A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit

Tcl/Tk Cookbook

Lakshmi Sastry

Advanced Interactive Systems Group
Information Technology Department
CLRC Rutherford Appleton Laboratory, Chilton, Didcot. OX11 0QX

Venkat VSS Sastry

Department of Applied Mathematics and Operational Research
Cranfield University, RMCS Shrivenham, Swindon. SN6 8LA

Contents

@ Introduction

ﬁ Housekeeping

@ Getting Started

E Chapter 1: Basics of Tcl

@ Chapter 2: Basics of Tk

ﬁ Chapter 3: Simple Text Editor

@ Chapter 4: Using the Canvas

ﬁ Chapter 5: Canvas Revisited

@ Chapter 6: Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/index.html (1 di 2) [04/12/2000 19.37.51]

http://www.dci.clrc.ac.uk/Person/M.Sastry
mailto:sastry@rmcs.cranfield.ac.uk

A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit

ﬁ Chapter 7: Tcl/ITk and FORTRAN

@ Chapter 8: Tcl/Tk and C++

ﬁ Chapter 9: Adding Extensions

@ Chapter 10: Using Extensions

E Bibliography

@ Source code for the examples

Tcl/Tk was developed by Professor John Ousterhout. The examples in this co
also utilise contributed Tcl and Tk modules which are acknowledged.

Lakshmi Sastry wishes to thank UK Advisory Group On Computer Graphics fc
support for developing this cookbook.

The authors wish to thankctoria Marshallfor designing the icons.

Please send any comments or suggestions about this Cookbook to
M.Sastry@rl.ac.uk

http://www.dci.clrc.ac.uk/Publications/Cookbook/index.html (2 di 2) [04/12/2000 19.37.51]

http://www.dci.clrc.ac.uk/Person.asp?V.A.Marshall
mailto:M.Sastry@rl.ac.uk

Tcl/Tk Cookbook - Introduction

fol ;TCVTK Cookbook -

Introduction

Tcl, Tool Command Language, is an interpreted language with programming
features, available across platforms running Unix, Windows and the Apple
Macintosh operating system. Tk, the associated toolkit is an easy and efficient
developing window based applications. Application tasks are split into module
any new application specific task is written and compiled as C or C++ progran
exported as a new Tcl command. Then a Tcl script, a series of existing and ne
commands, is composed to make the overall application. The scripting langua
much like any shell language, has the ability to access and execute any other
programs. Therefore several Tcl based applications could be made to work to
to create or extend into a new application.

Tcl consists of few syntax rules and a (still growing) set of core commands. Tk
provides a higher level application programming interface for developing inter:
widgets based applications, particularly for those who wish to concentrate on 1
functionality of their application and have no need to gain indepth programmin
expertise in the underlying window system and/or verbose toolkits such as
OSF/Motif. Tcl/Tk is free, available now on Apple Macintosh and Windows anc
a wide user base with a rich and growing mass of useful contributed software.
wider availabilty, usage and ease of teaching and learning of Tcl/Tk makes it t
most appropriate tool for teaching the principles of Graphical User Interface de
and development.

Why This Cookbook?

The purpose of this cookbook is to provide a suite of simple examples with an
comments so a novice user could quickly climb the learning curve by means ¢
pattern matching. It is largely aimed at readers who are new to developing too
based applications and at those who only need to know how to develop simple
interfaces and have relatively short time to achieve that. The emphasis is on €
the readers gain familiarity with Tcl/Tk programming within a very short-time s
they can proceed to develope their own. This cookbook, by this very nature, is
exhaustive.

http://www.dci.clrc.ac.uk/Publications/Cookbook/intro.html (1 di 2) [04/12/2000 19.38.00]

Tcl/Tk Cookbook - Introduction

Tcl/Tk Books

For a comprehensive description of Tcl/Tk together with the underlying philosc
of design, the reader is recommendetiliid and the Tk Toolkit' For exhaustive

programming examples the reader should coriBu#tctical Programming in Tcl ar
Tk". Readers may also be interested in lookingExploring Expect'which

describes in detail Expect, which can be used to automate, for instance, routir
system administration tasks.

It is worth noting that Tcl/Tk is evolving and valuable contributions towards
extending its scope continue to grow. Hence the most up to date source of
information for Tcl/Tk as well as the extensions is the accompanying manual |

Organization of the Cookbook

This introduction is followed by a brief "Housekeeping" information which is
suceeded by a short section on "Getting Started" with Tcl/Tk. The rest of the b
divided into individual chapters each of which takes the reader through examp
strive to provide an appreciation of Tcl and Tk and some extensions.

"Basics of Tcl" is set up to make use of the excellent HTML documents availal
the public domain as an additional and detailed source of information. You catr
your favourite HTML browser (Mosaic or Netscape).

List of references is appended at the end.

P =

http://www.dci.clrc.ac.uk/Publications/Cookbook/intro.html (2 di 2) [04/12/2000 19.38.00]

Tcl/Tk Cookbook - Bibliography

@ Tcl/Tk Cookbook -

Bibliography

Tcl and the Tk Toolkit, John K Ousterhout, Addison-Wesley Publishing Compi
1995.

Practical Programming in Tcl and Tk, Brent B Welch, Prentice Hall PTR, 1995
Exploring Expect, Don Libes, O'Reilly and Associates, 1995.

Visual Design with OSF/Motif, Shiz Kobara, Addison-Wesley Publishing
Company, 1991.

Phigs Programming Manual, Tom Gaskins, O'Reilly and Associates Inc., 1992

A Practical Introduction to PHIGS and PHIGS Plus, TLJ Howard et al,
Addison-Wesley Publishing Company, 1991

=17 |=

http://www.dci.clrc.ac.uk/Publications/Cookbook/ref.html [04/12/2000 19.38.03]

Tcl/Tk Cookbook - Housekeeping

2 Tcl/Tk Cookbook -

Housekeeping

Purpose

This section gives you information on where to get Tcl/Tk, its extensions
source for this cookbook and its examples and some other information v
think worth noting if you are setting out to compile and install Tcl/Tk.

Where to get Tcl and Tk and extensions

The primary site for Tcl and Tk distributions is
ftp://ftp.cs.berkeley.edu/ucb/tcl

but the distributions along with most of the extensions can be obtained fi
the mirror sites

ftp://ftp.src.doc.ic.ac.uk/packages/taindftp://ftp.funet.fi/pub/languages/tcl/
[We found the latter more up to date].

The above form is a Universal Resource Location which you can use in
World Wide Web browser such as mosaic or netscape to access the site
directory listing will be presented using which you can fetch the files.

Alternatively you can use FTP (File Transfer Protocol) and login to the h
whose name follows "ftp://" (e.q., ftp.funet.fi) as anonymous, give your

electronic mail address as password and fetch the files from the director
whose pathnames follow the respective host name (e.g., /pub/language:

You can usarchieservice to get a list of other anonymous FTP servers.
the messagEelp via an electronic mail tarchie@archie.sura.ndb get
information on how to use this service.

If you do not have direct FTP access please send the méssiadey an
electronic mail tdtpmail@decwrl.dec.corfor directions.

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (1 di 6) [04/12/2000 19.38.08]

Tcl/Tk Cookbook - Housekeeping

Tcl and Tk on World Wide Web

Readers of this cookbook may also be interested to visit
http://www.geog.le.ac.uk/arguahd
http://web.cs.ualberta.ca/~wade/Auto/Tcl.html

HTML & Latex Documents

Compressed tar file of Tcl/Tk manual pages in Hypertext Markup Langui
are available from ftp://ftp.funet.fi/pub/languages/tcl/contrib/docs. The T
Reference Guide (latex document) can also be fetched from the same s

Newsgroups

Thecomp.lang.tcls an active forum for Tcl/Tk information exchange.
Announcements regarding Tcl/Tk and other extensions are posted regul
this.

Extensions and Contributed Software

Note: Please refer to the README documents that accompany contribu
software for information on authorship and copyrights. The same are
acknowledged here.

There is so much of useful and well documented Tcl/Tk extensions, that
impractical to list them here (let alone use them). There is the inherent d
in this that like XF (see below), some of these may not be maintained fol
reason or another. There is also the case of many of the contributed mo
address the same issue with different approaches (e.g., hush, itcl, objec
provide a C++ binding). This is proving to be much more difficult to hand
a short-term project like this as the name of the game is to wait and see
taking the plunge. For these reasons, we have seBL{EdL.9, Expect-5.19,

itcl2.0 as the three Tcl/Tk extensions we use in this cookbook (apart fror
fileselectionbox from earlier days) to show the user how to make use of

BLT, an extension library for Tk, contains additional widgets such as the
versatile blt-graph and commands such as drag-and-drop. Expectisa T
application for automating routine system adminstration tasks and itcl2.C
provides a C++ binding for Tcl/Tk as well as a set of widgets.

TclX (Extended Tcl)Tcl-DP (Tcl-Distributed Programming) anidx (set of
mega widgets) are also popular. Blt based applicatteam (an interactive
application about periodic table) is interesting.

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (2 di 6) [04/12/2000 19.38.08]

Tcl/Tk Cookbook - Housekeeping

The latest versions of all these contributed software, apart from expect, :
ftp.funet.fi. The expect.readme at that ftp site gives instructuions on how
expect.

Jumping the compilation gun

All the information under this heading can be found (and described in greater |
in relevant README files and also in the later chapters of the books by Ouste
and Welch. However we felt that it is worthwhile to draw attention to these at t
beginning to help the setting up of Tcl/Tk at your site.

Issue 1:

If you are planning on compiling Tcl7.4 and Tk4.0 with several other
extensions, it may be useful to note that Tcl/Tk distribution contains the
template to integrate the extensions and provide a unisdshell from
which the commands and widgets of the extensions can also invoked al
with the core Tcl/Tk commands. If you do not have an integrated wish, t
for each extension you want to use, you will find yourself invokingsa
compiled for that extension - for instartaé wishfor using blt based
applications oitkwishfor itcl. Chapter 9 describes how to achievethis
Integration.

Another important point to note if you wish to use C++ as your applicatic
development language, you would want to itslebut you may also want to
provide blt, expect as well as cater to those wanting to use C as their
application languagetcl, to quote their developers,

".... Tcl are procedures and global variables, and all of these building blc
must reside in a single global namespace. There is no support for protec
encapsulation.

[incr Tcl] introduces the notion of objects. Each object is a bag of data w
set of procedures or "methods" that are used to manipulate it. Objects a
organized into "classes" with identical characteristics, and classes can ir
functionality from one another.

Classes and/or related procedures can also be encapsulated in their ow
"namespace"”. A namespace is a collection of commands, variables, clas
other namespaces that is set apart from the usual global scope..............

With vanilla Tcl, each extension must add its commands and variables a
global scope. Extension writers are encouraged to add a unique prefix tc
the names in their package, to avoid naming collisions. Extensions can 1
in their own namespace of commands and variables, and sensitive elem
can be protected from accidental access."

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (3 di 6) [04/12/2000 19.38.08]

Tcl/Tk Cookbook - Housekeeping

Tip 1.

In practice, this would mean thitl requires its own version of Tcl/Tk with
support for namespaces requiring the use of the version of Tcl/Tk that cc
in the distribution of itcl. Therefore if you wish to integrate itcl with other

Tcl/Tk extensions/applications you have to use the itcl version of Tcl/Tk

basis for all of them rather than the original.

Issue 2:

Send is a powerful Tk command which allows any Tk application on a dis
to communicate with any other Tk application on the display. the sendint
application can either to retrieve information about the target application
change the state of that target application by invoking an arbitrary Tcl sc
it . [Chapter 2 provides an example of using send.]

This mechanism provides both the opportunity to build powerful coopera
multimedia hypertools as well as a potential security risk. We recommen
reader to Chapter 23 Bfrofessor Ousterhoust bookn case you have not gc

access to the book, much of his description on the security issue is quot

" ...any application that uses your display can send scripts to any Tk
application on that display, and the scripts can use the full power of Tcl t
and write your files or invoke subprocesses with the authority of your
account.....

...you can protect yourself fairly well if you employ a key-based protectio
scheme for your display suchyesuthwhich generates an obscure
authorization string and tells the server not to allow an application to use
display unless it can produce the string. Typically the string is stored in &
that can be read only by a particular user, so this restricts the use of the
to the one user. If you want to allow other users access your display, yo!
give them a copy of your authorization file or you can change the protec
your authorization file so that it is group-readable.

... many people uséhostprogram which specifies a a set of machine nam
the server and any process running on any of those machines can estak
connection to the server. Anyone with an account on any of those listed
machines can connect to your server. To prevent these people from sen
your applications and abusing your account, Tk checks to ghegf-style
protection is used on the display; if so, Tk refuses to accept incamamnmy
commands. If you currently use xhost for protection, you should learn ak
xauthand switch to it as soon as possible."

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (4 di 6) [04/12/2000 19.38.08]

Tcl/Tk Cookbook - Housekeeping

Tip 2:

If you want to use the send command even though you are using xhost
protection, before compiling Tk, turn off the security check in the Tk Mak
by commenting out the iINBECURITY_FLAGS = -DTK_NO_SECURITYe
Makefile then would have the following

SECURITY_FLAGS =
#SECURITY_FLAGS = -DTK_NO_SECURITY

allowing forsendto be used under théostprotection.

Cookbook Source

Self-contained versions of this cookbook and the source code for the
associated examples are available:

o Cookbook(Zipped tar file, 1.56KB)
0 Source codé€Zipped tar file, 44.38KB)

The examples in this cookbook are authored using Tcl7.4 and Tk4.0. Th
developed and tested on Sun Microsystems Sparcstations running Sunc
SunOS 5.3 and SunOS 4.1.3.

Note 1: The examples for Chapters 1, 6-9 (inclusive) require compiling p
of the examples. Templates for the Makefile is provided in each chapter.
Ensure that any customization you make is reflected in the Tcl source fil
that chapter, that invoke the compiled parts.

Note 2: It is assumed that Tcl/Tk in your site is installed under /usr/bin. If
is not the case, you should replace the line #!/usr/bin/wish -f, in the sour:
code of examples with an appropriate pathname {The "-f* option is not
required for versions of Tk above 3.6}. If you need to change the pathna
the wish binary, note that some Unix systems cannot handle the first line
script file when it exceeds 32 characters. To avoid this, follow the trick p
in comp.lang.tcl by Kevin Kenny. Replace the line #!/usr/bin/wish -f with
following two lines:

#!'/ bin/sh
exec /sone/very/long/ path/to/wish -f "$0" $(1+"$$@}

Note 3: Basics of Tcl, Chapter 1 is set up to invoke the mosaic browser t
tcltk-man-html html documents. You will require to set the two variable
Hyper(browser) and Hyper(html) in the procedure CreateSynWin
~cookbook/code/BTCL/eb.tcl

Please refer to Getting Started for how to run tclsh, wish as well as the

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (5 di 6) [04/12/2000 19.38.08]

http://www.dci.clrc.ac.uk/Publications/Cookbook/Downloads/cookbook.tar.gz
http://www.dci.clrc.ac.uk/Publications/Cookbook/Downloads/Lakshmi.tar.gz

Tcl/Tk Cookbook - Housekeeping

examples.

Tcl7.5a2 and Tk4.1a2

The latest versions of Tcl and Tk are 7.5a2 and Tk4.1a2. The examples
are simple enough to run on these later versions without modifications. ~
current release of the distribution also contain ports of both Tcl and Tk fc
Windows and Macintosh environments.

Note: Please note that the examples in this cookbook use Unix specific
commandgxec anddate as well as the Tcl file commands which are avail;
only on most Unix workstations. These need to be replaced with approp!
ones available on the Pc and Macintosh platforms. The XBM bitmap forr
needs to be changed as well.

We hope to make these changes automatic in the next revision.

Tcl7.3 and Tk3.6

The examples should work for the previous release 7.3 of Tcl and 3.6 of

XF, a Graphical User Interface(GUI) development tool for Tcl and Tk,
developed by Sven Delmas, is available for Tcl7.3 and Tk3.6. We had ht
include a brief example of how to use XF. Unfortunately XF was not port
later releases of Tcl and Tk.

XF required familiarity with Tcl and Tk programming and provides its ow
higher level programming interface much of which is automatically genel
Given that XF is effectively frozen, we are not sure of this adding an add
learning curve.

=]l

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (6 di 6) [04/12/2000 19.38.08]

Tcl/Tk Cookbook - Getting Started

Tcl/Tk Cookbook - Getting Started
S)

Purpose

This section is a brief description of how to setup your environment to access Tcl/Tk and other extensi
also introduces tclsh, the Tcl shell application and wish, the Tk shell window-based application. If you
to Tcl/Tk programming, follow this with Chapters 1 and 2.

You will need

If you are an end user, then you will require to know if Tcl/Tk or any other extension that you want to u
installed for your system. If they are then you will need to know the absolute pathnames of the bin, inc
lib directories for these. If not, contact your system adminstrator and refer them to the "Housekeeping"

Setting up Environment Variables
The binaries and libraries of Tcl/Tk and its extensions such as blt etc are generally installed under /usr
{usr/lib. If this is not the case (i.e. they are compiled but not installed under /usr) , you need to set up a

environment variables in your .cshrc (for Unix C shell users - Bourne shell users should edit their .profi
ensure that they export the set environment variables):

e.g., If the master directory is ~/tcl then

setenv TCL_ LI BRARY ~/tcl/itcl/lib/tcl7.4
set env TK LI BRARY ~/tcl/itcl/lib/tk4.0

setenv | TCL_LI BRARY ~/tcl/itcl/lib/itcl2.0
setenv | TK LI BRARY ~/tcl/itcl/lib/litk2.0

setenv | WDGETS LIBRARY ~/tcl/itcl/lib/iwdgets2.0
setenv EXPECT _LIBRARY ~/tcl/expect/lib
setenv BLT_LI BRARY ~/tcl/blt/lib

Refer to the README file of the extension you want to use for that package.

Your search path should be set up to pick up the correct binaries for tclsh, wish or itkwish etc. Make st
include the pathnames in yoset pathin your .login or .cshrc or .profile file

Note: Programming syntax throughout this cookbook are for Unix machine.
Quick Tour

tclsh

The starting point to writing your own Tcl scripts is to familiarise yourself with Tcl syntax and learn the
Tcl commands. Take the first step by typing tclsh at command level in your commandtool/shelltool/xtel
will invoke tclsh to prompt sign will change % to indicate tclsh is ready to read your Tcl commands fror
keyboard and pass them to the Tcl interpreter for evaluation.

Every Tcl command consists of one or maards the first of which is the name of the C function to be
invoked by the interpreter. The rest of the words in the command are passed as arguments for the C
The C function provided by the Tcl library. Tcl library contains functions to provide a full set of program
features to Tcl such as variables, control flow etc. Use the Basics of Tcl application to explore these. Y
write your own functions as well and register them with Tcl interpreter. Chapter 6 describes how. For n
the following simple commands to test and get a flavour of Tcl:

expr 10 *5
tclsh will print 50 and prompt you again.

expris a core Tcl application for carrying out arithmetic operatierprreturns 1 for true and 0 for false for
Boolean values when it evaluates relational operations. Full descriptxpra$é presented in ChapteBhsics
of Tcl

Try:
% puts "Hi there"

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (1 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Getting Started

You will get:

Hi There
%

Each Tcl command is separated either by a newline or a semicolon. Backslash in a command tells Tcl
command continues in the next line.

Try

% puts "Hi there going to \
next line "

You will get:

Hi there going to next line
%

Type
% exit

to quit tclsh.

Note: Experiment wittBasisc of Tchpplication to learn all Tcl syntax and built-in commands that make
full programming language.

wish
Most applications would want to use Tcl as the basis for scripting and assembling their modules togett

create their own commands based on one or more extensions of Tcl, in particular Tk, the toolkit of con
for building window-based Tcl applications. Without Tk, Tcl remains yet another scripting language.

Tk (and all Tcl) commands can be invoked within the tk windowing shell wish.

Try (at command level of commandtool/shelltool/xterm):

wish

The result will look like:

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (2 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Getting Started

J_'L| xterm

hollyx wish

T v wish4.0

The wish mainwindow is placed within the xterm that invoked it. Note that
the commandline prompt at the xterm has changed to the wish prompt.

Like other X Window System based toolkits, the graphical user interface building blocks of Tk consists
widget classes (e.g., buttons, scrollbars) and functions (methods) to create and manipulate them. A Tk
application consists of hierarchy of widgets positioned within a singilawindow, (picture aboveJhe
mainwindow is uniquely referred by a "." and all the other widgets have names that reflect their positiol
the hierachy.

At the wish prompt type
button .b -text "Press ME" -command exit
You will get:

b
%

Type
%pack .b
the result will be :

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (3 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Getting Started

J_'L| xterm

button .b —text "Press Me" —command exit

% pack .b

% b configure -background Red

% holly® wish

% button b -text "Press Me" —-command exit

j Eack .

7| wishd.b

Press Me |
= |

The first command "button” to wish invoked the function to create a button ".b" to be placed within the
mainwindow ".". The command also specified that :

1. the button's label should read "Press Me" and

2. if the user interacts with this button (by pressing the left mouse button on it) then it should invoke the
command "exit".

The second command "pack" invokes glg®metry managdo compute the location and size of the child
widget ".b" within the parent and causes the widget to appear on the display. Note that the mainwindoy
resized to the size of the child.

You can further test this interactive mode by typing:
.b configure -background Red

The result will be ;

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (4 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Getting Started

xterm

b —text "Press Me" —command exit

| wishd.b-

The above line invokes the method "configure” for the button ".b" to change
its background colour to red.

Pressing the button exits wish and returns the prompt back to xterm.

Note: Chapter 2Basisc of Tkintroduces Tk widget attributes and their values and how to build a simple
widget hierachy with many widgets and behaviours. The example is then split to introduce the unique i
powerful Tk commandend.

So far you were asked to issue Tcl and Tk commands interactivtelghi@and wish. However you would wal
to generate a script file containing a series of commands which could be passtd(twte that wish can
execute all tcl command&)r interpretation. To do this, invoke your favourite text editor (eg. vi), create a
file the first line of which should b#/usr/local/bin/wish

Note: The above line assumes that wish is installed in /usr/local/bin. If it is located elsewhere in your s
you should give appropriate pathname for the system to locate <wish.. Refer to the description under
"Cookbook Source" in Housekeeping.

Follow the above line with:
button .b -text "Press Me" -command exit
pack .b

Name this filebutton.tc] make it an executable by typing

chmod u+x button.tcl

in the directory containing the file. Then you can execute this code by typing button.tcl . When you do
system invokes the wish shell and passes the file as a script for wish to interpret.

The result will look like:

| wishdd

Press Me |
= |

Pressing on the "Press Me" button with the left mouse button exits the application, taking down the wis

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (5 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Getting Started

Note that when you start a wish shell this way from a file, no wish command prompt appears on the st
window. So you cannot issue further Tcl/Tk commands interactively to the wish window as you did bef
can interact with the Tcl/Tk application as it is intended (in this case the simple pressing the button qui

application).

=

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (6 di 6) [04/12/2000 19.38.23]

Tcl/Tk Cookbook - Basics of Tcl

Tcl/Tk Cookbook - Basics of
Tcl

Purpose

This simple Tk application enables the reader to learn Tcl syntax and bu
commands by browsing syntax descriptions and example code. The rea
execute the example to see the result, edit and test the example code tc
experiment variations - all from within this application. The reader can al
create his own notes on specific topics presented as well.

You will need

At this point it is assumed that the reader has read through the chapter "
Started" and has access to Tcl and Tk and this application to try. To invc
"Help" in this application, you may need to set the absolute pathname of
“tcltk-man-html" directory and the browser you wish to invoke by editing
lines in the source code hyper.tcl.

Acknowledgement

This module makes use of the Latex document Tcl/Tk Reference Guide
7.4/Tk4.0 written by Paul Raines and Jeff Tranter . It is also tailored to d
the contributed Tcl/Tk HTML documents as an option.

Usage

Selecting a Topic

Invoke this application by typing hyper.tcl at command level from one of
windows in your display. If you get the message command not found chq
the pathname to Tk wish has been set up properly. Housekeeping expla
to do this. If you do not have write permission to the source code, invoke
interactively and type source hyper.tcl . A scrollable Tk window with a lis
Tcl topics (Figure below - shown smaller than the actual size) will appea
Depending upon the mouse cursor position one of the list item will be
highlighted. You can exit the application anytime by clicking on the "Quit
button.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (1 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tcl

Tl Eemice of Tl VB

Basic Tcl Language Features
Tel Special Variables
Backslash Substitutions
Oparators and Math Functions
Regular Expressions

Pattern Globbing

Control Flow

File Information

Tel Interpreter Information
File Input/Qutput

Lists

]

Note on Selecting: You can select any of the list items by moving the mot
pointer onto that item and clicking the lift mouse button. Throught all the
examples, pressing and releasing the left mouse button on a menu-buttc
pushbutton or a hyper-link item selects it.

In text widgets, for actions such as copy & cut, press the left mouse butt
the beginning of the section you want to select and holding the button dc
drag it along the section up to the end of the sectionyou want and then r
the button.

Reference Window

Select the topic you want. A second window, titled "Quick Reference", lil
one below, will appear.

[ftomaky
_]ﬁ.hnrt inmemnast sondzining loop sommand,

[mame
Dtalete, tes GswRch.

{lcurfize(}
S e the v daretion of insemozt £o rd s nieg isop 2ommand, —

Tt} <rebumCodes | |
Teminake the penzesa, refuming <srtumCede: (imisteger which
dutulls fa Dts the systen asthe ecd skl

Tifor} etliris elests austs <bodys)

Loty < mmand where <sfirb, ctexte, and <oty s

Tel curbran strings s leat s @ expreaaias abig o be pussed
ba {wmpe] earmrvand.

{éfomeach} cvamanas dists oy} ;

DiEmiss |

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (2 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tcl

This window displays a brief description of the commands or variables o
features of the topic you chose. On the righthand side of the top menube
button for "manual Pages" will be displayed in normal state if you have &
to tcltk-man-html and a HTML browser.

Selecting the "Dismiss" button closes this toplevel window but it is not
necessary to close this window. When you select the next topic, the con
the text widget is refreshed.

"Examples for...", at the top lefthand corner of the "Quick Reference" wir
is a pulldown menu whose items are the keywords of the chosen topic fc
which some simple examples are givear example, if the chosen topic is
"Control Flow" the menu items will be if, while, for etc.

r'1| Examples for..

break
continue
exit

for
foreach
if

return
switch
while

Example Window

Selecting a keyword displays a very simple piece of example code in an
toplevel window, titled "Example Browser" similar to :

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (3 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tcl

L Example Browser ¥ 0: Examplesfex] tcl

set counbryInEoiuk) {Loredon |

act comtrylnEno(frano=] {Parial|

At countrylnte belgioml {Brusselal
parkay counceyinio

#

¥ petterned search for acceay nanes

¥

act clnfoluk.capitall {Lendont

apt cinfaluk. currency) {pmmell

gt clofaiuk. araal 1234044 =g km}
get clopfolfrance, caplbal) {Pariel

=sek l:[.nful:.l'::l:m:u.lzl.l.trmnjr:l |Pranc}
set clofolfrance, area) 157TE923 =g Em}
ast cinfalicaly, capital)l {Ramel

apt c[nfniital:.'.mrrel'l.c:{] {lirsal

get clnfalitaly, areal 1201223 ag km}

#

T to ewkracts murrenci=s pf sll counteiea

¥

foreach deah [array oames cinfo »,currency] 1
pute Steut "Currency: [eat clofo|Sdash)] o

b

Y

Sparc hing for ... foraach

Apphy |

I.Iu:-iealf.]ui|

As before selecting the "Dismiss" button closes this toplevel window too
IS not necessary to close these windows. When you select the next topic
keyword or example code, the contents of the text widget is refreshed.

The top menubar of this Example window has a pulldown menu titled "S

Also ..."

| Seealso

ex1 icl
exiitcl

Testing

| which lists the names of all the example files, from t
Examples directory, that contain the keyword chosen.

Clicking on the "Apply" button on the lower left corner of the "Example
Browser" executes the example, displaying the results in a toplevel "Out

window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (4 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tcl

Currmver: licm :\..

Curcency: Franc

CUSEFenCy: pound

e

DEmess

The text window in "Example Browser", displaying the source code allow
editing the displayed text.hereader isencouraged to edit the sour ce code,
execute and learn by experimenting how Tcl works.

As before selecting the "Dismiss" button closes this toplevel window too
IS not necessary to close these windows. When you select the next topic
keyword or example code, the contents of the text widget is refreshed.

Making Notes

Any change made to the example source is temporary but the users can
their own notes. Clicking on the "Notes" button at the bottom right-hand
displays an editable text window for making personalised notes on the c

Tcl topic.
oy Notes
Thi= is the notes file for Exampleafex] . tel I

v

Print | Sava | D iEmics

Selecting the "Save" option saves the contents of the text widget under 1
user's home directory and selecting "Print" sends the a hardcopy reques

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (5 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tcl

savedfile to the user's default printer.

Application Source Code

The source code for this Tcl application is under the directory ~code/chl
you are new to Tcl, we hope that by the end of this Cookbook, you woul
gained enough familiarity with Tcl and Tk to understand the source code
this application.

=17 =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chapl.html (6 di 6) [04/12/2000 19.38.35]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Purpose

A simple example introduces the basics of widgets based programming
the Tk toolkit. The same application is used to demonstrate tkenik
command.

You will need

At this point it is assumed that the reader has sufficient familiarity with T
syntax and built-in Tcl commands. If you are new to the terminology of
window-based application development or wish to know more about gra
user interface design, reading the introductory chapters of Visual Desigr
OSF/Motif by Shiz Kobara [3] is a good source of reference. However, T
makes it very easy to learn widget programming and this application is s
enough to grasp the basi€ick Tourprovides the briefing you need.

Dish to Serve Up:

An application to browse and modify a button widget's attributes
(configuration options). In part-11 split the application into two parts and
communicate viaend

Recipe

Since this application has more than a few lines of script, we recommen
you create, execute and edit the script from a file calpgydil.tcl preferably
under a directory ~/examples/chapterl. Create the directory
~/examples/chapterl, cd to it and use the editor of your choice to create
appll.tcl. Remember to make this file executable by typimgod u+x
appll.tcl before you execute the script.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap2.html (1 di 2) [04/12/2000 19.38.39]

Tcl/Tk Cookbook - Basics of Tk

Part-I

1. create a frame to contain the button and the set of attribute - value
pairs.

2. create the button and place it in the parent and get current
configuration options (list of attribute - value pairs).

3. display each pair within a frame of their own, the attribute name in
label and the associated value in an entry widget.

4. bind event in entry widgets to an action to modify an attribute to th
value entered.

Part-lII

We use the above application to demonstrate the Tk command send. W
achieve this by splitting appl1 into two applications. The first one creates
the button with the text string and the command to exit. It also contains t
procedure reJig with its input parameters altered. The second applicatiol
contains the resource form in which the user edits the values. send is us
communicate between the application.

For this part,you need two separate Tcl/Tk script files. Place appll script
file av and the script for av2 under ~examples/chapterl

1. create appl 1 - a frame with a button.

2. create appl 2 base - a frame to hold the set of attribute-value pairs

3. procedure to display attribute - value pairs of the appl 1 widget in ¢
2.

4. send a request to appl from app2 to send the list of default setting

5. bind event in entry widgets in appl 2 to an action to send the chan
value and the attribute name to appl 1 and invoke an action in app
reconfigure the attribute.

=17 =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap2.html (2 di 2) [04/12/2000 19.38.39]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Quick Tour
Widget Basics

A widget is an user interface object/control (e.g., pushbutton, label, scrol
that the end-user of a widget based application interacts with to commur
with that application. The interaction is usually a selection made with a
pointing device such as the mouse or typing in a character string (text in
Each widget belongs to a class of its own which defines its appearance
(configuration options such as its foreground colour, font) and a set of m
that are used to access and manipulate the widget (e.g modify the confi
such as change the background colour).

Widgets, depending on their class/type can contain other widgets (e.g.
menubars that contain pulldown menus, frame, rowcolumn). A widget be
application may contain one or more hierarchy of widgets (e.g.,
Fileselectionbox, a text editor with a menu item "open" that pops up a
fileselectionbox).

In general, there are three basic steps of widget programming. These ar

1. create an instance of the widget (usually by calling a widget creatic
function). Specifyaluesfor attributesi.e.options for appearance (the
will always be default settings so you only need to set the ones yo
to)

2. specify behaviour (which user actions invoke which functions)

3. tell the geometry manager to make the widget appear on the scree
position with respect to its parent

Note that the behaviour may be a single command such as "exit" when ¢
"Quit" button is pressed or a set of commands with input parameters wh
invoke complex behaviour (e.g., selecting a button labelled "Beethovan"
causes a search for a particular tape and playing it).

Widget toolkits are designed to assign the geometry management
(determination of size and location relative to parent on the screen) to
independent processes so that any widget can be managed by any geot

http://www.dci.clrc.ac.uk/Publications/Cookbook/gt.html (1 di 2) [04/12/2000 19.38.42]

Tcl/Tk Cookbook - Basics of Tk

manager and multiple geometry managers coexist providing consistent
behaviour (e.g., resizing the parent resizes all the children within the par
geometry).

You invoke the geometry manger, providing it with options on how you v
particular widget to be positioned (e.g. Right/left justified, placed at the
top/bottom/left/right within/of its parent/siblings. If you do not specify any
particular position, the geometry decides the positioning based on defau
algorithms.

Tk Widgets

Tk provides all the basic widget classes and there are also many contrib
widgets available. Tk widget classes are distinguished bydbefiguration
options, widget command and default bindings.

Configuration Options

Configuration options specify the appearance of the widget and what ha
to the widget when the user clicks on them.

Widget Command

In Tk, when a widget is created, a unigue command associated with the
is also created. The widget command has the same name as the widget
widget command is used to communicate with the widget to make it cha
internal state - i.e. carry out actions - for instance change the backgroun
colour. For complex widgets. The actions that can be specified depend t
the class of the widget - for instance accessing, inserting, deleting items
a listbox or menu does not apply to a label widget class.

Bindings

Tk widget classes also have a set of default bindings. A binding is a gen
mechanism for associating a particular user action (event) with a specific
application defined behaviour (e.g., Pressing the right mouse button in a
particular widget pops up a help window).

http://www.dci.clrc.ac.uk/Publications/Cookbook/qgt.html (2 di 2) [04/12/2000 19.38.42]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Step 1: Create a frame to contain the button and the set
of attribute - value pair

Script
The first line of the script is the command to shell process to invoke the
shell and pass this file as the script that wish should interpret (parse).

#!/usr/bin/wish -f
Follow this with the lines:

frame .rc -borderwidth 2
wm title . "Resources"
pack .rc

The first of these lines causes Tk to create a sifmpheewidget with a
borderwidth of 2 pixels, namec and as the child of the root ".", the wish
shell. Frame is a rectangular container used for placing hierarchy of widi
children. Frames don't respond to user events and have no default bindi

The second lines sets the title of the application root window to "Resour
wmis the Tk command for Tk applications to communicate with whateve
window manager you are running on your display should be given a

top-level window as one of the arguments to set or get information abou

Note: For a full summary of the wm command and how they affect the
appearance and behaviour of your application windows, refer to Tk man
pages and/or Chapter 22 of reference [1].

The last line "pack .rc" invokgsackerthe Tk geometry manger to calculate
the size and position of the window and frame and make the frame appe
the screen. Note that since no default size is given, the frame will appea
minimal size. When you pack other widget children within, the geometry
manager will automatically resize the frame. You can also set initial valu
width and height by appending, for example -width 50 after to the frame
creation line.

Create this script and execute it by typing appll.tcl at command line (doi

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch21.html (1 di 2) [04/12/2000 19.38.45]

Tcl/Tk Cookbook - Basics of Tk

forget to make the file executable first). The result should look like:

r Resources A

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch21.html (2 di 2) [04/12/2000 19.38.45]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Step 2: Create and place the button and get its current
configuration options

Script

Now append the following two lines to appll.tcl to create the button.

button .rc.b -text "Press Me to Quit" -command {exit}
pack .rc.b

The first of these lines is a command to create a button within the frame "
Just like in Unix hierarchical directory structures where each level of the
hierarchy is specified by a "/*, in Tk the "." is us&tbfe the analogy between
to denote root directory in Unix and "." to denote topmost window nTHe
button is named .rc.b and a unique widget command .rc.b is created by TI
command is used to make changes to the button. The creation line also s
that the button should display the label "Press Me to Quit". The option
-command makes Tcl script to execute the option "exit" when the user clic
the button with the left mouse button.

The second line packs the button within its parent by default at the top. Tt
result will look like:

7| Resources

Press Me to Quit

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch22.html [04/12/2000 19.38.49]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Step 3: Display attribute - value pairs
Script

Append the following lines to appll.tcHor clarity and good programming
practice, place any global declarations at the top of the body the script (]
below the line #!/usr/bin/wish) and in procedures immediately after the
declaration of the procedure. Any initialisation should also be placed bef
the value is set or rest from within the script.

global aList vList

set aList {}
set vList {}
set maxl 0

set b [.rc.b config]

foreach e $b {
lappend aList [lindex $e 0]
lappend vList [lindex $e 4]
set a [lindex $e 0]
if { [string length $a] > $max| } {
set maxl [string length $a]

}

The first line sets two global variables aList and vList and the next two lii
initialise these two variables to null list. the last line sets a variable maxl
Zero.

The command set b [.rc.b config] invokes the widget command .rc.b to g
list current configuration options and assigns it to the varialdWote that b i<
a list of lists. Each nested list contains the configuration option such as

-backgroundollowed by information regarding that option, the fifth of whi

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (1 di 4) [04/12/2000 19.38.54]

Tcl/Tk Cookbook - Basics of Tk

is the value.

The first of the foreach loop access nested list "e" of the list "b"

1.
2.
3.

gets the option (at the Oth index of list e) , appends it to "aList"
gets the current value of the option (at the 5th index of list e),

computes the maximum length of the option string and assigns it t
maxl. This is used subsequently to position the label strings right
justified and have neat looking form type interace

Now you need to create an interface to display these pairs of values. Th
below achieves this:

setiO

frame .rc.fff -height 40

pack .rc.fff
foreach a $alList {

set ff [frame .rc.fff.sub$i]

pack $ff

label $ff.lab -text $a -width $max| -anchor e
entry $ff.ent

bind $ff.ent [list redig .rc.b $a]

$ff.ent insert O [lindex $vList $i]

pack $ff.lab $ff.ent -side left -in $ff

incr i

}

Set a counter "I", initialising it to zero. frame .rc.fff -height 40 creates a fr
.rc.fff, of height 40 pixels as a child of .rc and pack .rc.fff packs it below t
button .rc.b by default.

The foreach element "a" of the list "aList"

1.

a frame whose name is made up with counter "I" (e.g., .rc.fff.sub0)
created as a child of .rc.fff and assigned to the variable "ff" {Note tl
this is a short-cut to giving long widget names}. The child frame is
packed.

. within the frame given by "ff" a label widget whose text is the

configuration option is created. The width of the label is set to the
of "maxl" to create uniform label sizes. The label is anchored to the
of the frame to ensure appearance.

. an entry widget whose name is made up by appending .ent to the

of "ff" is created. Entry widgets are used to display editable one-lin
strings.

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (2 di 4) [04/12/2000 19.38.54]

Tcl/Tk Cookbook - Basics of Tk

4. a binding to the event (user types in a string and hits the Return ke
the entry widget is created. [list reJig .rc.b $a] substitutes the value
"a" and creates the script {a command to invoke the procedure reJ
with the parameters ".rc.b" and "a "} to be invoked.

5. the current value, if any, of the attribute is inserted in the entry wid

6. the label and the entry widget are packed inside their parent, giver
"ff", from left to right.

7. Increment the counter

Note: As in any shell programming language, in Tcl/Tk too there are mor
than one way of achieving certain results. For instance the script for the
binding could have been specified as "reJig .rc.b $a". Using [list * *] ens
proper variable substitutions are carried out and a proper list structure w
elements together form a single command is generated.

If you try {redig .rc.b $a}, you will find that "a" is not replaced by its value
because it is within the curly braces. As a result the procedure reJig will
receive the string $a rather than the value of a.

Note also that since the widget hierarchy name uniquely identifies a widj
rc.fff.sub0.ent is different from .rc.fff.subl.ent.

Appending these lines of script in appll.tcl and executing should produc

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (3 di 4) [04/12/2000 19.38.54]

Tcl/Tk Cookbook - Basics of Tk

—
f Resaources

Press b ko Quil |

—ACTVBDAERFOUN | #esar ec
~acliveforeground B ok
—a N hor [c:anter
~bat kground [#cis-ads
o |
g
it |
~bords rwidih |2

—commrand [E'Iﬂt

—C UIFs0r |
—rlizabietioreground |#a.'_'-la.'_'-la.3
W
~Hoil | -Ackobe-Hehvatica-Bold -
—foreground |B lack
~height |
- Nighilgibac kground |2dadads
~highiighizolor |6 ek
~NighiRghithi: kress |2
T— |
—juslify [c:anter
~parke |11
—pacy [+
~PRIIET |rised
-s1aW |rorral
~ta kot s |
—lexl [Prem Mle k2 it
~textuariatie |
-underiine | -1
—widih |
~wra plength | o

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (4 di 4) [04/12/2000 19.38.54]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Step 4: Create bindings to modify configuration options
with new values

Script

All you now need is to write the procedure redig, the script of which is git
below:

proc redig { w a} {
global aList vList
get the index of a in aList
set idx [Isearch $aList $a]
set va [.rc.fff.sub$idx.ent get]
.rc.b config $a $va

}

Theproc command creates the Tcl procedure redig. The first argument t
is a widget name and the second a string (in this case the configure opti
The statements within the curly braces is the body of the procedure. ;# ii
that the string enclosed between them and the newline character is a co

1. The global variables used within procedure reJig are declared as t
line of the body.

2. The index of the current configuration option within aList is access
Isearch and assigned to "idx’

3. The value string in entry widget ".ent" which is a child of .rc.fff.sub¢
is read and assigned to the variable "va"

4. The widget command .rc.b is called to carry out the action "configt
with the configure option "a" whose value is "va".

The screen dump below shows the result of typing Red in the entry widg
opposite -bg.

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch24.html (1 di 2) [04/12/2000 19.38.58]

Tcl/Tk Cookbook - Basics of Tk

5 =
‘-_i EE SOUFCES

-activebackground |#aceces
—activaforeground |Ellack
—anchor |-:en1er
-background |#d3d3ds
bl |
-bafFed

—bitrma p |

- borde nridth |2

~Cormma e |axn

—CUME0r |
—dEsabledforeground |fa3adad
—fag |
—tont |—ncksbe—H e hetica-Bold -
—foreground |Slack
—height |
—highlight trac kground |rd9d303
—highlightcolor |Slack
—highlightthic kness |2

—justify |n:en1er
—paty |11
-pady |4
-raliaf |rajs-.ed
~slata |n-:-rma]
~takefocus |
et |Press We ks Quit

“fextvariable |
~urrkrline |-1
—wridth |2
—wrapk:rath |ﬂ

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch24.html (2 di 2) [04/12/2000 19.38.58]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Part -Il - Step 1: Create appl

Script

#!/usr/bin/wish
global b

frame .r -bd 2

wm title . "Change Me"

pack .r

button .r.b -text "Press Me to Quit" -command {exit}

pack .r.b
set b [.r.b config] # obtain default settings

proc reldig { va a} {

.r.b config $a $va

}

Much of this code is explained already in part-l1. The parent frame is ".r" rathet
".rc". The window title is changed and the list of current configuration "b" has
changed in scope and is declared as global.

Note that Tcl has a single global name space in which it retains all widget narn
Therefore you do not have to declare widgets as global and can access a wid
giving its full name from within procedures.

redig takes the values of the configuration option and the corresponding new
its input and calls the widget command .r.b to carry out the "configure" action.

Create this script and execute it to see the result:

| Change Me

Press Me to Ouit

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch25.html (1 di 2) [04/12/2000 19.39.00]

Tcl/Tk Cookbook - Basics of Tk

Note: If you executed this script and it is running, then don't quit it. You will rec
av to be active when you execute av2 and set the inter communication going.

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch25.html (2 di 2) [04/12/2000 19.39.00]

Tcl/Tk Cookbook - Basics of Tk

© Tcl/Tk Cookbook - Basics of
Tk

Part-Il - Step 2: Create appl 2 base /h3> Script

#1 /usr/ bin/w sh

gl obal aLi st vLi st
set aList {}
set vList {}

frane .rc -bd 2
wmtitle . "Resources"
pack .rc

frame .rc.fff -height 40
pack .rc.fff

Resources

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch26.html (1 di 2) [04/12/2000 19.39.01]

Tcl/Tk Cookbook - Basics of Tk

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch26.html (2 di 2) [04/12/2000 19.39.01]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Part-Il - Step 3:Procedure to display attribute - value
pairs of the appl 1 widget in appl 2

Script
Append to av2:

proc setCfg { b} {
global aList vList
set max| 0

foreach e $b {
lappend aList [lindex $e 0]
lappend vList [lindex $e 4]
set a [lindex $e 0]
if { [string length $a] > $maxI } {
set maxl [string length $a]

}

setiO

foreach a $aList {
set ff [frame .rc.fff.sub$i]
pack $ff
label $ff.lab -text $a -width $max| -anchor e
entry $ff.ent
bind $ff.ent [list Val Ch $a]
$ff.ent insert O [lindex $vList $i]
pack $ff.lab $ff.ent -side left -in $ff
incr i

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch27.html (1 di 2) [04/12/2000 19.39.03]

Tcl/Tk Cookbook - Basics of Tk

}

button .rc.fff.b -text "C ose" -com{exit}
pack .rc.fff.b

}

Much of this code is familiar from Part-I. The procedure setCfg takes a li
which is the result of carrying out the action "configure" by a widget com
(.r.bin this case). Since this is an application in its own right, a button .rc
with the text "Close" and the command option with value "exit" is include

New or changed lines of script are highlighted.

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch27.html (2 di 2) [04/12/2000 19.39.03]

Tcl/Tk Cookbook -

Tk

Basics of Tk

Tcl/Tk Cookbook - Basics of

Part

-1l - Step 4. Send arequest to appl from app2 to

send the list of default configure option settings

Script

http://www.dci.clrc.

Append to av2 the two lines of script:

tkwait visibility .rc.fff

send av {sendNow}

Append to av the script:

proc sendNow {} {

gl obal b
send av2 [list setCfg $b]
}

The Tk command tkwait suspends further processing until certain condit
satisfied. This is primarily used to make popup dialog boxes modal. This
useful for instance to make certain actions are carried out before procee
further (e.g. A file is selected from a popup fileselectionbox before Tcl/T}
attempts to open the file).

Here av2 is made to wait until the base frame appears on the screen be
sendrequest to "av' is sent.

Note: Try without this and see what happens. Try also placing the last lir
send av {sendNow} before the definition of the procedure "setCFG".

send is synchronous. The sending application will suspend processing it
events until the execution of the sent script in the remote application is
completed and send returns the result. However the sending application

ac.uk/Publications/Cookbook/ch29.html (1 di 3) [04/12/2000 19.39.06]

Tcl/Tk Cookbook - Basics of Tk

respond to send events from other applications while it awaits its own se

Procedure sendNow creates a list of two elements made up of the string
"setCfg" and the value of "b". It then passes this list as a script to a Tk
application in the same display/screen as itself whose name is "av2" to [
executed within av2.

Running av and av2

Now run av and then av2 in that order. You will have the Button window
appear. The base frame of the Resources application will appear and th:
options will be created. You will see the result as:

Ll Eesources

—ACHVAIaE QPN |# ocaces
~aclveforsaround |B sk
—anG hor [c:anter
-hac kground |2dadads
—na|
g
~ilrvap |
~bord rwidth |2

—comrand [e-:nt

—EIIrEEl"l

~iahiecioreqround |#.a.'_'-la.'_'-la.3
=1
~Foml | - Aok be-Heheatica-Sild -
—forearound |B lack
~height |
~highilghibac kground |2dadads
~mghlighizolsr | B iack
~Iihghiiatittii: kriess |2
e |

—juss tidhy [cmnter
-patt |11
—pacy |4
—PRIET |r2ised
~skak | rorral
~ta kgt |
—texd [F're-r.a Mle bz Cuaik
~textuariahle |
—underline |—1

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch29.html (2 di 3) [04/12/2000 19.39.06]

Tcl/Tk Cookbook - Basics of Tk

| Change Me ~widih o

—wra ke gl |

Press Me to Quit Cloas

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch29.html (3 di 3) [04/12/2000 19.39.06]

Tcl/Tk Cookbook - Basics of Tk

Tcl/Tk Cookbook - Basics of
Tk

Part-Il - Step 5: Create bindings to send and reconfigure
new values of attributes

Script

Inset in av2 (before the line beginning wiklwait) the lines of script:

proc Val Ch {a} {
global aList vList
;# get current index value for a within aList
set idx [Isearch $alList $a]
set va [.rc.fff.sub$idx.ent get]
send av [list redig $va $a]
}

The procedure ValCh
1. takes the configure option "a" that the user wishes to change,
2. gets the new value "va" associated with it,

3. creates a script line made up of the procedure name reJig, the value
and a, and sends it to a Tk application named "av" running on the s
display as itself to be executed within "av"

Note that this procedure "ValCh" is the script that will be invoked as it is tt
binding in each entry widget for the event .

New or changed lines of script are highlighted.

Change the value for any of the configuration options and see the result.
following shows the result of setting the background to Red.

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch28.html (1 di 2) [04/12/2000 19.39.09]

Tcl/Tk Cookbook - Basics of Tk

i REes0urces

—Activatackground #ecaces

—atlveioreground |Elac:k

—anchor [c;anter

- bac kground [#dadad3

_ml

~bg A=

~tilmap |

~borcks rwicth |2

—comurnd [e:nt

—EIIFEEI"l

~rizahietioreground |#a.'3a.'_'iaﬂ

_ml

Kol |- Aok be-HebraticaSold -

—foreground |Black

~haight |

~ Mg b kground (ddadads

—highikgniebr | Bk

~ ittt kness |2

~i T |

—jurs by [c:anter

—pante |11

-y |4

~PRIET |r2isod

-1l |rorral

~ta bt |

bl |Press Me ks Cuit

—textrariabie |

—underline |—1

—widih |

7| Change Me

—wra plengin |
s

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch28.html (2 di 2) [04/12/2000 19.39.09]

Tcl/Tk Cookbook - Text Editor

Tcl/Tk Cookbook - Text
Editor

Purpose

This chapter introduces the Tk text widget. Tk text widget has the ability
include the following forms of annotation:

o Tag, hyper-links in the text to associate actions with tagged text st
(e.g., selecting a tagged string "Beethovan" invokes an audio appl
to play a piece of music).

o Mark associates a string (name of the mark) with a specific positio
the displayed text.

o Windows allow the embedding of other widgets (for instance embe
a canvas to display a graph at a particular point in the text.

The third form of annotation is not covered in this chapter.

Apart from the text widget, scrollbar, menubar, pulldown menu and popt
dialog box are also introduced.

You will need

At this point it is assumed that the reader has read through the previous chapt
has familiarity with Tcl and Tk basics, especially if (s)he is new to Tcl and Tk.

Dish to Serve Up

Create a simple text editor. Include the ability to tag all occurances of a ¢
string.

Recipe
It is advisable to develop this application three separate script files. All tt
code is under ~cookbook/code/ch3 with names editor.tcl, popup.tcl and
message.tcl. The file filesel.tcl contains the contributed script for a
fileselectionbox. Copy this filesel.tcl into your current working directory. |
convenience, we will assume that the three script files you will be gener:
are named ed.tcl, pop.tcl and mes.tcl.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap3.html (1 di 2) [04/12/2000 19.39.10]

Tcl/Tk Cookbook - Text Editor

. Create a scrollable text widget

. Add menubar, menus and register callbacks

1
2
3. Create pop up dialogue boxes
4. Create callbacks

5. Add Tags to text strings

Acknowledgement

A slightly modified version of Mario Jorge Silva's fileselectionbox is usec

=]l

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap3.html (2 di 2) [04/12/2000 19.39.10]

Tcl/Tk Cookbook - Text Editor

Tcl/Tk Cookbook - Text
Editor

Step 1: Create a scrollable text widget
Script

Start by placing the following script in ed.tcl:

#! Jusr/bin/wish -f

global GotSelection
set GotSelection 0

frame .fr -width 10c -height 5¢ #main window
wm title . "Simple Text Editor V 0"
pack .fr

#configure menubar on top

frame .menubar -relief raised -bd 2
pack .menubar -in .fr -fill x

frame .edf

#put a text widget with scroll bars

text .ed -width 80 -height 20 -bg grey \
-yscrollcommand ".ys set"

scrollbar .ys -command ".ed yview"

pack .ed .ys -in .edf -side left -fill y

pack .edf -in .fr -after .menubar -fill x

The first line of the script is the command to shell process to invoke the
shell and pass this file as the script that wish should interpret (parse).

The next line declares a global variable GotSelection and follows it with
initialising it to the boolean value zerd¢te that as far as Tcl parser is

http://www.dci.clrc.ac.uk/Publications/Cookbook/txt.html (1 di 2) [04/12/2000 19.39.17]

Tcl/Tk Cookbook - Text Editor

concerned "set GotSelection 0" is a string with three elenjents.

The next three lines create and pack a base frame ".fr" whose width is 1
centimeters and height 5 centimeters; the root window is titled "Simple T
Editor V 0"

For this text editor, we want to create a menubar at the top of the main v
for supporting File, Edit and Find actions. In Tk, the menubar is a frame
widget with one menubutton for each menu (usually pulldown). The optic
-relief takes the value raised or sunken to give a raised or depressed ap
to the widget. The option -fill (usually used for scrollbars, menubars etc.)

X" or "y" as argument to extend the widget in the horizontal or vertical
direction up to the end of the parents border in that direction.

The next group of lines create a text widget ".ed" and a vertical scrollbar
packs them inside the frame ".edf" in the main window.

-yscrollcommand ".ys set" connects the ".ys" scrollbar's command .ed y\
connecting the text and scrollbar.

The "-after” option tells the packer to pack the frame containg the text wi
and scrollbar below the top menubar and the option "-side" tells it to pac
vertical scrollbar to the left of the text widget.

Make ed.tcl executable and run it the final result should be similar to:

T Simple Test Ediber ¥ 1

=] =

http://www.dci.clrc.ac.uk/Publications/Cookbook/txt.html (2 di 2) [04/12/2000 19.39.17]

Tcl/Tk Cookbook - Text widget

Tcl/Tk Cookbook - Text Editor

Step 2: Add menubar, menus and register callbacks

Script
M enubutton

The following script appended to ed.tcl will create three menubuttons which are associated with three |
menus.

#fill the top menu

menubutton .menubar.file -text File -underline 0 -menu .menubar.file.menu
menubutton .menubar.edit -text Edit -underline 0 -menu .menubar.edit.menu
menubutton .menubar.find -text Find -underline 0 -menu .menubar.find.menu
pack .menubar.file .menubar.edit .menubar.find -side left

menubutton .menubar.help -text Help -underline 0

pack .menubar.help -side right

The Tk command menubutton creates a menubutton as the child of a menubar. The options -text, -me
-underline are specified for each button. The -underline option enables the menu to be invoked withou
the mouse and from the keyboard (by holding the Alt down and typing the underlined character within
window). The -menu option associates a menu with the menubutton.

Executing this script will now give the following:

Bimple Text Edibar ¥ 1
Pk Edl Find et |
k]
]
T o

Pulldown Menus
You now need to attach menu entries to each of these menubuttons and create pulldown menus.

Append to the script the following:

#create pulldown menus

menu .menubar.file.menu

.menubar.file.menu add command -label Open -command {OpenFile}
.menubar.file.menu add command -label Save -command "SaveFile"
.menubar.file.menu add command -label "Save As" -command {SaveAsFile}
.menubar.file.menu add command -label Quit -command exit

menu .menubar.edit.menu

.menubar.edit.menu add command -label Cut -com CutSelection
.menubar.edit.menu add command -label Paste -com PasteSelection

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (1 di 3) [04/12/2000 19.39.26]

Tcl/Tk Cookbook - Text widget

.menubar.edit.menu add command -label Copy -com CopySelection
.menubar.edit.menu add command -label Clear -com {.ed delete 1.0 end}

In Tk, each menu entry can be eitheoanmand, toggle or check buttdach menu entry hasommand

option to associate the action to be invoked if that entry is selected. A menu entry is selected, by press
left mouse button on the top menubutton, traversing the pulldown menu while holding the button down
releasing it on the entry. When an entry is selected the action is invoked and the menu will be unposte

The script above creates the pulldown menus for "File (menu eOjirexs, Save, SaveAs and Qaitd "Edit"
(menu entrie€ut, Paste, Copy and Clear

Cascading Menus
A "cascade button is added to the menu (instead of a command or a toggle or a check button) to make

level of subservient (walk-through) menu. The cascade button appears with an arrow pointing left to in
the additional level of choices.

The script below attaches a cascade button for the menu entry labelled "Find Selection". The menu att
this cascade allows the user to specify whether the serach should be carried out "Forward" or "Backw:
the current insertion point.

#Find menu

menu .menubar.find.menu

.menubar.find.menu add cascade -label "Find Selection" \
-menu .menubar.find.menu.fmenu

where the fmenu in this case is specified as:

menu .menubar.find.menu.fmenu

.menubar.find.menu.fmenu add radiobutton -label Forward \
-com {FindSelection -forwards}

.menubar.find.menu.fmenu add radiobutton -label Backward \
-com {FindSelection -backwards}

The rest of the entries are completed by appending the script:

.menubar.find.menu add command -label "Find and Replace” -com FindValue
.menubar.find.menu add command -label "Find Selection and Tag" \
-com TagSelection

Input Focusto the menubar
Append the following two lines of script to complete the menu system for this application:

tk_menuBar .menubar .menubar.file .menubar.edit .menubar.find .menubar.help
focus .menubar

The ordering of the menubuttons associated with a menubar is necessary for the Tk command tk_mer
which identifies the menus associated with each menubutton as well as the order of the menus for use
and left arrow-keys.

Input focus is set to the menubar by the command focus. This is needed for making keystrokes and ke
traversal recognised.

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (2 di 3) [04/12/2000 19.39.26]

Tcl/Tk Cookbook - Text widget

You can add separators to group the entries. Tk menus are tear-off by default and clicking on the dotte
achieves it. This is used to capture the menus for the picture below:

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (3 di 3) [04/12/2000 19.39.26]

Tcl/Tk Cookbook - Text Editor

Tcl/Tk Cookbook - Text Editor

Step 3: Create Pop up dialogue boxes

Script

Append the following to ed.tcl to include the source of the script that create the three dialogue windows and

associated behaviour. The scripts are in the threenfibssage.tcl, filesel.tcl and popup.tcl

#source some of the auxillary scripts we will be using
#note these can be source in appropriate procedures too

source filesel.tcl
source message.tcl

source popup.tcl

Use of FileSelectonbox

For this editor, the fileselectionbox is popped up when the user wants to specify the name of a file to be ope
text in the text widget to be saved into one.

The fileselectionbox script is contributed software with some minor changes. The script is in the Cokkbook's
subdirectory under ch3 and is named filesel.tcl. Copy that file into your current working directory. The reade

be able to use it as an independent unit.

The fileselectionbox is simple and looks like:

T w] Select File

Coen file:

[texttel | oK |

A

filese tl
cancel
rrenu.tol

rrenu. ol

rmessage tol
popugp.tel
pprocs tel
pprocs ol
text.tel

et tel% \i

zh3s/cookbook/Ed Dirtareakup

War ning message

When the user selects a "SaveAs" option but subsequently changes his mind and cancels the fileselectionb

pop-up warning message that the contents of the text widget will be stored under the old filename.

The code for this script is as follows and is placed in the file mes.tcl:

proc showMessage {mess} {

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (1 di 3) [04/12/2000 19.39.30]

Tcl/Tk Cookbook - Text Editor

toplevel .messpop -width 10c -height 4c

grab .messpop

wm title .messpop "Warning"

message .messpop.msg -relief raised -bd 2 -text $mess

button .messpop.okb -text OK \
-com {destroy .messpop ; return 0}
pack .messpop.msg .messpop.okb -side top

}

showMessage takes an argument which is a message string (the procedure is essebtially parametrized so \
the message but use the same procedure for all message dialogues whereever you want). It puts up a mes:
which is created with the Tk command message with the message string passed as input. A "OK" button wi
command to destroy this toplevel when the user clicks on the button is also included.

Modal Interaction

The Tk command toplevel creates a toplevel window for the application. The toplevel window is the child of
applications root (main) window but can be used as additional windows for the application.

Toplevel windows can also be used as popup message windows. In this case, in the procedure creating the
message window, the Tk command grab with the name of the message window as argument is given. This
the keyboard focus to ensure user's attention. In the calling procedure, the Tk command tkwait window is c¢
the message window name as the argument. This suspends processing in the calling procedure, until the ut
undertakes the necessary interaction with the poppped up window and explicitly closes (destroys) it. The co
for any OK, DISMISS or Cancel button in popup or toplevel window is to destroy it.

The message window created with the script for warning about a file being overwriiten looks like:

i Eimple Tayt Edifor ¥ 0
b Eo il B |

| rRAE S Tel TE feolar derbin fulshd .0 1
i ! fuarfelofvish -0

lohal CokSmleckicon
oot GotPalection 0

frana .[F iidch |0 -hadght io j#nain wlodoe
Eltle . "Himple Test Edibsr ¥ 0°

Lz -—

b conf lguea menhar o by - wearnlmg

frane .menubar -1elief §

wck .mmcmbar —in Er Fike will b2

Fram= e UBE

dyt A tewt widst with weriti=n

nxt .md —uicth 8d cormacd. . xm oast®
—yacrallommers o

sorallbmr | ys —oammemd 1 i —

s el qw -dn . mdf)

T TR I Y
porellbar 3o —orlent hetipontel —cammecd °.od xview” 1
sck .edf .a= —in .fr —after .memsbac -fill x ¥

= =

Search & Replace Window

The third popup window is used when the user wants to do a search and replace or search and tag or tag a
on the displayed text. Note that the tagging is temporary and not saved in the file.

proc FindPopup {} {
global seltxt repltxt
toplevel .fpop -width 10c -height 4c

grab .fpop
wm title .fpop "Find Text"

label .fpop.labl -text "Find :

place .fpop.labl -in .fpop -x 2 -y 6
entry .fpop.enl -width 20 -relief sunken -textvariable seltxt
place .fpop.enl -in .fpop -x 72 -y 6
label .fpop.lab2 -text "Replace : "
place .fpop.lab2 -in .fpop -x 2 -y 50

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (2 di 3) [04/12/2000 19.39.30]

Tcl/Tk Cookbook - Text Editor

entry .fpop.en2 -width 20 -relief sunken -textvariable repltxt
place .fpop.en2 -in .fpop -x 72 -y 50

menubutton .fpop.finb -text Find -menu .fpop.finb.menu

place .fpop.finb -in .fpop -x 2 -y 90

menu .fpop.finb.menu

.fpop.finb.menu add command -label Forward -com {FindWord -forwards $seltxt}
.fpop.finb.menu add command -label Backward -com {FindWord -backwards $seltxt}

menubutton .fpop.finrb -text "Find and Replace" -menu .fpop.finrb.menu

place .fpop.finrb -in .fpop -x 38 -y 90

menu .fpop.finrb.menu

fpop.finrb.menu add command -label Forward -com {ReplaceSelection -forwards}
fpop.finrb.menu add command -label Backward -com {ReplaceSelection -backwards}

button .fpop.repall -text "Replace All"* -com {ReplaceAll}
place .fpop.repall -in .fpop -x 150 -y 90

button .fpop.tagall -text "Tag All" -com {TagAll}
place .fpop.tagall -in .fpop -x 250 -y 36

button .fpop.dismis -text Dismiss -com {destroy .fpop}
place .fpop.dismis -in .fpop -x 250 -y 90

focus .fpop.enl

}

This code is similar to what has already been described in creating the main menubar as well as the topleve
of the message box. Note that the the command "place" takes two options "-x" and "-y" whose values are in
(pixels in this case) and asks the packer to place the widget at that location inside the widget which is the ve
for the option "-in".

In this popup window the menubuttons Find and Find and Replace both have pulldown menus to make the :
forward and back. The procedures are defined in the next section. If you want to execute this script and test
comment out the lines just before the -com option begins. This will stop the Tk interpreter complaining abou
undefined commands.

The final result when you execute this script should be:

B Find Text E
Find : I_xs
Tag All
Replace : [xsd | 94|
Fird Findand Replace Replace All | Dismiss |
¥

=1

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (3 di 3) [04/12/2000 19.39.30]

Tcl/Tk Cookbook - Text widget

Tcl/Tk Cookbook - Text Editor

Step 4: Create Callbacks
Script

Most of these procedures can be appended to ed.tcl. If you wish you can create a separate script file
and collectively place all these procedures in that file. If you do, remember to source it from ed.tcl.

proc OpenFile {} {
global fileselect oldname

fileselect

tkwait window .fileSelectWindow
set oldname $fileselect(selectedfile)
set openf $fileselect(selectedfile)
.ed delete 1.0 end

set fid [open $openf r]

while {![eof $fid]} {
.ed insert end [read $fid 1000]

close $fid
.ed mark set insert 1.0

}

OpenFile invokes the fileselectionbox which allows the user to browse the directory and select a file.
selected file is stored in the global array "fileselect" at the associative index whose name is "selected
file is opened with read-only permission. The text editor ".ed' is cleared of any previous content and t
current files contents are displayed in ".ed". The file is closed and the insertion cursor in the text winc
placed at the first character of the first line.

Tk Text Widget delete, insert and mark

Recall that Tk creates a unique command ".ed" when it created the text widget ".ed". The text widget
actions can be invoked using this command.

.ed deletgakes two two character positions and deletes all the text between these two positions. Spe:
such as "end", "lineend", marks the end of the displayed text or the end of a given line.

The command .ed mark set insert sets a special marker/annotationinsenethe insertion point at the se
position, here at the beginning of the first character of the first Nae(that ".ed mark set pos 2.5" will se
marker named pos which points to the gap between the fifth and sixth character in secondline

Back to Procedures

proc SaveFile {} {

global fileselect

set sts [catch {set f [open $fileselect(selectedfile) w]}\
errormessage]

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (1 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

if {$sts == 0} {
puts $f [.ed get 1.0 end]
} else {
set ok [showMessage "No filename given"]
}
}

The SaveFile is similar to OpenFile but tries to open a selected file with write (overwrite in this case)
permission. If it cannot open the file for any reason quits with the message that "No file name is giver
Otherwise it writes the contents of the text widget into the file.

proc SaveAsFile {} {
global fileselect oldname
fileselect
tkwait window .fileSelectWindow
if {$fileselect(selectedfile) == "" } {
set ok [showMessage "No filename given"]
return }
if {[string compare $fileselect(selectedfile) $oldname] == 0 } {
set ok [showMessage "File will be over written"]

tkwait window .messpop

if {$ok == 0} {
SaveFile
} else {

set openf $fileselect(selectedfile)
set f [open $openf w]

puts $f [.ed get 1.0 end]

}

}

note that in this SaveAs procedure, the processing waits for the fileselectionbox to be popped down
(destroyed). If no new filename is given, the warning message is showed and the contents of the edi
written.

If the new filename is the same as the old one, then the warning that the file will be overwritten is dis|
(and the file will be overwritten by a call to "Savefile").

If a new filename is given, the editor contents are written into this file.

proc CutSelection {} {
global seltxt
set seltxt [selection get STRING]

.ed delete insert "insert + [string length $seltxt] chars"

}

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (2 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

CutSelection is called when the user has made a selection (by pressing the left mouse button at the |
of the selection to be cut and dragging the mouse pointer across the selection while holding the left n
button down and releasing the button at the end of the selection). Note that this binding is the default
text widget.

The Tk command "selection get" taketmayetas argument and retrieves the primary selection in the for
specified bytarget Target defaults to type "STRING". Tk supports only primary selection which means
selection is owned in only one window on the screen.

Cutselection assigns the retrieved selected text to the global variable "seltxt" for subsequent paste oy

The widget command ".ed" is invoked to carry out a "delete" operation of the characters between the
given byinsert(point where the insertion cursor is) and a position computed insertion position and the
of characters in the primary selection.

Note that the enclosure in "™ is substituted and evaluated

proc PasteSelection {} {
global seltxt
.ed insert insert $seltxt

}

proc CopySelection {} {
global seltxt
set seltxt [selection get STRING]

}

Already explained.

proc FindWord {swit seltxt} {

global found

set I1 [string length $seltxt]

scan [.ed index end] %d nl

scan [.ed index insert] %d cl

if {[string compare $swit "-forwards"] == 0} {
set curpos [.ed index "insert + $I1 chars"]

for {set i $cl} {$i < $nl} {incr i} {

#.ed mark set first $i.0
.ed mark set last $i.end ;#another way "first lineend"
set Ipos [.ed index last]
set curpos [.ed search $swit -exact $seltxt $curpos $lpos]
if {$curpos = ""}{

selection clear .ed

.ed mark set insert "$curpos + $I1 chars "

.ed see $curpos

set found 1

break

} else {

set curpos $lpos

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (3 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

set found O

}

} else {
set curpos [.ed index insert]
set i $cl
.ed mark set first $i.0
while {$i >= 1} {

set fpos [.ed index first]
set i [expr $i-1]

set curpos [.ed search $swit -exact $seltxt $curpos $fpos]
if {$curpos !=""}{
selection clear .ed
.ed mark set insert $curpos
.ed see $curpos
set found 1
break
}else {
.ed mark set first $i.0
.ed mark set last "first lineend"
set curpos [.ed index last]
set found O

FindWord takes a switctigrward or backwardand a string and searches for the string in the displayed ¢
from the current position, searching one line at a time.

index, scan, search, selection clear and see

The above procedure is pretty rudimentary and the reader only need to learn the following Tcl/Tk spe
commands, markers, utilities and notions.

In Tk text widgets a position specifier which returns a number of the focrwhere | is the integer that
denotes the line number and c the character index in that line (e.g., 5.8 refers to 9th character in fifth
You can also specify index @x,y which refers to the character closest to the pixel at position x,y in th
where x and y are integer values; index last refers to the last position in the line, first to first charactel
line and index end point to end of the text.

The Tcl command scan is similar to scanf in C. It takes as argument a string and a format and parses
string and assigns the elements to variables according to that format. In this procedure scan is given
current cursor position from which the current line is extracted and assigned to "cl". similarly the num
the last line is retrived from indexing into ""end" which marks end of displayed text.

The Tk text widget action "search" takes a switch (forward or backward), an option (whether the sear
exact or nocase), the string to search for and a serach range and returns the position if a match is foi

The primary selection is cleared in the selection buffer and it is no longer owned by the window wher
to "selection clear .ed" is made.

If a match is found, the cursor is moved to that position and that position is brought within the visible
of the text widget by a call to ".ed see" with current position as argument.

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (4 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

proc FindSel ection {swit} {

gl obal seltxt Got Sel ection

if {$Cot Sel ection == 0} {
set seltxt [selection get STRI NG
set CotSelection 1

}
Fi ndWword $swit $sel t xt
}

proc Findvalue {} {

Fi ndPopup
}

proc TagSel ection {} {

gl obal seltxt Got Sel ection

if {$Cot Sel ection == 0} {
set seltxt [selection get STRI NG
set Cot Sel ection 1
}

TagAl |

}

proc Repl aceSelection {swit} {

gl obal repltxt seltxt found

set |1 [string length $sel txt]

Fi ndWord $swit $sel t xt

if {$found == 1} {
.ed delete insert "insert + $I1 chars"
.ed insert insert $repltxt

}
}

proc ReplaceAl {} {
gl obal seltxt repltxt
set |1 [string length $sel txt]
set 12 [string length $repltxt]
scan [.ed index end] % nl
set curpos [.ed index 1.0]
for {set i 1} {$i < $nl} {incr i} {
.ed mark set last $i.end
set I pos [.ed index |ast]
set curpos [.ed search -forwards -exact $seltxt $curpos $l pos]

if {Scurpos !'=""} {
.ed mark set insert $curpos
.ed delete insert "insert + $l1 chars"
.ed insert insert $repltxt
.ed mark set insert "insert + $l2 chars”
set curpos [.ed index insert]
} else {
set curpos $l pos

}

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (5 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

All the above procedures essentially repeat all the Tk text widget specific commands and actions tha
already been explained.

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (6 di 6) [04/12/2000 19.39.33]

Tcl/Tk Cookbook - Text widget

Tcl/Tk Cookbook - Text Editor

Step 5: Tagging text strings

Script

proc TagAll {} {
global seltxt
set |1 [string length $seltxt]
scan [.ed index end] %d nl
set curpos [.ed index insert]
for {set i 1} {$i < $nl} {incr i} {
.ed mark set last $i.end
set Ipos [.ed index last]
set curpos [.ed search -forwards -exact $seltxt $curpos $lpos]
if {$curpos ="} {
.ed mark set insert $curpos
scan [.ed index "insert + $I1 chars"] %f pos
.ed tag add $seltxt $curpos $pos
.ed tag configure $seltxt -background Bisque3
.ed mark set insert "insert + $I1 chars"
set curpos $pos
}else {
set curpos $lpos

}

The Tk text widget specific command ".ed tag add" takes a string for the name of the tag and assigns that tac
characters (or phrase) between the two positions given to it as arguments after the tag name. All the tag nam
registered in the name space and all occurances of the tagged text could be subsequently collectively referre
their tag names.

In this procedure wherever a match for a given string is found, it is tagged. The string is used as the tag nam
occurences of "jack" is tagged and the tag name is "jack").

You can display tagged text differently by calling ".ed tag configure" as in this procedure where the tagged w
displayed with different background colour throughout: The final result when you execute this script should be

http://www.dci.clrc.ac.uk/Publications/Cookbook/tags.html (1 di 2) [04/12/2000 19.39.35]

Tcl/Tk Cookbook - Text widget

B Simple Text Editor V 0 L
Eike Edit Find Help |
globhal GetSelecticon I

get GotSelection 0

frame .fr -width 10c -height 5c ;#main window

wm title . "Simple Text Editer W 0"

pack .fr

toonf icure menubar on top

frame menubar -relief raised —hbd 2

pack .menubkar -in . fr -fill =x

frame .edf

#put a text widget with screll bars

text .ed —width 80 -height 20 -bg grey -xscrollcomnand . xsc set"
—yacrolloomand . ys set”

gocrollbhar | ys —comnand " .oed ywiew"

pack .ed .ys -in .edf -side left -fill ¥

acrollbar . xsc -orient horizoental —comnand " ed xwview"

pack .edf .xsc -in .fr -after .menubar -fill x

=l

IS =

You can also add bindings to tagged text by calling for instance

".ed tag bind {
.ed delete "insert + [string length $seltxt] chars"
.ed insert insert "I have removed tagged text and inserted this"

}

You should of course add a sensible course of action than the above ;-) the rest of the procedure is made up
commands already explained. Note that any word or a phrase could have more than one tag associated with

=lr

http://www.dci.clrc.ac.uk/Publications/Cookbook/tags.html (2 di 2) [04/12/2000 19.39.35]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the

Canvas

Purpose

This chapter introduces the Tk canvas widget which can be used to disp
objects made of one or more drawing primitives. It introduces some of tF
special features of Tk canvas widget such as embedded widgets and tag
names to displayed objects so that specific behaviour can be associatec
them (e.g., selecting a region in a map invokes a video to play a quick st
tour of the region).

Tk canvas supports additional features such as Postscript output, scrolli
searching (objects with a given property or closest to a given point), edit
text and device indepentent coordinates (also supports pixel based dime
specification).

You will need

At this point it is assumed that the reader has read through the previous
chapters. Scripts for creating buttons, scrollbars etc. are made use of in
section but are described in detail in the previous chapter.

Dish to Serve Up

Part-I:
Create a simple canvas based application to animate a text string when
IS pressed.

Part-11:

Create an application to display Western Europe. When the user clicks t
mouse button over a country, its name should appear in an entry widget
Alternatively, when the user enters a country name, ring a note and flasl
region of the country.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap4.html (1 di 2) [04/12/2000 19.39.37]

Tcl/Tk Cookbook - Using the Canvas

Recipe

The script for both parts (mo.tcl and eu.tcl) are in the Cookbook's code
directory, under ch4 subdirectory.

Part-I

Place the script for all three steps of Part-l in animate.tcl. The script is in
~cookbook/code/ch4/mo.tcl.

1. create a canvas and embed a button widget in it.

2. write a procedure to animate (move) a tagged object in the canvas

3. create an object for animation and control the animation by
reconfiguring the button widget.

Part-lII

ssumed that you will place the script for all the three of the following into
single Tcl script file called EU.tcl. The script is in the file eu.tcl in the
Cookbook code diectory under ch4.
1. create a canvas to display Western European map data, an entry
for the user to input a country name, buttons to clear the canvas a
the application.

2. display the data and tag the country names with bindings for displ¢
the name of the country when the user clicks within its borders.

3. create procedures to flash the country for which the name is speci

P =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap4.html (2 di 2) [04/12/2000 19.39.37]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the

Canvas

Part-l - Step 1: create a canvas and embed a button
widget in it.

frame .mv

wm title . "Animation in canvas"
pack .mv

canvas .mv.c

pack .mv.c

button .mv.c.but -text Credits -command displayinfo

The script creates a canvas ".mv.c" as the child of a main frame ".mv". Il
creates a button ".mv.c.but" with label "Credits" and a -command option
invoke the action "displayInfo".

Embedded Widgets

Some of the item types supported by Tk canvas are rectangle, ellipse, B
curve, bitmap anwindow Canvas displaysindowfor a widget at a given X
position and provides the geometry management for the widget. This all
for pre-packaged components with their own built-in functionality to be

available alongside general drawing and hyper-linking capabilities of the
canvas. (e.g., you may want to embed the BLT-graph widget in a text wi
alongside text or in a canvas widget and exploit its built-in capability to

provide direct interaction for zooming into specific regions of the graph).

The following Tcl/Tk command appended to the script above, creates a
window inside the canvas at x,y position 218,153 for the button ".mv.c.bi

.mv.c create window 218 153 -window .mv.c.but

Note that in this simple example, we could have used a tagged text strin
usedtag bindingto invoke "displayinfo” but the principle of embedding

http://www.dci.clrc.ac.uk/Publications/Cookbook/mol.html (1 di 2) [04/12/2000 19.39.39]

Tcl/Tk Cookbook - Using the Canvas

widgets is powerful and appropriate mechanism if you wish to invoke col
ready-made soultions.

If you execute this script you will see:

ril Animation in canvas

Credils |

http://www.dci.clrc.ac.uk/Publications/Cookbook/mol.html (2 di 2) [04/12/2000 19.39.39]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the

Canvas

Part-l - Step2: Animate a canvas object

The after command

Tk command after is used to delay a command for a given number of

milliseconds. If there are additional arguments to after beyond the time ¢
then after concatenates the additional arguments into a script to be eval
the background after the given time delay and after returns immediately.

The return value of after is a unigue command identifier of the delayed €
This identifier can be used to access the delayed command, to cancel it
instance.

Usage

proc movie {ta tim} {
global id
.mv.c move $tall
set id [after $tim movie $ta $tim]

}

The procedure "movie" moves an object (text string in this case) identifie
its tag name, one pixel in each of the x and y direction. Then it reschedu
itself to be invoked after the given time interval. The global variable "id" i
assigned the return value from after each time after arranges for "movie’
invoked. The procedure will be invoked recursively making the tagged te
move diagonally down

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo2.html [04/12/2000 19.39.40]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the

Canvas

Part-l - Step3: Create an object for animation and control the
animation via the button

Append this script to your file that contains the scripts of step 1 and 2. The procedure disp
invokes "movie" described in the last step:

proc displayInfo {} {
.mv.c create text 10 10 -text "A Moving Story" -tags st
.mv.c create text 20 30 -text "by" -tags st
.mv.c create text 15 50 -text "Venkat V V S S Sastry" -tags st
bell
movie st 250
.mv.c.but configure -text Stop -command \
{global id
bell
after cancel $id
.mv.c.but configure -text {The End}
after 10000
.mv.c.but configure -text Quit -command {exit}

}

The first three lines of script in "displayInfo” create three separate text objects in the canv:
locations given by (10,10), (20,30), and (15,50). All three strings are assigned a single tag
"St"_

The command bell rings the display of the applications main window. You can give bell a
-displayof option to specify the display of a particular window. Then "displaylnfo" invokes t
procedure "movie" with the tag name "st" and an interval (250 milliseconds in this case) a¢
arguments. The label on the button changes to "Stop".

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo3.html (1 di 2) [04/12/2000 19.39.44]

Tcl/Tk Cookbook - Using the Canvas

J_'LI Animation in canvas R
A Moving Story
by
¥enkat ¥ ¥ 5 S Sastry
Stop
II

The buttonscommancdption is reconfigured to cancel the execution of the delayed comma
given by the identifier "id". If the user clicks on the button, the label changes again to "The
to mark the end of the animation. After an elapse of 10 seconds the button displays "Quit"
user to click on to exit the application.

JALI Animation in canvas i
A Moving Story
by
Venkat ¥ V5 5 Sastry
Chuit
II

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo3.html (2 di 2) [04/12/2000 19.39.44]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the Canvas

Part-Il - Step 1: create a canvas and embed a button widget in it.

The script included in this step generates a user interface that looks like:

Eu el W0

Char . Gl

The code is self-explanatory. Note that it is useful to assign short variable names to long widget names (e.
f.sub.c).

#!/usr/bin/wish -f

global countries is1 sc
wm title . "Eu Tool V0.0"
wm minsize . 50 50

frame .f -bg grey -bd 2;# to hold canvas and scrollbars
pack .f

frame .f.sub -bg red -bd 2 ;# to hold canvas

pack .f.sub -in .f

canvas .f.sub.c -relief sunken -width 15c¢ -height 15c

pack .f.sub.c -in .f.sub -side left -fill y -padx 2
set w .f.sub.c

frame .info

pack .info

frame .info.subl

pack .info.subl -padx 4 -pady 4 -ipadx 4 -ipady 4
setisl .info.subl

label $isl.labcountry -text "Country" -justify right
entry $isl.country -relief sunken -textvariable sc

pack $isl.labcountry $isl.country -side left -padx 4 -pady 3 -ipadx 2 -ipady 2
bind $isl1.country {highLightCountry $w $sc}

#
buttons

http://www.dci.clrc.ac.uk/Publications/Cookbook/eul.html (1 di 2) [04/12/2000 19.39.48]

Tcl/Tk Cookbook - Using the Canvas

#
frame .b -bg grey
pack .b -fill x

button .b.quit -text Quit -command {exit 0}
button .b.clear -text Clear -command {clearCanvas .f.sub.c}

pack .b.quit .b.clear -side right -padx 4 -pady 4

Gk

http://www.dci.clrc.ac.uk/Publications/Cookbook/eul.html (2 di 2) [04/12/2000 19.39.48]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the Canvas

Part-Il - Step 2: Map the data and tag and bind country names.

The Western European map data is adopted to the Tk canvas coordinate system from the original coorc
given in PHIGS Programming Manual, by Tom Gaskins, Appendix D

The procedure to create the mapdata is simple and is described below:

For each country, the Tk widget command "$w" where $w points to the canvas, is invoked to create a cl
filled polygon with given points forming the edges. Then the filled region is tagged with the country's nat
tag is associated withtanding for Button-1(left mouse button) to show the coutry's name in the entry widc
when the user clicks within the country's borders. (Experiment to see what happens when you click on t
borders.)

$w create polygon \

1.33039 0.57027 1.36029 0.59123 1.34591 0.50223 1.34591 0.44262 \
1.33314 0.41707 1.32797 0.37687 1.30972 0.35746 1.27992 0.3532\
1.2565 0.33617 1.24296 0.32417 1.21179 0.32979 1.19902 0.34469 \
1.17347 0.34469 1.14416 0.36309 1.12876 0.34895 1.14792 0.34043 \
1.14154 0.31488 1.11386 0.31488 1.10109 0.29998 1.07054 0.29423 \
1.03341 0.29185 1.02019 0.32766 1.02019 0.34895 1.02861 0.38514 \
1.02861 0.41158 1.00742 0.39152 0.98251 0.38164 0.98251 0.4043 \
0.96484 0.39152 0.94359 0.41876 0.93879 0.48524 0.88614 0.51518 \
0.88614 0.60021 0.88852 0.64209 0.91374 0.65977 0.89988 0.68344 \
0.99688 0.72716 0.96694 0.81694 1.07471 0.82592 1.25673 0.82354 \
1.30943 0.73852 1.21301 0.62593 1.33039 0.57027 \

-fill green -tag germany

$w bind germany {showName Germany}

$w create polygon \

0.88852 0.64209 0.91374 0.65977 \

0.89988 0.68344 0.86993 0.67863 0.88852 0.64209\
-fill bisque4 -tag luxemburg

$w bind luxemburg {showName Luxemburg}

$w create polygon \
1.07471 0.82592 1.25673 0.82354 1.30943 0.73852 1.34288 0.75019 \
1.37815 0.7365 1.407 0.71653 1.47287 0.73372 1.49383 0.78462 \
1.47272 0.80309 1.44708 0.80309 1.45028 0.83194 1.43395 0.86727 \
1.4038 0.88484 1.36853 0.87852 1.34449 0.90247 1.30046 0.89721\
1.24831 0.88074 1.21782 0.85586 1.16335 0.85278 1.128 0.86965 \
1.0867 0.86067 1.07471 0.82592\

-fill PeachPuff2 -tag austria
$w bind austria {showName Austria}

$w create polygon \
0.94359 0.41876 0.93879 0.48524 0.88614 0.51518 0.88614 0.60021 \
0.83344 0.54989 0.7526 0.55649 0.78826 0.53219 0.81711 0.51936 \
0.8091 0.50333 0.81711 0.48249 0.83314 0.4841 0.85719 0.48249\
0.81391 0.46486 0.8123 0.44402 0.82513 0.41998 0.85858 0.41876 \
0.94359 0.41876\

-fill LemonChiffonl -tag netherlands

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (1 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

$w bind netherlands {showName Netherlands}

$w create polygon \
0.7526 0.55649 0.83344 0.54989 0.88614 0.60021 0.88852 0.64209 \
0.86993 0.67863 0.82833 0.65084 0.82994 0.61554 0.8091 0.62035 \
0.79948 0.64439 0.77864 0.64119 0.76843 0.608 0.7113 0.57265\
0.72895 0.55783 0.7526 0.55649\

-fill honeydewl -tag belgium
$w bind belgium {showName Belgium}

$w create polygon \
1.03341 0.29185 1.02069 0.26129 1.0011 0.24153 0.99344 0.20518\
1.00786 0.17953 1.01245 0.13976 1.03672 0.11381 1.08481 0.10259 \
1.10084 0.08175 1.128 0.07808 1.1345 0.11221 1.10565 0.13305\
1.10227 0.16311 1.11847 0.17793 1.14251 0.16992 1.14837 0.18824 \
1.12328 0.22121 1.07951 0.22954 1.0816 0.28052 1.07054 0.29423\
1.03341 0.29185\

-fill LavenderBlushl -tag denmark
$w bind denmark {showName Denmark}

$w create polygon \

1.1345 0.23724 1.11366 0.24045 1.11045 0.25648 1.12488 0.2709 \

1.13129 0.28533 1.14412 0.27571 1.14893 0.25327 1.1345 0.23724\
-fill LavenderBlushl -tag fyn

$w bind fyn {showName Fyn}

$w create polygon \

1.22587 0.20198 1.20182 0.21159 1.20022 0.22602 1.21465 0.23884 \

1.19862 0.24846 1.18259 0.23724 1.1874 0.22281 1.16976 0.20999 \

1.15854 0.23243 1.16335 0.26129 1.18099 0.27892 1.20022 0.27251 \

1.16656 0.30296 1.21304 0.28373 1.20984 0.2677 1.22747 0.26129\

1.23388 0.23564 1.21946 0.2164 1.23709 0.20999 1.22587 0.20198\
-fill LavenderBlushl -tag sjaelland

$w bind sjaelland {showName Sjaelland}

$w create polygon \

0.7113 0.57265 0.76843 0.608 0.77864 0.64119 0.79948 0.64439 \
0.8091 0.62035 0.82994 0.61554 0.82833 0.65084 0.86993 0.67863 \
0.89988 0.68344 0.99688 0.72716 0.96694 0.81694 0.93413 0.82874 \
0.91169 0.87183 0.88614 0.89721 0.88764 0.9153 0.90688 0.91183\
0.9181 0.92972 0.93879 0.93433 0.94535 0.98102 0.92743 1.00315\
0.94695 1.03552 0.97115 1.04193 0.97115 1.07444 0.89749 1.1253\
0.78253 1.09298 0.73405 1.11632 0.73405 1.16902 0.65142 1.16664 \
0.62636 1.13811 0.58628 1.12689 0.55583 1.13212 0.51255 1.1186\
0.51255 1.09002 0.4869 1.11059 0.46701 1.10438 0.47889 1.08842 \
0.49011 1.04834 0.51255 1.00346 0.51095 0.9698 0.49812 0.90408 \
0.49331 0.88965 0.47728 0.88804 0.45965 0.87682 0.45645 0.85759 \
0.47272 0.84689 0.45484 0.83515 0.43721 0.83996 0.41156 0.83675 \
0.41797 0.82553 0.40515 0.83194 0.36988 0.81751 0.34584 0.81591 \
0.33109 0.80558 0.32981 0.78866 0.31699 0.77584 0.31076 0.75468 \
0.3234 0.73897 0.34744 0.73737 0.36508 0.72614 0.38752 0.73416 \
0.41156 0.76141 0.4324 0.74378 0.46767 0.74378 0.48317 0.7523 \
0.48209 0.71492 0.46767 0.69248 0.4628 0.67625 0.49331 0.67004 \
0.51736 0.68287 0.57026 0.68126 0.59396 0.69003 0.60552 0.68126 \
0.5943 0.67325 0.60552 0.65401 0.64239 0.62195 0.66039 0.58881 \
0.7113 0.57265 -fill SlateBluel -tag france

$w bind france {showName France}

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (2 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

$w create polygon \

0.96694 0.81694 0.93413 0.82874 0.91169 0.87183 0.88614 0.89721\

0.88764 0.9153 0.90688 0.91183 0.9181 0.92972 0.93879 0.93433\

0.98863 0.91156 0.99825 0.89125 1.03191 0.89927 1.0472 0.93433\

1.08 0.89285 1.128 0.86965 1.0867 0.86067 1.07471 0.82592 0.96694 0.81694\
-fill RoyalBluel -tag switzerland

$w bind switzerland {showName Switzerland}

$w create polygon \
1.30046 0.96185 1.30046 0.89721 1.24831 0.88074 1.21782 0.85586 \
1.16335 0.85278 1.128 0.86965 1.08 0.89285 1.0472 0.93433 1.03191\
0.89927 0.99825 0.89125 0.98863 0.91156 0.93879 0.93433 0.94535 \
0.98102 0.92743 1.00315 0.94695 1.03552 0.97115 1.04193 0.97115\
1.07444 0.99504 1.07239 1.02229 1.05475 1.0406 1.0379 1.07038\
1.04193 1.11526 1.05636 1.13771 1.08361 1.13931 1.11246 1.15534 \
1.1333 1.16934 1.16664 1.20182 1.1894 1.22907 1.21184 1.26915\
1.22467 1.3509 1.27596 1.35891 1.28879 1.37174 1.28879 1.38616 \
1.2952 1.39097 1.30482 1.40861 1.30642 1.41662 1.33046 1.41983\
1.36413 1.42944 1.38817 1.41983 1.40901 1.42624 1.42664 1.41181\
1.44107 1.39739 1.42824 1.38136 1.43145 1.3525 1.44588 1.29319\
1.44748 1.27556 1.45229 1.25793 1.45069 1.24991 1.46832 1.27075\
1.47313 1.28037 1.46832 1.30762 1.49076 1.3493 1.5132 1.37975\
1.53244 1.39739 1.52923 1.4054 1.5132 1.39739 1.49236 1.39578\
1.4603 1.42784 1.43786 1.44387 1.44267 1.46311 1.42344 1.47433\
1.39618 1.49383 1.3876 1.49677 1.37695 1.49517 1.3513 1.48395\
1.33688 1.47112 1.32886 1.47112 1.31123 1.48395 1.2984 1.50478\
1.30161 1.51921 1.31443 1.53364 1.31283 1.54806 1.32726 1.56987 \
1.33367 1.56987 1.31631 1.56089 1.2968 1.53524 1.28237 1.50959 \
1.27596 1.48074 1.25032 1.44067 1.23108 1.43105 1.21665 1.44067 \
1.20223 1.43105 1.19261 1.37013 1.18139 1.33006 1.14933 1.31243\
1.12048 1.29319 1.0804 1.28037 1.06758 1.25953 1.06918 1.2451 \
1.05475 1.24831 1.03231 1.2451 1.01147 1.23228 0.98903 1.23869 \
0.96819 1.27235 0.9698 1.30046 0.96185\

-fill SteelBluel -tag italy
$w bind italy {showName Italy}

$w create polygon \
1.06557 1.12849 1.04794 1.1365 1.05275 1.15253 1.03672 1.16376\
1.0271 1.18139 1.03031 1.20223 1.05275 1.22627 1.07038 1.23429\
1.08481 1.21665 1.07359 1.20543 1.08641 1.17978 1.0832 1.13811\
1.07198 1.10284 1.06557 1.12849\

-fill SteelBluel -tag sardinia
$w bind sardinia {showName Sardinia}

$w create polygon \
1.06076 1.24551 1.02389 1.26154 1.00786 1.25512 1.01588 1.2407 \
0.99985 1.25673 1.00786 1.26955 1.01909 1.28077 1.0271 1.31123\
1.01588 1.33046 1.00786 1.31924 1.01428 1.34008 1.00786 1.36573 \
1.02389 1.38496 1.04794 1.38657 1.04794 1.37214 1.05916 1.37214\
1.06878 1.37855 1.07679 1.36733 1.07519 1.34329 1.0832 1.31924 \
1.07679 1.2984 1.09282 1.2952 1.09282 1.27276 1.07359 1.2439\
1.06076 1.24551\

-fill SteelBluel -tag corsica
$w bind corsica {showName Corsica}

$w create polygon \

0.73405 1.16902 0.65142 1.16664 0.62636 1.13811 0.58628 1.12689 \
0.55583 1.13212 0.51255 1.1186 0.51255 1.09002 0.4869 1.11059 \

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (3 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

0.46701 1.10438 0.44042 1.10765 0.41316 1.09803 0.33302 1.09002 \
0.26409 1.09322 0.21921 1.082 0.17913 1.07559 0.15509 1.08681 \
0.13585 1.09803 0.11341 1.09322 0.08776 1.10765 0.05988 1.13252 \
0.05731 1.15253 0.06532 1.17337 0.0783 1.18494 0.0783 1.19581 \
0.08502 1.20701 0.11982 1.19742 0.13265 1.21195 0.12143 1.22948\
0.15348 1.2137 0.18875 1.21098 0.22753 1.21993 0.21528 1.24551 \
0.19196 1.26314 0.19148 1.2952 0.16586 1.34868 0.14066 1.3513 \
0.17432 1.39618 0.16474 1.41863 0.17753 1.45389 0.15348 1.47313 \
0.16344 1.50077 0.19837 1.5132 0.23203 1.53404 0.23684 1.55808 \
0.26942 1.57201 0.29615 1.56581 0.31218 1.54847 0.33943 1.54366 \
0.35866 1.54686 0.37149 1.53885 0.40355 1.53083 0.434 1.53244\
0.45805 1.52603 0.49011 1.48916 0.50774 1.4587 0.543 1.43786 \
0.57667 1.40741 0.58468 1.38336 0.56545 1.38336 0.55423 1.36573 \
0.55904 1.34008 0.57506 1.31123 0.60552 1.27596 0.67765 1.2439 \
0.7017 1.23108 0.72735 1.19742 0.73405 1.16902 \

-fill LightSkyBluel -tag spain
$w bind spain {showName Spain}

$w create polygon \
0.08502 1.20701 0.11982 1.19742 0.13265 1.21195 0.12143 1.22948\
0.15348 1.2137 0.18875 1.21098 0.22753 1.21993 0.21528 1.24551 \
0.19196 1.26314 0.19148 1.2952 0.16586 1.34868 0.14066 1.3513\
0.17432 1.39618 0.16474 1.41863 0.17753 1.45389 0.15348 1.47313\
0.16344 1.50077 0.12784 1.5148 0.107 1.50704 0.08264 1.50975 \
0.06692 1.5132 0.06692 1.49717 0.08662 1.46992 0.0851 1.41992\
0.05269 1.40376 0.04609 1.36573 0.05731 1.34649 0.05089 1.34329 \
0.0722 1.28558 0.08502 1.2070\

-fill SlateGray2 -tag portugal
$w bind portugal {showName Portugal}

$w create polygon \
0.29218 0.00863 0.32019 0.0 0.35225 0.00481 0.38271 0.0 0.39335\
0.00621 0.38591 0.03847 0.36508 0.06893 0.34744 0.07214 0.35225\
0.07855 0.33589 0.08944 0.35706 0.09618 0.43721 0.10259 0.434 \
0.12183 0.42439 0.15549 0.40355 0.18755 0.38676 0.20037 0.38676 \
0.21159 0.42118 0.21961 0.4742 0.24333 0.4869 0.2677 0.52698 \
0.30777 0.56224 0.34784 0.573 0.37687 0.55743 0.38151 0.5382\
0.3783 0.51896 0.3783 0.54544 0.38644 0.57186 0.39593 0.58435 \
0.41876 0.56402 0.44632 0.57506 0.45204 0.61834 0.44402 0.65142 \
0.4601 0.63117 0.51936 0.59813 0.54513 0.60232 0.55463 0.62796 \
0.55302 0.63764 0.57027 0.56705 0.60913 0.49171 0.61073 0.42599 \
0.62035 0.38591 0.61233 0.36027 0.63317 0.33462 0.6492 0.30577 \
0.65081 0.28012 0.65561 0.25743 0.65349 0.26249 0.64439 0.28813 \
0.62997 0.30897 0.60111 0.33783 0.58028 0.37149 0.57867 0.38591 \
0.56104 0.40515 0.55302 0.42091 0.53135 0.37719 0.55231 0.33302 \
0.54501 0.29935 0.52257 0.28974 0.50494 0.34725 0.47146 0.3218 \
0.45204 0.33141 0.43441 0.31218 0.42158 0.32821 0.41196 0.33622 \
0.4296 0.36668 0.41677 0.40475 0.40682 0.40194 0.38311 0.4167 \
0.34693 0.39874 0.34784 0.38431 0.34784 0.36828 0.33182 0.37469 \
0.30617 0.39578 0.29185 0.3795 0.29014 0.36027 0.30617 0.33783 \
0.31098 0.29455 0.30617 0.28333 0.26609 0.29218 0.2158 0.24846 \
0.26191 0.24165 0.24045 0.26569 0.20037 0.27363 0.16548 0.24966 \
0.16831 0.2323 0.16072 0.24004 0.11381 0.20157 0.10419 0.20638 \
0.08817 0.22081 0.09458 0.21279 0.08175 0.22722 0.07694 0.24325\
0.1074 0.24646 0.06733 0.29218 0.00863\

-fill LightSteelBluel -tag gb

$w bind gb {showName "Great Britain"}

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (4 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

$w create polygon \

0.216 0.02244 0.18875 0.03847 0.18394 0.07374 0.17432 0.10099 \

0.14707 0.13144 0.18394 0.109 0.19676 0.07053 0.22241 0.04008 0.216 0.02244\
-fill LightSteelBluel -tag hebrides

$w bind hebrides {showName Hebrides}

$w create polygon \
0.17432 0.27327 0.22081 0.27571 0.23363 0.29655 0.25287 0.30937 \
0.25768 0.33502 0.22753 0.36309 0.20592 0.32898 0.1449 0.34693 \
0.12155 0.32417 0.1497 0.29185 0.17432 0.27327\

-fill LightCyan1l -tag nireland
$w bind nireland {showName "Northern Ireland"}

$w create polygon \
0.22753 0.36309 0.20592 0.32898 0.1449 0.34693 0.12155 0.32417 \
0.1497 0.29185 0.12155 0.27807 0.10539 0.29495 0.10219 0.31098 \
0.08295 0.32701 0.09637 0.34272 0.07654 0.34624 0.06372 0.35586 \
0.04609 0.35265 0.02525 0.35105 0.01135 0.36547 0.02756 0.3783 \
0.02756 0.41158 0.0525 0.41677 0.07604 0.42056 0.03486 0.45524 \
0.03232 0.47146 0.04769 0.47146 0.08502 0.46248 0.04929 0.47769 \
0.02044 0.47929 0.0 0.4966 0.0 0.51135 0.03166 0.50814 0.03654 \
0.51995 0.01616 0.52417 0.01616 0.53853 0.04609 0.53219 0.07013\
0.53379 0.15669 0.51295 0.19676 0.50974 0.21133 0.4966 0.22562 \
0.42799 0.21921 0.39914 0.22753 0.36309\

-fill SpringGreenl -tag eire

$w bind eire {showName Eire}

Display the data

Append the following script to the file: set countries {germany luxemburg austria netherlands belgium \ ¢
fyn sjaelland france switzerland italy sardinia \ corsica spain portugal gb hebrides nireland eire} foreach
$countries { $w scale $¢ 0 0 300 300 }

The first line creates an array called "countries" whose elements are the tags created.

The canvas widget specific commastwhletakes five arguments and rescales all the items identified by the
given by the first argument. The second and third arguments are used as origins for the scaling operatic
fourth and fifth the scale factors in the x and y directions. This scaling operation is called repeatedly to ¢
the data centred within the canvas widgets visible region.

The result would be:

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (5 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

»

over f] o |

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (6 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

Tcl/Tk Cookbook - Using the

Canvas

Part-Il - Step 3: Procedure definitions.

The script below for the procedures are simple and largely self-explanatory:

proc showName {c} {
global isl1

$isl.country delete 0 end
$isl.country insert end $c

}

given a country flash that in canvas

proc highLightCountry { w tn } {
set old_colour [lindex [$w itemconfig $tn -fill] 4]

$w itemconfigure $tn -fill yellow
after 5000 "$w itemconfigure $tn -fill $old_colour; bell"

}

proc clearCanvas {w} {
foreach id [$w find all] {$w delete $id }
}

When the user presses and releases the left mouse button within the borders ¢
country, the procedure "showName" is invoked to clear (0 to end deletes first tc
characters) the entry widget in the application and to insert the name of the cot
that was passed to the procedure as argument.

The procedure "highLightCountry" takes the names of the canvas widget and tt
input via the entry widget.

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu3.html (1 di 2) [04/12/2000 19.40.26]

Tcl/Tk Cookbook - Using the Canvas

Fur Eu Taal WD

>

The widget command is used to invoke the "itemconfig" action; "itemconfig" gei
list of all the current configuration and their values of the given item in the canv
widget. From this list the current colour of the tagged irtem is retrieved and ass
to old colour. The tagged region (item) is filled with the colour yellow. After 5
seconds, the old colour is reset.

You can of course make the named country flash by rewriting this procedure to
rest the old and new colours alternatively every so often. Experiment.

The procedure clearCanvas gets the list of all items displayed in the canvas an
them.

G id

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu3.html (2 di 2) [04/12/2000 19.40.26]

Tcl/Tk Cookbook - Canvas Revisited

Tcl/Tk Cookbook - Canvas

Revisited

Purpose

This Chapter introduces creating objects interactively in Tk canvas widg

You will need

At this point it is assumed that the reader has read through the previous
chapters. Scripts for creating pulldown menus, scrollbars etc. are made
in this section but are described in detail in Chapter 3.

Dish to Serve Up

Create a simple drawing editor.

Recipe

The script for this example (draw.tcl) is in the Cookbook's code directory
under ch5 subdirectory. You can place all the script for this example in a
Tcl/Tk script file.

Remember to set the path to our wish binary properly

1. create a window with a top menubar, a panel for some buttons anc
scrollable canvas.

2. add some buttons and an entry widget for string input in the panel:
bitmapped images rather than text labels for the buttons.

3. create bindings in canvas for mouse clicks and motion so that dray
primitives could be drawn in it.

Acknowledgement

The bitmaps used are under the subdirectory bitmaps under
~cookbook/code/ch5. The bitmaps are part of the public domain xfig pro

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap5.html (1 di 2) [04/12/2000 19.40.27]

Tcl/Tk Cookbook - Canvas Revisited

=17 =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap5.html (2 di 2) [04/12/2000 19.40.27]

Tcl/Tk Cookbook - Canvas Revisited

Tcl/Tk Cookbook - Canvas Revisited

Step 1: Create basic graphical user interface.

Script

#!/usr/local/bin/wish -f ;#start wish and pass this script for parsing.

global sb so x1 y1 lw ;#declare some globals

frame .fr -width 24c -height 13.6¢ -bd 2 ;#main frame
pack .fr

wm title . "Canvas"

frame .fr.menubar -relief raised -bd 2
pack .fr.menubar -padx 1 -fill x

frame .fr.panl -width 3.6¢ -height 12.8c -bg black
frame .cfr -width 20.4c -height 12.4c -bd 1

pack .fr.panl .cfr -in .fr -side left -padx 2 -after .fr.menubar -fill x

canvas .can -width 20c -height 12.0c -bg grey -xscrollicommand ".xs set" \
-yscrollcommand ".ys set"

scrollbar .ys -command ".can yview"

pack .can .ys -in .cfr -side left -fill x -fill y

scrollbar .xs -orient horizontal -command ".can xview"

place .xs -in .fr -x 3.8c -y 13.3c -width 20.2c

#fill the top menu

menubutton .fr.menubar file -text File -underline 0 -menu .fr.menubar.file.menu

menubutton .fr.menubar.edit -text Edit -underline 0 -menu .fr.menubar.edit.menu

menubutton .fr.menubar.graphics -text Graphics -underline 0 -menu \
.fr.menubar.graphics.menu

pack .fr.menubar.file .fr.menubar.edit .fr.menubar.graphics -side left
menubutton .fr.menubar.help -text Help -underline 0

pack .frmenubar.help -side right

#File menu

menu .fr.menubar.file.menu

.fr.menubar.file.menu add command -label Print -command {printCanvas}
fr.menubar.file.menu add command -label Quit -command exit

#Edit menu

menu .fr.menubar.edit.menu

fr.menubar.edit.menu add command -label Cut -com {CutSelection}
.fr.menubar.edit. menu add command -label Clear -com {clearCanvas}

#Graphics menu

menu .fr.menubar.graphics.menu
.frmenubar.graphics.menu add cascade -label "Line Width" \

http://www.dci.clrc.ac.uk/Publications/Cookbook/d1.html (1 di 2) [04/12/2000 19.40.30]

Tcl/Tk Cookbook - Canvas Revisited

Tk

-menu .frmenubar.graphics.menu.fmenu

#Second level menu for Line Width

menu .fr.menubar.graphics.menu.fmenu
fr.menubar.graphics.menu.fmenu add radiobutton -label "0.5" \
-com {set lw 0.5}
.frmenubar.graphics.menu.fmenu add radiobutton -label "2.0" \
-com { setlw 2.0}
setlw 1.0

The above script creates a Tk application main window titled "canvas” with a main frame ".fr".

The main frame contains three frame widgets - the frame ".fr.menubar" for the top menubar, the frame ".fr.p
placed below the menubar packed to the left of the third frame ".cfr". Note that the height and width of the rr
frame as well as those of ".fr.panl" and ".cfr" are given in units of centimetres.

Tk canvas widget ".can" is created as the child of the main (application root) window and placed within ".cfr"
scrollbars ".xs" (horizontal) and ".ys" vertical are created and connected to the canvas widget.

the top menubar contains four menubuttons with labels "File", "Edit", "Graphics" and "Help". The menu entri
"File" is Print andQuit with associated actions printCanvas and exit; the menu entries for "EdilittaadClear
with associated actions CutSelection and clearCanvas. "Graphics" supports another level of méne vediéifor
the drawing primitives.

place command

Note that for the horizontal scrollbar, the place rather than pack command is used with fixed size and locatic
parameters to positisiavewidgets within theimasters This allows for the slave to resize itself when the mastt
changes size, preserving relative configuration.

The resultant graphical user interface (gui) would be similar to:

&

http://www.dci.clrc.ac.uk/Publications/Cookbook/d1.html (2 di 2) [04/12/2000 19.40.30]

Tcl/Tk Cookbook - Canvas Revisited

Tcl/Tk Cookbook - Canvas Revisited

Step 2: Add other gui objects

Script

button .rect -image [image create bitmap \

-file "./bitmaps/boxOp.xbm"] -com {set sb "rectangle"}

button .circ -image [image create bitmap -file "./bitmaps/ovalOp.xbm"] \
-com {set sb "oval" }

button .lin -image [image create bitmap -file "./bitmaps/lineOp.xbm™] \
-com {set sb "line" }

button .txt -image [image create bitmap -file "./bitmaps/textOp.xbm"]\
-com {set sb "text"}

button .selob -image [image create bitmap -file "./bitmaps/selectOp.xbm”]\
-com {set sb "obj" }

label .txtlab -text "Text : "

entry .txtstr -textvariable str -relief sunken -width 10

place .rect -in .fr.panl -x 2 -y 1
place .circ -in .fr.panl -x 60 -y 1
place .lin -in .fr.panl -x 2 -y 60
place .txt -in .fr.panl -x 2 -y 120
place .selob -in .fr.panl -x 60 -y 60
place .txtlab -in .fr.panl -x 2 -y 180
place .txtstr -in .fr.panl -x 20 -y 220

Image

The Tk command image is used to create, delete or query images. The first argument to image specifies
to be taken (e.g. create and the second argument is the type of the image (e.g. bitmap). The "-file" option
bitmap data from the file specified.

The "-image" option replaces the "-text" option in the button creation command to place the bitmap image
labels for the buttons. Each button command sets the value of the global variable "sb" to a specific value.
value of the variable is used in the cnavas drawing routines to determine which type of drawing primitive
be drawn. i.e. the user selects, for example, the "rectangle" button; "sb" is set the value "rectangle" and it
canvas the command .can create $sb $x $y $x1 $y1 draws a rectangle object.

Text

In this example, drawing text in the canvas is simplified. The user inputs the text string in the entry widge
return and selects the button marked "A". Then the text string is created in the canvas wherever the left n
button is clicked.

Selecting an Object

The button with the "dotted rectangle” label is used to specify a rectangular region within the canvas widc
mark this a rectangle will be drawn with a red outline.

The widget placements should result in

http://www.dci.clrc.ac.uk/Publications/Cookbook/d2.html (1 di 2) [04/12/2000 19.40.32]

Tcl/Tk Cookbook - Canvas Revisited

Canvas

Halp

fik Edit Craphics

The current drawing primitive changes only when the user explicitly selects another by selecting one of tt

buttons.

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/d2.html (2 di 2) [04/12/2000 19.40.32]

Tcl/Tk Cookbook - Canvas Revisited

Tcl/Tk Cookbook - Canvas Revisited

Step 3: Create bindings in canvas for drawing

Script

We want to add some bindings to the canvas widget so that :
o when the user presses down the left mouse button that point is taken as the starting point (top left) for the dr
primitive
o the mouse motion is tracked while the left mouse button remains pressed down
o the primitive is drawn when the left mouse button is released.

To do this, set the three bindings for the canvas:

bind .can {GetStarted %x %y}
bind .can {LetGo %x %y}
bind .can {KeepMoving %x %y}

Each user event invokes the associated action (procedure/function/behaviour) passing it the current x,y position a
The script for the three procedures are defined below:

proc GetStarted {x y} {
global x1 y1 sb so str eo

set x1 $x
setyl $y

if {[string compare $sb "text"] == 0 } {
set so [.can create text $x $y -text $str -anchor sw]
return

}

if { [string compare $sb "obj"] == 0} {
set so [.can create rectangle $x $y $x $y -fill {} -outline red]
set eo $so0
return

if {[string compare $sb "line"] == 0} {
set so [.can create $sb $x1 $yl $x By]
.can addtag sbso enclosed $x1 $y1 $x By
}else {
set so [.can create $sb $x1 $y1 $x $y -fill {} -outline black]
.can addtag sbso enclosed $x1 $yl $x $y
}

proc KeepMoving {X y} {
global x1 y1 so sb
if {[string compare $sb "text"] == 0} {

return

}

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (1 di 3) [04/12/2000 19.40.36]

Tcl/Tk Cookbook - Canvas Revisited

.can coords $so $x1 $yl $x Sy

}
proc LetGo {x y} {

global x1 y1 so sb eo

if { [string compare $sb "obj"] == 0} {
set so [.can find enclosed $x1 $y1 $x $y]
.can itemconfigure $so -fill {} -outline green
.can delete $eo

}

The procedure "GetStarted" checks the current value of "sb". If the chosen printigixietisen the string item is drawn
anchored southwest at current location specified by x,y values.

If "sb" points to the "select an object", then a rectangle object is created with red outline and the variable "e0" is se
rectangle’s id (to be used later to delete it selectively).

In all the other cases the object/item is drawn from X,y (top left) to x1,y1 (bottom right corner). A tag name made o
concatenating the value of "sb" and the objects unique id is added using the widget command .can with action adc

The procedure "KeepMoving" returns without doing anything if "sb" is "text" as it is not relevant in this case. In all ¢
cases, the widget command .can is invoks the coordinates action. The first argument to this action is the object id
no further arguments is specified, this action will return a list of the coordinates of the object. If the action is given ¢
coordinate values then it will modify/reset the coordinates of the object (first argument) to those of the given value

If "sb" is set to "obj" then the procedure "LetGo" invokes ".can" to find the identity of any enclosed object/item. If ar
enclosed object/item is found its border is reset to green colour using the canvas widget action itemconfigure.

Canvas

Hie Edit Graphcs HElR

See what happens when you the selected item is a text string.

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (2 di 3) [04/12/2000 19.40.36]

Tcl/Tk Cookbook - Canvas Revisited

Other procedures

It only remains to fill in the scripts for the "CutSelection” clearCanvas" and "printCanvas" procedures. Append the
script for these:

proc CutSelection {} {
global so
.can delete $so

}

proc clearCanvas {} {
foreach id [.can find all] { .can delete $id }
}

proc printCanvas {} {

.can postscript -file "canvas.ps”

"CutSelection” deletes the currently selected or most recently drawn item.
The procedure "clearCanvas" gets the display list of all items and deletes them one by one.

In "printCanvas"”, the Tk canvas widget action postscript is invoked with a "-file" option. A postscript of the canvas «
will be saved in the file "canvas.ps" in the current working directory. Note that Tk will complain if you have no write
permissions in the current working directory.

Item Tagging

Tk canvas widget supports bindings for the canvas as well as bindings for individual items displayed within it. Eact
created in the canvas has a unigliand it can also be associated with one or more tags. Iltem bindings can be assoc
with its bindings. For instance, you can move all items with a tag "rectangle” move a pixel left or right or change cc
fill them with a pattern. Item bindings preceed the canvas widget bindings. Experiment with these.

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (3 di 3) [04/12/2000 19.40.36]

Tcl/Tk Cookbook - Tcl/Tk and C

Purpose

This Chapter shows how to extend Tcl/Tk commands to include your ow
example used here is based on PHIGS (Programmer's Hierarchical Intel
Graphics System) programming library for 3D graphics. The rationale be
this example is to include 3D drawing capabilities to Tk canvas with Tk
handling all the input while PHIGS handles the 3D output.

You will need

The example is compiled and run using the X11 Release 5 sample
implementation of PHIGS which is freely available public domain softwal
and conforms to ISO specification. If you want to run this application yot
require access to X11 Release 5 PHIGS (or SunPHIGS) and your works
kernel configured to run PHIGS.

If the reader already knows PHIGS, it is easy to understand the self-con
PHIGS procedures but the reader is not required to know PHIGS to und
how to register user commands with Tcl interpreter. You can either use |
routines as a unit or better still you can follow the relevant parts of Tcl/Tl
apply the methodology to a software package of your choice.

If you want to learn/use PHIGS, referfiom Gaskin's PHIGS Programmin
Manualwhich has examples showing the use of PHIGS with X Window
System based toolkits.

Tcl/Tk scripts similar to ones described in earlier chapters are not explai
again. If you are new to Tcl/Tk programming, you should at least read th
previous chapters.

Dish to Serve Up

Create a simple Tk based graphical user interface with canvas widget. It
a PHIGS workstation to the canvas to allow PHIGS to draw and update «
simple 3D object

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap6.html (1 di 2) [04/12/2000 19.40.38]

Tcl/Tk Cookbook - Tcl/Tk and C

Recipe

o Copy into current directory the file ~cookbook/code/ch6/phigscbs.c
which contains the C routines ;to

= establish the connection between PHIGS and an X window

= draw 3D drawings in the PHIGS workstation.

= respond to Tk X events (e.g. an event to rotate the drawing).
o Register user commands with Tcl interpreter.

o Create the Tk gui with user commands.

=17 |=

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap6.html (2 di 2) [04/12/2000 19.40.38]

Tcl/Tk Cookbook - Tcl/Tk and C

Tcl/Tk Cookbook - Tcl/Tk and C

Step 1: Create PHIGS related C routines.
Script

This routines below are not described as it is not directly relevant to this Tcl/Tk Cookbook. The PHIGS box
text "It's a square world" in the routine "MakeCube" is adopted f&kdPnactical Introduction to PHIGS and PHIC
Plus

#include <stdio.h>

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <phigs/phigs.h>
#include "tcl.h"

#include "tk.h"

#define CUBE (Pint) 1

#define WS_ID (Pint) 1

#define PRIORITY (Pfloat) 1.0
#define PI (Pfloat) 3.141592654
#define CMAX (Pfloat)0.7
#define CMIN (Pfloat)0.3

static Ppoint3 ORIGIN ={0.5,0.5,0.5};

#define set_colour(colrv,typ,r,g,b) colrv.type=typ; \
colrv.val.general.x=r;colrv.val.general.y= g;colrv.val.general.z=b;

#define fill_struc(A,B,C,D) Ax=B; Ay=C; A.z=D;

extern Pconnid_x_drawable conn_id;
static char textl[] ="lt'sa";
static char text2[] = "square world!";

int CleanupAndQuitProc (ClientData clientdata, Tcl_Interp *interp,
int argc, char *argv[])

pclose_ws(WS_ID);
pclose_phigs();
exit(0);

}

int MakeCubeProc (ClientData clientdata, Tcl_Interp *interp,
int argc, char *argvl])

{

Pfloat angle;

Pint err;

Pmatrix3 transform;

Pfloat mid;

Ppoint3 front_face[5], back_face[5],link1[2], link2[2], link3[2], link4[2];
Ppoint_list3 listd,list2,list3,list4,list5,list6;

Pgcolr yellow,white;

static Pvec3 shift = {0.0,0.0,0.0};

http://www.dci.clrc.ac.uk/Publications/Cookbook/p1.html (1 di 2) [04/12/2000 19.40.39]

Tcl/Tk Cookbook - Tcl/Tk and C

static Pvec3 scale = {1,1,1};

static Ppoint3 textlocl = {0.5,0.6,0.7};

static Ppoint3 textloc2 = {0.5,0.5,0.7};

static Pvec textdir[] = {1.0,0.0,0.0,0.0,1.0,0.0};

static Ptext_align txalign = {PHOR_CTR, PVERT_HALF};

set_colour(yellow,PMODEL_RGB,1.0,1.0,0.0);
set_colour(white, PMODEL_RGB,1.0,1.0,1.0);

fill_struc(front_face[0], CMIN,CMIN,CMAX);
fill_struc(front_face[1], CMIN,CMAX,CMAX);
fill_struc(front_face[2], CMAX,CMAX,CMAX);
fill_struc(front_face[3], CMAX,CMIN,CMAX);
ppolyline3(list6);

pset_text_align(&txalign);
pset_char_ht((Pfloat)0.015);
pset_text_colr(&yellow);
ptext3(&textlocl,textdir,textl);
ptext3(&textloc2,textdir,text2);
pclose_struct();

ppost_struct(WS_ID, CUBE, PRIORITY);
return O;

}

int rotate_boxProc (ClientData clientdata, Tcl_Interp *interp, int argc, char
*argv(])

{

Pint val;

Pfloat angle;

Pint err, i;

Pmatrix3 transform;

Ppoint3 origin;

Pint cube;

static Pvec3 shift = {0.0,0.0,0.0};
static Pvec3 scale = {1,1,1};

val = (Pint) argv[1];

val = (Pint) atoi(argv[1]);
angle =val*P1/180;

popen_struct(CUBE); /* Open the structure. */
pset_edit_ mode(PEDIT_REPLACE); /* Select REPLACE mode. */
pset_elem_ptr(2);
pbuild_tran_matrix3(&ORIGIN, &shift, angle,angle,angle,
&scale, &err, transform);
pset_local_tran3(transform, PTYPE_REPLACE);
pclose_struct();
pupd_ws(WS_ID, PFLAG_PERFORM);
return O;

}

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/p1.html (2 di 2) [04/12/2000 19.40.39]

Tcl/Tk Cookbook - Tcl/Tk and C

Tcl/Tk Cookbook - Tcl/Tk and C

Step 2: Register user commands.

Template

The template for this script is tkApplnit.c in the Tcl/Tk source distribution (look under the directory in whict
Tk source code is placed - something like ~pdsrc/TclTk/tk4.0). Make a copy of tkApplnit.c into your current
working directory. Call it myTclInit.c (This source along with the Makefile template etc. are under
~cookbook/code/ch6)

In the script belowbold lettersare used to highlight customised program codeitalids is used for our inserted
comments in the code given below:

myTcllnit.c

#ifndef lint

static char sccsid[] = "@(#) tkApplnit.c 1.12 94/12/17 16:30:56";
#endif /* not lint */

#include "tcl.h"

#include "tk.h"

/[*Include files for PHHGS & X */

#i ncl ude <X11/Intrinsic. h>
#i ncl ude <X11/ StringDefs. h>
#i ncl ude <X11/ Xat om h>

#i ncl ude <phi gs/ phi gs. h>

[*Pconnid_x_drawable is a structure that holds the id of the X window within which the PHIGS workstation
opened*/

Pconni d_x_drawabl e conn_i d;

/*Procedures defined in phigscbs.c */ /*A PHIGS based C procedure defined in phigscbs.c to create a cub
simple text message*/

extern int MakeCubeProc();

/*A PHIGS based C procedure defined in phigscbs.c that applies the PHIGS transformation matrix to rotat
object through a given degree and and posts the structure (object). The Angle of rotation is input by the us
moving a Tk scale widget. Editing the 3D structure and updating the workstation is handled by PHIGS. */

extern int rotate_boxProc();

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (1 di 5) [04/12/2000 19.40.41]

Tcl/Tk Cookbook - Tcl/Tk and C

/*A PHIGS based C procedure defined in phigscbs.c to redraw all structures whenever either an expose e
happens or when the state of the PHIGS workststion is changed for instance when a structure is posted. L
the workstation is handled by PHIGS.*/

extern int redrawProc();

/*A PHIGS based C procedure defined in phigscbs.c to change the colour of the displayed 3D object to the
from the Tk menu entry. Editing the 3D structure and updating the workstation is handled by PHIGS.*/

extern int ChCol Proc();

/*A PHIGS based C procedure defined in phigscbs.c to close the PHIGS workstion and close PHIGS and ¢
application when the user selects theQukt button.*/

extern int C eanupAndQuitProc();

Tk_Window is a Tk token that represents a window. This token is returned whenever a new Tk window is (
You can use this to query information about or manipulate a Tk window.

The procedure "Tcl_Applnit" defined after the procedure below, calls "Tk_CreateMainWindow" to create th
application's main window.

Tk_W ndow mai nwi n, Wi n;

[*This procedure sets up the PHIGS workstation to the Tk canvas widget and does some house keeping. 1
procedure is registered with the Tcl/Tk interpreter via the user command SetupPhigs. SetupPhigs is passe
argument - the pathname of the canvas widget. */

i nt SetupPhigsProc (ClientData clientdata, Tcl _Interp *interp,
int argc, char *argv[])
{

W ndow wi ni d;

Pxphi gs_i nfo xphi gs_i nf o;

unsi gned | ong mask;

XSet W ndowAt t ri but es W n attrs;
Di spl ay *dsp;

When this procedure is invoked, the pathname of the canvas widget is passed as argv[1]. Tk_NameToWir
returns the token for the canvas widget which is in the same application as "mainwin".

This "win" token is used to assign the necessary connection identifiers for the canvas widget to PHIGS.

Tk_Display takes a Tk_Window token as argument and returns a pointer to the structure Display - the X di
the canvas widget.

Tk_Windowld returns the X identifier for the canvas window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (2 di 5) [04/12/2000 19.40.41]

Tcl/Tk Cookbook - Tcl/Tk and C

win = Tk_NanmeToW ndow(i nterp, (char *)argv[1l], (Tk_Wndow) mai nwin);
dsp= Tk_Di splay(w n);
winid = Tk _Wndow d(w n);

conn_i d. di splay = dsp;
conn_id.drawable_id = winid;

Tell PHIGS not to monitor the colourmap etc. and open the PHIGS workstation with appropriate monitoring
permissions.

mask = PXPH GS_| NFO FLAGS NO_MON;
xphigs_info.flags.no_nonitor =1;

popen_xphi gs (PDEF_ERR FI LE, PDEF_MEM SI ZE, mask, &phi gs_i nf o) ;

wi n_attrs. backi ng_store = Not Usef ul ;
XChangeW ndowAt tri but es(dsp,w nid, CWBacki ngStore, & n_attrs);

Tk_CreateEventHandler is used to invoke a particular procedure to be invoked when a particular event sel
the given mask occurs in the window given by the first argument.

Tk_Creat eEvent Handl er (wi n, Exposur eMask,
(Tk_EventProc *) redrawProc, NULL);

return O;

}

/*

* The following variable is a special hack that is needed in order for
* Sun shared libraries to be used for Tcl.

*/

#ifdef NEED_MATHERR

extern int matherr();

int *tclDummyMathPtr = (int *) matherr;
#endif

int
Tcl_Applnit(interp)

Tcl_Interp *interp; /* Interpreter for application. */
{

mainwin = Tk_MainWindow(interp);

if (Tcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}
if (Tk_Init(interp) == TCL_ERROR) {

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (3 di 5) [04/12/2000 19.40.41]

Tcl/Tk Cookbook - Tcl/Tk and C

return TCL_ERROR;
}

/*
* Call the init procedures for included packages. Each call should
* look like this:

*

* if (Mod_Init(interp) == TCL_ERROR) {

* return TCL_ERROR;

“)

*

* where "Mod" is the name of the module.
*/

/*
* Call Tcl_CreateCommand for application-specific commands, if
* they weren't already created by the init procedures called above.

*/
Tcl _Creat eCommand(i nterp, "SetupPhigs",
(Tcl _CndProc *) Set upPhi gsProc, (CientData) NULL,
(Tcl _CndDel eteProc *) NULL);
Tcl _Creat eCommand(i nterp, "ChCol",
(Tcl _CmdProc *) ChCol Proc, (CientData) NULL,
(Tcl _CndDel eteProc *) NULL);
Tcl _Creat eCommand(interp, "d eanupAndQuit",
(Tcl _CnmdProc *) d eanupAndQuitProc, (ClientData)NULL,
(Tcl _CndDel eteProc *) NULL);
Tcl _CreateCommand(interp, "rotate_ box",
(Tcl _CndProc *) rotate_boxProc, (CientData)NULL,
(Tcl _CndDel eteProc *) NULL);
Tcl _CreateCommand(i nterp, "MakeCube",
(Tcl _CmdProc *) MakeCubeProc, (ClientData) NULL,
(Tcl _CndDel eteProc *) NULL);
/*

* Specify a user-specific startup file to invoke if the application

*is run interactively. Typically the startup file is "~/.apprc"

* where "app" is the name of the application. If this line is deleted
* then no user-specific startup file will be run under any conditions.
*/

tcl _RcFil eName ="~/.nyapprc";

return TCL_OK;

Tcl_CreateCommand registers a user defined command with the Tcl interpreter interp in which the comme
be used. The second argument to Tcl_CreateCommand is the name of the command that will be used in 1
scripts. The third argument is the command procedure. The clientData is used to pass on address of objec
associated with the command and deleteProc spoecifies the procedure to be invoked when the command

It is used to free the object associated with the command as the clientData.

In this example we have created five commands which can be used in the Tcl script which is parsed with tl

of the Tcl interpreter.

Note that tcl_RcFileName is required to be set to run any startup files.

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (4 di 5) [04/12/2000 19.40.41]

Tcl/Tk Cookbook - Tcl/Tk and C

/*

*

*

* main --

*

* This is the main program for the application.

*

* Results:

* None: Tk_Main never returns here, so this procedure never

* returns either.

*

* Side effects:

* Whatever the application does.

*

*

*/

int

main(argc, argv)
int argc; /* Number of command-line arguments. */
char **argv; /* Values of command-line arguments. */

Tk_Main(argc, argv, Tcl_Applnit);
return O; /* Needed only to prevent compiler warning. */

}

Makefile

Copy and adopt the Makefile under ~cookbook/code/ch6 and compile to create a Tcl interpreter extended
your commands. If you execute the binary myapp a wish shell with this Tcl interpreter:

] myapp

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (5 di 5) [04/12/2000 19.40.41]

Tcl/Tk Cookbook - Tcl/Tk and C

Tcl/Tk Cookbook - Tcl/Tk and C

Step 3: Create Tk application to use user defined commands.

GUI

The following simple script creates a Tk based application which looks like:

R

¥

The application window has a top menubar with a pulldown menu to set the colour of the 3D ot
the Tk scale widget is used to specify an angle of rotation. The scrollbar is connected to the ca
widget.

frame .frl -width 18c -height 15.0c -bd 2 ;#main frame
#toplevel .fr1

pack .frl

frame .frl.menubar -relief raised -bd 2

pack .frl.menubar -padx 1 -fill x

menubutton .frl.menubar.graphics -text Graphics -underline 0 -menu \
frl.menubar.graphics.menu
button .fr1.menubar.gb -text Quit -underline 0 -com exit
pack .frl.menubar.graphics -side left
pack .fr1.menubar.gb -side right
#Graphics menu
menu .frl.menubar.graphics.menu
.frl.menubar.graphics.menu add cascade -label "Line Colour" \
-menu .frl.menubar.graphics.menu.fmenu

menu .frl.menubar.graphics.menu.fmenu
.frl.menubar.graphics.menu.fmenu add radiobutton -label "Magenta" \
-com {ChangeColour "Magenta"}
.frl.menubar.graphics.menu.fmenu add radiobutton -label "Yellow" \
-com {ChangeColour "Yellow"}

.frl.menubar.graphics.menu.fmenu add radiobutton -label "White" \
-com {ChangeColour "White"}

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (1 di 4) [04/12/2000 19.40.45]

Tcl/Tk Cookbook - Tcl/Tk and C

frame .frl.panl -width 2.0c -height 12.0c -bg black
frame .cfr -width 16.0c -height 12.0c -bd 1

pack .frl.panl .cfr -in .frl -side left -padx 2 -fill x

canvas .can -width 12.0c -height 11.8c -xscrollcommand ".xs set" \
-yscrollcommand ".ys set"

scrollbar .ys -command ".can yview"

pack .can .ys -in .cfr -side left -fill x -fill y

scrollbar .xs -orient horizontal -command ".can xview"
place .xs -in .fr1 -x 3.2c -y 13.2c -width 12.0c

scale .scal -label "rotate box throu" -bigincrenment 30 \
-fromO -to 360 -showal ue True -orient horizontal -tickinterval 0 \
-variable cval -com{rotate_box $cval}

pack .scal -in .frl.panl

tkwait visibility .scal
Set upPhi gs . can
MakeCube

proc ChangeColour { curcolour } {
ChCol $curcolour

}

Note the options for the scale widget. Processing is suspended by call to "tkwait" toawait until t
widget is visible. This ensure that the canvas widget is created before its X identifiers are acce:
Without it, PHIGS will try to open its workstation in a non-existent X window and will complain.

create this script in a file in the working directory. You can invoke your extended "wish" shell by
including the line

#1./myapp

as the first line of your script. Otherwise run myapp interactively from the command-line and sc
this script (ensure that the script file is executable). The result should be:

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (2 di 4) [04/12/2000 19.40.45]

Tcl/Tk Cookbook - Tcl/Tk and C

T¥l myapp

rotate box throu

0 aquars waorld!

You will find that PHIGS fails to update the workstation. You can force an update by sending ai
event by interacting with the scale or the pulldown menu.

Tk does not support 3D graphics nor does it support rotation of items displayed within the canv
widget. In this example PHIGS is used to achieve these functionality. The result of a rotation as

colour change looks like:

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (3 di 4) [04/12/2000 19.40.45]

Tcl/Tk Cookbook - Tcl/Tk and C

myapp

rotate box throu
14

I L
For the interested reader, we refer to Tk b&@&®D which is an object oriented framework for
graphical applications running under X with support for SGI GL etc. It is free but beware of doc

written in German.

=1r

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (4 di 4) [04/12/2000 19.40.45]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

' Tcl/Tk Cookbook - Tel/Tk

and FORTRAN

Purpose

This chapter shows how to communicate and interact with a FORTRAN
application via a Tk based user interface.

You will need

For this example you will require a F77 compiler. As before, Tcl/Tk scrip
described elesewhere in the previous chapters are not elaborated again

Dish to Serve Up

Create a simple fortran application to solve a quadratic equation. The
coefficients are input via the Tk interface.

Recipe

Tk script for this example is ~cookbook/code/ch7/quads.tcl. The
Corresponding FORTRAN code is ~cookbook/code/ch7/quads.f

1. create the FORTRAN application for solving a quadratic equation

2. create a simple Tk front-end for the application

3. Set the communication channel between the application and its frc

NAG F77 numerical library

A Tcl/Tk interface to the collection of example programs supplied with
Numerical Algorithm Group's FORTRAN 77 library is under
~cookbook/code/NAG. This Tk application filters the NAG example routin
according to the manual chapters, copies the example code into and the
data files to user's local directory. It allows the examples to be compiled
run and displays the results. Built-in interface supports browsing, editing
recompiling and reruning the example.

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap7.html (1 di 2) [04/12/2000 19.40.47]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

If you have access to NAG numerical library, you can download the
compressed tar fileagex77.tar.ZThe NAG library is not included in the
distribution, only its Tk interface. You will have to license that product
separately if you do not already have access to it.

=17 =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap7.html (2 di 2) [04/12/2000 19.40.47]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/NAG/nagex77.tar.Z

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

' Tcl/Tk Cookbook - Tcl/Tk and

FORTRAN

Step 1: FORTRAN application to solve a quadratic equation

C
CThis program solves the quadratic equation
C 2
C ax +bx+c=0
C
IMPLICITDOUBLE PRECISION (a-h,0-z)
COMMON IFLAG
c
PRINT *, 'Input the coefficients a,b,c’
READ *,a,b,c
CALL gsolve(a,b,c,x1,x2)
IF (IFLAG .EQ. 0) THEN
PRINT*'IFLAG =" IFLAG
PRINT *, 'ROOTS ARE REAL'
ELSE
PRINT*'IFLAG =" IFLAG
PRINT*'ROOTS ARE COMPLEX -- (RealPart, ImagPart) = (x1,x2)'
END IF
WRITE(UNIT=6, FMT=*)'x1 ="' x1," ','x2 =",x2
END
SUBROUTINE gsolve(a,b,c,x1,x2)
C+
C
C FUNCTIONAL DESCRIPTION:
C
C solves the quadratic equation
C
C input parameters a,b,c (DOUBLEPRECISION)
C
C-

IMPLICITDOUBLE PRECISION (a-h,0-z)
COMMON IFLAG
c
¢ compute the discriminant
c
disc = (b*b - 4*a*c)
PRINT*,'DISC : ',DISC
IF (disc .GE. 0) THEN
x1 = (- b + sqgrt(disc))/(2.0*A)
x2 = (- b - sgrt(disc))/(2.0*A)
iflag=0
ELSE
iflag =1
x1 = -b/(2*A)
x2 = sqrt(-disc)/(2*A)
END IF
RETURN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f1.html (1 di 2) [04/12/2000 19.40.48]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

END

Place this code in a filguads.fin your current working directory and compile it by typing at commanc

f77 -0 quads quads.f

The following is the output from running quads twice with two different sets of coefficients:

holly% quads
Input the coefficients a,b,c

256
DISC: -23.000000000000
IFLAG= 1

ROOTS ARE COMPLEX -- (RealPart, ImagPart) = (x1,x2)
x1 = -1.2500000000000 x2 = 1.1989578808282

holly% quads
Input the coefficients a,b,c

253
DISC: 1.0000000000000
IFLAG= 0

ROOTS ARE REAL
x1= -1.0000000000000 x2 = -1.5000000000000

Next steppresents the Tk front-end to this application.

=lvr

http://www.dci.clrc.ac.uk/Publications/Cookbook/f1.html (2 di 2) [04/12/2000 19.40.48]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

I Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Step 2: Create a Tk front-end for the equation solver

A simple Tk interface to the quadratic eqaution solver should have three entry widgets for the user to inp
values of the coefficients, labels to display the values of the roots and the discriminant etc.

The Tk script below creates an interface similar to:

=

gui_guads
Solutienofax*2 + bx +¢ =0
2+ I X+ =0
Xl = I
x? =
Snlve | Clear il |

Tk Script starts here

Place the code in your current working directory in a file named "quads.tcl”.

#!/usr/bin/wish -f

wm title . "gui_quads"

label .msg -text "Solution of ax*2 + bx + ¢ = 0"
pack .msg -padx 5 -pady 3 -ipadx 5 -ipady 5 -fill x
frame .f

pack .f -padx 5 -ipadx 5

Padding

The options -padx, -pady, -ipadx and -ipady take values specified in terms of number of pixels or units of
(m for millimetre, ¢ for centimetre).

The options -padx and -pady tell the packer to allow the specified space in the horizontal and vertical dire
between the slaves when the slaves are packed within a frame. This is known as external padding.

The options -ipadx and -ipady tell the packer to enlarge the slave window in the horizontal and vertical dii
by the given value before packing it within its master. This is known as internal padding.

External padding results in space between sibling widgets in a parent. Internal padding enlarges a slave
than its size calculated by the geometry manager (e.g a label widgetis made larger than the minimum wic
requires to display its label string).

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (1 di 3) [04/12/2000 19.40.50]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Back to Tk Script

Append the following to the last few lines of the script.

entry .f.a -relief sunken ;#for coefft. of x**2
label .f.x2 -text"x"2 +"

entry .f.b -relief sunken ;#for coefft. of x
label .fx -text"x+"

entry .f.c -relief sunken ;# for constant term
label .f.rhs -text" = 0"

pack .f.a .f.x2 .f.b .f.x .f.c .f.rhs -in .f -side left\
-padx 3 -pady 3 -ipadx 2 -ipady 2

frame .zeros

pack .zeros

frame .zeros.basel -bg red

frame .zeros.base2 -bg pink

pack .zeros.basel -in .zeros -padx 5 -pady 5 -side top
pack .zeros.base2 -in .zeros -padx 5 -pady 5 -side top
label .zeros.x1 -text "x1 ="

label .zeros.x1val -bg yellow ;#to display the value of first real root
;# or real part of the complex roots

label .zeros.x2 -text "x2 ="
label .zeros.x2val -bg yellow ;#to display the value of second real root
;# or imaginary part of the complex roots

pack .zeros.x1 .zeros.x1lval -side left -in .zeros.basel -padx 5 -pady 5
pack .zeros.x2 .zeros.x2val -side left -in .zeros.base2 -padx 5 -pady 5

#
frame .info
pack .info

frame .info.dum

pack .info.dum -side left

set w .info.dum

label $w.disc ;#label to display the discriminant

label $w.type ;#label to display the type of the roots (real or complex)

pack $w.disc -padx 5 -pady 5
pack $w.type -padx 5 -pady 5
#

foreach e {.f.a .f.b .f.c}{
bind $e {invokeQuads}
}

#

#

buttons

#

frame .bf

pack .bf -padx 5 -pady 5 -ipadx 4 -ipady 4 -fill x

button .bf.quit -text Quit -command {exit} ;#exit button to quit
button .bf.clear -text Clear -command clearEntries ;#Resets the entry fields
button .bf.solve -text Solve -command invokeQuads ;#calls "quads”

pack .bf.quit .bf.clear .bf.solve -side right \

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (2 di 3) [04/12/2000 19.40.50]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

-padx 5 -pady 5 -ipadx 3 -ipady 3

focus .f.a ;#set keyboard focus into first entry widget

The procedures invokeQuads and clearEntries are describechiextretep

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (3 di 3) [04/12/2000 19.40.50]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

' Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Step 3:Procedure definitions

Tcl Open

Tcl provides two commands exec and for creating new processes. Tcl open command creates a new proce:
usedfile I/O command$o communicate with the opened processes.

invokeQuads

Append all the Tcl/Tk script presented in this section to the quads.t@diligt listing below is interlaced with
explanation (in italics) of specific lines of script. We think this will help you understand the script better wouli
hear your comment.

proc invokeQuads { } {
set f [open |quads r+]

Tcl command open is called with | as the first character of the argument. This ensures that open is invoked
command pipeline. The rest of the argument quads is used by open to create the named process.

The returned identifier from open, f in this case, is used for trnsferring data to and from the subprocess.

foreach e {f.a .f.b .f.c}{
set entry [$e get]
if { [string compare $entry "] == 0} {
puts stdout "Some entry(ies) are null enter them Now \n"

close $f
return
}else {
puts $entry
}
}
flush $f

For each of the entry widgets ".f.a", ".f.b" and ".f.c", the "get" action gets the value entered. If the entry widg:
empty then the user is prompted for input. The pipe is closed and the process returns from the procedure. If
is non-null then it is written to the pipe. The pip#ished to pass the input values from the buffer to "quads".

Note that the entry widgets do not have the binding for the event.

gets $f in_prompt ;# Input the coefficients a,b,c

gets $f disc #DISC: 1.0000000000000

gets $fiflag ;#IFLAG= 0

gets $f aux_msg ;# ROOTS ARE REAL or ... Complex ...

gets $froots ;#x1= 2.0000000000000 x2 = 1.0000000000000
close $f ;# now you can close

The output buffer associated with quads is read to get one null-terminated string at a time and is assigned t
variable. These strings are messages generated by PRINT and WRITE commands by quads.

When all the output messages from quads are read, the pipe is closed.

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (1 di 3) [04/12/2000 19.40.53]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

set w .info.dum ;# a quick fix - reassignment avoids the need to declare
;#w as a global

if { [regexp {(COMPLEX|complex)} $aux_msg cmplx] == 1 }{
.zeros.x1 configure -text "Real Part"
.zeros.x2 configure -text "Imaginary Part"
$w.type config -text $aux_msg
}else {
.zeros.x1 configure -text x1
.zeros.x2 configure -text x2
$w.type config -text $aux_msg

regexp {(x1 = []*[+|-]*[0-9]*\.[0-9]*)} $roots vall
regexp {(x2 = [J*[*+]|-]*[0-9]*\.[0-9]*)} $roots val2

.zeros.x1lval configure -text $vall
.zeros.x2val configure -text $val2
$w.disc configure -text $disc

The lines of script above make repeated use of Tcl regexp command to get the values needed to update the
display the result of the computation.

First the string "aux_msg" is parsed to check if the roots are complex (search will look for the substring CON
or complex). If the substring "complex" is found then x1 nad x2 are presented as the real and imaginary par
two complex roots.

N gui_guads

Solutionofax*2+ X +c =0

|s X2 4 Izl | x4 IE =0

I H=zal Part Ixi = A2 S0 (b I

Imaginary Part x2 = 0@5605682505013

DESC - — 108 00O b{ k)

ROOTS ARE COMPLEX — (RealPart. ImagPart} = {x1.x2}

Soke Clear Ol
If not x1 and x2 are presented as the two real roots.
x| gui_nuads
SHutionelax"2 + bX +¢ =0
|2 X2+ IE X+ l] =0

I :: |I1 = AR AR 160G I

X2 w2 = 2060025 4nITaa4

OFSG: 12 (0000RIC00MME

ROOTS ARE REAL

Soke | Clear | Ol |

The gui also displays the discriminant. Tk widget configure action is invoked to set the label strings.

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (2 di 3) [04/12/2000 19.40.53]

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Procedure clearEntries

proc clearEntries { } {
foreach e {.f.a .f.b .f.c}{
$e delete 0 end
}

The procedure "clearEntries”, deletes any input within the entry widgets by deleting all the characters from f
position. You can invoke this and keep repeating the call to quads.

G

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (3 di 3) [04/12/2000 19.40.53]

Tcl/Tk Cookbook - Tcl/Tk and C++

_ UW Tcl/Tk Cookbook - Tcl/Tk

and C++

In the oven!

=17 =

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap8.html [04/12/2000 19.40.56]

Tcl/Tk Cookbook - Adding Extensions

”T Tcl/Tk Cookbook - Adding Extensions

Purpose

This chapter describes how to build a Tcl interpreter that will include the Tcl/Tk exetension libraries of your
Without an integrated versions of tteésh andwish for each extension you wish to make use, you will be requ
to runtclshandwish, usually prepended with the Tcl/Tk extension name, that are compiled specifically for tr
extension. Otherwise the commands of that Tcl/Tk extension will not be recognised. Tcl/Tk, as we already
chapter 6, provides the template for including Tcl/Tk extension libraries and create an integrated version.

You will need

You will require to download, untar and built the source code of the extensions you want to integrate.

Note that if you want to use itcl with C++ as your application programming interface you should compile yc
extensions with the version of Tcl and Tk libraries in the itcl distribution. To do this build itcl first.

Dish to Serve Up

Create an integrated Tcl_Applnit for all the Tcl/Tk extension libraries BLT and Expect.

You will need

Recipe

The template for this script is tkApplnit.c in the Tcl/Tk source distribution (look under the directory in whict
Tk source code is placed - something like ~pdsrc/TclTk/tk4.0). Make a copy of tkApplnit.c into your current
working directory. Call it STcllnit.c (This source along with the Makefile template etc. are under
~cookbook/code/ch9)

In the script belowbold letters are used to highlight customised parts in the template code given below:

STclinit.c

#ifndef lint

static char sccsid[] = "@(#) tkApplnit.c 1.12 94/12/17 16:30:56";
#endif /* not lint */

#include "tcl.h"

#include "tk.h"

extern char *exp_argvO0; /* For expect */

/*

* The following variable is a special hack that is needed in order for
* Sun shared libraries to be used for Tcl.

*/

#ifdef NEED_MATHERR

extern int matherr();

int *tcIDummyMathPtr = (int *) matherr;
#endif

/*

*

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (1 di 4) [04/12/2000 19.41.02]

Tcl/Tk Cookbook - Adding Extensions

*

* Tcl_Applnit --
*

This procedure performs application-specific initialization.
Most applications, especially those that incorporate additional
packages, will have their own version of this procedure.

*
*
*
*
* Results:

* Returns a standard Tcl completion code, and leaves an error
* message in interp->result if an error occurs.
*

*

*

*

*

Side effects:
Depends on the startup script.

*/

int
Tcl_Applnit(interp)
Tcl_Interp *interp; /* Interpreter for application. */

{
Tk_Window mainwin;
mainwin = Tk_MainWindow(interp);

if (Tcl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

if (TK_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}

/*

* Call the init procedures for included packages. Each call should
* look like this:

*

* if (Mod_Init(interp) == TCL_ERROR) {

* return TCL_ERROR;

“}

*

* where "Mod" is the name of the module.

*/

if (Blt_Init(interp) == TCL_ERROR) {
return TCL_ERROR;

}
if (Exp_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}

/*

* Call Tcl_CreateCommand for application-specific commands, if
* they weren't already created by the init procedures called above.
*/

/*

* Specify a user-specific startup file to invoke if the application

*is run interactively. Typically the startup file is "~/.apprc"

* where "app" is the name of the application. If this line is deleted
* then no user-specific startup file will be run under any conditions.
*/

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (2 di 4) [04/12/2000 19.41.02]

Tcl/Tk Cookbook - Adding Extensions

tcl _RcFil eName ="~/.stclrc";

return TCL_OK;

}

/*

*

*

* main --

*

* This is the main program for the application.

*

* Results:

* None: Tk_Main never returns here, so this procedure never

* returns either.

*

* Side effects:

* Whatever the application does.

*

*

*/

int

main(argc, argv)
int argc; /* Number of command-line arguments. */
char **argv; /* Values of command-line arguments. */

{

Tk_Main(argc, argv, Tcl_Applnit);
return O; /* Needed only to prevent compiler warning. */

The comment immediately preceeding the first boldface section in the code above gives the exact Tcl synt
calling init procedures for Tcl/Tk extension modules. This is followed to include BLT_Init (for BLT library wi
mega widgets and commands) and Exp_Init (for Expect).

A template for the Makefile called Make_stcl is under ~cookbook/code/ch9. Copy this makefile template, ¢
it for your site and compile STcllnit.c by typing:

make -f Make_stcl

The resultant executable is calkdl. You can invoke this interactively. The result would be similar to (the wis
shell is placed inside the window from which it invoked just to capture both windows in one picture):

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (3 di 4) [04/12/2000 19.41.02]

Tcl/Tk Cookbook - Adding Extensions

7| xterm o

hollyk% cd cooks=
hollyx cd kblts=
hollys ../ exa=x stcl

% source gra_exl,tcl
% hollyk |, exa=/stcl

w0

rjj stel 5

You can use this shell to execute Expect and or BLT commands. Two very simple applications, one for Ex
one for BLT graph widget are given in the next chapter.

=1 ¥ =&

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (4 di 4) [04/12/2000 19.41.02]

Tcl/Tk Cookbook - Using Extensions

"T Tcl/Tk Cookbook -

Using Extensions

Purpose

This is a brief description of using the BLT graph widget with some
contributed software associated with it. The contributed modules are not
described as that is beyond the scope of this cookbook.

You will need

It is assumed that you have built a Tcl interpreter that includes the Tcl/Tl
extensions BLT and Expect. You can of course try the example using bli
on its own.

Dish to Serve Up

Display two curves in a BLT graph widget and set zoom.

Recipe

This example can be found in ~cookbook/code/ch10

0o write the script for creating the blt-graph widget and two simple cui
to display within.

0 set zooming

Acknowledgement

This example is based on the contributed Tcl/Tk extension BLT.

=17 |=

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap10.html [04/12/2000 19.41.04]

Tcl/Tk Cookbook - Using Extensions

uT Tcl/Tk Cookbook - Using

Extensions

Step 1. Script

Create a script file bltex.tcl in your current working directory for this exaniple.script is
interlaced with description text in italics.

blt _graph .g
.g config -title {Do they meet?}
pack .g -padx 5 -pady 5

create and pack an instance ".g" of the blt_graph with title "Do they meet?"

setx{1.2.3.4.5.6.7.8.9}
sety {}
foreach i $x {
set yt [expr pow($i,2)*(1-3$i)]
lappend y $yt

.g element create curvel -symbol diamond -x $x -y $y

The variable x is set to a list of values ranging from 0.1 to 0.9 and the variable y is initiali
a null list.

For each value i of x, ytis calculated as a simple arithmetic expression. Note that the Tc
command and the Tcl math expression pow are used. The computed value of yt is appe
using the Tcl list command lappend.

The last line above invokes the widget command .g for creating an element which is refe
as curvel. The options -x and -y specify the list of (x,y) points on the curve.

The "-symbol" option takes the value diamond and will highlight the nodes of curvel witt
diamond shaped markers.

sety2 {}

foreach i $x {
set yt [expr pow($i,2)]
lappend y2 $yt

}

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (1 di 3) [04/12/2000 19.41.07]

Tcl/Tk Cookbook - Using Extensions

.g element create curve2 -symbol cross -x $x -y $y2

The script above creates a second curve curve2, with nodes highlighted by a cross martl

button .quit -text Quit -command exit
pack .quit -fill x

Place a button to invoke the exit command.

Make this file bltex.tcl executable. If you have a super Tcl that includes blt (see chapter !
can invoke it in interactive mode by typing stcl at the commandéingufe you give the corre
pathname to stkl Alternatively you can invoke blt_wish.

At the stcl or blt_wish prompt type source bltex.tcl. The result will be:

al xterm

hollu®% cd cooks
holly%s cd blts=

hollys .. exax stcl

% source gra_exl.tcl
hollyx .. exa=/stcl
% source gra_exl,.tcl

¥ =
i rjj stcl
Do they meet?
0.8 — 4 curved
M curve?
0.6]
= 0.4
0. &]
|
I | | I | | I I 1
0.z 0.4 0.6 0.8
X
Cuit

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (2 di 3) [04/12/2000 19.41.07]

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (3 di 3) [04/12/2000 19.41.07]

Tcl/Tk Cookbook - Using Extensions

"T Tcl/Tk Cookbook -

Using Extensions

Step 2: zooming

Copy the Tcl script fildeatures.tchwhich is placed under
~cookbook/code/ch10. This script is part of the BLT distribution code an
copyright statements should be preserved.

You can either append the following three lines of script to your file bltex
or you can issue these commands at the stcl prompt if you have invokec
interactively.

source features.tcl
SetZoom .g
SetActiveLegend .g

The result of the command SetActiveLegend .g is that as you move the |
cursor within the legend window at the top right-hand corner, one or the
of the curves will turn to red depending on whether the mouse cursor is «
legend 1 or legend 2.

SetZoom sets support for the user to select a rectangular region within t|
graph widget to zoom. The region is selected by pressing the left mouse
at the top left hand corner of the region and dragging the mouse, with bt
kept pressed, towards the bottom right and releasing the button at the el
the region of interest. The result of such an user action is:

http://www.dci.clrc.ac.uk/Publications/Cookbook/b2.html (1 di 2) [04/12/2000 19.41.09]

Tcl/Tk Cookbook - Using Extensions

2 | stcl
Do they meet?
/ 4 curvel
| M curve?
0.3
e
0.2
0.1
I I ! I
0.6 0.7 0.8
X
Quit

http://www.dci.clrc.ac.uk/Publications/Cookbook/b2.html (2 di 2) [04/12/2000 19.41.09]

Tcl/Tk Cookbook - Example source code

Tcl/Tk Cookbook - Example
source code

« Examples for Chapter 1

« Examples for Chapter 2

« Examples for Chapter 3

« Examples for Chapter 4

« Examples for Chapter 5

« Examples for Chapter 6

« Examples for Chapter 7

« Examples for Chapter 8

« Examples for Chapter 9

« Examples for Chapter 10

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ [04/12/2000 19.41.10]

Index of cookbook/code/chl/

Index of cookbook/code/chl1/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
Examples/ 26-Apr-96 11:.37 -

Make _htcl 26-Feb-96 12:49 1K
contents 26-Feb-96 12:49 1K

eb.tcl 26-Feb-96 12:49 5K

htclinit.c 26-Feb-96 12:49 4K
hyper.tcl 26-Feb-96 12:49 7K
reftcl.tex 26-Feb-96 12:49 24K

#AGOCG Tcl/Tk Cookbook
#Basics of Tcl
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.c & *.tcl) for running the
Basics of Tcl application. The Tcl wish shell is extended to include two
commands that handle the spawning of a web browser for looking at the
Tcl and Tk HTML documents. The extended wish shell is called htcl. To compile
htcl for your architecture, customise the makefile Make_htcl and to make
type

make -f Make_htcl

It is assumed that the executable "htcl" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

For this application, if htcl is not in the same directory, change the first
line in the file hyper.tcl to point to htcl.

Ensure that you can execute the Tcl scripts.

Run the application by typing hyper.tcl at command level of your window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/ [04/12/2000 19.41.11]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/Examples/
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/Make_htcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/contents
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/eb.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/htclInit.c
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/hyper.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/reftcl.tex

Index of cookbook/code/ch2/

Index of cookbook/code/ch2/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
av.tcl 26-Feb-96 12:49 1K

splt/ 26-Apr-96 11:37 -

#AGOCG Tcl/Tk Cookbook
#Basics of Tk
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for running the
Basics of Tk applications (Chapter 2 of the cookbook).
Ensure that you can execute the applications.

Run the application by typing av.tcl at command level of your window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/ [04/12/2000 19.41.12]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/av.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/splt/

Index of cookbook/code/ch3/

Index of cookbook/code/ch3/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
editor.tcl 26-Feb-96 12:49 5K
filesel.tcl 26-Feb-96 12:49 8K
message.tcl 26-Feb-96 12:49 1K
popup.tcl 26-Feb-96 12:49 3K

#AGOCG Tcl/Tk Cookbook
#Simple Text Editor
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the Text editor (Chapter 3 of
the cookbook).

Ensure that you can execute the applications.

Run the application by typing editor.tcl at command level of your window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/ [04/12/2000 19.41.12]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/editor.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/filesel.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/message.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/popup.tcl

Index of cookbook/code/ch4/

Index of cookbook/code/ch4/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
eu.tcl 26-Feb-96 12:49 14K

mo.tcl 26-Feb-96 12:49 1K

#AGOCG Tcl/Tk Cookbook
#Using the Canvas
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the applications described
in "Using the Tk Canvas", Chapter 4 of the Tcl/Tk Cookbook.
Ensure that you can execute the source code.

Type eu.tcl at command level of your window to run the Western Europe
application. Type mo.tcl to run the animation one.

The Western Europe data was adopted from the Phigs Programming Manual by

Tom Gaskins. It is adopted for the Tcl and Tk coordinate system by
the authors of this cookbook.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/ [04/12/2000 19.41.13]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/eu.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/mo.tcl

Index of cookbook/code/ch5/

Index of cookbook/code/ch5/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
bitmaps/ 26-Apr-96 11:38 -

draw.tcl 26-Feb-96 12:49 4K

#AGOCG Tcl/Tk Cookbook
#Canvas Revisited
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the application described

in "Canvas Revisited", Chapter 5 of the Tcl/Tk Cookbook.

Ensure that you can execute the source code.

Run the application by typing draw.tcl at command level of your window.

The bitmaps used are under the directory ./bitmaps. The bitmaps belong
the public domain xfig program.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/ [04/12/2000 19.41.14]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/bitmaps/
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/draw.tcl

Index of cookbook/code/ch6/

Index of cookbook/code/ch6/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
Makefile 26-Feb-96 12:49 1K
myApplnit.c 26-Feb-96 12:49 5K
phig.tcl 26-Feb-96 12:49 2K
phigscbs.c 26-Feb-96 12:49 5K

#AGOCG Tcl/Tk Cookbook
#Tcl/Tk and C
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.c & *.tcl) for the example

described in Chapter 6 of the Tcl/Tk Cookbook. The example shows how user
can write C routines and register them as commands with Tcl. It also
demonstrate using other graphics packages with Tk.

The public domain X11 Release 5 PHIGS sample implementation is used. You will
require this PHIGS package for your system to run this example. Please refer

to X documents and Tom Gaskins PHIGS Programming Manual if you want to use
PHIGS.

The PHIGS box with the text "It's a square world" in the routine "MakeCube" is

adapted from "A Practical Introduction to PHIGS and PHIGS Plus".

To compile the extended Tk with user defined commands that handle calls to
PHIGS, customise the makefile Make and to make type
make -f Makefile

It is assumed that the executable "myapp" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

For this application, if myapp is not in the same directory, change the first
line in the file phig.tcl to point to myapp.

Ensure that you can execute the Tcl scripts.

Run the application by typing phig.tcl at command level of your window.
Bug:

Please note that when PHIGS draws in the Tk canvas, expose event doesn't
seem to force redrawing of structures in the PHIGS workstation. Force an

event by interacting with either the Tk scale or by selecting the line width
or colour from the menubar.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/ [04/12/2000 19.41.15]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/Makefile
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/myAppInit.c
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/phig.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/phigscbs.c

Index of cookbook/code/ch7/

Index of cookbook/code/ch7/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
quads.f 26-Feb-96 12:49 1K
quads.tcl 26-Feb-96 12:49 2K

#AGOCG Tcl/Tk Cookbook
#Tcl/Tk and FORTRAN
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.f & *.tcl) for running the

simple application that provides a Tk interface to a FORTRAN application.

To compile the FORTRAN code for your machine, you will need to have access
to a FORTRAN compiler. Compile and create the fortran executable "quads".

If you call the Fortran executable as anything other than quads, please do
ensure that you change the reference to this executable at the appropriate
line in the Tcl file gui_quads.tcl

Ensure that you can execute the Tcl scripts.

Run the application by typing gui_quads.tcl at command level of your window.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/ [04/12/2000 19.41.16]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/quads.f
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/quads.tcl

Index of cookbook/code/ch8/

Index of cookbook/code/ch8/

Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch8/ [04/12/2000 19.41.17]

Index of cookbook/code/ch9/

Index of cookbook/code/ch9/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
Make _stcl 26-Feb-96 12:49 1K
SupTclinit.c 26-Feb-96 12:49 4K

#AGOCG Tcl/Tk Cookbook
#Buildin Extensions
#Authors Lakshmi & Venkat Sastry

This directory contains a C source file and a Makefile template that
can be modified to compile a wish shell that will include the Tcl/Tk
extensions BLT and Expect. You can adopt this to include any other
Tcl/Tk extension as well. Please note that the original C source file
template is part of te Tcl/Tk core distribution.

To compile the extended Tk, customise the makefile Make_stcl and to make type

make -f Make_stcl

It is assumed that the executable "stcl" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

To test or use this extended version of the wish shell type "stcl" at command
level of your window. Once this "stcl" is running, you can give it any
Tcl, Tk, BLT or Expect command. Include

#l/path/to/stcl
to call this from a script file.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/ [04/12/2000 19.41.17]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/Make_stcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/SupTclInit.c

Index of cookbook/code/ch10/

Index of cookbook/code/ch10/

Name Last modified Size Description
Parent Directory 26-Apr-96 11:38 -
blt.tcl 26-Feb-96 12:49 1K
features.tcl 26-Feb-96 12:49 6K
ftp.tcl 26-Feb-96 12:49 1K

#AGOCG Tcl/Tk Cookbook
#Using Expect & BLT
#Authors Lakshmi & Venkat Sastry

This directory contains Tcl source files for running a simple example of
Expect (ftp.tcl) and the BLT graph widget. You will need to have the
extended (super) "stcl" to run these examples.

It is assumed that the executable "stcl" is in the directory ../ch9. If

you are running it from elsewhere, provide the appropriate pathname to it
by including

#!/path/to/stcl

to call stcl from the script files.

ftp.tcl has to be edited to include the correct address of the ftp server
you wish to access as well as email address for loggin as an

anonymous account.

You can invoke "stcl" and at the "stcl" prompt, source either ftp.tcl or
blt.tcl as you choose.

The features.tcl belongs to the BLT source distribution and all copyright
belong to the author of that script.

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/ [04/12/2000 19.41.18]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/blt.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/features.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/ftp.tcl

	www.dci.clrc.ac.uk
	A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit
	Tcl/Tk Cookbook - Introduction
	Tcl/Tk Cookbook - Bibliography
	Tcl/Tk Cookbook - Housekeeping
	Tcl/Tk Cookbook - Getting Started
	Tcl/Tk Cookbook - Basics of Tcl
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and C++
	Tcl/Tk Cookbook - Adding Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Example source code
	Index of cookbook/code/ch1/
	Index of cookbook/code/ch2/
	Index of cookbook/code/ch3/
	Index of cookbook/code/ch4/
	Index of cookbook/code/ch5/
	Index of cookbook/code/ch6/
	Index of cookbook/code/ch7/
	Index of cookbook/code/ch8/
	Index of cookbook/code/ch9/
	Index of cookbook/code/ch10/

