
Table of Contents

Chapter 2. Language Basics... 1
2.1. Command-Line Options.. 1
2.2. Environment Variables.. 3
2.3. Lexical Conventions.. 4
2.4. Literals.. 6
2.5. Variables... 13
2.6. Operators.. 16
2.7. Methods.. 19
2.8. Control Structures... 24
2.9. Object-Oriented Programming.. 28
2.10. Security... 32

Chapter 2. Language Basics

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Chapter 2. Language Basics
521
Ruby does what you'd expect it to do. It is highly consistent, and allows you to get down to work without having to worry about the language
itself getting in your way.
1206121

2.1. Command-Line Options
594908

Like most scripting language interpreters, Ruby is generally run from the command line. The interpreter can be invoked with the following
options, which control the environment and behavior of the interpreter itself:
1206121

ruby [options] [—] [programfile] [argument...]

-a
Used with -n or -p to split each line. Split output is stored in $F.

-c
Checks syntax only, without executing program.

-C dir
Changes directory before executing (equivalent to -X).

-d
Enables debug mode (equivalent to -debug). Sets $DEBUG to true.

-e prog

Specifies prog as the program from the command line. Specify multiple -e options for multiline programs.

-F pat

Specifies pat as the default separator pattern ($;) used by split.

-h
Displays an overview of command-line options (equivalent to -help).

-i [ext]
Overwrites the file contents with program output. The original file is saved with the extension ext. If ext isn't specified, the original
file is deleted.

Chapter 2. Language Basics Page 1 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Copyright Safari Books Online #611213

-I dir

Adds dir as the directory for loading libraries.

-K [kcode]
Specifies the multibyte character set code (e or E for EUC (extended Unix code); s or S for SJIS (Shift-JIS); u or U for UTF-8; and
a, A, n, or N for ASCII).

-l
Enables automatic line-end processing. Chops a newline from input lines and appends a newline to output lines.

-n
Places code within an input loop (as in while gets; ... end).

-0[octal]
Sets default record separator ($/) as an octal. Defaults to \0 if octal not specified.

-p
Places code within an input loop. Writes $_ for each iteration.

-r lib

Uses require to load lib as a library before executing.

-s
Interprets any arguments between the program name and filename arguments fitting the pattern -xxx as a switch and defines the
corresponding variable.

$xxx.-S
Searches for a program using the environment variable PATH.

-T [level]
Sets the level for tainting checks (1 if level not specified). Sets the $SAFE variable.

-v
Displays version and enables verbose mode (equivalent to --verbose).

-w
Enables verbose mode. If programfile not specified, reads from STDIN.

-x [dir]
Strips text before #!ruby line. Changes directory to dir before executing if dir is specified.

-X dir

Changes directory before executing (equivalent to -c).

-y
Enables parser debug mode (equivalent to --yydebug).

--copyright
Displays copyright notice.

Chapter 2. Language Basics Page 2 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

--debug
Enables debug mode (equivalent to -d).

--help
Displays an overview of command-line options (equivalent to -h).

--version
Displays version.

--verbose
Enables verbose mode (equivalent to -v). Sets $VERBOSE to true.

--yydebug
Enables parser debug mode (equivalent to -y).

Single character command-line options can be combined. The following two lines express the same meaning:
1206121

ruby -ne 'print if /Ruby/' /usr/share/dict/words
ruby -n -e 'print if /Ruby/' /usr/share/dict/words

2.2. Environment Variables
594908

In addition to using arguments and options on the command line, the Ruby interpreter uses the following environment variables to control its
behavior. The ENV object contains a list of current environment variables.
1206121

DLN_LIBRARY_PATH
Search path for dynamically loaded modules.

HOME
Directory moved to when no argument is passed to Dir::chdir. Also used by File::expand_path to expand "~".

LOGDIR
Directory moved to when no arguments are passed to Dir::chdir and environment variable HOME isn't set.

PATH
Search path for executing subprocesses and searching for Ruby programs with the -S option. Separate each path with a colon (semicolon
in DOS and Windows).

Chapter 2. Language Basics Page 3 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

RUBYLIB
Search path for libraries. Separate each path with a colon (semicolon in DOS and Windows).

RUBYLIB_PREFIX
Used to modify the RUBYLIB search path by replacing prefix of library path1 with path2 using the format path1;path2 or
path1path2. For example, if RUBYLIB is:

 /usr/local/lib/ruby/site_ruby

and RUBYLIB_PREFIX is:

 /usr/local/lib/ruby;f:/ruby

Ruby searches f:/ruby/site_ruby. Works only with DOS, Windows, and OS/2 versions.

RUBYOPT
Command-line options passed to Ruby interpreter. Ignored in taint mode (where $SAFE is greater than 0).

RUBYPATH
With -S option, search path for Ruby programs. Takes precedence over PATH. Ignored in taint mode (where $SAFE is greater than
0).

RUBYSHELL
Specifies shell for spawned processes. If not set, SHELL or COMSPEC are checked.

2.3. Lexical Conventions
594908

Ruby programs are composed of elements already familiar to most programmers: lines, whitespace, comments, identifiers, reserved words,
literals, etc. Particularly for those programmers coming from other scripting languages such as Perl, Python or tcl, you'll find Ruby's conventions
familiar, or at least straightforward enough not to cause much trouble.
1206121

2.3.1. Whitespace
611213

We'll leave the thorny questions like "How much whitespace makes code more readable and how much is distracting?" for another day. If you
haven't already caught onto this theme, the Ruby interpreter will do pretty much what you expect with respect to whitespace in your code.
1206121

Whitespace characters such as spaces and tabs are generally ignored in Ruby code, except when they appear in strings. Sometimes, however,
they are used to interpret ambiguous statements. Interpretations of this sort produce warnings when the -w option is enabled.
1206121

a + b
Interpreted as a+b (a is a local variable)

a +b
Interpreted as a(+b) (a, in this case, is a method call)

Chapter 2. Language Basics Page 4 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

2.3.2. Line Endings
611213

Ruby interprets semicolons and newline characters as the ending of a statement. However, if Ruby encounters operators, such as +, -, or
backslash at the end of a line, they indicate the continuation of a statement.
1206121

2.3.3. Comments
611213

Comments are lines of annotation within Ruby code that are ignored at runtime. Comments extend from # to the end of the line.
1206121

This is a comment.

Ruby code can contain embedded documents too. Embedded documents extend from a line beginning with =begin to the next line beginning
with =end. =begin and =end must come at the beginning of a line.
1206121

=begin
This is an embedded document.
=end

2.3.4. Identifiers
611213

Identifiers are names of variables, constants, and methods. Ruby distinguishes between identifiers consisting of uppercase characters and those
of lowercase characters. Identifier names may consist of alphanumeric characters and the underscore character (_). You can distinguish
a variable's type by the initial character of its identifier.
1206121

2.3.5. Reserved Words
611213

The following list shows the reserved words in Ruby:
1206121

BEGIN do next then

END else nil true

alias elsif not undef

Chapter 2. Language Basics Page 5 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

and end or unless

begin ensure redo until

break false rescue when

case for retry while

class if return yield

def in self _ _FILE_ _

defined? module super _ _LINE_ _

These reserved words may not be used as constant or local variable names. They can, however, be used as method names if a receiver is
specified.
1206121

2.4. Literals
594908

I've often wondered why we programmers are so enamored with literals. I'm waiting for the day when a language comes along and introduces
"figuratives." In the interim, the rules Ruby uses for literals are simple and intuitive, as you'll see the following sections.
1206121

2.4.1. Numbers
611213

Strings and numbers are the bread and butter of literals. Ruby provides support for both integers and floating-point numbers, using classes
Fixnum, Bignum, and Float.
1206121

2.4.1.1. Integers
594908

Integers are instances of class Fixnum or Bignum:
1206121

123 # decimal
1_234 # decimal with underline
0377 # octal
0xff # hexadecimal
0b1011 # binary
?a # character code for 'a'
12345678901234567890 # Bignum: an integer of infinite length

Chapter 2. Language Basics Page 6 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

2.4.1.2. Floating-point numbers
594908

Floating-point numbers are instances of class Float:
1206121

123.4 # floating point value
1.0e6 # scientific notation
4E20 # dot not required
4e+20 # sign before exponential

2.4.2. Strings
611213

A string is an array of bytes (octets) and an instance of class String:
1206121

"abc"
Double-quoted strings allow substitution and backslash notation.

'abc'
Single-quoted strings don't allow substitution and allow backslash notation only for \\ and \'.

2.4.2.1. String concatenation
594908

Adjacent strings are concatenated at the same time Ruby parses the program.
1206121

"foo" "bar" # means "foobar"

2.4.2.2. Expression substitution
594908

#$var and #@var are abbreviated forms of #{$var} and #{@var}. Embeds value of expression in #{...} into a string.
1206121

2.4.2.3. Backslash notation
594908

In double-quoted strings, regular expression literals, and command output, backslash notation can be represent unprintable characters, as shown
in Table 2-1.
1206121

Chapter 2. Language Basics Page 7 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Table 2-1. Backslash notations

Sequence
1206121

Character represented
1206121

\n Newline (0x0a)
1206121

\r Carriage return (0x0d)
1206121

\f Formfeed (0x0c)
1206121

\b Backspace (0x08)
1206121

\a Bell (0x07)
1206121

\e Escape (0x1b)
1206121

\s Space (0x20)
1206121

\nnn Octal notation (n being 0-7)
1206121

\xnn Hexadecimal notation (n being 0-9, a-f, or A-F)
1206121

\cx, \C-x Control-x
1206121

\M-x Meta-x (c | 0x80)
1206121

\M-\C-x Meta-Control-x
1206121

\x Character x
1206121

`command`
Converts command output to a string. Allows substitution and backslash notation

2.4.2.4. General delimited strings
594908

The delimiter ! in expressions like this: %q!...! can be an arbitrary character. If the delimiter is any of the following: ([{ <, the end
delimiter becomes the corresponding closing delimiter, allowing for nested delimiter pairs.
1206121

%!foo!

Chapter 2. Language Basics Page 8 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

%Q!foo!
Equivalent to double quoted string "foo"

%q!foo!
Equivalent to single quoted string 'foo'

%x!foo!
Equivalent to `foo` command output

2.4.2.5. here documents
594908

Builds strings from multiple lines. Contents span from next logical line to the line that starts with the delimiter.
1206121

<<FOO

FOO

Using quoted delimiters after <<, you can specify the quoting mechanism used for String literals. If a minus sign appears between << and
the delimiter, you can indent the delimiter, as shown here:
1206121

puts <<FOO # String in double quotes ("")
 hello world
 FOO

 puts <<"FOO" # String in double quotes ("")
 hello world
 FOO

 puts <<'FOO' # String in single quotes ('')
 hello world
 FOO

 puts <<`FOO` # String in backquotes (``)
 hello world
 FOO

 puts <<-FOO # Delimiter can be indented
 hello world
 FOO

2.4.3. Symbols
611213

A symbol is an object corresponding to an identifier or variable:
1206121

:foo # symbol for 'foo'
:$foo # symbol for variable '$foo'

Chapter 2. Language Basics Page 9 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

2.4.4. Arrays
611213

An array is a container class that holds a collection of objects indexed by an integer. Any kind of object may be stored in an array, and any
given array can store a heterogeneous mix of object types. Arrays grow as you add elements. Arrays can be created using array.new or via
literals. An array expression is a series of values between brackets []:
1206121

[]
An empty array (with no elements)

[1, 2, 3]
An array of three elements

[1, [2, 3]]
A nested array

2.4.4.1. General delimited string array
594908

You can construct arrays of strings using the shortcut notation, %W. Only whitespace characters and closing parentheses can be escaped in the
following notation:
1206121

%w(foo bar baz) # ["foo", "bar", "baz"]

2.4.5. Hashes
611213

A hash is a collection of key-value pairs or a collection that is indexed by arbitrary types of objects.
1206121

A hash expression is a series of key=>value pairs between braces.
1206121

{key1 => val1, key2 => val2}

2.4.6. Regular Expressions
611213

Regular expressions are a minilanguage used to describe patterns of strings. A regular expression literal is a pattern between slashes or between
arbitrary delimiters followed by %r:
1206121

/pattern/
/pattern/im # option can be specified
%r!/usr/local! # general delimited regular expression

Chapter 2. Language Basics Page 10 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Regular expressions have their own power and mystery; for more on this topic, see O'Reilly's Mastering Regular Expressions by Jeffrey E.F.
Friedl.
1206121

2.4.6.1. Regular-expression modifiers
594908

Regular expression literals may include an optional modifier to control various aspects of matching. The modifier is specified after the second
slash character, as shown previously and may be represented by one of these characters:
1206121

i
Case-insensitive

o
Substitutes only once

x
Ignores whitespace and allows comments in regular expressions

m
Matches multiple lines, recognizing newlines as normal characters

2.4.6.2. Regular-expression patterns
594908

Except for control characters, (+ ? . * ̂$ () [] { } | \), all characters match themselves. You can escape a control character by preceding
it with a backslash.
1206121

Regular characters that express repetition (* + { }) can match very long strings, but when you follow such characters with control
characters ?, you invoke a nongreedy match that finishes at the first successful match (i.e., +, *, etc.) followed by ? (i.e., +?, *?, etc.).
1206121

^
Matches beginning of line.

$
Matches end of line.

.
Matches any single character except newline. Using m option allows it to match newline as well.

[...]
Matches any single character in brackets.

[^...]
Matches any single character not in brackets.

re*
Matches 0 or more occurrences of preceding expression.

re+
Matches 1 or more occurrences of preceding expression.

Chapter 2. Language Basics Page 11 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

re?
Matches 0 or 1 occurrence of preceding expression.

re{ n}
Matches exactly n number of occurrences of preceding expression.

re{ n,}
Matches n or more occurrences of preceding expression.

re{ n, m}
Matches at least n and at most m occurrences of preceding expression.

a| b

Matches either a or b.

(re)
Groups regular expressions and remembers matched text.

(?imx)
Temporarily toggles on i, m, or x options within a regular expression. If in parentheses, only that area is affected.

(?-imx)
Temporarily toggles off i, m, or x options within a regular expression. If in parentheses, only that area is affected.

(?: re)
Groups regular expressions without remembering matched text.

(?imx: re)
Temporarily toggles on i, m, or x options within parentheses.

(?-imx: re)
Temporarily toggles off i, m, or x options within parentheses.

(?#...)
Comment.

(?= re)
Specifies position using a pattern. Doesn't have a range.

(?! re)
Specifies position using pattern negation. Doesn't have a range.

(?> re)
Matches independent pattern without backtracking.

\w
Matches word characters.

\W
Matches nonword characters.

\s
Matches whitespace. Equivalent to [\t\n\r\f].

\S
Matches nonwhitespace.

\d
Matches digits. Equivalent to [0-9].

\D
Matches nondigits.

Chapter 2. Language Basics Page 12 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

\A
Matches beginning of string.

\Z
Matches end of string. If a newline exists, it matches just before newline.

\z
Matches end of string.

\G
Matches point where last match finished.

\b
Matches word boundaries when outside brackets. Matches backspace (0x08) when inside brackets.

\B
Matches nonword boundaries.

\n, \t, etc.

Matches newlines, carriage returns, tabs, etc.
\1...\9

Matches nth grouped subexpression.

\10...
Matches nth grouped subexpression if it matched already. Otherwise refers to the octal representation of a character code.

2.5. Variables
594908

There are five types of variables in Ruby: global, instance, class, locals and constants. As you might expect, global variables are accessible
globally to the program, instance variables belong to an object, class variables to a class and constants are, well... constant. Ruby uses special
characters to differentiate between the different kinds of variables. At a glance, you can tell what kind of variable is being used.
1206121

Global Variables

$foo

Global variables begin with $. Uninitialized global variables have the value nil (and produce warnings with the -w option). Some global
variables have special behavior. See Section 3.1 in Chapter 3.
1206121

Instance Variables

@foo

Chapter 2. Language Basics Page 13 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Instance variables begin with @. Uninitialized instance variables have the value nil (and produce warnings with the -w option).
1206121

Class Variables

@@foo

Class variables begin with @@ and must be initialized before they can be used in method definitions. Referencing an uninitialized class variable
produces an error. Class variables are shared among descendants of the class or module in which the class variables are defined. Overriding
class variables produce warnings with the -w option.
1206121

Local Variables

foo

Local variables begin with a lowercase letter or _. The scope of a local variable ranges from class, module, def, or do to the corresponding
end or from a block's opening brace to its close brace {}. The scope introduced by a block allows it to reference local variables outside the
block, but scopes introduced by others don't. When an uninitialized local variable is referenced, it is interpreted as a call to a method that has
no arguments.
1206121

Constants

Foo

Constants begin with an uppercase letter. Constants defined within a class or module can be accessed from within that class or module, and
those defined outside a class or module can be accessed globally. Constants may not be defined within methods. Referencing an uninitialized
constant produces an error. Making an assignment to a constant that is already initialized produces a warning, not an error. You may feel it
contradicts the name "constant," but remember, this is listed under "variables."
1206121

Pseudo-Variables

In addition to the variables discussed, there are also a few pseudo-variables. Pseudo-variables have the appearance of local variables but behave
like constants. Assignments may not be made to pseudo-variables.
1206121

self
The receiver object of the current method

Chapter 2. Language Basics Page 14 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

true
Value representing true

false
Value representing false

nil
Value representing "undefined"; interpreted as false in conditionals

__FILE__

The name of the current source file

__LINE__

The current line number in the source file

Assignment

target = expr

The following elements may assign targets:
1206121

Global variables
Assignment to global variables alters global status. It isn't recommended to use (or abuse) global variables. They make programs cryptic.

Local variables
Assignment to uninitialized local variables also serves as variable declaration. The variables start to exist until the end of the current
scope is reached. The lifetime of local variables is determined when Ruby parses the program.

Constants
Assignment to constants may not appear within a method body. In Ruby, re-assignment to constants isn't prohibited, but it does raise
a warning.

Attributes
Attributes take the following form:

expr.attr

Assignment to attributes calls the attr= method of the result of expr.

Elements
Elements take the following form:

expr[arg...]

Assignment to elements calls the []= method of the result of expr.

Chapter 2. Language Basics Page 15 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Parallel Assignment

target[, target...][, *target] = expr[, expr...][, *expr]

Targets on the left side receive assignment from their corresponding expressions on the right side. If the last left-side target is preceded by
*, all remaining right-side values are assigned to the target as an array. If the last right-side expression is preceded by *, the array elements
of expression are expanded in place before assignment.
1206121

If there is no corresponding expression, nil is assigned to the target. If there is no corresponding target, the value of right-side expression is
just ignored.
1206121

Abbreviated Assignment

target
 op= expr

This is the abbreviated form of:
1206121

target = target op expr

The following operators can be used for abbreviated assignment:
1206121

+= -= *= /= %= **= <<= >>= &= |= ^= &&= ||=

2.6. Operators
594908

Ruby supports a rich set of operators, as you'd expect from a modern language. However, in keeping with Ruby's object-oriented nature, most
operators are in fact method calls. This flexibility allows you to change the semantics of these operators wherever it might make sense.
1206121

2.6.1. Operator Expressions
611213

Most operators are actually method calls. For example, a + b is interpreted as a.+(b), where the + method in the object referred to by
variable a is called with b as its argument.
1206121

For each operator (+ - * / % ** & | ^ << >> && ||), there is a corresponding form of abbreviated assignment operator (+= -= etc.)
1206121

Here are the operators shown in order of precedence (highest to lowest):
1206121

::

Chapter 2. Language Basics Page 16 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

[]
**
+(unary) -(unary) ! ~
* / %
+ -
<< >>
&
| ^
> >= < <=
<=> == === != =~ !~
&&
||
.. ...
?:
= (and abbreviated assignment operators such as +=, -=, etc.)
not
and or

2.6.1.1. Nonmethod operators
594908

The following operators aren't methods and, therefore, can't be redefined:
1206121

...
!
not
&&
and
||
or
::
=
+=, -=, (and other abbreviated assignment operators)
? : (ternary operator)

2.6.1.2. Range operators
594908

Range operators function differently depending on whether or not they appear in conditionals, if expressions, and while loops.
1206121

In conditionals, they return true from the point right operand is true until left operand is true:
1206121

expr1 .. expr2

Evaluates expr2 immediately after expr1 turns true.

expr1 ... expr2

Evaluates expr2 on the iteration after expr1 turns true.

In other contexts, they create a range object:
1206121

Chapter 2. Language Basics Page 17 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

expr1 .. expr2

Includes both expressions (expr1 <= x <= expr2)

expr1 ... expr2

Doesn't include the last expression (expr1 <= x < expr2)

2.6.1.3. Logical operators
594908

If the value of the entire expression can be determined with the value of the left operand alone, the right operand isn't evaluated.
1206121

&& and
Returns true if both operands are true. If the left operand is false, returns the value of the left operand, otherwise returns the
value of the right operand.

|| or
Returns true if either operand is true. If the left operand is true, returns the value of the left operand, otherwise returns the value
of the right operand.

The operators and and or have extremely low precedence.

2.6.1.4. Ternary operator
594908

Ternary ?: is the conditional operator. It's another form of the if statement.
1206121

a ? b : c

If a is true, evaluates b, otherwise evaluates c. It's best to insert spaces before and after the operators to avoid mistaking the first part
for the method a? and the second part for the symbol :c.

2.6.1.5. defined? operator
594908

defined? is a special operator that takes the form of a method call to determine whether or not the passed expression is defined. It returns
a description string of the expression, or nil if the expression isn't defined.
1206121

defined? variable

True if variable is initialized

Chapter 2. Language Basics Page 18 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

foo = 42
defined? foo # => "local-variable"
defined? $_ # => "global-variable"
defined? bar # => nil (undefined)

defined? method_call

True if a method is defined (also checks arguments)

defined? puts # => "method"
defined? puts(bar) # => nil (bar is not defined here)
defined? unpack # => nil (not defined here)

defined? super
True if a method exists that can be called with super
defined? super # => "super" (if it can be called)
defined? super # => nil (if it cannot be)

defined? yield
True if a code block has been passed

defined? yield # => "yield" (if there is a block passed)
defined? yield # => nil (if there is no block)

2.7. Methods
594908

Methods are the workhorses of Ruby; all of your carefully crafted algorithms live in methods on objects (and classes). In Ruby, "method"
means both the named operation (e.g. "dump") and the code that a specific class provides to perform an operation.
1206121

Strictly speaking, Ruby has no functions, by which I mean code not associated with any object. (In C++, this is what you might call a "global-
scope function".) All code in Ruby is a method of some object. But Ruby allows you the flexibility of having some methods appear and work
just like functions in other languages, even though behind the scenes they're still just methods.
1206121

Normal Method Calls

obj.method([expr...[, *expr[, &expr]]])
obj.method [expr...[, *expr[, &expr]]]
obj::method([expr...[, *expr[, &expr]]])
obj::method [expr...[, *expr[, &expr]]]

method([expr...[, *expr[, &expr]]])
method [expr...[,
*expr[, &expr]]]

Calls a method. May take as arguments any number of expr followed by *expr and &expr. The last expression argument can be a hash
declared directly without braces. *expr expands the array value of that expression and passes it to the method. &expr passes the Proc
object value of that expression to the method as a block. If it isn't ambiguous, arguments need not be enclosed in parentheses. Either .
or :: may be used to separate the object from its method, but it is customary in Ruby code to use :: as the separator for class methods.
1206121

Chapter 2. Language Basics Page 19 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Calls a method of self. This is the only form by which private methods may be called.
1206121

Within modules, module methods and private instance methods with the same name and definition are referred to by the general term module
functions. This kind of method group can be called in either of the following ways:
1206121

Math.sin(1.0)

or:
1206121

include Math
sin(1.0)

You can append ! or ? to the name of a Ruby method. Traditionally, ! is appended to a method that requires
more caution than the variant of the same name without !. A question mark ? is appended to a method that
determines the state of a Boolean value, true or false.
1206121

Attempting to call a method without specifying either its arguments or parentheses in a context in which a local
variable of the same name exists results in the method call being interpreted as a reference to the local variable,
not a call to the method.
1206121

2.7.1. Specifying Blocks with Method Calls
611213

Methods may be called with blocks of code specified that will be called from within the method.
1206121

 method_call {[|[variable[, variable...]]|] code}
method_call do [|[variable[, variable...]]|] code end

Calls a method with blocks specified. The code in the block is executed after a value is passed from the method to the block and assigned to
the variable (the block's argument) enclosed between ||.
1206121

A block introduces its own scope for new local variables. The local variables that appear first in the block are local to that block. The scope
introduced by a block can refer local variables of outer scope; on the other hand, the scope introduced by class, module and def statement
can't refer outer local variables.
1206121

The form {...} has a higher precedence than do ... end. The following:
1206121

identifier1 identifier2 {|varizable| code}

actually means:
1206121

identifier1(identifier2 {|variable| code})

On the other hand:
1206121

identifier1 identifier2 do |variable| code end

Chapter 2. Language Basics Page 20 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

actually means:
1206121

identifier1(identifier2) do |variable| code end

def Statement

def method([arg..., arg=default..., *arg, &arg])
code
[rescue [exception_class[, exception_class...]] [=> variable] [then]
code]...
[else
code]
[ensure
code]
end

Defines a method. Arguments may include the following:
1206121

arg

Mandatory argument.

arg= default

Optional argument. If argument isn't supplied by that which is calling the method, the default is assigned to arg. The default
is evaluated at runtime.

* arg

If there are remaining actual arguments after assigning mandatory and optional arguments, they are assigned to arg as an array. If
there is no remainder, empty array is assigned to arg.

& arg

If the method is invoked with a block, it is converted to a Proc object, then assigned to arg. Otherwise, nil is assigned.

Operators can also be specified as method names. For example:
1206121

def +(other)
 return self.value + other.value
end

You should specify +@ or -@ for a single plus or minus, respectively. As with a begin block, a method definition may end with rescue,
else, and ensure clauses.
1206121

2.7.2. Singleton Methods
611213

In Ruby, methods can be defined that are associated with specific objects only. Such methods are called singleton methods. Singleton methods
are defined using def statements while specifying a receiver.
1206121

Chapter 2. Language Basics Page 21 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Defines a singleton method associated with a specific object specified by a receiver. The receiver may be a constant (literal) or an expression
enclosed in parentheses.
1206121

def Statement for Singleton Methods

def
receiver.method([arg...,arg=default..., *arg, &arg])
code
[rescue [exception_class[, exception_class...]] [=> variable] [then]
 code]...
[else
 code]
[ensure
 code]
end

A period . after receiver can be replaced by two colons (::). They work the same way, but :: is often
used for class methods.
1206121

A restriction in the implementation of Ruby prevents the definition of singleton methods associated with instances of the Fixnum or
Symbol class.
1206121

a = "foo"
def a.foo
 printf "%s(%d)\n", self, self.size
end
a.foo # "foo" is available for a only

2.7.3. Method Operations
611213

Not only can you define new methods to classes and modules, you can also make aliases to the methods and even remove them from the class.
1206121

alias Statement

alias new old

Creates an alias new for an existing method, operator or global variable, specified by old. This functionality is also available via
Module#alias_method. When making an alias of a method, it refers the current definition of the method.
1206121

def foo
 puts "foo!"

Chapter 2. Language Basics Page 22 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

 end
alias foo_orig foo
def foo
 puts "new foo!"
end
foo # => "new foo!"
foo_orig # => "foo!"

undef Statement

undef method...

Makes method defined in the current class undefined, even if the method is defined in the superclass. This functionality is also available via
Module#undef_method.
1206121

class Foo
def foo
end
end
class Bar<Foo
Bar inherits "foo"
undef foo
end
b = Bar.new
b.foo # error!

2.7.4. Other Method-Related Statements
611213

The following statements are to be used within method definitions. The yield statement executes a block that is passed to the method. The
super statement executes the overridden method of the superclass.
1206121

yield Statement

yield([expr...])
yield [expr...]

Executes the block passed to the method. The expression passed to yield is assigned to the block's arguments. Parallel assignment is performed
when multiple expressions are passed. The output of the block, in other words the result of the last expression in the block, is returned.
1206121

super Statement

Chapter 2. Language Basics Page 23 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

super
super([expr...])
superexpr...

super executes the method of the same name in the superclass. If neither arguments nor parentheses are specified, the method's arguments
are passed directly to the superclass method. In other words, a call to super(), which passes no arguments to the superclass method, has
a different meaning from a call to super, where neither arguments nor parentheses are specified.
1206121

2.8. Control Structures
594908

Ruby offers control structures that are pretty common to modern languages, but it also has a few unique ones.
1206121

if Statement

if conditional [then]
code
[elsif conditional [then]
code]...
[else
code]
end

Executes code if the conditional is true. True is interpreted as anything that isn't false or nil. If the conditional isn't true,
code specified in the else clause is executed. An if expression's conditional is separated from code by the reserved word then, a
newline, or a semicolon. The reserved word if can be used as a statement modifier.
1206121

code if conditional

Executes code if conditional is true.
1206121

unless Statement

unless conditional [then]
code
[else
code]
end

Executes code if conditional is false. If the conditional is true, code specified in the else clause is executed. Like if,
unless can be used as a statement modifier.

code unless conditional

Chapter 2. Language Basics Page 24 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Executes code unless conditional is true.
1206121

case Statement

case expression
[when expression[, expression...] [then]
code]...
[else
code]
end

Compares the expression specified by case and that specified by when using the === operator and executes the code of the when
clause that matches. The expression specified by the when clause is evaluated as the left operand. If no when clauses match, case
executes the code of the else clause. A when statement's expression is separated from code by the reserved word then, a newline,
or a semicolon.
1206121

while Statement

while conditional [do]
code
end

Executes code while conditional is true. A while loop's conditional is separated from code by the reserved word do, a newline,
\, or a semicolon. The reserved word while can be used as statement modifier.
1206121

code while conditional

Executescode while conditional is true.
1206121

begin code end while conditional

If a while modifier follows a begin statement with no rescue or ensure clauses, code is executed once before conditional is
evaluated.
1206121

until Statement

until conditional [do]
code
end

code untilconditional

Chapter 2. Language Basics Page 25 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

begin
code
end until conditional

Executes code while conditional is false. An until statement's conditional is separated from code by the reserved word do,
a newline, or a semicolon. Like while, until can be used as statement modifier.
1206121

Executescode while conditional is false.
1206121

If an until modifier follows a begin statement with no rescue or ensure clauses, code is executed once before conditional is
evaluated.
1206121

for Statement

for variable[, variable...] in expression [do]
code
end

Executes code once for each element in expression. Almost exactly equivalent to:
1206121

expression.each do |variable[, variable...]| code end

except that a for loop doesn't create a new scope for local variables. A for loop's expression is separated from code by the reserved
word do, a newline, or a semicolon.
1206121

break Statement

break

Terminates a while/until loop. Terminates a method with an associated block if called within the block (with the method returning
nil).
1206121

next Statement

next

Jumps to the point immediately before the evaluation of a loop's conditional. Terminates execution of a block if called within a block (with
yield or call returning nil).
1206121

Chapter 2. Language Basics Page 26 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

redo Statement

redo

Jumps to the point immediately after the evaluation of the loop's conditional. Restarts yield or call if called within a block.
1206121

retry Statement

retry

Repeats a call to a method with an associated block when called from outside a rescue clause.
1206121

Jumps to the top of a begin/end block if called from within a rescue clause.
1206121

begin Statement

begin
code
[rescue [exception_class[, exception_class...]] [=> variable] [then]
code]...
[else
code]
[ensure
code]
end

The begin statement encloses code and performs exception handling when used together with the rescue and ensure clauses.
1206121

When a rescue clause is specified, exceptions belonging to the exception_class specified are caught, and the code is executed. The
value of the whole begin enclosure is the value of its last line of code. If no exception_class is specified, the program is treated as if
the StandardError class had been specified. If a variable is specified, the exception object is stored to it. The rescue
exception_class is separated from the rest of the code by the reserved word then, a newline, or a semicolon. If no exceptions are raised,
the else clause is executed if specified. If an ensure clause is specified, its code is always executed before the begin/end block exits,
even if for some reason the block is exited before it can be completed.
1206121

rescue Statement

code rescue expression

Evaluates the expression if an exception (a subclass of StandardError) is raised during the execution of the code. This is exactly
equivalent to:
1206121

Chapter 2. Language Basics Page 27 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

begin
 code
rescue StandardError
 expression
end

raise method

raise exception_class, message
raise exception_object
raisemessage
raise

Raises an exception. Assumes RuntimeError if no exception_class is specified. Calling raise without arguments in a rescue
clause re-raises the exception. Doing so outside a rescue clause raises a message-less RuntimeError.
1206121

BEGIN Statement

BEGIN {
code
}

Declares code to be called before the program is run.
1206121

END Statement

END {
code
}

Declares code to be called at the end of the program (when the interpreter quits).
1206121

2.9. Object-Oriented Programming
594908

Phew, seems like a long time since I introduced Ruby as "the object-oriented scripting language," eh? But now you have everything you need
to get the nitty-gritty details on how Ruby treats classes and objects. After you've mastered a few concepts and Ruby's syntax for dealing with
objects, you may never want to go back to your old languages, so beware!
1206121

Chapter 2. Language Basics Page 28 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

2.9.1. Classes and Instances
611213

All Ruby data consists of objects that are instances of some class. Even a class itself is an object that is an instance of the Class class. As a
general rule, new instances are created using the new method of a class, but there are some exceptions (such as the Fixnum class).
1206121

a = Array::new
s = String::new
o = Object::new

class Statement

class class_name [< superclass]
code
end

Defines a class. A class_name must be a constant. The defined class is assigned to that constant. If a class of the same name already exists,
the class and superclass must match, or the superclass must not be specified, in order for the features of the new class definition to
be added to the existing class. class statements introduce a new scope for local variables.
1206121

2.9.2. Methods
611213

Class methods are defined with the def statement. The def statement adds a method to the innermost class or module definition surrounding
the def statement. A def statement outside a class or module definition (at the top level) adds a method to the Object class itself, thus
defining a method that can be referenced anywhere in the program.
1206121

When a method is called, Ruby searches for it in a number of places in the following order:
1206121

1. Among the methods defined in that object (i.e., singleton methods).
2. Among the methods defined by that object's class.
3. Among the methods of the modules included by that class.
4. Among the methods of the superclass.
5. Among the methods of the modules included by that superclass.
6. Repeats Steps 4 and 5 until the top-level object is reached.

2.9.3. Singleton Classes
611213

Attribute definitions for a specific object can be made using the class definition construction. Uses for this form of class definition include the
definition and a collection of singleton methods.
1206121

class << object
 code

Chapter 2. Language Basics Page 29 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

end

Creates a virtual class for a specific object, defining the properties (methods and constants) of the class using the class definition construction.
1206121

2.9.4. Modules
611213

A module is similar to a class except that it has no superclass and can't be instantiated. The Module class is the superclass of the Class class.
1206121

module Statement

module module_name
 code

end

A module statement defines a module. module_name must be a constant. The defined module is assigned to that constant. If a module of
the same name already exists, the features of the new module definition are added to the existing module. module statements introduce a
new scope for local variables.
1206121

2.9.5. Mix-ins
611213

Properties (methods and constants) defined by a module can be added to a class or another module with the include method. They can also
be added to a specific object using the extend method. See Module#include in Section 3.4.9, and the Object#extend in Section
3.4.1.
1206121

2.9.6. Method Visibility
611213

There are three types of method visibility:
1206121

Public
Callable from anywhere

Protected
Callable only from instances of the same class

Chapter 2. Language Basics Page 30 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Private
Callable only in functional form (i.e., without the receiver specified)

Method visibility is defined using the public, private, and protected methods in classes and modules.
1206121

public([symbol ...])

Makes the method specified by symbol public. The method must have been previously defined. If no arguments are specified, the
visibility of all subsequently defined methods in the class or module is made public.

protected([symbol...])
Makes the method specified by symbol protected. The method must have been previously defined. If no arguments are specified, the
visibility of all subsequently defined methods in the class or module is made protected.

private([symbol...])
Makes the method specified by symbol private. The method must have been previously defined. If no arguments are specified, the
visibility of all subsequently defined methods in the class or module is made private.

2.9.7. Object Initialization
611213

Objects are created using the new method of each object's class. After a new object is created by the new method, the object's
initialize method is called with the arguments of the new method passed to it. Blocks associated with the new method are also passed
directly to initialize. For consistency, you should initialize objects by redefining the initialize method, rather than the new method.
The visibility of methods named initialize is automatically made private.
1206121

2.9.8. Attributes
611213

Attributes are methods that can be referenced and assigned to externally as if they were variables. For example, the Process module attribute
egid can be manipulated in the following way:
1206121

Process.egid # Reference
Process.egid=id # Assignment

These are actually two methods, one that takes no argument and another with a name ending with = that takes one argument. Methods that
form such attributes are referred to as accessor methods.
1206121

2.9.9. Hooks
611213

Ruby notifies you when a certain event happens, as shown in Table 2-2.
1206121

Chapter 2. Language Basics Page 31 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Table 2-2. Events and their hook methods

Event
1206121

Hook method
1206121

Of
1206121

Defining an instance method
1206121

method_added Class
1206121

Defining a singleton method
1206121

singleton_method_added Object
1206121

Make subclass
1206121

inherited Superclass
1206121

These methods are called hooks. Ruby calls hook methods when the specific event occurs (at runtime). The default behavior of these methods
is to do nothing. You have to override the method if you want to do something on a certain event:
1206121

class Foo
 def Foo::inherited(sub)
 printf "you made subclass of Foo, named %s\n", sub.name
 end
end
class Bar<Foo # prints "you made subclass of Foo, named Bar"
end

There are other types of hook methods used by the mix-in feature. They are called by include and extend to do the actual mixing-in, as
shown in Table 2-3. You can use these as hooks, but you have to call super when you override them.
1206121

Table 2-3. Mix-In hook methods

Event
1206121

Hook method
1206121

Of
1206121

From
1206121

Mixing in a module
1206121

append_features Mix-in module
1206121

Module#include

Extending a object
1206121

extend_object Mix-in module
1206121

Object#extend

Ruby 1.7 and later provide more hooks. See Chapter 6 for more information on future versions.
1206121

2.10. Security
594908

Ruby is portable and can easily use code distributed across a network. This property gives you tremendous power and flexibility but introduces
a commensurate burden: how do you use this capability without possibly causing damage?
1206121

Part of the answer lies in Ruby's security system, which allows you to "lock down" the Ruby environment when executing code that may be
suspect. Ruby calls such data and code tainted. This feature introduces mechanisms that allow you to decide how and when potentially
"dangerous" data or code can be used inside your Ruby scripts.
1206121

Chapter 2. Language Basics Page 32 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

2.10.1. Restricted Execution
611213

Ruby can execute programs with security checking turned on. The global variable $SAFE determines the level of the security check. The
default safe level is 0, unless specified explicitly by the command-line option -T, or the Ruby script is run setuid or setgid.
1206121

$SAFE can be altered by assignment, but it isn't possible to lower the value of it:
1206121

$SAFE=1 # upgrade the safe level
$SAFE=4 # upgrade the safe level even higher
$SAFE=0 # SecurityError! you can't do it

$SAFE is thread local; in other words, the value of $SAFE in a thread may be changed without affecting the value in other threads. Using this
feature, threads can be sandboxed for untrusted programs.
1206121

Thread::start { # starting "sandbox" thread
 $SAFE = 4 # for this thread only
 ... # untrusted code
}

Level 0

Level 0 is the default safe level. No checks are performed on tainted data.
1206121

Any externally supplied string from IO, environment variables, and ARGV is automatically flagged as tainted.
1206121

The environment variable PATH is an exception. Its value is checked, and tainted only if any directory in it is writable by everybody.
1206121

Level 1

In this level, potentially dangerous operations using tainted data are forbidden. This is a suitable level for programs that handle untrusted input,
such as CGI.
1206121

• Environment variables RUBYLIB and RUBYOPT are ignored at startup.
• Current directory (.) isn't included in $LOAD_PATH.
• The command-line options -e, -i, -I, -r, -s, -S, and -X are prohibited.
• Process termination if the environment variable PATH is tainted.
• Invoking methods and class methods of Dir, IO, File, and FileTest for tainted arguments is prohibited.
• Invoking test, eval, require, load, and trap methods for tainted argument is prohibited.

Chapter 2. Language Basics Page 33 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

Level 2

In this level, potentially dangerous operations on processes and files are forbidden, in addition to all restrictions in level 1. The following
operations are prohibited:
1206121

Dir::chdir
Dir::chroot
Dir::mkdir
Dir::rmdir
File::chown
File::chmod
File::umask
File::truncate
File#lstat
File#chmod
File#chown
File#truncate
File#flock
IO#ioctl
IO#fctrl
Methods defined in the FileTest module
Process::fork
Process::setpgid
Process::setsid
Process::setpriority
Process::egid=
Process::kill
load from a world-writable directory
syscall
exit!
trap

Level 3

In this level, all newly created objects are considered tainted, in addition to all restrictions in Level 2.
1206121

• All objects are created tainted.
• Object#untaint is prohibited.
• Proc objects retain current safe level to restore when their call methods are invoked.

Level 4

Chapter 2. Language Basics Page 34 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

In this level, modification of global data is forbidden, in addition to all restrictions in Level 3. eval is allowed again in this level, since all
dangerous operations are blocked in this level.
1206121

def safe_eval(str)
Thread::start { # start sandbox thread
 $SAFE = 4 # upgrade safe level
 eval(str) # eval in the sandbox
}.value # retrieve result
end

eval('1 + 1') # => 2
eval('system "rm -rf /"') # SecurityError

The following operations are prohibited:
1206121

• Object#taint
• autoload, load, and include
• Modifying Object class
• Modifying untainted objects
• Modifying untainted classes or modules
• Retrieving meta information (e.g., variable list)
• Manipulating instance variables
• Manipulating threads other than current
• Accessing thread local data
• Terminating process (by exit, abort)
• File input/output
• Modifying environment variables
• srand

Chapter 2. Language Basics Page 35 Return to Table of Contents

Chapter 2. Language Basics
Ruby in a Nutshell By Yukihiro Matsumoto
ISBN: 0-59600-214-9 Publisher: O'Reilly Print Publication Date: 11/1/2001
No part of any chapter or book may be reproduced or transmitted in any form by any means without the prior written permission for reprints and excerpts from the publisher of the
book or chapter. Redistribution or other use that violates the fair use privilege under U.S. copyright laws (see 17 USC107) or that otherwise violates these Terms of Service is
strictly prohibited. Violators will be prosecuted to the full extent of U.S. Federal and Massachusetts laws.

Prepared for Ronald Fischer, Safari ID: mn-pg-p-e-b-consultant-3.com@siemens.com, User number: 611213
Copyright 2006, Safari Books Online, LLC.

