
Table of Contents

Simple Data Tasks... 1
Strings.. 2
Regular Expressions... 29
Numbers.. 36
Times and Dates.. 56
Summary.. 71

Chapter 2. Simple Data Tasks

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 2. Simple Data Tasks
IN THIS CHAPTER

• Strings
• Regular Expressions
• Numbers
• Times and Dates
• Summary

Theory attracts practice as the magnet attracts iron.

—Karl Friedrich Gauss

One measure of the sophistication of a programming language is: What kinds of data will
it directly support? The earliest computers were programmed strictly in machine language
with purely numeric data. Soon after, the concept of character data and strings of
characters was invented, which was crucial to the development of general-purpose
languages.

As time goes by, we find ourselves dealing with data of increasing complexity. Modern
languages frequently include support for many kinds of data. Note that we don't say types
here because the usual notion of a type might be somewhat different. For example, a regular
expression might be stored essentially in the form of a character string, but we don't really
consider them to be strings because of their special uses.

We could easily add things like arrays and hashes to this list because these are, for Ruby,
fairly low-level entities. In fact, there are some incidental uses of these in this chapter. But
arrays and hashes (and more complex data structures) deserve a chapter of their own.

This chapter, then, is devoted to four of the most common kinds of data in Ruby. These
are strings, regular expressions, numbers, and times and dates.

A string, as in other languages, is simply a sequence of characters. Similar to most entities
in Ruby, strings are first-class objects.

Regular expressions form a very condensed notation for describing patterns within text.
These have been around for decades and have become even more commonly used in the
last 10 years.

Chapter 2. Simple Data Tasks Page 1 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

Numbers need little explanation; they comprise both integers and floating-point numbers.
In Ruby, integers can be of class Fixnum or Bignum, depending on their magnitude.

Times and dates are problematic in any language. Ruby strives to sort through the
confusion with an object-oriented interface to the traditional time and date routines.

The alert reader might notice that we don't include the Range class in this discussion. This
isn't because ranges aren't useful, but because they aren't that complex; that class is far
less rich and interesting than the others covered here. But ranges are certainly covered in
incidental code throughout the entire book.

Let's look at some sample code now. We'll begin with strings.

Strings

Atoms were once thought to be fundamental, elementary building blocks of
nature; protons were then thought to be fundamental, then quarks. Now we say
the string is fundamental.

—David Gross, professor of theoretical physics, Princeton University

We offer an anecdote here. In the early 1980s, a computer science professor started out
his data structures class with a single question. He didn't introduce himself or state the
name of the course; he didn't hand out a syllabus or give the name of the textbook. He
walked to the front of the class and asked, "What is the most important data type?"

There were one or two guesses. Someone guessed, "Pointers." He brightened, but said no,
that wasn't it. Then he offered his opinion: The most important data type was character
data.

He had a valid point. Computers are supposed to be our servants, not our masters, and
character data has the distinction of being human readable. (Some humans can read binary
data easily, but we will ignore them.) The existence of characters (and thus strings) enables
communication between humans and computers. Every kind of information we can
imagine, including natural language text, can be encoded in character strings.

What do we find ourselves wanting to do with strings? We want to concatenate them,
tokenize them, analyze them, perform searches and substitutions, and more. Ruby makes
most of these tasks easy.

Chapter 2. Simple Data Tasks Page 2 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Performing Specialized String Comparisons
Ruby has built-in ideas about comparing strings; comparisons are done lexicographically
as we have come to expect (that is, based on character set order). But if we want, we can
introduce rules of our own for string comparisons, and these can be of arbitrary complexity.

As an example, suppose that we want to ignore the English articles a, an, and the at the
front of a string, and we also want to ignore most common punctuation marks. We can do
this by overriding the built-in method <=>, which is called for <, <=, >, and >= (see Listing
2.1).

Listing 2.1. Specialized String Comparisons

class String

 alias old_compare <=>

 def <=>(other)
 a = self.dup
 b = other.dup
 # Remove punctuation
 a.gsub!(/[\,\.\?\!\:\;]/, "")
 b.gsub!(/[\,\.\?\!\:\;]/, "")
 # Remove initial articles
 a.gsub!(/^(a |an |the)/i, "")
 b.gsub!(/^(a |an |the)/i, "")
 # Remove leading/trailing whitespace
 a.strip!
 b.strip!
 # Use the old <=>
 a.old_compare(b)
 end

end

title1 = "Calling All Cars"
title2 = "The Call of the Wild"

Ordinarily this would print "yes"

if title1 < title2
 puts "yes"
else
 puts "no" # But now it prints "no"
end

Note that we save the old <=> with an alias and then call it at the end. This is because if
we tried to use the < method, it would call the new <=> rather than the old one, resulting
in infinite recursion and a program crash.

Note also that the == operator doesn't call the <=> method (mixed in from comparable).
This means that if we need to check equality in some specialized way, we will have to
override the == method separately. But in this case, == works as we want it to anyhow.

Chapter 2. Simple Data Tasks Page 3 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Tokenizing a String
The split method will parse a string and return an array of tokens. It accepts two
parameters, a delimiter, and a field limit, which is an integer.

The delimiter defaults to whitespace. Actually, it uses $; or the English equivalent
$FIELD_SEPARATOR. If the delimiter is a string, the explicit value of that string is used
as a token separator.

s1 = "It was a dark and stormy night."
words = s1.split # ["It", "was", "a", "dark", "and",
 # "stormy", "night"]

s2 = "apples, pears, and peaches"
list = s2.split(", ") # ["apples", "pears", "and peaches"]

s3 = "lions and tigers and bears"
zoo = s3.split(/ and /) # ["lions", "tigers", "bears"]

The limit parameter places an upper limit on the number of fields returned, according to
these rules:

1. If it is omitted, trailing null entries are suppressed.
2. If it is a positive number, the number of entries will be limited to that number (stuffing

the rest of the string into the last field as needed). Trailing null entries are retained.
3. If it is a negative number, there is no limit to the number of fields, and trailing null

entries are retained.

These three rules are illustrated here:

str = "alpha,beta,gamma,,"
list1 = str.split(",") # ["alpha","beta","gamma"]
list2 = str.split(",",2) # ["alpha", "beta,gamma,,"]
list3 = str.split(",",4) # ["alpha", "beta", "gamma", ","]
list4 = str.split(",",8) # ["alpha", "beta", "gamma", "", ""]
list5 = str.split(",",-1) # ["alpha", "beta", "gamma", "", ""]

Formatting a String
String formatting is done in Ruby as it is in C—with the sprintf method. It takes a string
and a list of expressions as parameters and returns a string. The format string contains
essentially the same set of specifiers that are available with C's sprintf (or printf).

name = "Bob"
age = 28
str = sprintf("Hi, %s... I see you're %d years old.", name, age)

Chapter 2. Simple Data Tasks Page 4 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

You might ask why we would use this instead of simply interpolating values into a string
using the #{ expr} notation. The answer is that sprintf makes it possible to do extra
formatting such as specifying a maximum width, specifying a maximum number of decimal
places, adding or suppressing leading zeroes, left-justifying, right-justifying, and more.

str = sprintf("%-20s %3d", name, age)

The String class has a method %, which will do much the same thing. It takes a single
value or an array of values of any type.

str = "%-20s %3d" % [name, age] # Same as previous example

We also have the methods ljust, rjust, and center; these take a length for the
destination string and pad with spaces as needed.

str = "Moby-Dick"
s1 = str.ljust(13) # "Moby-Dick "
s2 = str.center(13) # " Moby-Dick "
s3 = str.rjust(13) # " Moby-Dick"

For more information, see any reference.

Controlling Uppercase and Lowercase
Ruby's String class offers a rich set of methods for controlling case. We offer an overview
of them here.

The downcase method will convert a string to all lowercase. Likewise upcase will convert
it to all uppercase.

s1 = "Boston Tea Party"
s2 = s1.downcase # "boston tea party"
s3 = s2.upcase # "BOSTON TEA PARTY"

The capitalize method will capitalize the first character of a string while forcing all the
remaining characters to be lowercase.

s4 = s1.capitalize # "Boston tea party"
s5 = s2.capitalize # "Boston tea party"
s6 = s3.capitalize # "Boston tea party"

The swapcase method will exchange the case of each letter in a string.

Chapter 2. Simple Data Tasks Page 5 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

s7 = "THIS IS AN ex-parrot."
s8 = s7.swapcase # "this is an EX-PARROT."

Each of these has its in-place equivalent (upcase!, downcase!, capitalize!,
swapcase!).

There are no built-in methods for detecting case, but this is easy to do with regular
expressions.

if string =~ /[a-z]/
 puts "string contains lowercase charcters"
end

if string =~ /[A-Z]/
 puts "string contains uppercase charcters"
end

if string =~ /[A-Z]/ and string =~ /a-z/
 puts "string contains mixed case"
end

if string[0..0] =~ /[A-Z]/
 puts "string starts with a capital letter"
end

Note that all these methods ignore locale.

Accessing and Assigning Substrings
In Ruby, substrings can be accessed in several different ways. Normally the bracket
notation is used, as for an array; but the brackets can contain a pair of Fixnums, a range,
a regex, or a string. Each case is discussed in turn.

If a pair of Fixnum values is specified, they are treated as an offset and a length, and the
corresponding substring is returned:

str = "Humpty Dumpty"
sub1 = str[7,4] # "Dump"
sub2 = str[7,99] # "Dumpty" (overrunning is OK)
sub3 = str[10,-4] # nil (length is negative)

It is important to remember that these are an offset and a length (number of characters),
not beginning and ending offsets.

A negative index counts backward from the end of the string. In this case, the index is one-
based, not zero-based. The length is still added in the forward direction.

Chapter 2. Simple Data Tasks Page 6 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

str1 = "Alice"
sub1 = str1[-3,3] # "ice"
str2 = "Through the Looking-Glass"
sub3 = str2[-13,4] # "Look"

A range can be specified. In this case, the range is taken as a range of indices into the string.
Ranges can have negative numbers, but the numerically lower number must still be first
in the range. If the range is backward or if the initial value is outside the string, nil is
returned.

str = "Winston Churchill"
sub1 = str[8..13] # "Church"
sub2 = str[-4..-1] # "hill"
sub3 = str[-1..-4] # nil
sub4 = str[25..30] # nil

If a regular expression is specified, the string matching that pattern will be returned. If
there is no match, nil will be returned.

str = "Alistair Cooke"
sub1 = str[/l..t/] # "list"
sub2 = str[/s.*r/] # "stair"
sub3 = str[/foo/] # nil

If a string is specified, that string will be returned if it appears as a substring (or nil if it
doesn't).

str = "theater"
sub1 = str["heat"] # "heat"
sub2 = str["eat"] # "eat"
sub3 = str["ate"] # "ate"
sub4 = str["beat"] # nil
sub5 = str["cheat"] # nil

Finally, in the trivial case, a single Fixnum as index will yield an ASCII code (or nil if out
of range).

str = "Aaron Burr"
ch1 = str[0] # 65
ch1 = str[1] # 97
ch3 = str[99] # nil

It is important to realize that the notations we have described here will serve for assigning
values as well as for accessing them.

Chapter 2. Simple Data Tasks Page 7 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

str1 = "Humpty Dumpty"
str1[7,4] = "Moriar" # "Humpty Moriarty"

str2 = "Alice"
str2[-3,3] = "exandra" # "Alexandra"

str3 = "Through the Looking-Glass"
str3[-13,13] = "Mirror" # "Through the Mirror"

str4 = "Winston Churchill"
str4[8..13] = "H" # "Winston Hill"

str5 = "Alistair Cooke"
str5[/e$/] ="ie Monster" # "Alistair Cookie Monster"

str6 = "theater"
str6["er"] = "re" # "theatre"
str7 = "Aaron Burr"
str7[0] = 66 # "Baron Burr"

Assigning to an expression evaluating to nil will have no effect.

Substituting in Strings
You've already seen how to perform simple substitutions in strings. The sub and gsub
methods provide more advanced pattern-based capabilities. There are also sub! and
gsub!, which are their in-place counterparts.

The sub method will substitute the first occurrence of a pattern with the given substitute
string or the given block.

s1 = "spam, spam, and eggs"
s2 = s1.sub(/spam/,"bacon") # "bacon, spam,
and eggs"

s3 = s2.sub(/(\w+), (\w+),/,'\2, \1,') # "spam, bacon, and eggs"

s4 = "Don't forget the spam."
s5 = s4.sub(/spam/) { |m| m.reverse } # "Don't forget the maps."

s4.sub!(/spam/) { |m| m.reverse }
s4 is now "Don't forget the maps."

As this example shows, the special symbols \1, \2, and so on can be used in a substitute
string. However, special variables such as $& (or the English version $MATCH) might not.

If the block form is used, the special variables can be used. However, if all you need is the
matched string, it will be passed into the block as a parameter. If it isn't needed at all, the
parameter can of course be omitted.

Chapter 2. Simple Data Tasks Page 8 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The gsub method (global substitution) is essentially the same except that all matches are
substituted rather than just the first.

s5 = "alfalfa abracadabra"
s6 = s5.gsub(/a[bl]/,"xx") # "xxfxxfa xxracadxxra"
s5.gsub!(/[lfdbr]/) { |m| m.upcase + "-" }
s5 is now "aL-F-aL-F-a aB-R-acaD-aB-R-a"

The method Regexp.last_match is essentially identical to $& or $MATCH.

Searching a String
Besides the techniques for accessing substrings, there are other ways of searching within
strings. The index method will return the starting location of the specified substring,
character, or regex. If the item isn't found, the result is nil.

str = "Albert Einstein"
pos1 = str.index(?E) # 7
pos2 = str.index("bert") # 2
pos3 = str.index(/in/) # 8
pos4 = str.index(?W) # nil
pos5 = str.index("bart") # nil
pos6 = str.index(/wein/) # nil

The method rindex (right index) will start from the right side of the string (that is, from
the end). The numbering, however, proceeds from the beginning as usual.

str = "Albert Einstein"
pos1 = str.rindex(?E) # 7
pos2 = str.rindex("bert") # 2
pos3 = str.rindex(/in/) # 13 (finds rightmost match)
pos4 = str.rindex(?W) # nil
pos5 = str.rindex("bart") # nil
pos6 = str.rindex(/wein/) # nil

The include? method simply tells whether the specified substring or character occurs
within the string.

str1 = "mathematics"
flag1 = str1.include? ?e # true
flag2 = str1.include? "math" # true
str2 = "Daylight Saving Time"
flag3 = str2.include? ?s # false
flag4 = str2.include? "Savings" # false

Chapter 2. Simple Data Tasks Page 9 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The scan method will repeatedly scan for occurrences of a pattern. If called without a
block, it will return an array. If the pattern has more than one (parenthesized) group, the
array will be nested.

str1 = "abracadabra"
sub1 = str1.scan(/a./)
sub1 now is ["ab","ac","ad","ab"]

str2 = "Acapulco, Mexico"
sub2 = str2.scan(/(.)(c.)/)
sub2 now is [["A","ca"], ["l","co"], ["i","co"]]

If a block is specified, the method will pass the successive values to the block:

str3 = "Kobayashi"
str3.scan(/[^aeiou]+[aeiou]/) do |x|
 print "Syllable: #{ x} \n"
end

This code will produce the following output:

Syllable: Ko
Syllable: ba
Syllable: ya
Syllable: shi

Converting Between Characters and ASCII Codes
In Ruby, a character is already an integer.

str = "Martin"
print str[0] # 77

If a Fixnum is appended directly onto a string, it is converted to a character.

str2 = str << 111 # "Martino"

The method length can be used for finding the length of a string. A synonym is size.

str1 = "Carl"
x = str1.length # 4
str2 = "Doyle"
x = str2.size # 5

Chapter 2. Simple Data Tasks Page 10 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Processing a Line at a Time
A Ruby string can contain newlines. For example, a small enough file can be read into
memory and stored in a single string. The default iterator each will process such a string
one line at a time.

str = "Once upon\na time...\nThe End\n"
num = 0
str.each do |line|
 num += 1
 print "Line #{ num} : #{ line} "
end

This code produces three lines of output:

Line 1: Once upon
Line 2: a time...
Line 3: The End

The method each_with_index could also be used in this case.

Processing a Byte at a Time
Because Ruby isn't fully internationalized at the time of this writing, a character is
essentially the same as a byte. To process these in sequence, use the each_byte iterator.

str = "ABC"
str.each_byte do |char|
 print char, " "
end
Produces output: 65 66 67

Appending an Item onto a String
The append operator << can be used to append strings onto another string. It is
stackable in that multiple operations can be performed in sequence on a given receiver.

str = "A"
str << [1,2,3].to_s << " " << (3.14).to_s
str is now "A123 3.14"

If a Fixnum in the range 0–255 is specified, it will be converted to a character.

str = "Marlow"
str << 101 << ", Christopher"
str is now "Marlowe, Christopher"

Chapter 2. Simple Data Tasks Page 11 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Removing Trailing Newlines and Other Characters
Often we want to remove extraneous characters from the end of a string. The prime
example is a newline on a string read from input.

The chop method will remove the last character of the string (typically, a trailing newline
character). If the character before the newline is a carriage return (\r), it will be removed
also. The reason for this behavior is the discrepancy between different systems' concept of
what a newline is. On some systems such as UNIX, the newline character is represented
internally as a linefeed (\n). On others, such as DOS and Windows, it is stored as a carriage
return followed by a linefeed (\r\n).

str = gets.chop # Read string, remove newline
s2 = "Some string\n" # "Some string" (no newline)
s3 = s2.chop! # s2 is now "Some string" also
s4 = "Other string\r\n"
s4.chop! # "Other string" (again no newline)

Note that the in-place version of the method (chop!) will modify its receiver.

It is also very important to note that in the absence of a trailing newline, the last character
will be removed anyway.

str = "abcxyz"
s1 = str.chop # "abcxy"

Because a newline might not always be present, the chomp method might be a better
alternative.

str = "abcxyz"
str2 = "123\n"
s1 = str.chomp # "abcxyz"
s2 = str2.chomp # "123"

There is also a chomp! method as we would expect.

If a parameter is specified for chomp, it will remove the set of characters specified from
the end of the string rather than the default record separator. Note that if the record
separator appears in the middle of the string, it is ignored.

str1 = "abcxyz"
str2 = "abcxyz"
s1 = str1.chomp("yz") # "abcx"
s2 = str2.chomp("x") # "abcxyz"

Chapter 2. Simple Data Tasks Page 12 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Trimming Whitespace from a String
The strip method will remove whitespace from the beginning and end of a string. Its
counterpart strip! will modify the receiver in place.

str1 = "\t \nabc \t\n"
str2 = str1.strip # "abc"
str3 = str1.strip! # "abc"
str1 is now "abc" also

Whitespace, of course, consists mostly of blanks, tabs, and end-of-line characters.

If we want to remove whitespace only from the beginning of a string, it is better to do it
another way. Here we do substitution with the sub method. (Here \s matches a whitespace
character.)

str1 = "\t \nabc \t\n"
Remove from beginning of string
str2 = str1.sub(/^\s*/,"") # "abc \t\n"

However, note that removing whitespace from the end of a string is problematic. If we only
remove spaces and tabs, we are fine; but if we try to remove a newline, we run into
difficulties. This is because a newline is considered to mark the end of a string; the
dollar sign ($) will match the earliest newline even if multiline mode is being used. So the
naive method of using $ won't work. Here we show a technique that will work even for
newlines; it is unconventional but effective.

str3 = str2.reverse.sub(/^[\t\n]*/,"").reverse
Reverse the string; remove the whitespace; reverse it again
Result is "\t \nabc"

Repeating Strings
In Ruby, the multiplication operator (or method) is overloaded to enable repetition of
strings. If a string is multiplied by n, the result is n copies of the original string concatenated
together.

yell = "Fight! "*3 # "Fight! Fight! Fight! "
ruler = "+" + ("."*4+"5"+"."*4+"+")*3
"+....5....+....5....+....5....+"

Chapter 2. Simple Data Tasks Page 13 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Expanding Variables in Input
This is a case of the use-mention distinction that is so common in computer science: Am
I using this entity or only mentioning it? Suppose that a piece of data from outside the
program (for example, from user input) is to be treated as containing a variable name or
expression. How can we evaluate that expression?

The eval method comes to our rescue. Suppose that we want to read in a variable name
and tell the user what its value is. The following fragment demonstrates this idea:

alpha=10
beta=20
gamma=30
print "Enter a variable name: "
str = gets.chop!
result = eval(str)

puts "#{ str} = #{ result} "

If the user enters alpha, for instance, the program will respond with alpha = 10.

However, we will point out a potential danger here. It is conceivable that a malicious user
could enter a string specifically designed to run an external program and produce side
effects that the programmer never intended or dreamed of. For example, on an UNIX
system, one might enter %x[rm -rf *] as an input string. When the program evaluated
that string, it would recursively remove all the files under the current directory!

For this reason, you must exercise caution when doing an eval of a string you didn't build
yourselves. (This is particularly true in the case of Web-based software that is accessible
by anyone on the Internet.) For example, you could scan the string and verify that it didn't
contain backticks, the %x notation, the method name system, and so on.

Embedding Expressions Within Strings
The #{ } notation makes embedding expressions within strings easy. You need not worry
about converting, appending, and concatenating; you can interpolate a variable value or
other expression at any point in a string.

puts "#{ temp_f} Fahrenheit is #{ temp_c} Celsius"
puts "The discriminant has the value #{ b*b - 4*a*c} ."
puts "#{ word} is #{ word.reverse} spelled backward."

Some shortcuts for global, class, and instance variables can be used so that the braces can
be dispensed with.

Chapter 2. Simple Data Tasks Page 14 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

print "$gvar = #$gvar and ivar = #@ivar."

Note that this technique isn't applicable for single-quoted strings (because their contents
aren't expanded), but it does work for double-quoted documents and regular expressions.

Parsing Comma-separated Data
Comma-delimited data is common in computing. It is a kind of lowest common
denominator of data interchange, which is used (for example) to transfer information
between incompatible databases or applications that know no other common format.

We assume here that we have a mixture of strings and numbers and all strings are enclosed
in quotes. We further assume that all characters are escaped as necessary (commas and
quotes inside strings, and so on).

The problem becomes simple because this data format looks suspiciously like a Ruby array
of mixed types. In fact, we can simply add brackets to enclose the whole expression, and
we have an array of items.

string = gets.chop!
Suppose we read in a string like this one:
"Doe, John", 35, 225, "5'10\"", "555-0123"
data = eval("[" + string + "]") # Convert to array
data.each { |x| puts "Value = #{ x} "}

This fragment will produce the following output:

sValue = Doe, John
Value = 35
Value = 225
Value = 5' 10"
Value = 555-0123

Converting Strings to Numbers (Decimal and Otherwise)
Frequently, we need to capture a number that is embedded in a string. For the simple cases,
we can use to_f and to_i to convert to floating point numbers and integers, respectively.
Each will ignore extraneous characters at the end of the string, and each will return a zero
if no number is found.

num1 = "237".to_i # 237
num2 = "50 ways to leave...".to_i # 50
num3 = "You are number 6".to_i # 0
num4 = "no number here at all".to_i # 0

num5 = "3.1416".to_f # 3.1416

Chapter 2. Simple Data Tasks Page 15 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

num6 = "0.6931 is ln 2".to_f # 0.6931
num7 = "ln 2 is 0.6931".to_f # 0.0
num8 = "nothing to see here".to_f # 0.0

Octal and hexadecimal can similarly be converted with the oct and hex methods as shown
in the following. Signs are optional as with decimal numbers.

oct1 = "245".oct # 165
oct2 = "245 Days".oct # 165
Leading zeroes are irrelevant.
oct3 = "0245".oct # 165
oct4 = "-123".oct # -83
Non-octal digits cause a halt
oct4 = "23789".oct # 237

hex1 = "dead".hex # 57005
Uppercase is irrelevant
hex2 = "BEEF".hex # 48879
Non-hex letter/digit causes a halt
hex3 = "beefsteak".hex # 48879
hex4 = "0x212a".hex # 8490
hex5 = "unhexed".hex # 0

There is no bin method to convert from binary, but you can write your own (see Listing
2.2). Notice that it follows all the same rules of behavior as oct and hex.

Listing 2.2. Converting from Binary

class String

 def bin
 val = self.strip
 pattern = /^([+-]?)(0b)?([01]+)(.*)$/
 parts = pattern.match(val)
 return 0 if not parts
 sign = parts[1]
 num = parts[3]
 eval(sign+"0b"+num)
 end

end

a = "10011001".bin # 153
b = "0b10011001".bin # 153
c = "0B1001001".bin # 0
d = "nothing".bin # 0
e = "0b100121001".bin # 9

Encoding and Decoding rot13 Text
The rot13 method is perhaps the weakest form of encryption known to humankind. Its
historical use is simply to prevent people from accidentally reading a piece of text. It is

Chapter 2. Simple Data Tasks Page 16 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

commonly seen in Usenet; for example, a joke that might be considered offensive might
be encoded in rot13, or you could post the entire plot of Star Wars: Episode II the day
before the premiere.

The encoding method consists simply of rotating a string through the alphabet, so A
becomes N, B becomes O, and so on. Lowercase letters are rotated in the same way; digits,
punctuation, and other characters are ignored. Because 13 is half of 26 (the size of our
alphabet), the function is its own inverse; applying it a second time will decrypt it.

The following is an implementation as a method added to the String class. We present
it without further comment.

class String

 def rot13
 self.tr("A-Ma-mN-Zn-z","N-Zn-zA-Ma-m")
 end

end

joke = "Y2K bug"
joke13 = joke.rot13 # "L2X oht"

episode2 = "Fcbvyre: Nanxva qbrfa'g trg xvyyrq."
puts episode2.rot13

Obscuring Strings
Sometimes we don't want strings to be immediately legible. For example, passwords
shouldn't be stored in plain text, no matter how tight the file permissions are.

The standard method crypt uses the standard function of the same name in order to DES-
encrypt a string. It takes a "salt" value as a parameter (similar to the seed value for a random
number generator).

A trivial application for this is shown in the following, where we ask for a password that
Tolkien fans should know.

coded = "hfCghHIE5LAM."

puts "Speak, friend, and enter!"

print "Password: "
password = gets.chop

if password.crypt("hf") == coded
 puts "Welcome!"
else

Chapter 2. Simple Data Tasks Page 17 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "What are you, an orc?"
end

There are other conceivable uses for hiding strings. For example, we sometimes want to
hide strings inside a file so that they aren't easily read. Even a binary file can have readable
portions easily extracted by the UNIX strings utility or the equivalent, but a DES encryption
will stop all but the most determined crackers.

It is worth noting that you should never rely on encryption of this nature for a server-side
Web application. That is because a password entered on a Web form is still transmitted
over the Internet in plaintext. In a case like this, the easiest security measure is the Secure
Sockets Layer (SSL). Of course, you could still use encryption on the server side, but for a
different reason—to protect the password as it is stored rather than during transmission.

Counting Characters in Strings
The count method will count the number of occurrences of any set of specified characters.

s1 = "abracadabra"
a = s1.count("c") # 1
b = s1.count("bdr") # 5

The string parameter is similar to a very simple regular expression. If it starts with a
caret, the list is negated.

c = s1.count("^a") # 6
d = s1.count("^bdr") # 6

A hyphen indicates a range of characters.

e = s1.count("a-d") # 9
f = s1.count("^a-d") # 2

Reversing a String
A string can be reversed very simply with the reverse method (or its in-place counterpart
reverse!).

s1 = "Star Trek"
s2 = s1.reverse # "kerT ratS"
s1.reverse! # s1 is now "kerT ratS"

Chapter 2. Simple Data Tasks Page 18 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Suppose that you have a sentence and need to reverse the word order (rather than character
order). Use the %w operator to make it an array of words, reverse the array, and then use
join to rejoin them.

words = %w(how now brown cow)
["how", "now", "brown", "cow"]
words.reverse.join(" ")
"cow brown now how"

This can be generalized with String#split, which allows you to divide the words based
on your own pattern.

phrase = "Now here's a sentence"
phrase.split(" ").reverse.join(" ")
"sentence a here's Now"

Removing Duplicate Characters
Runs of duplicate characters can be removed using the squeeze method.

s1 = "bookkeeper"
s2 = s1.squeeze # "bokeper"
s3 = "Hello..."
s4 = s3.squeeze # "Helo."

If a parameter is specified, only those characters will be squeezed.

s5 = s3.squeeze(".") # "Hello."

This parameter follows the same rules as the one for the count method (see "Counting
Characters in Strings"); that is, it understands the hyphen and the caret.

There is also a squeeze! method.

Removing Specific Characters from Within a String
The delete method will remove characters from a string if they appear in the list of
characters passed as a parameter.

s1 = "To be, or not to be"
s2 = s1.delete("b") # "To e, or not to e"
s3 = "Veni, vidi, vici!"
s4 = s3.delete(",!") # "Veni vidi vici"

Chapter 2. Simple Data Tasks Page 19 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This parameter follows the same rules as the one for the count method (see "Counting
Characters in Strings"); that is, it understands the hyphen and the caret.

There is also a delete! method.

Printing Special Characters
The dump method will provide explicit printable representations of characters that might
ordinarily be invisible or print differently.

s1 = "Listen" << 7 << 7 << 7 # Add three ASCII BEL characters
puts s1.dump # Prints: Listen\007\007\007
s2 = "abc\t\tdef\tghi\n\n"
puts s2.dump # Prints: abc\t\tdef\tghi\n\n
s3 = "Double quote: \""
puts s3.dump # Prints: Double quote: \"

Generating Successive Strings
On rare occasions we might want to find the successor value for a string; for example, the
successor for "aaa" is "aab" (then "aac", "aad", and so on).

Ruby provides the method succ for this purpose.

droid = "R2D2"
improved = droid.succ # "R2D3"
pill = "Vitamin B"
pill2 = pill.succ # "Vitamin C"

We don't recommend the use of this feature unless the values are predictable and
reasonable. If you start with a string that is esoteric enough, you will eventually get strange
and surprising results.

There is also an upto method that will apply succ repeatedly in a loop until the desired
final value is reached.

"Files, A".upto "Files, X" do |letter|
 puts "Opening: #{ letter} "
end

Produces 24 lines of output

Again, we stress that this isn't used very frequently, and you use it at your own risk. Also
we want to point out that there is no corresponding predecessor function at the time of
this writing.

Chapter 2. Simple Data Tasks Page 20 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Calculate the Levenstein Distance Between Two Strings
The concept of distance between strings is important in inductive learning (AI),
cryptography, proteins research, and in other areas.

The Levenstein distance (see Listing 2.3) is the minimum number of modifications needed
to change one string into another, using three basic modification operations: del
(deletion), ins (insertion), and sub (substitution). A substitution is also considered to be
a combination of a deletion and insertion (indel). There are various approaches to this,
but we will avoid getting too technical. Suffice it to say that this Ruby implementation
allows you to provide optional parameters to set the cost for the three types of modification
operations, and defaults to a single indel cost basis (cost of insertion=cost of deletion).

Chapter 2. Simple Data Tasks Page 21 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 2.3. Levenstein Distance

class String

 def levenstein(other, ins=2, del=2, sub=1)
 # ins, del, sub are weighted costs
 return nil if self.nil?
 return nil if other.nil?
 dm = [] # distance matrix

 # Initialize first row values
 dm[0] = (0..self.length).collect { |i| i * ins }
 fill = [0] * (self.length - 1)

 # Initialize first column values
 for i in 1..other.length
 dm[i] = [i * del, fill.flatten]
 end

 # populate matrix
 for i in 1..other.length
 for j in 1..self.length
 # critical comparison
 dm[i][j] = [
 dm[i-1][j-1] +
 (self[j-1] == other[i-1] ? 0 : sub),
 dm[i][j-1] + ins,
 dm[i-1][j] + del
].min
 end
 end

 # The last value in matrix is the
 # Levenstein distance between the strings
 dm[other.length][self.length]
 end

end

s1 = "ACUGAUGUGA"
s2 = "AUGGAA"
d1 = s1.levenstein(s2) # 9

s3 = "pennsylvania"
s4 = "pencilvaneya"
d2 = s3.levenstein(s4) # 7

s5 = "abcd"
s6 = "abcd"
d3 = s5.levenstein(s6) # 0

Now that we have the Levenstein distance defined, it's conceivable that we could define
a similar? method, giving it a threshold for similarity.

class String

 def similar?(other, thresh=2)
 if self.levenstein(other) < thresh
 true

Chapter 2. Simple Data Tasks Page 22 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 else
 false
 end
 end

end

if "polarity".similar?("hilarity")
 puts "Electricity is funny!"
end

Of course, it would also be possible to pass in the three weighted costs to the similar?
method so that they could in turn be passed into the Levenstein method. We have omitted
these for simplicity.

Using Strings as Stacks and Queues
These routines make it possible to treat a string as a stack or a queue (see Listing 2.4),
adding the operations shift, unshift, push, pop, rotate_left, and
rotate_right. The operations are implemented both at the character and the word level.
These have proved useful in one or two programs that we have written, and they might be
useful to you also. Use your imagination.

There might be some confusion as to what is returned by each method. In the case of a
retrieving operation such as pop or shift, the return value is the item that was retrieved.
In a storing operation such as push or unshift, the return value is the new string. All
rotate operations return the value of the new string. And we will state the obvious: Every
one of these operations modifies its receiver, although none of them is marked with an
exclamation point as suffix.

Chapter 2. Simple Data Tasks Page 23 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 2.4. String as Queues

class String

 def shift
 # Removes first character from self and
 # returns it, changing self
 return nil if self.empty?
 item=self[0]
 self.sub!(/^./,"")
 return nil if item.nil?
 item.chr
 end

 def unshift(other)
 # Adds last character of provided string to
 # front of self
 newself = other.to_s.dup.pop.to_s + self
 self.replace(newself)
 end

 def pop
 # Pops last character off self and
 # returns it, changing self
 return nil if self.empty?
 item=self[-1]
 self.chop!
 return nil if item.nil?
 item.chr
 end

 def push(other)
 # Pushes first character of provided
 # string onto end of self
 newself = self + other.to_s.dup.shift.to_s
 self.replace(newself)
 end

 def rotate_left(n=1)
 n=1 unless n.kind_of? Integer
 n.times do
 char = self.shift
 self.push(char)
 end
 self
 end

 def rotate_right(n=1)
 n=1 unless n.kind_of? Integer
 n.times do
 char = self.pop
 self.unshift(char)
 end
 self
 end

 @@first_word_re = /^(\w+\W*)/
 @@last_word_re = /(\w+\W*)$/
 def shift_word
 # Shifts first word off of self
 # and returns; changes self
 return nil if self.empty?
 self=~@@first_word_re
 newself= $' || "" # $' is POSTMATCH
 self.replace(newself) unless $'.nil?
 $1
 end

Chapter 2. Simple Data Tasks Page 24 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def unshift_word(other)
 # Adds provided string to front of self
 newself = other.to_s + self
 self.replace(newself)
 end

 def pop_word
 # Pops and returns last word off
 # self; changes self
 return nil if self.empty?
 self=~@@last_word_re
 newself= $` || "" # $` is PREMATCH
 self.replace(newself) unless $`.nil?
 $1
 end

 def push_word(other)
 # Pushes provided string onto end of self
 newself = self + other.to_s
 self.replace(newself)
 end

 def rotate_word_left
 word = self.shift_word
 self.push_word(word)
 end

 def rotate_word_right
 word = self.pop_word
 self.unshift_word(word)
 end

 alias rotate_Left rotate_word_left
 alias rotate_Right rotate_word_right
end

str = "Hello there"
puts str.rotate_left # "ello thereH"
puts str.pop # "H"
puts str.shift # "e"
puts str.rotate_right # "ello ther"
puts str.unshift("H") # "Hello ther"
puts str.push("e") # "Hello there"

puts str.push_word(", pal!") # "Hello there, pal!"
puts str.rotate_Left # "there, pal!Hello "

puts str.pop_word # str is "there, pal!"
 # result is "Hello "

puts str.shift_word # str is "pal!"
 # result is "there, "

puts str.unshift_word("Hi there, ") # "Hi there, pal!"
puts str.rotate_Right # "pal!Hi there, "
puts str.rotate_left(4) # "Hi there, pal!"

puts "Trying again..."
str = "pal! Hi there, "
puts str.rotate_left(5) # "Hi there, pal!"

Note that the [] operator with a range might be used to gain a window onto a string that
is being rotated.

str = ".....duck....*...*..*..........*......*..."

Chapter 2. Simple Data Tasks Page 25 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

loop do
 print str.rotate_left[0..7],"\r"}
end

speed reading
string="See Bill run. Run Bill run! See Jane sit. Jane sees Bill."
loop{ print string.rotate_Left[0..4],"\r"}

Creating an Abbreviation or Acronym
Suppose that we have a string and we want to create an abbreviation from the initial letters
of each word in it. The code fragment shown in Listing 2.5 accomplishes that. We have
added a threshold value such that any word fewer than that number of letters will be
ignored. The threshold value defaults to zero, including all words.

Note that this uses the shift_word function, defined in "Using Strings as Stacks and
Queues."

Listing 2.5. Acronym Creator

class String

 def acronym(thresh=0)
 acro=""
 str=self.dup.strip
 while !str.nil? && !str.empty?
 word = str.shift_word
 if word.length >= thresh
 acro += word.strip[0,1].to_s.upcase
 end
 end
 acro
 end

end

s1 = "Same old, same old"
puts s1.acronym # "SOSO"

s2 = "three-letter abbreviation"
puts s2.acronym # "TLA"

s3 = "light amplification by stimulated emission of radiation"
puts s3.acronym # "LABSEOR"
puts s3.acronym(3) # "LASER"

Here is a less readable but perhaps more instructive version of the same method.

def acro(thresh=0)
 self.split.find_all { |w| w.length > thresh } .
 collect { |w| w[0,1].upcase} .join
end

Chapter 2. Simple Data Tasks Page 26 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Don't fail to notice the trailing dot on the find_all call.

Encoding and Decoding Base64 Strings
Base64 is frequently used to convert machine-readable data into a text form with no special
characters in it. For example, newsgroups that handle binary files, such as program
executables, frequently will use base64.

The easiest way to do a base64 encode/decode is to use the built-in features of Ruby. The
Array class has a pack method that will return a base64 string (given the parameter
"m"). The String class has a method unpack that will likewise unpack the string
(decoding the base64).

str = "\007\007\002\abdce"

new_string = [str].pack("m") # "BwcCB2JkY2U="
original = new_string.unpack("m") # ["\a\a\002\abdce"]

Note that an array is returned by unpack.

Encoding and Decoding Strings (uuencode/uudecode)
The uu in these names means UNIX-to-UNIX. The uuencode and uudecode utilities are
a time-honored way of exchanging data in text form (similar to the way base64 is used).

str = "\007\007\002\abdce" new_string = [str].pack("u") #
'(!P<"!V)D8V4`' original = new_string.unpack("u") # ["\a\a\002\abdce"]

Note that an array is returned by unpack.

Expanding and Compressing Tab Characters
Occasionally we have a string with tabs in it and we want to convert them to spaces (or
vice versa). The two methods shown in Listing 2.6 will do these operations.

Chapter 2. Simple Data Tasks Page 27 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 2.6. Convert Tabs to Spaces

class String

 def detab(ts=8)
 str = self.dup
 while (leftmost = str.index("\t")) != nil
 space = " "*(ts-(leftmost%ts))
 str[leftmost]=space
 end
 str
 end

 def entab(ts=8)
 str = self.detab
 areas = str.length/ts
 newstr = ""
 for a in 0..areas
 temp = str[a*ts..a*ts+ts-1]
 if temp.size==ts
 if temp =~ / +/
 match=Regexp.last_match[0]
 endmatch = Regexp.new(match+"$")
 if match.length>1
 temp.sub!(endmatch,"\t")
 end
 end
 end
 newstr += temp
 end
 newstr
 end

end

foo = "This is only a test. "

puts foo
puts foo.entab(4)
puts foo.entab(4).dump

Note that this code isn't smart enough to handle backspaces.

Wrapping Lines of Text
Occasionally, we might want to take long text lines and print them within margins of our
own choosing. Listing 2.7 accomplishes this, splitting only on word boundaries and
honoring tabs (but not honoring backspaces or preserving tabs).

Chapter 2. Simple Data Tasks Page 28 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 2.7. Line Wrap

str = "When in the Course of human events it becomes necessary\n
for one people to dissolve the political bands which have\n
connected them with another, and to assume among the powers\n
of the earth the separate and equal station to which the Laws\n
of Nature and of Nature's God entitle them, a decent respect\n
for the opinions of mankind requires that they should declare\n
the causes which impel them to the separation."
max = 20

line = 0
out = [""]

input = str.gsub("\n"," ")
input.detab!

while input != ""
 word = input.shift_word
 break if not word
 if out[line].length + word.length > max
 out[line].squeeze!(" ")
 line += 1
 out[line] = ""
 end
 out[line].push_word(word)
end

out.each { |line| puts line} # Prints 24 very short lines

Regular Expressions

I would choose

To lead him in a maze along the patterned paths…

—Amy Lowell, "Patterns"

The power of regular expressions as a computing tool has often been underestimated. From
their earliest theoretical beginnings in the 1940s, they found their way onto computer
systems in the 1960s and thence into various tools in the UNIX operating system. In the
1990s, the popularity of Perl helped make regular expressions a household item rather
than the esoteric domain of bearded gurus.

The beauty of regular expressions is that everything in our experience can be understood
in terms of patterns. Where there are patterns that we can describe, we can detect matches;
we can find the bits of reality that correspond to those matches; and we can replace those
bits with others of our own choosing.

Chapter 2. Simple Data Tasks Page 29 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Escaping Special Characters
The class method Regexp.escape will escape any special characters that are used in
regular expressions. Such characters include the asterisk, question mark, and brackets.

str1 = "[*?]"
str2 = Regexp.escape(str1) # "\[*\?\]"

The method Regexp.quote is an alias.

Compiling Regular Expressions
Regular expressions can be compiled using the class method Regexp.compile, which is
really only a synonym for Regexp.new. The first parameter is required and can be a string
or a regex. (Note that if the parameter is a regex with options, the options won't carry over
into the newly compiled regex.)

pat1 = Regexp.compile("^foo.*") # /^foo.*/
pat2 = Regexp.compile(/bar$/i) # /bar/ (i not propagated)

The second parameter, if present, is normally a bitwise OR of any of the following constants:
Regexp::EXTENDED, Regexp::IGNORECASE, and Regexp::MULTILINE.
Additionally, any non-nil value will have the result of making the regex not case sensitive;
we don't recommend this practice.

options = Regexp::MULTILINE || Regexp::IGNORECASE
pat3 = Regexp.compile("^foo", options)
pat4 = Regexp.compile(/bar/, Regexp::IGNORECASE)

The third parameter, if specified, is the language parameter, which enables multibyte
character support. It can take any of the following four string values:

 "N" or "n" means None
 "E" or "e" means EUC
 "S" or "s" means Shift-JIS
 "U" or "u" means UTF-8

Accessing Backreferences
The class method Regexp.last_match will return an object of class MatchData (as will
the instance method match). This object has instance methods that enable the
programmer to access backreferences.

Chapter 2. Simple Data Tasks Page 30 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The MatchData object is manipulated with a bracket notation as though it were an array
of matches. The special element 0 contains the text of the entire matched string. Thereafter,
element n refers to the nth match.

pat = /(.+[aiu])(.+[aiu])(.+[aiu])(.+[aiu])/i
Four identical groups in this pattern
refs = pat.match("Fujiyama")
refs is now: ["Fujiyama","Fu","ji","ya","ma"]
x = refs[1]
y = refs[2..3]
refs.to_a.each { |x| print "#{ x} \n"}

Note that the object refs isn't a true array. Thus, when we want to treat it as one by using
the iterator each, we must use to_a (as shown previously) to convert it to an array.

We can use more than one technique to locate a matched substring within the original
string. The methods begin and end will return the beginning and ending offsets of a
match. (It is important to realize that the ending offset is really the index of the next
character after the match.)

str = "alpha beta gamma delta epsilon"
0....5....0....5....0....5....
(for your counting convenience)

pat = /(b[^]+)(g[^]+)(d[^]+)/
Three words, each one a single match
refs = pat.match(str)

"beta "
p1 = refs.begin(1) # 6
p2 = refs.end(1) # 11
"gamma "
p3 = refs.begin(2) # 11
p4 = refs.end(2) # 17
"delta "
p5 = refs.begin(3) # 17
p6 = refs.end(3) # 23
"beta gamma delta"
p7 = refs.begin(0) # 6
p8 = refs.end(0) # 23

Similarly, the offset method will return an array of two numbers, which are the
beginning and ending offsets of that match. To continue the preceding example:

range0 = refs.offset(0) # [6,23]
range1 = refs.offset(1) # [6,11]
range2 = refs.offset(2) # [11,17]
range3 = refs.offset(3) # [17,23]

Chapter 2. Simple Data Tasks Page 31 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The portions of the string before and after the matched substring can be retrieved by
the instance methods pre_match and post_match, respectively. To continue the
preceding example:

before = refs.pre_match # "alpha "
after = refs.post_match # "epsilon"

Using Character Classes
Ruby regular expression might contain references to character classes, which are basically
named patterns (of the form [[:name:]]). For example, [[:digit:]] means the same
as [0-9] in a pattern. In most cases, this turns out to be shorthand.

Some others are [[:print:]] (printable characters) and [[:alpha:]] (alphabetic
characters).

s1 = "abc\007def"
/[[:print:]]*/.match(s1)
m1 = Regexp::last_match[0] # "abc"

s2 = "1234def"
/[[:digit:]]*/.match(s2)
m2 = Regexp::last_match[0] # "1234"

/[[:digit:]]+[[:alpha:]]/.match(s2)
m3 = Regexp::last_match[0] # "1234d"

Treating Newline as a Character
Ordinarily a dot will match any character except a newline. When the m (multiline) modifier
is used, a newline will be matched by a dot. The same is true when the
Regexp::MULTILINE option is used in creating a regex.

str = "Rubies are red\nAnd violets are blue.\n"
pat1 = /red./
pat2 = /red./m

str =~ pat1 # false
str =~ pat2 # true

Matching an IP Address
Suppose that we want to determine whether a string is a valid IPv4 address. The standard
form of such an address is a dotted quad or dotted decimal string. This is, in other words,
four decimal numbers separated by periods, each number ranging from 0 to 255.

Chapter 2. Simple Data Tasks Page 32 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The pattern given here will do the trick (with a few exceptions such as 127.1). We break
the pattern up a little just for readability. Note that the \d symbol is double escaped so
that the slash in the string will get passed on to the regex.

num = "(\\d|[01]?\ \ d\ \ d|2[0-4]\\d|25[0-5])"
pat = "^#{ num} \.#{ num} \.#{ num} \.#{ num} $"
ip_pat = Regexp.new(pat)

ip1 = "9.53.97.102"

if ip1 =~ ip_pat # Prints "yes"
 puts "yes"
else
 puts "no"
end

IPv6 addresses aren't in widespread use yet, but we include them for completeness. These
consist of eight colon-separated 16-bit hex numbers with zeroes suppressed.

num = "[0-9A-Fa-f]{ 0,4} "
pat = "^" + "#{ num} :"*7 + "#{ num} $"
ipv6_pat = Regexp.new(pat)

v6ip = "abcd::1324:ea54::dead::beef"

if v6ip =~ ipv6_pat # Prints "yes"
 puts "yes"
else
 puts "no"
end

Matching a Keyword-Value Pair
Occasionally, we want to work with strings of the form "attribute=value" (for
example, when we parse some kind of configuration file for an application).

This code fragment will extract the keyword and the value. The assumptions are that the
keyword or attribute is a single word; the value extends to the end of the line; and the equal
sign can be surrounded by whitespace.

pat = /(\w+)\s*=\s*(.*?)$/
str = "color = blue"

matches = pat.match(str)

puts matches[1] # "color"
puts matches[2] # "blue"

For additional information see the section "Adding a Keyword-Value String to a Hash."

Chapter 2. Simple Data Tasks Page 33 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Matching Roman Numerals
Here we match against a complex pattern to determine whether a string is a valid Roman
number (up to decimal 3999). As before, the pattern is broken up into parts for readability.

rom1 = "m{ 0,3} "
rom2 = "(d?c{ 0,3} |c[dm])"
rom3 = "(l?x{ 0,3} |x[lc])"
rom4 = "(v?i{ 0,3} |i[vx])"
rom_pat = "^#{ rom1} #{ rom2} #{ rom3} #{ rom4} $"

roman = Regexp.new(rom_pat, Regexp::IGNORECASE)

year1985 = "MCMLXXXV"

if year1985 =~ roman # Prints "yes"
 puts "yes"
else
 puts "no"
end

Matching Numeric Constants
A simple decimal integer is the easiest number to match. It has an optional sign and
consists thereafter of digits (except that Ruby allows an underscore as a digit separator).
Note that the first digit shouldn't be a zero; then it would be interpreted as an octal
constant.

int_pat = /^[+-]?[1-9][\d_]*/

Integer constants in other bases are similar. Note that the hex and binary patterns are not
case sensitive because they contain at least one letter.

hex_pat = /^[+-]?0x[\da-f_]+$/i
oct_pat = /^[+-]?0[0-7_]+$/
bin_pat = /^[+-]?0b[01_]+/i

A normal floating-point constant is a little tricky; the number sequences on each side of
the decimal point are optional, but one or the other must be included.

float_pat = /^(\d[\d_]*)*\.[\d_]*$/

Finally, scientific notation builds on the ordinary floating-point pattern.

sci_pat = /^(\d[\d_]*)?\.[\d_]*(e[+-]?)?(_*\d[\d_]*)$/i

Chapter 2. Simple Data Tasks Page 34 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

These patterns can be useful if, for instance, you have a string and you want to verify its
validity as a number before trying to convert it.

Matching a Date/Time String
Suppose that we want to match a date/time in the form mm/dd/yy hh:mm:ss. This pattern
is a good first attempt: datetime_re=/(\d\d)\/(\d\d)\/(\d\d) (\d\d):(\d
\d):(\d\d)/.

However, that will also match invalid date/times, and miss valid ones. A pickier pattern
is shown in Listing 2.8.

Listing 2.8. Matching Date/Time Strings

class String

 def scan_datetime(flag=2)
 datetime_re=/((\d\d)\/(\d\d)\/(\d\d) (\d\d):(\d\d):(\d\d))/

 month_re=/(0?[1-9]|1[0-2])/
 # 01 to 09 or 1 to 9 or 10-12
 day_re=/([0-2]?[1-9]|[1-3][01])/
 # 1-9 or 01-09 or 11-19 or 21-29 or 10,11,20,21,30,31
 year_re=/(\d\d)/
 # 00-99
 hour_re=/([01]?[1-9]|[12][0-4])/
 # 1-9 or 00-09 or 11-19 or 10-14 or 20-24
 minute_re=/([0-5]\d)/
 # 00-59, both digit required
 second_re=/(:[0-6]\d)?/
 # leap seconds ;-) both digits required if present

 date_re=/(#{ month_re.source} \/#{ day_re.source} \
 /#{ year_re.source})/
 time_re=/(#{ hour_re.source}
 :#{ minute_re.source} #{ second_re.source})/

 datetime_re2 = /(#{ date_re.source} #{ time_re.source})/

 if flag==2
 self.scan(datetime_re2) # returns arrays
 else
 self.scan(datetime_re)
 end
 end
end

str="Recorded on 11/18/00 20:31:00, viewed 11/18/00 8:31 PM "
str.scan_datetime
[["11/18/00 20:31:00", "11", "18", "00", "20", "31", "00"]]
str.scan_datetime(2)
[["11/18/00 20:31:00", "11/18/00", "11", "18", "00",
"20:31:00", "20", "31", ":00"],
["11/18/00 8:31", "11/18/00", "11", "18", "00", "8:31",
"8", "31", nil]]

Chapter 2. Simple Data Tasks Page 35 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Detecting Doubled Words in Text
Here, we implement the famous double-word detector. Typing the same word twice in
succession is one of the most common typing errors. The code we show here will detect
instances of that occurrence.

double_re = /\b(['A-Z]+) +\1\b/i

str="There's there's the the pattern."
str.scan(double_re) # [["There's"],["the"]]

Note that the trailing i in the regex is for not case sensitive matching. There is an array
for each grouping, hence the resulting array of arrays.

Matching All-caps Words
This one is simple if we assume no numerics, underscores, and so on.

allcaps = /\b[A-Z]+\b/

string = "This is ALL CAPS"
string[allcaps] # "ALL"

Suppose that you want to simply extract every word in all-caps.

string.scan(allcaps) # ["ALL", "CAPS"]

If we wanted, we could extend this concept to include Ruby identifiers and similar items.

Numbers

On two occasions I have been asked [by members of Parliament], 'Pray, Mr.
Babbage, if you put into the machine wrong figures, will the right answers come
out?' I am not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.

—Charles Babbage

Numeric data is the original data type, the native language of the computer. We would be
hard-pressed to find areas of our experience in which numbers aren't applicable. It doesn't
matter whether you're an accountant or an aeronautical engineer; you can't survive
without numbers. We present here a few ways to process, manipulate, convert, and analyze
numeric data.

Chapter 2. Simple Data Tasks Page 36 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Performing Bit-level Operations on Numbers
Occasionally, we might need to operate on a Fixnum as a binary entity. This is less common
in application level programming, but the need still arises.

Ruby has a relatively full set of capabilities in this area. For convenience, numeric constants
can be expressed in binary, octal, or hexadecimal. The usual operators AND, OR, XOR, and
NOT are expressed by the Ruby operators &, |, ^, and ~, respectively.

x = 0377 # Octal (decimal 255)
y = 0b00100110 # Binary (decimal 38)
z = 0xBEEF # Hex (decimal 48879)

a = x | z # 48895 (bitwise OR)
b = x & z # 239 (bitwise AND)
c = x ^ z # 48656 (bitwise XOR)
d = ~ y # -39 (negation or 1's complement)

The instance method size can be used to determine the wordsize of the specific
architecture on which the program is running.

bytes = 1.size # Returns 4 for one particular machine

There are left-shift and right-shift operators (<< and >>, respectively). These are logical
shift operations; they don't disturb the sign bit (although >> does propagate it).

x = 8
y = -8

a = x >> 2 # 2
b = y >> 2 # -2
c = x << 2 # 32
d = y << 2 # -32

Of course, anything shifted far enough to result in a zero value will lose the sign bit because
-0 is merely 0.

Brackets can be used to treat numbers as arrays of bits. The 0th bit is the least significant
bit regardless of the bit order (endianness) of the architecture.

x = 5 # Same as 0b0101
a = x[0] # 1
b = x[1] # 0
c = x[2] # 1
d = x[3] # 0
Etc. # 0

Chapter 2. Simple Data Tasks Page 37 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It isn't possible to assign bits using this notation (because a Fixnum is stored as an
immediate value rather than an object reference). However, you can always fake it by left-
shifting a 1 to the specified bit position and then doing an OR or AND operation.

We can't do x[3] = 1
but we can do:
x |= (1<<3)
We can't do x[4] = 0
but we can do:
x &= ~(1<<4)

Finding Cube Roots, Fourth Roots, and So On
Ruby has a built-in square root function (Math.sqrt) because that function is so
commonly used. But what if you need higher-level roots? If you remember your math, this
is easy.

One way is to use logarithms. Recall that e to the x is the inverse of the natural log of x.
When multiplying numbers, that is equivalent to adding their logarithms.

x = 531441
cuberoot = Math.exp(Math.log(x)/3.0) # 81.0
fourthroot = Math.exp(Math.log(x)/4.0) # 27.0

However, it is just as easy and perhaps clearer to use fractions with an exponentiation
operator (which can take any integer or floating-point value).

y = 4096
cuberoot = y**(1.0/3.0) # 16.0
fourthroot = y**(1.0/4.0) # 8.0
fourthroot = sqrt(sqrt(y)) # 8.0 (same thing)
twelfthroot = y**(1.0/12.0) # 2.0

Note that in all of these examples, we have used floating-point numbers when dividing (to
avoid truncation to an integer).

Rounding Floating-Point Values
If you want to round a floating-point value to an integer, the method round will do the
trick.

pi = 3.14159
new_pi = pi.round # 3
temp = -47.6
temp2 = temp.round # -48

Chapter 2. Simple Data Tasks Page 38 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Sometimes we want to round not to an integer, but to a specific number of decimal places.
In this case, we could use sprintf (which knows how to round) and eval to do this.

pi = 3.1415926535
pi6 = eval(sprintf("%8.6f",pi)) # 3.141593
pi5 = eval(sprintf("%8.5f",pi)) # 3.14159
pi4 = eval(sprintf("%8.4f",pi)) # 3.1416

Of course, this is somewhat ugly. Let's encapsulate this behavior in a method that we'll add
to Float.

class Float

 def roundf(places)
 temp = self.to_s.length
 sprintf("%#{ temp} .#{ places} f",self).to_f
 end

end

Occasionally, we follow a different rule in rounding to integers. The tradition of rounding
n+0.5 upward results in slight inaccuracies at times; after all, n+0.5 is no closer to n+1
than it is to n. So there is an alternative tradition that rounds to the nearest even number
in the case of 0.5 as a fractional part. If we wanted to do this, we might extend the
Float class with a method of our own called round2, as shown here.

class Float

 def round2
 whole = self.floor
 fraction = self - whole
 if fraction == 0.5
 if (whole % 2) == 0
 whole
 else
 whole+1
 end
 else
 self.round
 end
 end

end

a = (33.4).round2 # 33
b = (33.5).round2 # 34
c = (33.6).round2 # 34
d = (34.4).round2 # 34
e = (34.5).round2 # 34
f = (34.6).round2 # 35

Chapter 2. Simple Data Tasks Page 39 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Obviously round2 differs from round only when the fractional part is exactly 0.5; note
that 0.5 can be represented perfectly in binary, by the way. What is less obvious is that this
method will work fine for negative numbers also. (Try it.) Also note that the parentheses
used here aren't actually necessary, but rather they are used for readability.

Now, what if we wanted to round to a number of decimal places, but we wanted to use the
even rounding method? In this case, we could add a method called roundf2 to Float.

class Float

 # round2 definition as before

 def roundf2(places)
 shift = 10**places
 (self * shift).round2 / shift.to_f
 end

end

a = 6.125
b = 6.135
x = a.roundf(2) # 6.12
y = b.roundf(2) # 6.12

The code shown here (roundf and roundf2) has certain limitations, in that a large
floating-point number will naturally cause problems when it is multiplied by a large power
of ten. For these occurrences, error-checking should be added.

Formatting Numbers for Output
To output numbers in a specific format, you can use the printf method in the Kernel
module. It is virtually identical to its C counterpart. For more information, see the
documentation for the printf method.

x = 345.6789
i = 123
printf("x = %6.2f\n", x) # x = 345.68
printf("x = %9.2e\n", x) # x = 3.457e+02
printf("i = %5d\n", i) # i = 123
printf("i = %05d\n", i) # i = 00123
printf("i = %-5d\n", i) # i = 123

To store a result in a string rather than printing it immediately, sprintf can be used in
much the same way. This method returns a string.

str = sprintf("%5.1f",x) # "345.7"

Chapter 2. Simple Data Tasks Page 40 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finally, the String class has a % method that performs this same task. The % method has a
format string as a receiver; it takes a single argument (or an array of values) and returns
a string.

Usage is 'format % value'
str = "%5.1" % x # "345.7"
str = "%6.2, %05d" % [x,i] # "345.68, 00123"

Working with Large Integers

The control of large numbers is possible, and like unto that of small numbers, if
we subdivide them.

—Sun Tzu

In the event it becomes necessary, Ruby programmers can work with integers of arbitrary
size. The transition from a Fixnum to a Bignum is handled automatically and
transparently.

num1 = 1000000 # One million (10**6)
num2 = num1*num1 # One trillion (10**12)
puts num1 # 1000000
puts num1.type # Fixnum
puts num2 # 1000000000000
puts num2.type # Bignum

The size of a Fixnum will vary from one architecture to another.

Swapping Two Values
This item isn't strictly concerned with numeric data, but we did want to mention it
somewhere. In many languages, swapping or exchanging two values requires a temporary
variable; in Ruby (as in Perl and some others), this isn't needed. The following statement

x, y = y, x

will exchange x and y using multiple assignment. Note, of course, that in the case of
numbers, we are exchanging the actual values. In the case of most other objects, we are
only swapping what amounts to a pointer or reference—that is, changing which variable
refers to which object.

Chapter 2. Simple Data Tasks Page 41 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Determining the Architecture's Byte Order
It is an interesting fact of the computing world that we cannot all agree on the order in
which binary data ought to be stored. Is the most significant bit stored at the higher-
numbered address or the lower? When we shove a message over a wire, do we send the
most significant bit first, or the least significant?

Believe it or not, it's not entirely arbitrary. There are good arguments on both sides, which
we won't delve into here.

For at least 20 years, the terms "little-endian" and "big-endian" have been applied to the
two extreme opposites. These apparently were first used by Danny Cohen; refer to his
classic article "On Holy Wars and a Plea for Peace" (IEEE Computer, October 1981). The
actual terms are derived from the novel Gulliver's Travels by Jonathan Swift.

Most of the time, we don't care what byte order our architecture uses. But what if we do
need to know?

Here's one little method that will determine this for us. It will return a string that is
LITTLE, BIG, or OTHER. It depends on the fact that the l directive packs in native mode
and the N directive unpacks in network order (or big-endian).

def endianness
 num=0x12345678
 little = "78563412"
 big = "12345678"
 native = [num].pack('l')
 netunpack = native.unpack('N')[0]
 str = "%8x" % netunpack
 case str
 when little
 "LITTLE"
 when big
 "BIG"
 else
 "OTHER"
 end
end

puts endianness # In this case, prints "LITTLE"

This technique might come in handy if, for example, you are working with binary data
(such as scanned image data) imported from another system.

Calculating the MD5 Hash of a String
The MD5 message-digest algorithm produces a 128-bit fingerprint or message digest of a
message of arbitrary length. This is in the form of a hash, so the encryption is one way and

Chapter 2. Simple Data Tasks Page 42 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

doesn't allow for the discovery of the original message from the digest. Ruby has an
extension for a class to implement MD5; for those interested in the source code, it's in the
ext/md5 directory of the standard Ruby distribution.

There are two class methods, new and md5, to create a new MD5 object. There is really no
difference in them.

require 'md5'
cryptic = MD5.md5
password = MD5.new

There are four instance methods: clone, digest, hexdigest, and update. The
clone method simply copies the object; update is used to add content to the object as
follows:

cryptic.update("Can you keep a secret?")

You can also create the object and add to the message at the same time:

secret = MD5.new("Sensitive data")

If a string argument is given, it is added to the object using update. Repeated calls are
equivalent to a single call with concatenated arguments.

These two statements...
cryptic.update("Shhh! ")
cryptic.update("Be very, very quiet!")

...are equivalent to this one.
cryptic.update("Shhh! Be very, very quiet!").

The digest method provides a 16-byte binary string containing the 128-bit digest.

The hexdigest method is what we actually find most useful. It provides the digest as an
ASCII string of 32 hex characters representing the 16 bytes. This method is equivalent to
the following:

def hexdigest
 ret = ''
 digest.each_byte { |i| ret << sprintf('%02x', i) }
 ret
end

secret.hexdigest # "b30e77a94604b78bd7a7e64ad500f3c2"

Chapter 2. Simple Data Tasks Page 43 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In short, you can get an md5 hash as follows:

require 'md5'
m = MD5.new("sensitive data").hexdigest

Calculating a 32-bit CRC
The Cyclic Redundancy Checksum (CRC) is a well-known way of obtaining a signature for
a file or other collection of bytes. The CRC has the property that the chance of data being
changed and keeping the same CRC is 1 in 2**N, where N is the number of bits in the result
(most often 32 bits).

We refer you to the Zlib library for this. This library, created by Ueno Katsuhiro, isn't part
of the standard distribution, but is still well known.

The method crc32 will compute a CRC given a string as a parameter:

crc = Zlib::crc32("hello") # 907060870

A previous CRC can be specified as an optional second parameter; the result will be as if
the strings were concatenated and a single CRC was computed. This can be used, for
example, to compute the checksum of a file so large that we can only read it in chunks.

Numerical Computation of a Definite Integral

I'm very good at integral and differential calculus…

—W. S. Gilbert, The Pirates of Penzance, Act I

If you want to estimate the value of a definite integral, there is a time-tested technique for
doing so. Essentially we are performing what the calculus student will remember as a
Riemann sum.

The integrate method shown here will take beginning and ending values for the
dependent variable as well as an increment. The fourth parameter (which isn't really a
parameter) is a block. This block should evaluate a function based on the value of the
dependent variable passed into that block. (Here we are using variable in the mathematical
sense, not in the computing sense.) It isn't necessary to define a function to call in this
block, but we do so here for clarity.

def integrate(x0, x1, dx=(x1-x0)/1000.0)
 x = x0
 sum = 0

Chapter 2. Simple Data Tasks Page 44 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 loop do
 y = yield(x)
 sum += dx * y
 x += dx
 break if x > x1
 end
 sum
end

def f(x)
 x**2
end
z = integrate(0.0,5.0) { |x| f(x) }

puts z, "\n" # 41.7291875

Note that in the preceding example, we are relying on the fact that a block returns a value
that yield can retrieve. We also make certain assumptions here. First, we assume that x0
is less than x1 (otherwise an infinite loop will result); you can easily improve the code in
details such as this one. Second, we assume that the function can be evaluated at arbitrary
points in the specified domain. If at any time we try to evaluate the function at any other
point, chaos will ensue. (Such functions generally aren't integrable anyway, at least over
that set of x values. Consider the function f(x)=x/(x-3), when x is 3.)

Drawing on our faded memories of calculus, we might compute the result here to be 41.666
or thereabout (5 cubed divided by 3). Why is the answer not as exact as we might like? It
is because of the size of the slice in the Riemann sum; a smaller value for dx will result in
greater accuracy (at the expense of an increase in runtime).

Finally, we will point out that a function like this is more useful when we have a variety of
functions of arbitrary complexity, not just a simple function such as f(x) = x**2.

Trigonometry in Degrees, Radians, and Grads
When it comes to measuring arc, the mathematical or natural unit is the radian, defined
in such a way that an angle of one radian will correspond to an arclength equal to the radius
of the circle. A little thought will show that there are 2π radians in a circle.

The degree of arc that we use in everyday life is a holdover from ancient Babylonian base-60
units; this system divides the circle into 360 degrees. The less-familiar grad is a pseudo-
metric unit defined in such a way that there are 100 grads in a right angle (or 400 in a
circle).

Programming languages often default to the radian when calculating trigonometric
functions, and Ruby is no exception. But we show here how to do these calculations in
degrees or grads, in the event that any of you are engineers.

Chapter 2. Simple Data Tasks Page 45 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because the number of units in a circle is a simple constant, it follows that there are simple
conversion factors between all these units. We will define these here and simply use the
constant names in subsequent code. As a matter of convenience, we'll stick them in the
Math module.

module Math

 RAD2DEG = 360.0/(2.0*PI) # Radians to degrees
 RAD2GRAD = 400.0/(2.0*PI) # Radians to grads

end

Now we can define new trig functions if we want. Because we are converting to radians in
each case, we will divide by the conversion factor we calculated previously. We could place
these in the Math module if we wanted, although we don't show it here.

def sin_d(theta)
 Math.sin (theta/Math::RAD2DEG)
end

def sin_g(theta)
 Math.sin (theta/Math::RAD2GRAD)
end

Of course, the corresponding cos and tan functions can be similarly defined.

The atan2 function is a little different. It takes two arguments (the opposite and adjacent
legs of a right triangle) and returns an angle. Thus we convert the result, not the argument,
handling it this way:

def atan2_d(y,x)
 Math.atan2(y,x)/Math::RAD2DEG
end

def atan2_g(y,x)
 Math.atan2(y,x)/Math::RAD2GRAD
end

More Advanced Trig: Arcsin, Arccos, and Hyperbolic Functions
Ruby's Math module doesn't provide arcsin and arccos functions, but you can always define
your own. Here we don't provide the theory but only the code.

def arcsin(x)
 Math.atan2(x, Math.sqrt(1.0-x*x))
end

def arccos(x)

Chapter 2. Simple Data Tasks Page 46 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Math.atan2(Math.sqrt(1.0-x*x), x)
end

Note that because we used atan2, we don't have to worry about dividing by zero. This is
a compelling reason to use atan2, by the way, along with other issues regarding floating-
point error and the speed of floating-point division.

Of course, if you prefer the traditional arctan function that is so familiar to mathematicians,
you can define it this way.

def arctan(x)
 Math.atan2(x,1.0)
end

All the preceding functions could be modified (as you have already seen) to use degrees or
grads rather than radians.

The hyperbolic trig functions aren't defined in Math, but they can be defined as follows.
We assume here that you're working with real (not complex) numbers.

def sinh(x)
 (Math.exp(x)-Math.exp(-x))/2.0
end

def cosh(x)
 (Math.exp(x)+Math.exp(-x))/2.0
end

def tanh(x)
 sinh(x)/cosh(x)
end

The inverses of these functions can also be defined.

def asinh(x)
 Math.log(x + Math.sqrt(1.0+x**2))
end

def acosh(x)
 2.0 * Math.log(Math.sqrt((x+1.0)/2.0)+Math.sqrt((x-1)/2.0))
end

def atanh(x)
 (Math.log (1.0+x) - Math.log(1.0-x)) / 2.0
end

Chapter 2. Simple Data Tasks Page 47 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finding Logarithms with Arbitrary Bases
When working with logarithms, we frequently use the natural logarithms (or base e, which
is sometimes written ln); we can also use the common or base 10 logarithms. These are
defined in Ruby as Math.log and Math.log10, respectively.

In computer science, specifically in such areas as coding and information theory, a base 2
log isn't unusual. For example, this tells the minimum number of bits needed to store a
number. We define this function here as log2:

def log2(x)
 Math.log(x)/Math.log(2)
end

The inverse is obviously 2**x just as the inverse of log x is Math::E**x or Math.exp(x).

Furthermore, this same technique can be extended to any base. In the unlikely event that
you ever need a base 7 logarithm, this will do the trick.

def log7(x)
 Math.log(x)/Math.log(7)
end

In practice, the denominator should be calculated once and kept around as a constant.

Comparing Floating-Point Numbers
It is a sad fact of life that computers don't represent floating-point values exactly. The
following code fragment, in a perfect world, would print "yes"; on every architecture we
have tried, it prints "no" instead.

x = 1000001.0/0.003
y = 0.003*x
if y == 1000001.0
 puts "yes"
else
 puts "no"
end

The reason, of course, is that a floating-point number is stored in some finite number of
bits; and no finite number of bits is adequate to store a repeating decimal with an infinite
number of digits.

Chapter 2. Simple Data Tasks Page 48 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because of this inherent inaccuracy in floating-point comparisons, we might find ourselves
in situations (like the one we just saw) in which the values we are comparing are the same
for all practical purposes, but the hardware stubbornly thinks they are different.

Here is a simple way to ensure that floating-point comparisons are done with a fudge
factor; that is, the comparisons will be done to within any tolerance specified by the
programmer.

class Float

 EPSILON = 1e-6 # 0.000001

 def ==(x)
 (self-x).abs < EPSILON
 end

end
x = 1000001.0/0.003
y = 0.003*x
if y == 1.0 # Using the new ==
 puts "yes" # Now we output "yes"
else
 puts "no"
end

We might find that we want different tolerances for different situations. For this case, we
define a new method equals? as a member of Float. (We name it this in order to avoid
confusion with the standard methods equal? and eql?; the latter in particular shouldn't
be overridden.)

class Float

 EPSILON = 1e-6

 def equals?(x, tolerance=EPSILON)
 (self-x).abs < tolerance
 end

end

flag1 = (3.1416).equals? Math::PI # false
flag2 = (3.1416).equals?(Math::PI, 0.001) # true

We could also use a different operator entirely to represent approximate equality; the =~
operator might be a good choice.

We'll also mention here that there is a BigFloat class (created by Shigeo Kobayashi) that
isn't part of the standard Ruby distribution; this extension allows essentially infinite-
precision floating-point math. The library can be found in the Ruby Application Archive.

Chapter 2. Simple Data Tasks Page 49 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finding the Mean, Median, and Mode of a Data Set
Given an array x, let's find the mean of all the values in that array. Actually, there are three
common kinds of mean. The ordinary or arithmetic mean is what we call the average in
everyday life. The harmonic mean is the number of terms divided by the sum of all their
reciprocals. And finally, the geometric mean is the nth root of the product of the n values.
Each of these is shown as follows:

def mean(x)
 sum=0
 x.each { |v| sum += v}
 sum/x.size
end
def hmean(x)
 sum=0
 x.each { |v| sum += (1.0/v)}
 x.size/sum
end

def gmean(x)
 prod=1.0
 x.each { |v| prod *= v}
 prod**(1.0/x.size)
end

data = [1.1, 2.3, 3.3, 1.2, 4.5, 2.1, 6.6]

am = mean(data) # 3.014285714
hm = hmean(data) # 2.101997946
gm = gmean(data) # 2.508411474

The median value of a data set is the value that occurs approximately in the middle of the
set. For this value, half the numbers in the set should be less and half should be greater.
Obviously, this statistic will be more appropriate and meaningful for some data sets than
others.

def median(x)
 sorted = x.sort
 mid = x.size/2
 sorted[mid]
end

data = [7,7,7,4,4,5,4,5,7,2,2,3,3,7,3,4]
puts median(data) # 4

The mode of a data set is the value that occurs most frequently. If there is only one such
value, the set is unimodal; otherwise it is multimodal. A multimodal data set is a more
complex case that we don't consider here. If interested, you can extend and improve the
code shown here.

Chapter 2. Simple Data Tasks Page 50 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def mode(x)
 sorted = x.sort
 a = Array.new
 b = Array.new

 sorted.each do |x|
 if a.index(x) == nil
 a << x # Add to list of values
 b << 1 # Add to list of frequencies
 else
 b[a.index(x)] += 1 # Increment existing counter
 end
 end
 maxval = b.max # Find highest count
 where = b.index(maxval) # Find index of highest count
 a[where] # Find corresponding data value
end

data = [7,7,7,4,4,5,4,5,7,2,2,3,3,7,3,4]
puts mode(data) # 7

Variance and Standard Deviation
The variance of a set of data is a measure of how spread out the values are. (Here we don't
distinguish between biased and unbiased estimates.) The standard deviation, usually
represented by a sigma (ε) is simply the square root of the variance.

data = [2, 3, 2, 2, 3, 4, 5, 5, 4, 3, 4, 1, 2]

def variance(x)
 m = mean(x)
 sum = 0.0
 x.each { |v| sum += (v-m)**2 }
 sum/x.size
end

def sigma(x)
 Math.sqrt(variance(x))
end

puts variance(data) # 1.461538462
puts sigma(data) # 1.20894105

Note that the preceding variance function makes use of the mean function defined earlier.

Finding a Correlation Coefficient
The correlation coefficient is one of the simplest and most universal of statistical measures.
It is a measure of the "linearity" of a set of x-y pairs, ranging from -1.0 (complete negative
correlation) to +1.0 (complete positive correlation).

Chapter 2. Simple Data Tasks Page 51 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We compute this using the mean and sigma (standard deviation) functions that we defined
previously. For an explanation of this tool, consult any statistics text.

The first version we show assumes two arrays of numbers (of the same size).

def correlate(x,y)
 sum = 0.0
 x.each_index do |i|
 sum += x[i]*y[i]
 end
 xymean = sum/x.size.to_f
 xmean = mean(x)
 ymean = mean(y)
 sx = sigma(x)
 sy = sigma(y)
 (xymean-(xmean*ymean))/(sx*sy)
end

a = [3, 6, 9, 12, 15, 18, 21]
b = [1.1, 2.1, 3.4, 4.8, 5.6]
c = [1.9, 1.0, 3.9, 3.1, 6.9]

c1 = correlate(a,a) # 1.0
c2 = correlate(a,a.reverse) # -1.0
c3 = correlate(b,c) # 0.8221970228

The next version is similar, but it operates on a single array, each element of which is an
array containing an x-y pair.

def correlate2(v)
 sum = 0.0
 v.each do |a|
 sum += a[0]*a[1]
 end
 xymean = sum/v.size.to_f
 x = v.collect { |a| a[0]}
 y = v.collect { |a| a[1]}
 xmean = mean(x)
 ymean = mean(y)
 sx = sigma(x)
 sy = sigma(y)
 (xymean-(xmean*ymean))/(sx*sy)
end

d = [[1,6.1], [2.1,3.1], [3.9,5.0], [4.8,6.2]]

c4 = correlate2(d) # 0.2277822492

Finally we show a version that assumes the x-y pairs are stored in a hash. It simply builds
on the previous example.

def correlate_h(h)

Chapter 2. Simple Data Tasks Page 52 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 correlate2(h.to_a)
end

e = { 1 => 6.1, 2.1 => 3.1, 3.9 => 5.0, 4.8 => 6.2}

c5 = correlate_h(e) # 0.2277822492

Performing Base Conversions
Obviously any integer can be represented in any base because they are all stored internally
in binary. Further, we know that Ruby can deal with integer constants in any of the four
commonly-used bases. This means that if we are concerned about base conversions, we
must be concerned with strings in some fashion.

If you are concerned with converting a string to an integer, that is covered in "Converting
Strings to Numbers (Decimal and Otherwise)."

If you are concerned with converting numbers to strings, that is another matter. The best
way to do it is with the % method of the String class. This method formats its argument
according to the printf directive found in the string.

hex = "%x" % 1234 # "4d2"
oct = "%o" % 1234 # "2322"
bin = "%b" % 1234 # "10011010010"

Converting from one nondecimal base to another can be done with a combination of these
techniques.

oct = "2322"
hex = "%x" % oct.oct # "4d2"

Converting to and from oddball bases such as 5 or 11 is unsupported by Ruby. This is rare
enough that we will leave it as an exercise for you.

Generating Random Numbers
If a pseudorandom number is good enough for you, you're in luck. This is what most
language implementations supply you with, and Ruby is no exception.

The Kernel method rand will return a pseudorandom floating-point number x such that
x>=0.0 and x<1.0.

a = rand # 0.6279091137

Chapter 2. Simple Data Tasks Page 53 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If it is called with an integer parameter max, it will return an integer in the range
0...max (noninclusive of the upper bound).

n = rand(10) # 7

If we want to seed the random number generator, we can do so with the Kernel method
srand, which takes a single numeric parameter. If we pass no value to it, it will construct
its own using (among other things) the time of day. If we pass a number to it, it will use
that number as the seed. This can be useful in testing, when we want a repeatable sequence
of pseudorandom numbers from one script invocation to the next.

srand(5)
i, j, k = rand(100), rand(100), rand(100)
26, 45, 56

srand(5)
l, m, n = rand(100), rand(100), rand(100)
26, 45, 56

Caching Functions for Speed
Suppose that you have a computationally expensive mathematical function that will be
called repeatedly in the course of execution. If speed is critical and you can afford to
sacrifice a little memory and accuracy, it might be effective to store values in a table and
look them up.

In this example, we define an arbitrary function called zeta, which we want to call over a
domain of 0.0 to 90.0. The function zeta is defined to be 2 sin x cos x (in degrees).
Let's assume that our parameters will be no more accurate than a tenth of a degree. This
means that if we want to store these values, we will need a table of about 900 elements.

Let's look at a code fragment.

def zeta(x)
 r2d = 360.0/(2.0*Math::PI) # Radians to degrees
 2.0*(Math.sin (x/r2d))*(Math.cos (x/r2d))
end

$fast_zeta = []

 (0..900).each { |x| $fast_zeta[x]=zeta(x/10.0)}

def fast_zeta(x)
 $fast_zeta[(x*10).round]
end

y1 = zeta(37.5) # Slow

Chapter 2. Simple Data Tasks Page 54 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

y2 = fast_zeta(37.5) # Somewhat faster

y3 = $fast_zeta[(37.5*10).round] # Still faster

We define an array called $fast_zeta, using a global variable; we then populate it with
all the values from zeta(0.0) to zeta(90.0). We define a function called
fast_zeta, which will take a parameter, convert it to an index, and find the appropriate
entry in the array. As an alternative, we also access the array directly (in the computation
of y3).

In our tests, we put each calculation in a tight loop that ran for millions of iterations. We
found that, compared with the calculation of y1, the calculation of y2 was about 66% faster.
In addition, the calculation of y3 (which avoided the method call overhead) was about
72.5% faster.

At times, this method won't be practical at all. But we present it to you as a simple
demonstration of what can be done to increase speed without dropping into C code.

Matrix Manipulation
There is a standard library matrix.rb for this purpose. It is fairly full-featured, with class
methods to create matrices in various forms (including identity and zero matrices) and an
accessor method to get at the elements in standard x[i,j] form. There are methods to find
a determinant, to transpose a matrix, to multiply by another matrix or by a scalar, and so
on.

This is a standard library. It is too elaborate to document here in detail.

Complex Numbers
The standard library complex.rb provides most of the functionality anyone would need
for working with numbers in the complex plane. Be warned that some of the methods are
named with exclamation points when there isn't necessarily a compelling reason to do so.

This is a well-known standard library. We won't document it here because it is too complex
(no pun intended).

Formatting Numbers with Commas
There might be better ways to do it, but this one works. We reverse the string to make it
easier to do global substitution, and then reverse it again at the end.

def commas(x)
 str = x.to_s.reverse
 str.gsub!("([0-9]{ 3})","\\1,")

Chapter 2. Simple Data Tasks Page 55 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 str.gsub(",$","").reverse
end

puts commas(123) # "123"
puts commas(1234) # "1,234"
puts commas(12345) # "12,435"
puts commas(123456) # "123,456"
puts commas(1234567) # "1,234,567"

Times and Dates

Does anybody really know what time it is?

—Chicago, Chicago IV

One of the most complex and confusing areas of human life is that of measuring time. To
come to a complete understanding of the subject, you would need to study physics,
astronomy, history, law, business, and religion. Astronomers know (as most of us don't!)
that solar time and sidereal time aren't quite the same thing, and why a leap second is
occasionally added to the end of the year. Historians know that the calendar skipped
several days in October 1582, when Italy converted from the Julian calendar to the
Gregorian. Very few people know the difference between astronomical Easter and
ecclesiastical Easter (which are almost always the same). Many people don't know that
century years not divisible by 400 (such as the year 1900) aren't leap years.

Performing calculations with times and dates is common in computing, but it has
traditionally been somewhat tedious in most programming languages. It is tedious in
Ruby, too, because of the nature of the data. However, Ruby has taken some incremental
steps toward making these operations easier.

As a courtesy to you, we'll go over a few terms that might not be familiar to you. Most of
these come from standard usage or from other programming languages.

Greenwich Mean Time (GMT) is an old term not really in official use anymore. The new
global standard is Coordinated Universal Time (or UTC), which is from the French version
of the name. GMT and UTC are virtually the same thing; over a period of years, the
difference will be on the order of seconds. Much of the software in the industry doesn't
distinguish between the two at all (nor does Ruby).

Daylight Saving Time is a semiannual shift in the official time, amounting to a difference
of one hour. Thus the U.S. time zones usually end in "ST" (standard time) or "DT" (daylight
savings time). This annoying trick is used in most (although not all) of the U.S.A. Other
countries need not worry about it.

Chapter 2. Simple Data Tasks Page 56 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The epoch is a term borrowed from UNIX lore. In this realm, a time is typically stored
internally as a number of seconds from a specific point in time (called the epoch), which
was midnight January 1, 1970 GMT. (Note that in U.S. time zones, this will actually be the
preceding December 31.) The same term is used to denote not only the point of origin, but
also the distance in time from that point.

The Time class is used for most operations. The Date and ParseDate libraries extend its
capabilities somewhat. We will look at the basic techniques and the problems they enable
us to solve.

Determining the Current Time
The most fundamental problem in time/date manipulation is to answer the question: What
is the time and date right now? In Ruby, when we create a Time object with no parameters,
it is set to the current date and time.

t0 = Time.new

Time.now is a synonym.

t0 = Time.now

Note that the resolution of system clocks varies from one architecture to another. It might
include microseconds; in which case, two Time objects created in succession might
actually record different times.

Working with Specific Times (Post-epoch)
Most software only needs to work with dates in the future or in the recent past. For these
circumstances, the Time class is adequate. The relevant class methods are mktime,
local, gm, and utc.

The mktime method will create a new Time object based on the parameters passed to it.
These time units are given in reverse from longest to shortest: year, month, day, hours,
minutes, seconds, microseconds. All but the year are optional; they default to the lowest
possible value. The microseconds can be ignored on many architectures. The hours must
be between 0 and 23 (that is, a 24-hour clock).

t1 = Time.mktime(2001) # January 1, 2001 at 0:00:00
t2 = Time.mktime(2001,3)
t3 = Time.mktime(2001,3,15)
t4 = Time.mktime(2001,3,15,21)
t5 = Time.mktime(2001,3,15,21,30)
t6 = Time.mktime(2001,3,15,21,30,15) # March 15, 2001 9:30:15 pm

Chapter 2. Simple Data Tasks Page 57 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that mktime assumes the local time zone. In fact, Time.local is a synonym for it.

t7 = Time.local(2001,3,15,21,30,15) # March 15, 2001 9:30:15 pm

The Time.gm method is basically the same, except that it assumes GMT (or UTC). Because
the authors are in the U.S. Central time zone, we would see an eight-hour difference here.

t8 = Time.gm(2001,3,15,21,30,15) # March 15, 2001 9:30:15 pm
This is only 1:30:15 pm in Central time!

The Time.utc method is a synonym.

t9 = Time.utc(2001,3,15,21,30,15) # March 15, 2001 9:30:15 pm
Again, 1:30:15 pm Central time.

There is one more important item to note. All these methods can take an alternative set of
parameters. The instance method to_a (which converts a time to an array of relevant
values) returns a set of values in this order: seconds, minutes, hours, day, month, year,
day of week (0..6), day of year (1..366), daylight saving (true or false), and time zone
(as a string).

Thus, these are also valid calls:

t0 = Time.local(0,15,3,20,11,1979,2,324,false,"GMT-8:00")
t1 = Time.gm(*Time.now.to_a)

However, in the first example, don't fall into the trap of thinking that you can change the
computable parameters such as the day of the week (in this case, 2 meaning Tuesday). A
change like this simply contradicts the way our calendar works, and it will have no effect
on the time object created. November 20, 1979, was a Tuesday regardless of how we might
write our code.

Finally, note that there are obviously many ways to attempt coding incorrect times, such
as a thirteenth month or a 35th day of the month. In cases like these, an
ArgumentError will be raised.

Determining Day of the Week
There are several ways to do this. First of all, the instance method to_a will return an
array of time information. You can access the seventh element, which is a number from
0 to 6 (0 meaning Sunday and 6 meaning Saturday).

Chapter 2. Simple Data Tasks Page 58 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

time = Time.now
day = time.to_a[6] # 2 (meaning Tuesday)

It's better to use the instance method wday as shown here:

day = time.wday # 2 (meaning Tuesday)

But both these techniques are a little cumbersome. Sometimes we want the value coded
as a number, but more often we don't. To get the actual name of the weekday as a string,
we can use the strftime method. This name will be familiar to C programmers. There
are nearly two dozen different specifiers that it recognizes, enabling us to format dates and
times more or less as we please. (See the section "Formatting and Printing Date/Time
Values.")

day = time.strftime("%a") # "Tuesday"

It's also possible to obtain an abbreviated name.

long = time.strftime("%A") # "Tuesday"

Determining the Date of Easter
Traditionally, this holiday is one of the hardest to compute because it is tied to the lunar
cycle. The lunar month doesn't go evenly into the solar year, and thus anything based on
the moon can be expected to vary from year to year.

The algorithm we present here is a well-known one that has made the rounds. We have
seen it coded in BASIC, Pascal, and C. We now present it to you in Ruby.

def easter(year)
 c = year/100
 n = year - 19*(year/19)
 k = (c-17)/25
 i = c - c/4 - (c-k)/3 + 19*n + 15
 i = i - 30*(i/30)
 i = i - (i/28)*(1 -(i/28)*(29/(i+1))*((21-n)/11))
 j = year + year/4 + i + 2 - c + c/4
 j = j - 7*(j/7)
 l = i - j
 month = 3 + (l+40)/44
 day = l + 28 - 31*(month/4)
 [month, day]
end

date = easter 2001 # Find month/day for 2001
date = [2001] + date # Tack year on front

Chapter 2. Simple Data Tasks Page 59 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

t = Time.local *date # Pass parameters to Time.local
puts t # Sun Apr 15 01:00:00 GMT-8:00 2001

We would love to explain this algorithm to you, but we don't understand it ourselves. Some
things must be taken on faith, and in the case of Easter, this might be especially
appropriate.

Finding the Nth Weekday in a Month
Sometimes for a given month and year, we want to find the date of the third Monday in
the month, or the second Tuesday, and so on. Listing 2.9 makes that calculation simple.

If we are looking for the nth occurrence of a certain weekday, we pass n as the first
parameter. The second parameter is the number of that weekday (0 meaning Sunday, 1
meaning Monday, and so on). The third and fourth parameters are the month and year,
respectively.

Listing 2.9. Finding the Nth Weekday

def nth_wday(n, wday, month, year)
 if (!n.between? 1,5) or
 (!wday.between? 0,6) or
 (!month.between? 1,12)
 raise ArgumentError
 end
 t = Time.local year, month, 1
 first = t.wday
 if first == wday
 fwd = 1
 elsif first < wday
 fwd = wday - first + 1
 elsif first > wday
 fwd = (wday+7) - first + 1
 end
 target = fwd + (n-1)*7
 begin
 t2 = Time.local year, month, target
 rescue ArgumentError
 return nil
 end
 if t2.mday == target
 t2
 else
 nil
 end
end

puts nth_wday(ARGV[0].to_i, ARGV[1].to_i, ARGV[2].to_i, ARGV[3].to_i)

The peculiar-looking code near the end of the method is put there to counteract a long-
standing tradition in the underlying time-handling routines. You might expect that trying
to create a date of November 31 would result in an error of some kind. You would be
mistaken. Most systems would happily (and silently) convert this to December 1. If you

Chapter 2. Simple Data Tasks Page 60 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

are an old-time UNIX hacker, you might think this is a feature; otherwise, you might
consider it a bug.

We won't venture an opinion here as to what the underlying library code ought to do or
whether Ruby ought to change that behavior. But we don't want to have this routine
perpetuate the tradition. If you are looking for the date of, say, the fifth Friday in November
2000, you will get a nil value back (rather than December 1, 2000).

Converting Between Seconds and Larger Units
Sometimes we want to take a number of seconds and convert to days, hours, minutes, and
seconds. This little routine will do just that.

def sec2dhms(secs)
 time = secs.round # Get rid of microseconds
 sec = time % 60 # Extract seconds
 time /= 60 # Get rid of seconds
 mins = time % 60 # Extract minutes
 time /= 60 # Get rid of minutes
 hrs = time % 24 # Extract hours
 time /= 24 # Get rid of hours
 days = time # Days (final remainder)
 [days, hrs, mins, sec] # Return array [d,h,m,s]
end

t = sec2dhms(1000000) # A million seconds is...

puts "#{ t[0]} days," # 11 days,
puts "#{ t[1]} hours," # 13 hours,
puts "#{ t[2]} minutes," # 46 minutes,
puts " and #{ t[3]} seconds." # and 40 seconds.

We could, of course, go up to higher units. But a week isn't an overly useful unit, a month
isn't a well-defined term, and a year is far from being an integral number of days.

We also present here the inverse of that function.

def dhms2sec(days,hrs=0,min=0,sec=0)
 days*86400 + hrs*3600 + min*60 + sec
end

Converting to and from the Epoch
For various reasons, we might want to convert back and forth between the internal (or
traditional) measure and the standard date form. Internally, dates are stored as a number
of seconds since the epoch.

Chapter 2. Simple Data Tasks Page 61 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Time.at class method will create a new time given the number of seconds since the
epoch.

epoch = Time.at(0) # Find the epoch (1 Jan 1970 GMT)
newmil = Time.at(978307200) # Happy New Millennium! (1 Jan 2001)

The inverse is the instance method to_i, which converts to an integer.

now = Time.now # 16 Nov 2000 17:24:28
sec = now.to_i # 974424268

If you need microseconds and your system supports that resolution, you can use to_f to
convert to a floating-point number.

Working with Leap Seconds: Don't!

Ah, but my calculations, people say,

Reduced the year to better reckoning? Nay,

'Twas only striking from the calendar

Unborn Tomorrow and dead Yesterday.

—Omar Khayyam, The Rubaiyat (translation by Fitzgerald)

You want to work with leap seconds? Our advice is: Don't do it.

Although leap seconds are very real and for years the library routines have for years allowed
for the possibility of a 61-second minute, our experience has been that most systems don't
keep track of leap seconds. By most, we mean all the ones we've ever checked.

For example, a leap second is known to have been inserted at the end of the last day of
1998. Immediately following 23:59:59 came that rare event 23:59:60. But the underlying
C libraries on which Ruby is built are ignorant of this.

t0 = Time.gm(1998, 12, 31, 23, 59, 59)
t1 = t0 + 1
puts t1 # Fri Jan 01 00:00:00 GMT 1999

It is (barely) conceivable that Ruby could add a layer of intelligence to correct for this. At
the time of this writing, however, there are no plans to add such functionality.

Chapter 2. Simple Data Tasks Page 62 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finding the Day of the Year
The day number within the year is sometimes called the Julian date, which isn't directly
related to the Julian calendar that has gone out of style. Other people insist that this usage
isn't correct, so we won't use it from here on.

No matter what you call it, there will be times you want to know what day of the year it is,
from 1 to 366. This is easy in Ruby; we use the yday method.

t = Time.now
day = t.yday # 315

Validating a Date/Time
As you saw in "Finding the Nth Weekday in a Month," the standard date/time functions
don't check the validity of a date, but roll it over as needed. For example, November 31 will
be translated to December 1.

At times, this might be the behavior you want. If it isn't, you will be happy to know that
the standard library date doesn't regard such a date as valid. We can use this fact to perform
validation of a date as we instantiate it.

class Time

 def Time.validate(year, month=1, day=1,
 hour=0, min=0, sec=0, usec=0)
 require "date"

 begin
 d = Date.new(year,month,day)
 rescue
 return nil
 end
 Time.local(year,month,day,hour,min,sec,usec)
 end

end

t1 = Time.validate(2000,11,30) # Instantiates a valid object
t2 = Time.validate(2000,11,31) # Returns nil

Here we have taken the lazy way out; we simply set the return value to nil if the parameters
passed in don't form a valid date (as determined by the Date class). We have made this
method a class method of Time by analogy with the other methods that instantiate objects.

Note that the Date class can work with dates prior to the epoch. This means that passing
in a date such as 31 May 1961 will succeed as far as the Date class is concerned. But when

Chapter 2. Simple Data Tasks Page 63 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

these values are passed into the Time class, an ArgumentError will result. We don't
attempt to catch that exception here because we think it's appropriate to let it be caught
at the same level as (for example) Time.local, in the user code.

Speaking of Time.local, we used that method in the preceding; but if we wanted GMT
instead, we could have called the gmt method. It would be a good idea to implement both
flavors.

Finding the Week of the Year
The definition of week number isn't absolute and fixed. Various businesses, coalitions,
government agencies, and standards bodies have differing concepts of what it means. This
stems, of course, from the fact that the year can start on any day of the week; we might or
might not want to count partial weeks, and we might start on Sunday or Monday.

We offer only three alternatives here. The first two are made available by the Time method
strftime. The %U specifier numbers the weeks starting from Sunday, and the %W specifier
starts with Monday.

The third possibility comes from the Date class. It has an accessor called cweek, which
returns the week number based on the ISO 8601 definition (which says that week 1 is the
week containing the first Thursday of the year).

If none of these three suits you, you might have to roll your own. We present these three
in a single code fragment.

require "date"

Let's look at May 1 in the years
2002 and 2005.

t1 = Time.local(2002,5,1)
d1 = Date.new(2002,5,1)

week1a = t1.strftime("%U").to_i # 17
week1b = t1.strftime("%W").to_i # 17
week1c = d1.cweek # 18

t2 = Time.local(2005,5,1)
d2 = Date.new(2005,5,1)

week2a = t2.strftime("%U").to_i # 18
week2b = t2.strftime("%W").to_i # 18
week2c = d2.cweek # 17

Chapter 2. Simple Data Tasks Page 64 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Detecting Leap Years
The Date class has two class methods julian_leap? and gregorian_leap?; only the
latter is of use in recent years. It also has a method leap?, which is an alias for the
gregorian_leap? method.

require "date"
flag1 = Date.julian_leap? 1700 # true
flag2 = Date.gregorian_leap? 1700 # false
flag3 = Date.leap? 1700 # false

Every child knows the first rule for leap years: The year number must be divisible by four.
Fewer people know the second rule, that the year number must not be divisible by 100;
and fewer still know the exception, that the year can be divisible by 400. In other words:
A century year is a leap year only if it is divisible by 400, so 1900 wasn't a leap year, but
2000 was.

The Time class doesn't have a method like this, but if we needed one, it would be simple
to create.

class Time

 def Time.leap? year
 if year % 400 == 0
 true
 elsif year % 100 == 0
 false
 elsif year % 4 == 0
 true
 else
 false
 end

end

We implement this as a class method by analogy with the Date class methods. It could
also be implemented as an instance method.

Obtaining the Time Zone
The accessor zone in the Time class will return a String representation of the time zone
name.

z1 = Time.gm(2000,11,10,22,5,0).zone # "GMT-6:00"
z2 = Time.local(2000,11,10,22,5,0).zone # "GMT-6:00"

Chapter 2. Simple Data Tasks Page 65 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Unfortunately, times are stored relative to the current time zone, not the one with which
the object was created.

Working with Hours and Minutes Only
We might want to work with times of day as strings. Once again, strftime comes to our
aid.

We can print the time with hours, minutes, and seconds if we want.

t = Time.now
puts t.strftime("%H:%M:%S") # Prints 22:07:45

We can print hours and minutes only (and, using the trick of adding 30 seconds to the
time, we can even round to the nearest minute).

puts t.strftime("%H:%M") # Prints 22:07
puts (t+30).strftime("%H:%M") # Prints 22:08

Finally, if we don't like the standard 24-hour (or military) clock, we can switch to the 12-
hour clock. It's appropriate to add a meridian indicator then (AM/PM).

puts t.strftime("%I:%M %p") # Prints 10:07 PM

There are other possibilities, of course. Use your imagination.

Comparing Date/Time Values
The Time class conveniently mixes in the Comparable module, so dates and times might
be compared in a straightforward way.

t0 = Time.local(2000,11,10,22,15) # 10 Nov 2000 22:15
t1 = Time.local(2000,11,9,23,45) # 9 Nov 2000 23:45
t2 = Time.local(2000,11,12,8,10) # 12 Nov 2000 8:10
t3 = Time.local(2000,11,11,10,25) # 11 Nov 2000 10:25

if t0 < t1 then puts "t0 < t1" end
if t1 != t2 then puts "t1 != t2" end
if t1 <= t2 then puts "t1 <= t2" end
if t3.between?(t1,t2)
 puts "t3 is between t1 and t2"
end

All four if statements test true

Chapter 2. Simple Data Tasks Page 66 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Adding Intervals to Date/Time Values
We can obtain a new time by adding an interval to a specified time. The number is
interpreted as a number of seconds.

t0 = Time.now
t1 = t0 + 60 # Exactly one minute past t0
t2 = t0 + 3600 # Exactly one hour past t0
t3 = t0 + 86400 # Exactly one day past t0

The function dhms2sec (defined in "Converting Between Seconds and Larger Units")
might be helpful here. Recall that the hours, minutes, and seconds all default to 0.

t4 = t0 + dhms2sec(5,10) # Ahead 5 days, 10 hours
t5 = t0 + dhms2sec(22,18,15) # Ahead 22 days, 18 hrs, 15 min
t6 = t0 - dhms2sec(7) # Exactly one week ago

Don't forget that we can move backward in time by subtracting. This is shown in the
preceding calculation of t6.

Computing the Difference in Two Date/Time Values
We can find the interval of time between two points in time. Subtracting one Time object
from another gives us a number of seconds.

today = Time.local(2000,11,10)
yesterday = Time.local(2000,11,9)
diff = today - yesterday # 86400 seconds

Once again, the function sec2dhms comes in handy. (This is defined in "Converting
Between Seconds and Larger Units.")

past = Time.local(1998,9,13,4,15)
now = Time.local(2000,11,10,22,42)
diff = now - past
unit = sec2dhms(diff)
puts "#{ unit[0]} days," # 789 days,
puts "#{ unit[1]} hours," # 18 hours,
puts "#{ unit[2]} minutes," # 27 minutes,
puts "and #{ unit[3]} seconds." # and 0 seconds.

Working with Specific Dates (Pre-epoch)
The standard library Date provides a class of the same name for working with dates that
precede midnight GMT, January 1, 1970.

Chapter 2. Simple Data Tasks Page 67 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Although there is some overlap in functionality with the Time class, there are significant
differences. Most notably, the Date class doesn't handle the time of day at all. Its resolution
is a single day. Also, the Date class performs more rigorous error-checking than the
Time class; if you attempt to refer to a date such as June 31 (or even February 29 in a
nonleap year), you will get an error. The code is smart enough to know the different cutoff
dates for Italy and England switching to the Gregorian calendar (in 1582 and 1752,
respectively), and it can detect nonexistent dates that are a result of this switchover. This
standard library is a tangle of interesting and arcane code. We don't have space to
document it further here.

Retrieving a Date/Time Value from a String
A date and time can be formatted as a string in many different ways because of
abbreviations, varying punctuation, different orderings, and so on. Because of the various
ways of formatting, writing code to decipher such a character string can be daunting.
Consider these examples:

s1 = "9/13/98 2:15am"
s2 = "1961-05-31"
s3 = "11 July 1924"
s4 = "April 17, 1929"
s5 = "20 July 1969 16:17 EDT" # That's one small step...
s6 = "Mon Nov 13 2000"
s7 = "August 24, 79" # Destruction of Pompeii
s8 = "8/24/79"

Fortunately, much of the work has already been done for us. The ParseDate module has
a single class of the same name, which has a single method called parsedate. This method
returns an array of elements in this order: year, month, day, hour, minute, second, time
zone, day of week. Any fields that cannot be determined are returned as nil values.

require "parsedate.rb"
include ParseDate

p parsedate(s1) # [98, 9, 13, 2, 15, nil, nil, nil]
p parsedate(s2) # [1961, 5, 31, nil, nil, nil, nil, nil]
p parsedate(s3) # [1924, 7, 11, nil, nil, nil, nil, nil]
p parsedate(s4) # [1929, 4, 17, nil, nil, nil, nil, nil]
p parsedate(s5) # [1969, 7, 20, 16, 17, nil, "EDT", nil]
p parsedate(s6) # [2000, 11, 13, nil, nil, nil, nil, 1]
p parsedate(s7) # [79, 8, 24, nil, nil, nil, nil, nil]
p parsedate(s8,true) # [1979, 8, 24, nil, nil, nil, nil, nil]

The last two strings illustrate the purpose of parsedate's second parameter
guess_year; because of our cultural habit of representing a year as two digits, ambiguity
can result. Thus the last two strings are interpreted differently because we parse s8 with

Chapter 2. Simple Data Tasks Page 68 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

guess_year set to true, resulting in its conversion to a four-digit year. On the other
hand, s7 refers to the eruption of Vesuvius in 79 A.D., so we definitely want a two-digit
year there.

The rule for guess_year is this: If the year is less than 100 and guess_year is true,
convert to a four-digit year. The conversion will be done as follows: If the year is 70 or
greater, add 1900 to it; otherwise add 2000. Thus 75 will translate to 1975, but 65 will
translate to 2065. This rule isn't uncommon in the computing world.

What about s1, where we probably intended 1998 as the year? All is not lost as long as we
pass this number to some other piece of code that interprets it as 1998.

Note that parsedate does virtually no error checking. For example, if you feed it a date
with a weekday and a date that don't correspond correctly, it won't detect this discrepancy.
It is only a parser, and it does this job pretty well, but no other.

Also note an American bias in this code. An American writing 3/4/2001 usually means
March 4, 2001; in Europe and most other places, this would mean April 3 instead. But if
all the data is consistent, this isn't a huge problem. Because the return value is simply an
array, you can mentally switch the meaning of elements 1 and 2. Be aware also that this
bias happens even with a date such as 15/3/2000, where it is clear (to us) that 15 is the
day. The parsedate method will happily return 15 as the month value.

Although this method is very flexible, it is far from perfect. We have observed that it tends
not to capture the time zone if it follows a meridian indicator such as p.m. We have also
noted that it doesn't recognize a year such as '79 (with a leading apostrophe).

Formatting and Printing Date/Time Values
You can obtain the canonical representation of the date and time by calling the
asctime method (ASCII time); it has an alias called ctime, for those who already know it
by that name.

You can obtain a similar result by calling the to_s method. This is the same as the result
you would get if doing a simple puts of a date/time value.

The strftime method of class Time will format a date and time in almost any form you
can think of. Other examples in this chapter have shown the use of the directives %a, %A,
%U, %W, %H, %M, %S, %I, and %p; we list here all the remaining directives that strftime
recognizes.

%b Abbreviated month name ("Jan")
%B Full month name ("January")
%c Preferred local date/time representation

Chapter 2. Simple Data Tasks Page 69 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

%d Day of the month (1..31)
%j Day of the year (1..366); so-called "Julian date"
%m Month as a number (1..12)
%w Day of the week as a number (0..6)
%x Preferred representation for date (no time)
%y Two-digit year (no century)
%Y Four-digit year
%Z Time zone name
%% A literal "%" character

For more information, consult a Ruby reference.

Time Zone Conversions
It is only convenient to work with two time zones: GMT (or UTC) is one, and the other is
whatever time zone you happen to be in.

The gmtime method will convert a time to GMT (changing the receiver in place). There is
an alias named utc.

You might expect that it would be possible to convert a time to an array, tweak the time
zone, and convert it back. The trouble with this is that all the class methods such as
local and gm (or their aliases mktime and utc) want to create a Time object using either
your local time zone or GMT.

It is possible to fake time zone conversions. This does require that you know the time
difference in advance.

mississippi = Time.local(2000,11,13,9,35) # 9:35 am CST
california = mississippi - 2*3600 # Minus two hours

time1 = mississippi.strftime("%X CST") # 09:35:00 CST
time2 = california.strftime("%X PST") # 07:35:00 PST

The %X directive to strftime that we see here simply uses the hh:mm:ss format as shown.

Finding the Internet Time (@nnn)

Time is an illusion created by the Swiss to sell watches.

—Douglas Adams

We offer this next item mostly as a curiosity. The Swiss watch manufacturer Swatch has
created a trendy way of measuring time in cyberspace, a metric-like time that they call
Internet Time. This time standard has no time zones and is thus usable, for example, by
people meeting each other in chat rooms when they are physically thousands of miles apart.

Chapter 2. Simple Data Tasks Page 70 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It was inaugurated on October 23, 1998, in the presence of Nicholas Negroponte, founder
and director of MIT's Media Lab.

Not surprisingly, Internet Time is based on the meridian of Biel, Switzerland. The day is
divided into 1000 beats, each 86.4 seconds long (or 1 minute, 26.4 seconds). The three
digit number representing the time of day is prefixed by an at (@) sign.

This method will find the current time in Internet Time. It returns a number, unless
true is passed in; then it returns a string, with an @ and any leading zeroes. Mimicking
the behavior of the applications we have seen, we truncate any fractional part rather than
rounding up.

def internet_time(str=false)
 t = Time.now.gmtime + 3600 # Biel, Switzerland
 midnight = Time.gm(t.year, t.month, t.day)
 secs = t - midnight
 beats = (secs/86.4).to_i
 if str
 "@%03d" % beats
 else
 beats
 end
end

time_now = internet_time # 27
now = internet_time(true) # "@027"

Summary
That ends our discussion of the simpler tasks we might perform with numbers, strings,
and so on. Now it's time to go on to bigger and better data structures and the algorithms
that support them.

Chapter 2. Simple Data Tasks Page 71 Return to Table of Contents

Chapter 2. Simple Data Tasks
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Simple Data Tasks
	Strings
	Regular Expressions
	Numbers
	Times and Dates
	Summary

