
Table of Contents

Files and Directories... 1
Checking to See If a File Exists... 4
Checking Your Access to a File.. 5
Changing the Permissions on a File.. 7
Seeing When a File Was Last Used Problem.. 10
Listing a Directory... 12
Reading the Contents of a File.. 15
Writing to a File... 19
Writing to a Temporary File... 20
Picking a Random Line from a File.. 22
Comparing Two Files.. 23
Performing Random Access on "Read-Once" Input Streams.. 27
Walking a Directory Tree.. 29
Locking a File... 31
Backing Up to Versioned Filenames... 34
Pretending a String Is a File.. 37
Redirecting Standard Input or Output... 40
Processing a Binary File.. 41
Deleting a File... 45
Truncating a File... 47
Finding the Files You Want.. 48
Finding and Changing the Current Working Directory... 50

Chapter 6. Files and Directories

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

6. Files and Directories
As programming languages increase in power, we programmers get further and further
from the details of the underlying machine language. When it comes to the operating
system, though, even the most modern programming languages live on a level of
abstraction that looks a lot like the C and Unix libraries that have been around for decades.

We covered this kind of situation in Chapter 3 with Ruby's Time objects, but the issue
really shows up when you start to work with files. Ruby provides an elegant object-oriented
interface that lets you do basic file access, but the more advanced file libraries tend to look
like the C libraries they're based on. To lock a file, change its Unix permissions, or read its
metadata, you'll need to remember method names like mtime, and the meaning of obscure
constants like File::LOCK_EX and 0644. This chapter will show you how to use the
simple interfaces, and how to make the more obscure interfaces easier to use.

Looking at Ruby's support for file and directory operations, you'll see four distinct tiers of
support. The most common operations tend to show up on the lowernumbered tiers:

1. File objects to read and write the contents of files, and Dir objects to list the contents
of directories. For examples, see Recipes 6.5, 6.7, and 6.17. Also see Recipe 6.13 for a
Ruby-idiomatic approach.

2. Class methods of File to manipulate files without opening them. For instance, to
delete a file, examine its metadata, or change its permissions. For examples, see
Recipes 6.1, 6.3, and 6.4.

3. Standard libraries, such as find to walk directory trees, and fileutils to perform
common filesystem operations like copying files and creating directories. For
examples, see Recipes 6.8, 6.12, and 6.20.

4. Gems like file-tail, lockfile, and rubyzip, which fill in the gaps left by the
standard library. Most of the file-related gems covered in this book deal with specific
file formats, and are covered in Chapter 12.

Kernel#open is the simplest way to open a file. It returns a Filel object that you can
read from or write to, depending on the "mode" constant you pass in. I'll introduce read
mode and write mode here; there are several others, but I'll talk about most of those as
they come up in recipes.

To write data to a file, pass a mode of 'w' to open. You can then write lines to the file with
File#puts, just like printing to standard output with Kernel#puts. For more
possibilities, see Recipe 6.7.

Chapter 6. Files and Directories Page 1 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0596523696/rubyckbk-CHP-3#rubyckbk-CHP-3
http://safari.oreilly.com/0596523696/rubyckbk-CHP-12#rubyckbk-CHP-12

 open('beans.txt', "w") do |file|
 file.puts('lima beans')
 file.puts('pinto beans')
 file.puts('human beans')
 end

To read data from a file, open it for read access by specifying a mode of 'r', or just omitting
the mode. You can slurp the entire contents into a string with File#read, or process the
file line-by-line with File#each. For more details, see Recipe 6.6.

 open('beans.txt') do |file|
 file.each { |l| puts "A line from the file: #{l}" }
 end
 # A line from the file: lima beans
 # A line from the file: pinto beans
 # A line from the file: human beans

As seen in the examples above, the best way to use the open method is with a code block.
The open method creates a new File object, passes it to your code block, and closes the
file automatically after your code block runs—even if your code throws an exception. This
saves you from having to remember to close the file after you're done with it. You could
rely on the Ruby interpreter's garbage collection to close the file once it's no longer being
used, but Ruby makes it easy to do things the right way.

To find a file in the first place, you need to specify its disk path. You may specify an absolute
path, or one relative to the current directory of your Ruby process (see Recipe 6.21).
Relative paths are usually better, because they're more portable across platforms. Relative
paths like "beans.txt" or "subdir/beans.txt" will work on any platform, but absolute Unix
paths look different from absolute Windows paths:

 # A stereotypical Unix path.
 open('/etc/passwd')

 # A stereotypical Windows path; note the drive letter.
 open('c:/windows/Documents and Settings/User1/My Documents/ruby.doc')

Windows paths in Ruby use forward slashes to separate the parts of a path, even though
Windows itself uses backslashes. Ruby will also accept backslashes in a Windows path, so
long as you escape them:

 open('c:\\windows\\Documents and Settings\\User1\\My Documents\\ruby.doc')

Although this chapter focuses mainly on disk files, most of the methods of File are actually
methods of its superclass, IO. You'll encounter many other classes that are also subclasses
of IO, or just respond to the same methods. This means that most of the tricks described
in this chapter are applicable to classes like the Socket class for Internet sockets and the
infinitely useful StringIO (see Recipe 6.15).

Chapter 6. Files and Directories Page 2 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Your Ruby program's standard input, output, and error ($stdin, $stdout, and
$stderr) are also IO objects, which means you can treat them like files. This one-line
program echoes its input to its output:

 $stdin.each { |l| puts l }

The Kernel#puts command just calls $stdout.puts, so that one-liner is equivalent to
this one:

 $stdin.each { |l| $stdout.puts l }

Not all file-like objects support all the methods of IO. See Recipe 6.11 for ways to get around
the most common problem with unsupported methods. Also see Recipe 6.16 for more on
the default IO objects.

Several of the recipes in this chapter (such as Recipes 6.12 and 6.20) create specific
directory structures to demonstrate different concepts. Rather than bore you by filling up
recipes with the Ruby code to create a certain directory structure, I've written a method
that takes a short description of a directory structure, and creates the appropriate files and
subdirectories:

 # create_tree.rb
 def create_tree(directories, parent=".")
 directories.each_pair do |dir, files|
 path = File.join(parent, dir)
 Dir.mkdir path unless File.exists? path
 files.each do |filename, contents|
 if filename.respond_to? :each_pair # It's a subdirectory
 create_tree filename, path
 else # It's a file
 open(File.join(path, filename), 'w') { |f| f << contents || "" }
 end
 end
 end
 end

Now I can present th directory structure as a data structure and you can create it with a
single method call:

 require 'create_tree'
 create_tree 'test' =>
 ['An empty file',
 ['A file with contents', 'Contents of file'],
 { 'Subdirectory' => ['Empty file in subdirectory',
 ['File in subdirectory', 'Contents of file']] },
 { 'Empty subdirectory' => [] }
]
 require 'find'
 Find.find('test') { |f| puts f }
 # test
 # test/Empty subdirectory
 # test/Subdirectory
 # test/Subdirectory/File in subdirectory
 # test/Subdirectory/Empty file in subdirectory

Chapter 6. Files and Directories Page 3 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # test/A file with contents
 # test/An empty file

 File.read('test/Subdirectory/File in subdirectory')
 # => "Contents of file"

Recipe 6.1. Checking to See If a File Exists

Problem
Given a filename, you want to see whether the corresponding file exists and is the right
kind for your purposes.

Solution
Most of the time you'll use the File.file? predicate, which returns true only if the file
is an existing regular file (that is, not a directory, a socket, or some other special file).

 filename = 'a_file.txt'
 File.file? filename # => false

 require 'fileutils'
 FileUtils.touch(filename)
 File.file? filename # => true

Use the File.exists? predicate instead if the file might legitimately be a directory or
other special file, or if you plan to create a file by that name if it doesn't exist.
File.exists? will return true if a file of the given name exists, no matter what kind of
file it is.

 directory_name = 'a_directory'
 FileUtils.mkdir(directory_name)
 File.file? directory_name # => false
 File.exists? directory_name # => true

Discussion
A true response from File.exists? means that the file is present on the filesystem, but
says nothing about what type of file it is. If you open up a directory thinking it's a regular
file, you're in for an unpleasant surprise. This is why File.file? is usually more useful
than File.exists?.

Ruby provides several other predicates for checking the type of a file: the other commonly
useful one is File.directory?:

 File.directory? directory_name # => true
 File.directory? filename # => false

Chapter 6. Files and Directories Page 4 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The rest of the predicates are designed to work on Unix systems. File.blockdev? tests
or block-device files (such as hard-drive partitions), File.chardev? tests for character-
device files (such as TTYs), File.socket? tests for socket files, and File.pipe? tests
for named pipes,

 File.blockdev? '/dev/hda1' # => true
 File.chardev? '/dev/tty1' # => true
 File.socket? '/var/run/mysqld/mysqld.sock' # => true
 system('mkfifo named_pipe')
 File.pipe? 'named_pipe' # => true

File.symlink? tests whether a file is a symbolic link to another file, but you only need
to use it when you want to treat symlinks differently from other files. A symlink to a regular
file will satisfy File.file?, and can be opened and used just like a regular file. In most
cases, you don't even have to know it's a symlink. The same goes for symlinks to directories
and to other types of files.

 new_filename = "#{filename}2"
 File.symlink(filename, new_filename)

 File.symlink? new_filename # => true
 File.file? new_filename # => true

All of Ruby's file predicates return false if the file doesn't exist at all. This means you can
test "exists and is a directory" by just testing directory?; it's the same for the other
predicates.

See Also

• Recipe 6.8, "Writing to a Temporary File," and Recipe 6.14, "Backing Up to Versioned
Filenames," deal with writing to files that don't currently exist

Recipe 6.2. Checking Your Access to a File

Problem
You want to see what you can do with a file: whether you have read, write, or (on Unix
systems) execute permission on it.

Solution
Use the class methods File.readable?, File.writeable?, and
File.executable?.

 File.readable?('/bin/ls') # => true

Chapter 6. Files and Directories Page 5 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 File.readable?('/etc/passwd-') # => false

 filename = 'test_file'
 File.open(filename, 'w') {}

 File.writable?(filename) # => true
 File.writable?('/bin/ls') # => false

 File.executable?('/bin/ls') # => true
 File.executable?(filename) # => false

Discussion
Ruby's file permission tests are Unix-centric, but readable? and writable? work on
any platform; the rest fail gracefully when the OS doesn't support them. For instance,
Windows doesn't have the Unix notion of execute permission, so File.executable?
always returns true on Windows.

The return value of a Unix permission test depends in part on whether your user owns the
file in question, or whether you belong to the Unix group that owns it. Ruby provides
convenience tests File.owned? and File.grpowned? to check this.

 File.owned? 'test_file' # => true
 File.grpowned? 'test_file' # => true
 File.owned? '/bin/ls' # => false

On Windows, File.owned? always returns true (even for a file that belongs to another
user) and File.grpowned? always returns false.

The File methods described above should be enough to answer most permission
questions about a file, but you can also see a file's Unix permissions in their native form
by looking at the file's mode. The mode is a number, each bit of which has a different
meaning within the Unix permission system.[1] You can view a file's mode with
File::Lstat#mode.

[1] If you're not familiar with this, Recipe 6.3 describes the significance of the permission bits in a file's mode.

The result of mode contains some extra bits describing things like the type of a file. You
probably want to strip that information out by masking those bits. This example
demonstrates that the file originally created in the solution has a Unix permission mask of
0644:

 File.lstat('test_file').mode & 0777 # Keep only the permission bits.
 # => 420 # That is, 0644 octal.

Chapter 6. Files and Directories Page 6 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Setuid and setgid scripts
readable?, writable?, and executable? return answers that depend on the effective
user and group ID you are using to run the Ruby interpreter. This may not be your actual
user or group ID: the Ruby interpreter might be running setuid or setgid, or you might
have changed their effective ID with Process.euid= or Process.egid=.

Each of the permission checks has a corresponding method that returns answers from the
perspective of the process's real user and real group IDs: executable_real?,
readable_real?, and writable_real?. If you're running the Ruby interpreter setuid,
then readable_real? (for instance) will give different answers from readable?. You can
use this to disallow users from reading or modifying certain files unless they actually are
the root user, not just taking on the root users' privileges through setuid.

For instance, consider the following code, which prints our real and effective user and
group IDs, then checks to see what it can do to a system file:

 def what_can_i_do?
 sys = Process::Sys
 puts "UID=#{sys.getuid}, GID=#{sys.getgid}"
 puts "Effective UID=#{sys.geteuid}, Effective GID=#{sys.getegid}"

 file = '/bin/ls'
 can_do = [:readable?, :writable?, :executable?].inject([]) do |arr, method|
 arr << method if File.send(method, file); arr
 end
 puts "To you, #{file} is: #{can_do.join(', ')}"
 end

If you run this code as root, you can call this method and get one set of answers, then take
on the guise of a less privileged user and get another set of answers:

 what_can_i_do?
 # UID=0, GID=0
 # Effective UID=0, Effective GID=0
 # To you, /bin/ls is: readable?, writable?, executable?

 Process.uid = 1000
 what_can_i_do?
 # UID=0, GID=0
 # Effective UID=1000, Effective GID=0
 # To you, /bin/ls is: readable?, executable?

See Also

• Recipe 6.3, "Changing the Permissions on a File"
• Recipe 23.3, "Running Code as Another User," has more on setting the effective user

ID

Chapter 6. Files and Directories Page 7 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-3#rubyckbk-CHP-23-SECT-3

Recipe 6.3. Changing the Permissions on a File

Problem
You want to control access to a file by modifying its Unix permissions. For instance, you
want to make it so that everyone on your system can read a file, but only you can write to
it.

Solution
Unless you've got a lot of Unix experience, it's hard to remember the numeric codes for
the nine Unix permission bits. Probably the first thing you should do is define constants
for them. Here's one constant for every one of the permission bits. If these names are too
concise for you, you can name them USER_READ, GROUP_WRITE, OTHER_ EXECUTE,
and so on.

 class File
 U_R = 0400
 U_W = 0200
 U_X = 0100
 G_R = 0040
 G_W = 0020
 G_X = 0010
 O_R = 0004
 O_W = 0002
 O_X = 0001
 end

You might also want to define these three special constants, which you can use to set the
user, group, and world permissions all at once:

 class File
 A_R = 0444
 A_W = 0222
 A_X = 0111
 end

Now you're ready to actually change a file's permissions. Every Unix file has a permission
bitmap, or mode, which you can change (assuming you have the permissions!) by calling
File.chmod. You can manipulate the constants defined above to get a new mode, then
pass it in along with the filename to File.chmod.

The following three chmod calls are equivalent: for the file my_file, they give readwrite
access to to the user who owns the file, and restrict everyone else to read-only access. This
is equivalent to the permission bitmap 11001001, the octal number 0644, or the decimal
number 420.

open("my_file", "w") {}

Chapter 6. Files and Directories Page 8 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

File.chmod(File::U_R | File::U_W | File::G_R | File::O_R, "my_file")
File.chmod(File::A_R | File::U_W, "my_file")
File.chmod(0644, "my_file") # Bitmap: 110001001

File::U_R | File::U_W | File::G_R | File::O_R # => 420
File::A_R | File::U_W # => 420
0644 # => 420
File.lstat("my_file").mode & 0777 # => 420

Note how I build a full permission bitmap by combining the permission constants with the
OR operator (|).

Discussion
A Unix file has nine associated permission bits that are consulted whenever anyone tries
to access the file. They're divided into three sets of three bits. There's one set for the user
who owns the file, one set is for the user group who owns the file, and one set is for everyone
else.

Each set contains one bit for each of the three basic things you might do to a file in Unix:
read it, write it, or execute it as a program. If the appropriate bit is set for you, you can
carry out the operation; if not, you're denied access.

When you put these nine bits side by side into a bitmap, they form a number that you can
pass into File.chmod. These numbers are difficult to construct and read without a lot of
practice, which is why I recommend you use the constants defined above. It'll make your
code less buggy and more readable.[2]

[2] It's true that it's more macho to use the numbers, but if you really wanted to be macho you'd be writing a shell script, not a Ruby program.

File.chmod completely overwrites the file's current permission bitmap with a new one.
Usually you just want to change one or two permissions: make sure the file isn't world-
writable, for instance. The simplest way to do this is to use File.lstat#mode to get the
file's current permission bitmap, then modify it with bit operators to add or remove
permissions. You can pass the result into File.chmod.

Use the XOR operator (^) to remove permissions from a bitmap, and the OR operator, as
seen above, to add permissions:

 # Take away the world's read access.
 new_permission = File.lstat("my_file").mode ^ File::O_R
 File.chmod(new_permission, "my_file")

 File.lstat("my_file").mode & 0777 # => 416 # 0640 octal

 # Give everyone access to everything
 new_permission = File.lstat("my_file").mode | File::A_R | File::A_W | File::A_X
 File.chmod(new_permission, "my_file")

 File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

 # Take away the world's write and execute access

Chapter 6. Files and Directories Page 9 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 new_permission = File.lstat("my_file").mode ^ (File::O_W | File::O_X)
 File.chmod(new_permission, "my_file")

 File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

If doing bitwise math with the permission constants is also too complicated for you, you
can use code like this to parse a permission string like the one accepted by the Unix chmod
command:

 class File
 def File.fancy_chmod(permission_string, file)
 mode = File.lstat(file).mode
 permission_string.scan(/[ugoa][+-=][rwx]+/) do |setting|
 who = setting[0..0]
 setting[2..setting.size].each_byte do |perm|
 perm = perm.chr.upcase
 mask = eval("File::#{who.upcase}_#{perm}")
 (setting[1] == ?+) ? mode |= mask : mode ^= mask
 end
 end
 File.chmod(mode, file)
 end
 end
 # Give the owning user write access
 File.fancy_chmod("u+w", "my_file")

 File.lstat("my_file").mode & 0777 # => 508 # 0774 octal

 # Take away the owning group's execute access
 File.fancy_chmod("g-x", "my_file")

 File.lstat("my_file").mode & 0777 # => 500 # 0764 octal
 # Give everyone access to everything

 File.fancy_chmod("a+rwx", "my_file")

 File.lstat("my_file").mode & 0777 # => 511 # 0777 octal

 # Give the owning user access to everything. Then take away the
 # execute access for users who aren't the owning user and aren't in
 # the owning group.
 File.fancy_chmod("u+rwxo-x", "my_file")
 File.lstat("my_file").mode & 0777 # => 510 # 0774 octal

Unix-like systems such as Linux and Mac OS X support the full range of Unix permissions.
On Windows systems, the only one of these operations that makes sense is adding or
subtracting the U_W bit of a file—making a file read-only or not. You can use File.chmod
on Windows, but the only bit you'll be able to change is the user write bit.

See Also

• Recipe 6.2, "Checking Your Access to a File"
• Recipe 23.9, "Normalizing Ownership and Permissions in User Directories"

Recipe 6.4. Seeing When a File Was Last Used Problem

Chapter 6. Files and Directories Page 10 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-9#rubyckbk-CHP-23-SECT-9

Problem
You want to see when a file was last accessed or modified.

Solution

The result of File.stat contains a treasure trove of metadata about a file. Perhaps the
most useful of its methods are the two time methods mtime (the last time anyone wrote
to the file), and atime (the last time anyone read from the file).

 open("output", "w") { |f| f << "Here's some output.\n" }
 stat = File.stat("output")
 stat.mtime # => Thu Mar 23 12:23:54 EST 2006
 stat.atime # => Thu Mar 23 12:23:54 EST 2006

 sleep(2)
 open("output", "a") { |f| f << "Here's some more output.\n" }
 stat = File.stat("output")
 stat.mtime # => Thu Mar 23 12:23:56 EST 2006
 stat.atime # => Thu Mar 23 12:23:54 EST 2006

 sleep(2)
 open("output") { |f| contents = f.read }
 stat = File.stat("output")
 stat.mtime # => Thu Mar 23 12:23:56 EST 2006
 stat.atime # => Thu Mar 23 12:23:58 EST 2006

Discussion
A file's atime changes whenever data is read from the file, and its mtime changes
whenever data is written to the file.

There's also a ctime method, but it's not as useful as the other two. Contrary to semi-
popular belief, ctime does not track the creation time of the file (there's no way to track
this in Unix). A file's ctime is basically a more inclusive version of its mtime. The ctime
changes not only when someone modifies the contents of a file, but when someone changes
its permissions or its other metadata.

All three methods are useful for separating the files that actually get used from the ones
that just sit there on disk. They can also be used in sanity checks.

Here's code for the part of a game that saves and loads the game state to a file. As a deterrent
against cheating, when the game loads a save file it performs a simple check against the
file's modification time. If it differs from the timestamp recorded inside the file, the game
refuses to load the save file.

The save_game method is responsible for recording the timestamp:

Chapter 6. Files and Directories Page 11 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def save_game(file)
 score = 1000
 open(file, "w") do |f|
 f.puts(score)
 f.puts(Time.new.to_i)
 end
 end

The load_game method is responsible for comparing the timestamp within the file to the
time the filesystem has associated with the file:

 def load_game(file)
 open(file) do |f|
 score = f.readline.to_i
 time = Time.at(f.readline.to_i)
 difference = (File.stat(file).mtime - time).abs
 raise "I suspect you of cheating." if difference > 1
 "Your saved score is #{score}."
 end
 end

This mechanism can detect simple forms of cheating:

 save_game("game.sav")
 sleep(2)
 load_game("game.sav")
 # => "Your saved score is 1000."

 # Now let's cheat by increasing our score to 9000

 open("game.sav", "r+b") { |f| f.write("9") }

 load_game("game.sav")
 # RuntimeError: I suspect you of cheating.

Since it's possible to modify a file's times with tools like the Unix touch command, you
shouldn't depend on these methods to defend you against a skilled attacker actively trying
to fool your program.

See Also

• An example in Recipe 3.12, "Running a Code Block Periodically," monitors a file for
changes by checking its mtime periodically

• Recipe 6.20, "Finding the Files You Want," shows examples of filesystem searches
that make comparisons between the file times

Recipe 6.5. Listing a Directory

Problem
You want to list or process the files or subdirectories within a directory.

Chapter 6. Files and Directories Page 12 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-3-SECT-12#rubyckbk-CHP-3-SECT-12

Solution

If you're starting from a directory name, you can use Dir.entries to get an array of the
items in the directory, or Dir.foreach to iterate over the items. Here's an exampleof
each run on a sample directory:

 # See the chapter intro to get the create_tree library
 require 'create_tree'
 create_tree 'mydir' =>
 [{'subdirectory' => [['file_in_subdirectory', 'Just a simple file.']] },
 '.hidden_file', 'ruby_script.rb', 'text_file']

 Dir.entries('mydir')

 # => [".", "..", ".hidden_file", "ruby_script.rb", "subdirectory",
 # "text_file"]

 Dir.foreach('mydir') { |x| puts x if x != "." && x != ".."}
 # .hidden_file
 # ruby_script.rb
 # subdirectory
 # text_file

You can also use Dir[] to pick up all files matching a certain pattern, using a format
similar to the bash shell's glob format (and somewhat less similar to the wildcard format
used by the Windows command-line shell):

 # Find all the "regular" files and subdirectories in mydir. This excludes
 # hidden files, and the special directories . and ..
 Dir["mydir/*"]
 # => ["mydir/ruby_script.rb", "mydir/subdirectory", "mydir/text_file"]

 # Find all the .rb files in mydir
 Dir["mydir/*.rb"] # => ["mydir/ruby_script.rb"]

You can also open a directory handle with Dir#open, and treat it like any other
Enumerable. Methods like each,each_with_index, grep, and reject will all work
(but see below if you want to call them more than once). As with File#open, you should
do your directory processing in a code block so that the directory handle will get closed
once you're done with it.

 Dir.open('mydir') { |d| d.grep /file/ }
 # => [".hidden_file", "text_file"]

 Dir.open('mydir') { |d| d.each { |x| puts x } }
 # .
 # ..
 # .hidden_file
 # ruby_script.rb
 # subdirectory
 # text_file

Chapter 6. Files and Directories Page 13 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion

Reading entries from a Dir object is more like reading data from a file than iterating over
an array. If you call one of the Dir instance methods and then want to call another one on
the same Dir object, you'll need to call Dir#rewind first to go back to the beginning of
the directory listing:

 #Get all contents other than ".", "..", and hidden files.

 d = Dir.open('mydir')
 d.reject { |f| f[0] == '.' }
 # => ["subdirectory", "ruby_script.rb", "text_file"]
 #Now the Dir object is useless until we call Dir#rewind.
 d.entries.size # => 0
 d.rewind
 d.entries.size # => 6

 #Get the names of all files in the directory.
 d.rewind
 d.reject { |f| !File.file? File.join(d.path, f) }
 # => [".hidden_file", "ruby_script.rb", "text_file"]

 d.close

Methods for listing directories and looking for files return string pathnames instead of
File and Dir objects. This is partly for efficiency, and partly because creating a File or
Dir actually opens up a filehandle on that file or directory.

Even so, it's annoying to have to take the output of these methods and patch together real
File or Dir objects on which you can operate. Here's a simple method that will build a
File or Dir, given a filename and the name or Dir of the parent directory:

 def File.from_dir(dir, name)
 dir = dir.path if dir.is_a? Dir
 path = File.join(dir, name)
 (File.directory?(path) ? Dir : File).open(path) { |f| yield f }
 end

As with File#open and Dir#open, the actual processing happens within a code block:

 File.from_dir("mydir", "subdirectory") do |subdir|
 File.from_dir(subdir, "file_in_subdirectory") do |file|
 puts %{My path is #{file.path} and my contents are "#{file.read}".}
 end
 end
 # My path is mydir/subdirectory/file_in_subdirectory and my contents are
 # "Just a simple file".

Globs make excellent shortcuts for finding files in a directory or a directory tree. Especially
useful is the ** glob, which matches any number of directories. A glob is the easiest and
fastest way to recursively process every file in a directory tree, although it loads all the

Chapter 6. Files and Directories Page 14 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

filenames into an array in memory. For a less memoryintensive solution, see the find
library, described in Recipe 6.12.

 Dir["mydir/**/*"]
 # => ["mydir/ruby_script.rb", "mydir/subdirectory", "mydir/text_file",
 # "mydir/subdirectory/file_in_subdirectory"]

 Dir["mydir/**/*file*"]
 # => ["mydir/text_file", "mydir/subdirectory/file_in_subdirectory"]

A brief tour of the other features of globs:

 #Regex-style character classes
 Dir["mydir/[rs]*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]
 Dir["mydir/[^s]*"] # => ["mydir/ruby_script.rb", "mydir/text_file"]

 # Match any of the given strings
 Dir["mydir/{text,ruby}*"] # => ["mydir/text_file", "mydir/ruby_script.rb"]

 # Single-character wildcards
 Dir["mydir/?ub*"] # => ["mydir/ruby_script.rb", "mydir/subdirectory"]

Globs will not pick up files or directories whose names start with periods, unless you match
them explicitly:

 Dir["mydir/.*"] # => ["mydir/.", "mydir/..", "mydir/.hidden_file"]

See Also

• Recipe 6.12, "Walking a Directory Tree"
• Recipe 6.20, "Finding the Files You Want"

Recipe 6.6. Reading the Contents of a File

Problem
You want to read some or all of a file into memory.

Solution
Open the file with Kernel#open, and pass in a code block that does the actual reading.
To read the entire file into a single string, use IO#read:

 #Put some stuff into a file.
 open('sample_file', 'w') do |f|
 f.write("This is line one.\nThis is line two.")
 end

 # Then read it back out.

Chapter 6. Files and Directories Page 15 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 open('sample_file') { |f| f.read }
 # => "This is line one.\nThis is line two."

To read the file as an array of lines, use IO#readlines:

 open('sample_file') { |f| f.readlines }
 # => ["This is line one.\n", "This is line two."]

To iterate over each line in the file, use IO#each. This technique loads only one line into
memory at a time:

 open('sample_file').each { |x| p x }
 # "This is line one.\n"
 # "This is line two."

Discussion
How much of the file do you want to read into memory at once? Reading the entire file in
one gulp uses memory equal to the size of the file, but you end up with a string, and you
can use any of Ruby's string processing techniques on it.

The alternative is to process the file one chunk at a time. This uses only the memory needed
to store one chunk, but it can be more difficult to work with, because any given chunk may
be incomplete. To process a chunk, you may end up reading the next chunk, and the next.
This code reads the first 50-byte chunk from a file, but it turns out not to be enough:

 puts open('conclusion') { |f| f.read(50) }
 # "I know who killed Mr. Lambert," said Joe. "It was

If a certain string always marks the end of a chunk, you can pass that string into IO#each
to get one chunk at a time, as a series of strings. This lets you process each full chunk as a
string, and it uses less memory than reading the entire file.

If a certain string always marks the end of a chunk, you can pass that string into IO#each
to get one chunk at a time, as a series of strings. This lets you process each full chunk as a
string, and it uses less memory than reading the entire file.

 # Create a file…
 open('end_separated_records', 'w') do |f|
 f << %{This is record one.
 It spans multiple lines.ENDThis is record two.END}
 end

 # And read it back in.
 open('end_separated_records') { |f| f.each('END') { |record| p record } }
 # "This is record one.\nIt spans multiple lines.END"
 # "This is record two.END"

Chapter 6. Files and Directories Page 16 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You can also pass a delimiter string into IO#readlines to get the entire file split into an
array by the delimiter string:

 # Create a file…
 open('pipe_separated_records', 'w') do |f|
 f << "This is record one.|This is record two.|This is record three."
 end

 # And read it back in.
 open('pipe_separated_records') { |f| f.readlines('|') }
 # => ["This is record one.|", "This is record two.|",
 # "This is record three."]

The newline character usually makes a good delimiter (many scripts process a file one line
at a time), so by default, IO#each and IO#readlines split the file by line:

 open('newline_separated_records', 'w') do |f|
 f.puts 'This is record one. It cannot span multiple lines.'
 f.puts 'This is record two.'
 end

 open('newline_separated_records') { |f| f.each { |x| p x } }
 # "This is record one. It cannot span multiple lines.\n"
 # "This is record two.\n"

The trouble with newlines is that different operating systems have different newline
formats. Unix newlines look like "\n", while Windows newlines look like "\r\n", and the
newlines for old (pre-OS X) Macintosh files look like "\r". A file uploaded to a web
application might come from any of those systems, but IO#each and IO#readlines split
files into lines depending on the newline character of the OS that's running the Ruby script
(this is kept in the special variable $/). What to do?

By passing "\n" into IO#each or IO#readlines, you can handle the newlines of files
created on any recent operating system. If you need to handle all three types of newlines,
the easiest way is to read the entire file at once and then split it up with a regular expression.

open('file_from_unknown_os') { |f| f.read.split(/\r?\n|\r(?!\n)/) }

IO#each and IO#readlines don't strip the delimiter strings from the end of the lines.
Assuming the delimiter strings aren't useful to you, you'll have to strip them manually.

To strip delimiter characters from the end of a line, use the String#chomp or
String#chomp! methods. By default, these methods will remove the last character or set
of characters that can be construed as a newline. However, they can be made to strip any
other delimiter string from the end of a line.

 "This line has a Unix/Mac OS X newline.\n".chomp
 # => "This line has a Unix/Mac OS X newline."

 "This line has a Windows newline.\r\n".chomp

Chapter 6. Files and Directories Page 17 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # => "This line has a Windows newline."

 "This line has an old-style Macintosh newline.\r".chomp
 # => "This line has an old-style Macintosh newline."

 "This string contains two newlines.\n\n".chomp
 # "This string contains two newlines.\n"

 'This is record two.END'.chomp('END')
 # => "This is record two."

 'This string contains no newline.'.chomp
 # => "This string contains no newline."

You can chomp the delimiters as IO#each yields each record, or you can chomp each line
returned by IO#readlines:

 open('pipe_separated_records') do |f|
 f.each('|') { |l| puts l.chomp('|') }
 end
 # This is record one.
 # This is record two.
 # This is record three.

 lines = open('pipe_separated_records') { |f| f.readlines('|') }
 # => ["This is record one.|", "This is record two.|",
 # "This is record three."]
 lines.each { |l| l.chomp!('|') }
 # => ["This is record one.", "This is record two.", "This is record three."]

You've got a problem if a file is too big to fit into memory, and there are no known
delimiters, or if the records between the delimiters are themselves too big to fit in memory.
You've got no choice but to read from the file in chunks of a certain number of bytes. This
is also the best way to read binary files; see Recipe 6.17 for more.

Use IO#read to read a certain number of bytes, or IO#each_byte to iterate over the
File one byte at a time. The following code uses IO#read to continuously read uniformly
sized chunks until it reaches end-of-file:

 class File
 def each_chunk(chunk_size=1024)
 yield read(chunk_size) until eof?
 end
 end

 open("pipe_separated_records") do |f|
 f.each_chunk(15) { |chunk| puts chunk }
 end
 # This is record
 # one.|This is re
 # cord two.|This
 # is record three
 # .

All of these methods are made available by the IO class, the superclass of File. You can
use the same methods on Socket objects. You can also use each and each_byte on

Chapter 6. Files and Directories Page 18 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

String objects, which in some cases can save you from having to create a StringIO
object (see Recipe 6.15 for more on those beasts).

See Also

• Recipe 6.11, "Performing Random Access on "Read-Once" Input Streams"
• Recipe 6.17, "Processing a Binary File," goes into more depth about reading files as

chunks of bytes
• Recipe 6.15, "Pretending a String Is a File"

Recipe 6.7. Writing to a File

Problem
You want to write some text or Ruby data structures to a file. The file might or might not
exist. If it does exist, you might want to overwrite the old contents, or just append new
data to the end of the file.

Solution
Open the file in write mode ('w'). The file will be created if it doesn't exist, and truncated
to zero bytes if it does exist. You can then use IO#write or the << operator to write strings
to the file, as though the file itself were a string and you were appending to it.

You can also use IO#puts or IO#p to write lines to the file, the same way you can use
Kernel#puts or Kernel#p to write lines to standard output.

Both of the following chunks of code destroy the previous contents of the file output, then
write a new string to the file:

 open('output', 'w') { |f| f << "This file contains great truths.\n" }
 open('output', 'w') do |f|
 f.puts 'The great truths have been overwritten with an advertisement.'
 end

 open('output') { |f| f.read }
 # => "The great truths have been overwritten with an advertisement.\n"

To append to a file without overwriting its old contents, open the file in append mode ('a')
instead of write mode:

 open('output', "a") { |f| f.puts 'Buy Ruby(TM) brand soy sauce!' }

 open('output') { |f| puts f.read }
 # The great truths have been overwritten with an advertisement.
 # Buy Ruby(TM) brand soy sauce!

Chapter 6. Files and Directories Page 19 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Discussion
Sometimes you'll only need to write a single (possibly very large) string to a file. Usually,
though, you'll be getting your strings one at a time from a data structure or some other
source, and you'll call puts or the append operator within some kind of loop:

 open('output', 'w') do |f|
 [1,2,3].each { |i| f << i << ' and a ' }
 end
 open('output') { |f| f.read } # => "1 and a 2 and a 3 and a "

Since the << operator returns the filehandle it wrote to, you can chain calls to it. As seen
above, this feature lets you write multiple strings to a file in a single line of Ruby code.

Because opening a file in write mode destroys the file's existing contents, you should only
use it when you don't care about the old contents, or after you've read them into memory
for later use. Append mode is nondestructive, making it useful for files like log iles, which
need to be updated periodically without destroying their old contents.

Buffered I/O

There's no guarantee that data will be written to your file as soon as you call << or puts.
Since disk writes are expensive, Ruby lets changes to a file pile up in a buffer. It occasionally
flushes the buffer, sending the data to the operating system so it can be ritten to disk.

You can manually flush Ruby's buffer for a particular file by calling its IO#flush method.
You can turn off Ruby's buffering altogether by setting IO.sync to false. However, your
operating system probably does some disk buffering of its own, so doing these things won't
neccessarily write your changes directly to disk.

 open('output', 'w') do |f|
 f << 'This is going into the Ruby buffer.'
 f.flush # Now it's going into the OS buffer.
 end

 IO.sync = false
 open('output', 'w') { |f| f << 'This is going straight into the OS buffer.' }

See Also

• Recipe 1.1, "Building a String from Parts"
• Recipe 6.6, "Reading the Contents of a File"
• Recipe 6.19, "Truncating a File"

Chapter 6. Files and Directories Page 20 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-1-SECT-1#rubyckbk-CHP-1-SECT-1

Recipe 6.8. Writing to a Temporary File

Problem
You want to write data to a secure temporary file with a unique name.

Solution
Create a Tempfile object. It has all the methods of a File object, and it will be in a
location on disk guaranteed to be unique.

 require 'tempfile'
 out = Tempfile.new("tempfile")
 out.path # => "/tmp/tempfile23786.0"

A Tempfile object is opened for read-write access (mode w+), so you can write to it and
then read from it without having to close and reopen it:

 out << "Some text."
 out.rewind
 out.read # => "Some text."
 out.close

Note that you can't pass a code block into the Tempfile constructor: you have to assign
the temp file to an object, and call Tempfile#close when you're done.

Discussion
To avoid security problems, use the Tempfile class to generate temp file names, instead
of writing the code yourself. The Tempfile class creates a file on disk guaranteed not to
be in use by any other thread or process, and sets that file's permissions so that only you
can read or write to it. This eliminates any possibility that a hostile process might inject
fake data into the temp file, or read what you write.[3]

[3] Unless the hostile process is running as you or as the root user, but then you've got bigger problems.

The name of a temporary file incorporates the string you pass into the Tempfile
constructor, the process ID of the current process ($$, or $PID if you've done an include
English), and a unique number. By default, temporary files are created in Dir::
tmpdir (usually /tmp), but you can pass in a different directory name:

 out = Tempfile.new("myhome_tempfile", "/home/leonardr/temp/")

No matter where you create your temporary files, when your process exits, all of its
temporary files are automatically destroyed. If you want the data you wrote to temporary

Chapter 6. Files and Directories Page 21 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

files to live longer than your process, you should copy or move the temporary files to "real"
files:

 require 'fileutils'
 FileUtils.mv(out.path, "/home/leonardr/old_tempfile")

The tempfile assumes that the operating system can atomically open a file and get an
exclusive lock on it. This doesn't work on all filesystems. Ara Howard's lockfile library
(available as a gem of the same name) uses linking, which is atomic everywhere.

Recipe 6.9. Picking a Random Line from a File

Problem
You want to choose a random line from a file, without loading the entire file into memory.

Solution
Iterate over the file, giving each line a chance to be the randomly selected one:

 module Enumerable
 def random_line
 selected = nil
 each_with_index { |line, lineno| selected = line if rand < 1.0/lineno }
 return selected.chomp if selected
 end
 end

 #Create a file with 1000 lines
 open('random_line_test', 'w') do |f|
 1000.times { |i| f.puts "Line #{i}" }
 end

 #Pick random lines from the file.
 f = open('random_line_test')
 f.random_line # => "Line 520"
 f.random_line # => nil
 f.rewind
 f.random_line # => "Line 727"

Discussion
The obvious solution reads the entire file into memory;

 File.open('random_line_test') do |f|
 l = f.readlines
 l[rand(l.size)].chomp
 end
 # => "Line 708"

The recommended solution is just as fast, and only reads one line at a time into memory.
However, once it's done, the file pointer has been set to the end of the file and you can't

Chapter 6. Files and Directories Page 22 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

access the file anymore without calling File#rewind. If you want to pick a lot of random
lines from a file, reading the entire file into memory might be preferable to iterating over
it multiple times.

This recipe makes for a good command-line tool. The following code uses the special
variable $., which holds the number of the line most recently read from a file:

 $ ruby -e 'rand < 1.0/$. and line = $_ while gets; puts line.chomp if line'

The algorithm works because, although lines that come earlier in the file have a better
chance of being selected initially, they also have more chances to be replaced by a later
line. A proof by induction demonstrates that the algorithm gives equal weight to each line
in the file.

The base case is a file of a single line, where it will obviously work: any value of
Kernel#rand will be less than 1, so the first line will always be chosen.

Now for the inductive step. Assume that the algorithm works for a file of n lines: that is,
each of the first n lines has a 1/n chance of being chosen. Then, add another line to the file
and process the new line. The chance that line n+1 will become the randomly chosen line is
1/(n+1). The remaining probability, n/n+1, is the chance that one of the other n lines is
the randomly chosen one.

Our inductive assumption was that each of the n original lines had an equal chance of being
chosen, so this remaining n/n+1 probability must be distributed evenly across the n
original lines. Given a line in the first n, what's it's chance of being the chosen one? It's just
n/n+1 divided by n,or 1/n+1. Line n+1 and all earlier lines have a 1/n+1 chance of being
chosen, so the choice is truly random.

See Also

• Recipe 2.5, "Generating Random Numbers"
• Recipe 4.10, "Shuffling an Array"
• Recipe 5.11, "Choosing Randomly from a Weighted List"

Recipe 6.10. Comparing Two Files

Problem
You want to see if two files contain the same data. If they differ, you might want to represent
the differences between them as a string: a patch from one to the other.

Chapter 6. Files and Directories Page 23 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-2-SECT-5#rubyckbk-CHP-2-SECT-5
http://safari.oreilly.com/0596523696/rubyckbk-CHP-4-SECT-10#rubyckbk-CHP-4-SECT-10
http://safari.oreilly.com/0596523696/rubyckbk-CHP-5-SECT-11#rubyckbk-CHP-5-SECT-11

Solution
If two files differ, it's likely that their sizes also differ, so you can often solve the problem
quickly by comparing sizes. If both files are regular files with the same size, you'll need to
look at their contents.

This code does the cheap checks first:

1. If one file exists and the other does not, they're not the same.
2. If neither file exists, say they're the same.
3. If the files are the same file, they're the same.
4. If the files are of different types or sizes, they're not the same.

 class File
 def File.same_contents(p1, p2)
 return false if File.exists?(p1) != File.exists?(p2)
 return true if !File.exists?(p1)
 return true if File.expand_path(p1) == File.expand_path(p2)
 return false if File.ftype(p1) != File.ftype(p2) ||
 File.size(p1) != File.size(p2)

Otherwise, it compares the files contents, a block at a time:

 open(p1) do |f1|
 open(p2) do |f2|
 blocksize = f1.lstat.blksize
 same = true
 while same && !f1.eof? && !f2.eof?
 same = f1.read(blocksize) == f2.read(blocksize)
 end
 return same
 end
 end
 end
 end

To illustrate, I'll create two identical files and compare them. I'll then make them slightly
different, and compare them again.

 1.upto(2) do |i|
 open("output#{i}", 'w') { |f| f << 'x' * 10000 }
 end
 File.same_contents('output1', 'output2') # => true
 open("output1", 'a') { |f| f << 'x' }
 open("output2", 'a') { |f| f << 'y' }
 File.same_contents('output1', 'output2') # => false

 File.same_contents('nosuchfile', 'output1') # => false
 File.same_contents('nosuchfile1', 'nosuchfile2') # => true

Discussion
The code in the Solution works well if you only need to determine whether two files are
identical. If you need to see the differences between two files, the most useful tool is is

Chapter 6. Files and Directories Page 24 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Austin Ziegler's Diff::LCS library, available as the diff-lcs gem. It implements a
sophisticated diff algorithm that can find the differences between any two enumerable
objects, not just strings. You can use its LCS module to represent the differences between
two nested arrays, or other complex data structures.

The downside of such flexibility is a poor interface when you just want to diff two files or
strings. A diff is represented by an array of Change objects, and though you can traverse
this array in helpful ways, there's no simple way to just turn it into a string representation
of the sort you might get by running the Unix command diff.

Fortunately, the lcs-diff gem comes with command-line diff programs ldiff and
htmldiff. If you need to perform a textual diff from within Ruby code, you can do one
of the following:

1. Call out to one of those programs: assuming the gem is installed, this is more portable
than relying on the Unix diff command.

2. Import the program's underlying library, and fake a command-line call to it. You'll
have to modify your own program's ARGV, at least temporarily.

3. Write Ruby code that copies one of the underlying implementations to do what you
want.

Here's some code, adapted from the ldiff command-line program, which builds a string
representation of the differences between two strings. The result is something you might
see by running ldiff, or the Unix command diff. The most common diff formats
are :unified and :context.

 require 'rubygems'
 require 'diff/lcs/hunk'

 def diff_as_string(data_old, data_new, format=:unified, context_lines=3)

First we massage the data into shape for the diff algorithm:

 data_old = data_old.split(/\n/).map! { |e| e.chomp }
 data_new = data_new.split(/\n/).map! { |e| e.chomp }

Then we perform the diff, and transform each "hunk" of it into a string:

 output = ""
 diffs = Diff::LCS.diff(data_old, data_new)
 return output if diffs.empty?
 oldhunk = hunk = nil
 file_length_difference = 0
 diffs.each do |piece|
 begin
 hunk = Diff::LCS::Hunk.new(data_old, data_new, piece, context_lines,
 file_length_difference)
 file_length_difference = hunk.file_length_difference

Chapter 6. Files and Directories Page 25 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 next unless oldhunk

 # Hunks may overlap, which is why we need to be careful when our
 # diff includes lines of context. Otherwise, we might print
 # redundant lines.
 if (context_lines > 0) and hunk.overlaps?(oldhunk)
 hunk.unshift(oldhunk)
 else
 output << oldhunk.diff(format)
 end
 ensure
 oldhunk = hunk
 output << "\n"
 end
 end

 #Handle the last remaining hunk
 output << oldhunk.diff(format) << "\n"
 end

Here it is in action:

 s1 = "This is line one.\nThis is line two.\nThis is line three.\n"
 s2 = "This is line 1.\nThis is line two.\nThis is line three.\n" +
 "This is line 4.\n"
 puts diff_as_string(s1, s2)
 # @@ -1,4 +1,5 @@
 # -This is line one.
 # +This is line 1.
 # This is line two.
 # This is line three.
 # +This is line 4.

With all that code, on a Unix system you could be forgiven for just calling out to the Unix
diff program:

 open('old_file', 'w') { |f| f << s1 }
 open('new_file', 'w') { |f| f << s2 }

 puts %x{diff old_file new_file}
 # 1c1
 # < This is line one.
 # ---
 # > This is line 1.
 # 3a4
 # > This is line 4.

See Also

• The algorithm-diff gem is another implementation of a general diff algorithm;
its API is a little simpler than diff-lcs, but it has the same basic structure; both
gems are descended from Perl's Algorithm::Diff module

• It's not available as a gem, but the diff.rb package is a little easier to script from
Ruby if you need to create a textual diff of two files; look at how the unixdiff.rb
program creates a Diff object and manipulates it (http://users.cybercity.dk/
~dsl8950/ruby/diff.html)

Chapter 6. Files and Directories Page 26 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://users.cybercity.dk/~dsl8950/ruby/diff.html
http://users.cybercity.dk/~dsl8950/ruby/diff.html

• The MD5 checksum is often used in file comparisons: I didn't use it in this recipe
because when you're only comparing two files, it's faster to compare their contents; in
Recipe 23.7, "Finding Duplicate Files," though, the MD5 checksum is used as a
convenient shorthand for the contents of many files

Recipe 6.11. Performing Random Access on "Read-Once" Input
Streams

Problem
You have an IO object, probably a socket, that doesn't support random-access methods like
seek, pos=, and rewind. You want to treat this object like a file on disk, where you can
jump around and reread parts of the file.

Solution
The simplest solution is to read the entire contents of the socket (or as much as you're
going to need) and put it into a StringIO object. You can then treat the StringIO object
exactly like a file:

 require 'socket'
 require 'stringio'

 sock = TCPSocket.open("www.example.com", 80)
 sock.write("GET /\n")

 file = StringIO.new(sock.read)
 file.read(10) # => "<HTML>\r\n<H"
 file.rewind
 file.read(10) # => "<HTML>\r\n<H"
 file.pos = 90
 file.read(15) # => " this web page "

Discussion
A socket is supposed to work just like a file, but sometimes the illusion breaks down. Since
the data is coming from another computer over which you have no control, you can't just
go back and reread data you've already read. That data has already been sent over the pipe,
and the server doesn't care if you lost it or need to process it again.

If you have enough memory to read the entire contents of a socket, it's easy to put the
results into a form that more closely simulates a file on disk. But you might not want to
read the entire socket, or the socket may be one that keeps sending data until you close it.
In that case you'll need to buffer the data as you read it. Instead of using memory for the
entire contents of the socket (which may be infinite), you'll only use memory for the data
you've actually read.

Chapter 6. Files and Directories Page 27 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-7#rubyckbk-CHP-23-SECT-7

This code defines a BufferedIO class that adds data to an internal StringIO as it's read
from its source:

 class BufferedIO
 def initialize(io)
 @buff = StringIO.new
 @source = io
 @pos = 0
 end

 def read(x=nil)
 to_read = x ? to_read = x+@buff.pos-@buff.size : nil
 _append(@source.read(to_read)) if !to_read or to_read > 0
 @buff.read(x)
 end

 def pos=(x)
 read(x-@buff.pos) if x > @buff.size
 @buff.pos = x
 end

 def seek(x, whence=IO::SEEK_SET)
 case whence
 when IO::SEEK_SET then self.pos=(x)
 when IO::SEEK_CUR then self.pos=(@buff.pos+x)
 when IO::SEEK_END then read; self.pos=(@buff.size-x)
 # Note: SEEK END reads all the socket data.
 end
 pos
 end

 # Some methods can simply be delegated to the buffer.
 ["pos", "rewind", "tell"].each do |m|
 module_eval "def #{m}\n@buff.#{m}\nend"
 end

 private

 def _append(s)
 @buff << s
 @buff.pos -= s.size
 end
 end

Now you can seek, rewind, and generally move around in an input socket as if it were a
disk file. You only have to read as much data as you need:

 sock = TCPSocket.open("www.example.com", 80)
 sock.write("GET /\n")
 file = BufferedIO.new(sock)

 file.read(10) # => "<HTML>\r\n<H"
 file.rewind # => 0
 file.read(10) # => "<HTML>\r\n<H"
 file.pos = 90 # => 90
 file.read(15) # => " this web page "
 file.seek(-10, IO::SEEK_CUR) # => 95
 file.read(10) # => " web page "

BufferedIO doesn't implement all the methods of IO, only the ones not implemented by
socket-type IO objects. If you need the other methods, you should be able to implement

Chapter 6. Files and Directories Page 28 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the ones you need using the existing methods as guidelines. For instance, you could
implement readline like this:

 class BufferedIO
 def readline
 oldpos = @buff.pos
 line = @buff.readline unless @buff.eof?
 if !line or line[-1] != ?\n
 _append(@source.readline) # Finish the line
 @buff.pos = oldpos # Go back to where we were
 line = @buff.readline # Read the line again
 end
 line
 end
 end

 file.readline # => "by typing "example.com",\r\n"

See Also

• Recipe 6.17, "Processing a Binary File," for more information on IO#seek

Recipe 6.12. Walking a Directory Tree

Problem
You want to recursively process every subdirectory and file within a certain directory.

Solution
Suppose that the directory tree you want to walk looks like this (see this chapter's
introduction section for the create_tree library that can build this directory tree
automatically):

 require 'create_tree'
 create_tree './' =>
 ['file1',
 'file2',
 { 'subdir1/' => ['file1'] },
 { 'subdir2/' => ['file1',
 'file2',
 { 'subsubdir/' => ['file1'] }
]
 }
]

The simplest solution is to load all the files and directories into memory with a big recursive
file glob, and iterate over the resulting array. This uses a lot of memory because all the
filenames are loaded into memory at once:

 Dir['**/**']
 # => ["file1", "file2", "subdir1", "subdir2", "subdir1/file1",

Chapter 6. Files and Directories Page 29 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # "subdir2/file1", "subdir2/file2", "subdir2/subsubdir",
 # "subdir2/subsubdir/file1"]

A more elegant solution is to use the find method in the Find module. It performs a
depth-first traversal of a directory tree, and calls the given code block on each directory
and file. The code block should take as an argument the full path to a directory or file.

This snippet calls Find.find with a code block that simply prints out each path it receives.
This demonstrates how Ruby performs the traversal:

 require 'find'
 Find.find('./') { |path| puts path }
 # ./
 # ./subdir2
 # ./subdir2/subsubdir
 # ./subdir2/subsubdir/file1
 # ./subdir2/file2
 # ./subdir2/file1
 # ./subdir1
 # ./subdir1/file1
 # ./file2
 # ./file1

Discussion
Even if you're not a system administrator, the demands of keeping your own files organized
will frequently call for you to process every file in a directory tree. You may want to backup,
modify, or delete each file in the directory structure, or you may just want to see what's
there.

Normally you'll want to at least look at every file in the tree, but sometimes you'll want to
skip certain directories. For instance, you might know that a certain directory is full of a
lot of large files you don't want to process. When your block is passed a path to a directory,
you can prevent Find.find from recursing into a directory by calling Find.prune. In
this example, I'll prevent Find.find from processing the files in the subdir2 directory.

 Find.find('./') do |path|
 Find.prune if File.basename(path) == 'subdir2'
 puts path
 end
 # ./
 # ./subdir1
 # ./subdir1/file1
 # ./file2
 # ./file1

Calling Find.prune when your block has been passed a file will only prevent Find.find
from processing that one file. It won't halt the processing of the rest of the files in that
directory:

 Find.find('./') do |path|
 if File.basename(path) =~ /file2$/

Chapter 6. Files and Directories Page 30 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "PRUNED #{path}"
 Find.prune
 end
 puts path
 end
 # ./
 # ./subdir2
 # ./subdir2/subsubdir
 # ./subdir2/subsubdir/file1
 # PRUNED ./subdir2/file2
 # ./subdir2/file1
 # ./subdir1
 # ./subdir1/file1
 # PRUNED ./file2
 # ./file1

Find.find works by keeping a queue of files to process. When it finds a directory, it
inserts that directory's files at the beginning of the queue. This gives it the characteristics
of a depth-first traversal. Note how all the files in the top-level directory are processed
after the subdirectories. The alternative would be a breadth-first traversal, which would
process the files in a directory before even touching the subdirectories.

If you want to do a breadth-first traversal instead of a depth-first one, the simplest solution
is to use a glob and sort the resulting array. Pathnames sort naturally in a way that simulates
a breadth-first traversal:

 Dir["**/**"].sort.each { |x| puts x }
 # file1
 # file2
 # subdir1
 # subdir1/file1
 # subdir2
 # subdir2/file1
 # subdir2/file2
 # subdir2/subsubdir
 # subdir2/subsubdir/file1

See Also

• Recipe 6.20, "Finding the Files You Want"
• Recipe 23.7, "Finding Duplicate Files"

Recipe 6.13. Locking a File

Problem
You want to prevent other threads or processes from modifying a file that you're working
on.

Chapter 6. Files and Directories Page 31 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-23-SECT-7#rubyckbk-CHP-23-SECT-7

Solution
Open the file, then lock it with File#flock. There are two kinds of lock; pass in the File
constant for the kind you want.

• File::LOCK_EX gives you an exclusive lock, or write lock. If your thread has an
exclusive lock on a file, no other thread or process can get a lock on that file. Use this
when you want to write to a file without anyone else being able to write to it.

• File::LOCK_SH will give you a shared lock, or read lock. Other threads and
processes can get their own shared locks on the file, but no one can get an exclusive
lock. Use this when you want to read a file and know that it won't change while you're
reading it.

Once you're done using the file, you need to unlock it. Call File#flock again, and pass in
File::LOCK_UN as the lock type. You can skip this step if you're running on Windows.

The best way to handle all this is to enclose the locking and unlocking in a method that
takes a block, the way open does:

 def flock(file, mode)
 success = file.flock(mode)
 if success
 begin
 yield file
 ensure
 file.flock(File::LOCK_UN)
 end
 end
 return success
 end

This makes it possible to lock a file without having to worry about unlocking it later. Even
if your block raises an exception, the file will be unlocked and another thread can use it.

 open('output', 'w') do |f|
 flock(f, File::LOCK_EX) do |f|
 f << "Kiss me, I've got a write lock on a file!"
 end
 end

Discussion
Different operating systems support different ways of locking files. Ruby's flock
implementation tries to hide the differences behind a common interface that looks like
Unix's file locking interface. In general, you can use flock as though you were on Unix,
and your scripts will work across platforms.

On Unix, both exclusive and shared locks work only if all threads and processes play by
the rules. If one thread has an exclusive lock on a file, another thread can still open the file

Chapter 6. Files and Directories Page 32 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

without locking it and wreak havoc by overwriting its contents. That's why it's important
to get a lock on any file that might conceivably be used by another thread or another process
on the system.

Ruby's block-oriented coding style makes it easy to do the right thing with locking. The
following shortcut method works with the flock method previously defined. It takes care
of opening, locking, unlocking, and closing a file, letting you focus on whatever you want
to do with the file's contents.

 def open_lock(filename, openmode="r", lockmode=nil)
 if openmode == 'r' || openmode == 'rb'
 lockmode ||= File::LOCK_SH
 else
 lockmode ||= File::LOCK_EX
 end
 value = nil
 open(filename, openmode) do |f|
 flock(f, lockmode) do
 begin
 value = yield f
 ensure
 f.flock(File::LOCK_UN) # Comment this line out on Windows.
 end
 end
 return value
 end
 end

This code creates two threads, each of which want to access the same file. Thanks to locks,
we can guarantee that only one thread is accessing the file at a time (see Chapter 20 if
you're not comfortable with threads).

 t1 = Thread.new do
 puts 'Thread 1 is requesting a lock.'
 open_lock('output', 'w') do |f|
 puts 'Thread 1 has acquired a lock.'
 f << "At last we're alone!"
 sleep(5)
 end

 puts 'Thread 1 has released its lock.'
 end

 t2 = Thread.new do
 puts 'Thread 2 is requesting a lock.'
 open_lock('output', 'r') do |f|
 puts 'Thread 2 has acquired a lock.'
 puts "File contents: #{f.read}"
 end
 puts 'Thread 2 has released its lock.'
 end
 t1.join
 t2.join
 # Thread 1 is requesting a lock.
 # Thread 1 has acquired a lock.
 # Thread 2 is requesting a lock.
 # Thread 1 has released its lock.
 # Thread 2 has acquired a lock.
 # File contents: At last we're alone!
 # Thread 2 has released its lock.

Chapter 6. Files and Directories Page 33 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20

Nonblocking locks

If you try to get an exclusive or shared lock on a file, your thread will block until Ruby can
lock the file. But you might be left waiting a long time, perhaps forever. The code that has
the file locked may be buggy and in an infinite loop; or it may itself be blocking, waiting to
lock a file that you have locked.

You can avoid deadlock and similar problems by asking for a nonblocking lock. When you
do, if Ruby can't lock the file for you, File#flock returns false, rather than waiting
(possibly forever) for another thread or process to release its lock. If you don't get a lock,
you can wait a while and try again, or you can raise an exception and let the user deal with
it.

To make a lock into a nonblocking lock, use the OR operator (|) to combine File::
LOCK_NB with either File::LOCK_EX or File::LOCK_SH.

The following code will print "I've got a lock!" if it can get an exclusive lock on the file
"output"; otherwise it will print "I couldn't get a lock." and continue:

 def try_lock
 puts "I couldn't get a lock." unless
 open_lock('contested', 'w', File::LOCK_EX | File::LOCK_NB) do
 puts "I've got a lock!"
 true
 end
 end

 try_lock
 # I've got a lock!

 open('contested', 'w').flock(File::LOCK_EX) # Get a lock, hold it forever.
 try_lock
 # I couldn't get a lock.

See Also

• Chapter 20, especially Recipe 20.11, "Avoiding Deadlock," which covers other types
of deadlock problems in a multithreaded environment

Recipe 6.14. Backing Up to Versioned Filenames

Chapter 6. Files and Directories Page 34 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0596523696/rubyckbk-CHP-20#rubyckbk-CHP-20
http://safari.oreilly.com/0596523696/rubyckbk-CHP-20-SECT-11#rubyckbk-CHP-20-SECT-11

Problem
You want to copy a file to a numbered backup before overwriting the original file. More
generally: rather than overwriting an existing file, you want to use a new file whose name
is based on the original filename.

Solution
Use String#succ to generate versioned suffixes for a filename until you find one that
doesn't already exist:

 class File
 def File.versioned_filename(base, first_suffix='.0')
 suffix = nil
 filename = base
 while File.exists?(filename)
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 end
 return filename
 end
 end

 5.times do |i|
 name = File.versioned_filename('filename.txt')
 open(name, 'w') { |f| f << "Contents for run #{i}" }
 puts "Created #{name}"
 end
 # Created filename.txt
 # Created filename.txt.0
 # Created filename.txt.1
 # Created filename.txt.2
 # Created filename.txt.3

If you want to copy or move the original file to the versioned filename as a prelude to writing
to the original file, include the ftools library to add the class methods File. copy and
File.move. Then call versioned_filename and use File.copy or File.move to
put the old file in its new place:

 require 'ftools'
 class File
 def File.to_backup(filename, move=false)
 new_filename = nil
 if File.exists? filename
 new_filename = File.versioned_filename(filename)
 File.send(move ? :move : :copy, filename, new_filename)
 end
 return new_filename
 end
 end

Let's back up filename.txt a couple of times. Recall from earlier that the files
filename.txt.[0-3] already exist.

 File.to_backup('filename.txt') # => "filename.txt.4"
 File.to_backup('filename.txt') # => "filename.txt.5"

Chapter 6. Files and Directories Page 35 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now let's do a destructive backup:

 File.to_backup('filename.txt', true) # => "filename.txt.6"
 File.exists? 'filename.txt' # => false

You can't back up what doesn't exist:

 File.to_backup('filename.txt') # => nil

Discussion
If you anticipate more than 10 versions of a file, you should add additional zeroes to the
initial suffix. Otherwise, filename.txt.10 will sort before filename.txt.2 in a
directory listing. A commonly used suffix is ".000".

 200.times do |i|
 name = File.versioned_filename('many_versions.txt', '.000')
 open(name, 'w') { |f| f << "Contents for run #{i}" }
 puts "Created #{name}"
 end
 # Created many_versions.txt
 # Created many_versions.txt.000
 # Created many_versions.txt.001
 # …
 # Created many_versions.txt.197
 # Created many_versions.txt.198

The result of versioned_filename won't be trustworthy if other threads or processes
on your machine might be trying to write the same file. If this is a concern for you, you
shouldn't be satisfied with a negative result from File.exists?. In the time it takes to
open that file, some other process or thread might open it before you. Once you find a file
that doesn't exist, you must get an exclusive lock on the file before you can be totally certain
it's okay to use.

Here's how such an implementation might look on a Unix system. The
versioned_filename methods return the name of a file, but this implementation needs
to return the actual file, opened and locked. This is the only way to avoid a race condition
between the time the method returns a filename, and the time you open and lock the file.

 class File
 def File.versioned_file(base, first_suffix='.0', access_mode='w')
 suffix = file = locked = nil
 filename = base
 begin
 suffix = (suffix ? suffix.succ : first_suffix)
 filename = base + suffix
 unless File.exists? filename
 file = open(filename, access_mode)
 locked = file.flock(File::LOCK_EX | File::LOCK_NB)
 file.close unless locked
 end

Chapter 6. Files and Directories Page 36 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end until locked
 return file
 end
 end

 File.versioned_file('contested_file') # => #<File:contested_file.0>
 File.versioned_file('contested_file') # => #<File:contested_file.1>
 File.versioned_file('contested_file') # => #<File:contested_file.2>

The construct begin…end until locked creates a loop that runs at least once, and
continues to run until the variable locked becomes true, indicating that a file has been
opened and successfully locked.

See Also

• Recipe 6.13, "Locking a File"

Recipe 6.15. Pretending a String Is a File

Problem
You want to call code that expects to read from an open file object, but your source is a
string in memory. Alternatively, you want to call code that writes its output to a file, but
have it actually write to a string.

Solution
The StringIO class wraps a string in the interface of the IO class. You can treat it like a
file, then get everything that's been "written" to it by calling its string method.

Here's a StringIO used as an input source:

 require 'stringio'
 s = StringIO.new %{I am the very model of a modern major general.
 I've information vegetable, animal, and mineral.}

 s.pos # => 0
 s.each_line { |x| puts x }
 # I am the very model of a modern major general.
 # I've information vegetable, animal, and mineral.
 s.eof? # => true
 s.pos # => 95
 s.rewind
 s.pos # => 0
 s.grep /general/
 # => ["I am the very model of a modern major general.\n"]

Here are StringIO objects used as output sinks:

 s = StringIO.new
 s.write('Treat it like a file.')

Chapter 6. Files and Directories Page 37 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 s.rewind
 s.write("Act like it's")
 s.string # => "Act like it's a file."

 require 'yaml'
 s = StringIO.new
 YAML.dump(['A list of', 3, :items], s)
 puts s.string
 # ---
 # - A list of
 # - 3
 # - :items

Discussion
The Adapter is a common design pattern: to make an object acceptable as input to a
method, it's wrapped in another object that presents the appropriate interface. The
StringIO class is an Adapter between String and File (or IO), designed for use with
methods that work on File or IO instances. With a StringIO, you can disguise a string
as a file and use those methods without them ever knowing they haven't really been given
a file.

For instance, if you want to write unit tests for a library that reads from a file, the simplest
way is to pass in predefined StringIO objects that simulate files with various contents.
If you need to modify the output of a method that writes to a file, a StringIO can capture
the output, making it easy to modify and send on to its final destination.

StringIO-type functionality is less necessary in Ruby than in languages like Python,
because in Ruby, strings and files implement a lot of the same methods to begin with. Often
you can get away with simply using these common methods. For instance, if all you're
doing is writing to an output sink, you don't need a StringIO object, because String#<<
and File#<< work the same way:

 def make_more_interesting(io)
 io << "… OF DOOM!"
 end

 make_more_interesting("Cherry pie") # => "Cherry pie… OF DOOM!"

 open('interesting_things', 'w') do |f|
 f.write("Nightstand")
 make_more_interesting(f)
 end
 open('interesting_things') { |f| f.read } # => "Nightstand… OF DOOM!"

Similarly, File and String both include the Enumerable mixin, so in a lot of cases you
can read from an object without caring what type it is. This is a good example of Ruby's
duck typing.

Here's a string:

 poem = %{The boy stood on the burning deck

Chapter 6. Files and Directories Page 38 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Whence all but he had fled
 He'd stayed above to wash his neck
 Before he went to bed}

and a file containing that string:

 output = open("poem", "w")
 output.write(poem)
 output.close
 input = open("poem")

will give the same result when you call an Enumerable method:

 poem.grep /ed$/
 # => ["Whence all but he had fled\n", "Before he went to bed"]
 input.grep /ed$/
 # => ["Whence all but he had fled\n", "Before he went to bed"]

Just remember that, unlike a string, you can't iterate over a file multiple times without
calling rewind:

 input.grep /ed$/ # => []
 input.rewind
 input.grep /ed$/
 # => ["Whence all but he had fled\n", "Before he went to bed"]

StringIO comes in when the Enumerable methods and << aren't enough. If a method
you're writing needs to use methods specific to IO, you can accept a string as input and
wrap it in a StringIO. The class also comes in handy when you need to call a method
someone else wrote, not anticipating that anyone would ever need to call it with anything
other than a file:

 def fifth_byte(file)
 file.seek(5)
 file.read(1)
 end

 fifth_byte("123456")
 # NoMethodError: undefined method `seek' for "123456":String
 fifth_byte(StringIO.new("123456")) # => "6"

When you write a method that accepts a file as an argument, you can silently accommodate
callers who pass in strings by wrapping in a StringIO any string that gets passed in:

 def file_operation(io)
 io = StringIO(io) if io.respond_to? :to_str && !io.is_a? StringIO
 #Do the file operation…
 end

A StringIO object is always open for both reading and writing:

Chapter 6. Files and Directories Page 39 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 s = StringIO.new
 s << "A string"
 s.read # => ""
 s << ", and more."
 s.rewind
 s.read # => "A string, and more."

Memory access is faster than disk access, but for large amounts of data (more than about
10 kilobytes), StringIO objects are slower than disk files. If speed is your aim, your best
bet is to write to and read from temp files using the tempfile module. Or you can do what
the open-uri library does: start off by writing to a StringIO and, if it gets too big, switch
to using a temp file.

See Also

• Recipe 6.8, "Writing to a Temporary File"
• Recipe 6.11, "Performing Random Access on "Read-Once" Input Streams"

Recipe 6.16. Redirecting Standard Input or Output

Problem
You don't want the standard input, output, or error of your process to go to the default IO
objects set up by the Ruby interpreter. You want them to go to other filetype objects of
your own choosing.

Solution
You can assign any IO object (a File, a Socket, or what have you) to the global variables
$stdin, $stdout, or $stderr. You can then read from or write to those objects as though
they were the originals.

This short Ruby program demonstrates how to redirect the Kernel methods that print to
standard output. To avoid confusion, I'm presenting it as a standalone Ruby program
rather than an interactive irb session.[4]

[4] irb prints the result of each Ruby expression to $stdout, which tends to clutter the results in this case.

 #!/usr/bin/ruby -w
 # ./redirect_stdout.rb
 require 'stringio'
 new_stdout = StringIO.new

 $stdout = new_stdout
 puts "Hello, hello."
 puts "I'm writing to standard output."

 $stderr.puts "#{new_stdout.size} bytes written to standard ouput so far."

Chapter 6. Files and Directories Page 40 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 $stderr.puts "You haven't seen anything on the screen yet, but you soon will:"
 $stderr.puts new_stdout.string

Run this program and you'll see the following:

 $ ruby redirect_stdout.rb
 46 bytes written to standard output so far.
 You haven't seen anything on the screen yet, but you soon will:
 Hello, hello.
 I'm writing to standard output.

Discussion
If you have any Unix experience, you know that when you run a Ruby script from the
command line, you can make the shell redirect its standard input, output, and error
streams to files or other programs. This technique lets you do the same thing from within
a Ruby script.

You can use this as a quick and dirty way to write errors to a file, write output to a StringIO
object (as seen above), or even read input from a socket. Within a script, you can
programatically decide where to send your output, or receive standard input from multiple
sources. These things are generally not possible from the command line without a lot of
fancy shell scripting.

The redirection technique is especially useful when you've written or inherited a script that
prints text to standard output, and you need to make it capable of printing to any file-like
object. Rather than changing almost every line of your code, you can just set $stdout at
the start of your program, and let it run as is. This isn't a perfect solution, but it's often
good enough.

The original input and output streams for a process are always available as the constants
STDIN, STDOUT, and STDERR. If you want to temporarily swap one IO stream for another,
change back to the "standard" standard output by setting $stdin = STDIN. Keep in mind
that since the $std objects are global variables, even a temporary change affects all threads
in your script.

See Also
Recipe 6.15, "Pretending a String Is a File," has much more information on StringIO

Recipe 6.17. Processing a Binary File

Problem
You want to read binary data from a file, or write it to one.

Chapter 6. Files and Directories Page 41 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Solution
Since Ruby strings make no distinction between binary and text data, processing a binary
file needn't be any different than processing a text file. Just make sure you add "b" to your
file mode when you open a binary file on Windows.

This code writes 10 bytes of binary data to a file, then reads it back:

 open('binary', 'wb') do |f|
 (0..100).step(10) { |b| f << b.chr }
 end

 s = open('binary', 'rb') { |f| f.read }
 # => "\000\n\024\036(2<FPZd"

If you want to process a binary file one byte at a time, you'll probably enjoy the way
each_byte returns each byte of the file as a number, rather than as single-character
strings:

 open('binary', 'rb') { |f| f.each_byte { |b| puts b } }
 # 0
 # 10
 # 20
 # …
 # 90
 # 100

Discussion
The methods introduced earlier to deal with text files work just as well for binary files,
assuming that your binary files are supposed to be processed from beginning to end, the
way text files typically are. If you want random access to the contents of a binary file, you
can manipulate your file object's "cursor."

Think of the cursor as a pointer to the first unread byte in the open file. The current position
of the cursor is accessed by the method IO#pos. When you open the file, it's set to zero,
just before the first byte. You can then use IO#read to read a number of bytes starting
from the current position of the cursor, incrementing the cursor as a side effect.

 f = open('binary')
 f.pos # => 0
 f.read(1) # => "\000"
 f.pos # => 1

You can also just set pos to jump to a specific byte in the file:

 f.pos = 4 # => 4
 f.read(2) # => "(2"
 f.pos # => 6

Chapter 6. Files and Directories Page 42 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You can use IO#seek to move the cursor forward or backward relative to its current
position (with File::SEEK_CUR), or to move to a certain distance from the end of a file
(with File::SEEK_END). Unlike the iterator methods, which go through the entire file
once, you can use seek or set pos to jump anywhere in the file, even to a byte you've
already read.

 f.seek(8)
 f.pos # => 8

 f.seek(-4, File::SEEK_CUR)
 f.pos # => 4
 f.seek(2, File::SEEK_CUR)
 f.pos # => 6

 # Move to the second-to-last byte of the file.
 f.seek(-2, File::SEEK_END)
 f.pos # => 9

Attempting to read more bytes than there are in the file returns the rest of the bytes, and
set your file's eof? flag to true:

 f.read(500) # => "Zd"
 f.pos # => 11
 f.eof? # => true
 f.close

Often you need to read from and write to a binary file simultaneously. You can open any
file for simultaneous reading and writing using the "r+" mode (or, in this case, "rb+"):

 f = open('binary', 'rb+')
 f.read # => "\000\n\024\036(2<FPZd"
 f.pos = 2
 f.write('Hello.')
 f.rewind
 f.read # => "\000\nHello.PZd"
 f << 'Goodbye.'
 f.rewind
 f.read # => "\000\nHello.PZdGoodbye."

 f.close

You can append new data to the end of a file you've opened for read-write access, and you
can overwrite existing data byte for byte, but you can't insert new data into the middle of
a file. This makes the read-write technique useful for binary files, where exact byte offsets
are often important, and less useful for text files, where it might make sense to add an extra
line in the middle.

Why do you need to append "b" to the file mode when opening a binary file on Windows?
Because otherwise Windows will mangle any newline characters that show up in your
binary file. The "b" tells Windows to leave the newlines alone, because they're not really
newlines: they're binary data. Since it doesn't hurt anything on Unix to put "b" in the file

Chapter 6. Files and Directories Page 43 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

mode, you can make your code cross-platform by appending "b" to the mode whenever
you open a file you plan to treat as binary. Note that "b" by itself is not a valid file mode:
you probably want "rb".

An MP3 example
Because every binary format is different, probably the best I can do to help you beyond
this point is show you an example. Consider MP3 music files. Many MP3 files have a 128-
byte data structure at the end called an ID3 tag. These 128 bytes are literally packed with
information about the song: its name, the artist, which album it's from, and so on. You can
parse this data structure by opening an MP3 file and doing a series of reads from a pos
near the end of the file.

According to the ID3 standard, if you start from the 128th-to-last byte of an MP3 file and
read three bytes, you should get the string "TAG". If you don't, there's no ID3 ag for this
MP3 file, and nothing to do. If there is an ID3 tag present, then the 30 bytes after "TAG"
contain the name of the song, the 30 bytes after that contain the name of the artist, and so
on. Here's some code that parses a file's ID3 tag and puts the results into a hash:

 def parse_id3(mp3_file)
 fields_and_sizes = [[:track_name, 30], [:artist_name, 30],
 [:album_name, 30], [:year, 4], [:comment, 30],
 [:genre, 1]]

 tag = {}
 open(mp3_file) do |f|
 f.seek(-128, File::SEEK_END)
 if f.read(3) == 'TAG' # An ID3 tag is present
 fields_and_sizes.each do |field, size|
 # Read the field and strip off anything after the first null
 # character.
 data = f.read(size).gsub(/\000.*/, '')
 # Convert the genre string to a number.
 data = data[0] if field == :genre
 tag[field] = data
 end
 end
 end
 return tag
 end

 parse_id3('ID3.mp3')
 # => {:year=>"2005", :artist_name=>"The ID Three",
 # :album_name=>"Binary Brain Death",
 # :comment=>"http://www.example.com/id3/", :genre=>22,
 # :track_name=>"ID 3"}

 parse_id3('Too Indie For ID3 Tags.mp3') # => {}

Rather than specifying the genre of the music as a string, the :genre element of the hash
is a single byte, an entry into a lookup table shared by all applications that use ID3. In this
table, genre number 22 is "Death metal".

Chapter 6. Files and Directories Page 44 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It's less code to specify the byte offsets for a binary file is in the format recognized by
String#unpack, which can parse the bytes of a string according to a given format. It
returns an array containing the results of the parsing.

 #Returns [track, artist, album, year, comment, genre]
 def parse_id3(mp3_file)
 format = 'Z30Z30Z30Z4Z30C'
 open(mp3_file) do |f|
 f.seek(-128, File::SEEK_END)
 if f.read(3) == "TAG" # An ID3 tag is present
 return f.read(125).unpack(format)
 end
 end
 return nil
 end

 parse_id3('ID3.mp3')
 # => ["ID 3", "The ID Three", "Binary Brain Death", "2005", "http://www.example.com/
 id3/", 22]

As you can see, the unpack format is obscure but very concise. The string
"Z30Z30Z30Z4Z30C" passed into String#unpack completely describes the elements of
the ID3 format after the "TAG":

• Three strings of 30 bytes, with null characters stripped ("Z30Z30Z30")
• A string of 4 bytes, with null characters stripped ("Z4")
• One more string of 30 bytes, with null characters stripped ("Z30")
• A single character, represented as an unsigned integer ("C")

It doesn't describe what those elements are supposed to be used for, though.

When writing binary data to a file, you can use Array#pack, the opposite of
String#unpack:

 id3 = ["ID 3", "The ID Three", "Binary Brain Death", "2005",
 "http://www.example.com/id3/", 22]
 id3.pack 'Z30Z30Z30Z4Z30C'
 # => "ID 3\000\000\000\000\000…http://www.example.com/id3/\000\000\000\026"

See Also

• The ID3 standard, described at http://en.wikipedia.org/wiki/ID3 along with the table
of genres; the code in this recipe parses the original ID3v1 standard, which is much
simpler than ID3v2

• ri String#unpack and ri Array#pack

Recipe 6.18. Deleting a File

Chapter 6. Files and Directories Page 45 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://en.wikipedia.org/wiki/ID3

Problem
You want to delete a single file, or a whole directory tree.

Solution
Removing a file is simple, with File.delete:

 import 'fileutils'
 FileUtils.touch "doomed_file"
 File.exists? "doomed_file" # => true
 File.delete "doomed_file"
 File.exists? "doomed_file" # => false

Removing a directory tree is also fairly simple. The most confusing thing about it is the
number of different methods Ruby provides to do it. The method you want is probably
FileUtils.remove_dir, which recursively deletes the contents of a directory:

 Dir.mkdir "doomed_directory"
 File.exists? "doomed_directory" # => true
 FileUtils.remove_dir "doomed_directory"
 File.exists? "doomed_directory" # => false

Discussion
Ruby provides several methods for removing directories, but you really only need
remove_dir. Dir.delete and FileUtils.rmdir will only work if the directory is
already empty. The rm_r and rm_rf defined in FileUtils are similar to
remove_dir, but if you're a Unix user you may find their names more mneumonic.

You should also know about the :secure option to rm_rf, because the remove_dir
method and all its variants are vulnerable to a race condition when you remove a world-
writable directory. The risk is that a process owned by another user might create a symlink
in that directory while you're deleting it. This would make you delete the symlinked file
along with the files you actually meant to delete.

Passing in the :secure option to rm_rf slows down deletions significantly (it has to
change the permissions on the directory before deleting it), but it avoids the race condition.
If you're running Ruby 1.8, you'll also need to hack the FileUtils module a little bit to
work around a bug (the bug is fixed in Ruby 1.9):?

 # A hack to make a method used by rm_rf actually available
 module FileUtils
 module_function :fu_world_writable?
 end

 Dir.mkdir "/tmp/doomed_directory"
 FileUtils.rm_rf("/tmp/doomed_directory", :secure=>true)
 File.exists? "/tmp/doomed_directory" # => false

Chapter 6. Files and Directories Page 46 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Why isn't the :secure option the default for rm_rf? Because secure deletion isn't thread-
safe: it actually changes the current working directory of the process. You need to choose
between thread safety and a possible security hole.

Recipe 6.19. Truncating a File

Problem
You want to truncate a file to a certain length, probably zero bytes.

Solution
Usually, you want to destroy the old contents of a file and start over. Opening a file for
write access will automatically truncate it to zero bytes, and let you write new contents to
the file:

 filename = 'truncate.txt'
 open(filename, 'w') { |f| f << "All of this will be truncated." }
 File.size(filename) # => 30

 f = open(filename, 'w') {}
 File.size(filename) # => 0

If you just need to truncate the file to zero byt es, and not write any new contents to it, you
can open it with an access mode of File::TRUNC.

 open(filename, 'w') { |f| f << "Here are some new contents." }

 File.size(filename) # => 27

 f = open(filename, File::TRUNC) {}
 File.size(filename) # => 0

You can't actually do anything with a FILE whose access mode is File::TRUNC:

 open(filename, File::TRUNC) do |f|
 f << "At last, an empty file to write to!"
 end
 # IOError: not opened for writing

Discussion
Transient files are the most likely candidates for truncation. Log files are often truncated,
automatically or by hand, before they grow too large.

The most common type of truncation is truncating a file to zero bytes, but the
File.truncate method can truncate a file to any number of bytes, not just zero. You

Chapter 6. Files and Directories Page 47 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

can also use the instance method, File#truncate, to truncate a file you've opened for
writing:

 f = open(filename, 'w') do |f|
 f << 'These words will remain intact after the file is truncated.'
 end
 File.size(filename) # => 59

 File.truncate(filename, 30)
 File.size(filename) # => 30
 open(filename) { |f| f.read } # => "These words will remain intact"

These methods don't always make a file smaller. If the file starts out smaller than the size
you give, they append zero-bytes (\000) to the end of file until the file reaches the specified
size.

 f = open(filename, "w") { |f| f << "Brevity is the soul of wit." }
 File.size(filename) # => 27
 File.truncate(filename, 30)
 File.size(filename) # => 30
 open(filename) { |f| f.read }
 # => "Brevity is the soul of wit.\000\000\000"

File.truncate and File#truncate act like the bed of Procrustes: they force a file to
be a certain number of bytes long, whether that means stretching it or chopping off the
end.

Recipe 6.20. Finding the Files You Want

Problem
You want to locate all the files in a directory hierarchy that match some criteria. For
instance, you might want to find all the empty files, all the MP3 files, or all the files named
"README."

Solution
Use the Find.find method to walk the directory structure and accumulate a list of
matching files.

Pass in a block to the following method and it'll walk a directory tree, testing each file
against the code block you provide. It returns an array of all files for which the value of the
block is true.

 require 'find'
 module Find
 def match(*paths)
 matched = []
 find(*paths) { |path| matched << path if yield path }
 return matched

Chapter 6. Files and Directories Page 48 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 module_function :match
 end

Here's what Find.match might return if you used it on a typical disorganized home
directory:

 Find.match("./") { |p| File.lstat(p).size == 0 }
 # => ["./Music/cancelled_download.MP3", "./tmp/empty2", "./tmp/empty1"]

 Find.match("./") { |p| ext = p[-4…p.size]; ext && ext.downcase == ".mp3" }
 # => ["./Music/The Snails - Red Rocket.mp3",
 # => "./Music/The Snails - Moonfall.mp3", "./Music/cancelled_download.MP3"]

 Find.match("./") { |p| File.split(p)[1] == "README" }
 # => ["./rubyprog-0.1/README", "./tmp/README"]

Discussion
This is an especially useful chunk of code for system administration tasks. It gives you
functionality at least as powerful as the Unix find command, but you can write your search
criteria in Ruby and you won't have to remember the arcane syntax of find.

As with Find.walk itself, you can stop Find.match from processing a directory by
calling Find.prune:

 Find.match("./") do |p|
 Find.prune if p == "./tmp"
 File.split(p)[1] == "README"
 end
 # => ["./rubyprog-0.1/README"]

You can even look inside each file to see whether you want it:

 # Find all files that start with a particular phrase.
 must_start_with = "This Ruby program"
 Find.match("./") do |p|
 if File.file? p
 open(p) { |f| f.read(must_start_with.size) == must_start_with }
 else
 false
 end
 end
 # => ["./rubyprog-0.1/README"]

A few other useful things to search for using this function:

 # Finds files that were probably left behind by emacs sessions.
 def emacs_droppings(*paths)
 Find.match(*paths) do |p|
 (p[-1] == ?~ and p[0] != ?~) or (p[0] == ?# and p[-1] == ?#)
 end
 end

 # Finds all files that are larger than a certain threshold. Use this to find
 # the files hogging space on your filesystem.

Chapter 6. Files and Directories Page 49 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def bigger_than(bytes, *paths)
 Find.match(*paths) { |p| File.lstat(p).size > bytes }
 end

 # Finds all files modified more recently than a certain number of seconds ago.
 def modified_recently(seconds, *paths)
 time = Time.now - seconds
 Find.match(*paths) { |p| File.lstat(p).mtime > time }
 end

 # Finds all files that haven't been accessed since they were last modified.
 def possibly_abandoned(*paths)
 Find.match(*paths) { |p| f = File.lstat(p); f.mtime == f.atime }
 end

See Also

• Recipe 6.12, "Walking a Directory Tree"

Recipe 6.21. Finding and Changing the Current Working Directory

Problem
You want to see which directory the Ruby process considers its current working directory,
or change that directory.

Solution
To find the current working directory, use Dir.getwd:

Dir.getwd # => "/home/leonardr"

To change the current working directory, use Dir.chdir:

 Dir.chdir("/bin")
 Dir.getwd # => "/bin"
 File.exists? "ls" # => true

Discussion
The current working directory of a Ruby process starts out as the directory you were in
when you started the Ruby interpreter. When you refer to a file without providing an
absolute pathname, Ruby assumes you want a file by that name in the current working
directory. Ruby also checks the current working directory when you require a library
that can't be found anywhere else.

Chapter 6. Files and Directories Page 50 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The current working directory is a useful default. If you're writing a Ruby script that
operates on a directory tree, you might start from the current working directory if the user
doesn't specify one.

However, you shouldn't rely on the current working directory being set to any particular
value: this makes scripts brittle, and prone to break when run from a different directory.
If your Ruby script comes bundled with libraries, or needs to load additional files from
subdirectories of the script directory, you should set the working directory in code.

You can change the working directory as often as necessary, but it's more reliable to use
absolute pathnames, even though this can make your code less portable. This is especially
true if you're writing multithreaded code.

The current working directory is global to a process. If multiple threads are running code
that changes the working directory to different values, you'll never know for sure what the
working directory is at any given moment.

See Also

• Recipe 6.18, "Deleting a File," shows some problems created by a process-global
working directory

Chapter 6. Files and Directories Page 51 Return to Table of Contents

Chapter 6. Files and Directories
Ruby Cookbook By Lucas Carlson, Leonard Richardson ISBN: 0596523696 Publisher:
O'Reilly

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2006/07/01 User number: 628024 Copyright 2008, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Files and Directories
	Checking to See If a File Exists
	Checking Your Access to a File
	Changing the Permissions on a File
	Seeing When a File Was Last Used Problem
	Listing a Directory
	Reading the Contents of a File
	Writing to a File
	Writing to a Temporary File
	Picking a Random Line from a File
	Comparing Two Files
	Performing Random Access on "Read-Once" Input Streams
	Walking a Directory Tree
	Locking a File
	Backing Up to Versioned Filenames
	Pretending a String Is a File
	Redirecting Standard Input or Output
	Processing a Binary File
	Deleting a File
	Truncating a File
	Finding the Files You Want
	Finding and Changing the Current Working Directory

