
 'a string'.class.name # => "String"
 'a string'.class.superclass # => Object
 String.superclass # => Object
 String.class # => Class
 String.class.superclass # => Module
 'a string'.class.new # => ""

Discussion
Class objects in Ruby are first-class objects that can be assigned to variables, passed as
arguments to methods, and modified dynamically. Many of the recipes in this chapter and
Chapter 8 discuss things you can do with a Class object once you have it.

The superclass of the Object class is nil. This makes it easy to iterate up an
inheritance hierarchy:

 class Class
 def hierarchy
 (superclass ? superclass.hierarchy : []) << self
 end
 end
 Array.hierarchy # => [Object, Array]

 class MyArray < Array
 end
 MyArray.hierarchy # => [Object, Array, MyArray]

While Ruby does not support multiple inheritance, the language allows mixin Modules
that simulate it (see Recipe 9.1). The Modules included by a given Class (or another
Module) are accessible from the Module#ancestors method.

A class can have only one superclass, but it may have any number of ancestors. The
list returned by Module#ancestors contains the entire inheritance hierarchy (including
the class itself), any modules the class includes, and the ever-present Kernel module,
whose methods are accessible from anywhere because Object itself mixes it in.

 String.superclass # => Object
 String.ancestors # => [String, Enumerable, Comparable, Object, Kernel]
 Array.ancestors # => [Array, Enumerable, Object, Kernel]
 MyArray.ancestors # => [MyArray, Array, Enumerable, Object, Kernel]

 Object.ancestors # => [Object, Kernel]

Chapter 10. Reflection and Metaprogramming Page 2 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8#rubyckbk-CHP-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-1#rubyckbk-CHP-9-SECT-1

 class MyClass
 end
 MyClass.ancestors # => [MyClass, Object, Kernel]

See Also

• Most of Chapter 8
• Recipe 9.1, "Simulating Multiple Inheritance with Mixins"

Recipe 10.2. Listing an Object's Methods

Problem
Given an unfamiliar object, you want to see what methods are available to call.

Solution

All Ruby objects implement the Object#methods method. It returns an array containing
the names of the object's public instance methods:

 Object.methods
 # => ["name", "private_class_method", "object_id", "new",
 # "singleton_methods", "method_defined?", "equal?", …]

To get a list of the singleton methods of some object (usually, but not always, a class), use
Object#singleton_methods:

 Object.singleton_methods # => []
 Fixnum.singleton_methods # => ["induced_from"]

 class MyClass
 def MyClass.my_singleton_method
 end

 def my_instance_method
 end
 end
 MyClass.singleton_methods # => ["my_singleton_method"]

To list the instance methods of a class, call instance_methods on the object. This lets
you list the instance methods of a class without instantiating the class:

 ''.methods == String.instance_methods # => true

The output of these methods are most useful when sorted:

Chapter 10. Reflection and Metaprogramming Page 3 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8#rubyckbk-CHP-8
http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-1#rubyckbk-CHP-9-SECT-1

 Object.methods.sort
 # => ["<", "<=", "<=>", "==", "===", "=~", ">", ">=",
 # "__id__", "__send__", "allocate", "ancestors", …]

Ruby also defines some elementary predicates along the same lines. To see whether a class
defines a certain instance method, call method_defined? on the class or respond_to?
on an instance of the class. To see whether a class defines a certain class method, call
respond_to? on the class:

 MyClass.method_defined? :my_instance_method # => true
 MyClass.new.respond_to? :my_instance_method # => true
 MyClass.respond_to? :my_instance_method # => false

 MyClass.respond_to? :my_singleton_method # => true

Discussion
It often happens that while you're in an interactive Ruby session, you need to look up which
methods an object supports, or what a particular method is called. Looking directly at the
object is faster than looking its class up in a book. If you're using a library like Rails or
Facets, or your code has been adding methods to the built-in classes, it's also more reliable.

Noninteractive code can also benefit from knowing whether a given object implements a
certain method. You can use this to enforce an interface, allowing any object to be passed
into a method so long as the argument implements certain methods (see Recipe 10.16).

If you find yourself using respond_to? a lot in an interactive Ruby session, you're a good
customer for irb's autocomplete feature. Put the following line in your .irbrc file or
equivalent:

 require 'irb/completion'
 #Depending on your system, you may also have to add the following line:
 IRB.conf[:use_readline] = true

Then you can type (for instance) "[1,2,3].", hit the Tab key, and see a list of all the methods
you can call on the array [1, 2, 3].

methods, instance_methods, and singleton_methods will only return public
methods, and method_defined? will only return true if you give it the name of a public
method. Ruby provides analagous methods for discovering protected and private methods,
though these are less useful. All the relevant methods are presented in Table 10-1.

Chapter 10. Reflection and Metaprogramming Page 4 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Table 10-1. Discovering protected and private methods

Goal Public Protected Private

List the methods
of an object

methods or public_methods protected_methods private_methods

List the instance
methods defined
by a class

instance_methods or
public_instance_methods protected_instance_methods private_instance_methods

List the singleton
methods defined
by a class

singleton_methods N/A N/A

Does this class
define such-and-
such an instance
method?

method_defined? or
public_method_defined? protected_method_defined? private_method_defined?

Will this object
respond to such-
and-such an
instance
method?

respond_to? N/A N/A

Just because you can see the names of protected or private methods in a list doesn't mean
you can call the methods, or that respond_to? will find them:

 String.private_instance_methods.sort
 # => ["Array", "Float", "Integer", "String", "`", "abort", "at_exit",
 # "autoload","autoload?", "binding", "block_given?", "callcc", …]
 String.new.respond_to? :autoload? # => false

 String.new.autoload?
 # NoMethodError: private method `autoload?' called for "":String

See Also

• To strip away irrelevant methods, see Recipe 10.3, "Listing Methods Unique to an
Object"

• Recipe 10.4, "Getting a Reference to a Method," shows how to assign a Method object
to a variable, given its name; among other things, this lets you find out how many
arguments a method takes

• See Recipe 10.6, "Listening for Changes to a Class," to set up a hook to be called
whenever a new method or singleton method is defined for a class

• Recipe 10.16, "Enforcing Software Contracts"

Recipe 10.3. Listing Methods Unique to an Object

Chapter 10. Reflection and Metaprogramming Page 5 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Problem
When you list the methods available to an object, the list is cluttered with extraneous
methods defined in the object's superclasses and mixed-in modules. You want to see a list
of only the methods defined by that object's direct class.

Solution

Subtract the instance methods defined by the object's superclass. You'll be left with only
the methods defined by the object's direct class (plus any methods defined on the object
after its creation). The my_methods_only method defined below gives this capability to
every Ruby object:

 class Object
 def my_methods_only
 my_super = self.class.superclass
 return my_super ? methods - my_super.instance_methods : methods
 end
 end

 s = ''
 s.methods.size # => 143
 Object.instance_methods.size # => 41
 s.my_methods_only.size # => 102
 (s.methods - Object.instance_methods).size # => 102

 def s.singleton_method()
 end
 s.methods.size # => 144
 s.my_methods_only.size # => 103

 class Object
 def new_object_method
 end
 end
 s.methods.size # => 145
 s.my_methods_only.size # => 103

 class MyString < String
 def my_string_method
 end
 end
 MyString.new.my_methods_only # => ["my_string_method"]

Discussion

The my_methods_only technique removes methods defined in the superclass, the parent
classes of the superclass, and in any mixin modules included by those classes. For instance,
it removes the 40 methods defined by the Object class when it mixed in the Kernel
module. It will not remove methods defined by mixin modules included by the class itself.

Chapter 10. Reflection and Metaprogramming Page 6 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Usually these methods aren't clutter, but there can be a lot of them (for instance,
Enumerable defines 22 methods). To remove them, you can start out with
my_methods_only, then iterate over the ancestors of the class in question and subtract
out all the methods defined in modules:

 class Object
 def my_methods_only_no_mixins
 self.class.ancestors.inject(methods) do |mlist, ancestor|
 mlist = mlist - ancestor.instance_methods unless ancestor.is_a? Class
 mlist
 end
 end

 [].methods.size # => 121
 [].my_methods_only.size # => 78
 [].my_methods_only_no_mixins.size # => 57

See Also

• Recipe 10.1, "Finding an Object's Class and Superclass," explores ancestors in more
detail

Recipe 10.4. Getting a Reference to a Method

Problem
You want to the name of a method into a reference to the method itself.

Solution
Use the eponymous Object#method method:

 s = 'A string'
 length_method = s.method(:length) # => #<Method: String#length>
 length_method.arity # => 0
 length_method.call # => 8

Discussion
The Object#methods introspection method returns an array of strings, each containing
the name of one of the methods available to that object. You can pass any of these names
into an object's method method and get a Method object corresponding to that method
of that object.

A Method object is bound to the particular object whose method method you called.
Invoke the method's Method#call method, and it's just like calling the object's method
directly:

Chapter 10. Reflection and Metaprogramming Page 7 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 1.succ # => 2
 1.method(:succ).call # => 2

The Method#arity method indicates how many arguments the method takes.
Arguments, including block arguments, are passed to call just as they would be to the
original method:

 5.method('+').call(10) # => 15

 [1,2,3].method(:each).call { |x| puts x }
 # 1
 # 2
 # 3

A Method object can be stored in a variable and passed as an argument to other methods.
This is useful for passing preexisting methods into callbacks and listeners:

 class EventSpawner

 def initialize
 @listeners = []
 @state = 0
 end

 def subscribe(&listener)
 @listeners << listener
 end

 def change_state(new_state)
 @listeners.each { |l| l.call(@state, new_state) }
 @state = new_state
 end
 end

 class EventListener
 def hear(old_state, new_state)
 puts "Method triggered: state changed from #{old_state} " +
 "to #{new_state}."
 end
 end

 spawner = EventSpawner.new
 spawner.subscribe do |old_state, new_state|
 puts "Block triggered: state changed from #{old_state} to #{new_state}."
 end

 spawner.subscribe &EventListener.new.method(:hear)
 spawner.change_state(4)
 # Block triggered: state changed from 0 to 4.
 # Method triggered: state changed from 0 to 4.

A Method can also be used as a block:

 s = "sample string"
 replacements = { "a" => "i", "tring" => "ubstitution" }

 replacements.collect(&s.method(:gsub))
 # => ["simple string", "sample substitution"]

Chapter 10. Reflection and Metaprogramming Page 8 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You can't obtain a reference to a method that's not bound to a specific object, because the
behavior of call would be undefined. You can get a reference to a class method by calling
method on the class. When you do this, the bound object is the class itself: an instance of
the Class class. Here's an example showing how to obtain references to an instance and
a class method of the same class:

 class Welcomer
 def Welcomer.a_class_method
 return "Greetings from the Welcomer class."
 end
 def an_instance_method
 return "Salutations from a Welcomer object."
 end
 end

 Welcomer.method("an_instance_method")
 # NameError: undefined method `an_instance_method' for class `Class'
 Welcomer.new.method("an_instance_method").call
 # => "Salutations from a Welcomer object."
 Welcomer.method("a_class_method").call
 # => "Greetings from the Welcomer class."

See Also

• Recipe 7.11, "Coupling Systems Loosely with Callbacks," contains a more complex
listener example

Recipe 10.5. Fixing Bugs in Someone Else's Class

Problem
You're using a class that's got a bug in one of its methods. You know where the bug is and
how to fix it, but you can't or don't want to change the source file itself.

Solutions
Extend the class from within your program and overwrite the buggy method with an
implementation that fixes the bug. Create an alias for the buggy version of the method, so
you can still access it if necessary.

Suppose you're trying to use the buggy method in the Multiplier class defined below:

 class Multiplier
 def double_your_pleasure(pleasure)
 return pleasure * 3 # FIXME: Actually triples your pleasure.
 end
 end

 m = Multiplier.new
 m.double_your_pleasure(6) # => 18

Chapter 10. Reflection and Metaprogramming Page 9 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-11#rubyckbk-CHP-7-SECT-11

Reopen the class, alias the buggy method to another name, then redefine it with a correct
implementation:

 class Multiplier
 alias :double_your_pleasure_BUGGY :double_your_pleasure
 def double_your_pleasure(pleasure)
 return pleasure * 2
 end
 end
 m.double_your_pleasure(6) # => 12

 m.double_your_pleasure_BUGGY(6) # => 18

Discussion
In many programming languages a class, function, or method can't be modified after its
initial definition. In other languages, this behavior is possible but not encouraged. For
Ruby programmers, the ability to reprogram classes on the fly is just another technique
for the toolbox, to be used when necessary. It's most commonly used to add new code to
a class, but it can also be used to deploy a drop-in replacement for buggy or slow
implementation of a method.

Since Ruby is (at least right now) a purely interpreted language, you should be able to find
the source code of any Ruby class used by your program. If a method in one of those classes
has a bug, you should be able to copy and paste the original Ruby implementation into
your code and fix the bug in the new copy.[1] This is not an elegant technique, but it's often
better than distributing a slightly modified version of the entire class or library (that is,
copying and pasting a whole file).

[1] Bugs in Ruby C extensions are much more difficult to patch. You might be able to write equivalent Ruby code, but there's probably a reason why the original code
was written in C. Since C doesn't share Ruby's attitude towards redefining functions on the fly, you'll need to fix the bug in the original C code and recompile the
extension.

When you fix the buggy behavior, you should also send your fix to the maintainer of the
software that contains the bug. The sooner you can get the fix out of your code, the better.
If the software package is abandoned, you should at least post the fix online so others can
find it.

If a method isn't buggy, but simply doesn't do what you'd like it to do, add a new method
to the class (or create a subclass) instead of redefining the old one. Methods you don't know
about may use the behavior of the method as it is. Of course, there could be methods that
rely on the buggy behavior of a buggy method, but that's less likely.

See Also

• Throughout this book we use techniques like this to work around bugs and
performance problems in the Ruby standard library (although most of the bugs have

Chapter 10. Reflection and Metaprogramming Page 10 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

been fixed in Ruby 1.9); see, for instance, Recipe 2.7, "Taking Logarithms," Recipe
2.16, "Generating Prime Numbers," and Recipe 6.18, "Deleting a File"

• Recipe 10.14, "Aliasing Methods"

Recipe 10.6. Listening for Changes to a Class

Credit: Phil Tomson

Problem
You want to be notified when the definition of a class changes. You might want to keep
track of new methods added to the class, or existing methods that get removed or
undefined. Being notified when a module is mixed into a class can also be useful.

Solution
Define the class methods method_added, method_removed, and/or
method_undefined. Whenever the class gets a method added, removed, or undefined,
Ruby will pass its symbol into the appropriate callback method.

The following example prints a message whenever a method is added, removed, or
undefined. If the method "important" is removed, undefined, or redefined, it throws an
exception.

 class Tracker
 def important
 "This is an important method!"
 end

 def self.method_added(sym)
 if sym == :important
 raise 'The "important" method has been redefined!'
 else
 puts %{Method "#{sym}" was (re)defined.}
 end
 end

 def self.method_removed(sym)
 if sym == :important
 raise 'The "important" method has been removed!'
 else
 puts %{Method "#{sym}" was removed.}
 end
 end

 def self.method_undefined(sym)
 if sym == :important
 raise 'The "important" method has been undefined!'
 else
 puts %{Method "#{sym}" was removed.}
 end
 end
 end

Chapter 10. Reflection and Metaprogramming Page 11 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-7#rubyckbk-CHP-2-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-16#rubyckbk-CHP-2-SECT-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-16#rubyckbk-CHP-2-SECT-16
http://safari.oreilly.com/0596523696/rubyckbk-CHP-6-SECT-18#rubyckbk-CHP-6-SECT-18

If someone adds a method to the class, a message will be printed:

 class Tracker
 def new_method
 'This is a new method.'
 end
 end
 # Method "new_method" was (re)defined.

Short of freezing the class, you can't prevent the important method from being removed,
undefined, or redefined, but you can raise a stink (more precisely, an exception) if someone
changes it:

 class Tracker
 undef :important
 end
 # RuntimeError: The "important" method has been undefined!

Discussion
The class methods we've defined in the Tracker class (method_added,
method_removed, and method_undefined) are hook methods. Some other piece of
code (in this case, the Ruby interpreter) knows to call any methods by that name when
certain conditions are met. The Module class defines these methods with empty bodies:
by default, nothing special happens when a method is added, removed, or undefined.

Given the code above, we will not be notified if our Tracker class later mixes in a module.
We won't hear about the module itself, nor about the new methods that are available
because of the module inclusion.

 class Tracker
 include Enumerable
 end

 # Nothing!

Detecting module inclusion is trickier. Ruby provides a hook method
Module#included, which is called on a module whenever it's mixed into a class. But we
want the opposite: a hook method that's called on a particular class whenever it includes a
module. Since Ruby doesn't provide a hook method for module inclusion, we must define
our own. To do this, we'll need to change Module#include itself.

 class Module
 alias_method :include_no_hook, :include
 def include(*modules)
 # Run the old implementation.
 include_no_hook(*modules)

 # Then run the hook.
 modules.each do |mod|

Chapter 10. Reflection and Metaprogramming Page 12 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 self.include_hook mod
 end
 end

 def include_hook
 # Do nothing by default, just like Module#method_added et al.
 # This method must be overridden in a subclass to do something useful.
 end
 end

Now when a module is included into a class, Ruby will call that class's include_hook
method. If we define a Tracker#include_hook method, we can have Ruby notify us of
inclusions:

 class Tracker
 def self.include_hook(mod)
 puts %{"#{mod}" was included in #{self}.}
 end
 end

 class Tracker
 include Enumerable
 end
 # "Enumerable" was included in Tracker.

See Also

• Recipe 9.3, "Mixing in Class Methods," for more on the Module#included method
• Recipe 10.13, "Undefining a Method," for the difference between removing and

undefining a method

Recipe 10.7. Checking Whether an Object Has Necessary Attributes

Problem
You're writing a class or module that delegates the creation of some of its instance variables
to a hook method. You want to be make sure that the hook method actually created those
instance variables.

Solution
Use the Object#instance_variables method to get a list of the instance variables.
Check them over to make sure all the necessary instance variables have been defined. This
Object#must_have_instance_variables method can be called at any time:

 class Object
 def must_have_instance_variables(*args)
 vars = instance_variables.inject({}) { |h,var| h[var] = true; h }
 args.each do |var|
 unless vars[var]
 raise ArgumentError, %{Instance variable "@#{var} not defined"}

Chapter 10. Reflection and Metaprogramming Page 13 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-9-SECT-3#rubyckbk-CHP-9-SECT-3

 end
 end
 end
 end

The best place to call this method is in initialize or some other setup method of a
module. Alternatively, you could accept values for the instance variables as arguments to
the setup method:

 module LightEmitting
 def LightEmitting_setup
 must_have_instance_variables :light_color, :light_intensity
 @on = false
 end

 # Methods that use @light_color and @light_intensity follow…
 end

You can call this method from a class that defines a virtual setup method, to make sure
that subclasses actually use the setup method correctly:

 class Request
 def initialize
 gather_parameters # This is a virtual method defined by subclasses
 must_have_instance_variables :action, :user, :authentication
 end

 # Methods that use @action, @user, and @authentication follow…
 end

Discussion
Although Object#must_have_instance_variables is defined and called like any
other method, it's conceptually a "decorator" method similar to attr_accessor and
private. That's why I didn't use parentheses above, even though I called it with multiple
arguments. The lack of parentheses acts as a visual indicator that you're calling a decorator
method, one that alters or inspects a class or object.

Here's a similar method that you can use from outside the object. It basically implements
a batch form of duck typing: instead of checking an object's instance variables (which are
only available inside the object), it checks whether the object supports all of the methods
you need to call on it. It's useful for checking from the outside whether an object is the
"shape" you expect.

 class Object
 def must_support(*args)
 args.each do |method|
 unless respond_to? method
 raise ArgumentError, %{Must support "#{method}"}
 end
 end
 end
 end

Chapter 10. Reflection and Metaprogramming Page 14 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 obj = "a string"
 obj.must_support :to_s, :size, "+".to_sym
 obj.must_support "+".to_sym, "-".to_sym
 # ArgumentError: Must support "-"

See Also

• Recipe 10.16, "Enforcing Software Contracts"

Recipe 10.8. Responding to Calls to Undefined Methods

Problem
Rather than having Ruby raise a NoMethodError when someone calls an undefined
method on an instance of your class, you want to intercept the method call and do
something else with it.

Or you are faced with having to explicitly define a large (possibly infinite) number of
methods for a class. You would rather define a single method that can respond to an infinite
number of method names.

Solution
Define a method_missing method for your class. Whenever anyone calls a method that
would otherwise result in a NoMethodError, the method_missing method is called
instead. It is passed the symbol of the nonexistent method, and any arguments that were
passed in.

Here's a class that modifies the default error handling for a missing method:

 class MyClass
 def defined_method
 'This method is defined.'
 end

 def method_missing(m, *args)
 "Sorry, I don't know about any #{m} method."
 end
 end

 o = MyClass.new
 o.defined_method # => "This method is defined."
 o.undefined_method
 # => "Sorry, I don't know about any undefined_method method."

In the second example, I'll define an infinitude of new methods on Fixnum by giving it a
method_missing implementation. Once I'm done, Fixnum will answer to any method
that looks like "plus_#" and takes no arguments.

Chapter 10. Reflection and Metaprogramming Page 15 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class Fixnum
 def method_missing(m, *args)
 if args.size > 0
 raise ArgumentError.new("wrong number of arguments (#{args.size} for 0)")
 end
 match = /^plus_([0-9]+)$/.match(m.to_s)
 if match
 self + match.captures[0].to_i
 else
 raise NoMethodError.
 new("undefined method `#{m}' for #{inspect}:#{self.class}")
 end
 end
 end

 4.plus_5 # => 9
 10.plus_0 # => 10
 -1.plus_2 # => 1
 100.plus_10000 # => 10100
 20.send(:plus_25) # => 45

 100.minus_3
 # NoMethodError: undefined method `minus_3' for 100:Fixnum
 100.plus_5(105)
 # ArgumentError: wrong number of arguments (1 for 0)

Discussion
The method_missing technique is frequently found in delegation scenarios, when one
object needs to implement all of the methods of another object. Rather than defining each
method, a class implements method_missing as a catch-all, and uses send to delegate
the "missing" method calls to other objects. The built-in delegate library makes this easy
(see Recipe 8.8), but for the sake of illustration, here's a class that delegates almost all its
methods to a string. Note that this class doesn't itself subclass String.

 class BackwardsString
 def initialize(s)
 @s = s
 end

 def method_missing(m, *args, &block)
 result = @s.send(m, *args, &block)
 result.respond_to?(:to_str) ? BackwardsString.new(result) : result
 end

 def to_s
 @s.reverse
 end

 def inspect
 to_s
 end
 end

The interesting thing here is the call to Object#send. This method takes the name of
another method, and calls that method with the given arguments. We can delegate any
missing method call to the underlying string without even looking at the method name.

 s = BackwardsString.new("I'm backwards.") # => .sdrawkcab m'I

Chapter 10. Reflection and Metaprogramming Page 16 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-8#rubyckbk-CHP-8-SECT-8

 s.size # => 14
 s.upcase # => .SDRAWKCAB M'I
 s.reverse # => I'm backwards.
 s.no_such_method
 # NoMethodError: undefined method `no_such_method' for "I'm backwards.":String

The method_missing technique is also useful for adding syntactic sugar to a class. If one
method of your class is frequently called with a string argument, you can make
object.string a shortcut for object.method("string"). Consider the Library
class below, and its simple query interface:

 class Library < Array

 def add_book(author, title)
 self << [author, title]
 end

 def search_by_author(key)
 reject { |b| !match(b, 0, key) }
 end

 def search_by_author_or_title(key)
 reject { |b| !match(b, 0, key) && !match(b, 1, key) }
 end

 :private

 def match(b, index, key)
 b[index].index(key) != nil
 end
 end

 l = Library.new
 l.add_book("James Joyce", "Ulysses")
 l.add_book("James Joyce", "Finnegans Wake")
 l.add_book("John le Carre", "The Little Drummer Boy")
 l.add_book("John Rawls", "A Theory of Justice")

 l.search_by_author("John")
 # => [["John le Carre", "The Little Drummer Boy"],
 # ["John Rawls", "A Theory of Justice"]]

 l.search_by_author_or_title("oy")
 # => [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
 # ["John le Carre", "The Little Drummer Boy"]]

We can make certain queries a little easier to write by adding some syntactic sugar. It's as
simple as defining a wrapper method; its power comes from the fact that Ruby directs all
unrecognized method calls to this wrapper method.

 class Library
 def method_missing(m, *args)
 search_by_author_or_title(m.to_s)
 end
 end

 l.oy
 # => [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
 # ["John le Carre", "The Little Drummer Boy"]]

 l.Fin
 # => [["James Joyce", "Finnegans Wake"]]

Chapter 10. Reflection and Metaprogramming Page 17 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 l.Jo
 # => [["James Joyce", "Ulysses"], ["James Joyce", "Finnegans Wake"],
 # ["John le Carre", "The Little Drummer Boy"],
 # ["John Rawls", "A Theory of Justice"]]

You can also define a method_missing method on a class. This is useful for adding
syntactic sugar to factory classes. Here's a simple factory class that makes it easy to create
strings (as though this weren't already easy):

 class StringFactory
 def StringFactory.method_missing(m, *args)
 return String.new(m.to_s, *args)
 end
 end

 StringFactory.a_string # => "a_string"
 StringFactory.another_string # => "another_string"

As before, an attempt to call an explicitly defined method will not trigger
method_missing:

 StringFactory.superclass # => Object

The method_missing method intercepts all calls to undefined methods, including the
mistyped names of calls to "real" methods. This is a common source of bugs. If you run
into trouble using your class, the first thing you should do is add debug statements to
method_missing, or comment it out altogether.

If you're using method_missing to implicitly define methods, you should also be aware
that Object.respond_to? returns false when called with the names of those methods.
After all, they're not defined!

 25.respond_to? :plus_20 # => false

You can override respond_to? to fool outside objects into thinking you've got explicit
definitions for methods you've actually defined implicitly in method_missing. Be very
careful, though; this is another common source of bugs.

 class Fixnum
 def respond_to?(m)
 super or (m.to_s =~ /^plus_([0-9]+)$/) != nil
 end
 end

 25.respond_to? :plus_20 # => true
 25.respond_to? :succ # => true
 25.respond_to? :minus_20 # => false

Chapter 10. Reflection and Metaprogramming Page 18 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Recipe 2.13, "Simulating a Subclass of Fixnum"
• Recipe 8.8, "Delegating Method Calls to Another Object," for an alternate

implementation of delegation that's usually easier to use

Recipe 10.9. Automatically Initializing Instance Variables

Problem
You're writing a class constructor that takes a lot of arguments, each of which is simply
assigned to an instance variable.

 class RGBColor(red=0, green=0, blue=0)
 @red = red
 @green = green
 @blue = blue
 end

You'd like to avoid all the typing necessary to do those variable assignments.

Solution
Here's a method that initializes the instance variables for you. It takes as an argument the
list of variables passed into the initialize method, and the binding of the variables to
values.

 class Object
 private
 def set_instance_variables(binding, *variables)
 variables.each do |var|
 instance_variable_set("@#{var}", eval(var, binding))
 end
 end
 end

Using this method, you can eliminate the tedious variable assignments:

 class RGBColor
 def initialize(red=0, green=0, blue=0)
 set_instance_variables(binding, *local_variables)
 end
 end

 RGBColor.new(10, 200, 300)
 # => #<RGBColor:0xb7c22fc8 @red=10, @blue=300, @green=200>

Chapter 10. Reflection and Metaprogramming Page 19 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-13#rubyckbk-CHP-2-SECT-13
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-8#rubyckbk-CHP-8-SECT-8

Discussion
Our set_instance_variables takes a list of argument names to turn into instance
variables, and a Binding containing the values of those arguments as of the method call.
For each argument name, an eval statement binds the corresponding instance variable
to the corresponding value in the Binding. Since you control the names of your own
variables, this eval is about as safe as it gets.

The names of a method's arguments aren't accessible from Ruby code, so how do we get
that list? Through trickery. When a method is called, any arguments passed in are
immediately bound to local variables. At the very beginning of the method, these are the
only local variables defined. This means that calling Kernel#local_variables at the
beginning of a method will get a list of all the argument names.

If your method accepts arguments that you don't want to set as instance variables, simply
remove their names from the result of Kernel#local_variables before passing the
list into set_instance_variables:

 class RGBColor
 def initialize(red=0, green=0, blue=0, debug=false)
 set_instance_variables(binding, *local_variables-['debug'])
 puts "Color: #{red}/#{green}/#{blue}" if debug
 end
 end

 RGBColor.new(10, 200, 255, true)
 # Color: 10/200/255
 # => #<RGBColor:0xb7d309fc @blue=255, @green=200, @red=10>

Recipe 10.10. Avoiding Boilerplate Code with Metaprogramming

Problem
You've got to type in a lot of repetitive code that a trained monkey could write. You're
resentful at having to do this yourself, and angry that the repetitive code will clutter up
your class listings.

Solution
Ruby is happy to be the trained monkey that writes your repetitive code. You can define
methods algorithmically with Module#define_method.

Usually the repetitive code is a bunch of similar methods. Suppose you need to write code
like this:

 class Fetcher
 def fetch(how_many)

Chapter 10. Reflection and Metaprogramming Page 20 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "Fetching #{how_many ? how_many : "all"}."
 end
 def fetch_one
 fetch(1)
 end

 def fetch_ten
 fetch(10)
 end

 def fetch_all
 fetch(nil)
 end
 end

You can define this exact same code without having to write it all out. Create a data
structure that contains the differences between the methods, and iterate over that
structure, defining a method each time with define_method.

 class GeneratedFetcher
 def fetch(how_many)
 puts "Fetching #{how_many ? how_many : "all"}."
 end

 [["one", 1], ["ten", 10], ["all", nil]].each do |name, number|
 define_method("fetch_#{name}") do
 fetch(number)
 end
 end
 end

 GeneratedFetcher.instance_methods - Object.instance_methods
 # => ["fetch_one", "fetch", "fetch_ten", "fetch_all"]

 GeneratedFetcher.new.fetch_one
 # Fetching 1.

 GeneratedFetcher.new.fetch_all
 # Fetching all.

This is less to type, less monkeyish, and it takes up less space in your class listing. If you
need to define more of these methods, you can add to the data structure instead of writing
out more boilerplate.

Discussion
Programmers have always preferred writing new code to cranking out variations on old
code. From lex and yacc to modern programs like Hibernate and Cog, we've always used
tools to generate code that would be tedious to write out manually.

Instead of generating code with an external tool, Ruby programmers do it from within
Ruby.[2] There are two officially sanctioned techniques. The nicer technique is to use
define_method to create a method whose implementation can use the local variables
available at the time it was defined.

[2] This would make a good bumper sticker: "Ruby programmers do it from within Ruby."

Chapter 10. Reflection and Metaprogramming Page 21 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The built-in decorator methods we've already seen use metaprogramming. The
attr_reader method takes a string as an argument, and defines a method whose name
and implementation is based on that string. The code that's the same for every reader
method is factored out into attr_reader; all you have to provide is the tiny bit that's
different every time.

Methods whose code you generated are indistinguishable from methods that you wrote
out longhand. They will show up in method lists and in generated RDoc documentation
(if you're metaprogramming with string evaluations, as seen in the next recipe, you can
even generate the RDoc documentation and put it at the beginning of a generated method).

Usually you'll use metaprogramming the way attr_reader does: to attach new methods
to a class or module. For this you should use define_method, if possible. However, the
block you pass into define_method needs to itself be valid Ruby code, and this can be
cumbersome. Consider the following generated methods:

 class Numeric
 [["add", "+"], ["subtract", "-"], ["multiply", "*",],
 ["divide", "/"]].each do |method, operator|
 define_method("#{method}_2") do
 method(operator).call(2)
 end
 end
 end

 4.add_2 # => 6
 10.divide_2 # => 5

Within the block passed into define_method, we have to jump through some reflection
hoops to get a reference to the operator we want to use. You can't just write self
operator 2, because operator isn't an operator: it's a variable containing an operator
name. See the next recipe for another metaprogramming technique that uses string
substitution instead of reflection.

Another of define_method's shortcomings is that in Ruby 1.8, you can't use it to define
a method that takes a block. The following code will work in Ruby 1.9 but not in Ruby 1.8:

 define_method "call_with_args" do |*args, &block|
 block.call(*args)
 end

 call_with_args(1, 2) { |n1, n2| n1 + n2 } # => 3
 call_with_args "mammoth" { |x| x.upcase } # => "MAMMOTH"

Chapter 10. Reflection and Metaprogramming Page 22 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

See Also

• Metaprogramming is used throughout this book to generate a bunch of methods at
once, or to make it easy to define certain kinds of methods; see, for instance, Recipe
4.7, "Making Sure a Sorted Array Stays Sorted"

• Because define_method is a private method, you can only use it within a class
definition; Recipe 8.2, "Managing Class Data," shows a case where it needs to be called
outside of a class definition

• The next recipe, Recipe 10.11, "Metaprogramming with String Evaluations"
• Metaprogramming is a staple of Ruby libraries; it's used throughout Rails, and in

smaller libraries like delegate

Recipe 10.11. Metaprogramming with String Evaluations

Problem
You're trying to write some metaprogramming code using define_method, but there's
too much reflection going on for your code to be readable. It gets confusing and is almost
as frustrating as having to write out the code in longhand.

Solution
You can define new methods by generating the definitions as strings and running them as
Ruby code with one of the eval methods.

Here's a reprint of the metaprogramming example from the previous recipe, which uses
define_method:

 class Numeric
 [['add', '+'], ['subtract', '-'],
 ['multiply', '*',], ['divide', '/']].each do |method, operator|
 define_method("#{method}_2") do
 method(operator).call(2)
 end
 end
 end

The important line of code, method(operator).call(2), isn't something you'd write
in normal programming. You'd write something like self + 2 or self / 2, depending
on which operator you wanted to apply. By writing your method definitions as strings, you
can do metaprogramming that looks more like regular programming:

 class Numeric
 [['add', '+'], ['subtract', '-'],
 ['multiply', '*',], ['divide', '/']].each do |method, operator|
 module_eval %{ def #{method}_2

Chapter 10. Reflection and Metaprogramming Page 23 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-7#rubyckbk-CHP-4-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-7#rubyckbk-CHP-4-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-2#rubyckbk-CHP-8-SECT-2

 self.#{operator}(2)
 end }
 end
 end

 4.add_2 # => 6
 10.divide_2 # => 5

Discussion
You can do all of your metaprogramming with define_method, but the code doesn't look
a lot like the code you'd write in normal programming. You can't set an instance variable
with @foo=4; you have to call instance_variable_set('foo', 4).

The alternative is to generate a method definition as a string and execute the string as Ruby
code. Most interpreted languages have a way of parsing and executing arbitrary strings as
code, but it's usually regarded as a toy or a hazard, and not given much attention. Ruby
breaks this taboo.

The most common evalutation method used for metaprogramming is
Module#module_eval. This method executes a string as Ruby code, within the context
of a class or module. Any methods or class variables you define within the string will be
attached to the class or module, just as if you'd typed the string within the class or module
definition. Thanks to the variable substitutions, the generated string looks exactly like the
code you'd type in manually.

The following four pieces of code all define a new method String#last:

 class String
 def last(n)
 self[-n, n]
 end
 end
 "Here's a string.".last(7) # => "string."

 class String
 define_method('last') do |n|
 self[-n, n]
 end
 end
 "Here's a string.".last(7) # => "string."

 class String
 module_eval %{def last(n)
 self[-n, n]
 end}
 end
 "Here's a string.".last(7) # => "string."

 String.module_eval %{def last(n)
 self[-n, n]
 end}

 "Here's a string.".last(7) # => "string."

Chapter 10. Reflection and Metaprogramming Page 24 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The instance_eval method is less popular than module_eval. It works just like
module_eval, but it runs inside an instance of a class rather than the class itself. You can
use it to define singleton methods on a particular object, or to set instance variables. Of
course, you can also call define_method on a specific object.

The other evaluation method is just plain eval. This method executes a string exactly as
though you had written it as Ruby code in the same spot:

 class String
 eval %{def last(n)
 self[-n, n]
 end}
 end
 "Here's a string.".last(7) # => "string."

You must be very careful when you use the eval methods, lest the end-user of a program
trick you into running arbitrary Ruby code. When you're metaprogramming, though, it's
not usually a problem: the only strings that get evaluated are ones you constructed yourself
from hardcoded data, and by the time your class is loaded and ready to use, the eval calls
have already run. You should be safe unless your eval statement contains strings obtained
from untrusted sources. This might happen if you're creating a custom class, or modifying
a class in response to user input.

Recipe 10.12. Evaluating Code in an Earlier Context

Problem
You've written a method that evaluates a string as Ruby code. But whenever anyone calls
the method, the objects referenced by your string go out of scope. Your string can't be
evaluated within a method.

For instance, here's a method that takes a variable name and tries to print out the value of
the variable.

 def broken_print_variable(var_name)
 eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}
 end

The eval code only works when it's run in the same context as the variable definition. It
doesn't work as a method, because your local variables go out of scope when you call a
method.

 tin_snips = 5

 broken_print_variable('tin_snips')
 # NameError: undefined local variable or method `tin_snips' for main:Object

Chapter 10. Reflection and Metaprogramming Page 25 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 var_name = 'tin_snips'
 eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}
 # The value of tin_snips is 5

Solution
The eval method can execute a string of Ruby code as though you had written in some
other part of your application. This magic is made possible by Binding objects. You can
get a Binding at any time by calling Kernel#binding, and pass it in to eval to recreate
your original environment where it wouldn't otherwise be available. Here's a version of
the above method that takes a Binding:

 def print_variable(var_name, binding)
 eval %{puts "The value of #{var_name} is " + #{var_name}.to_s}, binding
 end

 vice_grips = 10
 print_variable('vice_grips', binding)
 # The value of vice_grips is 10

Discussion
A Binding object is a bookmark of the Ruby interpreter's state. It tracks the values of any
local variables you have defined, whether you are inside a class or method definition, and
so on.

Once you have a Binding object, you can pass it into eval to run code in the same context
as when you created the Binding. All the local variables you had back then will be
available. If you called Kernel#binding within a class definition, you'll also be able to
define new methods of that class, and set class and instance variables.

Since a Binding object contains references to all the objects that were in scope when it
was created, those objects can't be garbage-collected until both they and the Binding
object have gone out of scope.

See Also

• This trick is used in several places throughout this book; see, for example, Recipe
1.3, "Substituting Variables into an Existing String," and Recipe 10.9, "Automatically
Initializing Instance Variables"

Recipe 10.13. Undefining a Method

Chapter 10. Reflection and Metaprogramming Page 26 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-3#rubyckbk-CHP-1-SECT-3

Problem
You want to remove an already defined method from a class or module.

Solution
From within a class or module, you can use Module#remove_method to remove a
method's implementation, forcing Ruby to delegate to the superclass or a module included
by a class.

In the code below, I subclass Array and override the << and [] methods to add some
randomness. Then I decide that overriding [] wasn't such a good idea, so I undefine that
method and get the inherited Array behavior back. The override of << stays in place.

 class RandomizingArray < Array
 def <<(e)
 insert(rand(size), e)
 end

 def [](i)
 super(rand(size))
 end
 end

 a = RandomizingArray.new
 a << 1 << 2 << 3 << 4 << 5 << 6 # => [6, 3, 4, 5, 2, 1]

 # That was fun; now let's get some of those entries back.
 a[0] # => 1
 a[0] # => 2
 a[0] # => 5
 #No, seriously, a[0].
 a[0] # => 4
 #It's a madhouse! A madhouse!
 a[0] # => 3
 #That does it!

 class RandomizingArray
 remove_method('[]')
 end

 a[0] # => 6
 a[0] # => 6
 a[0] # => 6

 # But the overridden << operator still works randomly:
 a << 7 # => [6, 3, 4, 7, 5, 2, 1]

Discussion
Usually you'll override a method by redefining it to implement your own desired behavior.
However, sometimes a class will override an inherited method to do something you don't
like, and you just want the "old" implementation back.

You can only use remove_method to remove a method from a class or module that
explicitly defines it. You'll get an error if you try to remove a method from a class that

Chapter 10. Reflection and Metaprogramming Page 27 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

merely inherits that method. To make a subclass stop responding to an inherited method,
you should undefine the method with undef_method.

Using undef_method on a class prevents the appropriate method signals from reaching
objects of that class, but it has no effect on the parent class.

 class RandomizingArray
 remove_method(:length)
 end
 # NameError: method `length' not defined in RandomizingArray

 class RandomizingArray
 undef_method(:length)
 end

 RandomizingArray.new.length
 # NoMethodError: undefined method `length' for []:RandomizingArray
 Array.new.length # => 0

As you can see, it's generally safer to use undef_method on the class you actually want
to change than to use remove_method on its parent or a module it includes.

You can use remove_method to remove singleton methods once you're done with them.
Since remove_method is private, using it to remove a singleton method requires some
unorthodox syntax:

 my_array = Array.new
 def my_array.random_dump(number)
 number.times { self << rand(100) }
 end

 my_array.random_dump(3)
 my_array.random_dump(2)
 my_array # => [6, 45, 12, 49, 66]

 # That's enough of that.
 class << my_array
 remove_method(:random_dump)
 end
 my_array.random_dump(4)
 # NoMethodError: undefined method `random_dump' for [6, 45, 12, 49, 66]:Array

When you define a singleton method on an object, Ruby silently defines an anonymous
subclass used only for that one object. In the example above, my_array is actually an
anonymous subclass of Array that implements a method random_dump. Since the
subclass has no name (my_array is a variable name, not a class name), there's no way of
using the class <ClassName> syntax. We must "append" onto the definition of the
my_array object.

Class methods are just a special case of singleton methods, so you can also use
remove_method to remove class methods. Ruby also provides a couple of related methods
for removing things besides methods. Module#remove_constant undefines a constant

Chapter 10. Reflection and Metaprogramming Page 28 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

so that it can be redefined with a different value, as seen in Recipe 8.17.
Object#remove_instance_variable removes an instance variable from a single
instance of a class:

 class OneTimeContainer
 def initialize(value)
 @use_just_once_then_destroy = value
 end

 def get_value
 remove_instance_variable(:@use_just_once_then_destroy)
 end
 end

 object_1 = OneTimeContainer.new(6)
 object_1.get_value
 # => 6
 object_1.get_value
 # NameError: instance variable @use_just_once_then_destroy not defined

 object_2 = OneTimeContainer.new('ephemeron')
 object_2.get_value
 # => "ephemeron"

You can't remove a particular instance variable from all instances by modifying the class
because the class is its own object, one which probably never defined that instance variable
in the first place:

 class MyClass
 remove_instance_variable(:@use_just_once_then_destroy)
 end
 # NameError: instance variable @use_just_once_then_destroy not defined

You should definitely not use these methods to remove methods or constants in system
classes or modules: that might make arbitrary parts of the Ruby standard library crash or
act unreliably. As with all metaprogramming, it's easy to abuse the power to remove and
undefine methods at will.

See Also

• Recipe 8.17, "Declaring Constants"
• Recipe 10.5, "Fixing Bugs in Someone Else's Class"

Recipe 10.14. Aliasing Methods

Problem
You (or your users) frequently misremember the name of a method. To reduce the
confusion, you want to make the same method accessible under multiple names.

Chapter 10. Reflection and Metaprogramming Page 29 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-17#rubyckbk-CHP-8-SECT-17
http://safari.oreilly.com/0596523696/rubyckbk-CHP-8-SECT-17#rubyckbk-CHP-8-SECT-17

Alternatively, you're about to redefine a method and you'd like to keep the old version
available.

Solution
You can create alias methods manually, but in most cases, you should let the alias
command do it for you. In this example, I define an InventoryItem class that includes a
price method to calculate the price of an item in quantity. Since it's likely that someone
might misremember the name of the price method as cost, I'll create an alias:

 class InventoryItem
 attr_accessor :name, :unit_price

 def initialize(name, unit_price)
 @name, @unit_price = name, unit_price
 end

 def price(quantity=1)
 @unit_price * quantity
 end

 #Make InventoryItem#cost an alias for InventoryItem#price
 alias :cost :price

 #The attr_accessor decorator created two methods called "unit_price" and
 #"unit_price=". I'll create aliases for those methods as well.
 alias :unit_cost :unit_price
 alias :unit_cost= :unit_price=
 end

 bacon = InventoryItem.new("Chunky Bacon", 3.95)
 bacon.price(100) # => 395.0
 bacon.cost(100) # => 395.0

 bacon.unit_price # => 3.95
 bacon.unit_cost # => 3.95
 bacon.unit_cost = 3.99
 bacon.cost(100) # => 399.0

Discussion
It's difficult to pick the perfect name for a method: you must find the word or short phrase
that best conveys an operation on a data structure, possibly an abstract operation that has
different "meanings" depending on context.

Sometimes there will be no good name for a method and you'll just have to pick one;
sometimes there will be too many good names for a method and you'll just have to pick
one. In either case, your users may have difficulty remembering the "right" name of the
method. You can help them out by creating aliases.

Ruby itself uses aliases in its standard library: for instance, for the method of Array that
returns the number of items in the array. The terminology used in area varies widely. Some
languages use length or len to find the length of a list, and some use size.[3]

[3] Java uses both: length is a member of a Java array, and size is a method that returns the size of a collection.

Chapter 10. Reflection and Metaprogramming Page 30 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby compromises by calling its method Array#length, but also creating an alias called
Array#size.[4] You can use either Array#length or Array#size because they do the
same thing based on the same code. If you come to Ruby from Python, you can make
yourself a little more comfortable by creating yet another alias for length:

[4] Throughout this book, we use Array#size instead of Array#length. We do this mainly because it makes the lines of code a little shorter and easier to fit on the
page. This is probably not a concern for you, so use whichever one you're comfortable with.

 class Array
 alias :len :length
 end

 [1, 2, 3, 4].len # => 4

The alias command doesn't make a single method respond to two names, or create a
shell method that delegates to the "real" method. It makes an entirely separate copy of the
old method under the new name. If you then modify the original method, the alias will not
be affected.

This may seem wasteful, but it's frequently useful to Ruby programmers, who love to
redefine methods that aren't working the way they'd like. When you redefine a method,
it's good practice to first alias the old method to a different name, usually the original
name with an _old suffix. This way, the old functionality isn't lost.

This code (very unwisely) redefines Array#length, creating a copy of the original method
with an alias:

 class Array
 alias :length_old :length
 def length
 return length_old / 2
 end
 end

Note that the alias Array#size still works as it did before:

 array = [1, 2, 3, 4]
 array.length # => 2
 array.size # => 4
 array.length_old # => 4

Since the old implementation is still available, it can be aliased back to its original name
once the overridden implementation is no longer needed.

 class Array
 alias :length :length_old
 end

 array.length # => 4

Chapter 10. Reflection and Metaprogramming Page 31 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you find this behavior confusing, your best alternative is to avoid alias altogether.
Instead, define a method with the new name that simply delegates to the "real" method.
Here I'll modify the InventoryItem class so that cost delegates to price, rather than
having alias create a copy of price and calling the copy cost.

 class InventoryItem
 def cost(*args)
 price(*args)
 end
 end

If I then decide to modify price to tack on sales tax, cost will not have to be modified or
realiased.

 bacon.cost(100) # => 399.0

 require 'bigdecimal'
 require 'bigdecimal/util'
 class InventoryItem
 def price(quantity=1, sales_tax=BigDecimal.new("0.0725"))
 base_price = (unit_price * quantity).to_d
 price = (base_price + (base_price * sales_tax).round(2)).to_f
 end
 end

 bacon.price(100) # => 427.93
 bacon.cost(100) # => 427.93

We don't even need to change the signature of the cost method to match that of price,
since we used the *args construction to accept and delegate any arguments at all:

 bacon.cost(100, BigDecimal.new("0.05")) # => 418.95

See Also

• Recipe 2.9, "Converting Between Degrees and Radians"
• Recipe 4.7, "Making Sure a Sorted Array Stays Sorted"
• Recipe 17.14, "Running Multiple Analysis Tools at Once"

Recipe 10.15. Doing Aspect-Oriented Programming

Problem
You want to "wrap" a method with new code, so that calling the method triggers some new
feature in addition to the original code.

Chapter 10. Reflection and Metaprogramming Page 32 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-9#rubyckbk-CHP-2-SECT-9
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-7#rubyckbk-CHP-4-SECT-7
http://safari.oreilly.com/0596523696/rubyckbk-CHP-17-SECT-14#rubyckbk-CHP-17-SECT-14

Solution
You can arrange for code to be called before and after a method invocation by using method
aliasing and metaprogramming, but it's simpler to use the glue gem or the AspectR third-
party library. The latter lets you define "aspect" classes whose methods are called before
and after other methods.

Here's a simple example that traces calls to specific methods as they're made:

 require 'aspectr'
 class Verbose < AspectR::Aspect

 def describe(method_sym, object, *args)
 "#{object.inspect}.#{method_sym}(#{args.join(",")})"
 end

 def before(method_sym, object, return_value, *args)
 puts "About to call #{describe(method_sym, object, *args)}."
 end

 def after(method_sym, object, return_value, *args)
 puts "#{describe(method_sym, object, *args)} has returned " +
 return_value.inspect + '.'
 end
 end

Here, I'll wrap the push and pop methods of an array. Every time I call those methods,
the aspect code will run and some diagnostics will be printed.

 verbose = Verbose.new
 stack = []
 verbose.wrap(stack, :before, :after, :push, :pop)

 stack.push(10)
 # About to call [].push(10).
 # [10].push(10) has returned [[10]].

 stack.push(4)
 # About to call [10].push(4).
 # [10, 4].push(4) has returned [[10, 4]].

 stack.pop
 # About to call [10, 4].pop().
 # [10].pop() has returned [4].

Discussion
There's a pattern that shows up again and again in Ruby (we cover it in Recipe 7.10). You
write a method that performs some task-specific setup (like initializing a timer), runs a
code block, then performs task-specific cleanup (like stopping the timer and printing out
timing results). By passing in a code block to one of these methods you give it a new
aspect: the same code runs as if you'd just called Proc#call on the code block, but now
it's got something extra: the code gets timed, or logged, or won't run without
authentication, or it automatically performs some locking.

Chapter 10. Reflection and Metaprogramming Page 33 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-10#rubyckbk-CHP-7-SECT-10

Aspect-oriented programming lets you permanently add these aspects to previously
defined methods, without having to change any of the code that calls them. It's a good way
to modularize your code, and to modify existing code without having to do a lot of
metaprogramming yourself. Though less mature, the AspectR library has the same basic
features of Java's AspectJ.

The Aspect#wrap method modifies the methods of some other object or class. In the
example above, the push and pop methods of the stack are modified: you could also modify
the Array#push and Array#pop methods themselves, by passing in Array instead of
stack.

Aspect#wrap aliases the old implementations to new names, and defines the method
anew to include calls to a "pre" method (@Verbose#before in the example) and/or a
"post" method (@Verbose#after in the example).

You can wrap the same method with different aspects at the same time:

 class EvenMoreVerbose < AspectR::Aspect
 def useless(method_sym, object, return_value, *args)
 puts "More useless verbosity."
 end
 end

 more_verbose = EvenMoreVerbose.new
 more_verbose.wrap(stack, :useless, nil, :push)
 stack.push(60)
 # About to call [10].push(60).
 # More useless verbosity.
 # [10, 60].push(60) has returned [[10, 60]].

You can also undo the effects of a wrap call with Aspect#unwrap.

 verbose.unwrap(stack, :before, :after, :push, :pop)
 more_verbose.unwrap(stack, :useless, nil, :push)
 stack.push(100) # => [10, 60, 100]

Because they use aliasing under the covers, you can't use AspectR or glue to attach aspects
to operator methods like <<. If you do, AspectR (for instance) will try to define a method
called __aop__singleton_<<, which isn't a valid method name. You'll need to do the
alias yourself, using a method name like "old_lshift", and define a new << method that
makes the pre- and post-calls.

See Also

• The AspectR home page is at http://aspectr.sourceforge.net/
• Recipe 7.10, "Hiding Setup and Cleanup in a Block Method"
• Recipe 10.14, "Aliasing Methods"

Chapter 10. Reflection and Metaprogramming Page 34 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://aspectr.sourceforge.net
http://safari.oreilly.com/0596523696/rubyckbk-CHP-7-SECT-10#rubyckbk-CHP-7-SECT-10

• Recipe 20.4, "Synchronizing Access to an Object"

Recipe 10.16. Enforcing Software Contracts

Credit: Maurice Codik

Problem
You want your methods to to validate their arguments, using techniques like duck typing
and range validation, without filling your code with tons of conditions to test arguments.

Solution
Here's a Contracts module that you can mix in to your classes. Your methods can then
define and enforce contracts.

 module Contracts
 def valid_contract(input)
 if @user_defined and @user_defined[input]
 @user_defined[input]
 else
 case input
 when :number
 lambda { |x| x.is_a? Numeric }
 when :string
 lambda { |x| x.respond_to? :to_str }
 when :anything
 lambda { |x| true }
 else
 lambda { |x| false }
 end
 end
 end

 class ContractViolation < StandardError
 end

 def define_data(inputs={}.freeze)
 @user_defined ||= {}
 inputs.each do |name, contract|
 @user_defined[name] = contract if contract.respond_to? :call
 end
 end

 def contract(method, *inputs)
 @contracts ||= {}
 @contracts[method] = inputs
 method_added(method)
 end

 def setup_contract(method, inputs)
 @contracts[method] = nil
 method_renamed = "__#{method}".intern
 conditions = ""
 inputs.flatten.each_with_index do |input, i|
 conditions << %{
 if not self.class.valid_contract(#{input.inspect}).call(args[#{i}])
 raise ContractViolation, "argument #{i+1} of method '#{method}' must" +
 "satisfy the '#{input}' contract", caller

Chapter 10. Reflection and Metaprogramming Page 35 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-4#rubyckbk-CHP-20-SECT-4

 end
 }
 end

 class_eval %{
 alias_method #{method_renamed.inspect}, #{method.inspect}
 def #{method}(*args)
 #{conditions}
 return #{method_renamed}(*args)
 end
 }
 end

 def method_added(method)
 inputs = @contracts[method]
 setup_contract(method, inputs) if inputs
 end
 end

You can call the define_data method to define contracts, and call the contract method
to apply these contracts to your methods. Here's an example:

 class TestContracts
 def hello(n, s, f)
 n.times { f.write "hello #{s}!\n" }
 end

The hello method takes as its arguments a positive number, a string, and a file-type object
that can be written to. The Contracts module defines a :string contract for making
sure an item is stringlike. We can define additional contracts as code blocks; these contracts
make sure an object is a positive number, or an open object that supports the write
method:

 extend Contracts

 writable_and_open = lambda do |x|
 x.respond_to?('write') and x.respond_to?('closed?') and not x.closed?
 end

 define_data(:writable => writable_and_open,
 :positive => lambda {|x| x >= 0 })

Now we can call the contract method to create a contract for the three arguments of the
hello method:

 contract :hello, [:positive, :string, :writable]
 end

Here it is in action:

 tc = TestContracts.new
 tc.hello(2, 'world', $stdout)
 # hello world!
 # hello world!

 tc.hello(-1, 'world', $stdout)

Chapter 10. Reflection and Metaprogramming Page 36 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Contracts::ContractViolation: argument 1 of method 'hello' must satisfy the
 # 'positive' contract

 tc.hello(2, 3001, $stdout)
 # test-contracts.rb:22: argument 2 of method 'hello' must satisfy the
 # 'string' contract (Contracts::ContractViolation)

 closed_file = open('file.txt', 'w') { }
 tc.hello(2, 'world', closed_file)
 # Contracts::ContractViolation: argument 3 of method 'hello' must satisfy the
 # 'writable' contract

Discussion
The Contracts module uses many of Ruby's metaprogramming features to make these
runtime checks possible. The line of code that triggers it all is this one:

 contract :hello, [:positive, :string, :writable]

That line of code replaces the old implementation of hello with one that looks like this:

 def hello(n,s,f)
 if not (n >= 0)
 raise ContractViolation,
 "argument 1 of method 'hello' must satisfy the 'positive' contract", caller
 end
 if not (s.respond_to? String)
 raise ContractViolation,
 "argument 2 of method 'hello' must satisfy the 'string' contract",
 caller
 end
 if not (f.respond_to?('write') and f.respond_to?('closed?')
 and not f.closed?)
 raise ContractViolation,
 "argument 3 of method 'hello' must satisfy the 'writable' contract",
 caller
 end
 return __hello(n,s,f)
 end

 def __hello(n,s,f)
 n.times { f.write "hello #{s}!\n" }
 end

The body of define_data is simple: it takes a hash that maps contract names to Proc
objects, and adds each new contract definition to the user_defined hash of custom
contracts for this class.

The contract method takes a method symbol and an array naming the contracts to
impose on that method's arguments. It registers a new set of contracts by sending them to
the method symbol in the @contracts hash. When Ruby adds a method definition to the
class, it automatically calls the Contracts::method_added hook, passing in the name
of the method name as the argument. Contracts::method_added checks whether or
not the newly added method has a contract defined for it. If it finds one, it calls
setup_contract.

Chapter 10. Reflection and Metaprogramming Page 37 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

All of the heavy lifting is done in setup_contract. This is how it works, step by step:

• Remove the method's information in @contracts. This prevents an infinite loop
when we redefine the method using alias_method later.

• Generate the new name for the method. In this example, we simply append two
underscores to the front.

• Create all of the code to test the types of the arguments. We loop through the
arguments using Enumerable#each_with_index, and build up a string in the
conditions variable that contains the code we need. The condition code uses the
valid_contract method to translate a contract name (such as :number), to a Proc
object that checks whether or not its argument satisfies that contract.

• Use class_eval to insert our code into the class that called extend Contracts.
The code in the eval statment does the following:

o Call alias_method to rename the newly added method to our generated name.
o Define a new method with the original's name that checks all of our conditions

and then calls the renamed function to get the original functionality.

See Also

• Recipe 13.14, "Validating Data with ActiveRecord"
• Ruby also has an Eiffel-style Design by Contract library, which lets you define

invariants on classes, and pre-and post-conditions on methods; it's available as the
dbc gem

Chapter 10. Reflection and Metaprogramming Page 38 Return to Table of Contents

Chapter 10. Reflection and Metaprogramming
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-13-SECT-14#rubyckbk-CHP-13-SECT-14

	Reflection and Metaprogramming
	Finding an Object's Class and Superclass
	Listing an Object's Methods
	Listing Methods Unique to an Object
	Getting a Reference to a Method
	Fixing Bugs in Someone Else's Class
	Listening for Changes to a Class
	Checking Whether an Object Has Necessary Attributes
	Responding to Calls to Undefined Methods
	Automatically Initializing Instance Variables
	Avoiding Boilerplate Code with Metaprogramming
	Metaprogramming with String Evaluations
	Evaluating Code in an Earlier Context
	Undefining a Method
	Aliasing Methods
	Doing Aspect-Oriented Programming
	Enforcing Software Contracts

