
 Tcl/Tk Cookbook

Lakshmi Sastry
Advanced Interactive Systems Group
Information Technology Department
CLRC Rutherford Appleton Laboratory, Chilton, Didcot. OX11 0QX

Venkat VSS Sastry
Department of Applied Mathematics and Operational Research
Cranfield University, RMCS Shrivenham, Swindon. SN6 8LA

Contents

 Introduction

 Housekeeping

 Getting Started

 Chapter 1: Basics of Tcl

 Chapter 2: Basics of Tk

 Chapter 3: Simple Text Editor

 Chapter 4: Using the Canvas

 Chapter 5: Canvas Revisited

 Chapter 6: Tcl/Tk and C

A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit

http://www.dci.clrc.ac.uk/Publications/Cookbook/index.html (1 di 2) [04/12/2000 19.37.51]

http://www.dci.clrc.ac.uk/Person/M.Sastry
mailto:sastry@rmcs.cranfield.ac.uk

 Chapter 7: Tcl/Tk and FORTRAN

 Chapter 8: Tcl/Tk and C++

 Chapter 9: Adding Extensions

 Chapter 10: Using Extensions

 Bibliography

 Source code for the examples

Tcl/Tk was developed by Professor John Ousterhout. The examples in this cookbook
also utilise contributed Tcl and Tk modules which are acknowledged.

Lakshmi Sastry wishes to thank UK Advisory Group On Computer Graphics for the
support for developing this cookbook.

The authors wish to thank Victoria Marshall for designing the icons.

Please send any comments or suggestions about this Cookbook to
M.Sastry@rl.ac.uk.

A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit

http://www.dci.clrc.ac.uk/Publications/Cookbook/index.html (2 di 2) [04/12/2000 19.37.51]

http://www.dci.clrc.ac.uk/Person.asp?V.A.Marshall
mailto:M.Sastry@rl.ac.uk

 Tcl/Tk Cookbook -

Introduction

Tcl, Tool Command Language, is an interpreted language with programming
features, available across platforms running Unix, Windows and the Apple
Macintosh operating system. Tk, the associated toolkit is an easy and efficient way of
developing window based applications. Application tasks are split into modules and
any new application specific task is written and compiled as C or C++ program and
exported as a new Tcl command. Then a Tcl script, a series of existing and new Tcl
commands, is composed to make the overall application. The scripting language,
much like any shell language, has the ability to access and execute any other
programs. Therefore several Tcl based applications could be made to work together
to create or extend into a new application.

Tcl consists of few syntax rules and a (still growing) set of core commands. Tk
provides a higher level application programming interface for developing interactive
widgets based applications, particularly for those who wish to concentrate on the
functionality of their application and have no need to gain indepth programming
expertise in the underlying window system and/or verbose toolkits such as
OSF/Motif. Tcl/Tk is free, available now on Apple Macintosh and Windows and has
a wide user base with a rich and growing mass of useful contributed software. The
wider availabilty, usage and ease of teaching and learning of Tcl/Tk makes it the
most appropriate tool for teaching the principles of Graphical User Interface design
and development.

Why This Cookbook?
The purpose of this cookbook is to provide a suite of simple examples with annotated
comments so a novice user could quickly climb the learning curve by means of
pattern matching. It is largely aimed at readers who are new to developing toolkit
based applications and at those who only need to know how to develop simple
interfaces and have relatively short time to achieve that. The emphasis is on enabling
the readers gain familiarity with Tcl/Tk programming within a very short-time so
they can proceed to develope their own. This cookbook, by this very nature, is not
exhaustive.

Tcl/Tk Cookbook - Introduction

http://www.dci.clrc.ac.uk/Publications/Cookbook/intro.html (1 di 2) [04/12/2000 19.38.00]

Tcl/Tk Books
For a comprehensive description of Tcl/Tk together with the underlying philosophy
of design, the reader is recommended to "Tcl and the Tk Toolkit". For exhaustive
programming examples the reader should consult "Practical Programming in Tcl and
Tk". Readers may also be interested in looking up "Exploring Expect" which
describes in detail Expect, which can be used to automate, for instance, routine
system administration tasks.

It is worth noting that Tcl/Tk is evolving and valuable contributions towards
extending its scope continue to grow. Hence the most up to date source of
information for Tcl/Tk as well as the extensions is the accompanying manual pages.

Organization of the Cookbook

This introduction is followed by a brief "Housekeeping" information which is
suceeded by a short section on "Getting Started" with Tcl/Tk. The rest of the book is
divided into individual chapters each of which takes the reader through examples that
strive to provide an appreciation of Tcl and Tk and some extensions.

"Basics of Tcl" is set up to make use of the excellent HTML documents available on
the public domain as an additional and detailed source of information. You can set up
your favourite HTML browser (Mosaic or Netscape).

List of references is appended at the end.

Tcl/Tk Cookbook - Introduction

http://www.dci.clrc.ac.uk/Publications/Cookbook/intro.html (2 di 2) [04/12/2000 19.38.00]

 Tcl/Tk Cookbook -

Bibliography

Tcl and the Tk Toolkit, John K Ousterhout, Addison-Wesley Publishing Company,
1995.

Practical Programming in Tcl and Tk, Brent B Welch, Prentice Hall PTR, 1995.

Exploring Expect, Don Libes, O'Reilly and Associates, 1995.

Visual Design with OSF/Motif, Shiz Kobara, Addison-Wesley Publishing
Company, 1991.

Phigs Programming Manual, Tom Gaskins, O'Reilly and Associates Inc., 1992.

A Practical Introduction to PHIGS and PHIGS Plus, TLJ Howard et al,
Addison-Wesley Publishing Company, 1991

Tcl/Tk Cookbook - Bibliography

http://www.dci.clrc.ac.uk/Publications/Cookbook/ref.html [04/12/2000 19.38.03]

 Tcl/Tk Cookbook -

Housekeeping

Purpose
This section gives you information on where to get Tcl/Tk, its extensions,
source for this cookbook and its examples and some other information we
think worth noting if you are setting out to compile and install Tcl/Tk.

Where to get Tcl and Tk and extensions
The primary site for Tcl and Tk distributions is

ftp://ftp.cs.berkeley.edu/ucb/tcl

but the distributions along with most of the extensions can be obtained from
the mirror sites

ftp://ftp.src.doc.ic.ac.uk/packages/tcl/ and ftp://ftp.funet.fi/pub/languages/tcl/

[We found the latter more up to date].

The above form is a Universal Resource Location which you can use in a
World Wide Web browser such as mosaic or netscape to access the site. A
directory listing will be presented using which you can fetch the files.

Alternatively you can use FTP (File Transfer Protocol) and login to the host
whose name follows "ftp://" (e.g., ftp.funet.fi) as anonymous, give your
electronic mail address as password and fetch the files from the directories
whose pathnames follow the respective host name (e.g., /pub/languages/tcl).

You can use archie service to get a list of other anonymous FTP servers. Send
the message Help via an electronic mail to archie@archie.sura.net to get
information on how to use this service.

If you do not have direct FTP access please send the message Help by an
electronic mail to ftpmail@decwrl.dec.com for directions.

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (1 di 6) [04/12/2000 19.38.08]

Tcl and Tk on World Wide Web
Readers of this cookbook may also be interested to visit
http://www.geog.le.ac.uk/argus/ and
http://web.cs.ualberta.ca/~wade/Auto/Tcl.html.

HTML & Latex Documents
Compressed tar file of Tcl/Tk manual pages in Hypertext Markup Language
are available from ftp://ftp.funet.fi/pub/languages/tcl/contrib/docs. The Tcl/Tk
Reference Guide (latex document) can also be fetched from the same source.

Newsgroups
The comp.lang.tcl is an active forum for Tcl/Tk information exchange.
Announcements regarding Tcl/Tk and other extensions are posted regularly in
this.

Extensions and Contributed Software
Note: Please refer to the README documents that accompany contributed
software for information on authorship and copyrights. The same are
acknowledged here.

There is so much of useful and well documented Tcl/Tk extensions, that it is
impractical to list them here (let alone use them). There is the inherent danger
in this that like XF (see below), some of these may not be maintained for one
reason or another. There is also the case of many of the contributed modules
address the same issue with different approaches (e.g., hush, itcl, object-tcl all
provide a C++ binding). This is proving to be much more difficult to handle in
a short-term project like this as the name of the game is to wait and see before
taking the plunge. For these reasons, we have selected BLT-1.9, Expect-5.19,
itcl2.0 as the three Tcl/Tk extensions we use in this cookbook (apart from a
fileselectionbox from earlier days) to show the user how to make use of them.

BLT, an extension library for Tk, contains additional widgets such as the
versatile blt-graph and commands such as drag-and-drop. Expect is a Tcl based
application for automating routine system adminstration tasks and itcl2.0
provides a C++ binding for Tcl/Tk as well as a set of widgets.

TclX (Extended Tcl), Tcl-DP (Tcl-Distributed Programming) and Tix (set of
mega widgets) are also popular. Blt based application xelem (an interactive
application about periodic table) is interesting.

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (2 di 6) [04/12/2000 19.38.08]

The latest versions of all these contributed software, apart from expect, are at
ftp.funet.fi. The expect.readme at that ftp site gives instructuions on how to get
expect.

Jumping the compilation gun
All the information under this heading can be found (and described in greater detail
in relevant README files and also in the later chapters of the books by Ousterhout
and Welch. However we felt that it is worthwhile to draw attention to these at the
beginning to help the setting up of Tcl/Tk at your site.

Issue 1:

If you are planning on compiling Tcl7.4 and Tk4.0 with several other
extensions, it may be useful to note that Tcl/Tk distribution contains the
template to integrate the extensions and provide a unified wish shell from
which the commands and widgets of the extensions can also invoked along
with the core Tcl/Tk commands. If you do not have an integrated wish, then
for each extension you want to use, you will find yourself invoking a wish
compiled for that extension - for instance blt_wish for using blt based
applications or itkwish for itcl. Chapter 9 describes how to achieve this
integration.

Another important point to note if you wish to use C++ as your application
development language, you would want to use itcl but you may also want to
provide blt, expect as well as cater to those wanting to use C as their
application language. itcl, to quote their developers,

".... Tcl are procedures and global variables, and all of these building blocks
must reside in a single global namespace. There is no support for protection or
encapsulation.

[incr Tcl] introduces the notion of objects. Each object is a bag of data with a
set of procedures or "methods" that are used to manipulate it. Objects are
organized into "classes" with identical characteristics, and classes can inherit
functionality from one another.

Classes and/or related procedures can also be encapsulated in their own
"namespace". A namespace is a collection of commands, variables, classes and
other namespaces that is set apart from the usual global scope...............

With vanilla Tcl, each extension must add its commands and variables at the
global scope. Extension writers are encouraged to add a unique prefix to all of
the names in their package, to avoid naming collisions. Extensions can now sit
in their own namespace of commands and variables, and sensitive elements
can be protected from accidental access."

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (3 di 6) [04/12/2000 19.38.08]

Tip 1:

In practice, this would mean that itcl requires its own version of Tcl/Tk with
support for namespaces requiring the use of the version of Tcl/Tk that comes
in the distribution of itcl. Therefore if you wish to integrate itcl with other
Tcl/Tk extensions/applications you have to use the itcl version of Tcl/Tk as the
basis for all of them rather than the original.

Issue 2:

Send is a powerful Tk command which allows any Tk application on a display
to communicate with any other Tk application on the display. the sending
application can either to retrieve information about the target application or
change the state of that target application by invoking an arbitrary Tcl script in
it . [Chapter 2 provides an example of using send.]

This mechanism provides both the opportunity to build powerful cooperating
multimedia hypertools as well as a potential security risk. We recommend the
reader to Chapter 23 of Professor Ousterhoust book . In case you have not got
access to the book, much of his description on the security issue is quoted here:

" ...any application that uses your display can send scripts to any Tk
application on that display, and the scripts can use the full power of Tcl to read
and write your files or invoke subprocesses with the authority of your
account.....

...you can protect yourself fairly well if you employ a key-based protection
scheme for your display such as xauth which generates an obscure
authorization string and tells the server not to allow an application to use the
display unless it can produce the string. Typically the string is stored in a file
that can be read only by a particular user, so this restricts the use of the display
to the one user. If you want to allow other users access your display, you can
give them a copy of your authorization file or you can change the protection on
your authorization file so that it is group-readable.

... many people use xhost program which specifies a a set of machine names to
the server and any process running on any of those machines can establish a
connection to the server. Anyone with an account on any of those listed
machines can connect to your server. To prevent these people from sending to
your applications and abusing your account, Tk checks to see if xhost-style
protection is used on the display; if so, Tk refuses to accept incoming send
commands. If you currently use xhost for protection, you should learn about
xauth and switch to it as soon as possible."

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (4 di 6) [04/12/2000 19.38.08]

Tip 2:

If you want to use the send command even though you are using xhost for
protection, before compiling Tk, turn off the security check in the Tk Makefile
by commenting out the line SECURITY_FLAGS = -DTK_NO_SECURITY. The
Makefile then would have the following

SECURITY_FLAGS =
#SECURITY_FLAGS = -DTK_NO_SECURITY

allowing for send to be used under the xhost protection.

Cookbook Source
Self-contained versions of this cookbook and the source code for the
associated examples are available:

Cookbook (Zipped tar file, 1.56KB)❍

Source code (Zipped tar file, 44.38KB)❍

The examples in this cookbook are authored using Tcl7.4 and Tk4.0. They are
developed and tested on Sun Microsystems Sparcstations running SunOS 5.4,
SunOS 5.3 and SunOS 4.1.3.

Note 1: The examples for Chapters 1, 6-9 (inclusive) require compiling parts
of the examples. Templates for the Makefile is provided in each chapter.
Ensure that any customization you make is reflected in the Tcl source files in
that chapter, that invoke the compiled parts.

Note 2: It is assumed that Tcl/Tk in your site is installed under /usr/bin. If that
is not the case, you should replace the line #!/usr/bin/wish -f, in the source
code of examples with an appropriate pathname {The "-f" option is not
required for versions of Tk above 3.6}. If you need to change the pathname to
the wish binary, note that some Unix systems cannot handle the first line of a
script file when it exceeds 32 characters. To avoid this, follow the trick posted
in comp.lang.tcl by Kevin Kenny. Replace the line #!/usr/bin/wish -f with the
following two lines:

#!/bin/sh
exec /some/very/long/path/to/wish -f "$0" $(1+"$$@"}

Note 3: Basics of Tcl, Chapter 1 is set up to invoke the mosaic browser to view
tcltk-man-html html documents. You will require to set the two variable
Hyper(browser) and Hyper(html) in the procedure CreateSynWin
~cookbook/code/BTCL/eb.tcl

Please refer to Getting Started for how to run tclsh, wish as well as the

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (5 di 6) [04/12/2000 19.38.08]

http://www.dci.clrc.ac.uk/Publications/Cookbook/Downloads/cookbook.tar.gz
http://www.dci.clrc.ac.uk/Publications/Cookbook/Downloads/Lakshmi.tar.gz

examples.

Tcl7.5a2 and Tk4.1a2
The latest versions of Tcl and Tk are 7.5a2 and Tk4.1a2. The examples in here
are simple enough to run on these later versions without modifications. The
current release of the distribution also contain ports of both Tcl and Tk for the
Windows and Macintosh environments.

Note: Please note that the examples in this cookbook use Unix specific
commands exec and date as well as the Tcl file commands which are available
only on most Unix workstations. These need to be replaced with appropriate
ones available on the Pc and Macintosh platforms. The XBM bitmap format
needs to be changed as well.

We hope to make these changes automatic in the next revision.

Tcl7.3 and Tk3.6
The examples should work for the previous release 7.3 of Tcl and 3.6 of Tk too.

XF, a Graphical User Interface(GUI) development tool for Tcl and Tk,
developed by Sven Delmas, is available for Tcl7.3 and Tk3.6. We had hoped to
include a brief example of how to use XF. Unfortunately XF was not ported to
later releases of Tcl and Tk.

XF required familiarity with Tcl and Tk programming and provides its own
higher level programming interface much of which is automatically generated.
Given that XF is effectively frozen, we are not sure of this adding an additional
learning curve.

Tcl/Tk Cookbook - Housekeeping

http://www.dci.clrc.ac.uk/Publications/Cookbook/hk.html (6 di 6) [04/12/2000 19.38.08]

 Tcl/Tk Cookbook - Getting Started

Purpose
This section is a brief description of how to setup your environment to access Tcl/Tk and other extensions. It
also introduces tclsh, the Tcl shell application and wish, the Tk shell window-based application. If you are new
to Tcl/Tk programming, follow this with Chapters 1 and 2.

You will need
If you are an end user, then you will require to know if Tcl/Tk or any other extension that you want to use is
installed for your system. If they are then you will need to know the absolute pathnames of the bin, include and
lib directories for these. If not, contact your system adminstrator and refer them to the "Housekeeping".

Setting up Environment Variables
The binaries and libraries of Tcl/Tk and its extensions such as blt etc are generally installed under /usr/bin and
/usr/lib. If this is not the case (i.e. they are compiled but not installed under /usr) , you need to set up a few
environment variables in your .cshrc (for Unix C shell users - Bourne shell users should edit their .profiles and
ensure that they export the set environment variables):

e.g., If the master directory is ~/tcl then

setenv TCL_LIBRARY ~/tcl/itcl/lib/tcl7.4
setenv TK_LIBRARY ~/tcl/itcl/lib/tk4.0
setenv ITCL_LIBRARY ~/tcl/itcl/lib/itcl2.0
setenv ITK_LIBRARY ~/tcl/itcl/lib/itk2.0
setenv IWIDGETS_LIBRARY ~/tcl/itcl/lib/iwidgets2.0
setenv EXPECT_LIBRARY ~/tcl/expect/lib
setenv BLT_LIBRARY ~/tcl/blt/lib

Refer to the README file of the extension you want to use for that package.

Your search path should be set up to pick up the correct binaries for tclsh, wish or itkwish etc. Make sure you
include the pathnames in your set path in your .login or .cshrc or .profile file

Note: Programming syntax throughout this cookbook are for Unix machine.

Quick Tour

tclsh

The starting point to writing your own Tcl scripts is to familiarise yourself with Tcl syntax and learn the core
Tcl commands. Take the first step by typing tclsh at command level in your commandtool/shelltool/xterm. Shell
will invoke tclsh to prompt sign will change to % to indicate tclsh is ready to read your Tcl commands from the
keyboard and pass them to the Tcl interpreter for evaluation.

Every Tcl command consists of one or more words, the first of which is the name of the C function to be
invoked by the interpreter. The rest of the words in the command are passed as arguments for the C procedure.
The C function provided by the Tcl library. Tcl library contains functions to provide a full set of programming
features to Tcl such as variables, control flow etc. Use the Basics of Tcl application to explore these. You can
write your own functions as well and register them with Tcl interpreter. Chapter 6 describes how. For now try
the following simple commands to test and get a flavour of Tcl:

expr 10 * 5
tclsh will print 50 and prompt you again.

expr is a core Tcl application for carrying out arithmetic operations. expr returns 1 for true and 0 for false for
Boolean values when it evaluates relational operations. Full description of expr is presented in Chapter 1 Basics
of Tcl.

Try:
% puts "Hi there"

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (1 di 6) [04/12/2000 19.38.23]

You will get:

Hi There
%

Each Tcl command is separated either by a newline or a semicolon. Backslash in a command tells Tcl that the
command continues in the next line.

Try
% puts "Hi there going to \
next line "

You will get:

Hi there going to next line
%

Type

% exit

to quit tclsh.

Note: Experiment with Basisc of Tcl application to learn all Tcl syntax and built-in commands that make Tcl a
full programming language.

wish

Most applications would want to use Tcl as the basis for scripting and assembling their modules together but
create their own commands based on one or more extensions of Tcl, in particular Tk, the toolkit of commands
for building window-based Tcl applications. Without Tk, Tcl remains yet another scripting language.

Tk (and all Tcl) commands can be invoked within the tk windowing shell wish.

Try (at command level of commandtool/shelltool/xterm):

wish

The result will look like:

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (2 di 6) [04/12/2000 19.38.23]

The wish mainwindow is placed within the xterm that invoked it. Note that
the commandline prompt at the xterm has changed to the wish prompt.

Like other X Window System based toolkits, the graphical user interface building blocks of Tk consists of
widget classes (e.g., buttons, scrollbars) and functions (methods) to create and manipulate them. A Tk
application consists of hierarchy of widgets positioned within a single mainwindow, (picture above). The
mainwindow is uniquely referred by a "." and all the other widgets have names that reflect their position within
the hierachy.

At the wish prompt type

button .b -text "Press ME" -command exit

You will get:

.b
%
Type
%pack .b
the result will be :

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (3 di 6) [04/12/2000 19.38.23]

The first command "button" to wish invoked the function to create a button ".b" to be placed within the
mainwindow ".". The command also specified that :

1. the button's label should read "Press Me" and

2. if the user interacts with this button (by pressing the left mouse button on it) then it should invoke the
command "exit".

The second command "pack" invokes the geometry manager to compute the location and size of the child
widget ".b" within the parent and causes the widget to appear on the display. Note that the mainwindow is
resized to the size of the child.

You can further test this interactive mode by typing:

.b configure -background Red

The result will be :

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (4 di 6) [04/12/2000 19.38.23]

The above line invokes the method "configure" for the button ".b" to change
its background colour to red.

Pressing the button exits wish and returns the prompt back to xterm.

Note: Chapter 2, Basisc of Tk, introduces Tk widget attributes and their values and how to build a simple
widget hierachy with many widgets and behaviours. The example is then split to introduce the unique and
powerful Tk command send.

So far you were asked to issue Tcl and Tk commands interactively to tclsh and wish. However you would want
to generate a script file containing a series of commands which could be passed to wish (note that wish can
execute all tcl commands) for interpretation. To do this, invoke your favourite text editor (eg. vi), create a script
file the first line of which should be #!/usr/local/bin/wish

Note: The above line assumes that wish is installed in /usr/local/bin. If it is located elsewhere in your system,
you should give appropriate pathname for the system to locate <wish.. Refer to the description under
"Cookbook Source" in Housekeeping.

Follow the above line with:

button .b -text "Press Me" -command exit
pack .b

Name this file button.tcl, make it an executable by typing

chmod u+x button.tcl

in the directory containing the file. Then you can execute this code by typing button.tcl . When you do that the
system invokes the wish shell and passes the file as a script for wish to interpret.

The result will look like:

Pressing on the "Press Me" button with the left mouse button exits the application, taking down the wish shell.

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (5 di 6) [04/12/2000 19.38.23]

Note that when you start a wish shell this way from a file, no wish command prompt appears on the statup
window. So you cannot issue further Tcl/Tk commands interactively to the wish window as you did before. You
can interact with the Tcl/Tk application as it is intended (in this case the simple pressing the button quits the
application).

Tcl/Tk Cookbook - Getting Started

http://www.dci.clrc.ac.uk/Publications/Cookbook/gs.html (6 di 6) [04/12/2000 19.38.23]

 Tcl/Tk Cookbook - Basics of

Tcl

Purpose
This simple Tk application enables the reader to learn Tcl syntax and built-in
commands by browsing syntax descriptions and example code. The reader can
execute the example to see the result, edit and test the example code to
experiment variations - all from within this application. The reader can also
create his own notes on specific topics presented as well.

You will need
At this point it is assumed that the reader has read through the chapter "Getting
Started" and has access to Tcl and Tk and this application to try. To invoke
"Help" in this application, you may need to set the absolute pathname of the
"tcltk-man-html" directory and the browser you wish to invoke by editing two
lines in the source code hyper.tcl.

Acknowledgement
This module makes use of the Latex document Tcl/Tk Reference Guide for Tcl
7.4/Tk4.0 written by Paul Raines and Jeff Tranter . It is also tailored to display
the contributed Tcl/Tk HTML documents as an option.

Usage

Selecting a Topic

Invoke this application by typing hyper.tcl at command level from one of the
windows in your display. If you get the message command not found check if
the pathname to Tk wish has been set up properly. Housekeeping explains how
to do this. If you do not have write permission to the source code, invoke wish
interactively and type source hyper.tcl . A scrollable Tk window with a list of
Tcl topics (Figure below - shown smaller than the actual size) will appear.
Depending upon the mouse cursor position one of the list item will be
highlighted. You can exit the application anytime by clicking on the "Quit"
button.

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (1 di 6) [04/12/2000 19.38.35]

Note on Selecting: You can select any of the list items by moving the mouse
pointer onto that item and clicking the lift mouse button. Throught all the
examples, pressing and releasing the left mouse button on a menu-button or a
pushbutton or a hyper-link item selects it.

In text widgets, for actions such as copy & cut, press the left mouse button at
the beginning of the section you want to select and holding the button down
drag it along the section up to the end of the sectionyou want and then release
the button.

Reference Window

Select the topic you want. A second window, titled "Quick Reference", like the
one below, will appear.

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (2 di 6) [04/12/2000 19.38.35]

This window displays a brief description of the commands or variables or
features of the topic you chose. On the righthand side of the top menubar, a
button for "manual Pages" will be displayed in normal state if you have access
to tcltk-man-html and a HTML browser.

Selecting the "Dismiss" button closes this toplevel window but it is not
necessary to close this window. When you select the next topic, the contents of
the text widget is refreshed.

"Examples for...", at the top lefthand corner of the "Quick Reference" window
is a pulldown menu whose items are the keywords of the chosen topic for
which some simple examples are given. For example, if the chosen topic is
"Control Flow" the menu items will be if, while, for etc.

Example Window

Selecting a keyword displays a very simple piece of example code in another
toplevel window, titled "Example Browser" similar to :

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (3 di 6) [04/12/2000 19.38.35]

As before selecting the "Dismiss" button closes this toplevel window too but it
is not necessary to close these windows. When you select the next topic or
keyword or example code, the contents of the text widget is refreshed.

The top menubar of this Example window has a pulldown menu titled "See
Also ..."

 which lists the names of all the example files, from the
Examples directory, that contain the keyword chosen.

Testing

Clicking on the "Apply" button on the lower left corner of the "Example
Browser" executes the example, displaying the results in a toplevel "Output"
window.

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (4 di 6) [04/12/2000 19.38.35]

The text window in "Example Browser", displaying the source code allows
editing the displayed text. The reader is encouraged to edit the source code,
execute and learn by experimenting how Tcl works.

As before selecting the "Dismiss" button closes this toplevel window too but it
is not necessary to close these windows. When you select the next topic or
keyword or example code, the contents of the text widget is refreshed.

Making Notes

Any change made to the example source is temporary but the users can make
their own notes. Clicking on the "Notes" button at the bottom right-hand side
displays an editable text window for making personalised notes on the chosen
Tcl topic.

Selecting the "Save" option saves the contents of the text widget under the
user's home directory and selecting "Print" sends the a hardcopy request of the

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (5 di 6) [04/12/2000 19.38.35]

saved file to the user's default printer.

Application Source Code
The source code for this Tcl application is under the directory ~code/ch1. If
you are new to Tcl, we hope that by the end of this Cookbook, you would have
gained enough familiarity with Tcl and Tk to understand the source code of
this application.

Tcl/Tk Cookbook - Basics of Tcl

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap1.html (6 di 6) [04/12/2000 19.38.35]

 Tcl/Tk Cookbook - Basics of

Tk

Purpose
A simple example introduces the basics of widgets based programming using
the Tk toolkit. The same application is used to demonstrate the Tk send
command.

You will need
At this point it is assumed that the reader has sufficient familiarity with Tcl
syntax and built-in Tcl commands. If you are new to the terminology of
window-based application development or wish to know more about graphical
user interface design, reading the introductory chapters of Visual Design with
OSF/Motif by Shiz Kobara [3] is a good source of reference. However, Tk
makes it very easy to learn widget programming and this application is simple
enough to grasp the basics. Quick Tour provides the briefing you need.

Dish to Serve Up:
An application to browse and modify a button widget's attributes
(configuration options). In part-II split the application into two parts and
communicate via send

Recipe
Since this application has more than a few lines of script, we recommend that
you create, execute and edit the script from a file called appl1.tcl, preferably
under a directory ~/examples/chapter1. Create the directory
~/examples/chapter1, cd to it and use the editor of your choice to create the file
appl1.tcl. Remember to make this file executable by typing chmod u+x
appl1.tcl before you execute the script.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap2.html (1 di 2) [04/12/2000 19.38.39]

Part-I

create a frame to contain the button and the set of attribute - value
pairs.

1.

create the button and place it in the parent and get current
configuration options (list of attribute - value pairs).

2.

display each pair within a frame of their own, the attribute name in a
label and the associated value in an entry widget.

3.

bind event in entry widgets to an action to modify an attribute to the new
value entered.

4.

Part-II

We use the above application to demonstrate the Tk command send. We
achieve this by splitting appl1 into two applications. The first one creates just
the button with the text string and the command to exit. It also contains the
procedure reJig with its input parameters altered. The second application
contains the resource form in which the user edits the values. send is used to
communicate between the application.

For this part,you need two separate Tcl/Tk script files. Place appl1 script in
file av and the script for av2 under ~examples/chapter1

create appl 1 - a frame with a button.1.

create appl 2 base - a frame to hold the set of attribute-value pairs2.

procedure to display attribute - value pairs of the appl 1 widget in appl
2.

3.

send a request to app1 from app2 to send the list of default settings.4.

bind event in entry widgets in appl 2 to an action to send the changed
value and the attribute name to appl 1 and invoke an action in appl 1 to
reconfigure the attribute.

5.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap2.html (2 di 2) [04/12/2000 19.38.39]

 Tcl/Tk Cookbook - Basics of

Tk

Quick Tour

Widget Basics
A widget is an user interface object/control (e.g., pushbutton, label, scrollbar)
that the end-user of a widget based application interacts with to communicate
with that application. The interaction is usually a selection made with a
pointing device such as the mouse or typing in a character string (text input).
Each widget belongs to a class of its own which defines its appearance
(configuration options such as its foreground colour, font) and a set of methods
that are used to access and manipulate the widget (e.g modify the configuration
such as change the background colour).

Widgets, depending on their class/type can contain other widgets (e.g.
menubars that contain pulldown menus, frame, rowcolumn). A widget based
application may contain one or more hierarchy of widgets (e.g.,
Fileselectionbox, a text editor with a menu item "open" that pops up a
fileselectionbox).

In general, there are three basic steps of widget programming. These are:

create an instance of the widget (usually by calling a widget creation
function). Specify values for attributes i.e.options for appearance (there
will always be default settings so you only need to set the ones you want
to)

1.

specify behaviour (which user actions invoke which functions)2.

tell the geometry manager to make the widget appear on the screen in its
position with respect to its parent

3.

Note that the behaviour may be a single command such as "exit" when a
"Quit" button is pressed or a set of commands with input parameters which
invoke complex behaviour (e.g., selecting a button labelled "Beethovan"
causes a search for a particular tape and playing it).

Widget toolkits are designed to assign the geometry management
(determination of size and location relative to parent on the screen) to
independent processes so that any widget can be managed by any geometry

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/qt.html (1 di 2) [04/12/2000 19.38.42]

manager and multiple geometry managers coexist providing consistent
behaviour (e.g., resizing the parent resizes all the children within the parents
geometry).

You invoke the geometry manger, providing it with options on how you want a
particular widget to be positioned (e.g. Right/left justified, placed at the
top/bottom/left/right within/of its parent/siblings. If you do not specify any
particular position, the geometry decides the positioning based on default
algorithms.

Tk Widgets
Tk provides all the basic widget classes and there are also many contributed
widgets available. Tk widget classes are distinguished by their configuration
options, widget command and default bindings.

Configuration Options

Configuration options specify the appearance of the widget and what happens
to the widget when the user clicks on them.

Widget Command

In Tk, when a widget is created, a unique command associated with the widget
is also created. The widget command has the same name as the widget. The
widget command is used to communicate with the widget to make it change its
internal state - i.e. carry out actions - for instance change the background
colour. For complex widgets. The actions that can be specified depend upon
the class of the widget - for instance accessing, inserting, deleting items within
a listbox or menu does not apply to a label widget class.

Bindings

Tk widget classes also have a set of default bindings. A binding is a general
mechanism for associating a particular user action (event) with a specific
application defined behaviour (e.g., Pressing the right mouse button in a
particular widget pops up a help window).

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/qt.html (2 di 2) [04/12/2000 19.38.42]

 Tcl/Tk Cookbook - Basics of

Tk

Step 1: Create a frame to contain the button and the set
of attribute - value pair

Script
The first line of the script is the command to shell process to invoke the wish
shell and pass this file as the script that wish should interpret (parse).

#!/usr/bin/wish -f

Follow this with the lines:

frame .rc -borderwidth 2
wm title . "Resources"
pack .rc

The first of these lines causes Tk to create a simple frame widget with a
borderwidth of 2 pixels, name .rc and as the child of the root ".", the wish
shell. Frame is a rectangular container used for placing hierarchy of widget
children. Frames don't respond to user events and have no default bindings.

The second lines sets the title of the application root window to "Resources".
wm is the Tk command for Tk applications to communicate with whatever
window manager you are running on your display. wm should be given a
top-level window as one of the arguments to set or get information about.

Note: For a full summary of the wm command and how they affect the
appearance and behaviour of your application windows, refer to Tk manual
pages and/or Chapter 22 of reference [1].

The last line "pack .rc" invokes packer the Tk geometry manger to calculate
the size and position of the window and frame and make the frame appear on
the screen. Note that since no default size is given, the frame will appear with
minimal size. When you pack other widget children within, the geometry
manager will automatically resize the frame. You can also set initial values for
width and height by appending, for example -width 50 after to the frame
creation line.

Create this script and execute it by typing appl1.tcl at command line (don't

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch21.html (1 di 2) [04/12/2000 19.38.45]

forget to make the file executable first). The result should look like:

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch21.html (2 di 2) [04/12/2000 19.38.45]

 Tcl/Tk Cookbook - Basics of

Tk

Step 2: Create and place the button and get its current
configuration options

Script

Now append the following two lines to appl1.tcl to create the button.

button .rc.b -text "Press Me to Quit" -command {exit}
pack .rc.b

The first of these lines is a command to create a button within the frame ".rc".
Just like in Unix hierarchical directory structures where each level of the
hierarchy is specified by a "/", in Tk the "." is used [Note the analogy between /
to denote root directory in Unix and "." to denote topmost window in Tk]. The
button is named .rc.b and a unique widget command .rc.b is created by Tk. This
command is used to make changes to the button. The creation line also specifies
that the button should display the label "Press Me to Quit". The option
-command makes Tcl script to execute the option "exit" when the user clicks on
the button with the left mouse button.

The second line packs the button within its parent by default at the top. The
result will look like:

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch22.html [04/12/2000 19.38.49]

 Tcl/Tk Cookbook - Basics of

Tk

Step 3: Display attribute - value pairs

Script

Append the following lines to appl1.tcl [For clarity and good programming
practice, place any global declarations at the top of the body the script (just
below the line #!/usr/bin/wish) and in procedures immediately after the
declaration of the procedure. Any initialisation should also be placed before
the value is set or rest from within the script.]

global aList vList

set aList {}
set vList {}
set maxl 0

set b [.rc.b config]

foreach e $b {
 lappend aList [lindex $e 0]
 lappend vList [lindex $e 4]
 set a [lindex $e 0]
 if { [string length $a] > $maxl } {
 set maxl [string length $a]
 }
 }

The first line sets two global variables aList and vList and the next two lines
initialise these two variables to null list. the last line sets a variable maxl to
zero.

The command set b [.rc.b config] invokes the widget command .rc.b to get its
list current configuration options and assigns it to the variable b. Note that b is
a list of lists. Each nested list contains the configuration option such as
-background followed by information regarding that option, the fifth of which

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (1 di 4) [04/12/2000 19.38.54]

is the value.

The first of the foreach loop access nested list "e" of the list "b"

gets the option (at the 0th index of list e) , appends it to "aList"1.

gets the current value of the option (at the 5th index of list e),2.

computes the maximum length of the option string and assigns it to
maxl. This is used subsequently to position the label strings right
justified and have neat looking form type interace

3.

Now you need to create an interface to display these pairs of values. The script
below achieves this:

set i 0

frame .rc.fff -height 40

pack .rc.fff
foreach a $aList {
 set ff [frame .rc.fff.sub$i]
 pack $ff
 label $ff.lab -text $a -width $maxl -anchor e
 entry $ff.ent
 bind $ff.ent [list reJig .rc.b $a]
 $ff.ent insert 0 [lindex $vList $i]
 pack $ff.lab $ff.ent -side left -in $ff
 incr i
 }

Set a counter "i", initialising it to zero. frame .rc.fff -height 40 creates a frame
.rc.fff, of height 40 pixels as a child of .rc and pack .rc.fff packs it below the
button .rc.b by default.

The foreach element "a" of the list "aList"

a frame whose name is made up with counter "i" (e.g., .rc.fff.sub0) is
created as a child of .rc.fff and assigned to the variable "ff" {Note that
this is a short-cut to giving long widget names}. The child frame is
packed.

1.

within the frame given by "ff" a label widget whose text is the
configuration option is created. The width of the label is set to the value
of "maxl" to create uniform label sizes. The label is anchored to the east
of the frame to ensure appearance.

2.

an entry widget whose name is made up by appending .ent to the value
of "ff" is created. Entry widgets are used to display editable one-line text
strings.

3.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (2 di 4) [04/12/2000 19.38.54]

a binding to the event (user types in a string and hits the Return key) in
the entry widget is created. [list reJig .rc.b $a] substitutes the value of
"a" and creates the script {a command to invoke the procedure reJiG
with the parameters ".rc.b" and "a "} to be invoked.

4.

the current value, if any, of the attribute is inserted in the entry widget5.

the label and the entry widget are packed inside their parent, given by
"ff", from left to right.

6.

increment the counter7.

Note: As in any shell programming language, in Tcl/Tk too there are more
than one way of achieving certain results. For instance the script for the
binding could have been specified as "reJig .rc.b $a". Using [list * *] ensures
proper variable substitutions are carried out and a proper list structure whose
elements together form a single command is generated.

If you try {reJig .rc.b $a}, you will find that "a" is not replaced by its value
because it is within the curly braces. As a result the procedure reJig will
receive the string $a rather than the value of a.

Note also that since the widget hierarchy name uniquely identifies a widget
.rc.fff.sub0.ent is different from .rc.fff.sub1.ent.

Appending these lines of script in appl1.tcl and executing should produce:

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (3 di 4) [04/12/2000 19.38.54]

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch23.html (4 di 4) [04/12/2000 19.38.54]

 Tcl/Tk Cookbook - Basics of

Tk

Step 4: Create bindings to modify configuration options
with new values

Script

All you now need is to write the procedure reJig, the script of which is given
below:

proc reJig { w a} {
 global aList vList
 ;# get the index of a in aList
 set idx [lsearch $aList $a]
 set va [.rc.fff.sub$idx.ent get]
 .rc.b config $a $va
 }

The proc command creates the Tcl procedure reJig. The first argument to reJig
is a widget name and the second a string (in this case the configure option).
The statements within the curly braces is the body of the procedure. ;# indicate
that the string enclosed between them and the newline character is a comment.

The global variables used within procedure reJig are declared as the first
line of the body.

1.

The index of the current configuration option within aList is accessed by
lsearch and assigned to "idx'

2.

The value string in entry widget ".ent" which is a child of .rc.fff.sub$idx
is read and assigned to the variable "va"

3.

The widget command .rc.b is called to carry out the action "configure"
with the configure option "a" whose value is "va".

4.

The screen dump below shows the result of typing Red in the entry widget
opposite -bg.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch24.html (1 di 2) [04/12/2000 19.38.58]

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch24.html (2 di 2) [04/12/2000 19.38.58]

 Tcl/Tk Cookbook - Basics of

Tk

Part -II - Step 1: Create app1

Script

#!/usr/bin/wish
global b

frame .r -bd 2
wm title . "Change Me"
pack .r
button .r.b -text "Press Me to Quit" -command {exit}

pack .r.b
set b [.r.b config] ;# obtain default settings

proc reJig { va a} {

 .r.b config $a $va
 }

Much of this code is explained already in part-I. The parent frame is ".r" rather than
".rc". The window title is changed and the list of current configuration "b" has
changed in scope and is declared as global.

Note that Tcl has a single global name space in which it retains all widget names.
Therefore you do not have to declare widgets as global and can access a widget by
giving its full name from within procedures.

reJig takes the values of the configuration option and the corresponding new value as
its input and calls the widget command .r.b to carry out the "configure" action.

Create this script and execute it to see the result:

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch25.html (1 di 2) [04/12/2000 19.39.00]

Note: If you executed this script and it is running, then don't quit it. You will require
av to be active when you execute av2 and set the inter communication going.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch25.html (2 di 2) [04/12/2000 19.39.00]

 Tcl/Tk Cookbook - Basics of

Tk

Part-II - Step 2: Create appl 2 base /h3> Script

#!/usr/bin/wish

global aList vList
set aList {}
set vList {}

frame .rc -bd 2
wm title . "Resources"
pack .rc

frame .rc.fff -height 40
pack .rc.fff

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch26.html (1 di 2) [04/12/2000 19.39.01]

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch26.html (2 di 2) [04/12/2000 19.39.01]

 Tcl/Tk Cookbook - Basics of

Tk

Part-II - Step 3:Procedure to display attribute - value
pairs of the appl 1 widget in appl 2

Script

Append to av2:

proc setCfg { b } {

global aList vList

set maxl 0

foreach e $b {
 lappend aList [lindex $e 0]
 lappend vList [lindex $e 4]
 set a [lindex $e 0]
 if { [string length $a] > $maxl } {
 set maxl [string length $a]
 }
 }

set i 0

foreach a $aList {
 set ff [frame .rc.fff.sub$i]
 pack $ff
 label $ff.lab -text $a -width $maxl -anchor e
 entry $ff.ent
 bind $ff.ent [list ValCh $a]
 $ff.ent insert 0 [lindex $vList $i]
 pack $ff.lab $ff.ent -side left -in $ff
 incr i

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch27.html (1 di 2) [04/12/2000 19.39.03]

 }

button .rc.fff.b -text "Close" -com {exit}
pack .rc.fff.b

}

Much of this code is familiar from Part-I. The procedure setCfg takes a list
which is the result of carrying out the action "configure" by a widget command
(.r.b in this case). Since this is an application in its own right, a button .rc.fff.b
with the text "Close" and the command option with value "exit" is included.

New or changed lines of script are highlighted.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch27.html (2 di 2) [04/12/2000 19.39.03]

 Tcl/Tk Cookbook - Basics of

Tk

Part-II - Step 4: Send a request to app1 from app2 to
send the list of default configure option settings

Script

Append to av2 the two lines of script:

tkwait visibility .rc.fff

send av {sendNow}

Append to av the script:

proc sendNow {} {
global b
send av2 [list setCfg $b]
}

The Tk command tkwait suspends further processing until certain condition is
satisfied. This is primarily used to make popup dialog boxes modal. This is
useful for instance to make certain actions are carried out before proceeding
further (e.g. A file is selected from a popup fileselectionbox before Tcl/Tk
attempts to open the file).

Here av2 is made to wait until the base frame appears on the screen before a
send request to "av' is sent.

Note: Try without this and see what happens. Try also placing the last line
send av {sendNow} before the definition of the procedure "setCFG".

send is synchronous. The sending application will suspend processing its user
events until the execution of the sent script in the remote application is
completed and send returns the result. However the sending application can

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch29.html (1 di 3) [04/12/2000 19.39.06]

respond to send events from other applications while it awaits its own send.

Procedure sendNow creates a list of two elements made up of the string
"setCfg" and the value of "b". It then passes this list as a script to a Tk
application in the same display/screen as itself whose name is "av2" to be
executed within av2.

Running av and av2

Now run av and then av2 in that order. You will have the Button window
appear. The base frame of the Resources application will appear and then the
options will be created. You will see the result as:

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch29.html (2 di 3) [04/12/2000 19.39.06]

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch29.html (3 di 3) [04/12/2000 19.39.06]

 Tcl/Tk Cookbook - Basics of

Tk

Part-II - Step 5: Create bindings to send and reconfigure
new values of attributes

Script

Inset in av2 (before the line beginning with tkwait) the lines of script:

proc ValCh {a} {
 global aList vList
 ;# get current index value for a within aList
 set idx [lsearch $aList $a]
 set va [.rc.fff.sub$idx.ent get]
 send av [list reJig $va $a]
 }

The procedure ValCh

takes the configure option "a" that the user wishes to change,1.

gets the new value "va" associated with it,2.

creates a script line made up of the procedure name reJig, the values of va
and a, and sends it to a Tk application named "av" running on the same
display as itself to be executed within "av"

3.

Note that this procedure "ValCh" is the script that will be invoked as it is the
binding in each entry widget for the event .

New or changed lines of script are highlighted.

Change the value for any of the configuration options and see the result. The
following shows the result of setting the background to Red.

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch28.html (1 di 2) [04/12/2000 19.39.09]

Tcl/Tk Cookbook - Basics of Tk

http://www.dci.clrc.ac.uk/Publications/Cookbook/ch28.html (2 di 2) [04/12/2000 19.39.09]

 Tcl/Tk Cookbook - Text

Editor

Purpose
This chapter introduces the Tk text widget. Tk text widget has the ability to
include the following forms of annotation:

Tag, hyper-links in the text to associate actions with tagged text strings
(e.g., selecting a tagged string "Beethovan" invokes an audio application
to play a piece of music).

❍

Mark associates a string (name of the mark) with a specific position in
the displayed text.

❍

Windows allow the embedding of other widgets (for instance embedding
a canvas to display a graph at a particular point in the text.

❍

The third form of annotation is not covered in this chapter.

Apart from the text widget, scrollbar, menubar, pulldown menu and popup
dialog box are also introduced.

You will need
At this point it is assumed that the reader has read through the previous chapters and
has familiarity with Tcl and Tk basics, especially if (s)he is new to Tcl and Tk.

Dish to Serve Up
Create a simple text editor. Include the ability to tag all occurances of a given
string.

Recipe
It is advisable to develop this application three separate script files. All the
code is under ~cookbook/code/ch3 with names editor.tcl, popup.tcl and
message.tcl. The file filesel.tcl contains the contributed script for a
fileselectionbox. Copy this filesel.tcl into your current working directory. For
convenience, we will assume that the three script files you will be generating
are named ed.tcl, pop.tcl and mes.tcl.

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap3.html (1 di 2) [04/12/2000 19.39.10]

Create a scrollable text widget1.

Add menubar, menus and register callbacks2.

Create pop up dialogue boxes3.

Create callbacks4.

Add Tags to text strings5.

Acknowledgement

A slightly modified version of Mario Jorge Silva's fileselectionbox is used.

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap3.html (2 di 2) [04/12/2000 19.39.10]

 Tcl/Tk Cookbook - Text

Editor

Step 1: Create a scrollable text widget

Script

Start by placing the following script in ed.tcl:

#! /usr/bin/wish -f

global GotSelection
set GotSelection 0

frame .fr -width 10c -height 5c ;#main window
wm title . "Simple Text Editor V 0"
pack .fr

#configure menubar on top
frame .menubar -relief raised -bd 2
pack .menubar -in .fr -fill x
frame .edf

#put a text widget with scroll bars

text .ed -width 80 -height 20 -bg grey \
 -yscrollcommand ".ys set"

scrollbar .ys -command ".ed yview"
pack .ed .ys -in .edf -side left -fill y

pack .edf -in .fr -after .menubar -fill x

The first line of the script is the command to shell process to invoke the wish
shell and pass this file as the script that wish should interpret (parse).

The next line declares a global variable GotSelection and follows it with
initialising it to the boolean value zero [Note that as far as Tcl parser is

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/txt.html (1 di 2) [04/12/2000 19.39.17]

concerned "set GotSelection 0" is a string with three elements.].

The next three lines create and pack a base frame ".fr" whose width is 10
centimeters and height 5 centimeters; the root window is titled "Simple Text
Editor V 0"

For this text editor, we want to create a menubar at the top of the main window
for supporting File, Edit and Find actions. In Tk, the menubar is a frame
widget with one menubutton for each menu (usually pulldown). The option
-relief takes the value raised or sunken to give a raised or depressed appearance
to the widget. The option -fill (usually used for scrollbars, menubars etc.) takes
"x" or "y" as argument to extend the widget in the horizontal or vertical
direction up to the end of the parents border in that direction.

The next group of lines create a text widget ".ed" and a vertical scrollbar,
packs them inside the frame ".edf" in the main window.

-yscrollcommand ".ys set" connects the ".ys" scrollbar's command .ed yview,
connecting the text and scrollbar.

The "-after" option tells the packer to pack the frame containg the text widget
and scrollbar below the top menubar and the option "-side" tells it to pack the
vertical scrollbar to the left of the text widget.

Make ed.tcl executable and run it the final result should be similar to:

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/txt.html (2 di 2) [04/12/2000 19.39.17]

 Tcl/Tk Cookbook - Text Editor

Step 2: Add menubar, menus and register callbacks

Script

Menubutton

The following script appended to ed.tcl will create three menubuttons which are associated with three pulldown
menus.

#fill the top menu
menubutton .menubar.file -text File -underline 0 -menu .menubar.file.menu
menubutton .menubar.edit -text Edit -underline 0 -menu .menubar.edit.menu
menubutton .menubar.find -text Find -underline 0 -menu .menubar.find.menu
pack .menubar.file .menubar.edit .menubar.find -side left
menubutton .menubar.help -text Help -underline 0
pack .menubar.help -side right

The Tk command menubutton creates a menubutton as the child of a menubar. The options -text, -menu and
-underline are specified for each button. The -underline option enables the menu to be invoked without using
the mouse and from the keyboard (by holding the Alt down and typing the underlined character within the
window). The -menu option associates a menu with the menubutton.

Executing this script will now give the following:

Pulldown Menus
You now need to attach menu entries to each of these menubuttons and create pulldown menus.

Append to the script the following:

#create pulldown menus

menu .menubar.file.menu
.menubar.file.menu add command -label Open -command {OpenFile}
.menubar.file.menu add command -label Save -command "SaveFile"
.menubar.file.menu add command -label "Save As" -command {SaveAsFile}
.menubar.file.menu add command -label Quit -command exit

menu .menubar.edit.menu
.menubar.edit.menu add command -label Cut -com CutSelection
.menubar.edit.menu add command -label Paste -com PasteSelection

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (1 di 3) [04/12/2000 19.39.26]

.menubar.edit.menu add command -label Copy -com CopySelection

.menubar.edit.menu add command -label Clear -com {.ed delete 1.0 end}

In Tk, each menu entry can be either a command, toggle or check button. Each menu entry has -command
option to associate the action to be invoked if that entry is selected. A menu entry is selected, by pressing the
left mouse button on the top menubutton, traversing the pulldown menu while holding the button down and
releasing it on the entry. When an entry is selected the action is invoked and the menu will be unposted.

The script above creates the pulldown menus for "File (menu entires Open, Save, SaveAs and Quit) and "Edit"
(menu entries Cut, Paste, Copy and Clear).

Cascading Menus
A "cascade button is added to the menu (instead of a command or a toggle or a check button) to make another
level of subservient (walk-through) menu. The cascade button appears with an arrow pointing left to indicate
the additional level of choices.

The script below attaches a cascade button for the menu entry labelled "Find Selection". The menu attached to
this cascade allows the user to specify whether the serach should be carried out "Forward" or "Backward" from
the current insertion point.

#Find menu
menu .menubar.find.menu
.menubar.find.menu add cascade -label "Find Selection" \
 -menu .menubar.find.menu.fmenu

where the fmenu in this case is specified as:

menu .menubar.find.menu.fmenu
.menubar.find.menu.fmenu add radiobutton -label Forward \
 -com {FindSelection -forwards}
.menubar.find.menu.fmenu add radiobutton -label Backward \
 -com {FindSelection -backwards}

The rest of the entries are completed by appending the script:

.menubar.find.menu add command -label "Find and Replace" -com FindValue

.menubar.find.menu add command -label "Find Selection and Tag" \
 -com TagSelection

Input Focus to the menubar
Append the following two lines of script to complete the menu system for this application:

tk_menuBar .menubar .menubar.file .menubar.edit .menubar.find .menubar.help
focus .menubar

The ordering of the menubuttons associated with a menubar is necessary for the Tk command tk_menuBar
which identifies the menus associated with each menubutton as well as the order of the menus for use with right
and left arrow-keys.

Input focus is set to the menubar by the command focus. This is needed for making keystrokes and keyboard
traversal recognised.

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (2 di 3) [04/12/2000 19.39.26]

You can add separators to group the entries. Tk menus are tear-off by default and clicking on the dotted lines
achieves it. This is used to capture the menus for the picture below:

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/mb.html (3 di 3) [04/12/2000 19.39.26]

 Tcl/Tk Cookbook - Text Editor

Step 3: Create Pop up dialogue boxes

Script

Append the following to ed.tcl to include the source of the script that create the three dialogue windows and their
associated behaviour. The scripts are in the three files message.tcl, filesel.tcl and popup.tcl:

#source some of the auxillary scripts we will be using
#note these can be source in appropriate procedures too

source filesel.tcl

source message.tcl

source popup.tcl

Use of FileSelectonbox
For this editor, the fileselectionbox is popped up when the user wants to specify the name of a file to be opened or the
text in the text widget to be saved into one.

The fileselectionbox script is contributed software with some minor changes. The script is in the Cokkbook's code
subdirectory under ch3 and is named filesel.tcl. Copy that file into your current working directory. The reader should
be able to use it as an independent unit.

The fileselectionbox is simple and looks like:

Warning message
When the user selects a "SaveAs" option but subsequently changes his mind and cancels the fileselectionbox, a
pop-up warning message that the contents of the text widget will be stored under the old filename.

The code for this script is as follows and is placed in the file mes.tcl:

proc showMessage {mess} {

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (1 di 3) [04/12/2000 19.39.30]

toplevel .messpop -width 10c -height 4c
grab .messpop
wm title .messpop "Warning"
message .messpop.msg -relief raised -bd 2 -text $mess

button .messpop.okb -text OK \
 -com {destroy .messpop ; return 0}
pack .messpop.msg .messpop.okb -side top
}

showMessage takes an argument which is a message string (the procedure is essebtially parametrized so you can vary
the message but use the same procedure for all message dialogues whereever you want). It puts up a message widget
which is created with the Tk command message with the message string passed as input. A "OK" button with the
command to destroy this toplevel when the user clicks on the button is also included.

Modal Interaction
The Tk command toplevel creates a toplevel window for the application. The toplevel window is the child of the
applications root (main) window but can be used as additional windows for the application.

Toplevel windows can also be used as popup message windows. In this case, in the procedure creating the popup
message window, the Tk command grab with the name of the message window as argument is given. This will grab
the keyboard focus to ensure user's attention. In the calling procedure, the Tk command tkwait window is called with
the message window name as the argument. This suspends processing in the calling procedure, until the user
undertakes the necessary interaction with the poppped up window and explicitly closes (destroys) it. The command
for any OK, DISMISS or Cancel button in popup or toplevel window is to destroy it.

The message window created with the script for warning about a file being overwriiten looks like:

Search & Replace Window
The third popup window is used when the user wants to do a search and replace or search and tag or tag all operations
on the displayed text. Note that the tagging is temporary and not saved in the file.

proc FindPopup {} {

global seltxt repltxt

toplevel .fpop -width 10c -height 4c

grab .fpop
wm title .fpop "Find Text"

label .fpop.lab1 -text "Find : "
place .fpop.lab1 -in .fpop -x 2 -y 6
entry .fpop.en1 -width 20 -relief sunken -textvariable seltxt
place .fpop.en1 -in .fpop -x 72 -y 6

label .fpop.lab2 -text "Replace : "
place .fpop.lab2 -in .fpop -x 2 -y 50

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (2 di 3) [04/12/2000 19.39.30]

entry .fpop.en2 -width 20 -relief sunken -textvariable repltxt
place .fpop.en2 -in .fpop -x 72 -y 50

menubutton .fpop.finb -text Find -menu .fpop.finb.menu
place .fpop.finb -in .fpop -x 2 -y 90
menu .fpop.finb.menu
.fpop.finb.menu add command -label Forward -com {FindWord -forwards $seltxt}
.fpop.finb.menu add command -label Backward -com {FindWord -backwards $seltxt}

menubutton .fpop.finrb -text "Find and Replace" -menu .fpop.finrb.menu
place .fpop.finrb -in .fpop -x 38 -y 90
menu .fpop.finrb.menu
.fpop.finrb.menu add command -label Forward -com {ReplaceSelection -forwards}
.fpop.finrb.menu add command -label Backward -com {ReplaceSelection -backwards}

button .fpop.repall -text "Replace All" -com {ReplaceAll}
place .fpop.repall -in .fpop -x 150 -y 90

button .fpop.tagall -text "Tag All" -com {TagAll}
place .fpop.tagall -in .fpop -x 250 -y 36

button .fpop.dismis -text Dismiss -com {destroy .fpop}
place .fpop.dismis -in .fpop -x 250 -y 90

focus .fpop.en1
}

This code is similar to what has already been described in creating the main menubar as well as the toplevel window
of the message box. Note that the the command "place" takes two options "-x" and "-y" whose values are integers
(pixels in this case) and asks the packer to place the widget at that location inside the widget which is the value given
for the option "-in".

In this popup window the menubuttons Find and Find and Replace both have pulldown menus to make the search
forward and back. The procedures are defined in the next section. If you want to execute this script and test it, you can
comment out the lines just before the -com option begins. This will stop the Tk interpreter complaining about
undefined commands.

The final result when you execute this script should be:

Tcl/Tk Cookbook - Text Editor

http://www.dci.clrc.ac.uk/Publications/Cookbook/msg.html (3 di 3) [04/12/2000 19.39.30]

 Tcl/Tk Cookbook - Text Editor

Step 4: Create Callbacks

Script

Most of these procedures can be appended to ed.tcl. If you wish you can create a separate script file procs.tcl
and collectively place all these procedures in that file. If you do, remember to source it from ed.tcl.

proc OpenFile {} {
global fileselect oldname

fileselect
tkwait window .fileSelectWindow
set oldname $fileselect(selectedfile)
set openf $fileselect(selectedfile)
.ed delete 1.0 end
set fid [open $openf r]

while {![eof $fid]} {
 .ed insert end [read $fid 1000]
 }
close $fid
.ed mark set insert 1.0

}

OpenFile invokes the fileselectionbox which allows the user to browse the directory and select a file. The
selected file is stored in the global array "fileselect" at the associative index whose name is "selectedfile". The
file is opened with read-only permission. The text editor ".ed' is cleared of any previous content and the
current files contents are displayed in ".ed". The file is closed and the insertion cursor in the text window is
placed at the first character of the first line.

Tk Text Widget delete, insert and mark

Recall that Tk creates a unique command ".ed" when it created the text widget ".ed". The text widget specific
actions can be invoked using this command.

.ed delete takes two two character positions and deletes all the text between these two positions. Special words
such as "end", "lineend", marks the end of the displayed text or the end of a given line.

The command .ed mark set insert sets a special marker/annotation named insert, the insertion point at the set
position, here at the beginning of the first character of the first line. (Note that ".ed mark set pos 2.5" will set a
marker named pos which points to the gap between the fifth and sixth character in secondline).

Back to Procedures

proc SaveFile {} {
global fileselect
set sts [catch {set f [open $fileselect(selectedfile) w]} \
 errormessage]

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (1 di 6) [04/12/2000 19.39.33]

if {$sts == 0} {
 puts $f [.ed get 1.0 end]
 } else {
 set ok [showMessage "No filename given"]
 }

}

The SaveFile is similar to OpenFile but tries to open a selected file with write (overwrite in this case)
permission. If it cannot open the file for any reason quits with the message that "No file name is given".
Otherwise it writes the contents of the text widget into the file.

proc SaveAsFile {} {
global fileselect oldname
fileselect
tkwait window .fileSelectWindow
if {$fileselect(selectedfile) == "" } {
 set ok [showMessage "No filename given"]
 return }
if {[string compare $fileselect(selectedfile) $oldname] == 0 } {
 set ok [showMessage "File will be over written"]

 tkwait window .messpop
 if {$ok == 0} {
 SaveFile
 }
 } else {
 set openf $fileselect(selectedfile)
 set f [open $openf w]
 puts $f [.ed get 1.0 end]
 }

}

note that in this SaveAs procedure, the processing waits for the fileselectionbox to be popped down
(destroyed). If no new filename is given, the warning message is showed and the contents of the editor are not
written.

If the new filename is the same as the old one, then the warning that the file will be overwritten is displayed
(and the file will be overwritten by a call to "Savefile").

If a new filename is given, the editor contents are written into this file.

proc CutSelection {} {

global seltxt

set seltxt [selection get STRING]

.ed delete insert "insert + [string length $seltxt] chars"
}

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (2 di 6) [04/12/2000 19.39.33]

CutSelection is called when the user has made a selection (by pressing the left mouse button at the beginning
of the selection to be cut and dragging the mouse pointer across the selection while holding the left mouse
button down and releasing the button at the end of the selection). Note that this binding is the default in the Tk
text widget.

The Tk command "selection get" takes a target as argument and retrieves the primary selection in the form
specified by target. Target defaults to type "STRING". Tk supports only primary selection which means
selection is owned in only one window on the screen.

Cutselection assigns the retrieved selected text to the global variable "seltxt" for subsequent paste operation.

The widget command ".ed" is invoked to carry out a "delete" operation of the characters between the position
given by insert (point where the insertion cursor is) and a position computed insertion position and the number
of characters in the primary selection.

Note that the enclosure in "" is substituted and evaluated.

proc PasteSelection {} {
global seltxt
.ed insert insert $seltxt

}

proc CopySelection {} {
global seltxt
set seltxt [selection get STRING]

}

Already explained.

proc FindWord {swit seltxt} {
global found
set l1 [string length $seltxt]
scan [.ed index end] %d nl
scan [.ed index insert] %d cl
if {[string compare $swit "-forwards"] == 0 } {
set curpos [.ed index "insert + $l1 chars"]

for {set i $cl} {$i < $nl} {incr i} {

 #.ed mark set first $i.0
 .ed mark set last $i.end ;#another way "first lineend"
 set lpos [.ed index last]
 set curpos [.ed search $swit -exact $seltxt $curpos $lpos]
 if {$curpos != ""} {
 selection clear .ed
 .ed mark set insert "$curpos + $l1 chars "
 .ed see $curpos
 set found 1
 break
 } else {
 set curpos $lpos

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (3 di 6) [04/12/2000 19.39.33]

 set found 0
 }
 }
} else {
 set curpos [.ed index insert]
 set i $cl
 .ed mark set first $i.0
 while {$i >= 1} {

 set fpos [.ed index first]
 set i [expr $i-1]

 set curpos [.ed search $swit -exact $seltxt $curpos $fpos]
 if {$curpos != ""} {
 selection clear .ed
 .ed mark set insert $curpos
 .ed see $curpos
 set found 1
 break
 } else {
 .ed mark set first $i.0
 .ed mark set last "first lineend"
 set curpos [.ed index last]
 set found 0
 }

 }
}
}

FindWord takes a switch (forward or backward and a string and searches for the string in the displayed string
from the current position, searching one line at a time.

index, scan, search, selection clear and see

The above procedure is pretty rudimentary and the reader only need to learn the following Tcl/Tk specific
commands, markers, utilities and notions.

In Tk text widget is a position specifier which returns a number of the form l.c where l is the integer that
denotes the line number and c the character index in that line (e.g., 5.8 refers to 9th character in fifth line).
You can also specify index @x,y which refers to the character closest to the pixel at position x,y in the window
where x and y are integer values; index last refers to the last position in the line, first to first character in the
line and index end point to end of the text.

The Tcl command scan is similar to scanf in C. It takes as argument a string and a format and parses the
string and assigns the elements to variables according to that format. In this procedure scan is given the
current cursor position from which the current line is extracted and assigned to "cl". similarly the number of
the last line is retrived from indexing into ""end" which marks end of displayed text.

The Tk text widget action "search" takes a switch (forward or backward), an option (whether the search is
exact or nocase), the string to search for and a serach range and returns the position if a match is found.

The primary selection is cleared in the selection buffer and it is no longer owned by the window when the call
to "selection clear .ed" is made.

If a match is found, the cursor is moved to that position and that position is brought within the visible region
of the text widget by a call to ".ed see" with current position as argument.

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (4 di 6) [04/12/2000 19.39.33]

proc FindSelection {swit} {

global seltxt GotSelection
if {$GotSelection == 0} {
 set seltxt [selection get STRING]
 set GotSelection 1
 }
FindWord $swit $seltxt
}

proc FindValue {} {

FindPopup
}

proc TagSelection {} {
global seltxt GotSelection
if {$GotSelection == 0} {
 set seltxt [selection get STRING]
 set GotSelection 1
 }
TagAll
}

proc ReplaceSelection {swit} {
global repltxt seltxt found
set l1 [string length $seltxt]
FindWord $swit $seltxt
if {$found == 1} {
 .ed delete insert "insert + $l1 chars"
 .ed insert insert $repltxt
 }
}

proc ReplaceAll {} {
global seltxt repltxt
set l1 [string length $seltxt]
set l2 [string length $repltxt]
scan [.ed index end] %d nl
set curpos [.ed index 1.0]
for {set i 1} {$i < $nl} {incr i} {
 .ed mark set last $i.end
 set lpos [.ed index last]
 set curpos [.ed search -forwards -exact $seltxt $curpos $lpos]

 if {$curpos != ""} {
 .ed mark set insert $curpos
 .ed delete insert "insert + $l1 chars"
 .ed insert insert $repltxt
 .ed mark set insert "insert + $l2 chars"
 set curpos [.ed index insert]
 } else {
 set curpos $lpos
 }
 }
}

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (5 di 6) [04/12/2000 19.39.33]

All the above procedures essentially repeat all the Tk text widget specific commands and actions that have
already been explained.

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/proc.html (6 di 6) [04/12/2000 19.39.33]

 Tcl/Tk Cookbook - Text Editor

Step 5: Tagging text strings

Script

proc TagAll {} {
global seltxt
set l1 [string length $seltxt]
scan [.ed index end] %d nl
set curpos [.ed index insert]
for {set i 1} {$i < $nl} {incr i} {
 .ed mark set last $i.end
 set lpos [.ed index last]
 set curpos [.ed search -forwards -exact $seltxt $curpos $lpos]
 if {$curpos != ""} {
 .ed mark set insert $curpos
 scan [.ed index "insert + $l1 chars"] %f pos
 .ed tag add $seltxt $curpos $pos
 .ed tag configure $seltxt -background Bisque3
 .ed mark set insert "insert + $l1 chars"
 set curpos $pos
 } else {
 set curpos $lpos
 }
 }
}

The Tk text widget specific command ".ed tag add" takes a string for the name of the tag and assigns that tag to all the
characters (or phrase) between the two positions given to it as arguments after the tag name. All the tag names are
registered in the name space and all occurances of the tagged text could be subsequently collectively referred to by
their tag names.

In this procedure wherever a match for a given string is found, it is tagged. The string is used as the tag name (e.g., all
occurences of "jack" is tagged and the tag name is "jack").

You can display tagged text differently by calling ".ed tag configure" as in this procedure where the tagged word is
displayed with different background colour throughout: The final result when you execute this script should be:

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/tags.html (1 di 2) [04/12/2000 19.39.35]

You can also add bindings to tagged text by calling for instance

".ed tag bind {
 .ed delete "insert + [string length $seltxt] chars"
 .ed insert insert "I have removed tagged text and inserted this"
 }

You should of course add a sensible course of action than the above ;-) the rest of the procedure is made up of Tcl/Tk
commands already explained. Note that any word or a phrase could have more than one tag associated with it too.

Tcl/Tk Cookbook - Text widget

http://www.dci.clrc.ac.uk/Publications/Cookbook/tags.html (2 di 2) [04/12/2000 19.39.35]

 Tcl/Tk Cookbook - Using the

Canvas

Purpose
This chapter introduces the Tk canvas widget which can be used to display
objects made of one or more drawing primitives. It introduces some of the
special features of Tk canvas widget such as embedded widgets and tagging
names to displayed objects so that specific behaviour can be associated with
them (e.g., selecting a region in a map invokes a video to play a quick scenic
tour of the region).

Tk canvas supports additional features such as Postscript output, scrolling,
searching (objects with a given property or closest to a given point), editable
text and device indepentent coordinates (also supports pixel based dimension
specification).

You will need
At this point it is assumed that the reader has read through the previous
chapters. Scripts for creating buttons, scrollbars etc. are made use of in this
section but are described in detail in the previous chapter.

Dish to Serve Up
Part-I:

Create a simple canvas based application to animate a text string when a button
is pressed.

Part-II:
Create an application to display Western Europe. When the user clicks the left
mouse button over a country, its name should appear in an entry widget.
Alternatively, when the user enters a country name, ring a note and flash the
region of the country.

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap4.html (1 di 2) [04/12/2000 19.39.37]

Recipe
The script for both parts (mo.tcl and eu.tcl) are in the Cookbook's code
directory, under ch4 subdirectory.

Part-I

Place the script for all three steps of Part-I in animate.tcl. The script is in
~cookbook/code/ch4/mo.tcl.

create a canvas and embed a button widget in it.1.

write a procedure to animate (move) a tagged object in the canvas.2.

create an object for animation and control the animation by
reconfiguring the button widget.

3.

Part-II

ssumed that you will place the script for all the three of the following into a
single Tcl script file called EU.tcl. The script is in the file eu.tcl in the
Cookbook code diectory under ch4.

create a canvas to display Western European map data, an entry widget
for the user to input a country name, buttons to clear the canvas and exit
the application.

1.

display the data and tag the country names with bindings for displaying
the name of the country when the user clicks within its borders.

2.

create procedures to flash the country for which the name is specified.3.

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap4.html (2 di 2) [04/12/2000 19.39.37]

 Tcl/Tk Cookbook - Using the

Canvas

Part-I - Step 1: create a canvas and embed a button
widget in it.

frame .mv
wm title . "Animation in canvas"
pack .mv
canvas .mv.c
pack .mv.c

button .mv.c.but -text Credits -command displayInfo

The script creates a canvas ".mv.c" as the child of a main frame ".mv". It also
creates a button ".mv.c.but" with label "Credits" and a -command option to
invoke the action "displayInfo".

Embedded Widgets
Some of the item types supported by Tk canvas are rectangle, ellipse, Bezier
curve, bitmap and window. Canvas displays window for a widget at a given x,y
position and provides the geometry management for the widget. This allows
for pre-packaged components with their own built-in functionality to be
available alongside general drawing and hyper-linking capabilities of the
canvas. (e.g., you may want to embed the BLT-graph widget in a text widget
alongside text or in a canvas widget and exploit its built-in capability to
provide direct interaction for zooming into specific regions of the graph).

The following Tcl/Tk command appended to the script above, creates a
window inside the canvas at x,y position 218,153 for the button ".mv.c.but".

.mv.c create window 218 153 -window .mv.c.but

Note that in this simple example, we could have used a tagged text string and
used tag binding to invoke "displayInfo" but the principle of embedding

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo1.html (1 di 2) [04/12/2000 19.39.39]

widgets is powerful and appropriate mechanism if you wish to invoke complex
ready-made soultions.

If you execute this script you will see:

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo1.html (2 di 2) [04/12/2000 19.39.39]

 Tcl/Tk Cookbook - Using the

Canvas

Part-I - Step2: Animate a canvas object

The after command

Tk command after is used to delay a command for a given number of
milliseconds. If there are additional arguments to after beyond the time delay,
then after concatenates the additional arguments into a script to be evaluated in
the background after the given time delay and after returns immediately.

The return value of after is a unique command identifier of the delayed event.
This identifier can be used to access the delayed command, to cancel it for
instance.

Usage

proc movie {ta tim} {
 global id
 .mv.c move $ta 1 1
 set id [after $tim movie $ta $tim]

}

The procedure "movie" moves an object (text string in this case) identified by
its tag name, one pixel in each of the x and y direction. Then it reschedules
itself to be invoked after the given time interval. The global variable "id" is
assigned the return value from after each time after arranges for "movie" to be
invoked. The procedure will be invoked recursively making the tagged text
move diagonally down

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo2.html [04/12/2000 19.39.40]

 Tcl/Tk Cookbook - Using the

Canvas

Part-I - Step3: Create an object for animation and control the
animation via the button

Append this script to your file that contains the scripts of step 1 and 2. The procedure displayInfo
invokes "movie" described in the last step:

proc displayInfo {} {
 .mv.c create text 10 10 -text "A Moving Story" -tags st
 .mv.c create text 20 30 -text "by" -tags st
 .mv.c create text 15 50 -text "Venkat V V S S Sastry" -tags st
 bell
 movie st 250
 .mv.c.but configure -text Stop -command \
 {global id
 bell
 after cancel $id
 .mv.c.but configure -text {The End}
 after 10000
 .mv.c.but configure -text Quit -command {exit}
 }
}

The first three lines of script in "displayInfo" create three separate text objects in the canvas at x,y
locations given by (10,10), (20,30), and (15,50). All three strings are assigned a single tag name
"st".

The command bell rings the display of the applications main window. You can give bell a
-displayof option to specify the display of a particular window. Then "displayInfo" invokes the
procedure "movie" with the tag name "st" and an interval (250 milliseconds in this case) as
arguments. The label on the button changes to "Stop".

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo3.html (1 di 2) [04/12/2000 19.39.44]

The buttons -command option is reconfigured to cancel the execution of the delayed command
given by the identifier "id". If the user clicks on the button, the label changes again to "The End"
to mark the end of the animation. After an elapse of 10 seconds the button displays "Quit" for the
user to click on to exit the application.

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/mo3.html (2 di 2) [04/12/2000 19.39.44]

 Tcl/Tk Cookbook - Using the Canvas

Part-II - Step 1: create a canvas and embed a button widget in it.

The script included in this step generates a user interface that looks like:

The code is self-explanatory. Note that it is useful to assign short variable names to long widget names (e.g., w for
.f.sub.c).

#!/usr/bin/wish -f
global countries is1 sc
wm title . "Eu Tool V0.0"
wm minsize . 50 50

frame .f -bg grey -bd 2;# to hold canvas and scrollbars
pack .f
frame .f.sub -bg red -bd 2 ;# to hold canvas
pack .f.sub -in .f
canvas .f.sub.c -relief sunken -width 15c -height 15c

pack .f.sub.c -in .f.sub -side left -fill y -padx 2
set w .f.sub.c

frame .info
pack .info
frame .info.sub1
pack .info.sub1 -padx 4 -pady 4 -ipadx 4 -ipady 4
set is1 .info.sub1
label $is1.labcountry -text "Country" -justify right
entry $is1.country -relief sunken -textvariable sc

pack $is1.labcountry $is1.country -side left -padx 4 -pady 3 -ipadx 2 -ipady 2
bind $is1.country {highLightCountry $w $sc}

#
buttons

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu1.html (1 di 2) [04/12/2000 19.39.48]

#
frame .b -bg grey
pack .b -fill x

button .b.quit -text Quit -command {exit 0}
button .b.clear -text Clear -command {clearCanvas .f.sub.c}

pack .b.quit .b.clear -side right -padx 4 -pady 4

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu1.html (2 di 2) [04/12/2000 19.39.48]

 Tcl/Tk Cookbook - Using the Canvas

Part-II - Step 2: Map the data and tag and bind country names.

The Western European map data is adopted to the Tk canvas coordinate system from the original coordinates
given in PHIGS Programming Manual, by Tom Gaskins, Appendix D

The procedure to create the mapdata is simple and is described below:

For each country, the Tk widget command "$w" where $w points to the canvas, is invoked to create a closed
filled polygon with given points forming the edges. Then the filled region is tagged with the country's name. The
tag is associated with a binding for Button-1 (left mouse button) to show the coutry's name in the entry widget
when the user clicks within the country's borders. (Experiment to see what happens when you click on the
borders.)

$w create polygon \
1.33039 0.57027 1.36029 0.59123 1.34591 0.50223 1.34591 0.44262 \
1.33314 0.41707 1.32797 0.37687 1.30972 0.35746 1.27992 0.3532 \
1.2565 0.33617 1.24296 0.32417 1.21179 0.32979 1.19902 0.34469 \
1.17347 0.34469 1.14416 0.36309 1.12876 0.34895 1.14792 0.34043 \
1.14154 0.31488 1.11386 0.31488 1.10109 0.29998 1.07054 0.29423 \
1.03341 0.29185 1.02019 0.32766 1.02019 0.34895 1.02861 0.38514 \
1.02861 0.41158 1.00742 0.39152 0.98251 0.38164 0.98251 0.4043 \
0.96484 0.39152 0.94359 0.41876 0.93879 0.48524 0.88614 0.51518 \
0.88614 0.60021 0.88852 0.64209 0.91374 0.65977 0.89988 0.68344 \
0.99688 0.72716 0.96694 0.81694 1.07471 0.82592 1.25673 0.82354 \
1.30943 0.73852 1.21301 0.62593 1.33039 0.57027 \
-fill green -tag germany
$w bind germany {showName Germany}

$w create polygon \
0.88852 0.64209 0.91374 0.65977 \
0.89988 0.68344 0.86993 0.67863 0.88852 0.64209\
 -fill bisque4 -tag luxemburg
$w bind luxemburg {showName Luxemburg}

$w create polygon \
1.07471 0.82592 1.25673 0.82354 1.30943 0.73852 1.34288 0.75019 \
1.37815 0.7365 1.407 0.71653 1.47287 0.73372 1.49383 0.78462 \
1.47272 0.80309 1.44708 0.80309 1.45028 0.83194 1.43395 0.86727 \
1.4038 0.88484 1.36853 0.87852 1.34449 0.90247 1.30046 0.89721 \
1.24831 0.88074 1.21782 0.85586 1.16335 0.85278 1.128 0.86965 \
1.0867 0.86067 1.07471 0.82592\
 -fill PeachPuff2 -tag austria
$w bind austria {showName Austria}

$w create polygon \
0.94359 0.41876 0.93879 0.48524 0.88614 0.51518 0.88614 0.60021 \
0.83344 0.54989 0.7526 0.55649 0.78826 0.53219 0.81711 0.51936 \
0.8091 0.50333 0.81711 0.48249 0.83314 0.4841 0.85719 0.48249 \
0.81391 0.46486 0.8123 0.44402 0.82513 0.41998 0.85858 0.41876 \
0.94359 0.41876\
 -fill LemonChiffon1 -tag netherlands

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (1 di 6) [04/12/2000 19.40.23]

$w bind netherlands {showName Netherlands}

$w create polygon \
0.7526 0.55649 0.83344 0.54989 0.88614 0.60021 0.88852 0.64209 \
0.86993 0.67863 0.82833 0.65084 0.82994 0.61554 0.8091 0.62035 \
0.79948 0.64439 0.77864 0.64119 0.76843 0.608 0.7113 0.57265 \
0.72895 0.55783 0.7526 0.55649\
 -fill honeydew1 -tag belgium
$w bind belgium {showName Belgium}

$w create polygon \
1.03341 0.29185 1.02069 0.26129 1.0011 0.24153 0.99344 0.20518 \
1.00786 0.17953 1.01245 0.13976 1.03672 0.11381 1.08481 0.10259 \
1.10084 0.08175 1.128 0.07808 1.1345 0.11221 1.10565 0.13305 \
1.10227 0.16311 1.11847 0.17793 1.14251 0.16992 1.14837 0.18824 \
1.12328 0.22121 1.07951 0.22954 1.0816 0.28052 1.07054 0.29423 \
1.03341 0.29185\
 -fill LavenderBlush1 -tag denmark
$w bind denmark {showName Denmark}

$w create polygon \
1.1345 0.23724 1.11366 0.24045 1.11045 0.25648 1.12488 0.2709 \
1.13129 0.28533 1.14412 0.27571 1.14893 0.25327 1.1345 0.23724\
 -fill LavenderBlush1 -tag fyn
$w bind fyn {showName Fyn}

$w create polygon \
1.22587 0.20198 1.20182 0.21159 1.20022 0.22602 1.21465 0.23884 \
1.19862 0.24846 1.18259 0.23724 1.1874 0.22281 1.16976 0.20999 \
1.15854 0.23243 1.16335 0.26129 1.18099 0.27892 1.20022 0.27251 \
1.16656 0.30296 1.21304 0.28373 1.20984 0.2677 1.22747 0.26129 \
1.23388 0.23564 1.21946 0.2164 1.23709 0.20999 1.22587 0.20198\
 -fill LavenderBlush1 -tag sjaelland

$w bind sjaelland {showName Sjaelland}

$w create polygon \
0.7113 0.57265 0.76843 0.608 0.77864 0.64119 0.79948 0.64439 \
0.8091 0.62035 0.82994 0.61554 0.82833 0.65084 0.86993 0.67863 \
0.89988 0.68344 0.99688 0.72716 0.96694 0.81694 0.93413 0.82874 \
0.91169 0.87183 0.88614 0.89721 0.88764 0.9153 0.90688 0.91183 \
0.9181 0.92972 0.93879 0.93433 0.94535 0.98102 0.92743 1.00315 \
0.94695 1.03552 0.97115 1.04193 0.97115 1.07444 0.89749 1.1253 \
0.78253 1.09298 0.73405 1.11632 0.73405 1.16902 0.65142 1.16664 \
0.62636 1.13811 0.58628 1.12689 0.55583 1.13212 0.51255 1.1186 \
0.51255 1.09002 0.4869 1.11059 0.46701 1.10438 0.47889 1.08842 \
0.49011 1.04834 0.51255 1.00346 0.51095 0.9698 0.49812 0.90408 \
0.49331 0.88965 0.47728 0.88804 0.45965 0.87682 0.45645 0.85759 \
0.47272 0.84689 0.45484 0.83515 0.43721 0.83996 0.41156 0.83675 \
0.41797 0.82553 0.40515 0.83194 0.36988 0.81751 0.34584 0.81591 \
0.33109 0.80558 0.32981 0.78866 0.31699 0.77584 0.31076 0.75468 \
0.3234 0.73897 0.34744 0.73737 0.36508 0.72614 0.38752 0.73416 \
0.41156 0.76141 0.4324 0.74378 0.46767 0.74378 0.48317 0.7523 \
0.48209 0.71492 0.46767 0.69248 0.4628 0.67625 0.49331 0.67004 \
0.51736 0.68287 0.57026 0.68126 0.59396 0.69003 0.60552 0.68126 \
0.5943 0.67325 0.60552 0.65401 0.64239 0.62195 0.66039 0.58881 \
0.7113 0.57265 -fill SlateBlue1 -tag france
$w bind france {showName France}

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (2 di 6) [04/12/2000 19.40.23]

$w create polygon \
0.96694 0.81694 0.93413 0.82874 0.91169 0.87183 0.88614 0.89721 \
0.88764 0.9153 0.90688 0.91183 0.9181 0.92972 0.93879 0.93433 \
0.98863 0.91156 0.99825 0.89125 1.03191 0.89927 1.0472 0.93433 \
1.08 0.89285 1.128 0.86965 1.0867 0.86067 1.07471 0.82592 0.96694 0.81694\
 -fill RoyalBlue1 -tag switzerland

$w bind switzerland {showName Switzerland}

$w create polygon \
1.30046 0.96185 1.30046 0.89721 1.24831 0.88074 1.21782 0.85586 \
1.16335 0.85278 1.128 0.86965 1.08 0.89285 1.0472 0.93433 1.03191 \
0.89927 0.99825 0.89125 0.98863 0.91156 0.93879 0.93433 0.94535 \
0.98102 0.92743 1.00315 0.94695 1.03552 0.97115 1.04193 0.97115 \
1.07444 0.99504 1.07239 1.02229 1.05475 1.0406 1.0379 1.07038 \
1.04193 1.11526 1.05636 1.13771 1.08361 1.13931 1.11246 1.15534 \
1.1333 1.16934 1.16664 1.20182 1.1894 1.22907 1.21184 1.26915 \
1.22467 1.3509 1.27596 1.35891 1.28879 1.37174 1.28879 1.38616 \
1.2952 1.39097 1.30482 1.40861 1.30642 1.41662 1.33046 1.41983 \
1.36413 1.42944 1.38817 1.41983 1.40901 1.42624 1.42664 1.41181 \
1.44107 1.39739 1.42824 1.38136 1.43145 1.3525 1.44588 1.29319 \
1.44748 1.27556 1.45229 1.25793 1.45069 1.24991 1.46832 1.27075 \
1.47313 1.28037 1.46832 1.30762 1.49076 1.3493 1.5132 1.37975 \
1.53244 1.39739 1.52923 1.4054 1.5132 1.39739 1.49236 1.39578 \
1.4603 1.42784 1.43786 1.44387 1.44267 1.46311 1.42344 1.47433 \
1.39618 1.49383 1.3876 1.49677 1.37695 1.49517 1.3513 1.48395 \
1.33688 1.47112 1.32886 1.47112 1.31123 1.48395 1.2984 1.50478 \
1.30161 1.51921 1.31443 1.53364 1.31283 1.54806 1.32726 1.56987 \
1.33367 1.56987 1.31631 1.56089 1.2968 1.53524 1.28237 1.50959 \
1.27596 1.48074 1.25032 1.44067 1.23108 1.43105 1.21665 1.44067 \
1.20223 1.43105 1.19261 1.37013 1.18139 1.33006 1.14933 1.31243 \
1.12048 1.29319 1.0804 1.28037 1.06758 1.25953 1.06918 1.2451 \
1.05475 1.24831 1.03231 1.2451 1.01147 1.23228 0.98903 1.23869 \
0.96819 1.27235 0.9698 1.30046 0.96185\
 -fill SteelBlue1 -tag italy
$w bind italy {showName Italy}

$w create polygon \
1.06557 1.12849 1.04794 1.1365 1.05275 1.15253 1.03672 1.16376 \
1.0271 1.18139 1.03031 1.20223 1.05275 1.22627 1.07038 1.23429 \
1.08481 1.21665 1.07359 1.20543 1.08641 1.17978 1.0832 1.13811 \
1.07198 1.10284 1.06557 1.12849 \
 -fill SteelBlue1 -tag sardinia
$w bind sardinia {showName Sardinia}

$w create polygon \
1.06076 1.24551 1.02389 1.26154 1.00786 1.25512 1.01588 1.2407 \
0.99985 1.25673 1.00786 1.26955 1.01909 1.28077 1.0271 1.31123 \
1.01588 1.33046 1.00786 1.31924 1.01428 1.34008 1.00786 1.36573 \
1.02389 1.38496 1.04794 1.38657 1.04794 1.37214 1.05916 1.37214 \
1.06878 1.37855 1.07679 1.36733 1.07519 1.34329 1.0832 1.31924 \
1.07679 1.2984 1.09282 1.2952 1.09282 1.27276 1.07359 1.2439 \
1.06076 1.24551\
 -fill SteelBlue1 -tag corsica
$w bind corsica {showName Corsica}

$w create polygon \
0.73405 1.16902 0.65142 1.16664 0.62636 1.13811 0.58628 1.12689 \
0.55583 1.13212 0.51255 1.1186 0.51255 1.09002 0.4869 1.11059 \

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (3 di 6) [04/12/2000 19.40.23]

0.46701 1.10438 0.44042 1.10765 0.41316 1.09803 0.33302 1.09002 \
0.26409 1.09322 0.21921 1.082 0.17913 1.07559 0.15509 1.08681 \
0.13585 1.09803 0.11341 1.09322 0.08776 1.10765 0.05988 1.13252 \
0.05731 1.15253 0.06532 1.17337 0.0783 1.18494 0.0783 1.19581 \
0.08502 1.20701 0.11982 1.19742 0.13265 1.21195 0.12143 1.22948 \
0.15348 1.2137 0.18875 1.21098 0.22753 1.21993 0.21528 1.24551 \
0.19196 1.26314 0.19148 1.2952 0.16586 1.34868 0.14066 1.3513 \
0.17432 1.39618 0.16474 1.41863 0.17753 1.45389 0.15348 1.47313 \
0.16344 1.50077 0.19837 1.5132 0.23203 1.53404 0.23684 1.55808 \
0.26942 1.57201 0.29615 1.56581 0.31218 1.54847 0.33943 1.54366 \
0.35866 1.54686 0.37149 1.53885 0.40355 1.53083 0.434 1.53244 \
0.45805 1.52603 0.49011 1.48916 0.50774 1.4587 0.543 1.43786 \
0.57667 1.40741 0.58468 1.38336 0.56545 1.38336 0.55423 1.36573 \
0.55904 1.34008 0.57506 1.31123 0.60552 1.27596 0.67765 1.2439 \
0.7017 1.23108 0.72735 1.19742 0.73405 1.16902 \
 -fill LightSkyBlue1 -tag spain
$w bind spain {showName Spain}

$w create polygon \
0.08502 1.20701 0.11982 1.19742 0.13265 1.21195 0.12143 1.22948 \
0.15348 1.2137 0.18875 1.21098 0.22753 1.21993 0.21528 1.24551 \
0.19196 1.26314 0.19148 1.2952 0.16586 1.34868 0.14066 1.3513 \
0.17432 1.39618 0.16474 1.41863 0.17753 1.45389 0.15348 1.47313 \
0.16344 1.50077 0.12784 1.5148 0.107 1.50704 0.08264 1.50975 \
0.06692 1.5132 0.06692 1.49717 0.08662 1.46992 0.0851 1.41992 \
0.05269 1.40376 0.04609 1.36573 0.05731 1.34649 0.05089 1.34329 \
0.0722 1.28558 0.08502 1.2070\
 -fill SlateGray2 -tag portugal
$w bind portugal {showName Portugal}

$w create polygon \
0.29218 0.00863 0.32019 0.0 0.35225 0.00481 0.38271 0.0 0.39335 \
0.00621 0.38591 0.03847 0.36508 0.06893 0.34744 0.07214 0.35225 \
0.07855 0.33589 0.08944 0.35706 0.09618 0.43721 0.10259 0.434 \
0.12183 0.42439 0.15549 0.40355 0.18755 0.38676 0.20037 0.38676 \
0.21159 0.42118 0.21961 0.4742 0.24333 0.4869 0.2677 0.52698 \
0.30777 0.56224 0.34784 0.573 0.37687 0.55743 0.38151 0.5382 \
0.3783 0.51896 0.3783 0.54544 0.38644 0.57186 0.39593 0.58435 \
0.41876 0.56402 0.44632 0.57506 0.45204 0.61834 0.44402 0.65142 \
0.4601 0.63117 0.51936 0.59813 0.54513 0.60232 0.55463 0.62796 \
0.55302 0.63764 0.57027 0.56705 0.60913 0.49171 0.61073 0.42599 \
0.62035 0.38591 0.61233 0.36027 0.63317 0.33462 0.6492 0.30577 \
0.65081 0.28012 0.65561 0.25743 0.65349 0.26249 0.64439 0.28813 \
0.62997 0.30897 0.60111 0.33783 0.58028 0.37149 0.57867 0.38591 \
0.56104 0.40515 0.55302 0.42091 0.53135 0.37719 0.55231 0.33302 \
0.54501 0.29935 0.52257 0.28974 0.50494 0.34725 0.47146 0.3218 \
0.45204 0.33141 0.43441 0.31218 0.42158 0.32821 0.41196 0.33622 \
0.4296 0.36668 0.41677 0.40475 0.40682 0.40194 0.38311 0.4167 \
0.34693 0.39874 0.34784 0.38431 0.34784 0.36828 0.33182 0.37469 \
0.30617 0.39578 0.29185 0.3795 0.29014 0.36027 0.30617 0.33783 \
0.31098 0.29455 0.30617 0.28333 0.26609 0.29218 0.2158 0.24846 \
0.26191 0.24165 0.24045 0.26569 0.20037 0.27363 0.16548 0.24966 \
0.16831 0.2323 0.16072 0.24004 0.11381 0.20157 0.10419 0.20638 \
0.08817 0.22081 0.09458 0.21279 0.08175 0.22722 0.07694 0.24325 \
0.1074 0.24646 0.06733 0.29218 0.00863\
 -fill LightSteelBlue1 -tag gb

$w bind gb {showName "Great Britain"}

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (4 di 6) [04/12/2000 19.40.23]

$w create polygon \
0.216 0.02244 0.18875 0.03847 0.18394 0.07374 0.17432 0.10099 \
0.14707 0.13144 0.18394 0.109 0.19676 0.07053 0.22241 0.04008 0.216 0.02244\
 -fill LightSteelBlue1 -tag hebrides
$w bind hebrides {showName Hebrides}

$w create polygon \
0.17432 0.27327 0.22081 0.27571 0.23363 0.29655 0.25287 0.30937 \
0.25768 0.33502 0.22753 0.36309 0.20592 0.32898 0.1449 0.34693 \
0.12155 0.32417 0.1497 0.29185 0.17432 0.27327\
 -fill LightCyan1 -tag nireland
$w bind nireland {showName "Northern Ireland"}

$w create polygon \
0.22753 0.36309 0.20592 0.32898 0.1449 0.34693 0.12155 0.32417 \
0.1497 0.29185 0.12155 0.27807 0.10539 0.29495 0.10219 0.31098 \
0.08295 0.32701 0.09637 0.34272 0.07654 0.34624 0.06372 0.35586 \
0.04609 0.35265 0.02525 0.35105 0.01135 0.36547 0.02756 0.3783 \
0.02756 0.41158 0.0525 0.41677 0.07604 0.42056 0.03486 0.45524 \
0.03232 0.47146 0.04769 0.47146 0.08502 0.46248 0.04929 0.47769 \
0.02044 0.47929 0.0 0.4966 0.0 0.51135 0.03166 0.50814 0.03654 \
0.51995 0.01616 0.52417 0.01616 0.53853 0.04609 0.53219 0.07013 \
0.53379 0.15669 0.51295 0.19676 0.50974 0.21133 0.4966 0.22562 \
0.42799 0.21921 0.39914 0.22753 0.36309\
 -fill SpringGreen1 -tag eire

$w bind eire {showName Eire}

Display the data
Append the following script to the file: set countries {germany luxemburg austria netherlands belgium \ denmark
fyn sjaelland france switzerland italy sardinia \ corsica spain portugal gb hebrides nireland eire} foreach c
$countries { $w scale $c 0 0 300 300 }

The first line creates an array called "countries" whose elements are the tags created.

The canvas widget specific command scale takes five arguments and rescales all the items identified by the tag
given by the first argument. The second and third arguments are used as origins for the scaling operation and the
fourth and fifth the scale factors in the x and y directions. This scaling operation is called repeatedly to display
the data centred within the canvas widgets visible region.

The result would be:

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (5 di 6) [04/12/2000 19.40.23]

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu2.html (6 di 6) [04/12/2000 19.40.23]

 Tcl/Tk Cookbook - Using the

Canvas

Part-II - Step 3: Procedure definitions.

The script below for the procedures are simple and largely self-explanatory:

proc showName {c} {
global is1
$is1.country delete 0 end
$is1.country insert end $c

}

given a country flash that in canvas

proc highLightCountry { w tn } {
 set old_colour [lindex [$w itemconfig $tn -fill] 4]

 $w itemconfigure $tn -fill yellow
 after 5000 "$w itemconfigure $tn -fill $old_colour; bell"

}
proc clearCanvas {w} {
 foreach id [$w find all] {$w delete $id }
}

When the user presses and releases the left mouse button within the borders of a
country, the procedure "showName" is invoked to clear (0 to end deletes first to last
characters) the entry widget in the application and to insert the name of the country
that was passed to the procedure as argument.

The procedure "highLightCountry" takes the names of the canvas widget and the tag
input via the entry widget.

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu3.html (1 di 2) [04/12/2000 19.40.26]

The widget command is used to invoke the "itemconfig" action; "itemconfig" gets the
list of all the current configuration and their values of the given item in the canvas
widget. From this list the current colour of the tagged irtem is retrieved and assigned
to old colour. The tagged region (item) is filled with the colour yellow. After 5
seconds, the old colour is reset.

You can of course make the named country flash by rewriting this procedure to set and
rest the old and new colours alternatively every so often. Experiment.

The procedure clearCanvas gets the list of all items displayed in the canvas and deletes
them.

Tcl/Tk Cookbook - Using the Canvas

http://www.dci.clrc.ac.uk/Publications/Cookbook/eu3.html (2 di 2) [04/12/2000 19.40.26]

 Tcl/Tk Cookbook - Canvas

Revisited

Purpose
This Chapter introduces creating objects interactively in Tk canvas widget.

You will need
At this point it is assumed that the reader has read through the previous
chapters. Scripts for creating pulldown menus, scrollbars etc. are made use of
in this section but are described in detail in Chapter 3.

Dish to Serve Up
Create a simple drawing editor.

Recipe
The script for this example (draw.tcl) is in the Cookbook's code directory,
under ch5 subdirectory. You can place all the script for this example in a single
Tcl/Tk script file.

Remember to set the path to our wish binary properly.

create a window with a top menubar, a panel for some buttons and a
scrollable canvas.

1.

add some buttons and an entry widget for string input in the panel; put
bitmapped images rather than text labels for the buttons.

2.

create bindings in canvas for mouse clicks and motion so that drawing
primitives could be drawn in it.

3.

Acknowledgement

The bitmaps used are under the subdirectory bitmaps under
~cookbook/code/ch5. The bitmaps are part of the public domain xfig program.

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap5.html (1 di 2) [04/12/2000 19.40.27]

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap5.html (2 di 2) [04/12/2000 19.40.27]

 Tcl/Tk Cookbook - Canvas Revisited

Step 1: Create basic graphical user interface.

Script

#!/usr/local/bin/wish -f ;#start wish and pass this script for parsing.

global sb so x1 y1 lw ;#declare some globals

frame .fr -width 24c -height 13.6c -bd 2 ;#main frame
pack .fr

wm title . "Canvas"

frame .fr.menubar -relief raised -bd 2
pack .fr.menubar -padx 1 -fill x

frame .fr.panl -width 3.6c -height 12.8c -bg black
frame .cfr -width 20.4c -height 12.4c -bd 1

pack .fr.panl .cfr -in .fr -side left -padx 2 -after .fr.menubar -fill x

canvas .can -width 20c -height 12.0c -bg grey -xscrollcommand ".xs set" \
 -yscrollcommand ".ys set"
scrollbar .ys -command ".can yview"
pack .can .ys -in .cfr -side left -fill x -fill y
scrollbar .xs -orient horizontal -command ".can xview"
place .xs -in .fr -x 3.8c -y 13.3c -width 20.2c

#fill the top menu
menubutton .fr.menubar.file -text File -underline 0 -menu .fr.menubar.file.menu
menubutton .fr.menubar.edit -text Edit -underline 0 -menu .fr.menubar.edit.menu
menubutton .fr.menubar.graphics -text Graphics -underline 0 -menu \
 .fr.menubar.graphics.menu

pack .fr.menubar.file .fr.menubar.edit .fr.menubar.graphics -side left

menubutton .fr.menubar.help -text Help -underline 0
pack .fr.menubar.help -side right

#File menu
menu .fr.menubar.file.menu
.fr.menubar.file.menu add command -label Print -command {printCanvas}
.fr.menubar.file.menu add command -label Quit -command exit

#Edit menu

menu .fr.menubar.edit.menu
.fr.menubar.edit.menu add command -label Cut -com {CutSelection}
.fr.menubar.edit.menu add command -label Clear -com {clearCanvas}

#Graphics menu

menu .fr.menubar.graphics.menu
.fr.menubar.graphics.menu add cascade -label "Line Width" \

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d1.html (1 di 2) [04/12/2000 19.40.30]

 -menu .fr.menubar.graphics.menu.fmenu

#Second level menu for Line Width

menu .fr.menubar.graphics.menu.fmenu
.fr.menubar.graphics.menu.fmenu add radiobutton -label "0.5" \
 -com {set lw 0.5}
.fr.menubar.graphics.menu.fmenu add radiobutton -label "2.0" \
 -com { set lw 2.0 }
set lw 1.0

The above script creates a Tk application main window titled "canvas" with a main frame ".fr".

The main frame contains three frame widgets - the frame ".fr.menubar" for the top menubar, the frame ".fr.panl" is
placed below the menubar packed to the left of the third frame ".cfr". Note that the height and width of the main
frame as well as those of ".fr.panl" and ".cfr" are given in units of centimetres.

Tk canvas widget ".can" is created as the child of the main (application root) window and placed within ".cfr". The
scrollbars ".xs" (horizontal) and ".ys" vertical are created and connected to the canvas widget.

the top menubar contains four menubuttons with labels "File", "Edit", "Graphics" and "Help". The menu entries for
"File" is Print and Quit with associated actions printCanvas and exit; the menu entries for "Edit" are Cut and Clear
with associated actions CutSelection and clearCanvas. "Graphics" supports another level of menu to set line width for
the drawing primitives.

Tk place command
Note that for the horizontal scrollbar, the place rather than pack command is used with fixed size and location
parameters to position slave widgets within their masters. This allows for the slave to resize itself when the master
changes size, preserving relative configuration.

The resultant graphical user interface (gui) would be similar to:

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d1.html (2 di 2) [04/12/2000 19.40.30]

 Tcl/Tk Cookbook - Canvas Revisited

Step 2: Add other gui objects

Script

button .rect -image [image create bitmap \
-file "./bitmaps/boxOp.xbm"] -com {set sb "rectangle"}
button .circ -image [image create bitmap -file "./bitmaps/ovalOp.xbm"] \
 -com {set sb "oval" }
button .lin -image [image create bitmap -file "./bitmaps/lineOp.xbm"] \
 -com {set sb "line" }
button .txt -image [image create bitmap -file "./bitmaps/textOp.xbm"] \
 -com {set sb "text"}
button .selob -image [image create bitmap -file "./bitmaps/selectOp.xbm"] \
 -com {set sb "obj" }
label .txtlab -text "Text : "
entry .txtstr -textvariable str -relief sunken -width 10

place .rect -in .fr.panl -x 2 -y 1
place .circ -in .fr.panl -x 60 -y 1
place .lin -in .fr.panl -x 2 -y 60
place .txt -in .fr.panl -x 2 -y 120
place .selob -in .fr.panl -x 60 -y 60
place .txtlab -in .fr.panl -x 2 -y 180
place .txtstr -in .fr.panl -x 20 -y 220

Image
The Tk command image is used to create, delete or query images. The first argument to image specifies the action
to be taken (e.g. create and the second argument is the type of the image (e.g. bitmap). The "-file" option rreads the
bitmap data from the file specified.

The "-image" option replaces the "-text" option in the button creation command to place the bitmap image as the
labels for the buttons. Each button command sets the value of the global variable "sb" to a specific value. The
value of the variable is used in the cnavas drawing routines to determine which type of drawing primitive should
be drawn. i.e. the user selects, for example, the "rectangle" button; "sb" is set the value "rectangle" and in the
canvas the command .can create $sb $x $y $x1 $y1 draws a rectangle object.

Text
In this example, drawing text in the canvas is simplified. The user inputs the text string in the entry widget, hits
return and selects the button marked "A". Then the text string is created in the canvas wherever the left mouse
button is clicked.

Selecting an Object
The button with the "dotted rectangle" label is used to specify a rectangular region within the canvas widget. To
mark this a rectangle will be drawn with a red outline.

The widget placements should result in

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d2.html (1 di 2) [04/12/2000 19.40.32]

The current drawing primitive changes only when the user explicitly selects another by selecting one of the other
buttons.

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d2.html (2 di 2) [04/12/2000 19.40.32]

 Tcl/Tk Cookbook - Canvas Revisited

Step 3: Create bindings in canvas for drawing

Script

We want to add some bindings to the canvas widget so that :

when the user presses down the left mouse button that point is taken as the starting point (top left) for the drawing
primitive

❍

the mouse motion is tracked while the left mouse button remains pressed down❍

the primitive is drawn when the left mouse button is released.❍

To do this, set the three bindings for the canvas:

bind .can {GetStarted %x %y}
bind .can { LetGo %x %y}
bind .can {KeepMoving %x %y}

Each user event invokes the associated action (procedure/function/behaviour) passing it the current x,y position as argument.
The script for the three procedures are defined below:

proc GetStarted {x y} {
global x1 y1 sb so str eo

set x1 $x
set y1 $y

if {[string compare $sb "text"] == 0 } {
 set so [.can create text $x $y -text $str -anchor sw]
 return
 }

if { [string compare $sb "obj"] == 0} {
 set so [.can create rectangle $x $y $x $y -fill {} -outline red]
 set eo $so
 return
 }
if {[string compare $sb "line"] == 0 } {
 set so [.can create $sb $x1 $y1 $x $y]
 .can addtag sbso enclosed $x1 $y1 $x $y
 } else {
 set so [.can create $sb $x1 $y1 $x $y -fill {} -outline black]
 .can addtag sbso enclosed $x1 $y1 $x $y
 }

}

proc KeepMoving {x y} {

global x1 y1 so sb

if {[string compare $sb "text"] == 0 } {
 return
 }

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (1 di 3) [04/12/2000 19.40.36]

.can coords $so $x1 $y1 $x $y

}

proc LetGo {x y} {

global x1 y1 so sb eo

if { [string compare $sb "obj"] == 0} {
 set so [.can find enclosed $x1 $y1 $x $y]
 .can itemconfigure $so -fill {} -outline green
 .can delete $eo
 }

}

The procedure "GetStarted" checks the current value of "sb". If the chosen primitive is text, then the string item is drawn
anchored southwest at current location specified by x,y values.

If "sb" points to the "select an object", then a rectangle object is created with red outline and the variable "eo" is set to this
rectangle's id (to be used later to delete it selectively).

In all the other cases the object/item is drawn from x,y (top left) to x1,y1 (bottom right corner). A tag name made of
concatenating the value of "sb" and the objects unique id is added using the widget command .can with action addtag.

The procedure "KeepMoving" returns without doing anything if "sb" is "text" as it is not relevant in this case. In all other
cases, the widget command .can is invoks the coordinates action. The first argument to this action is the object id (or tag). If
no further arguments is specified, this action will return a list of the coordinates of the object. If the action is given some
coordinate values then it will modify/reset the coordinates of the object (first argument) to those of the given values.

If "sb" is set to "obj" then the procedure "LetGo" invokes ".can" to find the identity of any enclosed object/item. If an
enclosed object/item is found its border is reset to green colour using the canvas widget action itemconfigure.

See what happens when you the selected item is a text string.

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (2 di 3) [04/12/2000 19.40.36]

Other procedures

It only remains to fill in the scripts for the "CutSelection" clearCanvas" and "printCanvas" procedures. Append the following
script for these:

proc CutSelection {} {
global so
.can delete $so
}

proc clearCanvas {} {
 foreach id [.can find all] { .can delete $id }
}

proc printCanvas {} {

.can postscript -file "canvas.ps"
}

"CutSelection" deletes the currently selected or most recently drawn item.

The procedure "clearCanvas" gets the display list of all items and deletes them one by one.

In "printCanvas", the Tk canvas widget action postscript is invoked with a "-file" option. A postscript of the canvas contents
will be saved in the file "canvas.ps" in the current working directory. Note that Tk will complain if you have no write
permissions in the current working directory.

Item Tagging

Tk canvas widget supports bindings for the canvas as well as bindings for individual items displayed within it. Each item
created in the canvas has a unique id and it can also be associated with one or more tags. Item bindings can be associated
with its bindings. For instance, you can move all items with a tag "rectangle" move a pixel left or right or change colour or
fill them with a pattern. Item bindings preceed the canvas widget bindings. Experiment with these.

Tcl/Tk Cookbook - Canvas Revisited

http://www.dci.clrc.ac.uk/Publications/Cookbook/d3.html (3 di 3) [04/12/2000 19.40.36]

 Tcl/Tk Cookbook - Tcl/Tk

and C

Purpose
This Chapter shows how to extend Tcl/Tk commands to include your own. The
example used here is based on PHIGS (Programmer's Hierarchical Interactive
Graphics System) programming library for 3D graphics. The rationale behind
this example is to include 3D drawing capabilities to Tk canvas with Tk
handling all the input while PHIGS handles the 3D output.

You will need
The example is compiled and run using the X11 Release 5 sample
implementation of PHIGS which is freely available public domain software
and conforms to ISO specification. If you want to run this application you will
require access to X11 Release 5 PHIGS (or SunPHIGS) and your workstation
kernel configured to run PHIGS.

If the reader already knows PHIGS, it is easy to understand the self-contained
PHIGS procedures but the reader is not required to know PHIGS to understand
how to register user commands with Tcl interpreter. You can either use the c
routines as a unit or better still you can follow the relevant parts of Tcl/Tk and
apply the methodology to a software package of your choice.

If you want to learn/use PHIGS, refer to Tom Gaskin's PHIGS Programming
Manual which has examples showing the use of PHIGS with X Window
System based toolkits.

Tcl/Tk scripts similar to ones described in earlier chapters are not explained
again. If you are new to Tcl/Tk programming, you should at least read through
previous chapters.

Dish to Serve Up
Create a simple Tk based graphical user interface with canvas widget. Interface
a PHIGS workstation to the canvas to allow PHIGS to draw and update a
simple 3D object

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap6.html (1 di 2) [04/12/2000 19.40.38]

Recipe
Copy into current directory the file ~cookbook/code/ch6/phigscbs.c
which contains the C routines to ;

establish the connection between PHIGS and an X window■

draw 3D drawings in the PHIGS workstation.■

respond to Tk X events (e.g. an event to rotate the drawing).■

❍

Register user commands with Tcl interpreter.❍

Create the Tk gui with user commands.❍

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap6.html (2 di 2) [04/12/2000 19.40.38]

 Tcl/Tk Cookbook - Tcl/Tk and C

Step 1: Create PHIGS related C routines.

Script

This routines below are not described as it is not directly relevant to this Tcl/Tk Cookbook. The PHIGS box with the
text "It's a square world" in the routine "MakeCube" is adopted from A Practical Introduction to PHIGS and PHIGS
Plus.

#include <stdio.h>
#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <phigs/phigs.h>
#include "tcl.h"
#include "tk.h"

#define CUBE (Pint) 1
#define WS_ID (Pint) 1
#define PRIORITY (Pfloat) 1.0
#define PI (Pfloat) 3.141592654
#define CMAX (Pfloat)0.7
#define CMIN (Pfloat)0.3

static Ppoint3 ORIGIN ={0.5,0.5,0.5};

#define set_colour(colrv,typ,r,g,b) colrv.type=typ; \
 colrv.val.general.x=r;colrv.val.general.y= g;colrv.val.general.z=b;

#define fill_struc(A,B,C,D) A.x = B; A.y = C; A.z = D;

extern Pconnid_x_drawable conn_id;
static char text1[] = "It's a ";
static char text2[] = "square world!";

int CleanupAndQuitProc (ClientData clientdata, Tcl_Interp *interp,
 int argc, char *argv[])
{
pclose_ws(WS_ID);
pclose_phigs();
exit(0);
}

int MakeCubeProc (ClientData clientdata, Tcl_Interp *interp,
 int argc, char *argv[])

{
Pfloat angle;
Pint err;
Pmatrix3 transform;
Pfloat mid;
Ppoint3 front_face[5], back_face[5],link1[2], link2[2], link3[2], link4[2];
Ppoint_list3 list1,list2,list3,list4,list5,list6;
Pgcolr yellow,white;

static Pvec3 shift = {0.0,0.0,0.0};

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p1.html (1 di 2) [04/12/2000 19.40.39]

static Pvec3 scale = {1,1,1};
static Ppoint3 textloc1 = {0.5,0.6,0.7};
static Ppoint3 textloc2 = {0.5,0.5,0.7};
static Pvec textdir[] = {1.0,0.0,0.0,0.0,1.0,0.0};
static Ptext_align txalign = {PHOR_CTR, PVERT_HALF};

set_colour(yellow,PMODEL_RGB,1.0,1.0,0.0);
set_colour(white,PMODEL_RGB,1.0,1.0,1.0);

fill_struc(front_face[0], CMIN,CMIN,CMAX);
fill_struc(front_face[1], CMIN,CMAX,CMAX);
fill_struc(front_face[2], CMAX,CMAX,CMAX);
fill_struc(front_face[3], CMAX,CMIN,CMAX);
ppolyline3(list6);
pset_text_align(&txalign);
pset_char_ht((Pfloat)0.015);
pset_text_colr(&yellow);
ptext3(&textloc1,textdir,text1);
ptext3(&textloc2,textdir,text2);
pclose_struct();
ppost_struct(WS_ID, CUBE, PRIORITY);
return 0;
}

int rotate_boxProc (ClientData clientdata, Tcl_Interp *interp, int argc, char
*argv[])

{
Pint val;
Pfloat angle;
Pint err, i;
Pmatrix3 transform;
Ppoint3 origin;
Pint cube;
static Pvec3 shift = {0.0,0.0,0.0};
static Pvec3 scale = {1,1,1};
val = (Pint) argv[1];

val = (Pint) atoi(argv[1]);
angle =val*PI/180;

popen_struct(CUBE); /* Open the structure. */
pset_edit_mode(PEDIT_REPLACE); /* Select REPLACE mode. */
pset_elem_ptr(2);
pbuild_tran_matrix3(&ORIGIN, &shift, angle,angle,angle,
 &scale, &err, transform);
pset_local_tran3(transform, PTYPE_REPLACE);
pclose_struct();
pupd_ws(WS_ID, PFLAG_PERFORM);
return 0;
}

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p1.html (2 di 2) [04/12/2000 19.40.39]

 Tcl/Tk Cookbook - Tcl/Tk and C

Step 2: Register user commands.

Template

The template for this script is tkAppInit.c in the Tcl/Tk source distribution (look under the directory in which the
Tk source code is placed - something like ~pdsrc/TclTk/tk4.0). Make a copy of tkAppInit.c into your current
working directory. Call it myTclInit.c (This source along with the Makefile template etc. are under
~cookbook/code/ch6)

In the script below, bold letters are used to highlight customised program code and italics is used for our inserted
comments in the code given below:

myTclInit.c

#ifndef lint
static char sccsid[] = "@(#) tkAppInit.c 1.12 94/12/17 16:30:56";
#endif /* not lint */
#include "tcl.h"
#include "tk.h"

/*Include files for PHIGS & X */

#include <X11/Intrinsic.h>
#include <X11/StringDefs.h>
#include <X11/Xatom.h>
#include <phigs/phigs.h>

/*Pconnid_x_drawable is a structure that holds the id of the X window within which the PHIGS workstation will be
opened*/

Pconnid_x_drawable conn_id;

/*Procedures defined in phigscbs.c */ /*A PHIGS based C procedure defined in phigscbs.c to create a cube and a
simple text message*/

extern int MakeCubeProc();

/*A PHIGS based C procedure defined in phigscbs.c that applies the PHIGS transformation matrix to rotate the
object through a given degree and and posts the structure (object). The Angle of rotation is input by the user by
moving a Tk scale widget. Editing the 3D structure and updating the workstation is handled by PHIGS. */

extern int rotate_boxProc();

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (1 di 5) [04/12/2000 19.40.41]

/*A PHIGS based C procedure defined in phigscbs.c to redraw all structures whenever either an expose events
happens or when the state of the PHIGS workststion is changed for instance when a structure is posted. Updating
the workstation is handled by PHIGS.*/

extern int redrawProc();

/*A PHIGS based C procedure defined in phigscbs.c to change the colour of the displayed 3D object to that chosen
from the Tk menu entry. Editing the 3D structure and updating the workstation is handled by PHIGS.*/

extern int ChColProc();

/*A PHIGS based C procedure defined in phigscbs.c to close the PHIGS workstion and close PHIGS and exit the
application when the user selects the Tk Quit button.*/

extern int CleanupAndQuitProc();

Tk_Window is a Tk token that represents a window. This token is returned whenever a new Tk window is created.
You can use this to query information about or manipulate a Tk window.

The procedure "Tcl_AppInit" defined after the procedure below, calls "Tk_CreateMainWindow" to create the
application's main window.

Tk_Window mainwin, win;

/*This procedure sets up the PHIGS workstation to the Tk canvas widget and does some house keeping. This
procedure is registered with the Tcl/Tk interpreter via the user command SetupPhigs. SetupPhigs is passed one
argument - the pathname of the canvas widget. */

int SetupPhigsProc (ClientData clientdata, Tcl_Interp *interp,
 int argc, char *argv[])
{
Window winid;

Pxphigs_info xphigs_info;
unsigned long mask;
XSetWindowAttributes win_attrs;
Display *dsp;

When this procedure is invoked, the pathname of the canvas widget is passed as argv[1]. Tk_NameToWindow
returns the token for the canvas widget which is in the same application as "mainwin".

This "win" token is used to assign the necessary connection identifiers for the canvas widget to PHIGS.

Tk_Display takes a Tk_Window token as argument and returns a pointer to the structure Display - the X display of
the canvas widget.

Tk_WindowId returns the X identifier for the canvas window.

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (2 di 5) [04/12/2000 19.40.41]

win = Tk_NameToWindow(interp, (char *)argv[1], (Tk_Window) mainwin);
dsp= Tk_Display(win);
winid = Tk_WindowId(win);

conn_id.display = dsp;
conn_id.drawable_id = winid;

Tell PHIGS not to monitor the colourmap etc. and open the PHIGS workstation with appropriate monitoring
permissions.

mask = PXPHIGS_INFO_FLAGS_NO_MON;
xphigs_info.flags.no_monitor =1;

popen_xphigs (PDEF_ERR_FILE,PDEF_MEM_SIZE,mask,&xphigs_info);

win_attrs.backing_store = NotUseful;
XChangeWindowAttributes(dsp,winid, CWBackingStore, &win_attrs);

Tk_CreateEventHandler is used to invoke a particular procedure to be invoked when a particular event selected by
the given mask occurs in the window given by the first argument.

Tk_CreateEventHandler(win, ExposureMask,
 (Tk_EventProc *) redrawProc,NULL);

return 0;
}

/*
 * The following variable is a special hack that is needed in order for
 * Sun shared libraries to be used for Tcl.
 */

#ifdef NEED_MATHERR
extern int matherr();
int *tclDummyMathPtr = (int *) matherr;
#endif

int
Tcl_AppInit(interp)
 Tcl_Interp *interp; /* Interpreter for application. */
{

 mainwin = Tk_MainWindow(interp);

 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 if (Tk_Init(interp) == TCL_ERROR) {

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (3 di 5) [04/12/2000 19.40.41]

 return TCL_ERROR;
 }

 /*
 * Call the init procedures for included packages. Each call should
 * look like this:
 *
 * if (Mod_Init(interp) == TCL_ERROR) {
 * return TCL_ERROR;
 * }
 *
 * where "Mod" is the name of the module.
 */

 /*
 * Call Tcl_CreateCommand for application-specific commands, if
 * they weren't already created by the init procedures called above.
 */

 Tcl_CreateCommand(interp, "SetupPhigs",
 (Tcl_CmdProc *)SetupPhigsProc,(ClientData)NULL,
 (Tcl_CmdDeleteProc *) NULL);
 Tcl_CreateCommand(interp, "ChCol",
 (Tcl_CmdProc *) ChColProc,(ClientData)NULL,
 (Tcl_CmdDeleteProc *) NULL);
 Tcl_CreateCommand(interp, "CleanupAndQuit",
 (Tcl_CmdProc *) CleanupAndQuitProc,(ClientData)NULL,
 (Tcl_CmdDeleteProc *) NULL);
 Tcl_CreateCommand(interp, "rotate_box",
 (Tcl_CmdProc *) rotate_boxProc,(ClientData)NULL,
 (Tcl_CmdDeleteProc *) NULL);

 Tcl_CreateCommand(interp, "MakeCube",
 (Tcl_CmdProc *) MakeCubeProc,(ClientData)NULL,
 (Tcl_CmdDeleteProc *) NULL);

 /*
 * Specify a user-specific startup file to invoke if the application
 * is run interactively. Typically the startup file is "~/.apprc"
 * where "app" is the name of the application. If this line is deleted
 * then no user-specific startup file will be run under any conditions.
 */

 tcl_RcFileName ="~/.myapprc";

 return TCL_OK;
}

Tcl_CreateCommand registers a user defined command with the Tcl interpreter interp in which the command will
be used. The second argument to Tcl_CreateCommand is the name of the command that will be used in Tcl/Tk
scripts. The third argument is the command procedure. The clientData is used to pass on address of objects
associated with the command and deleteProc spoecifies the procedure to be invoked when the command is deleted.
It is used to free the object associated with the command as the clientData.

In this example we have created five commands which can be used in the Tcl script which is parsed with this version
of the Tcl interpreter.

Note that tcl_RcFileName is required to be set to run any startup files.

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (4 di 5) [04/12/2000 19.40.41]

/*
 *--
 *
 * main --
 *
 * This is the main program for the application.
 *
 * Results:
 * None: Tk_Main never returns here, so this procedure never
 * returns either.
 *
 * Side effects:
 * Whatever the application does.
 *
 *--
 */

int
main(argc, argv)
 int argc; /* Number of command-line arguments. */
 char **argv; /* Values of command-line arguments. */
{
 Tk_Main(argc, argv,Tcl_AppInit);
 return 0; /* Needed only to prevent compiler warning. */
}

Makefile

Copy and adopt the Makefile under ~cookbook/code/ch6 and compile to create a Tcl interpreter extended to include
your commands. If you execute the binary myapp a wish shell with this Tcl interpreter:

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p2.html (5 di 5) [04/12/2000 19.40.41]

 Tcl/Tk Cookbook - Tcl/Tk and C

Step 3: Create Tk application to use user defined commands.

GUI

The following simple script creates a Tk based application which looks like:

The application window has a top menubar with a pulldown menu to set the colour of the 3D object and
the Tk scale widget is used to specify an angle of rotation. The scrollbar is connected to the canvas
widget.

frame .fr1 -width 18c -height 15.0c -bd 2 ;#main frame
#toplevel .fr1
pack .fr1
frame .fr1.menubar -relief raised -bd 2
pack .fr1.menubar -padx 1 -fill x

menubutton .fr1.menubar.graphics -text Graphics -underline 0 -menu \
 .fr1.menubar.graphics.menu
button .fr1.menubar.qb -text Quit -underline 0 -com exit
pack .fr1.menubar.graphics -side left
pack .fr1.menubar.qb -side right
#Graphics menu
menu .fr1.menubar.graphics.menu
.fr1.menubar.graphics.menu add cascade -label "Line Colour" \
 -menu .fr1.menubar.graphics.menu.fmenu

menu .fr1.menubar.graphics.menu.fmenu
.fr1.menubar.graphics.menu.fmenu add radiobutton -label "Magenta" \
 -com {ChangeColour "Magenta"}
.fr1.menubar.graphics.menu.fmenu add radiobutton -label "Yellow" \
 -com {ChangeColour "Yellow"}

.fr1.menubar.graphics.menu.fmenu add radiobutton -label "White" \
 -com {ChangeColour "White"}

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (1 di 4) [04/12/2000 19.40.45]

frame .fr1.panl -width 2.0c -height 12.0c -bg black
frame .cfr -width 16.0c -height 12.0c -bd 1

pack .fr1.panl .cfr -in .fr1 -side left -padx 2 -fill x

canvas .can -width 12.0c -height 11.8c -xscrollcommand ".xs set" \
 -yscrollcommand ".ys set"

scrollbar .ys -command ".can yview"
pack .can .ys -in .cfr -side left -fill x -fill y
scrollbar .xs -orient horizontal -command ".can xview"
place .xs -in .fr1 -x 3.2c -y 13.2c -width 12.0c

scale .scal -label "rotate box throu" -bigincrement 30 \
-from 0 -to 360 -showvalue True -orient horizontal -tickinterval 0 \
-variable cval -com {rotate_box $cval}

pack .scal -in .fr1.panl

tkwait visibility .scal
SetupPhigs .can
MakeCube

proc ChangeColour { curcolour } {
ChCol $curcolour
}

Note the options for the scale widget. Processing is suspended by call to "tkwait" toawait until the scale
widget is visible. This ensure that the canvas widget is created before its X identifiers are accessed.
Without it, PHIGS will try to open its workstation in a non-existent X window and will complain.

create this script in a file in the working directory. You can invoke your extended "wish" shell by
including the line

#!./myapp

as the first line of your script. Otherwise run myapp interactively from the command-line and source
this script (ensure that the script file is executable). The result should be:

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (2 di 4) [04/12/2000 19.40.45]

You will find that PHIGS fails to update the workstation. You can force an update by sending an X
event by interacting with the scale or the pulldown menu.

Tk does not support 3D graphics nor does it support rotation of items displayed within the canvas
widget. In this example PHIGS is used to achieve these functionality. The result of a rotation as well as
colour change looks like:

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (3 di 4) [04/12/2000 19.40.45]

For the interested reader, we refer to Tk based GOOD which is an object oriented framework for
graphical applications running under X with support for SGI GL etc. It is free but beware of documents
written in German.

Tcl/Tk Cookbook - Tcl/Tk and C

http://www.dci.clrc.ac.uk/Publications/Cookbook/p3.html (4 di 4) [04/12/2000 19.40.45]

 Tcl/Tk Cookbook - Tcl/Tk

and FORTRAN

Purpose
This chapter shows how to communicate and interact with a FORTRAN
application via a Tk based user interface.

You will need
For this example you will require a F77 compiler. As before, Tcl/Tk scripts
described elesewhere in the previous chapters are not elaborated again.

Dish to Serve Up
Create a simple fortran application to solve a quadratic equation. The
coefficients are input via the Tk interface.

Recipe
Tk script for this example is ~cookbook/code/ch7/quads.tcl. The
Corresponding FORTRAN code is ~cookbook/code/ch7/quads.f

create the FORTRAN application for solving a quadratic equation1.

create a simple Tk front-end for the application2.

Set the communication channel between the application and its front-end3.

NAG F77 numerical library
A Tcl/Tk interface to the collection of example programs supplied with
Numerical Algorithm Group's FORTRAN 77 library is under
~cookbook/code/NAG. This Tk application filters the NAG example routines
according to the manual chapters, copies the example code into and the input
data files to user's local directory. It allows the examples to be compiled and
run and displays the results. Built-in interface supports browsing, editing,
recompiling and reruning the example.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap7.html (1 di 2) [04/12/2000 19.40.47]

If you have access to NAG numerical library, you can download the
compressed tar file nagex77.tar.Z. The NAG library is not included in the
distribution, only its Tk interface. You will have to license that product
separately if you do not already have access to it.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap7.html (2 di 2) [04/12/2000 19.40.47]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/NAG/nagex77.tar.Z

 Tcl/Tk Cookbook - Tcl/Tk and

FORTRAN

Step 1: FORTRAN application to solve a quadratic equation

C
CThis program solves the quadratic equation
C 2
C a x + b x + c = 0
C
 IMPLICITDOUBLE PRECISION (a-h,o-z)
 COMMON IFLAG
c
 PRINT *, 'Input the coefficients a,b,c'
 READ *,a,b,c
 CALL qsolve(a,b,c,x1,x2)
 IF (IFLAG .EQ. 0) THEN
 PRINT*,'IFLAG = ',IFLAG
 PRINT *, 'ROOTS ARE REAL'
 ELSE
 PRINT*,'IFLAG = ',IFLAG
 PRINT*,'ROOTS ARE COMPLEX -- (RealPart, ImagPart) = (x1,x2)'
 END IF
 WRITE(UNIT=6, FMT=*)'x1 = ',x1,' ','x2 = ',x2
 END
 SUBROUTINE qsolve(a,b,c,x1,x2)
C+
C
C FUNCTIONAL DESCRIPTION:
C
C solves the quadratic equation
C
C input parameters a,b,c (DOUBLEPRECISION)
C
C-
 IMPLICITDOUBLE PRECISION (a-h,o-z)
 COMMON IFLAG
c
c compute the discriminant
c
 disc = (b*b - 4*a*c)
 PRINT*,'DISC : ',DISC
 IF (disc .GE. 0) THEN
 x1 = (- b + sqrt(disc))/(2.0*A)
 x2 = (- b - sqrt(disc))/(2.0*A)
 iflag = 0
 ELSE
 iflag = 1
 x1 = -b/(2*A)
 x2 = sqrt(-disc)/(2*A)
 END IF
 RETURN

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f1.html (1 di 2) [04/12/2000 19.40.48]

 END

Place this code in a file quads.f in your current working directory and compile it by typing at commandline:

 f77 -o quads quads.f

The following is the output from running quads twice with two different sets of coefficients:

holly% quads
 Input the coefficients a,b,c
2 5 6
 DISC : -23.000000000000
 IFLAG = 1
 ROOTS ARE COMPLEX -- (RealPart, ImagPart) = (x1,x2)
 x1 = -1.2500000000000 x2 = 1.1989578808282

holly% quads
 Input the coefficients a,b,c
2 5 3
 DISC : 1.0000000000000
 IFLAG = 0
 ROOTS ARE REAL
 x1 = -1.0000000000000 x2 = -1.5000000000000

Next step presents the Tk front-end to this application.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f1.html (2 di 2) [04/12/2000 19.40.48]

 Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Step 2: Create a Tk front-end for the equation solver

A simple Tk interface to the quadratic eqaution solver should have three entry widgets for the user to input the
values of the coefficients, labels to display the values of the roots and the discriminant etc.

The Tk script below creates an interface similar to:

Tk Script starts here

Place the code in your current working directory in a file named "quads.tcl".

#!/usr/bin/wish -f
wm title . "gui_quads"
label .msg -text "Solution of a x^2 + b x + c = 0"
pack .msg -padx 5 -pady 3 -ipadx 5 -ipady 5 -fill x
frame .f
pack .f -padx 5 -ipadx 5

Padding

The options -padx, -pady, -ipadx and -ipady take values specified in terms of number of pixels or units of length
(m for millimetre, c for centimetre).

The options -padx and -pady tell the packer to allow the specified space in the horizontal and vertical directions
between the slaves when the slaves are packed within a frame. This is known as external padding.

The options -ipadx and -ipady tell the packer to enlarge the slave window in the horizontal and vertical directions
by the given value before packing it within its master. This is known as internal padding.

External padding results in space between sibling widgets in a parent. Internal padding enlarges a slave to more
than its size calculated by the geometry manager (e.g a label widgetis made larger than the minimum width it
requires to display its label string).

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (1 di 3) [04/12/2000 19.40.50]

Back to Tk Script

Append the following to the last few lines of the script.

entry .f.a -relief sunken ;#for coefft. of x**2
label .f.x2 -text "x^2 + "
entry .f.b -relief sunken ;#for coefft. of x
label .f.x -text " x + "
entry .f.c -relief sunken ;# for constant term
label .f.rhs -text " = 0"

pack .f.a .f.x2 .f.b .f.x .f.c .f.rhs -in .f -side left \
 -padx 3 -pady 3 -ipadx 2 -ipady 2

frame .zeros
pack .zeros
frame .zeros.base1 -bg red
frame .zeros.base2 -bg pink
pack .zeros.base1 -in .zeros -padx 5 -pady 5 -side top
pack .zeros.base2 -in .zeros -padx 5 -pady 5 -side top
label .zeros.x1 -text "x1 = "

label .zeros.x1val -bg yellow ;#to display the value of first real root
 ;# or real part of the complex roots

label .zeros.x2 -text "x2 = "
label .zeros.x2val -bg yellow ;#to display the value of second real root
 ;# or imaginary part of the complex roots

pack .zeros.x1 .zeros.x1val -side left -in .zeros.base1 -padx 5 -pady 5
pack .zeros.x2 .zeros.x2val -side left -in .zeros.base2 -padx 5 -pady 5

frame .info
pack .info
frame .info.dum
pack .info.dum -side left
set w .info.dum
label $w.disc ;#label to display the discriminant
label $w.type ;#label to display the type of the roots (real or complex)

pack $w.disc -padx 5 -pady 5
pack $w.type -padx 5 -pady 5
#

foreach e {.f.a .f.b .f.c} {
 bind $e {invokeQuads}
}
#

#
buttons
#
frame .bf
pack .bf -padx 5 -pady 5 -ipadx 4 -ipady 4 -fill x

button .bf.quit -text Quit -command {exit} ;#exit button to quit
button .bf.clear -text Clear -command clearEntries ;#Resets the entry fields
button .bf.solve -text Solve -command invokeQuads ;#calls "quads"

pack .bf.quit .bf.clear .bf.solve -side right \

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (2 di 3) [04/12/2000 19.40.50]

 -padx 5 -pady 5 -ipadx 3 -ipady 3

focus .f.a ;#set keyboard focus into first entry widget

The procedures invokeQuads and clearEntries are described in the next step.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f2.html (3 di 3) [04/12/2000 19.40.50]

 Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

Step 3:Procedure definitions

Tcl Open
Tcl provides two commands exec and for creating new processes. Tcl open command creates a new process and then
uses file I/O commands to communicate with the opened processes.

invokeQuads

Append all the Tcl/Tk script presented in this section to the quads.tcl file. Script listing below is interlaced with
explanation (in italics) of specific lines of script. We think this will help you understand the script better would like to
hear your comment.

proc invokeQuads { } {
 set f [open |quads r+]

Tcl command open is called with | as the first character of the argument. This ensures that open is invoked as a
command pipeline. The rest of the argument quads is used by open to create the named process.

The returned identifier from open, f in this case, is used for trnsferring data to and from the subprocess.

 foreach e {.f.a .f.b .f.c} {
 set entry [$e get]
 if { [string compare $entry ""] == 0 } {
 puts stdout "Some entry(ies) are null enter them Now \n"
 close $f
 return
 } else {
 puts $entry
 }
 }

 flush $f

For each of the entry widgets ".f.a", ".f.b" and ".f.c", the "get" action gets the value entered. If the entry widget is
empty then the user is prompted for input. The pipe is closed and the process returns from the procedure. If the value
is non-null then it is written to the pipe. The pipe is flushed to pass the input values from the buffer to "quads".

Note that the entry widgets do not have the binding for the event.

 gets $f in_prompt ;# Input the coefficients a,b,c
 gets $f disc ;# DISC : 1.0000000000000
 gets $f iflag ;# IFLAG = 0
 gets $f aux_msg ;# ROOTS ARE REAL or ... Complex ...
 gets $f roots ;# x1 = 2.0000000000000 x2 = 1.0000000000000
 close $f ;# now you can close

The output buffer associated with quads is read to get one null-terminated string at a time and is assigned to a
variable. These strings are messages generated by PRINT and WRITE commands by quads.

When all the output messages from quads are read, the pipe is closed.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (1 di 3) [04/12/2000 19.40.53]

 set w .info.dum ;# a quick fix - reassignment avoids the need to declare
 ;# w as a global

 if { [regexp {(COMPLEX|complex)} $aux_msg cmplx] == 1 } {
 .zeros.x1 configure -text "Real Part"
 .zeros.x2 configure -text "Imaginary Part"
 $w.type config -text $aux_msg
 } else {
 .zeros.x1 configure -text x1
 .zeros.x2 configure -text x2
 $w.type config -text $aux_msg
 }

 regexp {(x1 = []*[+|-]*[0-9]*\.[0-9]*)} $roots val1
 regexp {(x2 = []*[+|-]*[0-9]*\.[0-9]*)} $roots val2

 .zeros.x1val configure -text $val1
 .zeros.x2val configure -text $val2
 $w.disc configure -text $disc
}

The lines of script above make repeated use of Tcl regexp command to get the values needed to update the gui and
display the result of the computation.

First the string "aux_msg" is parsed to check if the roots are complex (search will look for the substring COMPLEX
or complex). If the substring "complex" is found then x1 nad x2 are presented as the real and imaginary parts of the
two complex roots.

If not x1 and x2 are presented as the two real roots.

The gui also displays the discriminant. Tk widget configure action is invoked to set the label strings.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (2 di 3) [04/12/2000 19.40.53]

Procedure clearEntries

proc clearEntries { } {
 foreach e {.f.a .f.b .f.c} {
 $e delete 0 end
 }
}

The procedure "clearEntries", deletes any input within the entry widgets by deleting all the characters from first to last
position. You can invoke this and keep repeating the call to quads.

Tcl/Tk Cookbook - Tcl/Tk and FORTRAN

http://www.dci.clrc.ac.uk/Publications/Cookbook/f3.html (3 di 3) [04/12/2000 19.40.53]

 Tcl/Tk Cookbook - Tcl/Tk

and C++

In the oven!

Tcl/Tk Cookbook - Tcl/Tk and C++

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap8.html [04/12/2000 19.40.56]

 Tcl/Tk Cookbook - Adding Extensions

Purpose
This chapter describes how to build a Tcl interpreter that will include the Tcl/Tk exetension libraries of your choice.
Without an integrated versions of the tclsh and wish, for each extension you wish to make use, you will be required
to run tclsh and wish, usually prepended with the Tcl/Tk extension name, that are compiled specifically for that
extension. Otherwise the commands of that Tcl/Tk extension will not be recognised. Tcl/Tk, as we already saw in
chapter 6, provides the template for including Tcl/Tk extension libraries and create an integrated version.

You will need
You will require to download, untar and built the source code of the extensions you want to integrate.

Note that if you want to use itcl with C++ as your application programming interface you should compile your
extensions with the version of Tcl and Tk libraries in the itcl distribution. To do this build itcl first.

Dish to Serve Up
Create an integrated Tcl_AppInit for all the Tcl/Tk extension libraries BLT and Expect.

You will need

Recipe
The template for this script is tkAppInit.c in the Tcl/Tk source distribution (look under the directory in which the
Tk source code is placed - something like ~pdsrc/TclTk/tk4.0). Make a copy of tkAppInit.c into your current
working directory. Call it STclInit.c (This source along with the Makefile template etc. are under
~cookbook/code/ch9)

In the script below, bold letters are used to highlight customised parts in the template code given below:

STclInit.c

#ifndef lint
static char sccsid[] = "@(#) tkAppInit.c 1.12 94/12/17 16:30:56";
#endif /* not lint */
#include "tcl.h"
#include "tk.h"

extern char *exp_argv0; /* For expect */

/*
 * The following variable is a special hack that is needed in order for
 * Sun shared libraries to be used for Tcl.
 */

#ifdef NEED_MATHERR
extern int matherr();
int *tclDummyMathPtr = (int *) matherr;
#endif
/*
 *--

Tcl/Tk Cookbook - Adding Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (1 di 4) [04/12/2000 19.41.02]

 *
 * Tcl_AppInit --
 *
 * This procedure performs application-specific initialization.
 * Most applications, especially those that incorporate additional
 * packages, will have their own version of this procedure.
 *
 * Results:
 * Returns a standard Tcl completion code, and leaves an error
 * message in interp->result if an error occurs.
 *
 * Side effects:
 * Depends on the startup script.
 *
 *--
 */

int
Tcl_AppInit(interp)
 Tcl_Interp *interp; /* Interpreter for application. */
{

Tk_Window mainwin;

 mainwin = Tk_MainWindow(interp);

 if (Tcl_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
 if (Tk_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }

 /*
 * Call the init procedures for included packages. Each call should
 * look like this:
 *
 * if (Mod_Init(interp) == TCL_ERROR) {
 * return TCL_ERROR;
 * }
 *
 * where "Mod" is the name of the module.
 */

if (Blt_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }
if (Exp_Init(interp) == TCL_ERROR) {
 return TCL_ERROR;
 }

 /*
 * Call Tcl_CreateCommand for application-specific commands, if
 * they weren't already created by the init procedures called above.
 */

 /*
 * Specify a user-specific startup file to invoke if the application
 * is run interactively. Typically the startup file is "~/.apprc"
 * where "app" is the name of the application. If this line is deleted
 * then no user-specific startup file will be run under any conditions.
 */

Tcl/Tk Cookbook - Adding Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (2 di 4) [04/12/2000 19.41.02]

 tcl_RcFileName ="~/.stclrc";

 return TCL_OK;
}

/*
 *--
 *
 * main --
 *
 * This is the main program for the application.
 *
 * Results:
 * None: Tk_Main never returns here, so this procedure never
 * returns either.
 *
 * Side effects:
 * Whatever the application does.
 *
 *--
 */

int
main(argc, argv)
 int argc; /* Number of command-line arguments. */
 char **argv; /* Values of command-line arguments. */
{
 Tk_Main(argc, argv, Tcl_AppInit);
 return 0; /* Needed only to prevent compiler warning. */
}

The comment immediately preceeding the first boldface section in the code above gives the exact Tcl syntax for
calling init procedures for Tcl/Tk extension modules. This is followed to include BLT_Init (for BLT library with
mega widgets and commands) and Exp_Init (for Expect).

A template for the Makefile called Make_stcl is under ~cookbook/code/ch9. Copy this makefile template, customise
it for your site and compile STclInit.c by typing:

 make -f Make_stcl

The resultant executable is called stcl. You can invoke this interactively. The result would be similar to (the wish
shell is placed inside the window from which it invoked just to capture both windows in one picture):

Tcl/Tk Cookbook - Adding Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (3 di 4) [04/12/2000 19.41.02]

You can use this shell to execute Expect and or BLT commands. Two very simple applications, one for Expect and
one for BLT graph widget are given in the next chapter.

Tcl/Tk Cookbook - Adding Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap9.html (4 di 4) [04/12/2000 19.41.02]

 Tcl/Tk Cookbook -

Using Extensions

Purpose
This is a brief description of using the BLT graph widget with some
contributed software associated with it. The contributed modules are not
described as that is beyond the scope of this cookbook.

You will need
It is assumed that you have built a Tcl interpreter that includes the Tcl/Tk
extensions BLT and Expect. You can of course try the example using blt_wish
on its own.

Dish to Serve Up
Display two curves in a BLT graph widget and set zoom.

Recipe
This example can be found in ~cookbook/code/ch10

write the script for creating the blt-graph widget and two simple curves
to display within.

❍

set zooming❍

Acknowledgement
This example is based on the contributed Tcl/Tk extension BLT.

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/chap10.html [04/12/2000 19.41.04]

 Tcl/Tk Cookbook - Using

Extensions

Step 1: Script

Create a script file bltex.tcl in your current working directory for this example. The script is
interlaced with description text in italics.

blt_graph .g
.g config -title {Do they meet?}
pack .g -padx 5 -pady 5

create and pack an instance ".g" of the blt_graph with title "Do they meet?"

set x {.1 .2 .3 .4 .5 .6 .7 .8 .9}
set y {}
foreach i $x {
 set yt [expr pow($i,2)*(1-$i)]
 lappend y $yt
}
.g element create curve1 -symbol diamond -x $x -y $y

The variable x is set to a list of values ranging from 0.1 to 0.9 and the variable y is initialised to
a null list.

For each value i of x, yt is calculated as a simple arithmetic expression. Note that the Tcl expr
command and the Tcl math expression pow are used. The computed value of yt is appended to y
using the Tcl list command lappend.

The last line above invokes the widget command .g for creating an element which is referred to
as curve1. The options -x and -y specify the list of (x,y) points on the curve.

The "-symbol" option takes the value diamond and will highlight the nodes of curve1 with
diamond shaped markers.

set y2 {}
foreach i $x {
 set yt [expr pow($i,2)]
 lappend y2 $yt
}

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (1 di 3) [04/12/2000 19.41.07]

.g element create curve2 -symbol cross -x $x -y $y2

The script above creates a second curve curve2, with nodes highlighted by a cross marker.

button .quit -text Quit -command exit
pack .quit -fill x

Place a button to invoke the exit command.

Make this file bltex.tcl executable. If you have a super Tcl that includes blt (see chapter 9), you
can invoke it in interactive mode by typing stcl at the commandline (ensure you give the correct
pathname to stcl). Alternatively you can invoke blt_wish.

At the stcl or blt_wish prompt type source bltex.tcl. The result will be:

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (2 di 3) [04/12/2000 19.41.07]

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b1.html (3 di 3) [04/12/2000 19.41.07]

 Tcl/Tk Cookbook -

Using Extensions

Step 2: zooming

Copy the Tcl script file features.tcl which is placed under
~cookbook/code/ch10. This script is part of the BLT distribution code and all
copyright statements should be preserved.

You can either append the following three lines of script to your file bltex.tcl
or you can issue these commands at the stcl prompt if you have invoked stcl
interactively.

source features.tcl
SetZoom .g
SetActiveLegend .g

The result of the command SetActiveLegend .g is that as you move the mouse
cursor within the legend window at the top right-hand corner, one or the other
of the curves will turn to red depending on whether the mouse cursor is on
legend 1 or legend 2.

SetZoom sets support for the user to select a rectangular region within the
graph widget to zoom. The region is selected by pressing the left mouse button
at the top left hand corner of the region and dragging the mouse, with button
kept pressed, towards the bottom right and releasing the button at the end of
the region of interest. The result of such an user action is:

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b2.html (1 di 2) [04/12/2000 19.41.09]

Tcl/Tk Cookbook - Using Extensions

http://www.dci.clrc.ac.uk/Publications/Cookbook/b2.html (2 di 2) [04/12/2000 19.41.09]

Tcl/Tk Cookbook - Example
source code

Examples for Chapter 1●

Examples for Chapter 2●

Examples for Chapter 3●

Examples for Chapter 4●

Examples for Chapter 5●

Examples for Chapter 6●

Examples for Chapter 7●

Examples for Chapter 8●

Examples for Chapter 9●

Examples for Chapter 10●

Tcl/Tk Cookbook - Example source code

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ [04/12/2000 19.41.10]

Index of cookbook/code/ch1/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
Examples/ 26-Apr-96 11:37 -
Make_htcl 26-Feb-96 12:49 1K
contents 26-Feb-96 12:49 1K
eb.tcl 26-Feb-96 12:49 5K
htclInit.c 26-Feb-96 12:49 4K
hyper.tcl 26-Feb-96 12:49 7K
reftcl.tex 26-Feb-96 12:49 24K

#AGOCG Tcl/Tk Cookbook
#Basics of Tcl
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.c & *.tcl) for running the
Basics of Tcl application. The Tcl wish shell is extended to include two
commands that handle the spawning of a web browser for looking at the
Tcl and Tk HTML documents. The extended wish shell is called htcl. To compile
htcl for your architecture, customise the makefile Make_htcl and to make
type
 make -f Make_htcl

It is assumed that the executable "htcl" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

For this application, if htcl is not in the same directory, change the first
line in the file hyper.tcl to point to htcl.

Ensure that you can execute the Tcl scripts.

Run the application by typing hyper.tcl at command level of your window.

Index of cookbook/code/ch1/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/ [04/12/2000 19.41.11]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/Examples/
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/Make_htcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/contents
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/eb.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/htclInit.c
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/hyper.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch1/reftcl.tex

Index of cookbook/code/ch2/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
av.tcl 26-Feb-96 12:49 1K
splt/ 26-Apr-96 11:37 -

#AGOCG Tcl/Tk Cookbook
#Basics of Tk
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for running the
Basics of Tk applications (Chapter 2 of the cookbook).

Ensure that you can execute the applications.

Run the application by typing av.tcl at command level of your window.

Index of cookbook/code/ch2/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/ [04/12/2000 19.41.12]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/av.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch2/splt/

Index of cookbook/code/ch3/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
editor.tcl 26-Feb-96 12:49 5K
filesel.tcl 26-Feb-96 12:49 8K
message.tcl 26-Feb-96 12:49 1K
popup.tcl 26-Feb-96 12:49 3K

#AGOCG Tcl/Tk Cookbook
#Simple Text Editor
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the Text editor (Chapter 3 of
the cookbook).

Ensure that you can execute the applications.

Run the application by typing editor.tcl at command level of your window.

Index of cookbook/code/ch3/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/ [04/12/2000 19.41.12]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/editor.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/filesel.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/message.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch3/popup.tcl

Index of cookbook/code/ch4/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
eu.tcl 26-Feb-96 12:49 14K
mo.tcl 26-Feb-96 12:49 1K

#AGOCG Tcl/Tk Cookbook
#Using the Canvas
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the applications described
in "Using the Tk Canvas", Chapter 4 of the Tcl/Tk Cookbook.

Ensure that you can execute the source code.

Type eu.tcl at command level of your window to run the Western Europe
application. Type mo.tcl to run the animation one.

The Western Europe data was adopted from the Phigs Programming Manual by
Tom Gaskins. It is adopted for the Tcl and Tk coordinate system by
the authors of this cookbook.

Index of cookbook/code/ch4/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/ [04/12/2000 19.41.13]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/eu.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch4/mo.tcl

Index of cookbook/code/ch5/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
bitmaps/ 26-Apr-96 11:38 -
draw.tcl 26-Feb-96 12:49 4K

#AGOCG Tcl/Tk Cookbook
#Canvas Revisited
#Authors Lakshmi & Venkat Sastry

This directory contains the source files for the application described
in "Canvas Revisited", Chapter 5 of the Tcl/Tk Cookbook.

Ensure that you can execute the source code.

Run the application by typing draw.tcl at command level of your window.

The bitmaps used are under the directory ./bitmaps. The bitmaps belong
the public domain xfig program.

Index of cookbook/code/ch5/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/ [04/12/2000 19.41.14]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/bitmaps/
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch5/draw.tcl

Index of cookbook/code/ch6/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
Makefile 26-Feb-96 12:49 1K
myAppInit.c 26-Feb-96 12:49 5K
phig.tcl 26-Feb-96 12:49 2K
phigscbs.c 26-Feb-96 12:49 5K

#AGOCG Tcl/Tk Cookbook
#Tcl/Tk and C
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.c & *.tcl) for the example
described in Chapter 6 of the Tcl/Tk Cookbook. The example shows how user
can write C routines and register them as commands with Tcl. It also
demonstrate using other graphics packages with Tk.

The public domain X11 Release 5 PHIGS sample implementation is used. You will
require this PHIGS package for your system to run this example. Please refer
to X documents and Tom Gaskins PHIGS Programming Manual if you want to use
PHIGS.

The PHIGS box with the text "It's a square world" in the routine "MakeCube" is
adapted from "A Practical Introduction to PHIGS and PHIGS Plus".

To compile the extended Tk with user defined commands that handle calls to
PHIGS, customise the makefile Make and to make type
 make -f Makefile

It is assumed that the executable "myapp" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

For this application, if myapp is not in the same directory, change the first
line in the file phig.tcl to point to myapp.

Ensure that you can execute the Tcl scripts.

Run the application by typing phig.tcl at command level of your window.

Bug:

Please note that when PHIGS draws in the Tk canvas, expose event doesn't
seem to force redrawing of structures in the PHIGS workstation. Force an
event by interacting with either the Tk scale or by selecting the line width
or colour from the menubar.

Index of cookbook/code/ch6/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/ [04/12/2000 19.41.15]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/Makefile
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/myAppInit.c
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/phig.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch6/phigscbs.c

Index of cookbook/code/ch7/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
quads.f 26-Feb-96 12:49 1K
quads.tcl 26-Feb-96 12:49 2K

#AGOCG Tcl/Tk Cookbook
#Tcl/Tk and FORTRAN
#Authors Lakshmi & Venkat Sastry

This directory contains the source files (*.f & *.tcl) for running the
simple application that provides a Tk interface to a FORTRAN application.
To compile the FORTRAN code for your machine, you will need to have access
to a FORTRAN compiler. Compile and create the fortran executable "quads".

If you call the Fortran executable as anything other than quads, please do
ensure that you change the reference to this executable at the appropriate
line in the Tcl file gui_quads.tcl

Ensure that you can execute the Tcl scripts.

Run the application by typing gui_quads.tcl at command level of your window.

Index of cookbook/code/ch7/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/ [04/12/2000 19.41.16]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/quads.f
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch7/quads.tcl

Index of cookbook/code/ch8/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -

Index of cookbook/code/ch8/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch8/ [04/12/2000 19.41.17]

Index of cookbook/code/ch9/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
Make_stcl 26-Feb-96 12:49 1K
SupTclInit.c 26-Feb-96 12:49 4K

#AGOCG Tcl/Tk Cookbook
#Buildin Extensions
#Authors Lakshmi & Venkat Sastry

This directory contains a C source file and a Makefile template that
can be modified to compile a wish shell that will include the Tcl/Tk
extensions BLT and Expect. You can adopt this to include any other
Tcl/Tk extension as well. Please note that the original C source file
template is part of te Tcl/Tk core distribution.

To compile the extended Tk, customise the makefile Make_stcl and to make type

 make -f Make_stcl

It is assumed that the executable "stcl" will reside in this directory. If
you want to copy it elsewhere or run it from elsewhere, provide the
appropriate pathnames to it.

To test or use this extended version of the wish shell type "stcl" at command
level of your window. Once this "stcl" is running, you can give it any
Tcl, Tk, BLT or Expect command. Include

#!/path/to/stcl
to call this from a script file.

Index of cookbook/code/ch9/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/ [04/12/2000 19.41.17]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/Make_stcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch9/SupTclInit.c

Index of cookbook/code/ch10/
Name Last modified Size Description

Parent Directory 26-Apr-96 11:38 -
blt.tcl 26-Feb-96 12:49 1K
features.tcl 26-Feb-96 12:49 6K
ftp.tcl 26-Feb-96 12:49 1K

#AGOCG Tcl/Tk Cookbook
#Using Expect & BLT
#Authors Lakshmi & Venkat Sastry

This directory contains Tcl source files for running a simple example of
Expect (ftp.tcl) and the BLT graph widget. You will need to have the
extended (super) "stcl" to run these examples.

It is assumed that the executable "stcl" is in the directory ../ch9. If
you are running it from elsewhere, provide the appropriate pathname to it
by including

#!/path/to/stcl

to call stcl from the script files.

ftp.tcl has to be edited to include the correct address of the ftp server
you wish to access as well as email address for loggin as an
anonymous account.

You can invoke "stcl" and at the "stcl" prompt, source either ftp.tcl or
 blt.tcl as you choose.

The features.tcl belongs to the BLT source distribution and all copyright
belong to the author of that script.

Index of cookbook/code/ch10/

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/ [04/12/2000 19.41.18]

http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/blt.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/features.tcl
http://www.dci.clrc.ac.uk/Publications/Cookbook/code/ch10/ftp.tcl

	www.dci.clrc.ac.uk
	A Cookbook for the Tool Command Language (Tcl) and the Tk Toolkit
	Tcl/Tk Cookbook - Introduction
	Tcl/Tk Cookbook - Bibliography
	Tcl/Tk Cookbook - Housekeeping
	Tcl/Tk Cookbook - Getting Started
	Tcl/Tk Cookbook - Basics of Tcl
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Basics of Tk
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Text Editor
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Text widget
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Using the Canvas
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Canvas Revisited
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and C
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and FORTRAN
	Tcl/Tk Cookbook - Tcl/Tk and C++
	Tcl/Tk Cookbook - Adding Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Using Extensions
	Tcl/Tk Cookbook - Example source code
	Index of cookbook/code/ch1/
	Index of cookbook/code/ch2/
	Index of cookbook/code/ch3/
	Index of cookbook/code/ch4/
	Index of cookbook/code/ch5/
	Index of cookbook/code/ch6/
	Index of cookbook/code/ch7/
	Index of cookbook/code/ch8/
	Index of cookbook/code/ch9/
	Index of cookbook/code/ch10/

