
Table of Contents

Ruby in Review.. 1
Some Words on Object Orientation.. 2
Basic Ruby Syntax and Semantics.. 7
OOP in Ruby.. 27
Dynamic Aspects of Ruby... 35
Training Your Intuition: Things to Remember.. 39

Chapter 1. Ruby in Review

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 1. Ruby in Review
IN THIS CHAPTER

• Some Words on Object Orientation
• Basic Ruby Syntax and Semantics
• OOP in Ruby
• Dynamic Aspects of Ruby
• Training Your Intuition: Things to Remember

Language shapes the way we think and determines what we can think about.

—Benjamin Lee Whorf

It is worth remembering that a new programming language is sometimes viewed as a
panacea, especially by its adherents; however, there is no one language that will supplant
all the others, no one tool that is unarguably the best for every possible task. There are
many different problem domains in the world, and there are many possible constraints on
problems within those domains.

Above all, there are different ways of thinking about these problems, stemming from the
diverse backgrounds and personalities of the programmers themselves. For these reasons,
no foreseeable end to the proliferation of languages is in site. As long as there is a
multiplicity of languages, there will be a multiplicity of personalities defending and
attacking them. In short, there will always be "language wars." In this book, however, we
do not intend to participate in them.

Yet, in the constant quest for what is newer and better program notations, we have
stumbled across ideas that endure, that transcend the context in which they were created.
Just as Pascal borrowed from Algol, just as Java borrowed from C, so will every language
borrow from its predecessors. A language is both a toolbox and a playground; it has its
extremely practical side, but it also serves as a test bed for new ideas that may or may not
be widely accepted by the computing community.

One of the most far reaching of these ideas is the concept of object-oriented programming
(OOP). Although many would argue that the overall significance of OOP is evolutionary
rather than revolutionary, no one can say that it has not had an impact on the industry.
Twenty years ago, object orientation was for the most part an academic curiosity; today it
is a universally accepted paradigm.

Chapter 1. Ruby in Review Page 1 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

In fact, the ubiquitous nature of OOP has led to a significant amount of "hype" in the
industry. In a classic paper of the late 80s, Roger King observed, "If you want to sell a cat
to a computer scientist, you have to tell him it's object-oriented." Additionally, there are
differences of opinion about what OOP really is, and even among those who are essentially
in agreement there are differences in terminology.

It is not our purpose here to contribute to the hype. We do find OOP to be a useful tool and
a meaningful way of thinking about problems; however, we do not claim that it cures
cancer.

As for the exact nature of OOP, we have our pet definitions and favorite terminology, but
we make these known only in order to communicate effectively, not to quibble over
semantics.

We mention all this because it is necessary to have a basic understanding of OOP in order
to proceed to the bulk of this book and understand the examples and techniques. Whatever
else might be said about Ruby, it is definitely an object-oriented language.

Some Words on Object Orientation
Before talking about Ruby specifically, it is a good idea to talk about object-oriented
programming in the abstract. These first few pages will provide a review of those concepts
with only cursory references to Ruby, before we proceed in a few pages to the review of the
Ruby language itself.

In object-oriented programming, the fundamental unit is the object, which is an entity that
serves as a container for data and also controls access to the data. Associated with an object
is a set of attributes, which are essentially no more than variables belonging to the object.
(In this book, we will loosely use the ordinary term variable for an attribute.) Also
associated with an object is a set of functions that provide an interface to the functionality
of the object. These functions are called methods.

It is essential that any OOP language provide encapsulation. As the term is commonly
used, it means first that the attributes and methods of an object are associated specifically
with that object or bundled with it. Secondly, it means that the scope of those attributes
and methods is by default the object itself (an application of the well-known principle of
data hiding, which is not specific to OOP).

An object is considered to be an instance or manifestation of an object class (usually simply
called a class). The class may be thought of as the blueprint or pattern; the object itself is
the thing created from that blueprint or pattern. A class is often thought of as an abstract
type—a more complex type than, for example, an integer or character string.

Chapter 1. Ruby in Review Page 2 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When an object (an instance of a class) is created, it is said to be instantiated. Some
languages have the notion of an explicit constructor and destructor for an object—
functions that perform whatever tasks are needed to initialize an object and, respectively,
to "destroy" it. We may as well mention prematurely that Ruby has what might be
considered a constructor but certainly does not have any concept of a destructor (because
of its well-behaved garbage-collection mechanism).

Occasionally a situation arises in which a piece of data is more "global" in scope than a
single object, and it is inappropriate to put a copy of the attribute into each instance of the
class. For example, consider a class called MyDogs, from which three objects are created:
fido, rover, and spot. For each dog, there might be such attributes as age and date of
vaccination. But suppose we want to store the owner's name. We could certainly put it in
each object, but that is wasteful of memory and at the very least a misleading design. Clearly
the owner_name attribute belongs not to any individual object but rather to the class itself.
When it is defined that way (and the syntax will vary from one language to another), it is
called a class attribute (or class variable).

Of course, there are many situations in which a class variable might be needed. For
example, suppose we want to keep a count of how many objects of a certain class have been
created. We could use a class variable that was initialized to zero and incremented with
every instantiation; the class variable would be associated with the class and not with any
particular object. In scope, this variable would be just like any other attribute, but there
would only be one copy of it for the entire class and the entire set of objects created from
that class.

To distinguish between class attributes and ordinary attributes, the latter are sometimes
explicitly called object attributes (or instance attributes). We will use the convention that
any attribute is assumed to be an instance attribute unless we explicitly call it a class
attribute.

Just as an object's methods are used to control access to its attributes and provide a clean
interface to them, so is it sometimes appropriate or necessary to define a method that is
associated with a class. A class method, not surprisingly, controls access to the class
variables and also performs any tasks that might have class-wide effects rather than merely
object-wide effects. As with data attributes, methods are assumed to belong to the object
rather than the class, unless stated otherwise.

It is worth mentioning that there is a sense in which all methods are class methods. We
should not suppose that when a hundred objects are created, we actually copy the code for
the methods a hundred times! However, the rules of scope assure us that each object
method operates only on the object whose method is being called, providing us with the
extremely necessary illusion that object methods are associated strictly with their objects.

Chapter 1. Ruby in Review Page 3 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We come now to one of the real strengths of object-oriented programming: inheritance.
Inheritance is a mechanism that allows us to extend a previously existing entity by adding
features to create a new entity. In short, inheritance is a way of reusing code. (Easy, effective
code reuse has long been the Holy Grail of computer science, resulting in the invention
decades ago of parameterized subroutines and code libraries. OOP is only one of the later
efforts in realizing this goal.)

Typically we think of inheritance at the class level. If we have a specific class in mind and
there is a more general case already in existence, we can define our new class to inherit the
features of the old one. For example, suppose we have the class Polygon, which describes
convex polygons. If we then find ourselves wanting to deal with the Rectangle class, we
can inherit from Polygon so that Rectangle now has all the attributes and methods that
Polygon has. For example, there might be a method that would calculate perimeter by
iterating over all the sides and adding their lengths. Assuming everything is implemented
properly, this method would automatically work for the new class; the code would not have
to be rewritten.

When class B inherits from class A, we say that B is a subclass of A—or conversely, A is the
superclass of B. In slightly different terminology, we may say that A is a base class or parent
class, and B is a derived class or child class.

A derived class, as you have seen, may treat a method inherited from its base class as if it
were its own. On the other hand, it may redefine that method entirely, if it is necessary to
provide a different implementation; this is referred to as overriding a method. In addition,
most languages provide a way for an overridden method to call its namesake in the parent
class; that is, the method foo in B knows how to call method foo in A if it wants to. (Any
language not providing this feature is under suspicion of not being truly object oriented.)
Essentially the same is true for data attributes.

The relationship between a class and its superclass is an interesting and important one; it
is usually described as the is-a relationship, because a Square "is a" Rectangle, and a
Rectangle "is a" Polygon, and so on. Therefore, if we create an inheritance hierarchy
(which tends to exist in one form or another in any OOP language), we see that the more
specific entity "is a" subclass of the more general entity at any given point in the hierarchy.
Note that this relationship is transitive—in the preceding example, you can easily see that
a Square "is a" Polygon. Note also that the relationship is not commutative—we know
that every Rectangle is a Polygon, but not every Polygon is a Rectangle.

This brings us to the topic of multiple inheritance. It is conceivable that there might be
more than one class from which a new class could inherit. For example, the classes Dog
and Cat can both inherit from the class Mammal, and Sparrow and Raven can inherit
from WingedCreature. But what if we want to define the class Bat? It can reasonably

Chapter 1. Ruby in Review Page 4 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

inherit from both Mammal and WingedCreature. This corresponds well with our
experience in real life, in which things are not members of just one category but of many
non-nested categories.

Multiple inheritance (MI) is probably the most controversial area in OOP. One camp will
point out the potential for ambiguity that must be resolved. For example, if Mammal and
WingedCreature both have an attribute called size (or a method called eat), which
one will be referenced when we refer to it from a Bat object? Another related difficulty is
the "diamond inheritance problem" (so called because of the shape of its inheritance
diagram), with both superclasses inheriting from a single common superclass. For
example, imagine that Mammal and WingedCreature both inherit from Organism; the
hierarchy from Organism to Bat forms a diamond. But what about the attributes that the
two intermediate classes both inherit from their parent? Does Bat get two copies of each
of them, or are they merged back into single attributes because they come from a common
ancestor in the first place?

These are both issues for the language designer rather than the programmer. Different
OOP languages deal with the issues in different ways. Some will provide rules allowing one
definition of an attribute to "win out," or a way to distinguish between attributes of the
same name, or even a way of aliasing or renaming the identifiers. This in itself is considered
by many to be an argument against MI—the mechanisms for dealing with name clashes
and the like are not universally agreed upon but are very much language dependent. C++
offers a fairly minimal set of features for dealing with ambiguities; those of Eiffel are
probably better, and those of Perl are different from both.

The alternative, of course, is to disallow MI altogether. This is the approach taken by such
languages as Java and Ruby. This sounds like a drastic compromise; however, as you'll see
later, it is not as bad as it sounds. We will look at a viable alternative to traditional multiple
inheritance, but we must first discuss yet another OOP buzzword: polymorphism.

Polymorphism is the term that perhaps inspires the most semantic disagreement in the
field. Everyone seems to know what it is, but everyone has a different definition. (In recent
years, "What is polymorphism?" has become a popular interview question. If it is asked of
you, I recommend quoting an expert like Bertrand Meyer or Bjarne Stroustrup; that way,
if the interviewer disagrees, his beef is with the expert and not with you.)

The literal meaning of polymorphism is "the ability to take on multiple forms or shapes."
In its broadest sense, this refers to the ability of different objects to respond in different
ways to the same message (or method invocation).

Damian Conway, in his book Object-Oriented Perl, distinguishes meaningfully between
two kinds of polymorphism. The first, inheritance polymorphism, is what most
programmers are referring to when they talk about polymorphism.

Chapter 1. Ruby in Review Page 5 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When a class inherits from its superclass, we know (by definition) that any method present
in the superclass is also present in the subclass. Therefore, a chain of inheritance represents
a linear hierarchy of classes that can respond to the same set of methods. Of course, we
must remember that any subclass can redefine a method; that is what gives inheritance its
power. If I call a method on an object, typically it will be either the one it inherited from
its superclass or a more appropriate (more specialized) method tailored for the subclass.

In strongly typed languages such as C++, inheritance polymorphism establishes type
compatibility down the chain of inheritance (but not in the reverse direction). For example,
if B inherits from A, then a pointer to an A object can also point to a B object. However, the
reverse is not true. This type compatibility is an essential OOP feature in such languages
—indeed it almost sums up polymorphism—but polymorphism certainly exists in the
absence of static typing (as in Ruby).

The second kind of polymorphism Conway identifies is interface polymorphism. This does
not require any inheritance relationship between classes; it only requires that the
interfaces of the objects have methods of a certain name. The treatment of such objects as
being the same "kind" of thing is therefore a type of polymorphism (although in most
writings it is not explicitly referred to as such).

Readers familiar with Java will recognize that it implements both kinds of polymorphism.
A Java class can extend another class, inheriting from it via the extends keyword, or it
may implement an interface, acquiring a known set of methods (which must then be
overridden) via the implements keyword. Because of the syntax requirements, the Java
interpreter is able to determine at compile time whether a method can be invoked on a
particular object.

Ruby supports interface polymorphism but in a different way, providing modules whose
methods may be mixed in to existing classes (interfacing to user-defined methods that are
expected to exist). This, however, is not the way modules are usually used. A module
consists of methods and constants that may be used as though they were actual parts of
that class or object; when a module is mixed in via the include statement, this is
considered to be a restricted form of multiple inheritance. (According to the language
designer Yukihiro Matsumoto, this can be viewed as "single inheritance with
implementation sharing.") This is a way of preserving the benefits of MI without suffering
all the consequences.

It's worth noting that Ruby supports implicit interface polymorphism by virtue of the
simple fact that any class can "masquerade" as another class. In many cases, the only type
information we care about is whether a certain set of methods is implemented—that is,
whether an object responds to certain messages. Sometimes we write code for a Duck
object when really all we care about is for it to implement a quack method. Yet, if

Chapter 1. Ruby in Review Page 6 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

something "quacks" like a Duck, for our purposes it is a Duck (with no need to inherit from
that class at all). The set of available methods is arguably the most important type
information.

Languages such as C++ contain the concept of abstract classes—classes that must be
inherited from and cannot be instantiated on their own. This concept does not exist in the
more dynamic Ruby language, although if the programmer really wants, it is possible to
fake this kind of behavior by forcing the methods to be overridden. Whether this is useful
or not is left as an exercise for you, the reader.

The creator of C++, Bjarne Stroustrup, also identifies the concept of a concrete type. This
is a class that exists only for convenience; it is not designed to be inherited from, nor is it
expected that there will ever be another class derived from it. In other words, the benefits
of OOP are basically limited to encapsulation. Ruby does not specifically support this
concept through any special syntax (nor does C++), but it is naturally well suited for the
creation of such classes.

Some languages are considered to be more "purely" object-oriented than others. (We also
use the term radically object oriented.) This refers to the concept that every entity in the
language is an object; every primitive type is represented as a full-fledged class, and
variables and constants alike are recognized as object instances. This is in contrast to such
languages as Java, C++, and Eiffel. In these, the more primitive data types (especially
constants) are not first-class objects, although they may sometimes be treated that way
with "wrapper" classes.

Most object-oriented languages are fairly static; the methods and attributes belonging to
a class, the global variables, and the inheritance hierarchy are all defined at compile time.
Perhaps the largest conceptual leap for a Ruby programmer is that these are all handled
dynamically in Ruby. Definitions and even inheritance can happen at runtime—in fact,
we can truly say that every declaration or definition is actually executed during the running
of the program. Among many other benefits, this obviates the need for conditional
compilation and can produce more efficient code in many circumstances.

This sums up the whirlwind tour of OOP. Throughout the rest of the book, we have tried
to make consistent use of the terms introduced here. Let's proceed now to a brief review
of the Ruby language itself.

Basic Ruby Syntax and Semantics

Bring forth that ruby gem of Badakhshan,That heart's delight, that balm of
Turkestan….

—The Rubaiyat, Omar Khayyam (trans. E. H. Whinfield)

Chapter 1. Ruby in Review Page 7 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In the previous pages, you have already seen that Ruby is a pure, dynamic, OOP language.
Let's now look briefly at some other attributes before summarizing the syntax and
semantics.

Ruby is a scripting language. This should not be construed as meaning that it is not
powerful. It can serve as a "glue language" in the tradition of KornShell and others, or it
can serve as an environment for creating larger self-contained applications. Readers who
are interested in the industry trend toward scripting languages should refer to John
Ousterhout's article "Scripting: Higher-Level Programming for the 21st Century" in the
March 1998 issue of IEEE Computer. (Ousterhout is the creator of the Tcl language.)

Ruby is an interpreted language. Of course, there may be later implementations of a Ruby
compiler for performance reasons, but we maintain that an interpreter yields great benefits
not only in rapid prototyping but in the shortening of the development cycle overall.

Ruby is an expression-oriented language. Why use a statement when an expression will
do? This means, for instance, that code becomes more compact as the common parts are
factored out and repetition is removed.

Ruby is a very high-level language (VHLL). One principle behind the language design is
that the computer should work for the programmer rather than vice versa. The "density"
of Ruby means that sophisticated and complex operations can be carried out with relative
ease as compared to lower-level languages.

Having said all that, let's look more closely at Ruby. This section and the rest of the chapter
concentrate on the Ruby language itself. As mentioned before, this is only a quick
summary, so if you haven't learned it somewhere else, you won't learn it here.

Our first look at Ruby will not concentrate on the language's more complex features. These
are covered in the next two sections. Here, we are concerned with the overall look and feel
of the language and some of its terminology. We'll briefly examine the nature of a Ruby
program before looking at examples.

To begin with, Ruby is essentially a line-oriented language—more so than languages such
as C but not so much as antique languages such as FORTRAN. Tokens can be crowded
onto a single line as long as they are separated by whitespace, as needed. Statements may
occur more than one to a line if they are separated by semicolons; this is the only time the
terminating semicolon is really needed. A line may be continued to the next line by ending
it with a backslash or by letting the parser know that the statement is not complete—for
example, by ending a line with a comma.

There is no main program as such; execution proceeds in general from top to bottom. In
more complex programs, there may be numerous definitions at the top, followed by the

Chapter 1. Ruby in Review Page 8 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

(conceptual) main program at the bottom. However, even in that case, execution proceeds
from the top down because definitions in Ruby are executed.

Keywords and Identifiers
The keywords (or reserved words) in Ruby typically cannot be used for other purposes.
These are as follows:

BEGIN END alias and begin

break case class def defined

do else elsif end ensure

false for if in module

next nil not or redo

rescue retry return self super

then true undef unless until

when while yield

Variables and other identifiers normally start with an alphabetic letter or a special
modifier. The basic rules are as follows:

• Local variables (and pseudo-variables such as self and nil) begin with a lowercase
letter.

• Global variables begin with a dollar sign ($).
• Instance variables (within an object) begin with an "at" sign (@).
• Class variables (within a class) begin with two "at" signs (@@).
• Constants begin with capital letters.

For purposes of forming identifiers, the underscore (_) may be used as a lowercase letter.
Special variables starting with a dollar sign (such as $1 and $/) are not dealt with here.

The following list provides some examples:

• Local variables: alpha, _ident, some_var
• Pseudo-variables: self, nil, __FILE__
• Constants: K6chip, Length, LENGTH
• Instance variables: @foobar, @thx1138, @NOT_CONST
• Class variable: @@phydeaux, @@my_var, @@NOT_CONST
• Global variables: $beta, $B12vitamin, $NOT_CONST

Chapter 1. Ruby in Review Page 9 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Comments and Embedded Documentation
Comments in Ruby begin with a pound sign (#) outside of a string or character constant
and proceed to the end of the line:

x = y + 5 # This is a comment.
This is another comment.
print "# But this isn't."

Embedded documentation is intended to be retrieved from the program text by an external
tool such as RDTOOL. From the point of view of the interpreter, it is like a comment and
can be used as such. Given two lines starting with =begin and =end, everything between
those lines (inclusive) is ignored by the interpreter:

=begin
The purpose of this program
is to cure cancer
and instigate world peace.
=end

Constants, Variables, and Types
In Ruby, variables do not have types, but the data they contain still has types. The simplest
data types are numeric, character, and string.

Some numeric constants are shown in the following list:

• Integer: 237
• Integer (with sign): -123
• Integer (with underscore spacing): 1_048_576
• Octal integer: 0377
• Hexadecimal integer: 0xBEEF
• Floating point: 3.14159
• Floating point (scientific notation): 6.02e23

Character constants in Ruby actually evaluate to integers according to the ASCII code and
are therefore interchangeable with the corresponding integer constants. Here are some
character constants:

• Lowercase x (120): ?x
• Newline: ?\n
• Backslash: ?\\
• Ctrl+D: ?\cd
• Ctrl+X: ?\C-x

Chapter 1. Ruby in Review Page 10 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Meta+X (x ORed with 0x80): ?\M-x
• Meta+Ctrl+X: ?\M-\C-x

Note that all these forms (and some others) can also be embedded in strings, as you'll see
shortly.

Ruby has a wealth of notations available for representing strings; different ones may be
convenient in different situations. Most commonly, a string constant in Ruby is enclosed
between double quotes, as in C.

It is possible to embed "escaped" character constants in a Ruby string in order to express
control characters and the like:

"This is a single line.\n"
"Here are three tabs\ t\t\tand then more text."
"A backslash (\\) must be doubled."

It is also possible to embed variables or even expressions inside these strings. The pound
sign (#) is used to signal that this is being done; typically the variable or expression is
enclosed in braces, but they may be omitted if the expression consists of a single variable
beginning with $ or @. Here are examples:

"The tax rate is #{ taxrate} ."
"Hello, #@yourname; my name is #{ myname} ."
"The sum is #{ a+b+c} ."
"#$num1 times #$num2 equals #{ $num1*$num2} ."

A single-quoted string in Ruby is the same except that no expression substitution is
performed and no backslash processing is done, except \\ and \'. Single-quoted strings
are useful when the strings are to be used more "as is," without the special interpretations.
Here are examples:

'The notation #{ alpha} will not be expanded.'
'We can embed the \\ (backslash) character'
'or the \' (single quote) character.'

For cases where the strings contain punctuation that would normally have to be escaped,
there is a more general form of quote. The percent sign (%) introduces a string delimited
according to rules determined by the character following the percent sign. Basically this
character may be a lowercase q, an uppercase Q, a brace or parenthesis, or some other
character. In the first two cases, there is still a delimiter character following the letter. We'll
discuss each case briefly.

Chapter 1. Ruby in Review Page 11 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A %q string is a generalized single-quoted string; as such, there is no expression
substitution and minimal backslash processing. The delimiter may be any character,
including newline. If an opening brace or parenthesis is used, the corresponding closing
brace or parenthesis closes the string; otherwise, the same character opens and closes the
string. Here are examples:

%q(The notation #{ alpha} will not be expanded.)
%q{ We can embed \\ and \} in this string.}
%q/These characters are not special: " ' # () { } /

A %Q string is a generalized double-quoted string, meaning that substitution and backslash
processing both occur as they normally would. The delimiters behave as with the %q string.
Here are examples:

%Q(We can embed tabs \t\t and newlines and so on.)
%Q/Here, these characters are not special: () " '/
%Q("Hello, #{ name} ," I said to her.)
%Q(He said, "She said, 'Hello.'")

The q or Q may be left out entirely so that the delimiter immediately follows the percent
sign. This delimiter obviously may not be q or Q but also may not be r, w, or x, for reasons
you'll see shortly. In this case, the string once again acts like a double-quoted string. Here
are examples:

%(The variable alpha = #{ alpha} .)
%/Tab \t Carriage return \r Newline \n/
%{ Using a brace makes substitution hard: #\{ beta\} }
%<Less-than greater-than will also work.>
%[As will square brackets.]

Note once again that the closing delimiter is the same as the opening delimiter for most
characters, but a "paired character" used as a delimiter requires the opposite paired
character to close the string. The paired characters are parentheses, brackets, braces, and
the so-called "angle brackets": (), [], {}, and <>, respectively. Note, however, that the
grave accent (`) and single quote (') are not paired characters as some might think.

A special kind of string is worth mentioning here that's primarily useful in small scripts
used to glue together larger programs. The command output string will be sent to the
operating system as a command to be executed, whereupon the output of the command is
substituted back into the string. The simple form of this string uses the grave accent
(sometimes called a back tick or back quote) as a beginning and ending delimiter; the more
complex form uses the %x notation:

Chapter 1. Ruby in Review Page 12 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

`whoami`
`ls –l`
%x[grep –i meta *.html | wc –l]

Regular expressions in Ruby look similar to character strings, but they are used differently.
Many operations in Ruby make sense with regular expressions but not with strings.

For those familiar with Perl, regular expression handling is similar in Ruby. Incidentally,
we'll use the abbreviation regex throughout the remainder of the book; many abbreviate
it as regexp, but that is not as pronounceable.

The typical regex is delimited by a pair of slashes; the %r form can also be used. Here are
some simple regular expressions:

• /Ruby/ Matches the single word Ruby
• /[Rr]uby/ Matches Ruby or ruby
• /^abc/ Matches an instances of abc at the beginning of a line
• %r(xyz$) Matches an instance of xyz at the end of a line
• %r|[0-9]*| Matches any sequence of (zero or more) digits

It is also possible to place a modifier, consisting of a single letter, immediately after a regex.
The modifiers are as follows:

• i Ignores case in regex
• o Performs expression substitution only once
• m Multiline mode (dot matches newline)
• x Extended regex (allows whitespace and comments)

To complete our introduction to regular expressions, here's a list of the most common
symbols and notations available:

• ^ Beginning of a line or string
• $ End of a line or string
• . Any character except newline (unless POSIX)
• \w Word character (digit, letter, or underscore)
• \W Non-word character
• \s Whitespace character (space, tab, newline, and so on)
• \S Non-whitespace character
• \d Digit (same as [0-9])
• \D Non-digit
• \A Beginning of a string
• \Z End of a string or before newline at the end

Chapter 1. Ruby in Review Page 13 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• \z End of a string
• \b Word boundary (outside [] only)
• \B Non-word boundary
• \b Backspace (inside [] only)
• [] Any single character of set
• * Zero or more of the previous subexpression
• *? Zero or more of the previous subexpression (non-greedy)
• + One or more of the previous subexpression
• +? One or more of the previous subexpression (non-greedy)
• {m,n} M to n instances of the previous subexpression
• {m,n}? M to n instances of the previous subexpression (non-greedy)
•

? Zero or one instance of the previous regular expression
• | Alternatives
• () Grouping of subexpressions
• (?#) Comment

An understanding of regex handling is a powerful tool for the modern programmer. A
complete discussion is far beyond the scope of this book. Instead, we refer you to the
definitive work Mastering Regular Expressions by Jeffrey Friedl.

An array in Ruby is a very powerful construct; it may contain data of any type or even
mixed types. As you'll see in a later section, all arrays are instances of the class Array and
therefore have a rich set of methods that can operate on them. An array constant is
delimited by brackets. The following are all valid array expressions:

[1, 2, 3]
[1, 2, "buckle my shoe"]
[1, 2, [3,4], 5]
["alpha", "beta", "gamma", "delta"]

The second example shows an array containing both integers and strings, the third
example shows a nested array, and the fourth shows an array of strings. As in most
languages, arrays are "zero indexed;" for instance, in the last array, "gamma" is element
number 2. Arrays are dynamic and do not need to have a size specified when they are
created.

Because the array of strings is so common (and so inconvenient to type), a special syntax
has been set aside for it, similar to what you have seen before:

%w[alpha beta gamma delta]

Chapter 1. Ruby in Review Page 14 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

%w(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec)
%w/am is are was were be being been/

In these examples, the quotes and commas are not needed; only whitespace separates the
individual elements. In the case of an element that contains whitespace, of course, this
would not work.

An array variable can use brackets to index into the array. The resulting expression can be
both examined and assigned to:

val = myarray[0]
print stats[j]
x[i] = x[i+1]

Another extremely powerful construct in Ruby is the hash, which is also commonly called
an associative array or dictionary. A hash is a set of associations between paired pieces
of data; it is typically used as a lookup table or a kind of generalized array in which the
index need not be an integer. Each hash is an instance of the class Hash.

A hash constant is typically represented between delimiting braces, with the symbol =>
separating the individual keys and values. The key can be thought of as an index where the
corresponding value is stored. There is no restriction on the types of the keys or the
corresponding values. Here are some hashes:

{1=>1, 2=>4, 3=>9, 4=>16, 5=>25, 6=>36}
{ "cat"=>"cats", "ox"=>"oxen", "bacterium"=>"bacteria"}
{ "hydrogen"=>1, "helium"=>2, "carbon"=>12}
{ "odds"=>[1,3,5,7], "evens"=>[2,4,6,8]}
{"foo"=>123, [4,5,6]=>"my array", "867-5309"=>"Jenny"}

A hash variable can have its contents accessed by essentially the same bracket notation
that arrays use:

print phone_numbers["Jenny"]
plurals["octopus"] = "octopi"

It should be stressed, however, that both arrays and hashes have many methods associated
with them; these methods give them their real usefulness. The next section, covering Ruby
OOP, will expand on this a little more.

Operators and Precedence
Now that we have established our most common data types, let's look at Ruby's operators.
They are arranged here in order from highest to lowest precedence:

Chapter 1. Ruby in Review Page 15 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Scope ::
• Indexing []
• Exponentiation **
• Unary positive/negative, etc. + - ! ~
• Multiplication, etc. * / %
• Addition/subtraction + -
• Logical shifts, etc. << >>
• Bitwise and &
• Bitwise or, xor | ^
• Comparison > >= < <=
• Equality, etc. == === <=> != =~ !~
• Boolean and &&
• Boolean or ||
• Range operators
• Assignment = (also +=, -=, *=, etc.)
• Ternary decision ?:
• Boolean negation not
• Boolean and, or and or

Some of these operators serve more than one purpose; for example, the operator << is a
bitwise left shift but is also an append operator (for arrays, strings, and so on) and a marker
for a here-document. Likewise, the plus sign (+) is for addition and for string
concatenation. As you'll see later, many of these operators are just shortcuts for method
names.

Now we have defined most of the data types and many of the possible operations on them.
Before going any further, let's look at an actual sample program.

A Sample Program
In a tutorial, the first program is always "Hello, World!" But in a whirlwind tour like this
one, let's start with something slightly more advanced. Here's a small program to convert
between Fahrenheit and Celsius temperatures:

print "Please enter a temperature and scale (C or F): "
str = gets
exit if not str or not str[0]

str.chomp!
temp, scale = str.split(" ")
if temp !~ /-?[0-9]+/
 print temp, " is not a valid number.\n"
 exit 1
end
temp = temp.to_f

Chapter 1. Ruby in Review Page 16 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

case scale
 when "C", "c"
 f = 1.8*temp + 32
 when "F", "f"
 c = (5.0/9.0)*(temp-32)
 else
 print "Must specify C or F.\n"
 exit 2
end

if c != nil then
 print "#{ c} degrees C\n"
else
 print "#{ f} degrees F\n"
end

Here are some examples of running this program. These show that the program can convert
from Fahrenheit to Celsius and from Celsius to Fahrenheit and that it can handle an invalid
scale or an invalid number:

Please enter a temperature and scale (C or F): 98.6 F
37.0 degrees C

Please enter a temperature and scale (C or F): 100 C
212.0 degrees F

Please enter a temperature and scale (C or F): 92 G
Must specify C or F.

Please enter a temperature and scale (C or F): junk F
junk is not a valid number.

Now, as for the mechanics of the program, we begin with a print statement, which is
actually a call to the predefined function print, to write to standard output. Following
this, we call gets (get string from standard input), assigning the value to str.

Note that any apparently "free-standing" function calls such as print and gets are
actually methods of various predefined classes or objects. In the same way, chomp is a
method that is called with str as a receiver. Method calls in Ruby generally can omit the
parentheses; for example, print "foo" is the same as print("foo").

The variable str holds a character string, but there is no reason it could not hold some
other type instead. In Ruby, data has types but variables do not.

The special method call exit will terminate the program. On this same line is a control
structure called an if modifier. This is like the if statement that exists in most languages,
but backwards; it comes after the action, does not permit an else, and does not require
closing. As for the condition, we are checking two things: Does str have a value, and is it

Chapter 1. Ruby in Review Page 17 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

non-null? In the case of an immediate end-of-file, our first condition will hold; in the case
of a newline with no preceding data, the second condition will hold.

The reason these tests work is that a variable that is undefined has a nil value, and nil
evaluates to false in Ruby. In fact, nil and false evaluate as false, and everything else
evaluates as true. Specifically, the null string "" does not evaluate as false, as it does in
some other languages.

The next statement performs a chomp! operation on the string (to remove any trailing
newline characters). The exclamation point as a prefix serves as a warning that the
operation actually changes the value of its receiver rather than just returning a value. The
exclamation point is used in many such instances to remind the programmer that a method
has a side effect or is more "dangerous" than its unmarked counterpart. The method
chomp, for example, will return the same result but will not modify its receiver.

The next statement is an example of multiple assignment. The split method splits the
string into an array of values, using the space as a delimiter. The two assignable entities
on the left side will be assigned the respective values resulting on the right side.

The if statement that follows uses a simple regex to determine whether the number is
valid; if the string fails to match a pattern consisting of an optional minus sign followed
by one or more digits, it is an invalid number and the program exits. Note that the if
statement is terminated by the keyword end; although it's not needed here, we could have
had an else clause before end. The keyword then is optional; this statement does not
use then, but the one below it does. As for the output, recall that the variable temp could
also have been embedded in the string (as below).

The to_f method is used to convert the string to a floating-point number. We are actually
assigning this floating-point value back to temp, which originally held a string.

The case statement chooses between three alternatives: the case in which the user
specifies a C, specifies an F, or uses an invalid scale. In the first two instances, a calculation
is done; in the third, we print an error and exit.

Ruby's case statement, by the way, is far more general than the example shown here.
There is no limitation on the data types, and the expressions used are all arbitrary and may
even be ranges or regular expressions.

There is nothing mysterious about the computation. However, consider the fact that the
variables c and f are referenced first inside the branches of the case. There are no
declarations as such in Ruby; a variable comes into existence when it is assigned. This

Chapter 1. Ruby in Review Page 18 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

means that when we fall through the case statement, only one of these variables will have
a value.

We use this to determine after the fact which branch was followed so that we can create a
slightly different output in each instance. The comparison of c with nil is effectively a test
of whether c has a value. We do this here only to show that it can be done; obviously two
different print statements could be used inside the case statement if we wished.

You may have noticed that we've used only "local" variables here. This might be somewhat
confusing, because their scope certainly appears to cover the entire program. What's
happening here is that the variables are all local to the top level of the program (written
as toplevel by some). The variables appear "global" because there are no lower-level
contexts in a program this simple; however, if we declared classes and methods, these top-
level variables would not be accessible within them.

Looping and Branching
Let's spend some time looking at control structures. We have already seen the simple if
statement and the if modifier; there are also corresponding structures based on the
keyword unless (which also has an optional else) as well as expression-oriented forms
of if and unless. We summarize all these as follows:

if x < 5 then
 statement1
end

unless x >= 5 then
 statement1
end

if x < 5 then
 statement1
else
 statement2
end

unless x < 5 then
 statement2
else
 statement1
end

statement1 if y == 3

statement1 unless y != 3

x = if a>0 then b else c end

x = unless a<=0 then c else b end

Chapter 1. Ruby in Review Page 19 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this summary, the if and unless forms behave exactly the same. Note that the keyword
then may be omitted except in the final (expression-oriented) cases. Note also that the
modifier forms cannot have an else clause.

The case statement in Ruby is more powerful than in most languages. This multiway
branch can even test for conditions other than equality—for example, a matched pattern.
The test done by the case statement corresponds to the relationship operator (===), which
has a behavior that varies from one object to another. Let's look at an example:

case "This is a character string."
 when "some value"
 print "Branch 1\n"
 when "some other value"
 print "Branch 2\n"
 when /char/
 print "Branch 3\n"
 else
 print "Branch 4\n"
end

This code will print Branch 3. Why? It first tries to check for equality between the tested
expression and one of the strings "some value" or "some other value". This fails,
so it proceeds. The third test is for the presence of a pattern within the tested expression;
that pattern is there, so the test succeeds and the third print statement is performed. The
else clause will always handle the default case in which none of the preceding tests
succeeds.

If the tested expression is an integer, the compared value can be an integer range (for
example, 3..8). In this case, the expression will be tested for membership in that range.
In all instances, the first successful branch will be taken.

As for looping mechanisms, Ruby has a rich set. The while and until control structures
are both pretest loops, and both work as expected: One specifies a continuation condition
for the loop, and the other specifies a termination condition. They also occur in "modifier"
form like if and unless. There is also the loop method of the Kernel module (by default
an infinite loop), and iterators (described later) are associated with various classes.

The following examples assume an array called list, defined something like this:

list = %w[alpha bravo charlie delta echo]

They all step through the array and write out each element:

Loop 1 (while)

Chapter 1. Ruby in Review Page 20 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

i=0
while i < list.size do
 print "#{ list[i]} "
 i += 1
end

Loop 2 (until)
i=0
until i == list.size do
 print "#{ list[i]} "
 i += 1
end

Loop 3 (post-test while)
i=0
begin
 print "#{ list[i]} "
 i += 1
end while i < list.size

Loop 4 (post-test until)
i=0
begin
 print "#{ list[i]} "
 i += 1
end until i == list.size

Loop 5 (for)
for x in list do
 print "#{ x} "
end

Loop 6 ('each' iterator)
list.each do |x|
 print "#{ x} "
end

Loop 7 ('loop' method)
i=0
n=list.size-1
loop do
 print "#{ list[i]} "
 i += 1
 break if i > n
end

Loop 8 ('loop' method)
i=0
n=list.size-1
loop do
 print "#{ list[i]} "
 i += 1
 break unless i <= n
end

Loop 9 ('times' iterator)
n=list.size
n.times do |i|
 print "#{ list[i]} "
end

Chapter 1. Ruby in Review Page 21 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Loop 10 ('upto' iterator)
n=list.size-1
0.upto(n) do |i|
 print "#{ list[i]} "
end

Loop 11 (for)
n=list.size-1
for i in 0..n do
 print "#{ list[i]} "
end

Loop 12 ('each_index')
list.each_index do |x|
 print "#{ list[x]} "
end

Let's examine these in a little detail. Loops 1 and 2 are the "standard" forms of the
while and until loops; they behave essentially the same, but their conditions are
negations of each other. Loops 3 and 4 are the same thing in "post-test" versions; the test
is performed at the end of the loop rather than at the beginning. Note that the use of
begin and end in this context is strictly a kludge or hack; what is really happening is that
a begin/end block (used for exception handling) is followed by a while or until
modifier. For someone really wanting a post-test loop, however, this is effectively the same.

Loops 5 and 6 are arguably the "proper" ways to write this loop. Note the simplicity of these
two compared with the others; there is no explicit initialization and no explicit test or
increment. This is because an array "knows" its own size, and the standard iterator each
(loop 6) handles such details automatically. Indeed, loop 5 is merely an indirect reference
to this same iterator because the for loop will work for any object having the iterator
each defined. The for loop is only shorthand for a call to each; such shorthand is
frequently called syntax sugar because it offers a more convenient alternative to another
syntactic form.

Loops 7 and 8 both make use of the loop construct; as mentioned earlier, loop looks like
a keyword introducing a control structure, but it is really a method of the module
Kernel, not a control structure at all.

Loops 9 and 10 take advantage of the fact that the array has a numeric index; the times
iterator will execute a specified number of times, and the upto iterator will carry its
parameter up to the specified value. Neither of these is truly suitable for this instance.

Loop 11 is a for loop that operates specifically on the index values, using a range, and loop
12 likewise uses the each_index iterator to run through the list of array indexes.

Chapter 1. Ruby in Review Page 22 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In the preceding examples, we have not laid enough emphasis on the "modifier" form of
the while and until loops. These are frequently useful, and they have the virtue of being
concise. We offer these additional examples, both of which mean the same thing:

perform_task() until finished
perform_task() while not finished

One fact is largely ignored here: Loops do not always run smoothly from beginning to end,
in a predictable number of iterations, or ending in a single predictable way. We need ways
to control these loops further.

The first of these is the break keyword, which you see in loops 7 and 8. This is used to
"break out" of a loop; in the case of nested loops, only the innermost one is halted. This
will be intuitive for C programmers.

The keyword retry is used in two contexts: in the context of an iterator and in the context
of a begin/end block (exception handling). Within the body of any iterator (or for loop)
it will force the iterator to restart, reevaluating any arguments passed to the iterator. Note
that it will not work for loops in general (while and until).

The redo keyword is the generalized form of retry for loops. It works for while and
until loops just as retry works for iterators.

The next keyword will effectively jump to the end of the innermost loop and resume
execution from that point. It works for any loop or iterator.

The iterator is an important concept in Ruby, as you have already seen. What you have not
seen is that the language allows user-defined iterators in addition to the predefined ones.

The default iterator for any object is called each. This is significant because it allows the
for loop to be used. However, iterators may be given different names and used for varying
purposes.

As a crude example, consider this multipurpose iterator, which mimics a post-test loop
(like C's do-while or Pascal's repeat-until):

def repeat(condition)
 yield
 retry if not condition
end

In this example, the keyword yield is used to call the block that is specified when the
iterator is called in this way:

Chapter 1. Ruby in Review Page 23 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

j=0
repeat (j<10) do { j+=1; print j,"\n"}

It is also possible to pass parameters via yield, which will be substituted into the block's
parameter list (between vertical bars). As a somewhat contrived example, the following
iterator does nothing but generate integers from 1 to 10, and the call of the iterator
generates the first 10 cubes:

def my_sequence
 for i in 1..10 do
 yield i
 end
end

my_sequence { |x| print x**3, "\n"}

Note that do and end may be substituted for the braces that delimit a block. There are
differences, but they are fairly subtle.

Exceptions
Like many other modern programming languages, Ruby supports exceptions. An
exception is a means of handling errors that has significant advantages over older methods.
Return codes are avoidable, as is the "spaghetti logic" that results from checking them.
Also, the code that detects the error can be distinguished from the code that knows how
to handle the error (because these are often separate anyway).

The raise statement will raise an exception. Note that raise is not a reserved word but
rather a method of the module Kernel. (Its alias is named fail.) Here are examples:

raise # Example 1
raise "Some error message." # Example 2
raise ArgumentError # Example 3
raise ArgumentError, "Invalid data." # Example 4
raise ArgumentError.new("Invalid data.") # Example 5
raise ArgumentError, "Invalid data.", caller[0] # Example 6

In example 1, the last exception encountered is re-raised. In example 2, a
RuntimeError (the default error) is created using the message "Some error
message." In example 3, an ArgumentError is raised; in example 4, this same error is
raised with the message "Invalid data." Example 5 behaves exactly the same as
example 4. Finally, example 6 adds traceback information of the form
"filename:line" or "filename:line:in `method'" (as stored in the array
returned by the caller method or stored in the $a special variable).

Chapter 1. Ruby in Review Page 24 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Now, how do we handle exceptions in Ruby? The begin-end block is used for this
purpose. The simplest form is a begin-end block with nothing but our code inside:

begin # No real purpose.
 # ...
end

This, however, is of no value in catching errors. The block, however, may have one or more
rescue clauses in it. If an error occurs at any point in the code, between begin and
rescue, control will be passed immediately to the appropriate rescue clause. Here's an
example:

begin
 x = Math.sqrt(y/z)
 # ...
rescue ArgumentError
 print "Error taking square root.\n"
rescue ZeroDivisionError
 print "Attempted division by zero.\n"
end

Essentially the same thing can be accomplished by this fragment:

begin
 x = Math.sqrt(y/z)
 # ...
rescue => err
 print err, "\n"
end

Here, the variable err is used to store the value of the exception; printing it causes it to
be translated to some meaningful character string. Note that because the error type is not
specified, the rescue clause will catch every kind of error. The notation rescue =>
variable can be used with or without an error type before the => symbol.

In the event that error types are specified, it may be that an exception does not match any
of these types. For that situation, we are allowed to use an else clause after all the
rescue clauses:

begin
 # Error-prone code...
rescue Type1
 # ...
rescue Type2
 # ...
else

Chapter 1. Ruby in Review Page 25 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # Other exceptions...
end

In many cases, we will want to do some kind of recovery. In that event, the keyword
retry (within the body of a rescue clause) will restart the begin block and try those
operations again:

begin
 # Error-prone code...
rescue
 # Attempt recovery...
 retry
end

Finally, it is sometimes necessary to write code that "cleans up" after a begin-end block.
In the event this is necessary, an ensure clause can be specified:

begin
 # Error-prone code...
rescue
 # Handle exceptions
ensure
 # This code is always executed
end

The code in an ensure clause is always executed before the begin-end block exits. This
happens regardless of whether an exception occurred.

There are two other ways in which exceptions may be caught. First of all, there is a modifier
form of the rescue clause:

x = a/b rescue print "Division by zero!\n"

In addition, the body of a method definition is an implicit begin-end block; the begin
is omitted, and the entire body of the method is subject to exception handling, ending with
the end of the method:

def some_method
 # Code...
rescue
 # Recovery...
end

This sums up the discussion of exception handling as well as the discussion of fundamental
syntax and semantics.

Chapter 1. Ruby in Review Page 26 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Numerous aspects of Ruby have not been discussed here. The next two sections are devoted
to the more advanced features of the language, and the final section is mostly a collection
of Ruby lore that will help the intermediate programmer learn to "think in Ruby."

OOP in Ruby
Ruby has all the elements more generally associated with OOP languages, such as objects
with encapsulation and data hiding, methods with polymorphism and overriding, and
classes with hierarchy and inheritance. It goes farther and adds limited metaclass features,
singleton methods, modules, and mixins.

Similar concepts are known by other names in other OOP languages, but concepts of the
same name may have subtle differences from one language to another. This section
elaborates on the Ruby understanding and usage of these elements of OOP.

Objects
In Ruby, all numbers, strings, arrays, regular expressions, and many other entities are
actually objects. Work is done by executing the methods belonging to the object:

3.succ # 4
 "abc".upcase # "ABC"
 [2,1,5,3,4].sort # [1,2,3,4,5]
someObject.someMethod # some result

In Ruby, every object is an instance of some class; the class contains the implementation
of the methods. The object's class is essentially its type:

 "abc".type # String
 "abc".class # String

In addition to encapsulating its own attributes and operations, an object in Ruby has an
identity.

 "abc".id # 53744407

Built-in Classes
More than 30 built-in classes are predefined in the Ruby class hierarchy. Like many other
OOP languages, Ruby does not allow multiple inheritance, but that does not necessarily
make it any less powerful. Modern object-oriented languages frequently follow the single-
inheritance model. Ruby does support modules and mixins, which are discussed in the

Chapter 1. Ruby in Review Page 27 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

next section. It also implements object IDs, which support the implementation of
persistent, distributed, and relocatable objects.

To create an object from an existing class, the new method is typically used:

myFile = File.new("textfile.txt","w")
myString = String.new("this is a string object")

This is not always explicitly required, however, as shown here:

yourString = "this is also a string object"
aNumber = 5

Variables are used to hold references to objects. As previously mentioned, variables
themselves have no type, nor are they objects themselves; they are simply references to
objects. Here's an example:

x = "abc"

An exception to this is that small immutable objects of some built-in classes, such as
Fixnum, are copied directly into the variables that refer to them. (These objects are no
bigger than pointers, and it is more efficient to deal with them in this way.) In this case,
the assignment makes a copy of the object, and the heap (memory allocation area) is not
used.

Variable assignment causes object references to be shared:

y = "abc"
x = y
x # "abc"

After x = y is executed, variables x and y both refer to the same object:

x.id # 53732208
y.id # 53732208

If the object is mutable, a modification done to one variable will be reflected in the other
one:

x.gsub!(/a/,"x")
y # "xbc"

Chapter 1. Ruby in Review Page 28 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Reassigning one of these variables has no effect on the other, however:

x = "abc"
y # still has value "xbc"

A mutable object can be made immutable using the freeze method:

x.freeze
x.gsub!(/b/,"y") # error

A symbol in Ruby refers to a variable by ID rather than by reference. When we say :x, we
are saying basically the same as x.id (which you saw previously). A colon applied to an
identifier results in a symbol; if the identifier does not already exist, it is created. Among
other uses, a symbol may be used when we want to mention an identifier as opposed to
using it (the classical use/mention distinction); for example, the special method
method_missing, called when a method is not found, gets passed a symbol
corresponding to the unknown method. Any Symbol object has a method called
id2name that returns a string corresponding to the identifier name. Here are examples:

Hearts = :Hearts # This is one way of assigning
Clubs = :Clubs # unique values to constants,
Diamonds = :Diamonds # somewhat like an enumeration
Spades = :Spades # in Pascal or C.

print Hearts.id2name # Prints "Hearts"

Modules and Mixins
Many built-in methods are available from class ancestors. Of special note are the
Kernel methods mixed in to the Object superclass; because Object is universally
available, the methods that are added to it from Kernel are also universally available.
These methods form a very important part of Ruby.

The terms module and mixin are nearly synonymous. A module is a collection of methods
and constants that is external to the Ruby program. It can be used simply for namespace
management, but the most common use of a module is to have its features "mixed" in to
a class (by using include). In this case, it is used as a mixin. (This term, apparently
borrowed from Python, is sometimes written as mix-in, but we write it as a single word.)

An example of using a module for namespace management is the frequent use of the
Math module. To make use of the definition of pi, for example, it is not necessary to include
the Math module; you can simply use Math::PI as the constant.

Chapter 1. Ruby in Review Page 29 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A mixin provides a way of getting some of the benefits of multiple inheritance without
dealing with all the difficulties. It can be considered a restricted form of multiple
inheritance, but the language creator Matz has called it "single inheritance with
implementation sharing."

Note that include appends features of a namespace (a module) to the current space. The
extend method appends functions of a module to an object. With include, the module's
methods become available as instance methods; with extend, they become available as
class methods.

We should mention that load and require do not really relate to modules but rather to
non-module Ruby sources and binaries (statically or dynamically loadable). A load
operation essentially reads a file and inserts it at the current point in the source file so that
its definitions become available at that point. A require operation is similar to a load,
but it will not load a file if it has already been loaded.

Creating Classes
Ruby has numerous built-in classes, and additional classes may be defined in a Ruby
program. To define a new class, the following construct is used:

class ClassName
 # ...
end

The name of the class is itself a global constant and therefore must begin with an uppercase
letter. The class definition can contain class constants, class variables, class methods,
instance variables, and instance methods. Class data is available to all objects of the class,
whereas instance data is only available to the one object. Here's an example:

class Friend
 @@myname = "Fred" # a class variable

 def initialize(name, sex, phone)
 @name, @sex, @phone = name, sex, phone
 # These are instance variables
 end
 def hello # an instance method
 print "Hi, I'm #{ @name} .\n"
 end
 def Friend.our_common_friend # a class method
 print "We are all friends of #{ @@myname} .\n"
 end
end
f1 = Friend.new("Susan","F","555-0123")
f2 = Friend.new("Tom","M","555-4567")
f1.hello # Hi, I'm Susan.

Chapter 1. Ruby in Review Page 30 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

f2.hello # Hi, I'm Tom.
Friend.our_common_friend # We are all friends of Fred.

Because class-level data is accessible throughout the class, it can be initialized at the time
the class is defined. If a method named initialize is defined, it is guaranteed to be
executed right after an instance is allocated. The initialize method is similar to the
traditional concept of a constructor, but it does not have to handle memory allocation.
Allocation is handled internally by new, and deallocation is handled transparently by the
garbage collector.

Now consider this fragment, paying attention to the getmyvar, setmyvar, and
myvar= methods:

class MyClass

 NAME = "Class Name" # class constant

 def initialize # called when object is allocated
 @@count += 1
 @myvar = 10
 end

 def MyClass.getcount # class method
 @@count # class variable
 end

 def getcount # instance returns class variable!
 @@count # class variable
 end

 def getmyvar # instance method
 @myvar # instance variable
 end

 def setmyvar(val) # instance method sets @myvar
 @myvar = val
 end
 def myvar=(val) # Another way to set @myvar
 @myvar = val
 end
end

foo = MyClass.new # @myvar is 10
foo.setmyvar 20 # @myvar is 20
foo.myvar = 30 # @myvar is 30

Here, you see that getmyvar returns the value of @myvar, and setmyvar sets it. (In the
terminology of many programmers, these would be referred to as a getter and a setter,
respectively.) These work fine, but they do not exemplify the Ruby way of doing things.
The method myvar= looks like assignment overloading (although strictly speaking, it
isn't); it is a better replacement for setmyvar, but there is a better way yet.

Chapter 1. Ruby in Review Page 31 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The class Module contains methods called attr, attr_accessor, attr_reader, and
attr_writer. These can be used (with symbols as parameters) to automatically handle
controlled access to the instance data. For example, the three methods named previously
can be replaced by a single line in the class definition:

attr_accessor :myvar

This will create the method myvar, which returns the value of @myvar, and the method
myvar=, which enables the setting of the same variable. Methods attr_reader and
attr_writer create read-only and write-only versions of an attribute, respectively. For
more details, consult a Ruby reference.

Within the instance methods of a class, the pseudo-variable self can be used as needed.
This is only a reference to the current receiver, the object on which the instance method
is invoked.

The modifying methods private, protected, and public can be used to control the
visibility of methods in a class. (Instance variables are always private and inaccessible from
outside the class except by means of accessors.) Each of these modifiers takes a symbol
such as :foo as a parameter; if this is omitted, the modifier applies to all subsequent
definitions in the class. Here's an example:

class MyClass
 def method1
 # ...
 end
 def method2
 # ...
 end
 def method3
 # ...
 end
 private :method1
 public :method2
 protected :method3
 private

 def my_method
 # ...
 end
 def another_method
 # ...
 end
end

Chapter 1. Ruby in Review Page 32 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this example, method1 will be private, method2 will be public, and method3 will be
protected. Because of the private method with no parameters, both my_method and
another_method will be private.

The public access level is self-explanatory; there are no restrictions on access or visibility.
The private level means that the method is accessible only within the class or its
subclasses, and it is callable only in "function form," with self (implicit or explicit) as a
receiver. The protected level means that a method is callable only from within its class,
but unlike a private method, it can be called with a receiver other than self, such as
another instance of the same class.

The default visibility for the methods defined in a class is public. The exception is the
instance-initializing method initialize, which is private because it is intended to be
called only from the new method. Methods defined at the top level are also public by
default; if they are private, they can be called only in function form (as, for example, the
methods defined in Object).

Ruby classes are themselves objects, being instances of the metaclass Class. Ruby classes
are always concrete; there are no abstract classes. However, it is theoretically possible to
implement abstract classes in Ruby if you really wish to do so.

The class Object is at the root of the hierarchy. It provides all the methods defined in the
built-in Kernel module.

To create a class that inherits from another class, define it in this way:

class MyClass < OtherClass
 # ...
end

In addition to using built-in methods, it is only natural to define your own and also to
redefine and override existing ones. When you define a method with the same name as an
existing one, the previous method is overridden. If a method needs to call the "parent"
method that it overrides (a frequent occurrence), the keyword super can be used for this
purpose.

Operator overloading is not strictly an OOP feature, but it is very familiar to C++
programmers and certain others. Because most operators in Ruby are simply methods
anyway, it should come as no surprise that these operators can be overridden or defined
for user-defined classes. Overriding the meaning of an operator for an existing class may
be rare, but it is common to want to define operators for new classes.

Chapter 1. Ruby in Review Page 33 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is possible to create aliases or synonyms for methods. The syntax (used inside a class
definition) is as follows:

alias newname oldname

The number of parameters will be the same as for the old name, and it will be called in the
same way.

Methods and Attributes
In a previous section, methods were used with simple class instances and variables by
separating the receivers from the methods with a period (receiver.method). In the case
of method names that are punctuation, the period is omitted. Methods can take arguments:

Time.mktime(2000, "Aug", 24, 16, 0)

Because method calls return objects, method calls may typically be chained or stacked:

3.succ.to_s
 /(x.z).*?(x.z).*?/.match("x1z_1a3_x2z_1b3_").to_a[1..3]
 3+2.succ

Note that problems can arise if the cumulative expression is of a type that does not support
that particular method. Specifically, some methods return nil under certain conditions,
and this will usually cause any methods tacked onto that result to fail.

Certain methods may have blocks passed to them. This is true of all iterators, whether built
in or user defined. A block is usually passed as a do-end block or a brace-delimited block;
it is not treated like the other parameters preceding it, if any. See especially the
File.open example:

my_array.each do |x|
 some_action
end

File.open(filename) { |f| some_action }

Named parameters will be supported in the future but are not supported at the time of this
writing. These are called keyword arguments in the Python realm.

Methods may take a variable number of arguments:

receiver.method(arg1, *more_args)

Chapter 1. Ruby in Review Page 34 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In this case, the method called will treat more_args as an array that it deals with as it
would any other array. In fact, an asterisk in the list of formal parameters (on the last or
only parameter) can likewise "collapse" a sequence of actual parameters into an array:

def mymethod(a, b, *c)
 print a, b
 c.each do |x| print x end
end

mymethod(1,2,3,4,5,6,7) # a=1, b=2, c=[3,4,5,6,7]

Ruby has the ability to define methods on a per-object basis (rather than per class). Such
methods are called singletons; they belong solely to that object and have no effect on its
class or superclasses. As an example, this might be useful in programming a GUI; you can
define a button action for a widget by defining a singleton method for the button object.

It is theoretically possible to create a prototype-based object system using singleton
methods. This is a less traditional form of OOP without classes. The basic structuring
mechanism is to construct a new object using an existing object as a delegate; the new
object is exactly like old except for the items that are overridden. This enables you to build
prototype/delegation-based systems rather than inheritance based. Although we do not
have experience in this area, we do feel that this demonstrates the power of Ruby.

Dynamic Aspects of Ruby
Ruby is a very dynamic language in the sense that objects and classes may be altered at
runtime. It has the ability to construct and evaluate pieces of code in the course of executing
the existing statically coded program. It has a sophisticated reflection API that makes it
very "self-aware"; this enables the easy creation of debuggers, IDEs, and similar tools, and
it also makes certain advanced coding techniques possible.

This is perhaps the most difficult area a programmer will encounter in learning Ruby. Here,
we briefly examine some of the implications of Ruby's dynamic nature.

Coding at Runtime
We have already mentioned load and require earlier. However, it is important to realize
that these are not built-in statements or control structures or anything of that nature; they
are actual methods. Therefore, it is possible to call them with variables or expressions as
parameters or to call them conditionally. Contrast with this the #include directive in C
and C++, which is evaluated and acted on at compile-time.

Chapter 1. Ruby in Review Page 35 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby also enables the program to get access to the names of its own variables. Here's a
variable called foobar assigned the value 3; following that assignment, the print method
prints out not only the value but the name of the variable:

foobar = 3
print "The value is ", foobar, "\n"
print "The variable name is ", :foobar.id2name, "\n"

Of course, this contrived example is not truly useful; the point is that the user's code can
retrieve and manipulate internal names at will. Similar but much more sophisticated
operations can be done with the reflection API, as you'll see in the next section.

Code can be constructed piecemeal and evaluated. As another contrived example, consider
this calculate method and the code calling it:

def calculate(op1, operator, op2)
 string = op1.to_s + operator + op2.to_s
 # operator is assumed to be a string; make one big
 # string of it and the two operands
 eval(string) # Evaluate and return a value
end

$alpha = 25
$beta = 12
puts calculate(2, "+", 2) # Prints 4
puts calculate(5, "*", "$alpha") # Prints 125
puts calculate("$beta", "**", 3) # Prints 1728

As an even more extreme example, the following code will prompt the user for a method
name and a single line of code; then it will actually define the method and call it:

puts "Method name: "
meth_name = gets.chomp
puts "Line of code: "
line = gets.chomp

Build a string
string = %[def #{ meth_name} \n #{ line} \n end]
eval(string) # Define the method
eval(meth_name) # Call the method

Frequently, programmers wish to code for different platforms or circumstance and still
maintain only a single code base. In such a case, a C programmer would use #ifdef
directives; in Ruby, however, definitions are executed. There is no "compile time," and
everything is dynamic rather than static. Therefore, if we want to make some kind of
decision like this, we can simply evaluate a flag at runtime:

Chapter 1. Ruby in Review Page 36 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

if platform == Windows
 action1
elsif platform == Linux
 action2
else
 default_action
end

Of course, there is a small runtime penalty for coding in this way, because the flag may be
tested many times in the course of execution. However, the next example does essentially
the same thing, enclosing the platform-dependent code in a method whose name is the
same across all platforms:

if platform == Windows
 def my_action
 action1
 end
elsif platform == Linux
 def my_action
 action2
 end
else
 def my_action
 default_action
 end
end

In this way, the same result is achieved, but the flag is only evaluated once. When the user's
code calls my_action, it will already have been defined appropriately.

Reflection
Languages such as Smalltalk, LISP, and Java implement the notion of a reflective
programming language—one in which the active environment can query the objects that
define it as well as extend or modify them at runtime.

Ruby allows reflection quite extensively but does not go as far as Smalltalk, which even
represents control structures as objects. Ruby control structures and blocks are not objects
(a Proc object can be used to "objectify" a block, but control structures are never objects).

The keyword defined (with an appended question mark) may be used to determine
whether an identifier name is in use, as shown here:

if defined? some_var
 print "some_var = #{ some_var} \n"
else
 print "The variable some_var is not known.\n"
end

Chapter 1. Ruby in Review Page 37 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In most if not all cases, this is equivalent to comparing the variable to nil.

In a similar way, the method respond_to? determines whether an object can respond to
the specified method call (that is, whether that method is defined for that object). The
respond_to? method is defined in class Object.

Ruby supports runtime type information in a radical way. The type (or class) of an object
can be determined at runtime using the method type (defined in Object). Similarly,
is_a? will tell whether an object is of a certain class (including the superclasses), and
kind_of? is the alias. Here's an example:

print "abc".type # Prints String
print 345.type # Prints Fixnum
rover = Dog.new
print rover.type # Prints Dog
if rover.is_a? Dog
 print "Of course he is.\n"
end
if rover.kind_of? Dog
 print "Yes, still a dog.\n"
end
if rover.is_a? Animal
 print "Yes, he's an animal, too.\n"
end

It is possible to retrieve an exhaustive list of all the methods that can be invoked for a given
object; this is done by using the methods method, defined in Object. There are also
variations such as private_instance_methods, public_instance_methods, and
so on.

In a similar way, you can determine the class variables and instance variables associated
with an object. By the very nature of OOP, the lists of methods and variables include the
entities defined not only in the object's class but in its superclasses. The Module class has
a method called constants that's used to list all the constants defined.

The class Module has a method ancestors that will return a list of modules that are
included in the given module. This list is self-inclusive; Mod.ancestors will always have
at least Mod in the list. The class Object has a method called superclass that returns
the superclass of the object or returns nil. Because Object itself is the only object without
a superclass, it is the only case in which nil will be returned.

The ObjectSpace module is used to access any and all "living" objects. The method
_idtoref can be used to convert an object ID to an object reference; it can be considered
the inverse of the colon notation. ObjectSpace also has an iterator called

Chapter 1. Ruby in Review Page 38 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

each_object that will iterate over all the objects currently in existence, including many
that you will not otherwise explicitly know about. (Remember that certain small immutable
objects, such as objects of class Fixnum, NilClass, TrueClass, and FalseClass are
not kept on the stack for optimization reasons.)

Missing Methods
When a method is invoked (myobject.mymethod), Ruby first searches for the named
method according to this search order:

1. Singleton methods in the receiver myobject.
2. Methods defined in myobject's class.
3. Methods defined among myobject's ancestors.

If the method mymethod is not found, Ruby searches for a default method called
method_missing. If this method is defined, it is passed the name of the missing method
(as a symbol) and all the parameters that were passed to the nonexistent mymethod.

Garbage Collection
Managing memory on a low level is hard and error prone, especially in a dynamic
environment such as Ruby. Having a garbage-collection facility is a very significant
advantage. In languages such as C++, memory allocation and deallocation are handled by
the programmer; in more recent languages such as Java, memory is reclaimed (when
objects go out of scope) by a garbage collector.

Memory management done by the programmer is the source of two of the most common
kinds of bugs. If an object is freed while still being referenced, a later access may find the
memory in an inconsistent state. These so-called "dangling pointers" are difficult to track
down because they often cause errors in code that is far removed from the offending
statement. A related bug is a "memory leak," caused when an object is not freed even
though there are no references to it. Programs with this bug typically use up more and
more memory until they crash; this kind of error is also difficult to find. Ruby uses a GC
facility that tracks down unused objects and reclaims the storage that was allocated to
them. For those who care about such things, Ruby's GC is done using a "mark and sweep"
algorithm rather than reference counting (which frequently has difficulties with recursive
structures).

Certain performance penalties may be associated with garbage collection. There are some
limited controls in the GC module so that the programmer can tailor garbage collection to
the needs of the individual program.

Chapter 1. Ruby in Review Page 39 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Training Your Intuition: Things to Remember
It may truly be said that "everything is intuitive once you understand it." This verity is the
heart of this section, because Ruby has many features and personality quirks that may be
different from what the traditional programmer is used to.

Some readers may feel their time is wasted by a reiteration of some of these points; if that
is the case for you, you are free to skip the paragraphs that seem obvious to you.
Programmers' backgrounds vary widely; an old-time C hacker and a Smalltalk guru will
each approach Ruby from different viewpoints. We hope, however, that a perusal of these
following paragraphs will assist many readers in following what some call the Ruby Way.

Syntax Issues
The Ruby parser is very complex and relatively forgiving. It tries to make sense out of what
it finds, rather than forcing the programmer into slavishly following a set of rules. However,
this behavior may take some getting used to. Here's a list of things you should know about
Ruby syntax:

• Parentheses are usually optional with a method call. These calls are all valid:

foobar

foobar()

foobar(a,b,c)

foobar a, b, c
• Given that parentheses are optional, what does x y z mean, if anything? As it turns

out, this means, "Invoke method y, passing z as a parameter, and then pass the result
as a parameter to method x." In short, the statement x(y(z)) means the same thing.

• Let's try to pass a hash to a method: my_method {a=>1, b=>2}

This results in a syntax error, because the left brace is seen as the start of a block. In
this instance, parentheses are necessary: my_method({a=>1, b=>2})

• Now let's suppose that the hash is the only parameter to a method. Ruby very
forgivingly lets us omit the braces: my_method(a=>1, b=>2)

Some people might think that this looks like a method invocation with named
parameters, which it emphatically is not.

• Now consider this method call:

foobar.345

Chapter 1. Ruby in Review Page 40 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Looking at it, one might think that foobar is an object and 345 is a method being
invoked, but obviously a method name can't start with a digit! The parser interprets
this as a call to method foobar, passing the number 0.345 as a parameter. Here,
you see that the parentheses and the intervening space have all been omitted. Needless
to say, the fact that you can code this way does not imply that you should.

• There are other cases in which blank spaces are somewhat significant. For example,
these expressions may all seem to mean the same:

x = y + z

x = y+z
x = y+ z

x = y +z

In fact, the first three do mean the same. However, in the fourth case, the parser thinks
that y is a method call and +z is a parameter passed to it! It will then give an error
message for that line if there is no method named y. The moral is to use blank spaces
in a reasonable way.

• Similarly, x = y*z is a multiplication of y and z, whereas x = y *z is an invocation
of method y, passing an expansion of array z as a parameter.

• In constructing identifiers, the underscore is considered to be lowercase. Therefore,
an identifier may start with an underscore, but it will not be a constant even if the next
letter is uppercase.

• In linear, nested if statements, the keyword elsif is used rather than else if or
elif, as in some languages.

• Keywords in Ruby are not really "reserved words." In many circumstances, a keyword
can actually be used as an identifier as long as the parser is not confused. We won't
attempt to state the conditions under which this may and may not be done; we mention
this only to say that it can often be done if you really need to do it—and as a warning
to those who might be confused by this. In general, using a keyword as an identifier
should be done with caution, keeping readability in mind.

• The keyword then is optional (in if and case statements). Those who wish to use
it for readability may do so. The same is true for do in while and until loops.

• The question mark and exclamation point are not really part of the identifier that they
modify but should be considered as suffixes. Therefore, although chop and chop!,
for example, are considered different identifiers, it is not permissible to use these
characters in any other position in the word. Likewise, we use defined? in Ruby, but
defined is the keyword.

• Inside a string, the pound sign (#) is used to signal expressions to be evaluated. That
means that in some circumstances, when a pound sign occurs in a string, it has to be
escaped with a backslash, but this is only when the next character is a left brace ({),
a dollar sign ($), or an "at" sign (@).

Chapter 1. Ruby in Review Page 41 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• The ternary decision operator (?:), which originated in the C language, has sometimes
been said to be "undocumented" in Ruby. For this reason, programmers may wish not
to use it (though we personally do not shy away from it).

• Because of the fact that the question mark may be appended to an identifier, care
should be taken with spacing around the ternary operator. For example, suppose we
have the variable my_flag, which stores either true or false. Then the first line of
code shown here will be correct, but the second will give a syntax error:

x = my_flag ? 23 : 45 # OK

x = my_flag? 23 : 45 # Syntax error
• The ending marker =end for embedded documentation should not be considered a

token. It marks the entire line; therefore, any characters on the rest of that line are
not considered part of the program text but belong to the embedded document.

• There are no arbitrary blocks in Ruby; that is, you can't start a block whenever you
feel like it, as in C. Blocks are allowed only where they are needed (for example,
attached to an iterator). That is why any post-test loops in Ruby are kludged by using
a begin-end pair even though no exception handling is being done.

• Remember that the keywords BEGIN and END are completely different from the
begin and end keywords.

• When strings bump together (static concatenation), the concatenation is of a higher
precedence than a method call. Here's an example:

These three all give the same result.
str1 = "First " 'second'.center(20)
str2 = ("First " + 'second').center(20)
str3 = "First second".center(20)

Precedence is different.
• Ruby has several pseudo-variables that look like local variables but really serve

specialized purposes. These are self, nil, true, false, __FILE__, and
__LINE__.

Perspectives in Programming
Presumably everyone who knows Ruby (at this point in time) has been a student or user
of other languages in the past. This of course makes learning Ruby easy, in the sense that
numerous features in Ruby are just like the corresponding features in other languages. On
the other hand, the programmer may be lulled into a false sense of security by some of the
familiar constructs in Ruby and may draw unwarranted conclusions based on past
experience—which we might term geek baggage.

Chapter 1. Ruby in Review Page 42 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Many people are coming to Ruby from Smalltalk, Perl, C/C++, and various other
languages. Their presuppositions and expectations may all vary somewhat, but they will
always be present. For this reason, here are a few of the things that some programmers
may "trip over" in using Ruby:

• A character in Ruby truly is an integer. It is not a type of its own, as in Pascal, and is
not the same as a string of length 1. Consider the following code fragment:

x = "Hello"
y = ?A
print "x[0] = #{ x[0]} \n" # Prints: x[0] = 72
print "y = #y\n" # Prints: y = 65
if y == "A" # Prints: no
 print "yes\n"
else
 print "no\n"
end

• There is no Boolean type such as many languages have. TrueClass and
FalseClass are distinct classes, and their only instantiations are true and
false.

Many of Ruby's operators are similar or identical to those in C. Two notable exceptions
are the increment and decrement operators (++ and --). These are not available in
Ruby, either in "pre" or "post" forms.

• The modulus operator is known to work somewhat differently in different languages
with respect to negative numbers. The two sides of this argument are beyond the scope
of this book; suffice to say that Ruby's behavior is as follows:

print 5 % 3 # Prints 2
print -5 % 3 # Prints 1
print 5 % -3 # Prints -1
print -5 % -3 # Prints –2

• Some may be used to thinking that a false value may be represented as a zero, a null
string, a null character, or various other things. However, in Ruby, all of these are
true; in fact, everything is true except false and nil.

• Always recall that in Ruby, variables don't have types; only values have types.
• To say that a value is undefined (for example, a variable not declared) is essentially

the same as saying that it is nil. Such a value will pass a test for equality with nil
and will evaluate to false if used by itself in a condition. The principle exception
relates to hashes; because nil is a valid value to be stored in a hash, it is not
appropriate to compare against nil to find whether a value exists in a hash. (There
are several correct ways to perform this test by means of method calls.)

• Recall that a post-test loop can be faked in Ruby by using a begin-end construct
followed by the "modifier" form of while or until.

Chapter 1. Ruby in Review Page 43 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• Recall that there are no declarations of variables in Ruby. It is good practice, however,
to assign nil to a variable initially. This certainly does not assign a type to the variable
and does not truly initialize it, but it does inform the parser that this is a variable name
rather than a method name. Ruby interprets an identifier as a method name unless it
has seen a previous assignment indicating that the name refers to a variable.

• Recall that ARGV[0] is truly the first of the command-line parameters, numbering
naturally from zero; it is not the file or script name preceding the parameters, such as
argv[0] in C.

• Most of Ruby's operators are really methods; the "punctuation" form of these methods
is provided for familiarity and convenience. The first exception is the set of reflexive
assignment operators (+=, -=, *=, and so on); the second exception is the following
set:

= ! not && and || or != !~
• Like most (though not all) modern languages, Boolean operations are always short-

circuited; that is, the evaluation of a Boolean expression stops as soon as its truth value
is known. In a sequence of or operations, the first true will stop evaluation; in a
string of and operations, the first false will stop evaluation.

• Recall that the prefix @@ is used for class variables (which are associated with the class
rather than the instance).

• Recall that loop is not a keyword; it is a Kernel method, not a control structure.
• Some may find the syntax of unless-else to be slightly unintuitive. Because
unless is the opposite of if, the else clause will be executed if the condition is false.

• Ordinarily a parameter passed to a method is really a reference to an object; as such,
the parameter can potentially be changed from within the method.

• The simpler Fixnum type is passed as an immediate value and therefore may not be
changed from within methods. The same is true for true, false, and nil.

• Do not confuse the && and || operators with the & and | operators. These are used
as in C; the former are for Boolean operations, and the latter are for arithmetic or
bitwise operations.

• There are interesting differences between the &&-|| operators and the and-or
operators. The former are more general purpose and may result in an expression other
than true or false. The latter always result in true or false; they are specifically
for joining Boolean expressions in conditions (and therefore are susceptible to syntax
errors if an operand does not evaluate to true or false). See the following code
fragment:

print (false || "string1\n") # Prints string1
print (false or "string2\n") # Syntax error!
print (true && "string3\n") # Prints string3
print (true and "string4\n") # Syntax error!
print (true || "string5\n") # Prints true

Chapter 1. Ruby in Review Page 44 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

print (true or "string6\n") # Syntax error!
print (false && "string5\n") # Prints false
print (false or "string6\n") # Syntax error!

• The and-or operators also have lower precedence than the &&-|| operators. See the
following code fragment:

a = true
b = false
c = true
d = true
a1 = a && b or c && d # &&'s are done first
a2 = a && (b or c) && d # or is done first
print a1 # Prints false
print a2 # Prints true

• Additionally, be aware that the assignment operator has a higher precedence than the
and and or operators! (This is also true for the reflexive assignment operators +=, -
=, and the others.) For example, line 3 of the following code looks like a normal
assignment statement, but it is really a free-standing expression (equivalent to line 5,
in fact). Line 7 is a real assignment statement, which may be what the programmer
really intends:

y = false
z = true
x = y or z # Line 3: = is done BEFORE or!
print x, "\n" # Prints false
(x = y) or z # Line 5: Same as line 3
print x, "\n" # Prints false
x = (y or z) # Line 7: or is done first
print x, "\n" # Prints true

• Don't confuse object attributes and local variables. If you are accustomed to C++ or
Java, you might forget this. The variable @my_var is an instance variable (or attribute)
in the context of whatever class you are coding; but my_var, used in the same
circumstance, is only a local variable within that context.

• Many languages have some kind of for loop, as does Ruby. The question sooner or
later arises as to whether the index variable can be modified. Some languages do not
allow the control variable to be modified at all (printing a warning or error either at
compile time or runtime); and some will cheerfully allow the loop behavior to be
altered in midstream by such a change. Ruby takes yet a third approach. When a
variable is used as a for loop control variable, it is an ordinary variable and can be
modified at will; however, such a modification does not affect the loop behavior! The
for loop sequentially assigns the values to the variable on each iteration without
regard for what may have happened to that variable inside the loop. For example, this
loop will execute exactly 10 times and print the values 1 through 10:

for var in 1..10
 print "var = #{ var} \n"
 if var > 5

Chapter 1. Ruby in Review Page 45 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 var = var + 2
 end
end

• Recall that variable names and method names are not always distinguishable "by eye"
in the immediate context. How does the parser decide whether an identifier is a
variable or a method? The rule is that if the parser sees the identifier being assigned
a value prior to its being used, it will be considered a variable; otherwise, it is
considered to be a method name.

• The while and until modifiers are not post-test loops. These two loops will not
execute:

puts "looping" while false
puts "still looping" until true

Ruby's case Statement
Every modern language has some kind of multiway branch, such as the switch statement
in C/C++ and Java or the case statement in Pascal. These serve basically the same
purpose, and they function much the same in most languages.

Ruby's case statement is superficially similar to these others, but on closer examination
it is so unique that it makes C and Pascal look like close friends. The case statement in
Ruby has no precise analogue in any other language that we (the authors) are familiar with,
and this makes it worth additional attention here.

You have already seen the syntax of this statement. We will concentrate here on its actual
semantics:

• To begin with, consider the trivial case statement shown here. The expression shown
is compared with the value, not surprisingly, and if they correspond, some_action
is performed:

case expression
 when value
 some_action
end

But what do we mean by "compare" and "correspond"? As it turns out, Ruby uses the
special operator === (sometimes called the relationship operator) for this. This
operator is also referred to (somewhat inappropriately) as the case equality operator.

Therefore, the preceding simple statement is equivalent to this statement:

if value === expression

Chapter 1. Ruby in Review Page 46 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 some_action
end

However, do not confuse the relationship operator with the equality operator (==).
They are utterly different, although their behavior may be the same in many
circumstances. The relationship operator is defined differently for different classes,
and for a given class, it may behave differently for different operand types passed to
it.

• Also, do not fall into the trap of thinking that the tested expression is the receiver and
the value is passed as a parameter to it. The opposite is true.

• This brings up the fact that x === y is not typically the same as y === x! There will
be situations in which this is true, but overall the relationship operator is not
commutative. (That is why we do not favor the term case equality operator, because
equality is always commutative.) In other words, reversing our original example, this
code does not behave the same way:

case value
 when expression
 some_action
end

• As an example, consider the string str and the pattern (regular expression) pat,
which matches that string. The expression str =~ pat is true, just as in Perl. Because
Ruby defines the opposite meaning for =~ in Regexp, one can also say that pat =~
str is true. Following this logic further, we find that (because of how
Regexp::=== is defined) pat === str is also true. However, note that str ===
pat is not true. This means that the code fragment

case "Hello"
 when /Hell/
 print "We matched.\n"
 else
 print "We didn't match.\n"
end

does not do the same thing as this fragment:

case /Hell/
 when "Hello"
 print "We matched.\n"
 else
 print "We didn't match.\n"
end

If this confuses you, just memorize the behavior. If it does not confuse you, so much
the better.

• Programmers accustomed to C may be puzzled by the absence of break statements
in the case statement; such a usage of break in Ruby is unnecessary (and illegal).

Chapter 1. Ruby in Review Page 47 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This is due to the fact that "falling through" is very rarely the desired behavior in a
multiway branch. There is an implicit jump from each when clause (or case limb, as
it is sometimes called) to the end of the case statement. In this respect, Ruby's
case statement resembles the one in Pascal.

• The values in each case limb are essentially arbitrary. They are not limited to any
certain type. They need not be constants but can be variables or complex expressions.
Ranges or multiple values can be associated with each case limb.

• Case limbs may have empty actions (null statements) associated with them. The values
in the limbs need not be unique but may overlap. Look at this example:

case x
 when 0
 when 1..5
 print "Second branch\n"
 when 5..10
 print "Third branch\n"
 else
 print "Fourth branch\n"
end

Here, a value of 0 for x will do nothing, and a value of 5 will print Second branch,
even though 5 is also included in the next limb.

• The fact that case limbs may overlap is a consequence of the fact that they are evaluated
in sequence and that short-circuiting is done. In other words, if evaluation of the
expressions in one limb results in success, then the limbs that follow are never
evaluated. Therefore, it is a bad idea for case limb expressions to have method calls
that have side effects. (Of course, such calls are questionable in most circumstances
anyhow.) Also, be aware that this behavior may mask runtime errors that would occur
if expressions were evaluated. Here's an example:

case x
 when 1..10
 print "First branch\n"
 when foobar() # Possible side effects?
 print "Second branch\n"
 when 5/0 # Dividing by zero!
 print "Third branch\n"
 else
 print "Fourth branch\n"
end

As long as x is between 1 and 10, foobar() will not be called, and the expression
5/0 (which would naturally result in a runtime error) will not be evaluated.

Chapter 1. Ruby in Review Page 48 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Rubyisms and Idioms
Much of this material will overlap conceptually with the preceding pages. Don't worry too
much about why we divided it as we did; many of these tidbits are hard to classify or
organize. Our most important motivation is simply to break the information into digestible
chunks.

Ruby was designed to be consistent and orthogonal. However, it is also a very complex
entity. Therefore, like every language, it has its own set of idioms and quirks. We discuss
some of these here:

• Remember that alias can be used to give alternate names for global variables and
methods. Remember that the numbered global variables $1, $2, $3, and so on cannot
be aliased.

• We do not recommend the use of the "special variables," such as $=, $_, $/, and the
rest. Although they can sometimes make code more compact, they rarely make it any
clearer; we use them very sparingly in this book and recommend the same practice.
In many cases, the names can be clarified by using the English.rb library; in other
cases, a more explicit coding style makes them unnecessary.

• Do not confuse the .. and … range operators. The former is inclusive of the upper
bound, and the latter is exclusive. For example, 5..10 includes the number 10, but
5...10 does not.

• There is a small detail relating to ranges that may cause slight confusion. Given the
range m..n, the method end will return the endpoint of the range; its alias, last,
will do the same thing. However, these methods will return the same value, n, for the
range m...n, even though n is not included in the latter range. The method
end_excluded? is provided to distinguish between these two situations.

• Do not confuse ranges with arrays. These two assignments are entirely different:

x = 1..5

x = [1, 2, 3, 4, 5]

However, there is a convenient method, to_a, for converting ranges to arrays. (Many
other types also have such a method.)

• Keep a clear distinction in your mind between class and instance. For example, a class
variable such as @@foobar has a class-wide scope, but an instance variable such as
@foobar has a separate existence in each object of the class.

• Similarly, a class method is associated with the class in which it is defined; it does not
belong to any specific object and cannot be invoked as though it did. A class method
is invoked with the name of a class, and an instance method is invoked with the name
of an object.

Chapter 1. Ruby in Review Page 49 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/app01lev1sec2#app01lev2sec12

• In writing about Ruby, the "pound notation" is sometimes used to indicate an instance
method—for example, we use File.chmod to denote the class method chmod of class
File, and we use File#chmod to denote the instance method that has the same
name. This notation is not part of Ruby syntax, but only Ruby folklore. We have tried
to avoid it in this book.

• In Ruby, constants are not truly constant. They cannot be changed from within
instance methods, but otherwise their values can be changed.

• In writing about Ruby, the word toplevel is common as both an adjective and a noun.
We prefer to use top level as a noun and top-level as an adjective, but our meaning is
the same as everyone else's.

• The keyword yield comes from CLU and may be misleading to some programmers.
It is used within an iterator to invoke the block with which the iterator is called. It
does not mean "yield," as in producing a result or returning a value, but is more like
the concept of "yielding a timeslice."

• Remember that the reflexive assignment operators +=, -=, and the rest are not
methods (nor are they really operators); they are only "syntax sugar" or "shorthand"
for their longer forms. Therefore, to say x += y is really identical to saying x = x
+ y, and if the + operator is overloaded, the += operator is defined "automagically"
as a result of this predefined shorthand.

• Because of the way the reflexive assignment operators are defined, they cannot be
used to initialize variables. If the first reference to x is x += 1, an error will result.
This will be intuitive to most programmers, unless they are accustomed to a language
where variables are initialized to some sort of zero or null value.

• It is actually possible in some sense to get around this behavior. One can define
operators for nil such that the initial nil value of the variable produces the desired
result. Here is a method (nil.+) that will allow += to initialize a String or a
Fixnum value, basically just returning other and thus ensuring that nil +
other is equal to other:

def nil.+(other)
 other
end

This illustrates the power of Ruby, but whether it is useful or appropriate to code this
way is left as an exercise for the reader.

• It is wise to recall that Class is an object and that Object is a class. We will try to
make this clear in a later chapter; for now, simply recite it every day as a mantra.

• Some operators can't be overloaded because they are built in to the language rather
than implemented as methods. These operators are as follows:

= and or not && || ! != !~

Chapter 1. Ruby in Review Page 50 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Additionally, the reflexive assignment operators (+=, -=, and so on) cannot be
overloaded. These are not methods, and it can be argued they are not true operators
either.

• Be aware that although assignment is not overloadable, it is still possible to write an
instance method with a name such as foo= (thus allowing statements such as x.foo
= 5). Consider the equal sign to be like a suffix.

• Recall that a "bare" scope operator has an implied Object before it, so that ::Foo
means Object::Foo.

• Recall that fail is an alias for raise.
• Recall that definitions in Ruby are executed. Because of the dynamic nature of the

language, it's possible, for example, to define two methods completely differently
based on a flag that is tested at runtime.

• Remember that the for construct (for x in a) is really calling the default iterator
each. Any class having this iterator can be walked through with a for loop.

• Recall that the term iterator is sometimes a misnomer. Any method that invokes a
block passed as a parameter is an iterator. Some of the predefined ones do not really
look like looping mechanisms at all (see File.open).

• Be aware that a method defined at the top level is a member of Object.
• A setter method (such as foo=) must be called with a receiver; otherwise, it will look

like a simple assignment to a local variable of that name.
• Recall that retry can be used in iterators but not in general loops. In iterators, it

causes the reassignment of all the parameters and the restarting of the current
iteration.

• The keyword retry is also used in exception handling. Don't confuse the two usages.
• An object's initialize method is always private.
• Where an iterator ends in a left brace (or in end) and results in a value, that value can

be used as the receiver for further method calls. Here's an example:

squares = [1,2,3,4,5].collect do |x| x**2 end.reverse
squares is now [25,16,9,4,1]

• The idiom if $0 == __FILE__ is sometimes seen near the bottom of a Ruby
program. This is a check to see whether the file is being run as a standalone piece of
code (true) or is being used as some kind of auxiliary piece of code such as a library
(false). A common use of this is to put a sort of "main program" (usually with test
code in it) at the end of a library.

• Recall that normal subclassing or inheritance is done with the < symbol:

 class Dog < Animal
 # ...
 end

Chapter 1. Ruby in Review Page 51 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

However, creation of a singleton class (an anonymous class that extends a single
instance) is done with the << symbol:

class << platypus
 # ...
end

• When a block is passed to an iterator, the difference between braces ({ }) and a do-
end pair is a matter of precedence, as shown here:

mymethod param1, foobar do ... end
Here, do-end binds with mymethod
mymethod param1, foobar { ... }
Here, { } binds with foobar, assumed to be a method

• It is somewhat traditional in Ruby to put single-line blocks in braces and multiline
blocks in do-end pairs. Here are examples:

my_array.each { |x| print x, "\n"}

my_array.each do |x|
 print x
 if x % 2 == 0
 print " is even\n"
 else
 print " is odd\n"
 end
end

This habit is not required, and there may conceivably be occasions where it is
inappropriate to follow this rule.

• Bear in mind that strings are in a sense two-dimensional; they can be viewed as
sequences of characters or sequences of lines. Some may find it surprising that the
default iterator each operates on lines (where a line is a group of characters
terminated by a record separator that defaults to newline); an alias for each is
each_line. If you want to iterate by characters, you can use each_byte. The iterator
sort also works on a line-by-line basis. There is no iterator called each_index
because of the ambiguity involved—do we want to handle the string by character or
by line? This all becomes habitual with repeated use.

• A closure remembers the context in which it was created. One way to create a closure
is by using a Proc object. As a crude example, consider the following:

def power(exponent)
 proc { |base| base**exponent}
end

square = power(2)
cube = power(3)

a = square(11) # Result is 121

Chapter 1. Ruby in Review Page 52 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

b = square(5) # Result is 25
c = cube(6) # Result is 216
d = cube(8) # Result is 512

Observe that the closure "knows" the value of exponent that it was given at the time
it was created.

• However, let's assume that a closure uses a variable defined in an outer scope (which
is perfectly legal). This property can be useful, but here we show a misuse of it:

$exponent = 0

def power
 proc { |base| base**$exponent}
end

$exponent = 2
square = power
$exponent = 3
cube = power

a = square.call(11) # Wrong! Result is 1331
b = square.call(5) # Wrong! Result is 125
The above two results are wrong because the CURRENT value
of $exponent is being used, since it is still in scope.
c = cube.call(6) # Result is 216
d = cube.call(8) # Result is 512

• Finally, consider this somewhat contrived example. Inside the block of the times
iterator, a new context is started, so that x is a local variable. The variable closure
is already defined at the top level, so it will not be defined as local to the block:

closure = nil # Define closure so the name will be known
1.times { # Start a new context
 x = 5 # x is local to this block
 closure = Proc.new {
 print "In closure, x = #{ x} \n"
 }
}

x = 1 # Define x at top level

closure.call # Prints: In closure, x = 5

Now note that the variable x that is set to 1 is a new variable, defined at the top level.
It is not the same as the other variable of the same name. The closure therefore prints
5 because it remembers its creation context, with the previous variable x and its
previous value.

• Variables starting with a single @, defined inside a class, are generally instance
variables. However, if they are defined outside of any method, they are really class
instance variables. (This usage is somewhat contrary to most OOP terminology, in
which a class instance is regarded to be the same as an instance or an object.) Here's
an example:

Chapter 1. Ruby in Review Page 53 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Myclass
 @x = 1 # A class instance variable
 @y = 2 # Another one

 def mymethod
 @x = 3 # An instance variable
 # Note that @y is not accessible here.
 end

end

The preceding class instance variable @y is really an attribute of the class object
Myclass, which is an instance of the class Class. (Remember, Class is an object
and Object is a class.) Class instance variables cannot be referenced from within
instance methods and, in general, are not very useful.

• Remember that attr, attr_reader, attr_writer, and attr_accessor are
shorthand for the actions of defining setters and getters; they take symbols as
arguments.

• Remember that there is never any assignment with the scope operator; for example,
the assignment Math::PI = 3.2 is illegal.

• Note that closures have to return values implicitly (by returning the value of the last
expression evaluated). The return statement can be used only in actual method
returns.

• A closure is associated with a block at the time it is created. Therefore, it is never useful
to associate a block with the call method; this will result in a warning.

• To recognize an identifier as a variable, Ruby only has to see an assignment to it; the
assignment does not have to be executed. This can lead to a seeming paradox, as shown
here:

name = "Fred" if ! defined? name

Here, the assignment to name is seen, so that the variable is defined. Because it is
defined (and the test is false), it is never assigned, and it will be nil after this statement
is executed.

• Some of the "bang" methods (with names ending in an exclamation point) behave in
a slightly confusing way. Normally they return self as a return value, but some of
them return nil in certain circumstances (to indicate that no work was actually done).
In particular, this means that these cannot always be chained safely. Here's an
example:

str = "defghi"
str.gsub!(/def/,"xyz").upcase!
str is now "XYZGHI"

str.gsub!(/abc/,"klm").downcase!
Error (since nil has no downcase! method)

Chapter 1. Ruby in Review Page 54 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Other such methods are sort! and sub! (although sort! may change soon).

Expression Orientation and Other Miscellaneous Issues
In Ruby, expressions are nearly as significant as statements. If you are a C programmer,
this will be of some familiarity to you; if your background is in Pascal, it may seem utterly
foreign. However, Ruby carries expression orientation even further than C.

In addition, we use this section to remind you of few little issues regarding regular
expressions. Consider them to be tiny bonuses:

• In Ruby, any kind of assignment returns the same value that was assigned. Therefore,
we can sometimes take little shortcuts, as shown here:

x = y = z = 0 # All are now zero.
a = b = c = [] # Danger! a, b, and c now all refer
 # to the SAME empty array.
x = 5
y = x += 2 # Now x and y are both 7

Be very careful when you are dealing with objects! Remember that these are nearly
always references to objects.

• Many control structures, such as if, unless, and case, return values. The code
shown here is all valid; it demonstrates that the branches of a decision need not be
statements but can simply be expressions:

a = 5
x = if a < 8 then 6 else 7 end # x is now 6
y = if a < 8 # y is 6 also; the
 6 # if-statement can be
 else # on a single line
 7 # or on multiple lines.
 end
unless also works; z will be assigned 4
z = unless x == y then 3 else 4 end
t = case a # t gets assigned
 when 0..3 # the value
 "low" # "medium"
 when 4..6
 "medium"
 else
 "high"
 end

• Note, however, that the while and until loops do not return usable values. For
example, this fragment is not valid:

i = 0
x = while (i < 5) # Error!

Chapter 1. Ruby in Review Page 55 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 print "#{ i} \n"
 end

• Note that the ternary decision operator can be used with statements or expressions.
For syntactic reasons, the parentheses here are necessary:

 x = 6
 y = x == 5 ? 0 : 1 # y is now 1
 x == 5 ? print("Hi\n") : print("Bye\n") # Prints Bye

• The return at the end of a method can be omitted. A method will always return the
last expression evaluated in its body, regardless of where that happens.

• When an iterator is called with a block, the last expression evaluated in the block will
be returned as the value of the block. Therefore, if the body of an iterator has a
statement such as x = yield, that value can be captured.

• When necessary, we can use parentheses to convert a statement into an expression,
as shown here:

a = [1, 2, 3 if x==0] # Illegal syntax
a = [1, 2, (3 if x==0)] # Valid syntax

mymeth(a, b, if x>5 then c else d end) # Illegal
mymeth(a, b, (if x>5 then c else d end)) # Valid

• For regular expressions, recall that the multiline modifier /m can be appended to a
regex, in which case a dot (.) will match a newline character.

• For regular expressions, beware of zero-length matches. If all elements of a regex are
optional, then "nothingness" will match that pattern, and a match will always be found
at the very beginning of a string. This is a common error for regex users, particularly
novices.

Chapter 1. Ruby in Review Page 56 Return to Table of Contents

Chapter 1. Ruby in Review
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Ruby in Review
	Some Words on Object Orientation
	Basic Ruby Syntax and Semantics
	OOP in Ruby
	Dynamic Aspects of Ruby
	Training Your Intuition: Things to Remember

