
Table of Contents

Chapter 5. Ruby Tools... 1
5.1. Standard Tools.. 1
5.2. Additional Tools.. 8
5.3. Ruby Application Archive.. 9

Chapter 5. Ruby Tools

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Chapter 5. Ruby Tools
347
As a matter of course in Ruby, you edit your Ruby program and then feed it to the interpreter. Theoretically, the editor and interpreter are all
you need to program Ruby. But you can get help from other tools. In this chapter, you will find descriptions of tools to help Ruby programmers.
1249985

5.1. Standard Tools
621961

The standard Ruby distribution contains useful tools along with the interpreter and standard libraries: debugger, profiler, irb (which is
interactive ruby), and ruby-mode for Emacs. These tools help you debug and improve your Ruby programs.
1249985

5.1.1. Debugger
628024

It doesn't matter how easy a language is to use, it usually contains some bugs if it is more than a few lines long. To help deal with bugs, the
standard distribution of Ruby includes a debugger. In order to start the Ruby debugger, load the debug library using the command-line option
-r debug. The debugger stops before the first line of executable code and asks for the input of user commands.
1249985

Here are the debugger commands:
1249985

b[reak] [< file| class>:]< line| method>
Sets breakpoints

wat[ch] expression

Sets watchpoints
b[reak]

Displays breakpoints and watchpoints

del[ete] [n]
Deletes breakpoints

disp[lay] expression

Displays value of expression

undisp[lay] [n]
Removes display of n

c[ont]
Continues execution

s[tep] [n]
Executes next n lines stepping into methods

n[ext] [n]
Executes next n lines stepping over methods

Chapter 5. Ruby Tools Page 1 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

Copyright Safari Books Online #628024

w[here]
Displays stack frame

f[rame]
Synonym for where

l[ist][<-| n- m>]
Displays source lines from n to m

up [n]
Moves up n levels in the stack frame

down [n]
Moves down n levels in the stack frame

fin[ish]
Finishes execution of the current method

tr[ace] [on|off]
Toggles trace mode on and off

q[uit]
Exits debugger

v[ar] g[lobal]
Displays global variables

v[ar] l[ocal]
Displays local variables

v[ar] i[instance] object

Displays instance variables of object

v[ar] c[onst] object

Displays constants of object

m[ethod] i[instance] object

Displays instance methods of object

m[ethod] class| module

Displays instance methods of the class or module

th[read] l[ist]
Displays threads

th[read] c[ur[rent]]
Displays current thread

th[read] n

Stops specified thread

th[read] stop n>
Synonym for th[read] n

th[read] c[ur[rent]] n>
Synonym for th[read] n

th[read] resume n>
Resumes thread n

p expression

Evaluates the expression

Chapter 5. Ruby Tools Page 2 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

h[elp]
Displays help message

< everything else>
Evaluates the expression

The following is a sample session that shows the debugger's output when it executes the Sieves of Eratosthenes program (a famous algorithm
to calculate prime numbers). The interface is designed similarly to that of gdb.
1249985

% ruby -r debug sieve.rb 100
Debug.rb
Emacs support available.

sieve.rb:2:max = Integer(ARGV.shift || 100)
(rdb:1) list
[-3, 6] in sieve.rb
 1
=> 2 max = Integer(ARGV.shift || 100)
 3 sieve = []
 4 for i in 2 .. max
 5 sieve[i] = i
 6 end
(rdb:1) list
[7, 16] in sieve.rb
 7
 8 for i in 2 .. Math.sqrt(max)
 9 next unless sieve[i]
 10 (i*i).step(max, i) do |j|
 11 sieve[j] = nil
 12 end
 13 end
 14 puts sieve.compact.join ", "
 (rdb:1) b 8
Set breakpoint 1 at sieve.rb:8
(rdb:1) c
Breakpoint 1, toplevel at sieve.rb:8
sieve.rb:8:for i in 2 .. Math.sqrt(max)
(rdb:1) p sieve
[nil, nil, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54,
55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72,
73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100]
(rdb:1) del 1
(rdb:1) b 14
Set breakpoint 2 at sieve.rb:14
(rdb:1) c
Breakpoint 2, toplevel at sieve.rb:14
sieve.rb:14:puts sieve.compact.join ", "
(rdb:1) p sieve
[nil, nil, 2, 3, nil, 5, nil, 7, nil, nil, nil, 11, nil, 13, nil, nil,
nil, 17, nil, 19, nil, nil, nil, 23, nil, nil, nil, nil, nil, 29, nil,
31, nil, nil, nil, nil, nil, 37, nil, nil, nil, 41, nil, 43, nil, nil,
nil, 47, nil, nil, nil, nil, nil, 53, nil, nil, nil, nil, nil, 59, nil,
61, nil, nil, nil, nil, nil, 67, nil, nil, nil, 71, nil, 73, nil, nil,
nil, nil, nil, 79, nil, nil, nil, 83, nil, nil, nil, nil, nil, 89, nil,
nil, nil, nil, nil, nil, nil, 97, nil, nil, nil]
(rdb:1) sieve.compact
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,67,

Chapter 5. Ruby Tools Page 3 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

71, 73, 79, 83, 89, 97]
(rdb:1) c
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97

5.1.2. Profiler
628024

In most cases, you can improve the performance of a slow program by removing the bottleneck. The profiler is a tool that finds the bottleneck.
In order to add profiling to your Ruby program, you need to first load the Profile library using the command-line option -r profile.
Here is the sample output from profiled execution. You can tell Object#fact method is a bottleneck.
1249985

% ruby -r profile sample/fact.rb 100
9332621544394415268169923885626670049071596826438162146859296389521759999
3229915608941463976156518286253697920827223758251185210916864000000000000
000000000000
 % cumulative self self total
 time seconds seconds calls ms/call ms/call name
 66.67 0.07 0.07 1 66.67 66.67 Object#fact
 16.67 0.08 0.02 1 16.67 16.67 Bignum#to_s
 0.00 0.08 0.00 5 0.00 0.00 Fixnum#*
 0.00 0.08 0.00 2 0.00 8.33 IO#write
 0.00 0.08 0.00 1 0.00 0.00 Fixnum#==
 0.00 0.08 0.00 95 0.00 0.00 Bignum#*
 0.00 0.08 0.00 1 0.00 0.00 Module#method_added
 0.00 0.08 0.00 101 0.00 0.00 Fixnum#>
 0.00 0.08 0.00 1 0.00 16.67 Kernel.print
 0.00 0.08 0.00 1 0.00 0.00 String#to_i
 0.00 0.08 0.00 1 0.00 0.00 Array#[]
 0.00 0.08 0.00 100 0.00 0.00 Fixnum#-
 0.00 0.08 0.00 1 0.00 100.00 #toplevel

5.1.3. Tracer
628024

When you want to trace the entrance and exit of each method, tracer is the tool for you. In order to add method call/return tracing to your
Ruby program, load the Tracer library using the command-line option -r tracer. Here is sample output from tracer:
1249985

% ruby -r tracer fact.rb 2
#0:fact.rb:1::-: def fact(n)
#0:fact.rb:1:Module:>: def fact(n)
#0:fact.rb:1:Module:<: def fact(n)
#0:fact.rb:10::-: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Array:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Array:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:String:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:String:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:1:Object:>: def fact(n)
#0:fact.rb:2:Object:-: return 1 if n == 0
#0:fact.rb:2:Fixnum:>: return 1 if n == 0
#0:fact.rb:2:Fixnum:<: return 1 if n == 0
#0:fact.rb:3:Object:-: f = 1
#0:fact.rb:4:Object:-: while n>0

Chapter 5. Ruby Tools Page 4 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

#0:fact.rb:4:Fixnum:>: while n>0
#0:fact.rb:4:Fixnum:<: while n>0
#0:fact.rb:5:Object:-: f *= n
#0:fact.rb:5:Fixnum:>: f *= n
#0:fact.rb:5:Fixnum:<: f *= n
#0:fact.rb:6:Object:-: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:5:Object:-: f *= n
#0:fact.rb:5:Fixnum:>: f *= n
#0:fact.rb:5:Fixnum:<: f *= n
#0:fact.rb:6:Object:-: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:6:Fixnum:>: n -= 1
#0:fact.rb:6:Fixnum:<: n -= 1
#0:fact.rb:8:Object:-: return f
#0:fact.rb:8:Object:<: return f
#0:fact.rb:10:Kernel:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:IO:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Fixnum:>: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Fixnum:<: print fact(ARGV[0].to_i), "\n"
2#0:fact.rb:10:IO:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:IO:>: print fact(ARGV[0].to_i), "\n"

#0:fact.rb:10:IO:<: print fact(ARGV[0].to_i), "\n"
#0:fact.rb:10:Kernel:<: print fact(ARGV[0].to_i), "\n"

You can turn on trace mode explicitly by invoking these methods from your program:
1249985

Tracer.on
Turns on trace mode

Tracer.on {...}
Evaluates the block with trace mode turned on

Tracer.off
Turns off trace mode

5.1.4. irb
628024

irb (Interactive Ruby) was developed by Keiju Ishitsuka. It allows you to enter commands at the prompt and have the interpreter respond as
if you were executing a program. irb is useful to experiment with or to explore Ruby.
1249985

irb [options] [programfile] [argument...]

Here are the irb options:
1249985

Chapter 5. Ruby Tools Page 5 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

-f
Suppresses loading of ~/.irbrc.

-m
Math mode. Performs calculations using rational numbers.

-d
Debugger mode. Sets $DEBUG to true.

-r lib

Uses require to load the library lib before executing the program.

-v

--version
Displays the version of irb.

--inspect
Inspect mode (default).

--noinspect
Noninspect mode (default for math mode).

--readline
Uses the readline library.

--noreadline
Suppresses use of the readline library.

--prompt mode

--prompt-mode mode

Sets the prompt mode. Predefined prompt modes are default, simple, xmp, and inf-ruby.

--inf-ruby-mode
Sets the prompt mode to inf-ruby and suppresses use of the readline library.

--simple-prompt
Sets the prompt mode to simple mode.

--noprompt
Suppresses the prompt display.

--tracer
Displays a trace of method calls.

Chapter 5. Ruby Tools Page 6 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

--back-trace-limit n

Sets the depth of backtrace information to be displayed (default is 16).

Here is a sample irb interaction:
1249985

irb
irb(main):001:0> a = 25
25
irb(main):002:0> a = 2
2
irb(main):003:0>
matz@ev[sample] irb
irb(main):001:0> a = 3
3
irb(main):002:0> a.times do |i|
irb(main):003:1* puts i
irb(main):004:1> end
0
1
2
3
irb(main):005:0> class Foo<Object
irb(main):006:1> def foo
irb(main):007:2> puts "foo"
irb(main):008:2> end
irb(main):009:1> end
nil
irb(main):010:0> Foo::new.foo
foo
nil
irb(main):011:0> exit

irb loads a startup file from either ~/.irbrc, .irbrc, irb.rc, _irbrc, $irbrc. A Startup file can contain an arbitrary Ruby
program for per-user configuration. Within it, irb context object IRB is available.
1249985

irb works as if you fed the program line by line into the interpreter. But since the noninteractive interpreter executes the program at once,
there is a small difference. For example, in batch execution, the local variable that appears only in the eval isn't treated as a local variable
outside of eval. That's because an identifier is determined as a local variable or not statically. In non-irb mode, Ruby determines whether
or not an identifier is a local variable during compile-time. Since Ruby compiles the whole program first and then executes it, assignment in
eval isn't considered. But in irb mode, irb normally executes inputs line by line, so that assignment is done prior to compilation of the
next line.
1249985

5.1.5. ruby-mode for Emacs
628024

If you are an Emacs user, ruby-mode will help you a lot. It supports auto indent, colorizing program text, etc. To use ruby-mode, put
ruby-mode.el into the directory included in your load-path variable, then put the following code in your .emacs file.
1249985

(autoload 'ruby-mode "ruby-mode" "Mode for editing ruby source files" t)
(setq auto-mode-alist (append '((" \\.rb$.ruby-mode))
 auto-mode-alist))
(setq interpreter-mode-alist (append '(("ruby".ruby-mode))
 interpreter-mode-alist))

Chapter 5. Ruby Tools Page 7 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

5.2. Additional Tools
621961

There are other useful tools that don't come bundled with the Ruby standard distribution. However, you do need to install them yourself.
1249985

5.2.1. ri: Ruby Interactive Reference
628024

ri is a online reference tool developed by Dave Thomas, the famous pragmatic programmer. When you have a question about the behavior
of a certain method, e.g., IO#gets, you can invoke ri IO#gets to read the brief explanation of the method. You can get ri from http://
www.pragmaticprogrammer.com/ruby/downloads/ri.html.
1249985

ri [options] [name...]

Here are the ri options:
1249985

--version,

-v
Displays version and exits.

--line-length=n

-l n
Sets the line length for the output (minimum is 30 characters).

--synopsis

-s
Displays just a synopsis.

--format= name

-f name

Uses the name module (default is Plain) for output formatting. Here are the available modules:

Tagged
Simple tagged output

Plain
Default plain output

name should be specified in any of the following forms:

Chapter 5. Ruby Tools Page 8 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.pragmaticprogrammer.com/ruby/downloads/ri.html
http://www.pragmaticprogrammer.com/ruby/downloads/ri.html

• Class
• Class::method
• Class#method
• Class.method
• method

5.2.2. eRuby
628024

eRuby stands for embedded Ruby; it's a tool that embeds fragments of Ruby code in other files such as HTML files. Here's a sample eRuby
file:
1249985

This is sample eRuby file

The current time here is <%=Time.now%>.
<%[1,2,3].each{|x|print x,"
\n"}%>

Here's the output from this sample file:
1249985

This is sample eRuby file

The current time here is Wed Aug 29 18:54:45 JST 2001.
1
2
3

There are two eRuby implementations:
1249985

eruby
The original implementation of eRuby. eruby is available from http://www.modruby.net.

Erb
A pure Ruby (subset) implementation of eRuby.

eRuby is available from http://www2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz; The version number may be changed in the future.
Unfortunately, the supporting page http://www2a.biglobe.ne.jp/~seki/ruby/ is in Japanese, but you can tell how to use it from its source code.
1249985

5.3. Ruby Application Archive
621961

Do you want to access databases, such as PostgreSQL or MySQL from Ruby? Do you wish to use such nonstandard GUI toolkits as Qt, Gtk,
FOX, etc.? You can with the Ruby Application Archive (RAA), which has a collection of Ruby programs, libraries, documentations, and
binary packages compiled for specific platforms. You can access RAA at http://www.ruby-lang.org/en/raa.html. RAA is still far smaller than
Perl's CPAN, but it's growing every day.
1249985

RAA contains the following elements:
1249985

• The latest 10 items
• A list of Ruby applications
• A list of Ruby libraries

Chapter 5. Ruby Tools Page 9 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

http://www.modruby.net
http://www2a.biglobe.ne.jp/~seki/ruby/erb-1.3.3.tar.gz
http://www2a.biglobe.ne.jp/~seki/ruby/
http://www.ruby-lang.org/en/raa.html

• A list of Ruby porting
• A list of Ruby documents

You can enter your program in RAA by clicking "add new entry" at the top of the RAA page, then following the instructions there. RAA itself
is a fully automated web application written in Ruby. It uses eRuby and PStore as a backend.
1249985

Chapter 5. Ruby Tools Page 10 Return to Table of Contents

Chapter 5. Ruby Tools
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de, User number: 628024
Copyright 2006, Safari Books Online, LLC.

