Tcl and the Tk Toolkit

John K. Ousterhout
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, CA 94720

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal
use only. Any other form of duplication or reproduction requires prior written permis-
sion of the author or publisher. This statement must be easily visible on the first page
of any reproduced copies. The publisher does not offer warranties in regard to this
draft.

Note to readers:

This manuscript is a partial draft of a book to be published in early 1994 by Addison-
Wesley (ISBN 0-201-63337-X). Addison-Wesley has given me permission to make
drafts of the book available to the Tcl community to help meet the need for introduc-
tory documentation on Tcl and Tk until the book becomes available. Please observe
the restrictions set forth in the copyright notice above: you're welcome to make a
copy for yourself or a friend but any sort of large-scale reproduction or reproduction
for profit requires advance permission from Addison-Wesley.

| would be happy to receive any comments you might have on this draft; send them to
me via electronic mail atuster@cs.berkeley.edu . I'm patrticularly interested

in hearing about things that you found difficult to learn or that weren't adequately
explained in this document, but I'm also interested in hearing about inaccuracies,
typos, or any other constructive criticism you might have.

DRAFT (8/12/93): Distribution Restricted

Chapter 1

Chapter 2

Chapter 3

11
1.2
1.3

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10

Introduction 1
Introduction 1
Organization of the book 3
Notation 4

An Overview of Tcl and Tk
Getting started 5

Hello world with Tk 7

Script files 9

Variables and substitutions 10
Control structures 11

Event bindings 13

Subprocesses 15

Additional features of Tcl and Tk 18

Extensions and applications 18

2.9.1 Expect 19

2.9.2 Extended Tcl 19

293 XF 20

2.9.4 Distributed programming 20
295 Ak 22

Tcl Language Syntax 25
Scripts, commands, and words 25
Evaluating a command 26
Variable substitution 28
Command substitution 29
Backslash substitution 30
Quoting with double-quotes 30
Quoting with braces 32
Comments 33
Normal and exceptional returns 33
More on substitutions 34

DRAFT (8/12/93): Distribution Restricted

5

Chapter 4 Variables 37

4.1 Simple variables and the set command 37
4.2 Arrays 38

4.3 Variable substitution 39

4.4 Removing variables: unset 40

4.5 Multi-dimensional arrays 41

4.6 The incr and append commands 41

4.7 Preview of other variable facilities 42

Chapter 5 Expressions 43

5.1 Numeric operands 43

5.2 Operators and precedence 44

5.2.1 Arithmetic operators 44
5.2.2 Relational operators 46
5.2.3 Logical operators 46
5.2.4 Bitwise operators 46
5.2.5 Choice operator 46

5.3 Math functions 47

5.4 Substitutions 47

5.5 String manipulation 49
5.6 Types and conversions 49
5.7 Precision 50

Chapter 6 Lists 51

6.1 Basic list structure and the lindex command 51

6.2 Creating lists: concat, list, and llength 53

6.3 Modifying lists: linsert, Ireplace, Irange, and lappend 54
6.4 Searching lists: Isearch 56

6.5 Sorting lists: Isort 56

6.6 Converting between strings and lists: split and join 57
6.7 Lists and commands 58

DRAFT (8/12/93): Distribution Restricted

Chapter 7 Control Flow 61
7.1 Theifcommand 61
7.2 Looping commands: while, for, and foreach 63
7.3 Loop control: break and continue 65
7.4 The switch command 65
7.5 Eval 67
7.6 Executing from files: source 68

Chapter 8 Procedures 69
8.1 Procedure basics: proc and return 69
8.2 Local and global variables 71
8.3 Defaults and variable numbers of arguments 72
8.4 Call by reference: upvar 73
8.5 Creating new control structures: uplevel 74

Chapter 9 Errors and Exceptions 77
9.1 What happens after an error? 77
9.2 Generating errors from Tcl scripts 79
9.3 Trapping errors with catch 80
9.4 Exceptions in general 81

Chapter 10 String Manipulation 85
10.1 Glob-style pattern matching 85
10.2 Pattern matching with regular expressions 88
10.3 Using regular expressions for substitutions 90
10.4 Generating strings with format 91
10.5 Parsing strings with scan 93
10.6 Extracting characters: string index and string range 94
10.7 Searching and comparison 94
10.8 Length, case conversion, and trimming 95

DRAFT (8/12/93): Distribution Restricted

Chapter 11

Chapter 12

Chapter 13

Chapter 14

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12.1
12.2
12.3
12.4
125

131
13.2

13.3
134
135
13.6
13.7

141

Accessing Files 97
File names 97
Basic file /O 99
Output buffering 101
Random access to files 101
The current working directory 102
Manipulating file names: glob and file 102
File information commands 105
Errors in system calls 107

Processes 109
Invoking subprocesses with exec 109
I/0 to and from a command pipeline 112
Process ids 113
Environment variables 113
Terminating the Tcl process with exit 113

Managing Tcl Internals 115

Querying the elements of an array 115

The info command 117

13.2.1 Information about variables 117
13.2.2 Information about procedures 120
13.2.3 Information about commands 121
13.2.4 Tclversion and library 122

Timing command execution 122
Tracing operations on variables 123
Renaming and deleting commands 125
Unknown commands 126

Auto-loading 128

History 131
The history list 131

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.3 Re-executing commands from the history list 133
14.4 Shortcuts implemented by unknown 134

14.5 Current event number: history nextid 134

DRAFT (8/12/93): Distribution Restricted

DRAFT (8/12/93): Distribution Restricted

Chapter 1
| ntroduction

11

Introduction

This book is about two packages called Tcl and Tk. Together they provide a programming
system for developing and using graphical user interface (GUI) applications. Tcl stands
for “tool command language” and is pronounced “tickle”; is a simple scripting language
for controlling and extending applications. It provides generic programming facilities that
are useful for a variety of applications, such as variables and loops and procedures. Fur-
thermore, Tcl iembeddableits interpreter is implemented as a library of C procedures
that can easily be incorporated into applications, and each application can extend the core
Tcl features with additional commands specific to that application

One of the most useful extensions to Tcl is Tk. It is a toolkit for the X Window Sys-
tem, and its name is pronounced “tee-kay”. Tk extends the core Tcl facilities with addi-
tional commands for building user interfaces, so that you can construct Motif user
interfaces by writing Tcl scripts instead of C code. Like Tcl, Tk is implemented as a library
of C procedures so it too can be used in many different applications. Individual applica-
tions can also extend the base Tk features with new user-interface widgets and geometry
managers written in C.

Together, Tcl and Tk provide four benefits to application developers and users. First,
Tcl makes it easy for any application to have a powerful scripting language. All that an
application needs to do is to implement a few new Tcl commands that provide the basic
features of that application. Then the application can be linked with the Tcl interpreter to
produce a full-function scripting language that includes both the commands provided by
Tcl (called theTcl cor@ and those implemented by the application (see Figure 1.1).

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

Introduction

Tcl Library Application
Tcl Application
Interpreter Data Structures
[o Qaaa
Built-in Commands Application Command

Figure 1.1. To create a new application based on Tcl, an application developer designs ne\
structures specific to that application and writes C code to implement a few new Tcl comma
Tcl library provides everything else that is needed to produce a fully programmable comma
language. The application can then be modified and extended by writing Tcl scripts.

For example, an application for reading electronic bulletin boards might contain C
code that implements one Tcl command to query a bulletin board for new messages and
another Tcl command to retrieve a given message. Once these commands exist, Tcl scripts
can be written to cycle through the new messages from all the bulletin boards and display
them one at a time, or keep a record in disk files of which messages have been read and
which haven't, or search one or more bulletin boards for messages on a particular topic.
The bulletin board application would not have to implement any of these additional func-
tions in C; they could all be written as Tcl scripts, and users of the application could write
additional Tcl scripts to add more functions to the application.

The second benefit of Tcl and Tk is rapid development. For example, many interest-
ing windowing applications can be written entirely as Tcl scripts with no C code at alll,
using a windowing shell calleglish . This allows you to program at a much higher level
than you would in C or C++, and many of the details that C programmers must address are
hidden from you. Compared to toolkits where you program entirely in C, such as Xt/

Motif, there is much less to learn in order to use Tcl and Tk and much less code to write.
New Tcl/Tk users can often create interesting user interfaces after just a few hours of
learning, and many people have reported ten-fold reductions in code size and development
time when they switched from other toolkits to Tcl and Tk.

Another reason for rapid development with Tcl and Tk is that Tcl is an interpreted lan-
guage. When you use a Tcl application sucviah you can generate and execute new
scripts on-the-fly without recompiling or restarting the application. This allows you to test
out new ideas and fix bugs very rapidly. Since Tcl is interpreted it executes more slowly
than compiled C code, of course, but modern workstations are surprisingly fast. For exam-
ple, you can execute scripts with hundreds or even thousands of Tcl commands on each
movement of the mouse with no perceptible delay. In the rare cases where performance
becomes an issue, you can re-implement the most performance-critical parts of your Tcl
scripts in C.

DRAFT (8/12/93): Distribution Restricted

1.2 Organization of the book 3

1.2

The third benefit of Tcl is that it makes an excellent “glue language”. Because it is
embeddable, it can be used for many different purposes in many different programs. Once
this happens, it becomes possible to write Tcl scripts that combine the features of all the
programs. For example, any windowing application based on Tk can issue a Tcl script to
any other Tk application. This feature makes multi-media effects much more accessible:
once audio and video applications have been built with Tk (and there exist several
already), any Tk application can issue “record” and “play” commands to them. In addi-
tion, spreadsheets can update themselves from database applications, user-interface edi-
tors can modify the appearance and behavior of live applications as they run, and so on.
Tcl provides thdingua francathat allows application to work together.

The fourth benefit of Tcl is user convenience. Once a user learns Tcl and Tk, he or she
can write scripts for any Tcl and Tk application merely by learning the few application-
specific commands for the new application. This should make it possible for more users to
personalize and enhance their applications.

Organization of the book

Chapter 2 uses several simple scripts to provide a quick overview of the most important
features of Tcl and Tk. It is intended to give you the flavor of the systems and convince
you that they are useful without explaining anything in detail. The remainder of the book
goes through everything again in a more comprehensive fashion. It is divided into four
parts:

¢ Part | introduces the Tcl scripting language. After reading this section you will be able
to write scripts for Tcl applications.

* Part |l describes the additional Tcl commands provided by Tk, which allow you to cre-
ate user-interface widgets such as menus and scrollbars and arrange them in windowing
applications. After reading this section you'll be able to create new windowing applica-
tion aswish scripts and write scripts to enhance existing Tk applications.

¢ Part |1l discusses the C procedures in the Tcl library and how to use them to create new
Tcl commands. After reading this section you'll be able to write new Tcl packages and
applications in C.

* Part |V describes Tk’s library procedures. After reading this section you'll be able to
create new widgets and geometry managers in C.

Each of these major parts contains about ten short chapters. Each chapter is intended to be
a self-contained description of a piece of the system, and you need not necessarily read the
chapters in order. | recommend that you start by reading through Chapters 3-9 quickly,
then skip to Chapters XXX-YYY, then read other chapters as you need them.

Not every feature of Tcl and Tk is covered here, and the explanations are organized to
provide a smooth introduction rather than a terse reference source. A separate set of refer-

DRAFT (8/12/93): Distribution Restricted

Introduction

1.3

ence manual entries is available with the Tcl and Tk distributions. These are much more
terse but they cover absolutely every feature of both systems.

This book assumes that you are familiar with the C programming language as defined
by the ANSI C standard, and that you have some experience with UNIX and X11. In order
to understand Part IV you will need to understand many of the features provided by the
Xlib interface, such as graphics contexts and window attributes; however, these details are
not necessary except in Part IV. You need not know anything about either Tcl or Tk before
reading this book; both of them will be introduced from scratch.

Notation

Throughout the book | useGourier font for anything that might be typed to a com-
puter, such as variable names, procedure and command names, Tcl scripts, and C code.
The examples of Tcl scripts use notation like the following:
seta 44
0 44
Tcl commands such asét a 44 " is the example appear in Courier and their results,
such as 44" in the example, appear in Courier oblique. Thesymbol before the result
indicates that this is a normal return value. If an error occurs in a Tcl command then the
error message appears in Courier oblique, precededlbgyanbol to indicate that this is
an error rather than a normal return
seta 44 55
0 wrong # args: should be "set varName ?newValue?"

When describing the syntax of Tcl commands, Courier oblique is used for formal
argument names. If an argument or group of arguments is enclosed in question marks it
means that the arguments are optional. For example, the syntaxsef ttemmand is as
follows:

set varName 7newValue ?
This means that the wosét would be entered verbatim to invoke the command, while
varName andnewValue are the names gkt 's arguments; when invoking the com-
mand you would type a variable name insteachoName and a new value for the vari-
able instead ofiewValue . ThenewValue argument is optional.

DRAFT (8/12/93): Distribution Restricted

Chapter 2
An Overview of Tcl and Tk

2.1

This chapter introduces Tcl and Tk with a series of scripts that illustrate the main features
of the systems. Although you should be able to start writing simple scripts after reading
this chapter, the explanations here are not intended to be complete. All of the information
in this chapter will be revisited in more detail in later chapters, and several important
aspects of the systems, such as their C interfaces, are not discussed at all in this chapter.
The purpose of this chapter is to show you the overall structure of Tcl and Tk and the
kinds of things they can do, so that when individual features are discussed in detail you'll
be able to see why they are useful.

Getting started

In order to invoke Tcl scripts you must run a Tcl application. If Tcl is installed on your sys-
tem then there should exist a simple Tcl shell application cagligld , which you can
use to try out some of the examples in this chapter (if Tcl has not been installed on your
system then refer to Appendix A for information on how to obtain and install it). Type the
command

tclsh
to your shell to invokéclsh ; tclsh will start up in interactive mode, reading Tcl com-
mands from its standard input and passing them to the Tcl interpreter for evaluation. For
starters, type the following commandtétsh

expr2+2
Tclsh will print the result 4” and prompt you for another command.

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

An Overview of Tcl and Tk

This example illustrates several features of Tcl. First, Tcl commands are similar in
form to shell commands. Each command consists of one onmoods separated by
spaces or tabs. In the example there are four wexgs:, 2, +, and2. The first word of
each command is its name: the name selects a C procedure in the application that will
carry out the function of the command. The other wordaig@mentghat are passed to
the C procedureexpr is one of the core commands built into the Tcl interpreter, so it
exists in every Tcl application. It concatenates its arguments into a single string and evalu-
ates the string as an arithmetic expression.

Each Tcl command returns a result string. Forett command the result is the
value of the expression. Results are always returned as strirggrsaonverts its
numerical result back to a string in order to return it. If a command has no meaningful
result then it returns an empty string.

From now on | will use notation like the following to describe examples:

expr2+2
o 4

The first line is the command you type and the second line is the result returned by the
command. Thél symbol indicates that the line contains a return valud;lthell not

actually be printed out bglsh . | will omit return values in cases where they aren't
important, such as sequences of commands where only the last command’s result matters.

Commands are normally terminated by newlines, so when you are typatghto
each line normally becomes a separate command. Semi-colons also act as command sepa-
rators, in case you wish to enter multiple commands on a single line. It is also possible for
a single command to span multiple lines; you'll see how to do this later.

Theexpr command supports an expression syntax similar to that of expressions in
ANSI C, including the same precedence rules and most of the C operators. Here are a few
examples that you could typettish

expr 3 <<2
o 12
expr 14.1*6
0 84.6
expr(3>4) || (6<=7)
o1
The first example illustrates the bitwise left-shift operatorThe second example shows
that expressions can contain real values as well as integer values. The last example shows
the use of relational operatorsand<= and the logical or operat{jr . As in C, boolean
results are represented numerically with 1 for true and O for false.
To leavetclsh , invoke theexit command:
exit
This command will terminate the application and return you to your shell.

DRAFT (8/12/93): Distribution Restricted

2.2 Hello world with Tk 7

2.2

R S

I |hend .| |
Hello, wuﬂd!l

Figure 2.1. The “hello world” application. All of the decorations around the “Hello, world!” bu
are provided by thenwnwindow manager. If you use a different window manager then your
decorations may be different.

Hello world with Tk

Although Tcl provides a full set of programming features such as variables, loops, and
procedures, it is not intended to be a stand-alone programming environment. Tcl is
intended to be used as part of applications that provide their own Tcl commands in addi-
tion to those in the Tcl core. The application-specific commands provide interesting prim-
itives and Tcl is used to assemble the primitives into useful functions. Tcl by itself isn't
very interesting and it is hard to motivate all of Tcl's facilities until you have seen some
interesting application-specific commands to use them with.

Tk provides a particularly interesting set of commands to use with Tcl's programming
tools. Most of the examples in the book will use an application calkd, which is sim-
ilar totclsh except that it also includes the commands defined by Tk. Tk’s commands
allow you to create graphical user interfaces. If Tcl and Tk have been installed on your
system then you can invokésh from your shell just likeéclsh ; it will display a small
empty window on your screen and then read commands from standard input. Here is a
simplewish script:

button .b -text "Hello, world!" -command exit
pack .b

If you type these two Tcl commandswiish the window’s appearance will change to
what is shown in Figure 2.1. If you then move the pointer over the window and click
mouse button 1, the window will disappear ansh will exit.

There are several things to explain about this example. First let us deal with the syn-
tactic issues. The example contains two commadndn andpack , both of which
are implemented by Tk. Although these commands look different thaxpine com-
mand in the previous section, they have the same basic structure as all Tcl commands,
consisting of one or more words separated by white spacdufiom command con-
tains six words and the pack command contains two words.

The fourth word of théutton command is enclosed in double quotes. This allows
the word to include white space characters: without the qudidk; ” and “world! ”
would be separate words. The double-quotes are not part of the word itself; they are
removed by the Tcl interpreter before the word is passed to the command as an argument.

DRAFT (8/12/93): Distribution Restricted

An Overview of Tcl and Tk

For theexpr command the word structure doesn’t matter much srpe concate-
nates all its arguments together. However fotbilition andpack commands, and for
most Tcl commands, the word structure is important.bithi®on command expects its
first argument to be the name of a window and the following arguments to come in pairs,
where the first argument of each pair is the namecohéiguration optiorand the second
argument is a value for that option. Thus if the double-quotes were omitted the value of
the-text option would beHello, ”and “world! " would be treated as the name of a
separate configuration option. Since there is no option defined with the vvanhd “ ”
the command would return an error.

Now let us move on to the behavior of the commands. The basic building block for a
graphical user interface in Tk isnadget A widget is a window with a particular appear-
ance and behavior (the terms “widget” and “window” are used synonymously in Tk). Wid-
gets are divided into classes such as buttons, menus, and scrollbars. All the widgets in the
same class have the same general appearance and behavior. For example, all button wid-
gets display a text string or bitmap and execute a particular Tcl command when they are
invoked with the mouse.

Widgets are organized hierarchically in Tk, with names that reflect their position in
the hierarchy. Thenain widgetwhich appeared on the screen when you staitdd , has
the name “.”. The namé refers to a child of the main widget. Widget names in Tk are
like file names in UNIX except that they use€' ‘as a separator character instead/df “
Thus.a.b.c refers to a widget that is a child of widget , which in turn is a child of
.a , which is a child of the main widget.

Tk provides one command for each class of widgets, which you invoke to create wid-
gets of that class. For example théton command creates button widgets. All of the
widget creation commands have the same form: the first argument is the name of a new
widget to create and additional arguments specify configuration options. Different widget
classes support different sets of options. Widgets typically have many options (there are
about 20 different options defined for buttons, for example), and default values are pro-
vided for the options that you don't specify. When a widget creation commarinitike
ton is invoked it creates a new window by the given name and configures it as specified
by the options.

Thebutton command in the example specifies two optietext , which is a
string to display in the button, ancbmmand, which is a Tcl script to execute when the
user invokes the button. In this example4tmmmand option isexit . Here are a few
other button options that you can experiment with:

-background The background color for the button.
-foreground The color of the text in the button.

-font The name of the font to use for the button, such as
-times-medium-r-normal---120-* for a 12-point
Times Roman font.

DRAFT (8/12/93): Distribution Restricted

2.3 Script files 9

2.3

Thepack command makes the button widget appear on the screen. Creating a widget
does not automatically cause it to be displayed. Independent entitiegyestadtry man-
agersare responsible for computing the sizes and locations of widgets and making them
appear on the screen. Tipgck command in the example asks a geometry manager called
the packerto manageb . The command asks that fill the entire area of its parent win-
dow; furthermore, if the parent has more space than needed by its child, as in the example,
the parent is shrunk so that it is just large enough to hold the child. Thus when you typed
thepack command the main window shrunk from its original size to the size that appears
in Figure 2.1.

Script files

Note:

In the examples so far you have typed Tcl commands interactivigigto orwish .
You can also place commands into script files and invoke the script files just like shell
scripts. To do this for the hello world example, place the following text in a file named
hello

#!/usr/local/bin/wish -f

button .b -text "Hello, world!" -command exit

pack .b
This script is the same as the one you typed earlier except for the first line. Awifdr as
is concerned this line is a comment but if you make the file executable (type
“chmod 775 hello " to your shell, for example) you can then invoke the file directly
by typinghello to your shell. When you do this the system will inveksh , passing it
the file as a script to interprélish will display the same window shown in Figure 2.1
and wait for you to interact with it. In this case you will not be able to type commands
interactively to wish; all you can do is click on the button.
This script will only work #vish is installed in/usr/local/bin . If wish has been

installed somewhere else then you'll need to change the first line to reflect its location on
your system.

In practice users of Tk applications rarely type Tcl commands; they interact with the
applications using the mouse and keyboard in the usual ways you would expect for graph-
ical applications. Tcl works behind the scenes where users don't normally see it. The
hello script behaves just the same as an application that has been coded in C with a tool-
kit such as Motif and compiled into a binary executable file.

During debugging, though, it is common for application developers to type Tcl com-
mands interactively. For example, you could test ouh#il® script by startingvish
interactively (typewish to your shell instead dfello). Then type the following Tcl
command:

source hello

DRAFT (8/12/93): Distribution Restricted

10

An Overview of Tcl and Tk

2.4

Source is a Tcl command that takes a file name as argument. It reads the file and evalu-
ates it as a Tcl script. This will generate the same user interface as if you had invoked
hello directly from your shell, but you can now type Tcl commands interactively too.
For example, you could edit the script file to changedbmmand option to
-command "puts Good-bye!; exit"
then type the following commands interactivelyigh without restarting the program:
destroy .b
source hello
The first command will delete the existing button and the second command will recreate
the button with the newcommand option. Now when you click on the button {nets
command will print a message on standard output befiste exits.

Variables and substitutions

Tcl allows you to store values in variables and use those values in commands. For exam-
ple, consider the following script, which you could type to eitblsh orwish :
seta 44
0 44
expr $a*4
O 176
The first command assigns the valdd * to variablea and returns the variable’s value. In
the secon command t Becauses Tcl to performariable substitutionthe Tcl interpreter
replaces the dollar-sign and the variable name following it with the value of the variable,
so that the actual argument receivedeRpr is “44*4 . Variables need not be declared
in Tcl; they are created automatically when assigned to. Variable values are stored as
strings and arbitrary string values of any length are allowed. Of course, in this example an
error will occur inexpr if the value ofa doesn’t make sense as an integer or real number
(try other values and see what happens).
Tcl also providegsommand substitutigrvhich allows you to use the result of one
command in an argument to another command:
seta 44
set b [expr $a*4]
0 176
Square brackets invoke command substitution: everything inside the brackets is evaluated
as a separate Tcl script and the result of that script is substituted into the word in place of
the bracketed command. In this example the second argument of the second command will
be “176".

DRAFT (8/12/93): Distribution Restricted

2.5 Control structures 11

2.5 Control structures

The next example uses variables and substitutions along with some simple control struc-
tures to create a Tcl procedyrewer that raises a base to an integer power:
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$bhase]
set p [expr $p-1]

return $result
}
If you type the above lines teish ortclsh , or if you enter them into a file and then
source the file, a new commanmmbwer will become available. The command takes two
arguments, a number and an integer power, and its result is the number raised to the
power:

power 2 6
0O 64

power 1.15 5
0 2.01136

This example uses one additional piece of Tcl syntax: braces. Braces are like double-
quotes in that they can be placed around a word that contains embedded spaces. However,
braces are different from double-quotes in two respects. First, braces nest. The last word
of theproc command starts after the open brace on the first line and contains everything
up to the close brace on the last line. The Tcl interpreter removes the outer braces and
passes everything between them, including several nested pairs of brpoces, &s an
argument. The second difference between braces and double-quotes is that no substitu-
tions occur inside braces, whereas they do inside quotes. All of the characters between the
braces are passed verbatinptoc without any special processing.

Theproc command takes three arguments: the name of a procedure, a list of argu-
ment names separated by white space, and the body of the procedure, which is a Tcl script.
Proc enters the procedure name into the Tcl interpreter as a new command. Whenever the
command is invoked, the body of the procedure will be evaluated. While the procedure
body is executing it can access its arguments as varialales: will hold the first argu-
ment to power angd will hold the second argument.

The body of thgpower procedure contains three Tcl commarsig: , while , and
return . Thewhile command does most of the work of the procedure. It takes two
arguments, an expressiagdg'> 0 " and a body, which is another multi-line Tcl script.
Thewhile command evaluates its expression argument and if the result is non-zero then
it evaluates the body as a Tcl script. It repeats this process over and over until eventually
the expression evaluates to zero. In the example, the bodywlfillee command multi-

DRAFT (8/12/93): Distribution Restricted

12

An Overview of Tcl and Tk

plies the result value dyase and then decrements Whenp reaches zero the result con-
tains the desired power bése .

Thereturn command causes the procedure to exit with the value of variable
result as the procedure’s result. If it is omitted then the return value of the procedure
will be the result of the last command in the procedure’s body. In the cpeever this
would be the result ofhile , which is always an empty string.

The use of braces in this example is crucial. The single most difficult issue in writing
Tcl scripts is managing substitutions: making them happen when you want them and pre-
venting them from happening when you don't want them. Braces prevent substitutions or
defer them until later. The body of the procedure must be enclosed in braces because we
don’t want variable and command substitutions to occur at the time the body is passed to
proc as an argument; we want the substitutions to occur later, when the body is evaluated
as a Tcl script. The body of tiéhile command is enclosed in braces for the same rea-
son: rather than performing the substitutions once, while parsingiitee command,
we want the substitutions to be performed over and over, each time the body is evaluated.
Braces are also needed in tigg'> 0} " argument tavhile . Without them the value
of variablep would be substituted when parsing tit@le command; the expression
would have a constant value amtile would loop forever (you can try replacing some
of the braces in the example with double quotes to see what happens).

In the examples in this book | use a stylized syntax where the open brace for an argu-
ment that is a Tcl script appears at the end of one line, the script follows on successive
lines indented, and the close brace is on a line by itself after the script. Although | think
that this makes for readable scripts, Tcl doesn't require this particular syntax. Script argu-
ments are subject to the same syntax rules as any other arguments; in fact the Tcl inter-
preter doesn’'t even know that an argument is a script at the time it parses it. One
consequence of this is that the open parenthesis must be on the same line as the preceding
portion of the command. If the open brace is moved to a line by itself then the newline
before the open brace will terminate the command.

By now you have seen nearly the entire Tcl language syntax. The only remaining syn-
tactic feature is backslash substitution, which allows you to enter special characters such
as dollar-signs into a word without enclosing the entire word in braces. Notehilet
andproc are not special syntactic elements in Tcl. They are just commands that take
arguments just like all Tcl commands. The only special thing abloile andproc is
that they treat some of their arguments as Tcl scripts and cause the scripts to be evaluated.
Many other commands also do this. Tutton command was one example @t®m-
mand option is a Tcl script), and you'll read about several other control structures later on,
such ador , foreach |, case, andeval .

One final note about procedures. The variables in a procedure are normally local to
that procedure and will not be visible outside the procedure. jpotier example the
local variables include the argumebtse andp as well as the variabtesult . A
fresh set of local variables is created for each call to a procedure (arguments are passed by
copying their values), and when a procedure returns its local variables are deleted. Vari-

DRAFT (8/12/93): Distribution Restricted

2.6 Event bindings 13

2.6

| |
=] power R

L |2.1 to the power |? is 180.109

Figure 2.2. A graphical user interface that computes powers of a base.

ables named outside any procedure are cgltduhl variablesthey last forever unless
explicitly deleted. You'll find out later how a procedure can access global variables and
the local variables of other active procedures.

Event bindings

The next example provides a graphical front-end foptiveer procedure. In addition to
demonstrating two new widget classes it illustrates bkisling mechanism. A binding
causes a particular Tcl script to be evaluated whenever a particular event occurs in a par-
ticular window. Thecommand option for buttons is an example of a simple binding
implemented by a particular widget class. Tk also includes a more general mechanism that
can be used to extend the behavior of arbitrary widgets in nearly arbitrary ways.
To run the example, copy the following script into aitever and invoke the file
from your shell.
#!/usr/local/bin/wish -f
proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*$bhase]
set p [expr $p-1]

return $result
}
entry .base -width 6 -relief sunken -textvariable base
label .labell -text "to the power"
entry .power -width 6 -relief sunken -textvariable power

label .result -textvariable result
pack .base .labell .power .label2 .result \
-side left -padx 1m -pady 2m
bind .base <Return> {set result [power $base $power]}
bind .power <Return> {set result [power $hase $power]}

This script will produce a screen display like that in Figure 2.2. There are two entry wid-
gets in which you can click with the mouse and type numbers. If you type return in either

DRAFT (8/12/93): Distribution Restricted

14

An Overview of Tcl and Tk

of the entries, the result will appear on the right side of the window. You can compute dif-
ferent results by modifying either the base or the power and then typing return again.

This application consists of five widgets: two entries and three labels. Entries are wid-
gets that display one-line text strings that you can edit interactively. The two entries,

.base and.power , are used for entering the numbers. Each entry is configured with a
-width of 6, which means it will be large enough to display about 6 digits, and a
-relief of sunken , which gives the entry a depressed appearance. The
-textvariable option for each entry specifies the name of a global variable to hold
the entry’s text: any changes you make in the entry will be reflected in the variable and
vice versa.

Two of the labelslabell and.label2 , hold decorative text and the third,
result , holds the result of the power computation. Tte&tvariable option for
result causes it to display whatever string is in global varieggelt
whereadabell and.label2 display constant strings.

Thepack command arranges the five widgets in a row from left to right. The com-
mand occupies two lines in the script; the backslash at the end of the first line is a line-con-
tinuation character: it causes the newline to be treated as a spaesid@&heoption
means that each widget is placed at the left side of the remaining space in the main widget:
first .base is placed at the left edge of the main window, thamell s placed at the
left side of the space not occupied.bgse , and so on. Thepadx and-pady options
make the display a bit more attractive by arranging for 1 millimeter of extra space on the
left and right sides of each widget, plus 2 millimeters of extra space above and below each
widget. The hi suffix specifies millimeters; you could also use for centimeters, i*”
for inches, p” for points, or no suffix for pixels.

Thebind commands connect the user interface tgptiveer procedure. Eachind
command has three arguments: the name of a window, an event specification, and a Tcl
script to invoke when the given event occurs in the given windBeturn> specifies
an event consisting of the user typing the return key on the keyboard. Here are a few other
event specifiers that you might find useful:

<Button-1> Mouse button 1 is pressed.

<ButtonRelease-1> Mouse button 1 is released.

<Double-Button-1> Double-click on mouse button 1.

<1> Short-hand foxButton-1>

<Key-a> Key “a” is pressed.

<a> ora Short-hand fokKey-a> .

<Motion> Pointer motion with no buttons or modifier keys
pressed.

<B1-Motion> Pointer motion with button 1 pressed.

<Any-Motion> Pointer motion with any (or no) buttons or modifier

keys pressed.

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 15

2.7

The scripts for the bindings invokewer , passing it the values in the two entries,
and they store the resultiesult so that it will be displayed in theesult ~ widget.

These bindings extend the generic built-in behavior of the entries (editing text strings)
with application-specific behavior (computing a value based on two entries and displaying
that value in a third widget).

The script for a binding has access to several pieces of information about the event,
such as the location of the pointer when the event occurred. For an example vaistt up
interactively and type the following command to it:

bind . <Any-Motion> {puts "pointer at %x,%y"}
Now move the pointer over the window. Each time the pointer moves a message will be
printed on standard output giving its new location. When the pointer motion event occurs,
Tk scans the script for % sequences and replaces them with information about the event
before passing the script to Tcl for evaluati#xis replaced with the pointer’s x-coordi-
nate anduyis replaced with the pointer’s y-coordinate.

Subprocesses

Normally Tcl executes each command by invoking a C procedure in the application to
carry out its function; this is different from a shell program kewhere each command

is normally executed in a separate subprocess. However, Tcl also allows you to create sub-
processes, using tlexec command. Here is a simple exampleréc :

exec grep #include tk.h
O #include <tcl.h>

#include <X11/Xlib.h>

#include <stddef.h>
Theexec command treats its arguments much like the words of a shell command line. In
this exampleexec creates a new process to runghep program and passes it
“#include " and ‘tk.n " as arguments, just as if you had typed

grep #include tk.h
to your shell. Thgrep program searches fite.h for lines that contain the string
#include and prints those lines on its standard output. Howexer; arranges for
standard output from the subprocess to be piped back t6xXEat. waits for the process to
exit and then it returns all of the standard output as its result. With this mechanism you can
execute subprocesses and use their output in Tcl s&y#s. also supports input and out-
put redirection using standard shell notation such &%, and>, pipelines witH , and
background processes wigh

The example below creates a simple user interface for saving and re-invoking com-

monly used shell commands. Type the following script into a file naeded and invoke
it:

DRAFT (8/12/93): Distribution Restricted

16

An Overview of Tcl and Tk

L[| redo R = | |
IR = relo i
. . |
@) Is
ditroff -ms paper.ms
| | Ipgy
= redo e rcsinfo
I [Is -1 RC3 [T
[Is |_ L L
' ' (c)
(b)

Figure 2.3. Theredo application. The user can type a command in the entry window, as in
When the user types return the command is invoked as a subprocesxesirand a new button
created that can be used to re-invoke the command later, as in (b). Additional commands ¢
typed to create additional buttons, up to a limit of five buttons as in (c).

#!/usr/local/bin/wish -f
setid O
entry .entry -width 30 -relief sunken -textvariable cmd
pack .entry -padx 1m -pady 1m
bind .entry <Return> {

set id [expr $id + 1]

if {$id > 5} {

destroy .b[expr $id - 5]

button .b$id -command "exec <@stdin >@stdout $cmd" \
-text $cmd

pack .b$id fill x

.b$id invoke

.entry delete 0 end

}
Initially the script creates an interface with a single entry widget. You can type a shell
command such ds into the entry, as shown in Figure 2.3(a). When you type return the
command gets executed just as if you had typed it to the shell from which you invoked
redo , and output from the command appears in the shell’s window. Furthermore, the
script creates a new button widget that displays the command (see Figure 2.3(b)) and you
can re-invoke the command later by clicking on the button. As you type more and more
commands, more and more buttons appeatr, up to a limit of five remembered commands as
in Figure 2.3(c).

DRAFT (8/12/93): Distribution Restricted

2.7 Subprocesses 17

Note:

This example suffers from several limitations. For example, you cannot specify wild-cards
such as “*" in command lines, and thed” command doesnt behave properly. In Part |
you'll read about Tcl facilities that you can use to eliminate these limitations.

The most interesting part of thedo script is in thebind command. The binding
for <Return> must execute the command, which is stored ircthé variable, and cre-
ate a new button widget. First it creates the widget. The button widgets have names like
b1 ,.b2 , and so on, where the number comes from the vaiibig starts at zero
and increments before each new button is created. The notdi$id “” generates a wid-
get name by.b " and the value oid . Before creating a new widget the script checks to
see if there are already five saved commands; if so then the oldest existing button is
deleted. The notationB[expr $id - 5] " produces the name of the oldest button by
subtracting five from the number of the new button and concatenating it.lvithThe -
commandoption for the new button invokesec and redirects standard input and stan-
dard output for the subprocess(esyvish ’s standard input and standard output, which
are the same as those of the shell from whiich was invoked: this causes output from
the subprocesses to appear in the shell's window instead of being retuwiskl to

The commandpack .b$id -fill x " makes the new button appear at the bot-
tom of the window. The optionill x " improves the appearance by stretching the
button horizontally so that it fills the width of the window even it it doesn't really need
that much space for its text. Try omitting tfiéd option to see what happens without
it.

The last two commands of the binding script are callieildet commanddVhenever
a new widget is created a new Tcl command is also created with the same name as the
widget, and you can invoke this command to communicate with the widget. The first argu-
ment to a widget command selects one of several operations and additional arguments are
used as parameters for that operation. Irede script the first widget command causes
the button widget to invoke itsommand option just as if you had clicked the mouse
button on it. The second widget command clears the entry widget in preparation for a new
command to be typed.

Each class of widget supports a different set of operations in its widget commands,
but many of the operations are similar from widget to widget. For example, every widget
class supportseonfigure widget command that can be used to modify any of the con-
figuration options for the widget. If you run thelo script interactively you could type
the following command to change the background of the entry widget to yellow:

.entry configure -background yellow
Or, you could type

.b1 configure -foreground brown
.b1 flash

to change the color of the text in buttti to brown and then cause the button to flash.
One of the most important things about Tcl and Tk is that they make every aspect of
an application accessible and modifiable at run-time. For examplediescript modi-

DRAFT (8/12/93): Distribution Restricted

An Overview of Tcl and Tk

fies its own interface on the fly. In addition, Tk provides commands that you can use to
query the structure of the widget hierarchy, and you cacarsiigure widget com-
mands to query and modify the configuration options of individual widgets.

2.8 Additional features of Tcl and Tk

The examples in this chapter used every aspect of the Tcl language syntax and they illus-
trated many of the most important features of Tcl and Tk. However, Tcl and Tk contain
many other facilities that are not used in this chapter; all of these will be described later in
the book. Here is a sampler of some of the most useful features that haven’t been men-
tioned yet:

Arraysand lists. Tcl provides associative arrays for storing key-value pairs efficiently
and lists for managing aggregates of data.

Morecontrol structures. Tcl provides several additional commands for controlling the
flow of execution, such asval , for , foreach , andswitch

String manipulation. Tcl contains a number of commands for manipulating strings,
such as measuring their length and performing regular expression pattern matching and
substitution.

File access. You can read and write files from Tcl scripts and retrieve directory infor-
mation and file attributes such as length and creation time.

More widgets. Tk contains many widget classes besides those shown here, such as
menus, scrollbars, a drawing widget callezhavas and a text widget that makes it
easy to achieve hypertext effects.

Accessto other X facilities. Tk provides commands for accessing all of the major
facilities in the X Window System, such as a command for communicating with the
window manager (to set the window'’s title, for example), a command for retrieving the
selection, and a command to manage the input focus.

C interfaces. Tcl provides C library procedures that you can use to define your own
new Tcl commands in C, and Tk provides a library that you can use to create your own
widget classes and geometry managers in C.

2.9 Extensions and applications

Tcl and Tk have an active and rapidly-growing user community that now numbers in the
tens of thousands. Many people have built applications based on Tcl and Tk and packages
that extend the base functionality of Tcl and Tk. Several of these packages and applica-
tions are publically available and widely used in the Tcl/Tk community. There isn’t space
in this book to discuss all of the exciting Tcl/Tk software in detail but this section gives a

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 19

29.1

2.9.2

quick overview of five of the most popular extensions and applications. See Appendix A
for information on how you can obtain them and other contributed Tcl/Tk software.

Expect

Expect is one of the oldest Tcl applications and also one of the most popular. It is a pro-
gram that “talks” to interactive programs. Following a scegpect knows what output
can be expected from a program and what the correct responses should be. It can be used
to automatically control programs likgp ,telnet ,rlogin ,crypt ,fsck ,tip ,and
others that cannot be automated from a shell script because they require interactive input.
Expect also allows the user to take control and interact directly with the program when
desired. For example, the followiegpect script logs into a remote machine using the
rlogin program, sets the working directory to that of the originating machine, then turns
control over to the user:

#l/usr/local/bin/expect

spawn rlogin [lindex $argv 1]

expect -re "(%|#) "

send "cd [pwd]\r"

interact
Thespawn, expect , send, andinteract =~ commands are implemented éxpect |,
andlindex andpwd are built-in Tcl commands. Trgpawn command starts ugo-
gin , using a command-line argument as the name of the remote machimxp€hbt
command waits forlogin ~ to output a prompt (eithefs or “#”, followed by a space),
thensend outputs a command to change the working directory, just as if a user had typed
the command interactively. Finalipteract cause&xpect to step out of the way so
that the user who invoked tle&pect script can now talk directly tdogin

Expect can be used for many purposes, such as a scriptable front-end to debuggers,
mailers, and other programs that don't have scripting languages of their own. The pro-
grams require no changes to be driven by expeqtect is also useful for regression
testing of interactive programBExpect can be combined with Tk or other Tcl exten-
sions. For example, using Tk it is possible to make a graphical front end for an existing
interactive application without changing the application.
Expect was created by Don Libes.

Extended Tcl

Extended Tcl (TclX) is a library package that augments the built-in Tcl commands with
many additional commands and procedures oriented towards system programming tasks.
It can be used with any Tcl application. Here are a few of the most popular features of
TclX:

* Access to many additional POSIX system calls and functions.
* A file scanning facility with functionality much like that of thevk program.

DRAFT (8/12/93): Distribution Restricted

20

An Overview of Tcl and Tk

293

294

* Keyed lists, which provide functionality similar to C structures.

¢ Commands for manipulating times and dates and converting them to and from ASCII.
* An on-line help facility.

¢ Facilities for debugging, profiling, and program development.

Many of the best features of TclX are no longer part of TcIX: they turned out to be so

widely useful that they were incorporated into the Tcl core. Among the Tcl features pio-

neered by TcIX are file input and output, array variables, real arithmetic and transcenden-

tal functions, auto-loading, XPG-based internationalization, andpb@ command.
Extended Tcl was created by Karl Lehenbauer and Mark Diekhans.

XF

Tk makes it relatively easy to create graphical user interfaces by writing Tcl scripts, but
XF makes it even easier. XF is an interactive interface builder: you design a user interface
by manipulating objects on the screen, then XF creates a Tcl script that will generate the
interface you have designed (see Figure 2.4). XF provides tools for creating and configur-
ing widgets, arranging them with Tk’s geometry managers, creating event bindings, and so
on. XF manipulates a live application while it is running, so the full effect of each change
in the interface can be seen and tested immediately.

XF supports all of Tk’s built-in widget classes and allows you to add new widget
classes by writing class-specific Tcl scripts for XF to use to handle the classes. You
needn’'t use XF exclusively: you can design part of a user interface with XF and part by
writing Tcl scripts. XF supports most of the currently available extensions to Tcl and Tk,
and XF itself is written in Tcl.

XF was created by Sven Delmas. It is based on an earlier interface builder for Tk
called BYO, which was developed at the Victoria University of Wellington, New Zealand.

Distributed programming

Tcl Distributed Programming (Tcl-DP) is a collection of Tcl commands that simplify the
development of distributed programs. Tcl-DP’s most important featunemae proce-
dure callfacility, which allows Tcl applications to communicate by exchanging Tcl
scripts. For example, the following script uses Tcl-DP to implement a trivial “id server”,
which returns unique identifiers in respons&tdld requests:
set myld O
proc Getld {} {
global myld;
set myld [expr $myld+1]
return $myld

}
MakeRPCServer 4545

DRAFT (8/12/93): Distribution Restricted

2.9 Extensions and applications 21

Hle Edit Configuration Programming Misc Options Help
B R +| k-
Ty = e B |®3)50) x (2PN Tm| 7| TIE
| cB (empty): 0
Current widget path:l .
Widget classes Templates

| Button {Tk} |||%|AlertBoxn

Canvas {Tk} F5Box

Checkbutton {Tk} TextBox

Entry {Tk> YesHoBox

Frane {Tk}

Label {Tk}

Listbox {Tk}

Henu {Tk}

Henubutton {Tk}

Heszage {Tk>

Radiobutton {Tk}

Scale {Tk}

Scrollbar {Tk}

Text {Tk}

Toplevel {Tk>
AR]| | |
Current widget type: | Button

Add with defaults | j‘je"” LT Configure and add |

Figure 2.4. A screen dump showing the main window of XF, an interactive application builc
Tcl and Tk.

All of the code in this script except the last line is ordinary Tcl code that defines a global
variablemyld and a procedur@etld that increments the variable and returns its new
value. TheMakeRPCServer command is implemented by Tcl-DP; it causes the applica-
tion to listen for requests on TCP socket 4545.
Other Tcl applications can communicate with this server using scripts that look like

the following:

set server [MakeRPCClient server.company.com 4545]

RPC $server Getld
The first command opens a connection with the server and saves an identifier for that con-
nection. The arguments kdakeRPCClient identify the server’s host and the socket on
which the server is listening. TiRRPCcommand performs a remote procedure call. Its

DRAFT (8/12/93): Distribution Restricted

22

An Overview of Tcl and Tk

295

arguments are a connection identifier and an arbitrary Tcl sef&Eforwards the script

to the server; the server executes the script and returns its result (a new identifier in this
case), which becomes the result of @BRCcommand. Any script whatosever could be
substituted in place of tieetld command.

Tcl-DP also includes several other features, including asynchronous remote procedure
calls, where the client need not wait for the call to complete, a distributed object system in
which objects can be replicated in several applications and updates are automatically
propagated to all copies, and a simple name service. Tcl-DP has been used for applications
such as a video playback system, groupware, and games. Tcl-DP is more flexible than
most remote procedure call systems because it is not based on compiled interfaces
between clients and servers: it is easy in Tcl-DP to connect an existing client to a new
server without recompiling or restarting the client.

Tcl-DP was created by Lawrence A. Rowe, Brian Smith, and Steve Yen.

Ak

Ak is an audio extension for Tcl. It is built on top of AudioFile, a network-transparent,
device independent audio system that runs on a variety of platforms. Ak provides Tcl com-
mands for file playback, recording, telephone control, and synchronization. The basic
abstractions in Ak are connections to AudioFile servers, device contexts (which encapsu-
late the state for a particular audio device), and requests such as file playback. For exam-
ple, here is a script that plays back an audio file on a remote machine:

audioserver remote "server.company.com:0"

remote context room -device 1

room create play "announcement-file.au"
The first command opens a connection to the audio server on the machine
server.company.com and gives this connection the naramote . It also creates a
command nameremote , which is used to issue commands over the connection. The
second command creates a context narmenh, which is associated with audio device 1
on the server, and also creates a command nesoed for communicating with the con-
text. The last command initiates a playback of a particular audio file.

Ak implements a unique model of time that allows clients to specify precisely when
audio samples are going to emerge. It also provides a mechanism to execute arbitrary Tcl
scripts at specified audio times; this can be used to achieve a variety of hypermedia
effects, such as displaying images or video in sync with an audio playback. When com-
bined with Tk, Ak provides a powerful and flexible scripting system for developing multi-
media applications such as tutorials and telephone inquiry systems.

Ak was created by Andrew C. Payne.

DRAFT (8/12/93): Distribution Restricted

Part |:

The Tcl Language

24

DRAFT (8/12/93): Distribution Restricted

Chapter 3
Tcl Language Syntax

3.1

In order to write Tcl scripts you must learn two things. First, you must learn the Tcl syntax,
which consists of about a half-dozen rules that determine how commands are parsed. The
Tcl syntax is the same for every command. Second, you must learn about the individual
commands that you use in your scripts. Tcl provides about 60 built-in commands, Tk adds
several dozen more, and any application based on Tcl or Tk will add a few more of its
own. You'll need to know all of the syntax rules right away, but you can learn about the
commands more gradually as you need them.

This chapter describes the Tcl language syntax. The remaining chapters in Part |
describe the built-in Tcl commands, and Part Il describes Tk's commands.

Scripts, commands, and words

A Tcl script consists of one or moowmmmandsCommands are separated by newlines and
semi-colons. For example,

seta 24

setb 15
is a script with two commands separated by a newline character. The same script could be
written on a single line using a semi-colon separator:

seta24;setb 15

Each command consists of one or meoeds where the first word is the name of a
command and additional words are arguments to that command. Words are separated by
spaces and tabs. Each of the commands in the above examples has three words. There may

25

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

26

Tcl Language Syntax

3.2

] Command String

Tcl Parser

> Words

PHHDHFIG

(Command Procedu@

'

| | Result

Figure 3.1. Tcl commands are evaluated in two steps. First the Tcl interpreter parses the cc
string into words, performing substitutions along the way. Then a command procedure proct
words to produce a result string. Each command has a separate command procedure.

be any number of words in a command, and each word may have an arbitrary string value.
The white space that separates words is not part of the words, nor are the newlines and
semi-colons that terminate commands

Evaluating a command

Tcl evaluates a command in two steps as shown in FigurpasingandexecutionIn

the parsing step the Tcl interpreter applies the rules described in this chapter to divide the
command up into words and perform substitutions. Parsing is done in exactly the same
way for every command. During the parsing step the Tcl interpreter does not apply any
meaning to the values of the words. Tcl just performs a set of simple string operations such
as replacing the charactefa" with the string stored in variabke Tcl does not know or

care whethea or the resulting word is a number or the name of a widget or anything else.

DRAFT (8/12/93): Distribution Restricted

3.2 Evaluating a command 27

Note:

In the execution step meaning is applied to the words of the command. Tcl treats the
first word as a command name, checking to see if the command is defined and locating a
command procedur® carry out its function. If the command is defined then the Tcl inter-
preter invokes its command procedure, passing all of the words of the command to the
command procedure. The command procedure is free to interpret the words in any way
that it pleases, and different commands apply very different meanings to their arguments
I use the terms “word” and “argument” interchangeably to refer to the values passed to

command procedures. The only difference between these two terms is that the first
argument is the second word.

The following commands illustrate some of meanings that are commonly applied to
arguments:
seta 122

In many cases, such as & command, arguments may take any form
whatsoever. Theet command simply treats the first argument as a variable
name and the second argument as a value for the variable. The command
“set 122 a ”is valid too: it creates a variable whose namelR2” and
whose value isd”.

expr 24/3.2

The argument texpr must be an arithmetic expression that follows the rules
described in Chapter 5. Several other commands also take expressions as argu-
ments.

eval {set a 122}

The argument teval is a Tcl scriptEval passes it to the Tcl interpreter

where another round of parsing and execution occurs for the argument. Other

control-flow commands such #is andwhile also take scripts as arguments.
lindex {red green blue purple} 2

The first argument thndex is alist consisting of four values separated by
spaces. This command will extract elementl#ug ") from the list and
return it. Tcl's commands for manipulating lists are described in Chapter 6.
string length abracadabra
Some commands, likaring and the Tk widget commands, are actually
several commands rolled into one. The first argument of the command selects
one of several operations to perform and determines the meaning of the
remaining arguments. For examptarfng length " requires one addi-
tional argument and computes its length, whersasyy compare
requires two additional arguments.
button .b -text Hello -fg red

The arguments starting wittext are option-value pairs that allow you to
specify the options you care about and use default values for the others.

DRAFT (8/12/93): Distribution Restricted

28

Tcl Language Syntax

3.3

In writing Tcl scripts one of the most important things to remember is that the Tcl
parser doesn'’t apply any meaning to the words of a command while it parses them. All of
the above meanings are applied by individual command procedures, not by the Tcl parser.
Another way of saying this is that arguments are quoted by default; if you want evaluation
you must request it explicitly. This approach is similar to that of most shell languages but
different than most programming languages. For example, consider the following C pro-
gram:

X=4;

y = x+10;
In the first statement C stores the integer value 4 in varnalitethe second statement C
evaluates the expressioxt+10 ", fetching the the value of varialskeand adding 10, and
stores the result in variabje At the end of execution has the integer value 14. If you
want to use a literal string in C without evaluation you must enclose it in quotes. Now con-
sider a similar-looking program written in Tcl:

setx 4

sety x+10
The first command assigns thieing “4” to variablex. The value of the variable need not
have any particular form. The second command simply takes the stfibh@ ™ and stores
it as the new value for. At the end of the script y has the string valkel0 ", not the
integer value 14. In Tcl if you want evaluation you must ask for it explicitly:

setx 4

set y [expr $x+10]
Evaluation is requested twice in this example. First, the second word of the second com-
mand is enclosed in brackets, which tells the Tcl parser to evaluate the characters between
the brackets as a Tcl script and use the result as the value of the word. Second, a dollar-
sign has been placed beforeWhen Tcl parses thexpr command it substitutes the
value of variablex for the$x. If the dollar-sign were omitted thexpr 's argument
would contain the stringx”, resulting in a syntax error. At the end of the scyiptas the
string value 14", which is almost the same as in the C example.

Variable substitution

Tcl provides three forms afubstitution:variable substitution, command substitution, and
backslash substitution. Each substitution causes some of the original characters of a word
to be replaced with some other value. Substitutions may occur in any word of a command,
including the command name, and there may be any humber of substitutions within a sin-
gle word.

The first form of substitution igariable substitutionlt is triggered by a dollar-sign
character and it causes the value of a Tcl variable to be inserted into a word. For example,
consider the following commands:

DRAFT (8/12/93): Distribution Restricted

3.4 Command substitution 29

3.4

set kgrams 20
expr $kgrams*2.2046

0 44.092

The first command sets the value of variddgjeams to 20. The second command com-
putes the corresponding weight in pounds by multiplying the valkgrams by 2.2046.
It does this using variable substitution: the stkgrams is replaced with the value of
variablekgrams , so that the actual argument received byettir command procedure
is “20*2.2046 .

Variable substitution can occur anywhere within a word and any number of times as

in the following command:

expr $result*$base
The variable name consists of all of the numbers, letters, and underscores following the
dollar-sign. Thus the first variable nameqult) extends up to the and the second
variable namehase) extends to the end of the word.

The examples above show only the simplest form of variable substitution. There are
two other forms of variable substitution, which are used for associative array references
and to provide more explicit control over the extent of a variable name (e.g. so that there
can be a letter immediately following the variable name). These other forms are discussed
in Chapter 4.

Command substitution

The second form of substitution provided by Taténmand substitutioCommand sub-
stitution causes part or all of a command word to be replaced with the result of another Tcl
command. Command substitution is invoked by enclosing a nested command in brackets:
set kgrams 20
set Ibs [expr $kgrams*2.2046]
0 44.092

The characters between the brackets must constitute a valid Tcl script. The script may con-
tain any number of commands separated by newlines or semi-colons in the usual fashion.
The brackets and all of the characters in between are replaced with the result of the script.
Thus in the example above tbepr command is executed while parsing the words for

set ; its result, the string44.092 ”, becomes the second argumenséd . As with vari-

able substitution, command substitution can occur anywhere in a word and there may be
more than one command substitution within a single word.

DRAFT (8/12/93): Distribution Restricted

30

Tcl Language Syntax

3.5

Backslash substitution

Note:

3.6

The final form of substitution in Tcl isackslash substitutiorit is used to insert special
characters such as newlines into words and also to insert charactpraniét® without

them being treated specially by the Tcl parser. For example, consider the following com-
mand:

set msg Eggs:\ \$2.18/dozen\nGasoline:\ \$1.49/gallon
0 Eggs: $2.18/dozen

Gasoline: $1.49/gallon
There are two sequences of backslash followed by space; each of these sequences is
replaced in the word by a single space and the space characters are not treated as word
separators. There are also two sequences of backslash followed by dollar-sign; each of
these is replaced in the word with a single dollar-sign, and the dollar signs are treated like
ordinary characters (they do not trigger variable substitution). The backslash followed by
n is replaced with a newline character

Table 3.1 lists all of the backslash sequences supported by Tcl. These include all of
the sequences defined for ANSI C, sucht aso insert a tab character axd4 to insert
the character whose hexadecimal value is 0xd4. If a backslash is followed by any charac-
ter not listed in the table, as\® or\[, then the backslash is dropped from the word and
the following character is included in the word as an ordinary character. This allows you to
include any of the Tcl special characters in a word without the character being treated spe-
cially by the Tcl parser. The sequentewill insert a single backslash into a word.
The sequence backslash-newline can be used to spread a long command across multi-

ple lines, as in the following example:

pack .base .labell .power .label2 .result\

-side left -padx 1m -pady 2m

The backslash and newline, plus any leading space on the next line, are replaced by a sin-
gle space character in the word. Thus the two lines together form a single command.
Backslash-newline sequences are unusual in that they are replaced in a separate
preprocessing step before the Tcl interpreter parses the command. This means, for

example, that the space character that replaces backslash-newline will be treated as a
word separator unless it is between double-quotes or braces.

Quoting with double-gquotes

Tcl provides several ways for you to prevent the parser from giving special interpretation
to characters such &sand semi-colon. These techniques are cajlesting You have

already seen one form of quoting in backslash subsitution; for exafptauses a dol-
lar-sign to be inserted into a word without triggering variable substitution. In addition to
backslash substitution Tcl provides two other forms of quoting: double-quotes and braces.

DRAFT (8/12/93): Distribution Restricted

3.6 Quoting with double-quotes 31

Backslash Sequence Replaced By

\a Audible alert (0x7)

\b Backspace (0x8)

\f Form feed (0xc)

\n Newline (Oxa)

\r Carriage return (0xd)

\t Tab (0x9)

\v Vertical tab (0xb)

\ ddd Octal value given bgdd
(one, two, or thred'’s)

\x hh Hex value given byh
(any number oh’s)

\ newline space A single space character

Table 3.1. Backslash substitutions supported by Tcl. Each of the sequences in the first colt
replaced by the corresponding character from the second column. If a backslash is followe:
character other than those in the first column, then the two characters are replaced by the ¢
character.

Double-quotes disable word and command separators, while braces disable almost all spe-
cial characters.

If a word is enclosed in double-quotes then spaces, tabs, newlines, and semi-colons
are treated as ordinary characters within the word. The example from page 30 can be
rewritten more cleanly with double-quotes as follows:

set msg "Eggs: \$2.18/dozen\nGasoline: \$1.49/gallon"
O Eggs: $2.18/dozen

Gasoline: $1.49/gallon
Note that the quotes themselves are not part of the wordnTimethe example could also
be replaced with an actual newline character, as in

set msg "Eggs: \$2.18/dozen

Gasoline: \$1.49/gallon”
but I think the script is more readable with.

Variable substitutions, command substitutions, and backslash substitutions all occur

as usual inside double-quotes. For example, the following scriphsgt® a string con-
taining the name of a variable, its value, and the square of its value:

DRAFT (8/12/93): Distribution Restricted

32

Tcl Language Syntax

3.7

seta2.1
set msg "a is $a; the square of a is [expr $a*$a]"

0 ais 2.1; the square of ais 4.41
If you would like to include a double-quote in a word enclosed in double-quotes, then use
backlash substitution:

set name a.out
set msg "Couldn’t open file \"$name\""

O Couldn't open file "a.out"

Quoting with braces

Braces provide a more radical form of quoting where all the special charaters lose their
meaning. If a word is enclosed in braces then the characters between the braces are the
value of the word, verbatim. No substitutions are performed on the word and spaces, tabs,
newlines, and semi-colons are treated as ordinary characters. The example on page 30 can
be rewritten with braces as follows:

set msg {Eggs: $2.18/dozen

Gasoline: $1.49/gallon}
The dollar-signs in the word do not trigger variable substitution and the newline does not
act as a command separator. In this daseannot be used to insert a newline into the
wod as on page 31, because\thewill be included in the argument as-is without trigger-
ing backslash substitution:

set msg {Eggs: $2.18/dozen\nGasoline: $1.49/gallon}

0 Eggs: $2.18/dozen\nGasoline: $1.49/gallon
One of the most important uses for braces tefer evaluationDeferred evaluation

means that special characters aren't processed immediately by the Tcl parser. Instead they
will be passed to the command procedure as part of its argument and the command proce-
dure will process the special characters itself. Braces are almost always used when passing
scripts to Tcl commands, as in the following example that computes the factorial of five:

set result 1

seti5

while {$i > 0} {

set result [expr $result*$i]
set i [expr $i-1]

The body of thavhile loop is enclosed in braces to defer substitutidfisle passes
the script back into Tcl for evaluation during each iteration of the loop and the subsitutions
will be performed at that time. In this case it is important to defer the substitutions so that
they are done afresh each time tlihile evaluates the loop body, rather than once-and-
for-all while parsing thevhile command.

Braces nest, as in the following example:

DRAFT (8/12/93): Distribution Restricted

3.8 Comments 33

Note:

Note:

3.8

proc power {base p} {
set result 1
while {$p > 0} {
set result [expr $result*base]
set p [expr $p-1]

return $result

}
In this case the third argumentgmc contains two pairs of nested braces (the outermost
braces are removed by the Tcl parser). The command substitution requestégebypith “
$p-1] " will not be performed when theroc command is parsed, or even when the
while command is parsed as part of executing the procedure’s body, but only when
while evaluates its second argument to execute the loop.
If a brace is backslashed then it does not count in finding the matching close brace for a
word enclosed in braces. The backslash will not be removed when the word is parsed.

The only form of substitution that occurs between braces is for backslash-newline. As
discussed in Section 3.5, backslash-newline sequences are actually removed in a pre-
processing step before the command is parsed.

Comments

3.9

If the first non-blank character of a comman# then the# and all the characters follow-
ing it up through the next newline are treated as a comment and discarded. Note that the
hash-mark must occur in a position where Tcl is expecting the first character of a com-
mand. If a hash-mark occurs anywhere else then it is treated as an ordinary character that
forms part of a command word:
This is a comment
seta 100 # Not a comment
O wrong # args: should be "set varName ?newValue?"
set b 101; # This is a comment
0 101
The# on the second line is not treated as a comment character because it occurs in the
middle of a command. As a result the fsgt command receives 6 arguments and gener-
ates an error. The la#tis treated as a comment character, since it occurs just after the
command was terminated with a semi-colon.

Normal and exceptional returns

A Tcl command can terminate in several different waysoAnal returnis the most com-
mon case; it means that the command completed successfully and the return includes a
string result. Tcl also suppomxceptional returnérom commands. The most frequent

DRAFT (8/12/93): Distribution Restricted

34

Tcl Language Syntax

Note:

3.10

form of exceptional return is an error. When an error return occurs, it means that the com-
mand could not complete its intended function. The command is aborted and any com-
mands that follow it in the script are skipped. An error return includes a string identifying
what went wrong; the string is normally displayed by the application. For example, the
following set command generates an error because it has too many arguments:
set state West Virginia
O wrong # args: should be "set varName ?newValue?"
Different commands generate errors under different conditions. For exaxpie,
accepts any number of arguments but requires the arguments to have a particular syntax; it
generates an error if, for example, parentheses arent matched:
expr 3 * (20+4
0 unmatched parentheses in expression " 3*(20+4
The complete exceptional return mechanism for Tcl is discussed in Chapter 9. It sup-
ports a number of exceptional returns other than errors, provides additional information
about errors besides the error message mentioned above, and allows errors to be “caught”
so that effects of the error can be contained within a piece of Tcl code. For now, though, all
you need to know is that commands normally return string results but they sometimes
return errors that cause Tcl command interpretation to be aborted.
You may also find trerrorinfo variable useful. After an error Tcl satgorinfo to

hold a stack trace indicating exactly where the error occurred. You can print out this
variable with the commandsét errorinfo "

More on substitutions

The most common difficulty for new Tcl users is understanding when substitutions do and
do not occur. A typical scenario is for a user to be surprised at the behavior of a script
because a substitution didn’t occur when the user expected it to happen, or a substitution
occurred when it wasn't expected. However, | think that you'll find Tcl's substitution
mechanism to be simple and predictable if you just remember two related rules:

1. Tcl parses a command and makes substitutions in a single pass from left to right. Each
character is scanned exactly once.

2. At most a single layer of substitution occurs for each character; the result of one substi-
tution is not scanned for further substitutions.

Tcl's substitutions are simpler and more regular than you may be used to if you've pro-
grammed with UNIX shells (particularlysh). When new users run into problems with
Tcl substitutions it is often because they have assumed a more complex model than actu-
ally exists.

For example, consider the following command:

DRAFT (8/12/93): Distribution Restricted

3.10 More on substitutions 35

set x [format {Earnings for July: $%.2f} $earnings]

0 Earnings for July: $1400.26
The characters between the brackets are scanned exactly once, during command substitu-
tion, and the value of thearnings variable is substituted at that time. Ihist the case
that Tcl first scans the whadet command to substitute variables, then makes another
pass to perform command substitution; everything happens in a single scan. The result of
theformat command is passed verbatimstt as its second argument without any
additional scanning (for example, the dollar-sigfoirmat ’s result does not trigger vari-
able substitution).

One consequence of the substitution rules is that all the word boundaries within a
command are immediately evident and are not affected by substitutions. For example,
consider the following script:

set city "Los Angeles"

set bigCity $city
The secondet command is guaranteed to have exactly three words regardless of the
value of variablecity . In this caseity contains a space character but the spaoetis
treated as a word separator.

In some situations the single-layer-of-substitutions rule can be a hindrance rather than
a help. For example, the following script is an erroneous attempt to delete all files with
names ending in.6 ”:

exec rm [glob *.0]
O rm: a.o b.o c.o nonexistent
Theglob command returns a list of all file names that match the pattern’; such as
“a.0b.oc.o ". Theexec command then attempts to invoke threprogram to delete
all of these files. However, the entire list of files is passeahtas a single argumentn
reports an error because it cannot find a file naraexity.o c.o ". Forrm to work
correctly the result ajlob must be split up into multiple words.

Fortunately, it is easy to add additional layers of parsing if you want them. Remember
that Tcl commands are evaluated in two phases: parsing and execution. The substitution
rules apply only to the parsing phase. Once Tcl passes the words of a command to a com-
mand procedure for execution, the command procedure can do anything it likes with them.
Some commands will reparse their words, for example by passing them back to the Tcl
interpreter agairEval is an example of such a command, and it can be used to solve the
problems withrm above:

eval exec rm [glob *.0]
Eval concatenates all of its arguments with spaces in-between and then evaluates the
result as a Tcl script, at which point another round of parsing and evaluation occurs. In this
exampleeval receives three argumentgxec ”, “rm”, and “a.o0 b.o c.o ". It con-
catenates them to form the strirexéc rm a.o b.o c.o ". When this string is
parsed as a Tcl script it yields five words; each of the file names is passed tand

DRAFT (8/12/93): Distribution Restricted

36

Tcl Language Syntax

then to them program as a separate argument, so the files are all removed successfully.
See Section 7.5 for more details on this.

One final note. It is possible to use substitutions in very complex ways but | urge you
not to do so. Substitutions work best when used in very simple ways such as
“set a $b ". If you use a great many substitutions in a single command, and particularly
if you use lots of backslashes, your code is unlikely to be unreadable and it's also unlikely
to work reliably. In situations like these | suggest breaking up the offending command into
several commands that build up the arguments in simple stages. Tcl provides several com-
mands, such @rmat andlist , that should make this easy to do.

DRAFT (8/12/93): Distribution Restricted

Chapter 4
Variables

4.1

Tcl supports two kinds of variables: simple variables and associative arrays. This chapter
describes the basic Tcl commands for manipulating variables and arrays, and it also pro-
vides a more complete description of variable substitution. See Table 4.1 for a summary of
the commands discussed in this chapter.

Simple variables and the set command

A simple Tcl variable consists of two things: a name and a value. Both the name and the
value may be arbitrary strings of characters. For example, it is possible to have a variable
named kyz # 22 " or “March earnings: $100,472 ". In practice variable
names usually start with a letter and consist of a combination of letters, digits, and under-
scores, since that makes it easier to use variable substitution.
Variables may be created, read, and modified witls¢hecommand, which takes
either one or two arguments. The first argument is the name of a variable and the second, if
present, is a new value for the variable:
set a {Eggs: $2.18/dozen}
O Eggs: $2.18/dozen
seta
O Eggs: $2.18/dozen
seta 44
0 44

37

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

38

Variables

4.2

append varName value “alue ..?
Appends each of thealue arguments to variablearName, in order. If
varName doesn't exist then it is created with an empty value before
appending. The return value is the new valugapName .

incr varName ?increment ?
Addsincrement to the value of variablearName. Increment and
the old value offarName must both be integer strings (decimal,
hexadecimal, or octal). iicrement is omitted then it defaults tb. The
new value is stored wmarName as a decimal string and returned as the
result of the command.

setvarName “value ?
If value is specified, sets the value of varialdeName tovalue . In
any case the command returns the (new) value of the variable.

unset varName ?varName varName ..?
Deletes the variables given by terName arguments. Returns an empty
string.

Table 4.1. A summary of the basic commands for manipulating variables. Optional argume
indicated by enclosing them in question-marks.

The first command above creates a new varialilé doesn'’t already exist and sets its
value to the character sequenEg(s: $2.18/dozen ". The result of the command is
the new value of the variable. The seceatli command has only one argumentin this
form it simply returns the current value of the variable. The 88td command changes
the value of to 44 and returns that new value.

Although the final value dd looks like a decimal integer, it is stored as a character
string. Tcl variables can be used to represent many things, such as integers, floating-point
numbers, names, lists, and Tcl scripts, but they are always stored as strings. This use of a
single representation for all values allows different values to be manipulated in the same
way and communicated easily.

Tcl variables are created automatically when they are assigned values. Variables
don'’t have types so there is ho need for declarations.

Arrays

In addition to simple variables Tcl also providesays An array is a collection afle-

ments each of which is a variable with its own name and value. The name of an array ele-
ment has two parts: the name of the array and the name of the element within that array.
Both array names and element names may be arbitrary strings. For this reason Tcl arrays

DRAFT (8/12/93): Distribution Restricted

4.3 Variable substitution 39

4.3

are sometimes callexksociative array$o distinguish them from arrays in other lan-
guages where the element names must be integers.

Array elements are referenced using notationdémings(January) where the
array namedarnings in this case) is followed by the element name in parentheses
(January in this case). Arrays may be used anywhere that simple variables may be used,
such as in theet command:

set earnings(January) 87966
0 87966
set earnings(February) 95400
0 95400
set earnings(January)
0 87966
The first command creates an array nasadings |, if it doesn't already exist. Then it
creates an elemedanuary within the array, if it doesn’t already exist, and assigns it the
value87966 . The second command assigns a value t&éeuary element of the
array, and the third command returns the value ojdmeiary element.

Variable substitution

Chapter 3 introduced the use$shotation for substituting variable values into Tcl
commands. This section describes the mechanism in more detail.

Variable substitution is triggered by the presence of an ung8athdracter in a Tcl
command. The characters following thare treated as a variable name, andthad
name are replaced in the word by the value of the variable. Tcl provides three forms of
variable substitution. So far you have seen only the simplest form, which is used like this:

expr $a+2
In this form the$ is followed by a variable name consisting of letters, digits, and under-
scores. The first character that is not a letter or digit or undersedna the example)
terminates the name.

The second form of variable substitution allows array elements to be substituted. This
form is like the first one except that the variable name is followed immediately by an ele-
ment name enclosed in parentheses. Variable, command, and backslash substitutions are
performed on the element name in the same way as a command word in double-quotes,
and spaces in the element name are treated as part of the name rather than as word separa-
tors. For example, consider the following script:

set yearTotal O
foreach month {Jan Feb Mar Apr May Jun Jul Aug Sep \

Oct Nov Dec} {
set yearTotal [expr $yearTotal+$earnings($month)]

DRAFT (8/12/93): Distribution Restricted

40

Variables

Note:

4.4

In theexpr command $earnings($month) " is replaced with the value of an ele-
ment of the arragarnings . The element’s name is given by the value oftioath
variable, which varies from iteration to iteration.

The last form of substitution is used for simple variables in places where the variable
name is followed by a letter or number or underscore. For example, suppose that you wish
to pass a value likel’5m” to a command as an argument but the number is in a variable
size (in Tk you might do this to specify a size in millimeters). If you try to substitute the
variable value with a form like$sizem ” then Tcl will treat themas part of the variable
name. To get around this problem you can enclose the variable name in braces as in the
following command:

.canvas configure -width ${size}m
You can also use braces to specify variable names containing characters other than letters
or numbers or underscores.
Braces can only be used to delimit simple variables. However, they shouldnt be needed
for arrays since the parentheses already indicate where the variable name ends.

Tcl's variable substitution mechanism is only intended to handle the most common
situations; there exist scenarios where none of the above forms of substitution achieves the
desired effect. More complicated situations can be handled with a sequence of commands.
For example, théormat command can be used to generate a variable name of almost
any imaginable formset can be used to read or write the variable with that name, and
command substitution can be used to substitute the value of the variable into other com-
mands.

Removing variables: unset

Theunset command destroys variables. It takes any number of arguments, each of
which is a variable name, and removes all of the variables. Future attempts to read the
variables will result in errors just as if the variables had never been set in the first place.
The arguments tonset may be either simple variables, elements of arrays, or whole
arrays, as in the following example:

unset a earnings(January) b

In this case the variablesandb are removed entirely and tdanuary element of the
earnings array is removed. Thearnings array continues to exist after theset
command. Ifa orb is an array then all of the elements of that array are removed along
with the array itself.

DRAFT (8/12/93): Distribution Restricted

4.5 Multi-dimensional arrays 41

4.5 Multi-dimensional arrays
Tcl only implements one-dimensional arrays, but multi-dimensional arrays can be simu-
lated by concatenating multiple indices into a single element name. The program below
simulates a two-dimensional array indexed with integers:
set matrix(1,1) 140
set matrix(1,2) 218
set matrix(1,3) 84
setil
setj2
set cell $matrix($i,$j)
0 218
Matrix is an array with three elements whose nameslate™and “1,2 " and “1,3 ".
However, the array behaves just as if it were a two-dimensional array; in particular, vari-
able substitution occurs while scanning the element name @xgiie command, so that
the values of andj get combined into an appropriate element name.
4.6 The incr and append commands

Incr andappend provide simple ways to change the value of a varidide. takes
two arguments, which are the name of a variable and an integer; it adds the integer to the
variable’s value, stores the result back into the variable as a decimal string, and returns the
variable’s new value as result:
setx 43
incr x 12
0 55
The number can have either a positive or negative value. It can also be omitted, in which
case it defaults tt:
set x 43
INCr X
0 44
Both the variable’s original value and the increment must be integer strings, either in deci-
mal, octal (indicated by a leadig, or hexadecimal (indicated by a leadthg).

Theappend command adds text to the end of a variable. It takes two arguments,
which are the name of the variable and the new text to add. It appends the new text to the
variable and returns the variable’s new value. The following exampleappesd to
compute a table of squares:

DRAFT (8/12/93): Distribution Restricted

42

Variables

4.7

set msg "™
foreachi{12 34 5}{
append msg "$i squared is [expr $i*$i]\n"

set msg

0 1squaredisl1

2 squared is 4

3 squared is 9

4 squared is 16

5 squared is 25

Neitherincr norappend adds any new functionality to Tcl, since the effects of

both of these commands can be achieved in other ways. However, they provide simple
ways to do common operations. In additiappend is implemented in a fashion that
avoids character copying. If you need to construct a very large string incrementally from
pieces it will be much more efficient to use a command like

append x $piece
instead of a command like
set x "xpiece"”

Preview of other variable facilities

Tcl provides a number of other commands for manipulating variables. These com-
mands will be introduced in full after you've learned more about the Tcl language, but this
section contains a short preview of some of the facilities.

Thetrace command can be used to monitor a variable so that a Tcl script gets
invoked whenever the variable is set or read or unset. Variable tracing is sometimes useful
during debugging, and it allows you to create read-only variables. You can also use traces
for propagationso that, for example, a database or screen display gets updated whenever a
variable changes value. Variable tracing is discussed in Section 13.4.

Thearray command can be used to find out the names of all the elements in an
array and to step through them one at a time (see Section 13.1). It's possible to find out
what variables exist using thifo command (see Section 13.2).

Theglobal andupvar commands can be used by a procedure to access variables
other than its own local variables. These commands are discussed in Chapter 8.

DRAFT (8/12/93): Distribution Restricted

Chapter 5
EXpressons

5.1

Expressions combine values @erand3} with operatorsto produce new values. For
example, the expressioA+2” contains two operands4” and “2”, and one operator,
“+" it evaluates t®. Many Tcl commands expect one or more of their arguments to be
expressions. The simplest such commareks , which just evaluates its arguments as
an expression and returns the result as a string:

expr (8+4) * 6.2

0 744

Another example i , which evaluates its first argument as an expression and uses the
result to determine whether or not to evaluate its second argument as a Tcl script:

if $x<2 then {set x 2}
This chapter uses tlexpr command for all of its examples, but the same syntax, substi-
tution, and evaluation rules apply to all other uses of expressions too. See Table 5.1 for a
summary of thexpr command.

Numeric operands

Expression operands are normally integers or real numbers. Integers are usually specified
in decimal, but if the first character is 0 (zero) then the number is read in octal (base 8) and
if the first two characters afx then the number is read in hexadecimal (base 16). For
example 335 is a decimal numbe®517 is an octal number with the same value, and

0x14f is a hexadecimal number with the same va@@. is not a valid integer: the lead-

ing 0 causes the number to be read in octaBbistnot a valid octal digit. Real operands

43

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

44

Expressions

Note:

5.2

expr arg “argarg ..?
Concatenates all therg values together (with spaces in between),
evaluates the result as an expression, and returns a string correspondi
the expression’s value.

Table 5.1. A summary of thexpr command.

may be specified using most of the forms defined for ANSI C, including the following
examples:

2.1

7.91e+16

6E4

3.

These same forms are allowable not just in expressions but anywhere in Tcl that an integer
or real value is required.

Expression operands can also be non-numeric strings. String operands are discussed
in Section 5.5.

Operators and precedence

521

Note:

Table 5.2 lists all of the operators supported in Tcl expressions; they are similar to the
operators for expressions in ANSI C. Horizontal lines separate groups of operators with
the same precedence, and operators with higher precedence appear in the table above
operators with lower precedence. For exampi2<7 evaluates t® because the oper-
ator has higher precedence tkarkexcept in the simplest and most obvious cases you
should use parentheses to indicate the way operators should be grouped; this will prevent
errors by you or by others who modify your programs.

Operators with the same precedence group from left to right. For exdidple3
is the same a40-4)-3 ; it evaluates t@.

Arithmetic operators

Tcl expressions support the arithmetic operators, *, / , and% The- operator may be
used either as a binary operator for subtraction, 42in or as a unary operator for nega-
tion, as in(6*$i) . The/ operator truncates its result to an integer value if both oper-
ands are integer%ois the modulus operator: its result is the remainder when its first
operand is divided by the second. Both of the operandérmust be integers.

The / and % operators have a more consistent behavior in Tcl than in ANSI C. In Tcl the
remainder is always positive and has an absolute value less than the absolute value of the

DRAFT (8/12/93): Distribution Restricted

5.2 Operators and precedence

45

Syntax Result Operand Types
-a Negative ofa int, float
la Logical NOT: 1 ifa is zero, O otherwise int, float
~a Bit-wise complement cd int
a*b Multiply a andb int, float
alb Divide a by b int, float
a% Remainder after dividing by b int
atb Add a andb int, float
a-b Subtractb froma int, float
a<<b Left-shifta by b bits int
a>>b Arithmetic right-shifta by b bits int
a<b 1if a is less tha, O otherwise int, float, string
a>b 1if a is greater thab, O otherwise int, float, string
a<=b 1if a is less than or equal Ip O otherwise int, float, string
a>=b 1if a is greater than or equallbg O otherwise| int, float, string
a==b 1ifais equal td, O otherwise int, float, string
al=b 1if a is not equal td, O otherwise int, float, string
a&b Bit-wise AND ofa andb int
a"b Bit-wise exclusive OR o& andb int
alb Bit-wise OR ofa andb int
a&é&b Logical AND: 1 if botha andb are non-zero, | int, float
0 otherwise
all b Logical OR: 1 if eithem is non-zero ob is int, float
non-zero, 0 otherwise
a?b: ¢ | Choice: ifa is non-zero theb, elsec a: int, float

Table 5.2. Summary of the operators allowed in Tcl expressions. These operators have the
behavior as in ANSI C except that some of the operators allow string operands. Groups of «
between horizontal lines have the same precedence; higher groups have higher precedenc

divisor. ANSI C guarantees only the second property: In both ANSI C and Tcl the quotient
will always have the property that/¢)*y + x%y isx., for allx andy.

DRAFT (8/12/93): Distribution Restricted

46

Expressions

522

523

524

525

Relational operators

The operators (less than)<= (less than or equab=(greater than or equah, (greater
than),== (equal), and= (not equal) are used for comparing two values. Each operator
produces a result df (true) if its operands meet the condition &dalse) if they don't.

Logical operators

The logical operator&&, || , and! are typically used for combining the results of rela-
tional operators, as in the expression
($x > 4) && ($x < 10)

Each operator produce®ar 1 result.&& (logical “and”) produces & result if both its
operands are non-zelp, (logical “or”) produces 4 result if either of its operands is
non-zero, andl (“not”) produces d result if its single operand is zero.

In Tcl, as in ANSI C, a zero value is treated as false and anything other than zero is
treated as true. Whenever Tcl generates a true/false value it feetsue and for false.

Bitwise operators

Tcl provides six operators that manipulate the individual bits of inte®gfs”, <<, >>,
and~. These operators require their operands to be integer&, Theand” operators
perform bitwise and, or, and exclusive or: each bit of the result is generated by applying
the given operation to the corresponding bits of the left and right operands. Né&te that
and| do not always produce the same resuk&snd|| :
expr 8&&2
o1
expr 8&2
g o
The operators< and>> use the right operand as a shift count and produce a result
consisting of the left operand shifted left or right by that number of bits. During left shifts
zeros are shifted into the low-order bits. Right shifting is always “arithmetic right shift”,
meaning that it shifts in zeroes for positive numbers and ones for negative numbers. This
behavior is different from right-shifting in ANSI C, which is machine-dependent.
The~ operand (“ones complement”) takes only a single operand and produces a
result whose bits are the opposite of those in the operand: zeroes replace ones and vice
versa.

Choice operator

The ternary operaté@: may be used to select one of two results:
expr {($a < $b) ? $a : $b}

DRAFT (8/12/93): Distribution Restricted

5.3 Math functions 47

5.3

This expression returns the smallefsafand$b. The choice operator checks the value of

its first operand for truth or falsehood. If it is true (non-zero) then the argument following
the? is evaluated and becomes the result; if the first operand is false (zero) then the third
operand is evaluated and becomes the result. Only one of the second and third arguments
is evaluated.

Math functions

5.4

Tcl expressions support a number of mathematical functions ssan andexp . Math
functions are invoked using standard functional notation:

expr 2*sin($x)

expr hypot($x, $y) + $z
The arguments to math functions may be arbitrary expressions, and multiple arguments
are separated by commas. See Table 5.3 for a list of all the built-in functions.

Substitutions

Substitutions can occur in two ways for expression operands. The first way is through the
normal Tcl parser mechanisms, as in the following command:

expr 2*sin($x)
In this case the Tcl parser substitutes the value of variabédore executing the com-
mand, so the first argumentdgpr will have a value such ag*sin(0.8) ". The sec-

ond way is through the expression evaluator, which performs an additional round of
variable and command substitution on the expression while evaluating it. For example,
consider the command:

expr {2*sin($x)}
In this case the braces prevent the Tcl parser from substituting the valusoadhe argu-
ment toexpr is “2*sin($x) ". When the expression evaluator encounters the dollar-

sign it performs variable substitution itself, using the value of variabkethe argument
tosin .

Having two layers of substitution doesn’t usually make any difference fexgre
command, but it is vitally important for other commands Vikéle that evaluate an
expression repeately and expect to get different results each time. For example, consider
the following script that raises a base to a power:

set result 1

while {$power>0} {
set result [expr $result*$base]
incr power -1

DRAFT (8/12/93): Distribution Restricted

48

Expressions

Function Result

abs(x) Absolute value ok.

acos(x) Arc cosine ofx, in the range 0 toc
asin(x) Arc sine ofx, in the range™?2 to1v2.
atan(x) Arc tangent ok, in the range2 to1v2.
atan2(x,y) Arc tangent ok/y, in the rangem2 to1v2.
ceil(x) Smallest integer not less than

cos(x) Cosine ofx (x in radians).

cosh(x) Hyperbolic cosine ok.

double(i) Real value equal to integer

exp(x) eraised to the powex.

floor(x) Largest integer not greater than
fmod(x, y) Floating-point remainder of divided byy.
hypot(X,) Square root ofi(? +y?).

int(x) Integer value produced by truncatiag
log(x) Natural logarithm ok.

log10(x) Base 10 logarithm of.

pow(X, y) X raised to the powsr.

round(x) Integer value produced by rounding
sin(x) Sine ofx (x in radians).

sinh(x) Hyperbolic sine ok.

sqrt(x) Square root oxX.

tan(x) Tangent ok (x in radians).

tanh(x) Hyperbolic tangent of.

Table 5.3. The mathematical functions supported in Tcl expressions. In most cases the fun
have the same behavior as the ANSI C library procedures with the same names.

DRAFT (8/12/93): Distribution Restricted

The expression$power>0 " gets evaluated byhile at the beginning of each iteration

to decide whether or not to terminate the loop. It is essential that the expression evaluator
use a new value giower each time. If the variable substitution were performed while
parsing thevhile command, for examplevhile $power>0
argument would be a constant expression such=®" either the loop would never exe-
cute or it would execute forever.

...", thenwhile s

5.5 String manipulation 49

Note:

5.5

When the expression evaluator performs variable or command substitution the value
substituted must be an integer or real number (or a string, as described below). It cannot
be an arbitrary expression.

String manipulation

5.6

Unlike expressions in ANSI C, Tcl expressions allow som simple string operations, as in
the following command:

if {$x == "New York"} {

}
In this example the expression evaluator compares the value of variabilee string
“New York " using string comparison; the body of tifie will be executed if they are
identical. In order to specify a string operand you must either enclose it in quotes or braces
or use variable or command substitution. It is important that the expression in the above
example is enclosed in braces so that the expression evaluator substitutes thexyd@ue of
the braces are left out then the argumeirit tavill be a string like

Los Angeles == "New York"

The expression parser will not be able to patses® (it isn’t a number, it doesn’t make
sense as a function name, and it can't be interpreted as a string because it isn't delimited)
S0 a syntax error will occur.

If a string is enclosed in quotes then the expression evaluator performs command,
variable, and backslash substitution on the characters between the quotes. If a string is
enclosed in braces then no substitutions are performed. Braces nest for strings in expres-
sions in the same way that they nest for words of a command.

The only operators that allow string operands<are, <=, >=, ==, and !=. For all
other operators the operands must be numeric. For operatorstfikestrings are com-
pared lexicographically using the systesticmp library function; the sorting order
may vary from system to system.

Types and conversions

Tcl evaluates expressions numerically whenever possible. String operations are only per-
formed for the relational operators and only if one or both of the operands doesnt make
sense as a number. Most operators permit either integer or real operands but a few, such as
<< and&, allow only integers.

If the operands for an operator have different types then Tcl automatically converts
one of them to the type of the other. If one operand is an integer and the other is a real then
the integer operand is converted to real. If one operand is a hon-numeric string and the
other is an integer or real then the integer or real operand is converted to a string. The

DRAFT (8/12/93): Distribution Restricted

50

Expressions

5.7

result of an operation always has the same type as the operands except for relational oper-
ators like<, which always produce 0/1 integer results. You can use the math function
double to explicitly promote an integer to a real, and andround to convert a real

value back to integer by truncation or rounding.

Precision

Note:

During expression evaluation Tcl represents integers internally with the Gtype

which provides at least 32 bits of precision on most machines. Real numbers are repre-
sented with with the C typgouble , which is usually represented with 64-bit values
(about 15 decimal digits of precision) using the IEEE Floating Point Standard.

Numbers are kept in internal form throughout the evaluation of an expression and are
only converted back to strings when necessary, such asexpenreturns its result. Inte-
gers are converted to signed decimal strings without any loss of precision. When a real
value is converted to a string only six significant digits are retained by default:

expr1.11111111 +1.11111111
0 2.22222
If you would like more significant digits to be retained when real values are converted to
strings you can set thel_precision global variable with the desired number of sig-
nificant digits:
set tcl_precision 12
expr1.11111111 +1.11111111
0 2.22222222
Thetcl_precision variable is used not just for tkepr command but anywhere
that a Tcl application converts a real number to a sting.

If you setcl_precision to 17 on a machine that uses IEEE floating point, you will
guarantee that string conversions do not lose information: if an expression result is
converted to a string and then later used in a different expression, the internal form after
conversion back from the string will be identical to the internal form before converting to
the string.

DRAFT (8/12/93): Distribution Restricted

Chapter 6
Lists

6.1

Lists are used in Tcl to deal with collections of things, such as all the users in a group or all
the files in a directory or all the options for a widget. Lists allow you to collect together

any number of values in one place, pass around the collection as a single entity, and later
get the component values back again. A list is an ordered collectienoéntavhere

each element can have any string value, such as a number, a person’s name, the name of a
window, or a word of a Tcl command. Lists are represented as strings with a particular
structure; this means that you can store lists in variables, type them to commands, and nest
them as elements of other lists.

This chapter describes the structure of lists and presents a dozen basic commands for
manipulating lists. The commands perform operations like creating lists, inserting and
extracting elements, and searching for particular elements (see Table 6.1 for a summary).
There are other Tcl commands besides those described in this chapter that take lists as
arguments or return them as results; these other commands will be described in later chap-
ters.

Basic list structure and the lindex command

In its simplest form a list is a string containing any number of elements separated by
spaces or tabs. For example, the string

John Anne Mary Jim

51

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

52

Lists

concat list Aist .7
Joins multiple lists into a single list (each element of dath becomes an
element of the result list) and returns the new list.

join list PoinString ?
Concatenates list elements together yithString as separator and
returns the result.

lappend varName value “value ..?
Appends eackialue to variablevarName as a list element and returns t
new value of the variable. Creates the variable if it doesn' already exis

lindex list index
Returns théendex 'th element fronlist

linsert list index value value .7
Returns a new list formed by inserting all of fadue arguments as list
elements beformdex 'th element oflist

list ~value alue .7
Returns a list whose elements arevalklie arguments.

llength list
Returns the number of elementdigt

Irange list first last
Returns a list consisting of elemefitst throughlast of list . If
last isend then it selects all elements up to the end of the list.

Ireplace list first last value value 2
Returns a new list formed by replacing elemémss throughlast of
list with zero or more new elements, each formed fromvahes argu-
ment.

Isearch ?exact ? ?2glob ? ?2regexp ?list pattern
Returns the index of the first elementigh that matchepattern or-1
if none. The optional switch selects a pattern-matching technique (defa
-glob).

Isort ?-ascii ? 2integer ? ?2real ? 2command command?\
?-increasing ? ?2decreasing ?list
Returns a new list formed by sorting the elementsbf . The switches
determine the comparison function and sorted order (defasiti
-increasing).

split string ?splitChars ?
Returns a list formed by splittiregring at instances afplitChars and
turning the characters between these instances into list elements.

Table 6.1. A summary of the list-related commands in Tcl.

DRAFT (8/12/93): Distribution Restricted

6.2 Creating lists: concat, list, and llength 53

is a list with four elements. There can be any number of elements in a list, and each ele-
ment can be an arbitrary string. In the simple form above, elements cannot contain spaces,
but there is additional list syntax that allows spaces within elements (see below).

Thelindex command extracts an element from a list:

lindex {John Anne Mary Jim} 1
O Anne
Lindex takes two arguments, a list and an index, and returns the selected element of the
list. An index of0O corresponds to the first element of the listorresponds to the second
element, and so on. If the index is outside the range of the list then an empty string is
returned.

When a list is entered in a Tcl command the list is usually enclosed in braces, as in
the above example. The braces are not part of the list; they are needed on the command
line to pass the entire list to the command as a single word. When lists are stored in vari-
ables or printed out, there are no braces around them:

set x {John Anne Mary Jim}
0 John Anne Mary Jim

Curly braces and backslashes within list elements are handled by the list commands in
the same way that the Tcl command parser treats them in words. This means that you can
enclose a list element in braces if it contains spaces, and you can use backslash substitu-
tion to get special characters such as braces into list elements. Braces are often used to nest
lists within lists, as in the following example:

lindex{ab{cde}f}2
O cde
In this case element 2 of the list is itself a list with three elements. There is no limit on how
deeply lists may be nested.

6.2 Creating lists: concat, list, and llength

Tcl provides two commands that combine strings together to producedistat and
list . Each of these commands accepts an arbitrary number of arguments, and each pro-
duces a list as a result. However, they differ in the way they combine their arguments. The
concat command takes one or more lists as arguments and joins all of the elements of
the argument lists together into a single large list:
concat{abc}{de}f{ghi}

O abcdefghi
Concat expects its arguments to have proper list structure; if the arguments are not well-
formed lists then the result may not be a well-formed list either. In fact, aiahaht
does is to concatenate its argument strings into one large string with space characters
between the arguments. The same effecbasat can be achieved using double-quotes:

DRAFT (8/12/93): Distribution Restricted

54

Lists

6.3

setx{ab c}
sety{d e}
set z [concat $x $y]

0 abcde
setz "$x $y"
0O abcde
Thelist command joins its arguments together so that each argument becomes a
distinct element of the resulting list:
list{abc}{de}f{ghi}
O {abc}{de}f{ghi}
In this case, the result list contains only four elementsli$he command will always
produce a list with proper structure, regardless of the structure of its amuments (it adds
braces or backslashes as needed), anlihttex command can always be used to
extract the original elements of a list created Vigth . The arguments tiist need not
themselves be well-formed lists.
Thellength command returns the number of elements in a list:
llength {{abc}{de}f{ghi}}
0o 4
llength a
o1
llength {}
o o
As you can see from the examples, a simple string #ikés“a proper list with one ele-
ment and an empty string is a proper list with zero elements.

Modifying lists: linsert, Ireplace, Irange, and lappend

Thelinsert command forms a new list by adding one or more elements to an existing
list:
setx{ab{cd}e}
O ab{cd}e
linsert $x 2 X Y Z
0 abXYZzZ{cdie
linsert $x 0 {X Y} Z
O {XY}Zab{cd}e
Linsert takes three or more arguments. The first is a list, the second is the index of an
element within that list, and the third and additional arguments are new elements to insert
into the list. The return value frolimsert is a list formed by inserting the new ele-
ments just before the element indicated by the index. If the index is zero then the new ele-

DRAFT (8/12/93): Distribution Restricted

6.3 Modifying lists: linsert, Ireplace, Irange, and lappend 55

ments go at the beginning of the list; if it is one then the new elements go after the first
element in the old list; and so on. If the index is greater than or equal to the number of ele-
ments in the original list then the new elements are inserted at the end of the list.
Thelreplace command deletes elements from a list and optionally adds new ele-
ments in their place. It takes three or more arguments. The first argument is a list and the
second and third arguments give the indices of the first and last elements to be deleted. If
only three arguments are specified then the result is a new list produced by deleting the
given range of elements from the original list:
Ireplace {ab{cd}e}33
0 ab{cd}
If additional arguments are specifiedreplace as in the example below, then they
are inserted into the list in place of the elements that were deleted.
Ireplace{ab{cd}e}12{WX}Y Z
O a{wWXx}Yyze
Thelrange command extracts a range of elements from a list. It takes as arguments
a list and two indices and it returns a new list consisting of the range of elements that lie
between the two indices (inclusive):
setx {a b {cd}e}
O ab{cd}e
Irange $x 1 3
O b{cd}e
Irange $x 0 1
0 ab
Thelappend command provides an efficient way to append new elements to a list
stored in a variable. It takes as arguments the name of a variable and any number of addi-
tional arguments. Each of the additional arguments is appended to the variable’s value as a
new list element andppend returns the variable’s new value:
setx {a b {c d} e}
O ab{cd}e
lappend x XX {YY ZZ}
0O ab{cd}eXX{YY ZZ}
set X
O ab{cd}e XX{YY zz}
Lappend is similar toappend except that it enforces proper list structure. As with
append, it isn’t strictly necessary. For example, the command
lappend x $a $b $c
could be written instead as

set x "$x [list $a $b $c]"

DRAFT (8/12/93): Distribution Restricted

56

Lists

However, as witlappend , lappend is implemented in a way that avoids string copies.
For large lists this can make a big difference in performance.

6.4 Searching lists: Isearch
Thelsearch command searches a list for an element with a particular value. It takes
two arguments, the first of which is a list and second of which is a pattern:
set x {John Anne Mary Jim}
Isearch $x Mary
g 2
Isearch $x Phil
o -1
Lsearch returns the index of the first element in the list that matches the pattelrnifor
there was no matching element.
One of three different pattern matching techniques can be selected by specifying one
of the switchesexact ,-glob , and-regexp before the list argument:
Isearch -glob $x A*
0o 1
The-glob switch causes matching to occur with the rules osthierg match com-
mand described in Section 10.1-r&gexp switch causes matching to occur with regu-
lar expression rules as described in Section 10.2;exaatt insists on an exact match
only. If no switch is specified theglob is assumed by default.
6.5 Sorting lists: Isort

Thelsort command takes a list as argument and returns a new list with the same ele-
ments, but sorted in increasing lexicographic order:
Isort {John Anne Mary Jim}
O Anne Jim John Mary
You can precede the list with any of several switches to control the sort. For example,
-decreasing specifies that the result should have the “largest” element first and
-integer specifies that the elements should be treated as integers and sorted according
to integer value:
Isort -decreasing {John Anne Mary Jim}
0 Mary John Jim Anne
Isort {10 1 2}
0 1102

DRAFT (8/12/93): Distribution Restricted

6.6 Converting between strings and lists: split and join 57

6.6

Isort -integer {10 1 2}
0o 1210

You can use thecommand option to specify your own sorting function (see the reference
documentation for details).

Converting between strings and lists: split and join

Thesplit command breaks up a string into component pieces so that you can process
the pieces independently. It creates a list whose elements are the pieces, so that you can
use any of the list commands to process the pieces. For example, suppose a variable con-
tains a UNIX file name with components separated by slashes, and you want to convert it
to a list with one element for each component;

set x a/b/c

set y /usr/include/sys/types.h
split $x /

O abc
split Sy /
O {} usrinclude sys types.h
The first argument teplit is the string to be split up and the second argument contains
one or moresplit charactersSplit locates all instances of any of the split characters in
the string. It then creates a list whose elements consist of the substrings between the split
characters. The ends of the string are also treated as split characters. If there are consecu-
tive split characters or if the string starts or ends with a split character as in the second
example, then empty elements are generated in the result list. The split characters them-
selves are discarded. Several split characters can be specified, as in the following example:
split xbaybz ab
O x{}yz
If an empty string is specified for the split characters then each character of the string is
made into a separate list element:
split {a b c} {}
O a{}b{}c
Thejoin command is approximately the inversesplit . It concatenates list ele-
ments together with a given separator string between them:
join{ {}usrinclude sys types.h} /
O /usrf/include/sys/types.h
set x {24 112 5}
expr [join $x +]
0 141

DRAFT (8/12/93): Distribution Restricted

58

Lists

6.7

Join takes two arguments: a list and a separator string. It extracts all of the elements from
the list and concatenates them together with the separator string between each pair of ele-
ments. The separator string can contain any number of characters, including zero. In the
first example above a file name is generated by joining the list elementg With the
second example a Tcl expression is generated by joining the list elements’with “

One of the most common uses $ptit andjoin is for dealing with file names as
shown above. Another common use is for splitting up text into lines by using newline as
the split character.

Lists and commands

There is a very important relationship between lists and commands in Tcl. Any proper list
is also a well-formed Tcl command. If a list is evaluated as a Tcl script then it will consist
of a single command whose words are the list elements. In other words, the Tcl parser will
perform no substitutions whatsoever: it will simply extract the list elements with each ele-
ment becoming one word of the command. This property is very important because it
allows you to generate Tcl commands that are guaranteed to parse in a particular fashion
even if some of the command’s words contain special characters like sp&ces or

For example, suppose you are creating a button widget in Tk, and when the user
clicks on the widget you would like to reset a variable to a particular value. You might cre-
ate such a widget with a command like this:

button .b -text "Reset" -command {set x 0}
The Tcl script s5et x 0 " will be evaluated whenever the user clicks on the button. Now
suppose that the value to be stored in the variable is not constant, but instead is computed
just before théutton command and must be taken from a varighityalue . Fur-
thermore, suppose thiaitValue could contain any string whatsoever. You might
rewrite the command as
button .b -text "Reset" -command {set x $initValue}

The script set x $initValue " will be evaluated when the user clicks on the button.
However, this will use the value ofitValue at the time the user clicks on the button,
which may not be the same as the value when the button was created. For example, the
same variable might be used to create several buttons, each with a different intended reset
value.

To solve this problem you must generate a Tcl command that contairsdubef the
initValue variable, not its name, and use this as part ofdhiamand option for the
button command. Unfortunately, a simple approach like

button .b -text "Reset" -command "set x $initValue"

will not work in general. If the value d@fitValue is something simple liké7 then
this will work fine: the resulting command will beét x 47 ", which will produce the
desired result. However, whatiifitValue contains New York "? In this case the

DRAFT (8/12/93): Distribution Restricted

6.7 Lists and commands 59

resulting command will beset x New York ", which has four wordsset will gener-
ate an error because there are too many arguments. Even worse invt\édliie con-
tains special characters lik™or “["? These characters could cause unwanted
substitutions to occur when the command is evaluated.
The only solution that is guaranteed to work for any valtuiritfalue is to use

list commands to generate the command, as in the following example:

button .b -text "Reset" -command [list set x $initValue]
The result of théist command is a Tcl command whose first word wilsbe , whose
second word will be, and whose third word will be the valueioitValue . The com-
mand will always produce the desired result: whatever value is staretVmlue at
the timebutton is invoked will be stored iR when the widget is invoked. For example,
suppose that the valueioftValue is “New York ”. The command generated by
list will be “set x {New York} ", which will parse and execute correctly. Any of
the Tcl special characters will also be handled correctlisby :

set initValue {Earnings: $1410.13}

list set x $initValue

O setx {Earnings: $1410.13}
set initValue "{ \\"
list set x $initValue
O setx\{\\

DRAFT (8/12/93): Distribution Restricted

60

Lists

DRAFT (8/12/93): Distribution Restricted

Chapter 7
Control Flow

7.1

This chapter describes the Tcl commands for controlling the flow of execution in a script.
Tcl's control flow commands are similar to the control flow statements in the C program-
ming language ancsh , includingif , while , for ,foreach ,switch , andeval .

Table 7.1 summarizes these commands.

The if command

Theif command evaluates an expression, tests its result, and conditionally executes a
script based on the result. For example, consider the following command, which sets vari-
ablex to zero if it was previously negative:

if {$x < 0} {
setx 0
}

In this caseéf receives two arguments. The first is an expression and the second is a Tcl
script. The expression can have any of the forms for expressions described in Chapter 5.
Theif command evaluates the expression and tests the result; if it is non-zefo then
evaluates the Tcl script. If the value is zero tifierreturns without taking any further
action.

If commands can also include one or nelseif clauses with additional tests
and scripts, plus a finalse clause with a script to evaluate if no test succeeds:

61

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

62

Control Flow

break
Terminates the innermost nested looping command.

continue
Terminates the current iteration of the innermost looping command and
goes on to the next iteration of that command.

eval arg ?argarg ..?

Concatenates all of treg 's with separator spaces, then evaluates the
result as a Tcl script and returns its result.

for init test reinit body
Executesnit as a Tcl script. Then evaluatest as an expression. If it
evaluates to non-zero then execltedy as a Tcl script, executesinit
as a Tcl script, and re-evaluatest as an expression. Repeats ueti
evaluates to zero. Returns an empty string.

foreach varName list body
For each element &ift , in order, set variablearName to that value
and executbody as a Tcl script. Returns an empty strinigt must be a
valid Tcl list.

if testl “2hen ?bodyl “?elseif test2 2hen ?body2 elseif 2N
2else ? “bodyn ?
Evaluategest as an expression. If its value is non-zero then executes
bodyl as a Tcl script and returns its value . Otherwise evaltedts as
an expression; if its value is non-zero then exedutdg?2 as a script and
returns its value. If no test succeeds then exebgitdygn as a Tcl script
and returns its result.

source fileName
Reads the file whose namdilsName and evaluates its contents as a T
script. Returns the result of the script.

switch ?options ? string pattern body ?pattern body 72

switch ?options ? string { pattern body Ppattern body .7}
Matchesstring against eacpattern in order until a match is found,
then executes thHeody corresponding to the matchipgttern . If the
lastpattern isdefault then it matches anything. Returns the result
thebody executed, or an empty string if no pattern matobpsions
may be any ofexact ,-glob ,-regexp ,or-- .

while test body
Evaluategest as an expression. If its value is non-zero then executes
body as a Tcl script and re-evaluatest . Repeats unttiest evaluates

to zero. Returns an empty string.

Table 7.1. A summary of the Tcl commands for controlling the flow of execution.

DRAFT (8/12/93): Distribution Restricted

7.2 Looping commands: while, for, and foreach 63

7.2

if {$x < 0} {

} elseif.{$x ==0}{
} elseif'{$x ==1}{
} else“{.

}

This command will execute one of the four scripts indicated by “...” depending on the
value ofx. The result of the command will be the result of whichever script is executed. If
anif command has nelse clause and none of its tests succeeds then it returns an
empty string.

The argumenglse is an optional “noise word”. It is also legal to hakren noise
words after any of the expressions to test. 8leeif ~ words are not optional: they are
needed to distinguistiseif clauses fronelse clauses.

Remember that the expressions and scripté faand other control flow commands
are parsed using the same approach as all arguments to all Tcl commands. It is almost
always a good idea to enclose the expressions and scripts in braces so that substitutions are
deferred until the the command is executed. Furthermore, each open brace must be on the
same line as the preceding word or else the newline will be treated as a command separa-
tor. The following script is parsed as two commands, which probably isn't the desired
result:

if {$x < 0}
{

setx 0

Looping commands: while, for, and foreach

Tcl provides three commands for loopimghile , for , andforeach . While andfor

are similar to the corresponding C statementsfargdich is similar to the correspond-

ing feature of thesh shell. Each of these commands executes a nested script over and
over again; they differ in the kinds of setup they do before each iteration and in the ways
they decide to terminate the loop.

Thewhile command takes two arguments: an expression and a Tcl script. It evalu-
ates the expression and if the result is non-zero then it executes the Tcl script. This process
repeats over and over until the expression evaluates to zero, at which pwini¢he
command terminates and returns an empty string. For example, the script below copies a
list from variableb to variablea, reversing the order of the elements along the way:

DRAFT (8/12/93): Distribution Restricted

Control Flow

sethb ™
set i [expr [llength $a] -1]
while {$i >= 0} {
lappend b [lindex $a $i]
incri-1
}

Thefor command is similar tavhile except that it provides more explicit loop
control. The program to reverse the elements of a list can be rewritterfarsiras fol-
lows:

setb ™
for {set i [expr [llength $a]-1]} {$i >= 0} {incr i -1} {
lappend b [lindex $a $i]

The first argument téor is an initialization script, the second is an expression that deter-
mines when to terminate the loop, the third is a reinitialization script, which is evaluated
after each execution of the loop body before evaluating the test again, and the fourth argu-
ment is a script that forms the body of the Idep. executes its first argument (the ini-
tialization script) as a Tcl command, then evaluates the expression. If the expression
evaluates to non-zero, théar executes the body followed by the reinitialization script
and re-evaluates the expression. It repeats this sequence over and over again until the
expression evaluates to zero. If the expression evaluates to zero on the first test then nei-
ther the body script nor the reinitialization script is ever executed wlike |, for
returns an empty string as result.

For andwhile are equivalent in that anything you can write using one command
you can also write using the other command. Howdeer, has the advantage of placing
all of the loop control information in one place where it is easy to see. Typically the initial-
ization, test, and re-initialization arguments are used to select a set of elements to operate
on (integer indices in the above example) and the body of the loop carries out the opera-
tions on the chosen elements. This clean separation between element selection and action
makesfor loops easier to understand and debug. Of course, there are some situations
where a clean separation between selection and action is not possible, and in these cases a
while loop may make more sense.

Theforeach command iterates over all of the elements of a list. For example, the
following script provides yet another implementation of list reversal:

setb™;

foreach i $a {
set b [linsert $b 0 $i]
}

Foreach takes three arguments. The first is the name of a variable, the second is a list,
and the third is a Tcl script that forms the body of the I6gpeach will execute the

body script once for each element of the list, in order. Before executing the body in each
iteration,foreach sets the variable to hold the next element of the list. Thus if vadable
has the valuefirst second third " in the above example, the body will be exe-

DRAFT (8/12/93): Distribution Restricted

7.3 Loop control: break and continue 65

cuted three times. In the first iteratiomvill have the valudirst , in the second iteration
it will have the valuesecond , and in the third iteration it will have the valiird . At

the end of the loop, b will have the valukifd second first "andi will have the
value ‘third . As with the other looping commandereach always returns an empty
string.

7.3 Loop control: break and continue

Tcl provides two commands that can be used to abort part or all of a looping command:
break andcontinue . These commands have the same behavior as the corresponding
statements in C. Neither takes any argumentsbidek command causes the innermost
enclosing looping command to terminate immediately. For example, suppose that in the
list reversal example above it is desired to stop as soon as an element giakto
found in the source list. In other words, the result list should consist of a reversal of only
those source elements up to (but not includingXz element. This can be accomplished
with break as follows:
setb™;
foreach i $a {
if {$i == "ZZZ"} break
set b [linsert $b 0 $i]
}

Thecontinue command causes only the current iteration of the innermost loop to
be terminated; the loop continues with its next iteration. In the casgleilef , this means
skipping out of the body and re-evaluating the expression that determines when the loop
terminates; iffor loops, the re-initialization script is executed before re-evaluating the
termination condition. For example, the following program is another variant of the list
reversal example, whe®ZZ elements are simply skipped without copying them to the
result list:

setb"™;

foreach i $a {
if {$i == "ZZZ"} continue
set b [linsert $b 0 $i]

7.4 The switch command

Theswitch command tests a value against a number of patterns and executes one of
several Tcl scripts depending on which pattern matched. The same effeditichs can
be achieved with aii command that has lots efseif clauses, butwitch provides
a more compact encoding. Tcbwitch command has two forms; here is an example of
the first form:

DRAFT (8/12/93): Distribution Restricted

66

Control Flow

switch $x {a {incr t1} b {incr t2} c {incr t3}}

The first argument tewitch is the value to be tested (the contents of varialiethe
example). The second argument is a list containing one or more pairs of elements. The first
argument in each pair is a pattern to compare against the value, and the second is a script
to execute if the pattern matches. Biagtch command steps through these pairs in
order, comparing the pattern against the value. As soon as it finds a match it executes the
corresponding script and returns the value of that script as its value. If no pattern matches
then no script is executed asdtitch returns an empty string. This particular command
increments variablel if x has the value &2 if x has the valub, t3 if x has the value
¢, and does nothing otherwise.

The second form spreads the patterns and scripts out into separate arguments rather
than combining them all into one list;

switch $x a {incr t1} b {incr t2} c {incr t3}
This form has the advantage that you can invoke substitutions on the pattern arguments

more easily, but most people prefer the first form because you can easily spread the pat-
terns and scripts across multiple lines like this:

switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

The outer braces keep the newlines from being treated as command separators. With the
second form you would have to use backslash-newlines like this:

switch $x \
a {incr t1}\
b {incr t2} \
¢ {incr t3}\
}

Theswitch command supports three forms of pattern matching. You can precede
the value to test with a switch that selects the form you wexdct selects exact com-
parison,-glob selects pattern matching as in stieng match command (see Sec-
tion 10.1 for details) andegexp selects regular-expression matching as described in
Section 10.2. The default-iglob

If the last pattern in awitch command islefault then it matches any value. Its
script will thus be executed if no other patterns match. For example, the script below will
examine a list and produce three counters. Thetfirstcounts the number of elements in
the list that contain aa. The secondp , counts the number of elements that are unsigned
decimal integers. The thirt8 , counts all of the other elements:

DRAFT (8/12/93): Distribution Restricted

7.5 Eval

67

7.5

settl 0
sett2 0
sett30
foreach i $x {
switch -regexp $i in {

a {incr t1}
N0-9]*$ {incr t2}
default {incr t3}

}
}

If a script in aswitch command is+" thenswitch uses the script for the next
pattern instead. This makes it easy to have several patterns that all execute the same script,
as in the following example:

switch $x {
a -
b -
c {incr t1}
d {incr t2}
}

This script increments variabi if x isa, b, orc and it increment® if x isd.

Eval

Eval is a general-purpose building block for creating and executing Tcl scripts. It accepts
any number of arguments, concatenates them together with separator spaces, and then exe-
cutes the result as a Tcl script. One useval is for generating commands, saving them

in variables, and then later evaluating the variables as Tcl scripts. For example, the script

set cmd "set a 0"

eval $cmd
clears variable to 0 when theeval command is invoked.

Perhaps the most important usedgal is to force another level of parsing. The Tcl
parser performs only level of parsing and substitution when parsing a command; the
results of one substitution are not reparsed for other substitutions. However, there are
occasionally times when another level of parsing is desirablesvaatd provides the
mechanism to achieve this. For example, suppose that a vardablecontains a list of
variables and that you wish to unset each of these variables. One solution is to use the fol-
lowing script:

foreach i $vars {
unset $i
}

DRAFT (8/12/93): Distribution Restricted

68

Control Flow

Note:

7.6

This script will work just fine, but thenset command takes any number of arguments
so it should be possible to unset all of the variables with a single command. Unfortunately
the following script will not work:

unset $vars
The problem with this script is that all of the variable names are passeskip as a sin-
gle argument, rather than using a separate argument for each name. The solution is to use
eval , as with the following command:

eval unset $vars
Eval generates a string consisting ahset " followed by the list of variable names
and then passes the string to Tcl for evaluation. The string gets re-parsed so each variable
name ends up in a different argumentiteet .
This approach works even if some of the variable names contain spaces or special
characters such aB. As described in Section 6.7, the only safe way to generate Tcl
commands is using list operations suchlists andconcat . The commandéval
unset $vars " is identical to the commandéval [concat unset $vars] " in

either case the script evaluateddyal is a proper list whose first element isrfset ”
and whose other elements are the elementarsf .

Executing from files: source

Thesource command is similar to the command by the same name asthahell: it
reads a file and executes the contents of the file as a Tcl script. It takes a single argument
that contains the name of the file. For example, the command

source init.tcl
will execute the contents of the filat.tcl . The return value froraource will be
the value returned when the file contents are executed, which is the return value from the
last command in the file. In additicsgurce allows thereturn command to be used in
the file’s script to terminate the processing of the file. See Section 8.1 for more informa-
tion onreturn

DRAFT (8/12/93): Distribution Restricted

Chapter 8
Procedures

A Tcl procedure is a command that is implemented with a Tcl script rather than C code.
You can define new procedures at any time wittptbe command described in this

chapter. Procedures make it easy for you to package up solutions to problems so that they
can be re-used easily. Procedures also provide a simple way for you to prototype new fea-
tures in an application: once you've tested the procedures, you can reimplement them in C
for higher performance; the C implementations will appear just like the original proce-
dures so none of the scripts that invoke them will have to change.

Tcl provides special commands for dealing with variable scopes. Among other things,
these commands allow you to pass arguments by reference instead of by value and to
implement new Tcl control structures as procedures. Table 8.1 summarizes the Tcl com-
mands related to procedures.

Procedure basics: proc and return

Procedures are created with grec command, as in the following example:

proc plus {a b} {expr $a+$b}
The first argument tproc is the name of the procedure to be cregikas, in this case.
The second argument is a list of names of arguments to the procedamelf in the
example). The third argumentpooc is a Tcl script that forms the body of the new pro-
cedureProc creates a new command and arranges that whenever the command is
invoked the procedure’s body will be evaluated. In this case the new command will have
the nameplus ; wheneveplus is invoked it must receive two arguments. While the

69

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

70

Procedures

global namel Zname2 ...?

Binds variable namasamel, name2, etc. to global variables. References
to these names will refer to global variables instead of local variables fg
the duration of the current procedure. Returns an empty string.

proc name argList body

Defines a procedure whose namedme, replacing any existing comman
by that nameArgList is a list with one element for each of the
procedure’s arguments, abddy contains a Tcl script that is the
procedure’s body. Returns an empty string.

return ?options ? dalue ?

Returns from the innermost nested procedusmarce command with
value as the result of the proceduvalue defaults to an empty string.
Additional options may be used to trigger an exceptional return (see
Section 9.4).

uplevel ?Jevel ?arg 7argarg ..?

Concatenates all of tregg 's with spaces as separators, then executes tl
resulting Tcl script in the variable context of stack ldeeél . Level
consists of a number or a number precedet, land defaults tel .
Returns the result of the script.

upvar “?evel ?otherVarl myVarl ?2otherVar2 myVar2 22

Binds the local variable nanmeyVarl to the variable at stack levelel
whose name istherVarl . For the duration of the current procedure,
variable references myVarl will be directed tmtherVarl instead.
Additional bindings may be specified wittherVar2 andmyVar2, etc.
Level has the same syntax and meaning aggt@vel and defaults te
1. Returns an empty string.

Table 8.1. A summary of the Tcl commands related to procedures and variable scoping.

body ofplus is executing the variablesandb will contain the values of the arguments.
The return value from thelus command is the value returned by the last command in
plus s body. Here are some correct and incorrect invocatiophuef :

ad

g

O

plus 3 4

7

plus 3 -1

2

plus 1

no value given for parameter "b" to "plus”

If you wish for a procedure to return early without executing its entire script, you can

invoke thereturn command: it causes the enclosing procedure to return immediately

DRAFT (8/12/93): Distribution Restricted

8.2 Local and global variables 71

8.2

and the argument t@turn will be the result of the procedure. Here is an implementa-
tion of factorial that use®turn

proc fac x {
if {$x <= 1}{
return 1

}
expr $x * [fac [expr $x-1]]

fac 4
o 24
fac O
o1
If the argument téac is less than or equal to one tHan invokesreturn to return
immediately. Otherwise it executes #nr command. Thexpr command is the last
one in the procedure’s body, so its result is returned as the result of the procedure.

Local and global variables

When the body of a Tcl procedure is evaluated it uses a different set of variables from its
caller. These variables are calledal variables since they are only accessible within the
procedure and are deleted when the procedure returns. Variables referenced outside any
procedure are calleglobal variables|t is possible to have a local variable with the same
name as a global variable or a local variable in another active procedure, but these will be
different variables: changes to one will not affect any of the others. If a procedure is
invoked recursively then each recursive invocation will have a distinct set of local vari-
ables.

The arguments to a procedure are just local variables whose values are set from the
words of the command that invoked the procedure. When execution begins in a procedure,
the only local variables with values are those corresponding to arguments. Other local
variables are created automatically when they are set.

A procedure can reference global variables withgtbbal command. For exam-
ple, the following command makes the global variaklesdy accessible inside a proce-
dure:

global x y
Theglobal command treats each of its arguments as the name of a global variable and
sets up bindings so that references to those names within the procedure will be directed to
global variables instead of local on€dobal can be invoked at any time during a proce-
dure; once it has been invoked, the bindings will remain in effect until the procedure
returns.

DRAFT (8/12/93): Distribution Restricted

72

Procedures

Note:

8.3

Tcl does not provide a form of variable equivalent to “static” variables in C, which are
limited in scope to a given procedure but have values that persist across calls to the
procedure. In Tcl you must use global variables for purposes like this. To avoid name
conflicts with other such variables you should include the name of the procedure or the
name of its enclosing package in the variable name, for example
“Hypertext_numLinks "~

Defaults and variable numbers of arguments

In the examples so far, the second argumeptdo (which describes the arguments to
the procedure) has taken a simple form consisting of the names of the arguments. Three
additional features are available for specifying arguments. First, the argument list may be
specified as an empty string. In this case the procedure takes no arguments. For example,
the following command defines a procedure that prints out two global variables:
proc printVars {} {
global a b
puts "a is $a, b is $b"
}

The second additional feature is that defaults may be specified for some or all of the
arguments. The argument list is actually a list of lists, with each sublist corresponding to a
single argument. If a sublist has only a single element (which has been the case up until
now) that element is the name of the argument. If a sublist has two arguments, the first is
the argument’s name and the second is a default value for it. For example, here is a proce-
dure that increments a given value by a given amount, with the amount defaulting to 1:

proc inc {value {increment 1}} {
expr $value+$increment
}

The first element in the argument lighlue , specifies a name with no default value. The
second element specifies an argument with nantement and a default value df.
This means thdahc can be invoked with either one or two arguments:
inc 42 3
0 45
inc 42
0 43
If a default isn’t specified for an argument in grec command then that argument must
be supplied whenever the procedure is invoked. The defaulted arguments, if any, must be
the last arguments for the procedure: if a particular argument is defaulted then all the argu-
ments after it must also be defaulted.
The third special feature in argument lists is support for variable numbers of argu-
ments. If the last argument in the argument list is the special &ajse, then the proce-
dure may be called with varying numbers of arguments. Arguments lzefmein the

DRAFT (8/12/93): Distribution Restricted

8.4 Call by reference: upvar 73

8.4

argument list are handled as before, but any number of additional arguments may be spec-
ified. The procedure’s local variakdegs will be set to a list whose elements are all of
the extra arguments. If there are no extra argumentsatigen will be set to an empty
string. For example, the following procedure takes any number of arguments and returns
their sum:
proc sum args {
setsO

foreach i $args {
incr s $i
}

return $s

];um 12345
0o 15
sum
o o
If a procedure’s argument list contains additional arguments bafgse then they may
be defaulted as described above. Of course, if this happens there will be no extra argu-
ments sargs will be set to an empty string. No default value may be specified for
args : the empty string is its default.

Call by reference: upvar

Theupvar command provides a general mechanism for accessing variables outside the
context of a procedure. It can be used to access either global variables or local variables in
some other active procedure. Most often it is used to implement call-by-reference argu-
ment passing. Here is a simple examplamfar in a procedure that prints out the con-
tents of an array:
proc parray name {
upvar $name a
foreach el [Isort [array names a]] {
puts "$el = $a($el)"
}
}

set info(age) 37
set info(position) "Vice President”
parray info
0 age=37
position = "Vice President"
Whenparray is invoked it is given the name of an array as argumentupta& com-
mand then makes this array accessible through a local variable in the procedure. The first
argument taipvar is the name of a variable accessible to the procedure’s caller. This

DRAFT (8/12/93): Distribution Restricted

74

Procedures

Note:

8.5

may be either a global variable, as in the example, or a local variable in a calling proce-

dure. The second argument is the name of a local varldpler arranges things so that

accesses to local varialdewill actually refer to the variable in the caller whose name is

given by variablmame. In the example this means that wipamray reads elements of

a itis actually reading elements of tiléo global variable. Iparray were to writea it

would modifyinfo . Parray uses thedrray names " command to retrieve a list of

all the elements in the array, sorts them Wgthrt , then prints out each the elements in

order.

In the example it appears as if the output is returned as the procedure’s result; in fact it is

printed directly to standard output and the result of the procedure is an empty string.
The first variable name in apvar command normally refers to the context of the

current procedure’s caller. However, it is also possible to access variables from any level

on the call stack, including global level. For example,

upvar #0 other x
makes global variablether accessible via local variabte(the#0 argument specifies

thatother should be interpreted as a global variable, regardless of how many nested pro-
cedure calls are active), and

upvar -2 other x

makes variablether in the caller of the caller of the current procedure accessible as
local variablex (-2 specifies that the contextather is 2 levels up the call stack). See
the reference documentation for more information on specifying a leupl/ar .

Creating new control structures: uplevel

Theuplevel command is a cross betwesral andupvar . It evaluates its argu-
ment(s) as a script, just lilval , but the script is evaluated in the variable context of a
different stack level, likepvar . Withuplevel you can define new control structures as
Tcl procedures. For example, here is a new control flow command datled
proc do {varName first last body} {
upvar $varName v
for {set v $first} {$v <= $last} {incr v} {
uplevel $body
}

}
The first argument tdo is the name of a variablBo sets that variable to consecutive
integer values in the range between its second and third arguments, and executes the
fourth argument as a Tcl command once for each setting. Given this definitiontoe
following script creates a list of squares of the first five integers:

DRAFT (8/12/93): Distribution Restricted

8.5 Creating new control structures: uplevel 75

Note:

seta {}
doil5¢{
lappend a [expr $i*$i]

seta

0 1491625
Thedo procedure usagpvar to access the loop variableif the example) as local vari-
ablev. Then it uses thier command to increment the loop variable through the desired
range. For each value it invokeglevel to execute the loop body in the variable con-
text of the caller; this causes references to variabbesdi in the body of the loop to
refer to variables ido’s caller. Ifeval were used instead aplevel thena andi
would be treated as local variablesim, which would not produce the desired effect.
This implementation afo does not handle exceptional conditions properly. For example,
if the body of the loop containgeturn command it will only cause tld® procedure to
return, which is more like the behaviortwkak . If areturn occurs in the body of a
built-in control-flow command likeor or while then it causes the procedure that

invoked the command to return. In Chapter 9 you will see how to implement this behavior
for do.

As withupvar , uplevel takes an optional initial argument that specifies an
explicit stack level. See the reference documentation for details.

DRAFT (8/12/93): Distribution Restricted

76

Procedures

DRAFT (8/12/93): Distribution Restricted

Chapter 9
Errorsand Exceptions

9.1

As you have seen in previous chapters, there are many things that can result in errors in
Tcl commands. Errors can occur because a command doesn't exist, or because it doesn't
receive the right number of arguments, or because the arguments have the wrong form, or
because some other problem occurs in executing the command, such as an error in a sys-
tem call for file I/O. In most cases errors represent severe problems that make it impossi-
ble for the application to complete the script it is processing. Tcl's error facilities are
intended to make it easy for the application to unwind the work in progress and display an
error message to the user that indicates what went wrong. Presumably the user will fix the
problem and retry the operation.

Errors are just one example of a more general phenomenoneaksutionsExcep-
tions are events that cause scripts to be aborted; they incluate#ke, continue , and
return commands as well as errors. Tcl allows exceptions to be “caught” by scripts so
that only part of the work in progress is unwound. After catching an exception the script
can ignore it or take steps to recover from it. If the script can't recover then it can reissue
the exception. Table 9.1 summarizes the Tcl commands related to exceptions.

What happens after an error?

When a Tcl error occurs the current command is aborted. If that command is part of a
larger script then the script is also aborted. If the error occurs while executing a Tcl proce-
dure, then the procedure is aborted, along with the procedure that called it, and so on until
all the active procedures have aborted. After all Tcl activity has been unwound in this way,
control eventually returns to C code in the application, along with an indication that an

77

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

78

Errors and Exceptions

catch command ZvarName?
Evaluatecommandas a Tcl script and returns an integer code that
identifies the completion status of the commandaifName is specified
then it gives the name of a variable, which will be modified to hold the
return value or error message generateddoymand

error message 7nfo ? Zode?
Generates an error withessage as the error messageirifo is
specified and is not an empty string then it is used to initialize the
errorinfo variable. Ifcode is specified then it is stored in the
errorCode variable.

return -code code ?-errorinfo info ? 2errorcode code ? &tring ?
Causes the current procedure to return an exceptional con@tda.
specifies the condition and mustdie, error , return , break ,
continue , or an integer. Theerrorinfo option may be used to
specify a starting value for tlegrorinfo variable, anderrorcode
may be used to specify a value for éreorCode variable.String
gives the return value or error message associated with the return; it
defaults to an empty string.

Table 9.1. A summary of the Tcl commands related to exceptions.

error occurred and a message describing the error. It is up to the application to decide how
to handle this situation, but most interactive applications will display the error message for
the user and continue processing user input. In a batch-oriented application where the user
can't see the error message and adjust future actions accordingly, the application might
print the error message into a log and abort.
For example, consider the following script, which is intended to sum the elements of a

list:

set list {44 16 123 98 57}

set sum O

foreach el $list {
set sum [expr $sum+$element]
}

00 can't read "element": no such variable

This script is incorrect because there is no varial@ment : the variable namele-

ment in theexpr command should have beeln to match the loop variable for the

foreach command. When the script is executed an error will occur as Tcl parses the
expr command: Tcl will attempt to substitute the value of varialdenent but will not

be able to find a variable by that name, so it will signal an error. This error indication will
be returned to thiereach command, which had invoked the Tcl interpreter to evaluate
the loop body. Wheforeach sees that an error has occurred, it will abort its loop and
return the same error indication as its own result. This in turn will cause the overall script

DRAFT (8/12/93): Distribution Restricted

9.2 Generating errors from Tcl scripts 79

9.2

to be aborted. The error messagari't read "element": no such vari-
able " will be returned along with the error, and will probably be displayed for the user.

In many cases the error message will provide enough information for you to pinpoint
where and why the error occurred so you can avoid the problem in the future. However, if
the error occurred in a deeply nested set of procedure calls the message alone may not pro-
vide enough information to figure out where the error occurred. To help pinpoint the loca-
tion of the error, Tcl creates a stack trace as it unwinds the commands that were in
progress, and it stores the stack trace in the global vagablénfo . The stack trace
describes each of the nested calls to the Tcl interpreter. For example, after the above error
errorinfo will have the following value:

can't read "element": no such variable
while executing
"expr $sum+$element”
invoked from within
"set sum [expr $sum+$element]..."
("foreach" body line 2)
invoked from within
"foreach el $list {
set sum [expr $sum+$element]
p

Tcl provides one other piece of information after errors, in the global variable
errorCode .ErrorCode has a format that is easy to process with Tcl scripts; it is most
commonly used in Tcl scripts that attempt to recover from errors usingtitte com-
mand described below. TleerorCode variable consists of a list with one or more ele-
ments. The first element identifies a general class of errors and the remaining elements
provide more information in a class-dependent fashion. For example, if the first element of
errorCode is POSIX then it means that an error occurred in a POSIX system call.
ErrorCode will contain two additional elements giving the POSIX name for the error,
such aENOENTand a human-readable message describing the error. See the reference
documentation for a complete description of all the foemsrCode can take, or refer
to the descriptions of individual commands thaeseirCode |, such as those in Chapter
11 and Chapter 12.

TheerrorCode variable is a late-comer to Tcl and is only filled in by a few com-
mands, mostly dealing with file access and child processes. If a command generates an
error without settingrrorCode then Tcl fills it in with the valudlONE

Generating errors from Tcl scripts

Most Tcl errors are generated by the C code that implements the Tcl interpreter and the
built-in commands. However, it is also possible to generate an error by executing the
error Tcl command as in the following example:

DRAFT (8/12/93): Distribution Restricted

80

Errors and Exceptions

9.3

if {($x < O} || ($x > 100)} {
error "x is out of range ($x)"
}

Theerror command generates an error and uses its argument as the error message.

As a matter of programming style, you should only usetrer command in situ-
ations where the correct action is to abort the script being executed. If you think that an
error is likely to be recovered from without aborting the entire script, then it is probably
better to use the normal return value mechanism to indicate success or failure (e.g. return
one value from a command if it succeeded and another if it failed, or set variables to indi-
cate success or failure). Although it is possible to recover from errors (you'll see how in
Section 9.3 below) the recovery mechanism is more complicated than the normal return
value mechanism. Thus it’s best to generate errors only in situations where you won't usu-
ally want to recover.

Trapping errors with catch

Errors generally cause all active Tcl commands to be aborted, but there are some situations
where it is useful to continue executing a script after an error has occurred. For example,
suppose that you want to unset variabléit exists, but it may not exist at the time of the
unset command. If you invokanset on a variable that doesn'’t exist then it generates
an error:
unset x

0 can'tunset "Xx": no such variable

You can use theatch command to ignore the error in this situation:

catch {unset x}
o1
The argument teatch is a Tcl script, whicltatch evaluates. If the script completes
normally thercatch returns 0. If an error occurs in the script toatch traps the error
(so that theeatch command itself is not aborted by the error) and returns 1 to indicate
that an error occurred. The example above ignores any ertamséh sox is unset if it
existed and the script has no effect iflidn’'t previously exist.

Thecatch command can also take a second argument. If the argument is provided
then it is the name of a variable aradch maodifies the variable to hold either the script’s
return value (if it returns normally) or the error message (if the script generates an error):

catch {unset x} msg
o1
set msg
0 can't unset "x": no such variable

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 81

9.4

In this case thanset command generates an erronsgy is set to contain the error mes-
sage. If variable had existed themnset would have returned successfully, so the return
value fromcatch would have beefi andmsg would have contained the return value

from theunset command, which is an empty string. This longer forroad€h is use-

ful if you need access to the return value when the script completes successfully. It's also
useful if you need to do something with the error message after an error, such as logging it
to a file.

Exceptions in general

Note:

Errors are not the only things in Tcl that cause work in progress to be aborted. Errors are
just one example of a set of events ca#igdeptions . In addition to errors there are

three other kinds of exceptions in Tcl, which are generated dyr¢lad , continue
andreturn commands. All exceptions cause active scripts to be aborted in the same
way, except for two differences. First, taeorinfo anderrorCode variables are

only set during error exceptions. Second, the exceptions other than errors are almost
always caught by an enclosing command, whereas errors usually unwind all the work in
progress. For examplbreak andcontinue commands are normally invoked inside a
looping command such &xreach ;foreach will catch break and continue exceptions
and terminate the loop or skip to the next iteration. Similegtyrn is normally only
invoked inside a procedure or a file beguyirce 'd. Both the procedure implementation
and thesource command catch return exceptions.

If abreak orcontinue command is invoked outside any loop then active scripts
unwind until the outermost script for a procedure is reached or all scripts in progress have

been unwound. At this point Tcl turns the break or continue exception into an error with an
appropriate message.

All exceptions are accompanied by a string value. In the case of an error, the string is
the error message. In the caseeatfirn |, the string is the return value for the procedure
or script. In the case treak andcontinue the string is always empty.

Thecatch command actually catches all exceptions, not just errors. The return
value fromcatch indicates what kind of exception occurred and the variable specified in
catch ’s second argument is set to hold the string associated with the exception (see Table
9.2). For example:

catch {return "all done"} string
g 2

set string
0 all done

Whereagatch provides a general mechanism for catching exception of all types,
return provides a general mechanism for generating exceptions of all types. If its first
argument consists of the keywobde , as in

DRAFT (8/12/93): Distribution Restricted

82

Errors and Exceptions

Return value .
from catch Description Caught by
0 Normal return. String gives return | Not applicable
value.
1 Error. String gives message descrip-Catch
ing the problem.
2 Thereturn command was Catch , source , procedures
invoked. String gives return value
for procedure osource com-
mand.
3 Thebreak command was invoked] Catch , for , foreach ,while ,
String is empty. procedures
4 Thecontinue command was Catch , for ,foreach ,while |,
invoked. String is empty. procedures
anything else | Defined by user or application. Catch

Table 9.2. A summary of Tcl exceptions. The first column indicates the value returretdyy
in each instance. The second column describes when the exception occurs and the meanit
string associated with the exception. The last column lists the commands that catch except
that type (“procedures” means that the exception is caught by a Tcl procedure when its enti
has been aborted). The top row refers to normal returns where there is no exception.

return -code return 42

then its second argument is the name of an excepgturri in this case) and the third
argument is the string associated with the exception. The enclosing procedure will return
immediately, but instead of a normal return it will return with the exception described by
thereturn command’s arguments. In the example above the procedure will generate a
return exception, which will then cause the calling procedure to return as well.

In Section 8.5 you saw how a new looping comm@mdaould be implemented as a
Tcl procedure usingpvar anduplevel . However, the example in Section 8.5 did not
properly handle exceptions within the loop body. Here is a new implementatiortiot
usescatch andreturn to deal with exceptions properly:

DRAFT (8/12/93): Distribution Restricted

9.4 Exceptions in general 83

proc do {varName first last body} {

global errorinfo errorCode

upvar $varName v

for {set v $first} {$v <= $last} {incr v} {

switch [catch {uplevel $body} string] {
1 {return -code error -errorinfo $errorinfo \
-errorCode $errorcode $string}

2 {return -code return $string}
3return

}
}

This new implemenation evaluates the loop body insict@ command and then
checks to see how the body terminates. If no exception occurs (return value 0 from
catch) or if the exception is a continue (return value 4) thenfust goes on to the next
iteration. If an error or return occurs (return value 1 or 2 ftatoh) thendo uses the
return command to reflect the exception upward to the caller. If a break exception
occurs (return value 3 fromatch) thendo returns to its caller normally, ending the
loop.

Whendo reflects an error upwards it uses t@eorinfo option toreturn to
make sure that a proper stack trace is available after the error. If that option were omitted
then a fresh stack trace would be generated startinglaisherror return; the stack trace
would not indicate where ibody the error occurred. The context withiady is avail-
able in theerrorinfo variable at the timeatch returns, and theerrorinfo
option causes this value to be used as the initial contents of the stack tracwhen
returns an error. As additional unwinding occurs more information gets added to the initial
value, so that the final stack trace includes both the context Wwithin and the context
of the call todo. The-errorcode option serves a similar purpose for #reorCode
variable, retaining therrorCode value from the original error as teerorCode
value wherdo propagates the error. Without tregrorcode option theerrorCode
variable will always end up with the valbd®NE

DRAFT (8/12/93): Distribution Restricted

84

Errors and Exceptions

DRAFT (8/12/93): Distribution Restricted

Chapter 10
String Manipulation

This chapter describes Tcl's facilities for manipulating strings. The string manipulation
commands provide pattern matching in two different forms, one that mimics the rules used
by shells for file name expansion and another that uses regular expressions as patterns. Tcl
also has commands for formatted input and output in a style similar to the C procedures
scanf andprintf . Finally, there are several utility commands with functions such as
computing the length of a string, extracting characters from a string, and case conversion.
Tables10.1 and 10.2 summarize the Tcl commands for string processing.

10.1 Glob-style pattern matching

The simplest of Tcl's two forms of pattern matching is called “glob” style. It is named

after the mechanism used in tteh shell for file name expansion, which is called “glob-
bing”. Glob-style matching is easier to learn and use than the regular expressions
described in the next two sections, but it only works well for simple cases. For more com-
plex pattern matching you will probably need to use regular expressions.

The commandtring match implements glob-style pattern matching. For exam-
ple, the following script extracts all of the elements of a list that begin With™
set new {}

foreach el $list {
if [string match Tcl* $el] {
lappend new $el

85

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

86

String Manipulation

format formatString value value 2
Returns a result equal tormatString except that thealue
arguments have been substituted in pladéséquences in
formatString

regexp ?indices ? ?nocase ? ?- ?exp string ?matchVar ?\
?subVar subVar 2
Determines whether the regular express®m matches part or all of
string and returnd if it does,0 if it doesn't. If there is a match,
information about matching range(s) is placed in the variables named &
matchVar and thesubVar s, if they are specified.

regsub ?-all ? 2nocase ? ?- ? exp string subSpec varName
Matchesexp againsstring as forregexp and returnd if there is a
match,0 if there is none. Also copietring to the variable named by
varName, making substitutions for the matching portion(s) as specified
subSpec .

scan string format varName varName varName ...?
Parses fields frorstring as specified bfjormat and places the values
that matct/bsequences into variables named byviiidame arguments.

string compare string1 string2
Returns-1 , 0, orl if stringl is lexicographically less than, equal to, ¢
greater thamstring2

string first stringl string2

Returns the index istring2 of the first character in the leftmost
substring that exactly matches the charactesgrimgl , or-1 if there is
no such match.
string index string charlndex
Returns theharindex ’th character obtring , or an empty string if
there is no such character. The first charactetring has index O.
string last stringl string2
Returns the index istring2 of the first character in the rightmost
substring oktring2 that exactly matchestringl . If there is no
matching substring ther is returned.

string length string
Returns the number of charactersiring
string match pattern string

Returnsl if pattern matchestring using glob-style matching rules
(*,?,[1 ,and\)andO if it doesn't.

string range string first last
Returns the substring efring that lies between the indices given by
first andlast , inclusive. An index 00 refers to the first character in
the string, andast may beend to refer to the last character of the string

Table 10.1. A summary of the Tcl commands for string manipulation (continued in Table 10

DRAFT (8/12/93): Distribution Restricted

10.1 Glob-style pattern matching 87

string tolower string
Returns a value identical string except that all upper case characters
have been converted to lower case.

string toupper string
Returns a value identical string except that all lower case characters
have been converted to upper case.

string trim string ?chars ?
Returns a value identical string except that any leading or trailing
characters that appeardhars are removedChars defaults to the white
space characters (space, tab, newline, and carriage return).

string trimleft string ?chars ?

Same astring trim except that only leading characters are remove
string trimright string chars ?

Same astring trim except that only trailing characters are removeg

Table 10.2. A summary of the Tcl commands for string manipulation, cont'd.

Thestring command is actually about a dozen string-manipulation commands rolled
into one. If the first argument isatch then the command performs glob-style pattern
matching and there must be two additional arguments, a pattern and a string. The com-
mand returnd if the pattern matches the strifgif it doesn’t. For the pattern to match
the string, each character of the pattern must be the same as the corresponding character of
the string, except that a few pattern characters are interpreted specially. For exdmple, a
in the pattern matches a substring of any lengthTsld “” matches any string whose first
three characters ar@¢l ". Here is a list of all the special characters supported in glob-
style matching:

* Matches any sequence of zero or more characters.

? Matches any single character.

[chars] Matches any single characterdhars . If chars contains a
sequence of the forar- b then any character betwearandb,
inclusive, will match.

\ X Matches the single characterThis provides a way to avoid special
interpretation for any of the charact&®§]\ in the pattern.

Many simple things can be done easily with glob-style patterns. For example,
“*[ch] " matches all strings that end with either * or “.h ". However, many interest-
ing forms of pattern matching cannot be expressed at all with glob-style patterns. For
example, there is no way to use a glob-style pattern to test whether a string consists
entirely of digits: the patterr[0-9] ” tests for a single digit, but there is no way to spec-
ify that there may be more than one digit.

DRAFT (8/12/93): Distribution Restricted

88

String Manipulation

10.2

Character(s) Meaning
Matches any single character.
A Matches the null string at the start of the input string.
$ Matches the null string at the end of the input string.
\ X Matches the charactgr
[chars] Matches any single character fratmars . If the first character of

chars is” then it matches any single character not in the remai
der ofchars . A sequence of the forax b in chars is treated as
shorthand for all of the ASCII characters betwaemndb, inclu-
sive. If the first character thars (possibly following &) is]
then it is treated literally (as partcfars instead of a termina-
tor). If a- appears first or last thars then it is treated literally.

(regexp) Matches anything that matches the regular expressgaxp .
Used for grouping and for identifying pieces of the matching stk
string.
* Matches a sequence of 0 or more matches of the preceding ato
+ Matches a sequence of 1 or more matches of the preceding ato
? Matches either a null string or a match of the preceding atom.

regexpl | regexp2 Matches anything that matches eithegexpl orregexp2 .

Table 10.3. The special characters permitted in regular expression patterns.

Pattern matching with regular expressions

Tcl's second form of pattern matching uses regular expressions like thosedgrepe
program. Regular expressions are more complex than glob-style patterns but more power-
ful. Tcl's regular expressions are based on Henry Spencer’s publicly available implemen-
tation, and parts of the description below are copied from Spencer’'s documentation.

A regular expression pattern can have several layers of structure. The basic building
blocks are calledtoms and the simplest form of regular expression consists of one or
more atoms. For a regular expression to match an input string, there must be a substring of
the input where each of the regular expression’s atoms (or other components, as you'll see
below) matches the corresponding part of the substring. In most cases atoms are single
characters, each of which matches itself. Thus the regular exprabsionatches any
string containingbc , such asbcdef orxabcy .

A number of characters have special meanings in regular expressions; they are sum-
marized in Table 10.3. The characterand$ are atoms that match the beginning and end
of the input string respectively; thabc matches any string that starts wathc , abc$
matches any string that endsaioc , and*abc$ matchesbc and nothing else. The atom

DRAFT (8/12/93): Distribution Restricted

10.2 Pattern matching with regular expressions 89

Note:

. " matches any single character, and the dtarmwherex is any single character,
matches. For example, the regular expressio “” matches any string that contains a
dollar-sign, as long as the dollar-sign isn’t the first character.

Besides the atoms already described, there are two other forms for atoms in regular
expressions. The first form consists of any regular expression enclosed in parentheses,
such as(a.b) ". Parentheses are used for grouping. They allow operators sti¢h be
applied to entire regular expressions as well as atoms. They are also used to identify pieces
of the matching substring for special processing. Both of these uses are described in more
detail below.

The final form for an atom isrange which is a collection of characters between
square brackets. A range matches any single character that is one of the ones between the
brackets. Furthermore, if there is a sequence of thedefiramong the characters, then
all of the ASCII characters betwearandb are treated as acceptable. Thus the regular
expressiofj0-9a-fA-F] matches any string that contains a hexadecimal digit. If the
character after thie is a* then the sense of the range is reversed: it only matches charac-
tersnot among those specified between“thand the .

The three operatots +, and? may follow an atom to specify repetition. If an atom is
followed by* then it matches a sequence of zero or more matches of that atom. If an atom
is followed by+ then it matches a sequence of one or more matches of the atom. If an
atom is followed by? then it matches either an empty string or a match of the atom. For
example, *(0x)?[0-9a-fA-F]+$ " matches strings that are proper hexadecimal
numbers, i.e. those consisting of an optidhafollowed by one or more hexadecimal
digits.

Finally, regular expressions may be joined together with thygerator. The resulting
regular expression matches anything that matches either of the regular expresssions that
surround the . For example, the following pattern matches any string that is either a
hexadecimal number or a decimal number:

A((0x)?[0-9a-fA-F]+|[0-9]+)$
Note that the information between parentheses may be any regular expression, including
additional regular expressions in parentheses, so it is possible to build up quite complex
structures.

Theregexp command invokes regular expression matching. In its simplest form it
takes two arguments: the regular expression pattern and an input string. lt0etutns
indicate whether or not the pattern matched the input string:

regexp {"[0-9]+$} 510
o1

regexp {"[0-9]+$} -510
o o

The pattern must be enclosed in braces so that the charficferand] are passed
through to theegexp command instead of triggering variable and command

DRAFT (8/12/93): Distribution Restricted

String Manipulation

substitution. In almost always a good idea to enclose regular expression patterns in
braces.

If regexp is invoked with additional arguments after the input string then each addi-
tional argument is treated as the name of a variable. The first variable is filled in with the
substring that matched the entire regular expression. The second variable is filled in with
the portion of the substring that matched the leftmost parenthesized subexpression within
the pattern; the third variable is filled in with the match for the next parenthesized subex-
pression, and so on. If there are more variable names than parenthesized subexpressions
then the extra variables are set to empty strings. For example, after executing the com-
mand

regexp {([0-9]+) *([a-z]+)} "Walk 10 km" a b c
variablea will have the value20 km ", b will have the valud 0, andc will have the
valuekm. This ability to extract portions of the matching substring all®gexp to be
used for parsing.

It is also possible to specify two extra switchesegexp before the regular expres-
sion argument. Anocase switch specifies that alphabetic atoms should match either
upper-case or lower-case letters. For example:

regexp {[a-z]} A
o o
regexp -nocase {[a-z]} A
o1
The-indices switch specifies that the additional variables should not be filled in with
the values of matching substrings. Instead, each should be filled in with a list giving the
first and last indices of the substring’s range within the input string. After the command
regexp -indices {([0-9]+) *([a-z]+)} "Walk 10 km" \
abc
variablea will have the value5 9 ", b will have the value5 6 ", andc will have the
value ‘89 ".

10.3 Using regular expressions for substitutions

Regular expressions can also be used to perform substitutions usiegsiie com-
mand. Consider the following example:
regsub there "They live there lives" their x

o1
The first argument tcegsub is a regular expression pattern and the second argument is
an input string, just as foegexp . And, likeregexp , regsub returnsl if the pattern
matches the string), if it doesn’t. Howeverregsub does more than just check for a
match: it creates a new string by substituting a replacement value for the matching sub-

DRAFT (8/12/93): Distribution Restricted

10.4 Generating strings with format 91

Note:

10.4

string. The replacement value is contained in the third argumeags$ab , and the new
string is stored in the variable named by the final argumeegtub . Thus, after the
above command completeswill have the valueThey live their lives ", If the
pattern had not matched the string tBemould have been returned axdvould have the
value ‘They live there lives "

Two special switches may appear as argumemeggub before the regular expres-
sion. The first isnocase , which causes case differences between the pattern and the
string to be ignored just as fegexp . The second possible switch-&él . Normally
regsub makes only a single substitution, for the first match found in the input string.
However, if-all is specified theregsub continues searching for additional matches
and makes substitutions for all of the matches found. For example, after the command

regsub -all a ababa zz x
x will have the valugzbzzbzz . If -all had been omitted thenwould have been set
to zzbaba .

In the examples above the replacement string is a simple literal value. However, if the
replacement string contains &“or “\0 ” then the ‘&” or “\0 " is replaced in the substitu-
tion with the substring that matched the regular expression. If a sequence of the form
appears in the replacement string, whrere a decimal number, then the substring that
matched tha-th parenthesized subexpression is substituted instead\ofi tir@r exam-
ple, the command

regsub -all a|b axaab && x
doubles all of the’s andb’s in the input string. In this case it s&t$o aaxaaaabb . Or,
the command

regsub -all (a+)(ba*) aabaabxab {z\2} x
replaces sequencesai$ with a singlez if they precede b but don't also follow @. In
this case is set tazbaabxzb . Backslashes may be used in the replacement string to
allow “&”, “\0 ", “\ n”, or backslash characters to be substituted verbatim without any
special interpretation.

It's usually a good idea to enclose complex replacement strings in braces as in the
example above; otherwise the Tcl parser will process backslash sequences and the
replacement string received bygsub may not contain backslashes that are needed.

Generating strings with format

Tcl's format command provides facilities like those of #pintf procedure from
the ANSI C library. For example, consider the following command:

format "The square root of 10 is %.3f" [expr sqrt(10)]
O The square root of 10 is 3.162

DRAFT (8/12/93): Distribution Restricted

92

String Manipulation

The first argument tlormat is a format string, which may contain any number of con-
version specifiers such a%:3f ". For each conversion specifi@rmat generates a
replacement string by reformatting the next argument according to the conversion speci-
fier. The result of thiormat command consists of the format string with each conver-
sion specifier replaced by the corresponding replacement string. In the above example
“%.3f " specifies that the next argument is to be formatted as a real number with three
digits after the decimal pointormat supports almost all of the conversion specifiers
defined for ANSI Gsprintf , such as%d for a decimal integer,%X for a hexadeci-
mal integer, and%¢ for real numbers in mantissa-exponent form.

Theformat command plays a less significant role in Tcl theintf and
sprintf play in C. Many of the uses pfintf andsprintf are simply for conver-
sion from binary to string format or for string substitution. Binary-to-string conversion

isn't needed in Tcl because values are already stored as strings, and substitution is already

available through the Tcl parser. For example, the command
set msg [format "%s is %d years old" $name $age]
can be written more simply as
set msg "$name is $age years old"
The%dconversion specifier in tfermat command could be written just as welPas
with %d format converts the value of age to a binary integer, then converts the integer
back to a string again.

Format is typically used in Tcl to reformat a value to improve its appearance, or to
convert from one representation to another (e.g. from decimal to hexadecimal). As an
example of reformatting, here is a that script prints the first ten poweis aftable:

puts "Number Exponential”
for {seti 1} {i <= 10} {incr i} {

puts [format "%4d %12.3f" $i [expr exp($i)]]
}

This script generates the following output on standard output:

Number Exponential
1 2.718
2 7.389
3 20.085
4 54.598
5 148.413
6 403.429
7 1096.630
8 2980.960
9 8103.080

10 22026.500

The conversion specifieft4d causes the integers in the first column of the table to be
printed right-justifed in a field four digits wide, so that they line up under their column
header. The conversion specifié612.3f ” causes each of the real values to be printed

DRAFT (8/12/93): Distribution Restricted

10.5 Parsing strings with scan 93

10.5

right-justified in a field 12 digits wide, so that the values line up; it also sets the precision
at 3 digits to the right of the decimal point.

The second main use flmrmat , changing the reprensentation of a value, is illus-
trated by the script below, which prints a table showing the ASCII characters that corre-
spond to particular integer values:

puts "Integer ASCII"
for {set i 95} {$i <= 101} {incr i} {

puts [format "%4d %c" $i $i]
}

This script generates the following output on standard output:

Integer ASCII
95
96
97
98
99

100
101

The value of is used twice in the format command, once Widhdand once witl§oc
The%cspecifier takes an integer argument and generates a replacement string consisting
of the ASCII character whose represented by the integer.

OO 0T

Parsing strings with scan

Thescan command provides almost exactly the same facilities assttamf procedure

from the ANSI C libraryScan is roughly the inverse dbrmat . It starts with a format-

ted string, parses the string under the control of a format string, extracts fields correspond-
ing to%conversion specifiers in the format string, and places the extracted values in Tcl
variables. For example, after the following command is executed vasiatilehave the
valuel6 and variabléd will have the valu4.2 :

scan "16 units, 24.2% margin" "%d units, %f" a b
o 2

The first argument tecan is the string to parse, the second is a format string that controls

the parsing, and any additional arguments are names of variables to fill in with converted

values. The return value of 2 indicates that two conversions were completed successfully.
Scan operates by scanning the string and the format together. Each character in the

format must match the corresponding character in the string, except for blanks and tabs,

which are ignored, arftbcharacters. When%is encountered in the format, it indicates

the start of a conversion specifiscan converts the next input characters according to

the conversion specifier and stores the result in the variable given by the next argument to

DRAFT (8/12/93): Distribution Restricted

94

String Manipulation

scan . White space in the string is skipped except in the case of a few conversion specifi-
ers such a%c
One common use for scan is for simple string parsing, as in the example above.
Another common use is for converting ASCII characters to their integer values, which is
done with thec specifier. The procedure below uses this feature to return the character
that follows a given character in lexicographic ordering:
proc next c {
scan $c %c i
format %c [expr $i+1]

}

next a
O b
next 9
o o
Thescan command converts the value of thargument from an ASCII character to the
integer used to represent that character, then the integer is incremented and converted back
to an ASCII character again with tf@mat command.

10.6 Extracting characters: string index and string range
The remaining string manipulation commands are all implemented as options of the
string command. For examplstring index extracts a character from a string:
string index "Sample string” 3
o p
The argument afténdex is a string and the last argument gives the index of the desired
character in the string. An index @fselects the first character.
Thestring range command is similar tetring index except that it takes
two indices and returns all the characters from the first index to the second, inclusive:
string range "Sample string" 3 7
O ples
The second index may have the vatnel to select all the characters up to the end of the
string:
string range "Sample string" 3 end
O ple string
10.7 Searching and comparison

The commandtring first takes two additional string arguments as in the following
example:

DRAFT (8/12/93): Distribution Restricted

10.8 Length, case conversion, and trimming 95

10.8

string first th "There is the tub where | bathed today"
o 3
It searches the second string to see if there is a substring that is identical to the first string.
If so then it returns the index of the first character in the leftmost matching substring; if not
then it returnsl . The commandtring last is similar except it returns the starting
index of the rightmost matching substring:
string last th "There is the tub where | bathed today"
o 21
The commandtring compare takes two additional arguments and compares
them in their entirety. It returr® if the strings are identicall if the first string sorts
before the second, addif the first string is after the second in sorting order:
string compare Michigan Minnesota
o -1
string compare Michigan Michigan
o o

Length, case conversion, and trimming

Thestring length command counts the number of characters in a string and returns
that number:

string length "sample string"

0 13
Thestring toupper command converts all lower-case characters in a string to
upper case, and tistring tolower command converts all upper-case characters in

its argument to lower-case:
string toupper "Watch out!"
0 WATCH OUT!
string tolower "15 Charing Cross Road"
0 15 charing cross road
Thestring command provides three options for trimmitign , trimleft , and
trimright . Each option takes two additional arguments: a string to trim and an optional
set of trim characters. Tharing trim command removes all instances of the trim
characters from both the beginning and end of its argument string, returning the trimmed
string as result:
string trim aaxxxbab abc
0 xxx
Thetrimleft andtrimright options work in the same way except that they only
remove the trim characters from the beginning or end of the string, respectively. The trim

DRAFT (8/12/93): Distribution Restricted

96

String Manipulation

commands are most commonly used to remove excess white space; if no trim characters
are specified then they default to the white space characters (space, tab, newline, and car-
riage return).

DRAFT (8/12/93): Distribution Restricted

Chapter 11
Accessing Files

Note:

11.1

This chapter describes Tcl's commands for dealing with files. The commands allow you to
read and write files sequentially or in a random-access fashion. They also allow you to
retrieve information kept by the system about files, such as the time of last access. Lastly,
they can be used to manipulate file names; for example, you can remove the extension
from a file name or find the names of all files that match a particular pattern. See Table
11.1 for a summary of the file-related commands.

The commands described in this chapter are only available on systems that support the
kernel calls defined in the POSIX standard, such as most UNIX workstations. If you are
using Tcl on another system, such as a Macintosh or a PC, then the file commands may not
be present and there may be other commands that provide similar functionality for your
system.

File names

File names are specified to Tcl using the normal UNIX syntax. For example, the file name
xlylz refers to a file namezl that is located in a directory namgdwhich in turn is

located in a directory named which must be in the current working directory. The file
name/top refers to a fileop in the root directory. You can also use tilde notation to
specify a file name relative to a particular user's home directory. For example, the name
~ouster/mbox refers to a file namedbox in the home directory of useuster , and
~/mbox refers to a file namedbox in the home directory of the user running the Tcl
script. These conventions (and the availability of tilde notation in particular) apply to all
Tcl commands that take file names as arguments.

97

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

Accessing Files

cd 2dirName ?
Changes the current working directorydidName , or to the home
directory (as given by tHdOMEenvironment variable) dirName isn't
given. Returns an empty string.

close ileld ?
Closes the file given bijleld . Returns an empty string.

eof fileld

Returnsl if an end-of-file condition has occurredfield , O otherwise.
file option name “argarg ..?

Performs one of several operations on the filename givearbg or on

the file that it refers to, depending option . See Table 11.3 for details.
flush fileld

Writes out any buffered output that has been generatédidetdr
Returns an empty string.

gets fileld warName?
Reads the next line frofileld and discards its terminating newline. If
varName is specified, places the line in that variable and returns a cou
characters in the line (el for end of file). IfvarName isn't specified,
returns line as result (or an empty string for end of file).

glob ?-nocomplain ? ?- ?pattern Ppattern .7
Returns a list of the names of all files that match any gfattern
arguments (special charactés*, [] , {}, and\). If -nocomplain
isn’t specified then an error occurs if the return list would be empty.

open name 7access ?
Opens filename in the mode given bgccess . Access may be, r+, w,
wH+, a, ora+ or a list of flags such &DONLYit defaults tar . Returns a
file identifier for use in other commands liggets andclose . If the first
character ohameis “| " then a command pipeline is invoked instead of
opening a file (see Section 12.2 for more information).

puts ?-nonewline ? Tileld ? string
Writesstring tofileld , appending a newline character unless
-nonewline s specifiedFileld defaults tcstdout . Returns an
empty string.

pwd
Returns the full path name of the current working directory.

Table 11.1. A summary of the Tcl commands for manipulating files (continued in Table 11.2

DRAFT (8/12/93): Distribution Restricted

11.2 Basic file 1/0 99

11.2

read 7?-nonewline ?fileld
Reads and returns all of the bytes remainirfgeid . If -nonewline
is specified then the final newline, if any, is dropped.

read fileld numBytes
Reads and returns the neximBytes bytes fronfileld (or up to the
end of the file, if fewer thanumBytes bytes are left).

seek fileld offset 2origin - ?
Positionfileld so that the next access startefiget bytes from
origin . Origin may bestart , current , orend, and defaults to
start . Returns an empty string.

tell fileld

Returns the current access positionfiletd

Table 11.2. A summary of the Tcl commands for manipulating files, cont'd.

Basic file 1/0

The Tcl commands for file 1/0 are similar to the procedures in the C standard 1/O library,
both in their names and in their behavior. Here is a script dglted that illustrates
most of the basic features of file I/O:
#1/usr/local/bin/tclsh
if {$argc = 2} {
error "Usage: tgrep pattern fileName"

}
set f [open [lindex $argv 1] r]
set pat [lindex $argv 0]
while {[gets $f line] >= 0} {
if [regexp $pat $line] {
puts stdout $line
}

close $f

This script behaves much like the UNgXep program: you can invoke it from your shell
with two arguments, a regular expression pattern and a file name, and it will print out all of
the lines in the file that match the pattern.

Whentclsh processes evaluates the script it makes the command-line arguments
available as a list in variabégv , with the length of that list in variabsegc . After
making sure that it received enough arguments, the script invokepghecommand on
the file to search, which is the second argunt@péen takes two arguments, the name of a
file and an access mode. The access mode provides information such as whether you'll be

DRAFT (8/12/93): Distribution Restricted

100

Accessing Files

Note:

reading the file or writing it, and whether you want to append to the file or access it from
the beginning. The access mode may have one of the following values:

r Open for reading only. The file must already exist. This is the default if
the access mode isn't specified.

r+ Open for reading and writing; the file must already exist.

W Open for writing only. Truncate the file if it already exists, otherwise
create a new empty file.

w+ Open for reading and writing. Truncate the file if it already exists, oth-
erwise create a new empty file.

a Open for writing only and set the initial access position to the end of the
file. If the file doesn'’t exist then create a new empty file.

a+ Open the file for reading and writing and set the initial access position
to the end of the file. If the file doesn’t exist then create a new empty
file.

The access mode may also be specified as a list of POSIX flagBBRLYCREATand
TRUNCSee the reference documentation for more information about these flags.

Theopen command returns a string suchfige3 that identifies the open file. This
file identifieris used when invoking other commands to manipulate the open file, such as
gets , puts , andclose . Normally you will save the file identifier in a variable when
you open a file and then use that variable to refer to the open file. You should not expect
the identifiers returned lgpen to have any particular format.

Three file identifiers have well-defined names and are always available to you, even if
you haven't explicitly opened any files. Thesestdén , stdout , andstderr ;they
refer to the standard input, output, and error channels for the process in which the Tcl
script is executing.

After opening the file to search, ttggep script reads the file one line at a time with
thegets commandGets normally takes two arguments: a file identifier and the name of
a variable. It reads the next line from the open file, discards the terminating newline char-
acter, stores the line in the named variable, and returns a count of the number of characters
stored into the variable. If the end of the file is reached before reading any characters then
gets stores an empty string in the variable and retttns
Tcl also provides a second fornmgets where the line is returned as the result of the
command, and a commarehd for non-line-oriented input.

For each line in the file thgrep script matches the line against the pattern and
prints it usingputs if it matches. Theputs command takes two arguments, which are a
file identifier and a string to prirfPuts adds a newline character to the string and outputs
the line on the given file. The script usédout as the file identifier so the line is printed
on standard output.

Whentgrep reaches the end of the fiets will return-1 , which ends thavhile
loop. The script then closes the file with th@se command; this releases the resources
associated with the open file. In most systems there is a limit on how many files may be
open at one time in an application, so it is important to close files as soon as you are fin-

DRAFT (8/12/93): Distribution Restricted

11.3 Output buffering 101

11.3

ished reading or writing them. In this example the close is unnecessary, since the file will
be closed automatically when the application exits.

Output buffering

11.4

Theputs command uses the buffering scheme of the C standard I/O library. This means
that information passed futs may not appear immediately in the target file. In many
cases (particularly if the file isn’t a terminal device) output will be saved in the applica-
tion’s memory until a large amount of data has accumulated for the file, at which point all
of the data will be written out in a single operation. If you need for data to appear in a file
immediately then you should invoke tthesh command:

flush $f

Theflush command takes a file identifier as its argument and forces any buffered output
data for that file to be written to the fillush doesn’t return until the data has been writ-
ten. Buffered data is also flushed when a file is closed.

Random access to files

File 1/0 is sequential by default: eagbts orread command returns the next bytes
after the previougets orread command, and eagluts command writes its data
immediately following the data written by the previgugs command. However, you
can use theeek , tell , andeof commands to access files non-sequentially.

Each open file has atcess positioarwhich is the location in the file where the next
read or write will occur. When a file is opened the access position is set to the beginning or
end of the file, depending on the access mode you specifipena After each read or
write operation the access position increments by the number of bytes transferred. The
seek command may be used to change the current access position. In its simplest form
seek takes two arguments, which are a file identifier and an integer offset within the file.
For example, the command

seek $f 2000
changes the access position for the file so that the next read or write will start at byte num-
ber 2000 in the file.

Seek can also take a third argument that specifies an origin for the offset. The third
argument must be eithetart , current , orend. Start produces the same effect as
if the argument is omitted: the offset is measured relative to the start of tikufilent
means that the offset is measured relative to the file's current access positiemg and
means that the offset is measured relative to the end of the file. For example, the following
command sets the access position to 100 bytes before the end of the file:

seek $f -100 end

DRAFT (8/12/93): Distribution Restricted

102

Accessing Files

Note:

11.5

If the origin iscurrent orend then the offset may be either positive or negative; for
start the offset must be positive.

It is possible to seek past the current end of the file, in which case the file may contain a
hole. Check the documentation for your operating system for more information on what
this means.

Thetell command returns the current access position for a particular file identifier:
tell $f
0 186
This allows you to record a position and return to that position later on.

Theeof command takes a file identifier as argument and refuond to indicate
whether the most recegeéts orread command for the file attempted to read past the
end of the file:

eof $f
o o

The current working directory

11.6

Tcl provides two commands that help to manage the current working dirgmtahand

cd. Pwdtakes no arguments and returns the full path name of the current working direc-
tory. Cd takes a single argument and changes the current working directory to the value of
that argument. I€d is invoked with no arguments then it changes the current working
directory to the home directory of the user running the Tcl sariptuses the value of the
HOMEenvironment variable as the path name of the home directory).

Manipulating file names: glob and file

Tcl has two commands for manipulating filemesas opposed to file contentggob and
file . Theglob command takes one or more patterns as arguments and returns a list of
all the file names that match the pattern(s):
glob *.c *.h
0 main.c hash.c hash.h
Glob uses the matching rules of thiging match command (see Section 10.1). In
the above examplglob returns the names of all files in the current directory that end in
.c or.h .Glob also allows patterns to contain comma-separated lists of alternatives
between braces, as in the following example:
glob {{src,backup}/*.[ch]}
0 src/main.c src/hash.c src/hash.h backup/hash.c

DRAFT (8/12/93): Distribution Restricted

11.6 Manipulating file names: glob and file 103

Note:

Glob treats this pattern as if it were actually multiple patterns, one containing each of the
strings, as in the following example:

glob {src/*.[ch]} {backup/*.[ch]}
The extra braces around the patterns in these examples are needed to keep the brackets

inside the patterns from triggering command substitution. They are removed by the Tcl
parser in the usual fashion before invoking the command procedugéofor.

If aglob pattern ends in a slash then it only matches the names of directories. For
example, the command
glob */
will return a list of all the subdirectories of the current directory.
If the list of file names to be returned dgipb is empty then it normally generates an
error. However, if the first argumentgtob , before any patterns,i8ocomplain then
glob will not generate an error if its result is an empty list.
The second command for manipulaing file naméiteis . File is a general-pur-
pose command with many options that can be used both to manipulate file names and also
to retrieve information about files. See Tables 11.3 and 11.4 for a summary of the options
tofile . This section discusses the name-related options and Section 11.7 describes the
other options.The commands in this section operate purely on file names. They make no
system calls and do not check to see if the names actually correspond to files.
File dirname returns the name of the directory containing a particular file:
file dirname /a/b/c
O /a/b
file dirname main.c
o .
File extension returns the extension for a file name (all the characters starting
with the last in the name), or an empty string if the name contains no extension:
file extension src/main.c
0 .c
File rootname returns everything in a file name except the extension:
file roothame src/main.c
0 src/main
file rootname foo
0 foo
Lastly,file tail returns the last element in a file's path name (i.e. the name of the
file within its directory):
file tail /a/b/c
0 c
file tail foo
0 foo

DRAFT (8/12/93): Distribution Restricted

104

Accessing Files

file atime name
Returns a decimal string giving the time at whichriédene was last
accessed, measured in seconds from 12:00 A.M. on January 1, 1970.
file dirname name

Returns all of the charactersriame up to but not including the lakt
character. Returns if name contains no slashes,if the last slash in
name s its first character.

file executable

name
Returnsl if name is executable by the current udgmntherwise.

file exists

name
Returnsl if name exists and the current user has search privilege for th
directories leading to if) otherwise.

file extension

name

Returns all of the charactersriame after and including the last dot.
Returns an empty string if there is no doh&me or no dot after the last
slash inname.

file isdirectory

name
Returnsl if name is a directoryD otherwise.

file isfile name
Returnsl if name is an ordinary fileQ otherwise.

file Istat name arrayName
Invokes thdstat system call omame and sets elements of
arrayName to hold information returned Hgtat . This option is
identical to thestat option unles®iame refers to a symbolic link, in
which case this command returns information about the link instead of
file it points to.

file mtime name
Returns a decimal string giving the time at whichrfédene was last
modified, measured in seconds from 12:00 A.M. on January 1, 1970.

file owned name
Returnsl if name is owned by the current usér,otherwise.

file readable name
Returnsl if name is readable by the current us@mtherwise.

file readlink name

Returns the value of the symbolic link givenriame (the name of the file
it points to).

Table 11.3. A summary of the options for tHilke command (continued in Table 11.4).

DRAFT (8/12/93): Distribution Restricted

11.7 File information commands 105

11.7

file rootname name
Returns all of the charactersriame up to but not including the last
character. Returnsame if it doesn'’t contain any dots or if it doesn'’t
contain any dots after the last slash.

file size name
Returns a decimal string giving the size of fitene in bytes.

file stat name arrayName
Invokesstat system call omame and sets elements afrayName to
hold information returned bstat . The following elements are set, each
as a decimal stringitime , ctime , dev, gid , ino , mode, mtime ,
nlink , size , anduid .

file tail name
Returns all of the charactersriame after the last character. Returns
name if it contains no slashes.

file type name
Returns a string giving the type of filame. The return value will be one
of file ,directory , characterSpecial , blockSpecial ,fifo

link , orsocket .

file writable name

Returnsl if name is writable by the current usé€,otherwise.

Table 11.4. A summary of the options for tHile command, cont'd.

File information commands

In addition to the options already discussed in Section 11.6 aboyie thecommand
provides many other options that can be used to retrieve information about files. Each of
these options exceptat andlstat has the form
file option name

whereoption specifies the information desired, suclesists orreadable or
size , andname is the name of the file. Table 11.3 summarizes all of the options for the
file command.

Theexists ,isfile ,isdirectory , andtype options return information about
the nature of a file=ile exists returnsl if there exists a file by the given name &nd
if there is no such file or the current user doesn't have search permission for the directories
leading to it.File isfile returnsl if the file is an ordinary disk file arfif it is
something else, such as a directory or deviceHile.isdirectory returnsl if the
file is a directory an@ otherwiseFile type returns a string such e |, direc-
tory , orsocket that identifies the file type.

DRAFT (8/12/93): Distribution Restricted

106

Accessing Files

Thereadable ,writable , andexecutable options retur® or1 to indicate
whether the current user is permitted to carry out the indicated action on the file. The
owned option returnd. if the current user is the file's owner abatherwise.

Thesize option returns a decimal string giving the size of the file in bifites.
mtime returns the time when the file was last modified. The time value is returned in the
standard POSIX form for times, namely an integer that counts the number of seconds
since 12:00 A.M. on January 1, 1970. Htiene option is similar tantime except that
it returns the time when the file was last accessed.

Thestat option provides a simple way to get many pieces of information about a
file at one time. This can be significantly faster than invofleag many times to get the
pieces of information individuall¥ile stat also provides additional information that
isn't accessible with any other file options. It takes two additional arguments, which are
the name of a file and the name of a variable, as in the following example:

file stat main.c info

In this case the name of the filemsin.c and the variable nameirfo . The variable

will be treated as an array and the following elements will be set, each as a decimal string:
atime Time of last access.
ctime Time of last status change.

dev Identifier for device containing file.
gid Identifier for the file’s group.
ino Serial number for the file within its device.

mode Mode bits for file.
mtime Time of last modification.

nlink Number of links to file.
size Size of file, in bytes.
uid Identifier for the user that owns the file.

Theatime , mtime , andsize elements have the same values as produced by the corre-
spondingfile options discussed above. For more information on the other elements,
refer to your system documentation for that system call; each of the elements is
taken directly from the corresponding field of the structure returnsthby.

Thelstat andreadlink options are useful when dealing with symbolic links,
and they can only be used on systems that support symbolicHiltkkstat is iden-
tical tofile stat for ordinary files, but when it is applied to a symbolic link it returns
information about the symbolic link itself, wherdis stat will return information
about the file the link points tBile readlink returns the contents of a symbolic link,
i.e. the name of the file that it refers to; it may only be used on symbolic links. For all of
the otheffile commands, if the name refers to a symbolic link then the command oper-
ates on the target of the link, not the link itself.

DRAFT (8/12/93): Distribution Restricted

11.8 Errors in system calls 107

11.8 Errors in system calls

Most of the commands described in this chapter invoke calls on the operating system, and
in many cases the system calls can return errors. This can happen, for example, if you
invokeopen orfile stat on a file that doesn't exist, or if an I/O error occurs in read-
ing a file. The Tcl commands detect these system call errors and in most cases the Tcl
commands will return errors themselves. The error message will identify the error that
occurred:
open bogus
O couldn't open "bogus": no such file or directory
When an error occurs in a system call Tcl also setertioeCode variable to pro-
vide more precise information. You may find this information useful as part of error recov-
ery so that, for example, you can determine exactly why the the file wasn't accessible
(Was there no such file? Was it protected to prevent access? ...). If a system call error has
occurred therrrorCode will consist of a list with three elements:

set errorCode

O POSIX ENOENT {no such file or directory}
The first element is alway¥OSIX to indicate that the error occurred in a POSIX system
call. The second element is the official name for the eEOENTN the above exam-
ple). Refer to your system documentation or to the includerfif®.h for a complete
list of the error names for your system. These names adhere to the POSIX standard as
much as possible. The third element is the error message that corresponds to the error.
This string usually appears in the error message returned by the Tcl command. Tcl uses the
standard list of error messages provided by your system, if there is one, and adheres to the
POSIX standard as much as possible.

DRAFT (8/12/93): Distribution Restricted

108 Accessing Files

DRAFT (8/12/93): Distribution Restricted

Chapter 12
Processes

12.1

Tcl provides several commands for dealing with processes. You can create new processes
with theexec command, or you can create new processesopigh and then use file

I/O commands to communicate with them. You can access process identifiers with the

pid command. You can read and write environment variables usimgtheariable and

you can terminate the current process withettie command. Like the file commands in
Chapter 11, these commands are only available on systems that support POSIX kernel
calls. Table 12.1 summarizes the commands related to process management.

Invoking subprocesses with exec

Theexec command creates one or more subprocesses and waits until they complete
before returning. For example,

exec rm main.o
executesm as a subprocess, passes it the argumait.o , and returns aftem com-
pletes. The argumentséaec are similar to what you would type as a command line to a
shell program such &h orcsh . The first argument texec is the name of a program to
execute and each additional argument forms one argument to that subprocess.

To execute a subprocessec looks for an executable file with a name equal to
exec ’s first argument. If the name containé ar starts with~ thenexec checks the sin-
gle file indicated by the name. Otherwiseec checks each of the directories in B&TH
environment variable to see if the command name refers to an executable file in that direc-
tory. Exec uses the first executable that it finds.

109

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

110

Processes

exec ?-keepnewline ? 2- ?arg “7arg ..?
Executes command pipeline specifiedaby 's using one or more
subprocesses and returns the pipeline’s standard output or an empty st
output is redirected (the trailing newline, if any, is dropped unless
keepnewline is specified). I/O redirection may be specified witk<,
and> and several other forms and pipes may be specified wiftihe last
arg is & then the pipeline is executed in background and the return val
a list of its process ids.

exit ?code ?
Terminates process, returningde to parent as exit statuSode must be
an integerCode defaults to 0.

open | command ?access ?
Treatscommandas a list with the same structure as argumerggeo
and creates subprocess(es) to execute command(s). Dependougss ,
creates pipes for writing input to pipeline and reading output from it.

pid Hleld ?
If fileld is omitted, returns the process identifier for the current proce
Otherwise returns a list of all the process ids in the pipeline associated
fileld (which must have been opened using |).

Table 12.1. A summary of Tcl commands for manipulating processes.

Exec collects all of the information written to standard output by the subprocess and
returns that information as its result, as in the following example:

exec echo wc tcl.h
O 618 2641 21825 tcl.h

If the last character of output is a newline tee&ac removes the newline. This behavior
may seem strange but it malkesc consistent with other Tcl commands,which don't
normally terminate the last line of the result; you can retain the newline by specifying
-keepnewline as the first argument &xec .

Exec supports I/O redirection in a fashion similar to the UNIX shells. For example, if
one of the arguments &xec is “>foo ” (or if there is a >” argument followed by a
“foo " argument), then output from the process is placed ifidile instead of returning
to Tcl asexec ’s result. In this casexec 's result will be an empty strinfexec also sup-
ports several other forms of output redirection, suckra® append to a filez& to redi-
rect both standard output and standard error2antb redirect standard error
independently from standard output.

Standard input may be redirected using either <<. The< form causes input to be
taken from a file. In the< form the following argument is not a file name, but rather an

DRAFT (8/12/93): Distribution Restricted

12.1 Invoking subprocesses with exec 111

Note:

immediate value to be passed to the subprocess as its standard input. The following com-
mand uses< to write data to a file:
exec cat << "test data" > foo

The string test input " is passed te@at as its standard inputat copies the string
to its standard ouput, which has been redirected tfwfile If no input redirection is spec-
ified then the subprocess inherits the standard input channel from the Tcl application.

You can also invoke a pipeline of processes instead of a single process, @shg
the following example:

exec grep #include tclint.h | wc

| 8 25 212
Thegrep program extracts all the lines containing the stri#tig¢lude ” from the file
tclint.h . These lines are then piped to Wheprogram, which computes the number of

lines, words, and characters in tirep output and prints this information on its standard
output. Thewnc output is returned as the resulteskec .

If the last argument texec is & then the subprocess(es) will be executed in back-
ground.Exec will return immediately, without waiting for the subprocesses to complete.
Its return value will be a list containing the process identifiers for all of the processes in
the pipeline; standard output from the subprocesses will go to the standard output of Tcl
application unless redirected. No errors will be reported for abnormal exits or standard
error output, and standard error for the subprocesses will be directed to the standard error
channel of the Tcl application.

If a subprocess is suspended or exits abnormally (i.e., it is killed or returns a non-zero
exit status), or if it generates output on its standard error channel and standard error was
not redirected, theaxec returns an error. The error message will consist of the output
generated by the last subprocess (unless it was redirected)witiowed by an error
message for each process that exited abnormally, followed by the information generated
on standard error by the processes, if any. In additioe; will set theerrorCode
variable to hold information about the last process that terminated abnormally, if any (see
the reference documentation for details).

Many UNIX programs are careless about the exit status that they return. If you invoke
such a program witlexec and it accidentally returns a non-zero status theretter

command will generate a false error. To prevent these errors from aborting your scripts,
invokeexec inside acatch command.

Althoughexec 's features are similar to those of the UNIX shells there is one impor-
tant differenceexec does not perform any file name expansion. For example, suppose
you invoke the following command with the goal of removingalffiles in the current
directory:

exec rm *.0
O rm: *.0 nonexistent

DRAFT (8/12/93): Distribution Restricted

112

Processes

12.2

Rmreceives *.0 " as its argument and exits with an error when it cannot find a file by this
name. If you want file name expansion to occur you can uggabe command to get it,
but not in the obvious way. For example, the following command will not work:

exec rm [glob *.0]

O rm: a.o b.o nonexistent

This fails because the list of file names tijlab returns is passed tm as a single argu-
ment. If, for example, there exist two files,a.0 andb.o , then rm’s argument will be
“a.0 b.o "; since there is no file by that namma will return an error. The solution to
this problem is the one described in Section 7.5euaé to reparse thglob output so
that it gets divided into multiple words. For example, the following command will do the
trick:

eval exec rm [glob *.0]
In this caseeval concatenates its arguments to produce the string

exec rma.o b.o
which it then evaluates as a Tcl script. The namesandb.o are passed ton as sepa-
rate arguments and the files are deleted as expected.

I/0 to and from a command pipeline

Note:

You can also create subprocesses usingpgeae command; once you've done this you
can then use commands ligets andputs to interact with the pipeline. Here are two
simple examples:

set f1 [open {|tbl | ditroff -ms} w]

set f2 [open |prog r+}
If the first character of the “file name” passedpen is the pipe symbdl then the argu-
ment isn't really a file name at all. Instead, it specifies a command pipeline. The remainder
of the argument after tHeis treated as a list whose elements have exactly the same mean-
ing as the arguments to theec commandOpen will create a pipeline of subprocesses
just as forexec and it will return an identifier that you can use to transfer data to and from
the pipeline. In the first example the pipeline is opened for writing, so a pipe is used for
standard input to thibl process and you can invogats to write data on that pipe; the
output fromtbl goes tdditroff , and the output frorditroff goes to the standard
output of the Tcl application. The second example opens a pipeline for both reading and
writing so separate pipes are createdofog 's standard input and standard output. Com-
mands likeputs can be used to write datagmog and commands likgets can be
used to read the output frgonog .
When writing data to a pipeline, dont forget that output is buffered: it probably will not

actually be sent to the child process until you invokdltisa command to force the
buffered data to be written.

DRAFT (8/12/93): Distribution Restricted

12.3 Process ids 113

12.3

When you close a file identifier that corresponds to a command pipelimépdbe
command flushes any buffered output to the pipeline, closes the pipes leading to and from
the pipeline, if any, and waits for all of the processes in the pipeline to exit. If any of the
processes exit abnormally thelose returns an error in the same wayeasc .

Process ids

12.4

Tcl provides three ways that you can access process identifiers. First, if you invoke a pipe-
line in background usingxec thenexec returns a list containing the process identifiers
for all of the subprocesses in the pipeline. You can use these identifers, for example, if you
wish to kill the processes. Second, you can invok@ithecommand with no arguments
and it will return the process identifier for the current process. Third, you can ipidoke
with a file identifier as argument, as in the following example:
set f [open {| tbl | ditroff -ms} w]
pid $f
0 7189 7190
If there is a pipeline corresponding to the open file, as in the example, thpd them-
mand will return a list of identifiers for the processes in the pipeline.

Environment variables

12.5

Environment variables can be read and written using the standard Tcl variable mechanism.
The array variablenv contains all of the environment variables as elements, with the
name of the element anv corresponding to the name of the environment variable. If you
modify theenv array, the changes will be reflected in the process’s environment variables
and the new values will also be passed to any child process creatededtlor open .

Terminating the Tcl process with exit

If you invoke theexit command then it will terminate the process in which the com-
mand was executelixit takes an optional integer argument. If this argument is pro-
vided then it is used as the exit status to return to the parent pdedi€ates a normal
exit and non-zero values correspond to abnormal exits; values oth@rahda are rare.
If no argument is given texit then it exits with a status 6f Sinceexit terminates the
process, it doesn't have any return value.

DRAFT (8/12/93): Distribution Restricted

114 Processes

DRAFT (8/12/93): Distribution Restricted

Chapter 13
Managing Tcl Internals

13.1

This chapter describes a collection of commands that allow you to query and manipulate
the internal state of the Tcl interpreter. For example, you can use these commands to see if
a variable exists, to find out what entries are defined in an array, to monitor all accesses to
a variable, to rename or delete a command, or to handle references to undefined com-
mands. Tables 13.1 and 13.2 summarize the commands.

Querying the elements of an array

Thearray command provides information about the elements currently defined for an
array variable. It provides this information in several different ways, depending on the first
argument passed to it. The commandy size returns a decimal string indicating
how many elements are defined for a given array variable and the coramand
names returns a list whose entries are the names of the elements of a given array variable:
set currency(France) franc
set "currency(Great Britain)" pound

set currency(Germany) mark
array size currency

o 3
array names currency
O {Great Britain} France Germany
For each of these commands the final argument must be the name of an array variable. The
list returned byarray names does not have any particular order.

115

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

116 Managing Tcl Internals

array anymore name searchld
Returnsl if there are any more elements to process in seaaichld
of arrayname, O if all elements have already been returned.
array donesearch name searchid
Terminates searctearchld of arrayname and discard any state
associated with the search. Returns an empty string.
array names name
Returns a list containing the names of all the elements of rarag.
array nextelement name searchld
Returns the name of the next element in seseanchld of arrayname,
or an empty string if all elements have already been returned in this se

array size name
Returns a decimal string giving the number of elements in aenae.
array startsearch name
Initializes a search through all of the elements of ameage. Returns a
search identifier that may be passedrtay nextelement , array

anymore , orarray donesearch.

auto_mkindex dir pattern
Scans all of the files in diretodir whose names matgattern (using
the glob-style rules daftring match) and generates a fitelindex
indir that allows the files to be auto-loaded.

info option “argarg ..?
Returns information about the state of the Tcl interpreter. See Table 13,

rename old new
Renames commarald tonew, or delete®ld if new is an empty string.
Returns an empty string.

time script 2count ?
Executesscript count times and returns a string giving the average
elapsed time per executicdbount defaults to 1.

Table 13.1. A summary of commands for manipulating Tcl's internal state (continued in Tak
13.2).

Thearray names command can be used in conjunction Vidtreach to iterate
through the elements of an array. For example, the code below deletes all elements of an
array with values that a@or empty:

foreach i [array names a] {

if {($a($i) =="") || ($a($i) == 0))}{
unset a($i)

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 117

Note:

13.2

trace variable name ops command
Establishes a trace on variabkme such thatommandis invoked
whenever one of the operations giveropg is performd omame. Ops
must consist of one or more of the charaaterg oru. Returns an empty
string.

trace vdelete name ops command
If there exists a trace for variablame that has the operations and
command given bgps andcommand removes that trace so that its
command will not be executed anymore. Returns an empty string.

trace vinfo name
Returns a list with one element for each trace currently set on variable
name. Each element is a sub-list with two elements, which arepgheand
commandassociated with that trace.

unknown cmd ?arg arg ...?
This command is invoked by the Tcl interpreter whenever an unknown
command name is encounter€aindwill be the unknown command name
and thearg ’s will be the fully-substituted arguments to the command. T
result returned bynknown will be returned as the result of the unknown
command.

Table 13.2. Commands for manipulating Tcl’s internal state, cont'd.

Thearray command also provides a second way to search through the elements of an
array, using thestartsearch ~ , anymore, nextelement , anddonesearch

options. This approach is more general thanftireach approach given above, and in
some cases it is more efficient, but it is more verbose thdordaeh approach and

isnt needed very often. See the reference documentation for details.

The info command

13.21

Theinfo command provides information about the state of the interpreter. It has more
than a dozen options, which are summarized in Tables 13.3 and 13.4.

Information about variables

Several of thénfo options provide information about variablego exists returns
a0 or1 value indicating whether or not there exists a variable with a given name:
setx 24
info exists x
o1

DRAFT (8/12/93): Distribution Restricted

118

Managing Tcl Internals

info args procName

Returns a list whose elements are the names of the arguments to proce
procName, in order.

info body procName

Returns the body of procedyseocName .

info cmdcount

Returns a count of the total number of Tcl commands that have been
executed in this interpreter.

info commands ?7pattern ?

Returns a list of all the commands defined for this interpreter, including
built-in commands, application-defined commands, and procedures. If
pattern is specified then only the command names matqattgrn

are returnedsfring match s rules are used for matching).

info default

procName argName varName

Checks to see if argumeatgName to procedur@procName has a default
value. If so, stores the default value in varialeleName and returnd..
Otherwise, return® without modifyingvarName.

info exists

varName
Returnsl if there exists a variable namearName in the current context,
0 if no such variable is currently accessible.

info globals

Ppattern ?

Returns a list of all the global variables currently defineglatfern is
specified, then only the global variable names matqgbatigrn are
returned §tring match 's rules are used for matching).

info level

Pnumber ?
If number isn’t specified, returns a number giving the current stack levé
(O corresponds to top-level, to the first level of procedure call, and so
on). Ifnumber is specified, returns a list whose elements are the name
arguments for the procedure call at leveinber .

info library

Returns the full path name of the library directory in which standard Tcl
scripts are stored.

info locals

Ppattern ?
Returns a list of all the local variables defined for the current procedure
an empty string if no procedure is activepdfitern is specified then
only the local variable names matchipattern are returnedstring
match ’s rules are used for matching).

Table 13.3. A summary of the options for thiefo command (continued in Table 13.4).

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 119

info procs Ppattern ?
Returns a list of the names of all procedures currently definpdttérn
is specified then only the procedure names matgiattgrn are
returned §tring match s rules are used for matching).

info script
If a script file is currently being evaluated then this command returns th
name of that file. Otherwise it returns an empty string.

info tclversion
Returns the version number for the Tcl interpreter in the form
major .minor , wheremajor andminor are each decimal integers.
Increments iminor correspond to bug fixes, new features, and
backwards-compatible chang®&&ajor increments only when
incompatible changes occur.

info vars Ppattern ?
Returns a list of all the names of all variables that are currently accessi
If pattern is specified then only the variable names matcpattern
are returnedsfring match ’s rules are used for matching).

Table 13.4. A summary of the options for tliefo command, cont'd.

unset x
info exists x

o o

The optionsrars |, globals , andlocals return lists of variable names that meet
certain criterialnfo vars returns the names of all variables accessible at the current
level of procedure calinfo globals returns the names of all global variables, regard-
less of whether or not they are accessible;iafadlocals returns the names of local
variables, including arguments to the current procedure, if any, but not global variables. In
each of these commands an additional pattern argument may be supplied. If the pattern is
supplied then only variable names matching that pattern (using the reteagf
match) will be returned.

For example, suppose that global varialgleball andglobal2 have been
defined and that the following procedure is being executed:

proc test {argl arg2} {
global globall

set locall 1
set local2 2

}

Then the following commands might be executed in the procedure:

DRAFT (8/12/93): Distribution Restricted

120 Managing Tcl Internals

info vars
O globall argl arg2 local2 locall
info globals
O global2 globall
info locals
O argl arg2 local2 locall
info vars *al*
O globall local2 locall

13.2.2 Information about procedures

Another group ofnfo options provides information about procedures. The command
info procs returns a list of all the Tcl procedures that are currently definedinfike
vars , it takes an optional pattern argument that restricts the names returned to those that
match a given patterinfo body ,infoargs , andinfo default return informa-
tion about the definition of a procedure:
proc maybePrint {a b {c 24}} {

if {$a < $h}{
puts stdout “c is $c"
}

}
info body maybePrint

if {$a < $b} {
puts stdout “c is $c"

}

info args maybePrint
0 abc
info default maybePrint a x
g o
info default maybePrint ¢ x
o1
set x
o 24
Info body returns the procedure’s body exactly as it was specified fardlse com-
mand.Info args returns a list of the procedure’s argument names, in the same order
they were specified foroc . Info default returns information about an argument’s
default value. It takes three arguments: the name of a procedure, the name of an argument
to that procedure, and the name of a variable. If the given argument has no default value
(e.g.a in the above exampldpfo default returns0. If the argument has a default

DRAFT (8/12/93): Distribution Restricted

13.2 The info command 121

13.2.3

value € in the above example) thérfo default returnsl and sets the variable to
hold the default value for the argument.

As an example of how you might use the commands from the previous paragraph,
here is a Tcl procedure that writes a Tcl script file. The script will contain Tcl code in the
form of proc commands that recreate all of the procedures in the interpreter. The file can
then besource ’d in some other interpreter to duplicate the procedure state of the origi-
nal interpreter. The procedure takes a single argument, which is the name of the file to
write:

proc printProcs file {
set f [open $file w]
foreach proc [info procs] {
set argList {}
foreach arg [info args $proc] {
if [info default $proc $arg default] {
lappend argList [list $arg $default]
}else {
lappend argList $arg
}

}
puts $f [list proc $proc $argList \
[info body $proc]]

close $f
}
Info provides one other option related to procedunds:level . If info
level is invoked with no additional arguments then it returns the current procedure invo-
cation level0 if no procedure is currently active,if the current procedure was called
from top-level, and so on. iififo level is given an additional argument, the argument
indicates a procedure level ainfo level returns a list whose elements are the name
and actual arguments for the procedure at that level. For example, the following procedure
prints out the current call stack, showing the name and arguments for each active proce-
dure:
proc printStack {} {
set level [info level]

for {set i 1} {$i < $level} {incr i} {
puts “"Level $i: [info level $i]"
}

Information about commands

Info commands is similar toinfo procs except that it returns information about all
existing commands, not just procedures. If invoked with no arguments, it returns a list of
the names of all commands; if an argument is provided, then it is a pattern in the sense of
string match and only command names matching that pattern will be returned.

DRAFT (8/12/93): Distribution Restricted

122

Managing Tcl Internals

13.2.4

13.3

The commandhfo cmdcount returns a decimal string indicating how many com-
mands have been executed in this Tcl interpreter. It may be useful during peformance tun-
ing to see how many Tcl commands are being executed to carry out various functions.

The commandhfo script indicates whether or not a script file is currently being
processed. If so then the command returns the name of the innermost nested script file that
is active. If there is no active script file thafo script returns an empty string. This
command is used for relatively obscure purposes such as disallowing command abbrevia-
tions in script files.

Tclversion and library

Info tclversion returns the version number for the Tcl interpreter in the form
major . minor . Each ofmajor andminor is a decimal string. If a new release of Tcl
contains only backwards-compatible changes such as bug fixes and new features, then its
minor version number increments and the major version number stays the same. If a new
release contains changes that are not backwards-compatible, so that existing Tcl scripts or
C code that invokes Tcl's library procedures will have to be modified, then the major ver-
sion number increments and the minor version number resets to O.

The commandhfo library returns the full path name of the Tcl library direc-
tory. This directory is used to hold standard scripts used by Tcl, such as a default definition
for theunknown procedure described in Section 13.6 below.

Timing command execution

Thetime command is used to measure the performance of Tcl scripts. It takes two argu-
ments, a script and a repetition count:

time {set a xyz} 10000

O 92 microseconds per iteration
Time will execute the given script the number of times given by the repetition count,
divide the total elapsed time by the repetition count, and print out a message like the above
one giving the average number of microseconds per iteration. The reason for the repetition
count is that the clock resolution on most workstations is many milliseconds. Thus any-
thing that takes less than tens or hundreds of milliseconds cannot be timed accurately. To
make accurate timing measurements, | suggest experimenting with the repetition count
until the total time for thédme command is a few seconds.

DRAFT (8/12/93): Distribution Restricted

13.4 Tracing operations on variables 123

13.4

Tracing operations on variables

Thetrace command allows you to monitor the usage of one or more Tcl variables. Such
monitoring is calledracing. If a trace has been established on a variable then a Tcl com-
mand will be invoked whenever the variable is read or written or unset. Traces can be used
for a variety of purposes:

* monitoring the variable’'s usage (e.g. by printing a message for each read or write oper-
ation)

* propagating changes in the variable to other parts of the system (e.g. to ensure that a
particular widget always displays the picture of a person named in a given variable)

* restricting usage of the variable by rejecting certain operations (e.g. generate an error
on any attempt to change the variable’s value to anything other than a decimal string) or
by overriding certain operations (e.g. recreate the variable whenever it is unset).

Here is a simple example that causes a message to be printed when either of two vari-
ables is modified:
trace variable color w pvar
trace variable a(length) w pvar
proc pvar {name element op} {
if {$element 1= "} {
set name ${name}($element)
}

upvar $name x
puts "Variable $name set to $x"

}

The firsttrace command arranges for procedpkar to be invoked whenever variable
color is written:variable specifies that a variable trace is being createldr
gives the name of the variablespecifies a set of operations to trace (any combination of
r for readw for write, andu for unset), and the last argument is a command to invoke.
The second trace command sets up a trace for eléamgih of arraya.

Whenevercolor ora(length) is modified, Tcl will invokepvar with three
additional arguments, which are the variable’s name, the variable’s element name (if it is
an array element, or an empty string otherwise), and an argument indicating what opera-
tion was actually invoked (for readw for write, oru for unset). For example, if the com-
mand ‘set color purple " is executed, Tcl will evaluate the command
“pvar color {} purple ” because of the trace. 16ét a(length) 108
invoked, the trace commangvar a length w " will be evaluated.

Thepvar procedure does three things. First, if the traced variable is an array element
thenpvar generates a complete name for the variable by combining the array name and
the element name. Second, the procedureumes to make the variable’s value acces-
sible inside the procedure as local variahl&inally, it prints out the variable’s name and
value on standard output. For the two accesses in the previous paragraph the following
messages will be printed:

is

DRAFT (8/12/93): Distribution Restricted

124

Managing Tcl Internals

Note:

Variable color set to purple
Variable a(length) set to 108

The example above set traces on individual variables. It's also possible to set a trace

on an entire array, as with the command

trace variable a w pvar
wherea is the name of an array variable. In this qass will be invoked whenever any
element ofa is modified.

Write traces are invoked after the variable’s value has been modified but before
returning the new value as the result of the write. The trace command can write a new
value into the variable to override the value specified in the original write, and this value
will be returned as the result of the traced write operation. Read traces are invoked just
before the variable’s result is read. The trace command can modify the variable to affect
the result returned by the read operation. Tracing is temporarily disabled for a variable
during the execution of read and write trace commands. This means that a trace command
can access the variable without causing traces to be invoked recursively.

If a read or write trace returns an error of any sort then the traced operation is aborted.
This can be used to implement read-only variables, for example. Here is a script that
forces a variable to have a positive integer value and rejects any attempts to set the vari-
able to a non-integer value:

trace variable size w forcelnt
proc forcelnt {name element op} {
upvar $name x ${name}_old x_old
if regexp {"[0-9]*$} $x] {
set x $x_old
error "value must be a postive integer”

set x_old $x
}
By the time the trace command is invoked the variable has already been modified, so if
forcelnt wants to reject a write it must restore the old value of the variable. To do this
it keeps a shadow variable with a suffiofd ” to hold the previous value of the variable.
If an illegal value is stored into the varialfiercelnt restores the variable to its old
value and generates an error:
set size 47
0 47
set size red
0 can't set "size": value must be a postive integer
set size
0o 47

Theforcelnt procedure only works for simple variables, but it could be extended to
handle array elements as well.

DRAFT (8/12/93): Distribution Restricted

13.5 Renaming and deleting commands 125

135

It is legal to set a trace on a non-existent variable; the variable will continue to appear
to be unset even though the trace exists. For example, you can set a read trace on an array
and then use it to create new array elements automatically the first time they are read.
Unsetting a variable will remove the variable and any traces associated with the variable,
then invoke any unset traces for the variable. It is legal, and not unusual, for an unset trace
to immediately re-establish itself on the same variable so that it can monitor the variable if
it should be re-created in the future.

To delete a trace, invokeace vdelete with the same arguments passed to
trace variable . For example, the trace createdcofor above can be deleted with
the following command:

trace vdelete color w pvar
If the arguments ttrace vdelete don’t match the information for any existing trace
exactly then the command has no effect.

The commandrace vinfo returns information about the traces currently set for a
variable. It is invoked with an argument consisting of a variable name, as in the following
example:

trace vinfo color
O {wpvar}

The return value frortrace vinfo is a list, each of whose elements describes one

trace on the variable. Each element is itself a list with two elements, which give the opera-
tions traced and the command for the trace. The traces appear in the result list in the order
they will be invoked. If the variable specifieditace vinfo is an element of an array,

then only traces on that element will be returned; traces on the array as a whole will not be
returned.

Renaming and deleting commands

Therename command can be used to change the command structure of an application. It
takes two arguments:

rename old new

Renamedoes just what its name implies: it renames the command that used to have the
nameold so that it now has the namew. Newmust not already exist as a command
whenrename is invoked.

Renamecan also be used to delete a command by invoking it with an empty string as
thenew name. For example, the following script disables file I/0O from an application by
deleting the relevant commands:

foreach cmd {open close read gets puts} {
rename $cmd {}
}

DRAFT (8/12/93): Distribution Restricted

126

Managing Tcl Internals

13.6

Any Tcl command may be renamed or deleted, including the built-in commands as
well as procedures and commands defined by an application. Renaming or deleting a built-
in command is probably a bad idea in general, since it will break scripts that depend on the
command, but in some situations it can be useful. For exampkxithecommand as
defined by Tcl just exits the process immediately (see Section 12.5). If an application
wants to have a chance to clean up its internal state before exiting, then it can create a
“wrapper” arouncexit by redefining it:

rename exit exit.old

proc exit status {
application-specific cleanup

exit.old $status
}
In this example thexit command is renamed &xit.old and a nevexit proce-
dure is defined, which performs the cleanup required by the application and then calls the
renamed command to exit the process. This allows existing scripts thetitalto be
used without change while still giving the application an opportunity to clean up its state.

Unknown commands

The Tcl interpreter provides a special mechanism for dealing with unknown commands. If
the interpreter discovers that the command name specified in a Tcl command doesn’t exist,
then it checks for the existence of a command namk&down . If there is such a com-
mand then the interpreter invok@sknown instead of the original command, passing the
name and arguments for the non-existent commandkoown . For example, suppose
that you type the following commands:

set x 24

createDatabase library $x
If there is no command namerkateDatabase then the following command is
invoked:

unknown createDatabase library 24
Notice that substitutions are performed on the arguments to the original command before
unknown is invoked. Each argumenttmknown will consist of one fully-substituted
word from the original command.

Theunknown procedure can do anything it likes to carry out the actions of the com-
mand, and whatever it returns will be returned as the result of the original command. For
example, the procedure below checks to see if the command name is an unambiguous
abbreviation for an existing command; if so, it invokes the corresponding command:

DRAFT (8/12/93): Distribution Restricted

13.6 Unknown commands 127

proc unknown {name args} {
set cmds [info commands $name*]
if {[llength $cmds] != 1} {
error "unknown command \"$name\""

uplevel $cmds $args
}
Note that when the command is re-invoked with an expanded name, it must be invoked
usinguplevel so that the command executes in the same variable context as the original
command.
The Tcl script library includes a default versioruaknown that peforms the follow-
ing functions, in order:

1. If the command is a procedure that is defined in a library file, source the file to define
the procedure, then re-invoke the command. This is callesloading it is described
in the next section.

2. If there exists a program with the name of the command, usxéiee command to
invoke the program. This feature is callto-execFor example, you can typés“”
as a command anahknown will invoke “execls " to list the contents of the current
directory. If the command doesn'’t specify redirection then auto-exec will arrange for
the command’s standard input, standard output, and standard error to be redirected to
the corresponding channels of the Tcl application. This is different than the normal
behavior ofexec but it allows interactive programs suchnagre andvi to be
invoked directly from a Tcl application.

3. If the command name has one of several special forms sutth ‘ath&n compute a
new command using history substitution and invoke it. For example, the if the com-
mand is ¥ " then the previous command is re-invoked. See Chapter 14 for more infor-
mation on history substitution.

4. If the command name is a unique abbreviation for an existing command, then the
abbreviated command name is expanded and the command is re-invoked.

The last three actions are intended as conveniences for interactive use, and they only occur
if the command was invoked interactively. You should not depend on these features when
writing scripts. For example, you should not try to use auto-exec in scripts: always use the
exec command explicitly.

If you don't like the default behavior of thmknown procedure then you can write
your own version or modify the library version to provide additional functions. If you
don’t want any special actions to be taken for unknown commands you can just delete the
unknown procedure, in which case errors will occur whenever unknown commands are
invoked.

DRAFT (8/12/93): Distribution Restricted

128

Managing Tcl Internals

13.7 Auto-loading

One of the most useful functions performed byuhknown procedure iswuto-loading
Auto-loading allows you to write collections of Tcl procedures and place them in script
files in library directories. You can then use these procedures in your Tcl applications
without having to explicithsource the files that define them. You simply invoke the
procedures. The first time that you invoke a library procedure it wont exishlsmwn

will be called.Unknown will find the file that defines the procedure, source the file to
define the procedure, and then re-invoke the original command. The next time the proce-
dure is invoked it will exist so the auto-loading mechanism won't be triggered.

Auto-loading provides two benefits. First, it makes it easy to build up large libraries
of useful procedures and use them in Tcl scripts. You need not know exactly which files to
source to define which procedures, since the auto-loader takes care of that for you. The
second benefit of auto-loading is efficiency. Without auto-loading an appliation must
source all of its script files when it starts up. Auto-loading allows an application to start
up without loading any script files at all; the files will be loaded later when their proce-
dures are needed, and some files may never be loaded at all. Thus auto-loading reduces
startup time and saves memory.

Using the auto-loader is straightforward and involves three steps. First, create a
library as a set of script files in a single directory. Normally these files have names that end
in“.tcl ", for exampledb.tcl orstretch.tcl . Each file can contain any number of
procedure definitions. | recommend keeping the files relatively small, with just a few
related procedures in each file. In order for the auto-loader to handle the files properly, the
proc command for each procedure definition must be at the left edge of a line, and it
must be followed immediately by white space and the procedure’s name on the same line.
Other than this the format of the script files doesn’'t matter as long as they are valid Tcl
scripts.

The second step is to build an index for the auto-loader. To do this, start up a Tcl
application such aglsh and invoke thauto_mkindex command as in the follow-
ing example:

auto_mkindex . *.tcl
Auto_mkindex isn't a built-in command but rather a procedure in Tcl's script library.
Its first argument is a directory hame and the second argument is a glob-style pattern that
selects one or more script files in the directdito_mkindex scans all of the files
whose names match the pattern and builds an index that indicates which procedures are
defined in which files. It stores the index in a file caiédthdex in the directory. If you
modify the files to add or delete procedures then you should regenerate the index.

The third step is to set the variablgto _path in the applications that wish to use
the library. Theauto_path variable contains a list of directory names. When the auto-
loader is invoked it searches the directoriealito_path in order, looking in their
tclindex files for the desired procedure. If the same procedure is defined in several

DRAFT (8/12/93): Distribution Restricted

13.7 Auto-loading 129

libraries then the auto-loader will use the one from the earliest directangdnpath
Typically auto_path will be set as part of an application’s startup script. For example,
if an application uses a library in directduogr/local/tcl/lib/shapes then it
might include the following command in its startup script:
set auto_path \

[linsert $auto_path 0 /usr/local/tcl/lib/shapes]
This will add/usr/local/tcl/lib/shapes to the beginning of the path, retaining
all the existing directories in the path such as those for the Tcl and Tk script libraries but
giving higher priority to procedures definedusr/local/tcl/lib/shapes .
Once a directory has been properly indexed and addaddopath , all of its proce-
dures become available through auto-loading.

DRAFT (8/12/93): Distribution Restricted

130 Managing Tcl Internals

DRAFT (8/12/93): Distribution Restricted

Chapter 14
History

141

This chapter describes Tcl's history mechanism. In applications where you type com-
mands interactively, the history mechanism keeps track of recent commands and makes it
easy for you to re-execute them without having to completely re-type them. You can also
create new commands that are slight variations on old commands without having to com-
pletely retype the old commands, for example to fix typos. Tcl's history mechanism pro-
vides many of the features availablecgh , but not with the same syntax in all cases.

History is implemented by th@story command, which is summarized in Table 14.1 .
Only a few of the most commonly used history features are described in this chapter; see
the reference documentation for more complete information.

The history list

Each command that you type interactively is entered ihistary list Each entry in the
history list is called aevent it contains the text of a command plus a serial number iden-
tifying the command. The command text consists of exactly the characters you typed,
before the Tcl parser peforms substitutionssfdi , etc. The serial number starts out at
for the first command you type and is incremented for each successive command.
Suppose you type the following sequence of commands to an interactive Tcl program:
setx 24
sety [expr $x*2.6]
Incr X
At this point the history list will contain three events. You can examine the contents of the
history list by invokinghistory with no arguments:

131

Copyright © 1993 Addison-Wesley Publishing Company, Inc.

All rights reserved. Duplication of this draft is permitted by individuals for personal use only. Any
other form of duplication or reproduction requires prior written permission of the author or pub-
lisher. This statement must be easily visible on the first page of any reproduced copies. The publisher
does not offer warranties in regard to this dratft.

132

History

history
Returns a string giving the event number and command for each event
the history list.

history keep count

Changes the size of the history list so thatcthent most recent events
will be retained. The initial size of the list is 20 events.

history nextid
Returns the number of the next event that will be recorded in the histor

history redo Pevent ?
Re-executes the command recordecef@nt and returns its result.

history substitute old new 7?event ?
Retrieve the command recorded évent |, replace any occurrences of
old bynew in it, execute the resulting command, and returns its result.
Bothold andnew are simple strings. The substitution uses simple equa
checks: no wild cards or regular expression features are supported.

Table 14.1. A summary of some of the options for thistory = command. Several options ha
been omitted; see the reference documentation for details.

history
O 1setx?24

2 set y [expr $x*2.6]

3incr x

4 history
The value returned Ryistory is a human-readable string describing what's on the his-
tory list, which also includes thestory command. The result bifstory is intended
for printing out, not for processing in Tcl scripts; if you want to write scripts that process
the history list, you'll probably find it more convenient to use ofligtory options
described later in the reference documentation, sublstsy event

The history list has a fixed size, which is initially 20. If more commands than that

have been typed then only the most recent commands will be retained. The size of the his-
tory list can be changed with thestory keep command:

history keep 100

This command changes the size of the history list so that in the future the 100 most recent
commands will be retained.

DRAFT (8/12/93): Distribution Restricted

14.2 Specifying events 133

14.2 Specifying events
Several of the options of théstory command require you to select an event from the
history list; the symbatvent is used for such arguments in Table 14.1. Events are spec-
ified as strings with one of the following forms:

Positive number: Selects the event with that serial number.

Negative number: Selects an event relative to the current evéntefers to
the last command? refers to the one before that, and so
on.

Anything else: Selects the most recent event that matches the string. The
string matches an event either if it is the same as the first
characters of the event’s command, or if it matches the
event’'s command using the matching rulesstang
match .

Suppose that you had just typed the three commands from page 131 above. The command
“incr x "can be referred to as evefit or3 orinc , and ‘set y [expr $x*2.6] "
can be referred to as evefit or 2 or*2* . If an event specifier is omitted then it defaults
to-1.

14.3 Re-executing commands from the history list

Theredo andsubstitute options tohistory will replay commands from the his-
tory list. History redo retrieves a command and re-executes it just as if you had
retyped the entire command. For example, after typing the three commands from page
131, the command
history redo
replays the most recent command, whicimés x ; it will increment the value of vari-
ablex and return its new valu@). If an additional argument is provided fustory
redo , it selects an event as described in Section 14.2; for example,
history redo 1
o 24
replays the first commanset x 24
Thehistory substitute command is similar thistory redo except that
it modifies the old command before replaying it. It is most commonly used to correct typo-
graphical errors:
set x "200 illimeters"
O 200 illimeters
history substitute ill mill -1
O 200 millimeters

DRAFT (8/12/93): Distribution Restricted

134

History

14.4

History substitute takes three arguments: an old string, a new string, and an event
specifier (the event specifier can be defaulted, in which case it defadlts toretrieves

the command indicated by the event specifier and replaces all instances of the old string in
that command with the new string. The replacement is done using simple textual compari-
son with no wild-cards or pattern matching. Then the resulting command is executed and
its result is returned.

Shortcuts implemented by unknown

Note:

145

Thehistory redo andhistory substitute commands are quite bulky; in the
examples above it took more keystrokes to typénibtery commands than to retype

the commands being replayed. Fortunately there are several shortcuts that allow the same
functions to be implemented with fewer keystrokes:

I Replays the last command: samelaistory redo .

I event Replays the command given byent ; same as
“history redo event ”.

~old “new Replay the last command, substituting new for old; same as
“history substitute old new ".
All of these shortcuts are implemented by dh&nown procedure described in Section
13.6.Unknown detects commands that have the forms described above and invokes the
correspondindnistory commands to carry them out.

If your system doesnt use the default versiamkfown provided by Tcl then these
shortcuts may not be available.

Current event number: history nextid

The commandhistory nextid returns the number of the next event to be entered into
the history list:
history nextid

o 3
It is most commonly used for generating prompts that contain the event number. Many
interactive applications allow you to specify a Tcl script to generate the prompt; in these
applications you can includehsstory nextid command in the script so that your
prompt includes the event number of the command you are about to type.

DRAFT (8/12/93): Distribution Restricted

