
Table of Contents

External Data Manipulation.. 1
Working with Files and Directories.. 2
Performing Higher-Level Data Access... 30
Connecting to External Databases.. 34
Summary... 43

Chapter 4. External Data Manipulation

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 4. External Data Manipulation
IN THIS CHAPTER

• Working with Files and Directories
• Performing Higher-Level Data Access
• Connecting to External Databases
• Summary

On a clean disk you can seek forever.

—Thomas B. Steel, Jr.

Computers are good at computing. This tautology is more profound than it appears. If we
only had to sit and chew up the CPU cycles and reference RAM as needed, life would be
easy.

A computer that only sits and thinks to itself is of little use to us, however. Sooner or later
we have to get information into it and out of it, and that is where life gets harder.

Several things make I/O complicated. First of all, input and output are rather different
things, but we naturally lump them together. Second, the varieties of I/O operations (and
their usages) are as diverse as species of insects.

History has seen such devices as drums, paper tapes, magnetic tapes, punched cards, and
teletypes. Some operated with a mechanical component; others were purely
electromagnetic. Some were read-only; others were write-only or read-write. Some
writable media were erasable, and others were not. Some devices were inherently
sequential; others were random access. Some media were permanent; others were
transient or volatile. Some devices depended on human intervention; others did not. Some
were character oriented; others were block oriented. Some block devices were fixed length;
others were variable length. Some devices were polled; others were interrupt driven.
Interrupts could be implemented in hardware or software, or both. We have seen both
buffered and nonbuffered I/O. We have seen memory-mapped I/O, channel-oriented I/
O, and with the advent of operating systems such as Unix, we have seen I/O devices mapped
to files in a file system. We have done I/O in machine language, in assembly language, and
in high-level languages. Some languages have the I/O capabilities firmly hardwired in
place; others leave it out of the language specification completely. We have done I/O with
and without suitable device drivers or layers of abstraction.

Chapter 4. External Data Manipulation Page 1 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

If this seems like a confusing mess, that's because it is. Part of the complexity is inherent
in the concept of input/output, part of it is the result of design tradeoffs, and part of it is
the result of legacies or traditions in computer science and the quirks of various languages
and operating systems.

Ruby's I/O is complex because I/O in general is complex. However, we have tried to make
it understandable and present a good overview of how and when to use various techniques.

The core of all Ruby I/O is the IO class, which defines behavior for every kind of input/
output operation. Closely allied with IO (and inheriting from it) is the File class. There
is a nested class within File called Stat, which is an object that encapsulates various
details about a file that we might want to examine (such as its permissions and
timestamps). The methods stat and lstat return objects of type File::Stat.

The module FileTest also has methods that allow us to test much the same set of
properties. This is mixed into the File class and can also be used on its own.

Finally, there are I/O methods in the Kernel module that are mixed into Object (the
ancestor of all objects). These are the simple I/O routines we have used all along without
worrying about what their receiver was. These naturally default to standard input and
standard output.

The beginner may find these classes to be a confused jumble of overlapping functionality.
The good news is that you need only use small pieces of this framework at any given time.

On a higher level, Ruby offers features to make object persistence possible. The
Marshal enables simple serialization of objects, and the more sophisticated PStore
library is based on Marshal. We include the DBM library in this section, although it is only
string based.

On the highest level of all, data access can be performed by interfacing to a separate
database management system such as MySQL or Oracle. This issue is complex enough that
one or more books could devoted to it. We will provide only a brief overview to get you
started. In some cases, we provide only a pointer to an online archive.

Working with Files and Directories
When we say "file," we usually mean a disk file, although not always. We do use the concept
of a file as a meaningful abstraction in Ruby as in other programming languages. When
we say "directory," we mean a directory in the normal Windows or Unix sense.

Chapter 4. External Data Manipulation Page 2 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The File class is closely related to the IO class from which it inherits. The Dir class is not
so closely related, but we chose to discuss files and directories together because they are
still conceptually related.

Opening and Closing Files
The class method File.new, which instantiates a File object, will also open that file.
The first parameter is naturally the filename.

The optional second parameter is called the mode string, which tells how to open the file
(for reading, writing, or whatever). The mode string has nothing to do with the mode as
in permissions. This defaults to "r" for reading. Here's an example:

file1 = File.new("one") # Open for reading
file2 = File.new("two", "w") # Open for writing

There is another form for new that takes three parameters. In this case, the second
parameter specifies the original permissions for the file (usually as an octal constant), and
the third is a set of flags ORed together. The flags are constants such as File::CREAT
(create the file when it is opened if it doesn't already exist) and File::RDONLY (open for
reading only). This form will rarely be used. Here's an example:

file = File.new("three", 0755, File::CREAT|File::WRONLY)

As a courtesy to the operating system and the runtime environment, always close a file
that you open. In the case of a file open for writing, this is more than mere politeness and
can actually prevent lost data. Not surprisingly, the close method will serve this purpose:

out = File.new("captains.log", "w")
Process as needed...
out.close

There is also an open method. In its simplest form, it is merely a synonym for new, as
shown here:

trans = File.open("transactions","w")

However, open can also take a block; this is the form that is more interesting. When a
block is specified, the open file is passed in as a parameter to the block. The file remains
open throughout the scope of the block and is closed automatically at the end. Here's an
example:

Chapter 4. External Data Manipulation Page 3 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

File.open("somefile","w") do |file|
 file.puts "Line 1"
 file.puts "Line 2"
 file.puts "Third and final line"
end
The file is now closed

This is obviously an elegant way of ensuring that a file is closed when we've finished with
it. In addition, the code that handles the file is grouped visually into a unit.

Updating a File
Suppose we want to open a file for reading and writing. This is done simply by adding a
plus sign (+) in the file mode when we open the file (see the section titled "Opening and
Closing Files" for more information). Here's an example:

f1 = File.new("file1", "r+")
 # Read/write, starting at beginning of file.

 f2 = File.new("file2", "w+")
 # Read/write; truncate existing file or create a new one.
 f3 = File.new("file3", "a+")
 # Read/write; start at end of existing file or create a
 # new one.

Appending to a File
Suppose we want to append information onto an existing file. This is done simply by using
"a" in the file mode when we open the file (see the section titled "Opening and Closing
Files" for more information). Here's an example:

logfile = File.open("captains_log", "a")
 # Add a line at the end, then close.
 logfile.puts "Stardate 47824.1: Our show has been canceled."
 logfile.close

Random Access to Files
If you want to read a file randomly rather than sequentially, you can use the method
seek, which File inherits from IO. The simplest usage is to seek to a specific byte position.
The position is relative to the beginning of the file, where the first byte is numbered 0.
Here's an example:

myfile contains only: abcdefghi
file = File.new("myfile")
file.seek(5)
str = file.gets # "fghi"

Chapter 4. External Data Manipulation Page 4 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If you took care to ensure that each line is a fixed length, you could seek to a specific line,
like so:

Assume 20 bytes per line.
Line N starts at byte (N-1)*20
file = File.new("fixedlines")
file.seek(5*20) # Sixth line!
Elegance is left as an exercise.

If you want to do a relative seek, you can use a second parameter. The constant
IO::SEEK_CUR will assume the offset is relative to the current position (which may be
negative). Here's an example:

file = File.new("somefile")
file.seek(55) # Position is 55
file.seek(-22, IO::SEEK_CUR) # Position is 33
file.seek(47, IO::SEEK_CUR) # Position is 80

You can also seek relative to the end of the file. Only a negative offset makes sense here:

file.seek(-20, IO::SEEK_END) # twenty bytes from eof

There is also a third constant, IO::SEEK_SET, but it is the default value (seek relative to
the beginning of file).

The method tell will report the file position (pos is an alias):

file.seek(20)
pos1 = file.tell # 20
file.seek(50, IO::SEEK_CUR)
pos2 = file.pos # 70

The rewind method can also be used to reposition the file pointer at the beginning. This
terminology comes from the use of magnetic tapes.

If you are performing random access on a file, you may want to open it for updating
(reading and writing). Updating a file is done by specifying a plus sign (+) in the mode
string. See the section titled "Updating a File" for more information.

Working with Binary Files
In days gone by, C programmers would use the "b" character appended to the mode string
in order to open a file as a binary. This character is still allowed for compatibility in most

Chapter 4. External Data Manipulation Page 5 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

cases, but nowadays binary files are not as tricky as they used to be. A Ruby string can
easily hold binary data, and a file need not be read in any special way.

The exception is the Windows family of operating systems. The chief difference between
binary and text files on these platforms is that in binary mode, the end-of-line is not
translated into a single linefeed but is kept as a carriage-return/linefeed pair.

The "b" character is indeed used in this circumstance:

Input file contains a single line: Line 1.
file = File.open("data")
line = file.readline # "Line 1.\n"
puts "#{ line.size} characters." # 8 characters
file.close

file = File.open("data","rb")
line = file.readline # "Line 1.\r\n"
puts "#{ line.size} characters." # 9 characters
file.close

Note that the binmode method can switch a stream to binary mode. Once switched, it
cannot be switched back. Here's an example:

file = File.open("data")
file.binmode
line = file.readline # "Line 1.\r\n"
puts "#{ line.size} characters." # 9 characters
file.close

If you really want to do low-level input/output, you can use the sysread and
syswrite methods. The former takes a number of bytes as a parameter; the latter takes
a string and returns the actual number of bytes written. (You should not use other methods
to read from the same stream; the results may be unpredictable.) Here's an example:

input = File.new("infile")
output = File.new("outfile")
instr = input.sysread(10);
ytes = output.syswrite("This is a test.")

Note that sysread raises EOFError at end-of-file. Either of these methods will raise
SystemCallError when an error occurs.

Note that the Array method pack and the String method unpack can be very useful in
dealing with binary data.

Chapter 4. External Data Manipulation Page 6 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Locking Files
On operating systems where it is supported, the flock method of File will lock or unlock
a file. The second parameter is one of these constants: File::LOCK_EX,
File::LOCK_NB, File::LOCK_SH, File::LOCK_UN, or a logical OR of two or more of
these. Note, of course, that many of these combinations will be nonsensical; primarily the
nonblocking flag will be ORed in if anything is. Here's an example:

file = File.new("somefile")

file.flock(File::LOCK_EX) # Lock exclusively; no other process
 # may use this file.
file.flock(File::LOCK_UN) # Now unlock it.

file.flock(File::LOCK_SH) # Lock file with a shared lock (other
 # processes may do the same).
file.flock(File::LOCK_UN) # Now unlock it.

locked = file.flock(File::LOCK_EX | File::LOCK_NB)
Try to lock the file, but don't block if we can't; in that case,
locked will be false.

Performing Simple I/O
You are already familiar with some of the I/O routines in the Kernel module; these are
the ones we have called all along without specifying a receiver for the methods. Calls such
as gets and puts originate here; others are print, printf, and p (which calls the
object's inspect method to display it in some way readable to humans).

There are some others that we should mention for completeness, though. For example, the
putc method will output a single character. (The corresponding method getc is not
implemented in Kernel for technical reasons; it can be found in any IO object, however.)
If a String is specified, the first character of the string will be taken. Here's an example:

putc(?\n) # Output a newline
putc("X") # Output the letter X

A reasonable question is, where does output go when we use these methods without a
receiver? Well, to begin with, three constants are defined in the Ruby environment
corresponding to the three standard I/O streams we are accustomed to in Unix. These are
STDIN, STDOUT, and STDERR. All are global constants of the type IO.

There is also a global variable called $defout that is the destination of all the output
coming from Kernel methods. This is initialized (indirectly) to the value of STDOUT so

Chapter 4. External Data Manipulation Page 7 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

that this output all gets written to standard output as we expect. The variable $defout
can be reassigned to refer to some other IO object at any time. Here's an example:

diskfile = File.new("foofile","w")
puts "Hello..." # prints to stdout
$defout = diskfile
puts "Goodbye!" # prints to "foofile"
diskfile.close

Besides gets, Kernel also has the methods readline and readlines for input. The
former is equivalent to gets except that it raises EOFError at the end of a file instead of
just returning a nil value. The latter is equivalent to the IO.readlines method (that is,
it reads an entire file into memory).

Where does input come from? Well, there is also the standard input stream $stdin, which
defaults to STDIN. In the same way, there is a standard error stream ($stderr defaulting
to STDERR).

Also, an interesting global object called ARGF represents the concatenation of all the files
named on the command line. It is not really a File object, although it resembles one.
Standard input is connected to this object in the event files are named on the command
line.

Performing Buffered and Unbuffered I/O
Ruby does its own internal buffering in some cases. Consider this fragment:

print "Hello... "
sleep 10
print "Goodbye!\n"

If you run this, you will notice that the hello and goodbye messages both appear at the
same time, after the sleep. The first output is not terminated by a newline.

This can be fixed by calling flush to flush the output buffer. In this case, we use the stream
$defout (the default stream for all Kernel method output) as the receiver. It then
behaves as we probably wanted, with the first message appearing earlier than the second
one:

print "Hello... "
$defout.flush
sleep 10
print "Goodbye!\n"

Chapter 4. External Data Manipulation Page 8 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This buffering can be turned off (or on) with the sync= method; the sync method will let
us know the status:

buf_flag = $defout.sync # true
$defout.sync = false
buf_flag = $defout.sync # false

Also, at least one lower level of buffering is going on behind the scenes. Just as the getc
method returns a character and moves the file or stream pointer, the ungetc method
pushes a character back onto the stream:

ch = mystream.getc # ?A
mystream.ungetc(?C)
ch = mystream.getc # ?C

You should be aware of three things here. First of all, the buffering we're speaking of is
unrelated to the buffering we mentioned earlier in this section; in other words,
sync=false won't turn it off. Second, only one character can be pushed back; if you
attempt more than one, only the last character will actually be pushed back onto the input
stream. Finally, the ungetc method will not work for inherently unbuffered read
operations (such as sysread).

Manipulating File Ownership and Permissions
The issue of file ownership and permissions is highly platform dependent. Typically, Unix
provides a superset of the functionality; for other platforms many features may be
unimplemented.

To determine the owner and group of a file (which are integers), File::Stat has a pair
of instance methods, uid and gid, as shown here:

data = File.stat("somefile")
owner_id = data.uid
group_id = data.gid

Class File::Stat has the instance method mode, which will return the mode (or
permissions) of the file:

perms = File.stat.mode("somefile")

Chapter 4. External Data Manipulation Page 9 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

File has class and instance methods named chown to change the owner and group IDs
of a file. The class method will accept an arbitrary number of filenames. Where an ID is
not to be changed, nil or -1 can be used. Here's an example:

uid = 201
gid = 10
File.chown(uid, gid, "alpha", "beta")
f1 = File.new("delta")
f1.chown(uid, gid)
f2 = File.new("gamma")
f2.chown(nil, gid) # Keep original owner id

Likewise, the permissions can be changed by chmod (also implemented both as class and
instance methods). The permissions are traditionally represented in octal format, although
they need not be:

File.chmod(0644, "epsilon", "theta")
f = File.new("eta")
f.chmod(0444)

A process always runs under the identity of some user (possibly root); as such, a user ID
is associated with it. (Here we are talking about the effective user ID.) We frequently need
to know whether that user has permission to read, write, or execute a given file. There are
instance methods in File::Stat to make this determination, as shown here:

info = File.stat("/tmp/secrets")
rflag = info.readable?
wflag = info.writable?
xflag = info.executable?

Sometimes we need to distinguish between the effective user ID and the real user ID. The
appropriate instance methods are readable_real?, writable_real?, and
executable_real?. Here's an example:

info = File.stat("/tmp/secrets")
rflag2 = info.readable_real?
wflag2 = info.writable_real?
xflag2 = info.executable_real?

We can test the ownership of the file as compared with the effective user ID (and group
ID) of the current process. The class File::Stat has instance methods owned? and
grpowned? to accomplish this.

Note that many of these methods can also be found in the module FileTest:

Chapter 4. External Data Manipulation Page 10 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

rflag = FileTest::readable?("pentagon_files")
Other methods are: writable? executable? readable_real? writable_real?
executable_real? owned? grpowned?
Not found here: uid gid mode

The "umask" associated with a process determines the initial permissions of new files
created. The standard mode 0777 is logically ANDed with the negation of the umask so that
the bits set in the umask are "masked" or cleared. If you prefer, you can think of this as a
simple subtraction (without borrow). Therefore, a umask of 022 will result in files being
created with a mode of 0755.

The umask can be retrieved or set with the class method umask of class File. If there is
a parameter specified, the umask will be set to that value (and the previous value will be
returned):

File.umask(0237) # Set the umask
current_umask = File.umask # 0237

Some file mode bits (such as the "sticky" bit) are not strictly related to permissions. For a
discussion of these, see the section titled "Checking Special File Characteristics."

Retrieving and Setting Timestamp Information
Each disk file has multiple timestamps associated with it (although there are some
variations between operating systems). The three timestamps that Ruby understands are
the modification time (the last time the file contents were changed), the access time (the
last time the file was read), and the change time (the last time the file's directory
information was changed).

These three pieces of information can be accessed in three different ways. Each of these
fortunately gives the same results.

The File class methods mtime, atime, and ctime will return the times without the file
being opened or any File object being instantiated:

t1 = File.mtime("somefile")
Thu Jan 04 09:03:10 GMT-6:00 2001
t2 = File.atime("somefile")
Tue Jan 09 10:03:34 GMT-6:00 2001
t3 = File.ctime("somefile")
Sun Nov 26 23:48:32 GMT-6:00 2000

If there happens to be a File instance already created, the instance method can be used:

Chapter 4. External Data Manipulation Page 11 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

myfile = File.new("somefile")
t1 = myfile.mtime
t2 = myfile.atime
t3 = myfile.ctime

And if there happens to be a File::Stat instance already created, it has instance
methods to do the same thing:

myfile = File.new("somefile")
info = myfile.stat
t1 = info.mtime
t2 = info.atime
t3 = info.ctime

Note that a File::Stat is returned by File's class (or instance) method stat. The class
method lstat (or the instance method of the same name) is identical except that it reports
on the status of the link itself instead of following the link to the actual file. In the case of
links to links, all links are followed but the last one.

File access and modification times may be changed using the utime method. It will change
the times on one or more files specified. The times may be given either as Time objects or
as a number of seconds since the epoch. Here's an example:

today = Time.now
yesterday = today - 86400
File.utime(today, today, "alpha")
File.utime(today, yesterday, "beta", "gamma")

Because both times are changed together, if you want to leave one of them unchanged, you
have to save it off first, as shown here:

mtime = File.mtime("delta")
File.utime(Time.now, mtime, "delta")

Checking File Existence and Size
One fundamental question we sometimes want to know about a file is whether the file of
the given name exists. The exist? method in the FileTest module provides a way to
find out:

flag = FileTest::exist?("LochNessMonster")
flag = FileTest::exists?("UFO")
exists? is a synonym for exist?

Chapter 4. External Data Manipulation Page 12 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Intuitively, such a method could not be a class instance of File because by the time the
object is instantiated, the file has been opened; File conceivably could have a class
method exist?, but in fact it does not.

Related to the question of a file's existence is the question of whether it has any contents.
After all, a file may exist but have zero length (which is the next best thing to not existing).

If we are only interested in this yes/no question, File::Stat has two instance methods
that are useful. The method zero? will return true if the file is zero length; otherwise, it
will return false:

flag = File.new("somefile").stat.zero?

Conversely, the method size? will return either the size of the file in bytes, if it is nonzero
length, or the value nil, if it is zero length. It may not be immediately obvious why nil
is returned rather than 0. The answer is that the method is primarily intended for use as
a predicate, and 0 is "true" in Ruby, whereas nil tests as "false." Here's an example:

if File.new("myfile").stat.size?
 puts "The file has contents."
else
 puts "The file is empty."
end

The methods zero? and size? also appear in the FileTest module:

flag1 = FileTest::zero?("file1")
flag2 = FileTest::size?("file2")

This leads naturally to the question, how big is this file? We've already seen that in the case
of a nonempty file, size? will return the length, but if we're not using it as a predicate,
the nil value would confuse us.

The File class has a class method (but not an instance method) to give us this answer.
The instance method of the same name is inherited from the IO class, and File::Stat
has a corresponding instance method:

size1 = File.size("file1")
size2 = File.stat("file2").size

If we want the file size in blocks rather than bytes, we can use the instance method
blocks in File::Stat. This is certainly dependent on the operating system. (The

Chapter 4. External Data Manipulation Page 13 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

method blksize will also report on the operating system's idea of how big a block is.)
Here's an example:

info = File.stat("somefile")
total_bytes = info.blocks * info.blksize

Checking Special File Characteristics
There are numerous aspects of a file that we can test. We summarize here the relevant
built-in methods that we don't discuss elsewhere. Most, though not all, are predicates.

Bear in mind two facts throughout this section (and most of this chapter). First of all,
because File mixes in FileTest, any test that can be done by invoking the method
qualified with the module name may also be called as an instance method of any file object.
Second, remember that there is a high degree of overlap between the FileTest module
and the File::Stat object returned by stat (or lstat). In some cases, there will be
three different ways to call what is essentially the same method. We won't necessarily show
this every time.

Some operating systems have the concept of block-oriented devices as opposed to
character-oriented devices. A file may refer to neither, but not both. The methods
blockdev? and chardev? in the FileTest module will test for this:

flag1 = FileTest::chardev?("/dev/hdisk0") # false
flag2 = FileTest::blockdev?("/dev/hdisk0") # true

Sometimes we want to know whether the stream is associated with a terminal. The IO class
method tty? tests for this (as will the synonym isatty):

flag1 = STDIN.tty? # true
flag2 = File.new("diskfile").isatty # false

A stream can be a pipe or a socket. There are corresponding FileTest methods to test
for these cases:

flag1 = FileTest::pipe?(myfile)
flag2 = FileTest::socket?(myfile)

Recall that a directory is really just a special case of a file. Therefore, we need to be able to
distinguish between directories and ordinary files, which a pair of FileTest methods
enable us to do. Here's an example:

Chapter 4. External Data Manipulation Page 14 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

file1 = File.new("/tmp")
file2 = File.new("/tmp/myfile")
test1 = file1.directory? # true
test2 = file1.file? # false
test3 = file2.directory? # false
test4 = file2.file? # true

Also, a File class method named ftype will tell us what kind of thing a stream is; it can
also be found as an instance method in the File::Stat class. This method returns a
string that has one of the following values: file, directory, blockSpecial,
characterSpecial, fifo, link, or socket. (The string fifo refers to a pipe.) Here's
an example:

this_kind = File.ftype("/dev/hdisk0") # "blockSpecial"
that_kind = File.new("/tmp").stat.ftype # "directory"

Certain special bits may be set or cleared in the permissions of a file. These are not strictly
related to the other bits we discuss in the section "Manipulating File Ownership and
Permissions." These are the set-group-id bit, the set-user-id bit, and the sticky bit. There
are methods in FileTest for each of these, as shown here:

file = File.new("somefile")
info = file.stat
sticky_flag = info.sticky?
setgid_flag = info.setgid?
setuid_flag = info.setuid?

A disk file may have symbolic or hard links that refer to it (on operating systems supporting
these features). To test whether a file is actually a symbolic link to some other file, use the
symlink? method of FileTest. To count the number of hard links associated with a file,
use the nlink method (found only in File::Stat). A hard link is virtually
indistinguishable from an ordinary file; in fact, it is an ordinary file that happens to have
multiple names and directory entries. Here's an example:

File.symlink("yourfile","myfile") # Make a link
is_sym = FileTest::symlink?("myfile") # true
hard_count = File.new("myfile").stat.nlink # 0

Incidentally, note that in this example we use the File class method symlink to create
a symbolic link.

In rare cases, you may want even lower-level information about a file. The File::Stat
class has three more instance methods that give you the gory details. The method dev will

Chapter 4. External Data Manipulation Page 15 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

give you an integer identifying the device on which the file resides; rdev will return an
integer specifying the kind of device; and for disk files, ino will give you the starting "inode"
number for the file:

file = File.new("diskfile")
info = file.stat
device = info.dev
devtype = info.rdev
inode = info.ino

Working with Pipes
Ruby provides various ways of reading and writing pipes. The class method IO.popen
will open a pipe and hook the process's standard input and standard output into the IO
object returned. Frequently we will have different threads handling each end of the pipe;
here we just show a single thread writing and then reading:

check = IO.popen("spell","r+")
check.puts("'T was brillig, and the slithy toves")
check.puts("Did gyre and gimble in the wabe.")
check.close_write
list = check.readlines
list.collect! { |x| x.chomp }
list is now %w[brillig gimble gyre slithy toves wabe]

Note that the close_write call is necessary. If it were not issued, we would not be able
to reach end-of-file when we read the pipe.

There is also a block form:

File.popen("/usr/games/fortune") do |pipe|
 quote = pipe.gets
 puts quote
 # On a clean disk, you can seek forever. - Thomas Steel
end

If the string "-" is specified, a new Ruby instance is started. If a block is specified with
this, the block is run as two separate processes rather like a fork; the child gets nil passed
into the block, and the parent gets an IO object with the child's standard input and/or
output connected to it, as shown here:

IO.popen("-") do |mypipe|
 if mypipe
 puts "I'm the parent: pid = #{ Process.pid} "
 listen = mypipe.gets
 puts listen
 else

Chapter 4. External Data Manipulation Page 16 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "I'm the child: pid = #{ Process.pid} "
 end
end

Prints:
I'm the parent: pid = 10580
I'm the child: pid = 10582

Also, the pipe method returns a pair of pipe ends connected to each other. Here, we create
a pair of threads and let one pass a message to the other (the first message that Samuel
Morse sent over the telegraph):

pipe = IO.pipe
reader = pipe[0]
writer = pipe[1]

str = nil
thread1 = Thread.new(reader,writer) do |reader,writer|
 # writer.close_write
 str = reader.gets
 reader.close
end

thread2 = Thread.new(reader,writer) do |reader,writer|
 # reader.close_read
 writer.puts("What hath God wrought?")
 writer.close
end
thread1.join
thread2.join

puts str # What hath God wrought?

Performing Special I/O Operations
It is possible to do lower-level I/O in Ruby. We will only mention the existence of these
methods; if you need to use them, note that some of them will be highly machine specific
(varying even between different versions of Unix).

The ioctl method ("I/O control") will accept two arguments. The first is an integer
specifying the operation to be done. The second is either an integer or a string representing
a binary number.

The fcntl method is also for low-level control of file-oriented streams in a system-
dependent manner. It takes the same kinds of parameters as ioctl.

The select method (in the Kernel module) will accept up to four parameters; the first
is the read-array, and the last three are optional (write-array, error-array, and the timeout
value. When input is available from one or more devices in the read-array, or one or more

Chapter 4. External Data Manipulation Page 17 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

devices in the write-array are ready, the call will return an array of three elements
representing the respective arrays of devices that are ready for I/O.

The Kernel method syscall takes at least one integer parameter (and up to nine string
or integer parameters in all). The first parameter specifies the I/O operation to be done.

The fileno method returns an old-fashioned file descriptor associated with an I/O
stream. This is the least system dependent of all the methods mentioned. Here's an
example:

desc = $stderr.fileno # 2

Manipulating Pathnames
When manipulating pathnames, the first things to be aware of are the class methods
File.dirname and File.basename; these work like the Unix commands of the same
names and return the directory name and the filename, respectively. If an extension is
specified as a second parameter to basename, that extension will be removed:

str = "/home/dave/podbay.rb"
dir = File.dirname(str) # "/home/dave"
file1 = File.basename(str) # "podbay.rb"
file2 = File.basename(str,".rb") # "podbay"

Note that although these are methods of File, they are really simply doing string
manipulation.

A comparable method is File.split, which returns these two components (directory
and filename) in a two-element array:

info = File.split(str) # ["/home/dave","podbay.rb"]

The expand_path class method will expand a relative pathname, converting it to an
absolute path. If the operating system understands such idioms as ~ and ~user, these will
be expanded also. Here's an example:

Dir.chdir("/home/poole/personal/docs")
abs = File.expand_path("../../misc") # "/home/poole/misc"

Given an open file, the path instance method will return the pathname used to open the
file:

Chapter 4. External Data Manipulation Page 18 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

file = File.new("../../foobar")
name = file.path # "../../foobar"

The constant File::Separator gives the character used to separate pathname
components (typically a backslash for Windows and a slash for Unix). An alias is
File::SEPARATOR.

The class method join uses this separator to produce a path from a list of directory
components:

path = File.join("usr","local","bin","someprog")
path is "usr/local/bin/someprog"
Note that it doesn't put a separator on the front!

Don't fall into the trap of thinking that File.join and File.split are somehow inverse
operations. They're not.

Command-Level File Manipulation
Very often we need to manipulate files in a manner similar to the way we would at a
command line. That is, we need to copy, delete, rename, and so on. Many of these
capabilities are built-in methods; a few are added by the ftools library.

To delete a file, we can use File.delete or its synonym File.unlink, like so:

File.delete("history")
File.unlink("toast")

To rename a file, we can use File.rename as follows:

File.rename("Ceylon","SriLanka")

File links (hard and symbolic) can be created using File.link and File.symlink,
respectively:

File.link("/etc/hosts","/etc/hostfile") # hard link
File.symlink("/etc/hosts","/tmp/hosts") # symbolic link

We can truncate a file to zero bytes (or any other specified number) by using the
truncate instance method:

Chapter 4. External Data Manipulation Page 19 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

File.truncate("myfile",1000) # Now at most 1000 bytes

Two files may be compared by means of the compare method (cmp is the alias):

require "ftools"

same = File.compare("alpha","beta") # true

The method syscopy will efficiently copy a file to a new name or location. A similar
method is copy, which has an optional flag parameter to write error messages to standard
error (cp is the alias):

require "ftools"

File.syscopy("gamma","delta") # Copies gamma to delta
File.syscopy("gamma","/tmp") # Creates /tmp/gamma
Copy epsilon to theta and log any errors.
File.copy("epsilon","theta", true)

A file may be moved with the move method (the alias is mv). Like copy, it also has an
optional verbose-flag:

require "ftools"

File.move("/tmp/names","/etc") # Move to new directory
File.move("colours","colors") # Just a rename

The safe_unlink method will delete the specified file or files, first trying to make the
files writable so as to avoid errors. If the last parameter is true or false, that value will
be taken as the verbose-flag. Here's an example:

require "ftools"

File.safe_unlink("alpha","beta","gamma")
Log errors on the next two files
File.safe_unlink("delta","epsilon",true)

Finally, the install method basically does a syscopy, except that it first checks that the
file either does not exist or has different content:

require "ftools"

File.install("foo.so","/usr/lib")

Chapter 4. External Data Manipulation Page 20 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Existing foo.so will not be overwritten
if it is the same as the new one.

Grabbing Characters from the Keyboard
We use the term "grabbing" here because we sometimes want to process a character as
soon as it is pressed rather than buffer it and wait for a newline to be entered.

This can be done in both Unix variants and Windows variants. Unfortunately, the two
methods are completely unrelated to each other.

The Unix version is straightforward. We use the well-known technique of putting the
terminal in raw mode (and we usually turn off echoing at the same time):

system("stty raw -echo") # Raw mode, no echo
char = STDIN.getc
system("stty -raw echo") # Reset terminal mode

In the Windows world, we need to write a C extension for this. An alternative for now is to
use a small feature of the Win32API library, shown here:

require 'Win32API'
char = Win32API.new("crtdll", "_getch", [], 'L').Call

This is obviously not pretty, but it works.

Reading an Entire File into Memory
To read an entire file into an array, you need not even open the file. The method
IO.readlines will do this, opening and closing the file on its own:

arr = IO.readlines("myfile")
lines = arr.size
puts "myfile has #{ lines} lines in it."

longest = arr.collect { |x| x.length} .max
puts "The longest line in it has #{ longest} characters."

Iterating over a File by Line
To iterate over a file a line at a time, we can use the class method IO.foreach or the
instance method each. In the former case, the file need not be opened in our code. Here's
an example:

Print all lines containing the word "target"

Chapter 4. External Data Manipulation Page 21 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

IO.foreach("somefile") do |line|
 puts line if line =~ /target/
end
Another way...
file = File.new("somefile")
file.each do |line|
 puts line if line =~ /target/
end

Note that each_line is an alias for each.

Iterating over a File by Byte
To iterate a byte at a time, use the each_byte instance method. Remember that it feeds
a character (that is, an integer) into the block; use the chr method if you need to convert
to a "real" character. Here's an example:

file = File.new("myfile")
e_count = 0
file.each_byte do |byte|
 e_count += 1 if byte == ?e
end

Treating a String As a File
Sometimes people want to know how to treat a string as though it were a file. The answer
depends on the exact meaning of the question.

An object is defined mostly in terms of its methods. The following code shows an iterator
applied to an object called source; with each iteration, a line of output is produced. Can
you tell the type of source by reading this fragment?

source.each do |line|
 puts line
end

Actually, source could be a file, or it could be a string containing embedded newlines.
Therefore, in cases like these, a string can trivially be treated as a file.

This leads naturally to the idea of writing something like an IOString class. We could do
that here, but the exact design of such a class would depend on what you want to do with
it. Should we inherit from String or from IO, for instance? A third possibility would be
to create a library that adds methods to the String class (just as ftools extends
File).

Chapter 4. External Data Manipulation Page 22 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We won't attempt any full implementation here. We'll only make a skeleton to show one
approach (see Listing 4.1). Fleshing it out would involve an exhaustive set of methods and
rigorous error checking; the example here is neither complete nor robust.

Chapter 4. External Data Manipulation Page 23 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 4.1. Outline of an IOString Class

class IOString < String

 def initialize(str="")
 @fptr = 0
 self.replace(str)
 end

 def open
 @fptr = 0
 end

 def truncate
 self.replace("")
 @fptr = 0
 end

 def seek(n)
 @fptr = [n, self.size].min
 end

 def tell
 @fptr
 end

 def getc
 @fptr += 1
 self[@fptr-1].to_i
 end

 def ungetc(c)
 self[@fptr -= 1] = c.chr
 end

 def putc(c)
 self[@fptr] = c.chr
 @fptr += 1
 end

 def gets
 s = ""
 n = self.index("\n",@fptr)
 s = self[@fptr..n].dup
 @fptr += s.length
 s
 end
 def puts(s)
 self[@fptr..@fptr+s.length-1] = s
 @fptr += s.length
 end

end

ios = IOString.new("abcdefghijkl\nABC\n123")

ios.seek(5)
ios.puts("xyz")

puts ios.tell # 8

puts ios.dump # "abcdexyzijkl\nABC\n123"

c = ios.getc
puts "c = #{ c} " # c = 105

Chapter 4. External Data Manipulation Page 24 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ios.ungetc(?w)

puts ios.dump # "abcdexyzwjkl\nABC\n123"

puts "Ptr = #{ ios.tell} "

s1 = ios.gets # "wjkl"
s2 = ios.gets # "ABC"

Reading Data Embedded in a Program
When you were 12 years old and you learned BASIC by copying programs out of magazines,
you may have used a DATA statement for convenience. The information was embedded in
the program, but it could be read as if it originated outside.

Should you ever want to, you can do much the same thing in Ruby. The directive
__END__ at the end of a Ruby program signals that embedded data follows. This can be
read using the global constant DATA, which is an IO object like any other. (Note that the
__END__ marker must be at the beginning of the line on which it appears.) Here's an
example:

Print each line backwards...
DATA.each_line do |line|
 puts line.reverse
end
__END__
A man, a plan, a canal... Panama!
Madam, I'm Adam.
,siht daer nac uoy fI
.drah oot gnikrow neeb ev'uoy

Reading Program Source
Suppose you want to access the source of your own program. This can be done using a
variation on a trick we used elsewhere (see the section titled "Reading Data Embedded in
a Program").

The global constant DATA is an IO object that refers to the data following the __END__
directive. However, if you perform a rewind operation, it will reset the file pointer to the
beginning of the program source.

The following program will produce a listing of itself with line numbers (it is not
particularly useful, but maybe you can find some other good use for this capability):

DATA.rewind
num = 1
DATA.each_line do |line|

Chapter 4. External Data Manipulation Page 25 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "#{ '%03d' % num} #{ line} "
 num += 1
end
__END__

Note that the __END__ directive is necessary; without it, DATA cannot be accessed at all.

Performing Newline Conversion
One of the annoyances of dealing with different operating systems is that they may have
different concepts of what an end-of-line character is. The "common sense" newline is a
carriage return (CR) followed by a linefeed (LF); but in the earliest days of Unix, the
decision was made to store only the linefeed, thus saving an entire byte per line of text.
(This was when 512KB was a lot of memory.) Today we might expect that a text file is a
text file, but in moving files between, say, a Unix machine and a Windows machine, we are
bitten over and over by the newline problem.

Therefore, we offer a little solution here. The gets method will honor either kind of
newline, and the puts method will always write in the native format. That means this same
code will convert to native format on either kind of operating system. We show it here as
a simple filter that reads standard input and writes to standard output:

while line = gets
 puts line
end

Another case might result from receiving an entire file in an unknown OS format. Whereas
Unix variants use LF for their newline, and Windows versions use CR-LF, we have yet
another possibility with Mac OS, which uses just CR. This very situation arises on the Web
when a TEXTAREA is processed, among other times.

Here is one way to handle this situation, in which we wish to save the contents of a text
area into a file on our Linux Web server:

tmp=cgi.params["mytextarea"].to_s
File.open("newfile","w") do |f|
 newstring = tmp.gsub!(/\r\n/m,"\n") or
 tmp.gsub!(/\r/m,"\n") or tmp
 newstring.each { |line| f.puts line }
end

The first gsub! looks for the CR-LF pair from a PC. If it finds none, it returns nil, meaning
the or will allow the next gsub! to execute, which works on Mac OS–based files. If no
carriage returns are found, the originally captured string is used. After conversion, the
string is written line by line to a file.

Chapter 4. External Data Manipulation Page 26 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Working with Temporary Files
In many circumstances we need to work with files that are all but anonymous. We don't
want the trouble of naming them or making sure there is no name conflict, and we don't
want to bother with deleting them.

All these issues are addressed in the Tempfile library. The new method (alias open) will
take a base name as a "seed string" and will concatenate onto it the process ID and a unique
sequence number. The optional second parameter is the directory to be used; it defaults
to the value of environment variable TMPDIR, TMP, or TEMP, and finally the value "/
tmp".

The resulting IO object may be opened and closed many times during the execution of the
program. Upon termination of the program, the temporary file will be deleted.

The close method has an optional flag; if set to true, the file will be deleted immediately
after it is closed (instead of waiting until program termination). The path method will
return the actual pathname of the file, should you need it. Here's an example:

require "tempfile"

temp = Tempfile.new("stuff")
name = temp.path # "/tmp/stuff17060.0"
temp.puts "Kilroy was here"
temp.close

Later...
temp.open
str = temp.gets # "Kilroy was here"
temp.close(true) # Delete it NOW

Changing and Setting the Current Directory
The current directory may be determined by the use of Dir.pwd or its alias Dir.getwd;
these abbreviations historically stand for print working directory and get working
directory, respectively. In a Windows environment, the backslashes will probably show
up as normal (forward) slashes.

The method Dir.chdir may be used to change the current directory. On Windows, the
logged drive may appear at the front of the string. Here's an example:

Dir.chdir("/var/tmp")
puts Dir.pwd # "/var/tmp"
puts Dir.getwd # "/var/tmp"

Chapter 4. External Data Manipulation Page 27 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Changing the Current Root
On most Unix variants, it is possible to change the current process's idea of where the root
or "slash" is. This is typically done for security reasons (for example, when running unsafe
or untested code). The chroot method will set the new root to the specified directory:

Dir.chdir("/home/guy/sandbox/tmp")
Dir.chroot("/home/guy/sandbox")
puts Dir.pwd # "/tmp"

Iterating over Directory Entries
The class method foreach is an iterator that will successively pass each directory entry
into the block. The instance method each behaves the same way. Here's an example:

Dir.foreach("/tmp") { |entry| puts entry }

dir = Dir.new("/tmp")
dir.each { |entry| puts entry }

Both of the preceding code fragments will print the same output (the names of all files and
subdirectories in /tmp).

Getting a List of Directory Entries
The class method Dir.entries will return an array of all the entries in the specified
directory:

list = Dir.entries("/tmp") # %w[. .. alpha.txt beta.doc]

Creating a Chain of Directories
Sometimes we want to create a chain of directories where the intermediate directories
themselves don't necessarily exist yet. At the Unix command line, we would use mkdir -
p for this.

In Ruby code, we can do this by using the makedirs method, which the ftools library
adds to File:

require "ftools"

File.makedirs("/tmp/these/dirs/need/not/exist")

Chapter 4. External Data Manipulation Page 28 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Deleting a Directory Recursively
In the Unix world, we can type rm -rf dir at the command line and the entire subtree
starting with dir will be deleted. Obviously, we should exercise caution in doing this.

If you need a piece of code to accomplish this, here it is:

def delete_all(dir)
 Dir.foreach(dir) do |e|
 # Don't bother with . and ..
 next if [".",".."].include? e
 fullname = dir + File::Separator + e
 if FileTest::directory?(fullname)
 delete_all(fullname)
 else
 File.delete(fullname)
 end
 end
 Dir.delete(dir)
end

delete_all("dir1") # Remove dir1 and everything under it!

Finding Files and Directories
Here, we make use of the standard library find.rb to create a method that will find one
or more files and return the list of files as an array. The first parameter is the starting
directory; the second is either a filename (that is, a string) or a regular expression:

require "find"

def findfiles(dir, name)
 list = []
 Find.find(dir) do |path|
 Find.prune if [".",".."].include? path
 case name
 when String
 list << path if File.basename(path) == name
 when Regexp
 list << path if File.basename(path) =~ name
 else
 raise ArgumentError
 end
 end
 list
end

findfiles "/home/hal", "toc.txt"
["/home/hal/docs/toc.txt", "/home/hal/misc/toc.txt"]

findfiles "/home", /^[a-z]+.doc/
["/home/hal/docs/alpha.doc", "/home/guy/guide.doc",
"/home/bill/help/readme.doc"]

Chapter 4. External Data Manipulation Page 29 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Performing Higher-Level Data Access
Frequently we want to store and retrieve data in a more transparent manner. The
Marshal module offers simple object persistence, and the PStore library builds on that
functionality. Finally, the dbm library is used like a hash stored permanently on disk. It
does not truly belong in this section, but it is rather too simple to put in the database section.

Simple Marshaling
In many cases, we would like to create an object and simply save it for use later. Ruby
provides rudimentary support for such object persistence or marshaling. The Marshal
module enables programs to serialize and unserialize Ruby objects in this way:

array of elements [composer, work, minutes]
works = [["Leonard Bernstein","Overture to Candide",11],
 ["Aaron Copland","Symphony No. 3",45],
 ["Jean Sibelius","Finlandia",20]]
We want to keep this for later...
File.open("store","w") do |file|
 Marshal.dump(works,file)
end

Much later...
File.open("store") do |file|
 works = Marshal.load(file)
end

This technique does have the shortcoming that not all objects can be dumped. If an object
includes an object of a fairly low-level class, it cannot be marshaled; these include IO,
Proc, and a few others. Singleton objects also cannot be serialized.

More Complex Marshaling
Sometimes we want to customize our marshaling to some extent. Creating _load and
_dump methods will enable you to do this. These hooks are called when marshaling is done
so that you are handling your own conversion to and from a string.

In this example, a person has been earning five percent interest on his beginning balance
since he was born. We don't store the age and the current balance since they are a function
of time:

class Person

 def initialize(name,birthdate,beginning)
 @name = name
 @birthdate = birthdate
 @beginning = beginning

Chapter 4. External Data Manipulation Page 30 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 @age = (Time.now - @birthdate)/(365*86400)
 @balance = @beginning*(1.05**age)
 end

 def _dump(depth)
 # (We ignore depth here)
 @name + ":" + @birthdate + ":" + @beginning
 end

 def _load(str)
 a, b, c = str.split(":")
 Person.new(a,b,c)
 end
 # Other methods...

end

When an object of this type is saved, the age and current balance will not be stored; when
the object is "reconstituted," they will be computed.

Performing Limited "Deep Copying" Using Marshal
Ruby has no "deep copy" operation. The methods dup and clone may not always work as
you would initially expect. An object may contain nested object references that turn a copy
operation into a game of Pick Up Sticks.

We offer here a way to handle a restricted deep copy (it is restricted because it is still based
on Marshal and has the same inherent limitations):

def deep_copy(obj)
 Marshal.load(Marshal.dump(obj))
end

a = deep_copy(b)

Better Object Persistence with PStore
The PStore library provides file-based persistent storage of Ruby objects. A PStore
object can hold a number of Ruby object hierarchies. Each hierarchy has a root identified
by a key. Hierarchies are read from a disk file at the start of a transaction and written back
at the end. Here's an example:

require "pstore"

save
db = PStore.new("employee.dat")
db.transaction do
 db["params"] = { "name" => "Fred", "age" => 32,
 "salary" => 48000 }
end

Chapter 4. External Data Manipulation Page 31 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

retrieve
require "pstore"
db = PStore.new("employee.dat")
emp = nil
db.transaction { emp = db["params"] }

Typically, within a transaction block we use the PStore object passed in. We can also use
the receiver directly, however.

This technique is transaction oriented; at the start of the block, data is retrieved from the
disk file to be manipulated. Afterward, it is transparently written back out to disk.

In the middle of a transaction, we can interrupt with either commit or abort; the former
will keep the changes we have made, whereas the latter will throw them away. Refer to the
longer example in Listing 4.2.

Listing 4.2. Using PStore

require "pstore"

store = PStore.new("objects")
store.transaction do |s|

 a = s["my_array"]
 h = s["my_hash"]

 # Imaginary code omitted, manipulating
 # a, h, etc.

 # Assume a variable named "condition" having
 # the value 1, 2, or 3...

 case condition
 when 1
 puts "Oops... aborting."
 s.abort # Changes will be lost.
 when 2
 puts "Committing and jumping out."
 s.commit # Changes will be saved.
 when 3
 # Do nothing...
 end

 puts "We finished the transaction to the end."
 # Changes will be saved.

end

Within a transaction, you can also use the method roots to return an array of roots (or
root? to test membership). Also, the delete method is available to remove a root. Here'
an example:

Chapter 4. External Data Manipulation Page 32 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

store.transaction do |s|
 list = s.roots # ["my_array","my_hash"]
 if s.root?("my_tree")
 puts "Found my_tree."
 else
 puts "Didn't find # my_tree."
 end
 s.delete("my_hash")
 list2 = s.roots # ["my_array"]
end

Using the dbm Library
The dbm library is a simple platform-independent, string-based hash, file-storage
mechanism. It stores a key and some associated data, both of which must be strings. Ruby's
dbm interface is built in to the standard installation.

To use this class, create a dbm object associated with a filename and work with the string-
based hash however you want. When you have finished, you should close the file. Here's
an example:

require 'dbm'

d = DBM.new("data")
d["123"] = "toodle-oo!"
puts d["123"] # "toodle-oo!"
d.close

puts d["123"] # RuntimeError: closed DBM file

e = DBM.open("data")
e["123"] # "toodle-oo!"
w=e.to_hash # { "123"=>"toodle-oo!"}
e.close

e["123"] # RuntimeError: closed DBM file
w["123"] # "toodle-oo!

Here, dbm is implemented as a single class that mixes in Enumerable. The two (aliased)
class methods, new and open, are singletons, which means you may only have one dbm
object per data file open at any given time:

q=DBM.new("data.dbm") #
f=DBM.open("data.dbm") # Errno::EWOULDBLOCK:
 # Try again - "data.dbm"

Chapter 4. External Data Manipulation Page 33 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are 34 instance methods, many of which are aliases or similar to the hash methods.
Basically, if you are used to manipulating a real hash in a certain way, there is a good chance
you can apply the same operation to a dbm object.

The method to_hash will make a copy of the hash file object in memory, and close will
permanently close the link to the hash file. Most of the rest of the methods are analogous
to hash methods, but there are no rehash, sort, default, and default= methods. The
to_s method just returns a string representation of the object ID.

Connecting to External Databases
Ruby can interface to various databases, thanks to the development work of many different
people. These range from monolithic systems such as Oracle down to the more petite
MySQL. We have included the CSV (comma-separated values) format here for some
measure of completeness.

The level of functionality provided by these packages will continually be changing. Be sure
to refer to an online reference for the latest information. The Ruby Application Archive
(RAA) is always a good starting point.

Interfacing to MySQL
Ruby's MySQL interface is the most stable and fully functional of its database interfaces.
It is an extension and must be installed after both Ruby and MySQL are installed and
running. If you upgrade Ruby, you will need to reinstall it. Installation itself is simple,
using Ruby's make process.

There are three steps to using this module once you have it installed. First, load the module
in your script; then connect to the database. Finally, work with your tables. Connecting
requires the usual parameters for host, username, password, database, and so on, as shown
here:

require 'mysql'

m = Mysql.new("localhost","ruby","secret","maillist")
r = m.query("SELECT * FROM people ORDER BY name")
r.each_hash do |f|
 print "#{ f['name']} - #{ f['email']} "
end

Partial output is shown here:

John Doe - jdoe@rubynewbie.com
Fred Smith - smithf@rubyexpert.com

Chapter 4. External Data Manipulation Page 34 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Don Jackson - don@perl2.com
Jenny Williams - jwill27@miss-code.com

The class methods Mysql.new and MysqlRes.each_hash are very useful, along with
the instance method query.

The module is composed of four classes: Mysql, MysqlRes, MysqlField, and
MysqlError, as described in the README file. We summarize some useful methods here,
but you can always find more information in the actual documentation.

The class method Mysql.new takes several string parameters, all defaulting to nil, and
it returns a connection object. The parameters are host, user, passwd, db, port,
sock, and flag. Aliases for new are real_connect and connect.

The methods create_db, select_db, and drop_db all take a database name as a
parameter; they are used as shown here (note that the method close will close the
connection to the server):

m=Mysql.new("localhost","ruby","secret")
m.create_db("rtest") # Create a new database
m.select_db("rtest2") # Select a different database
m.drop_db("rtest") # Delete a database
m.close # Close the connection

The method list_dbs will return a list of available database names in an array:

dbs = m2.list_dbs # ["people","places","things"]

The query takes a string parameter and returns a MysqlRes object by default. Depending
on how query_with_result is set, it may return a Mysql object.

In the event of an error, the error number can be retrieved by errno; error, on the other
hand, will return the actual error message. Here's an example:

begin
 r=m.query("create table rtable
 (
 id int not null auto_increment,
 name varchar(35) not null,
 desc varchar(128) not null,
 unique id(id)
)")

exception happens...

rescue

Chapter 4. External Data Manipulation Page 35 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts m.error
 # Prints: You have an error in your SQL syntax
 # near 'desc varchar(128) not null ,
 # unique id(id)
 #)' at line 5"
 puts m.errno
 # Prints 1064
 # ('desc' is reserved for descending order)
end

A few useful instance methods of MysqlRes are summarized in the following list:

•

fetch_fields— Returns an array of MysqlField objects from the next row.
•

fetch_row— Returns an array of field values from the next row.
•

fetch_hash(with_table=false)— Returns a hash containing the next row's
field names and values.

•

num_rows— Returns the number of rows in the result set.
•

each— An iterator that sequentially returns an array of field values.
•

each_hash(with_table=false)— An iterator that sequentially returns a hash of
{fieldname => fieldvalue}. (Use x['field name'] to get the field value.)

Here are some instance methods of MysqlField:

•

name— Returns the name of the designated field
•

table— Returns the name of table to which the designated field belongs
•

length— Returns the defined length of the field
•

max_length— Returns the length of the longest field from the result set
•

Chapter 4. External Data Manipulation Page 36 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

hash— Returns a hash with a name and values for name, table, def, type, length,
max_length, flags, and decimals

The material here is always superseded by online documentation. For more information,
see the MySQL Web site (www.mysql.com) and the Ruby Application Archive.

Interfacing to PostgreSQL
An extension is available from the RAA that provides access to PostgreSQL (it works with
PostgreSQL 6.5/7.0).

Assuming you already have PostgreSQL installed and set up (and you have a table named
testdb), you merely need to follow essentially the same steps as used with other database
interfaces in Ruby: Load the module, connect to the database, and then do your work with
the tables. You'll probably want a way of executing queries, getting the results of a "select"
operation back, and working with transactions. Here's an example:

require 'postgres'
conn = PGconn.connect("",5432, "", "", "testdb")
conn.exec("create table rtest (number integer default 0);")
conn.exec("insert into rtest values (99)")
res = conn.query("select * from rtest")
res id [["99"]]

The PGconn class contains the connect method, which takes the typical database
connection parameters, such as host, port, database, username, and login, but it also takes
options and tty parameters in positions three and four. We have connected in our example
to the Unix socket via a privileged user, so we don't need a username and password. Also,
the host, options, and tty parameters are left empty. The port must be an integer, whereas
the others are strings. An alias for this is the new method.

The next thing of interest is working with our tables; this requires some means to perform
queries. The instance methods PGconn#exec and PGconn#query are just what we need.

The exec method sends its string parameter as a SQL query request to PostgreSQL, and
it returns a PGresult instance on success. On failure, it raises a PGError exception.

The query method also sends its string parameter as a SQL query request to PostgreSQL.
However, it returns an array on success. The returned array is actually an array of tuples.
On failure, it returns nil, and error details can be obtained by the error method call.

A special method, called insert_table, is available for inserting values into a specific
table. Despite the name, insert_table actually means "insert into table." This method
returns a PGconn object. Here's an example:

Chapter 4. External Data Manipulation Page 37 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.mysql.com

conn.insert_table("rtest",[[34]])
res = conn.query("select * from rtest")
res is [["99"], ["34"]]

This inserts one row of values into the table rtest. For this simple example, there is only
one column to begin with. Notice that the PGresult object res shows updated results
with two tuples. We will discuss PGresult methods shortly.

Other potentially useful methods from the PGconn class include the following:

•

db— Returns the connected database name.
•

host— Returns the connected server name.
•

user— Returns the authenticated username.
•

error— Returns the error message about the connection.
•

finish— Close the backend connection.
•

loimport(file)— Imports a file to a large object; returns the PGlarge instance
on success. On failure, this method raises the PGError exception.

•

loexport(oid, file)— Saves a large object of oid to a file.
•

locreate([mode])— Returns the PGlarge instance on success. On failure, it
raises the PGError exception.

•

loopen(oid, [mode])— Opens a large object of oid; returns the PGlarge
instance on success. The mode argument specifies the mode for the opened large
object, which is either INV_READ or INV_WRITE (if the mode is omitted, the default
is INV_READ).

•

Chapter 4. External Data Manipulation Page 38 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

lounlink(oid)— Unlinks (deletes) the Postgres large object of oid.

Notice that the last five methods of PGconn involve objects of the PGlarge class. The
PGlarge class has specific methods for accessing and changing its own objects. (The
objects are created as a result of the PGconn instance methods loimport, locreate,
and loopen from the preceding list.)

Here is a list of PGlarge methods:

•

open([mode])— Opens a large object. The mode argument specifies its mode (see
PGconn#loopen).

•

close— Closes a large object (also closed when it is garbage collected).
•

read([length])— Attempts to read "length" bytes from a large object. If no length
is given, all data is read.

•

write(str)— Writes the string to the large object and returns the number of bytes
written.

•

tell— Returns the current position of the pointer.
•

seek(offset, whence)— Moves the pointer to offset. The possible values for
whence are SEEK_SET, SEEK_CUR, and SEEK_END (or 0, 1, and 2).

•

unlink— Deletes a large object.
•

oid— Returns the large object oid.
•

size— Returns the size of a large object.
•

export(file)— Saves a large object of oid to a file.

Chapter 4. External Data Manipulation Page 39 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Of more interest to us are the instance methods of the PGresult class, which are created
as the result of queries. Use PGresult#clear when finished with these objects to
improve memory performance. Here's a list of these methods:

•

result— Returns the query result tuple in the array.
•

each— An iterator.
• []— An accessor.
•

fields— Returns the array of the fields of the query result.
•

num_tuples— Returns the number of tuples of the query result.
•

fieldnum(name)— Returns the index of the named field.
•

type(index)— Returns an integer corresponding the type of the field.
•

size(index)— Returns the size of the field in bytes. A value of -1 indicates the field
is variable length.

•

getvalue(tup_num, field_num)— Returns the field value for the given
parameters. tup_num is the same as row number.

•

getlength(tup_num, field_num)— Returns the length of the field in bytes.
•

cmdstatus— Returns the status string of the last query command.
•

clear— Clears the PGresult object.

Chapter 4. External Data Manipulation Page 40 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Working with CSV Data
The CSV format is something you may have had to deal with if you have ever worked with
spreadsheets or databases. Fortunately, Hiroshi Nakamura has created a module for Ruby
and has made it available in the Ruby Application Archive.

This is not a true database system. However, we felt that a discussion of it fits here better
than anywhere else.

The CSV module (csv.rb) will parse or generate data in CSV format. The module author
defines this format as follows:

Record separator: CR + LF
Field separator: comma (,)
Quote data with double quotes if it contains CR, LF, or comma
Quote double quote by prefixing it with another double quote (" -> "")
Empty field with quotes means null string (data,"",data)
Empty field without quotes means NULL (data,,data)

There are two ways to use this module: Parse/create single lines, and read/write through
a file parsing/creating records sequentially. In the latter case, you will be dealing with
arrays of column data objects instead of arrays of strings. The latter method requires the
use of the record separator and the isNull flag of the column data object.

First, let's look at the handling of single, nonterminated lines. The method CSV::parse
will parse the specified CSV-formatted string as a single line and return an array of strings;
the method CSV::create will take the specified array of strings and create a single CSV-
formatted line.

Suppose we have a data file data.csv, as shown here:

"name","age","salary"
"mark",29,34500
"joe",42,32000
"fred",22,22000
"jake",25,24000
"don",32,52000

We can process this file as follows:

require 'csv'
IO.foreach("data.csv") { |f| p CSV::parse(f.chomp) }
Output:
["name", "age", "salary"]
["mark", "29", "34500"]
["joe", "42", "32000"]
["fred", "22", "22000"]

Chapter 4. External Data Manipulation Page 41 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

["jake", "25", "24000"]
["don", "32", "52000"]

We could also process each array and write it back to a file:

File.open("newdata.csv","w") do |file|
 IO.foreach("data.csv") do |line|
 a=CSV::parse line.chomp
 if a[1].to_i > 20
 s=a[2].to_i
 a[2]=s*1.1 # 10% raise
 end
 file.puts CSV::create(a)
 end
end

Now let's take a look at the multiline parsing commands. These commands handle data
differently and do expect to see the record terminator CR-LF. The parseLine method
populates an array with objects that contain the parsed field data and a flag for null data.
Likewise, the createLine method uses such objects to generate CSV-formatted output.

To demonstrate, we can use the data.csv file again:

require 'csv'

file_str = File.open("data.csv").read
rec = []; pos=nil; i=-1
c,pos = CSV::parseLine(file_str,
 pos.to_i,
 rec[(i+=1)]=[]) until pos == 0

Note that if your data records are not separated by CR-LF, there will be a discrepancy. To
ensure that your data records are separated by CR-LF, you might perform #gsub!(/
\n/,"\r\n") on the file string beforehand.

You will still have to go through another step before you can use the information
encapsulated inside the column data objects. However, this would be the only means
available if you wish to detect null values. Otherwise, it would be better to use the simpler
CSV::parse method because large files would have to be parsed line by line anyway.

Here is an example going the other way:

cd=[]
cd[0]=CSV::ColData.new
cd[0].data="joe"
cd[0].isNull=false
cd[1]=CSV::ColData.new

Chapter 4. External Data Manipulation Page 42 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

cd[1].data=27
cd[1].isNull=false
cd[2]=CSV::ColData.new
cd[2].data=32000
cd[2].isNull=false

csv_str=""
c = CSV::createLine(cd, 3, csv_str)

This will produce a CSV-formatted line including the CR-LF terminator. It seems like extra
work, if you ask us.

Any material here is always superseded by online documentation. For more information,
see the Ruby Application Archive.

Interfacing to Other Databases
Space does not permit us to delve into all the database interfaces available. Furthermore,
at the time of this writing, these were of varying levels of maturity.

We'll just mention that there are several other libraries and tools in various stages of
development. These will allow interfacing to Oracle, Interbase, mSql, LDAP, and others.
There is also a usable ODBC driver. As always, refer to the Ruby Application Archive for
the latest software and documentation.

Summary
That ends our look at files, I/O, and external data manipulation in Ruby. As always, more
information can be found in any Ruby reference, and the latest versions of utilities and
libraries can be found in the Ruby Application Archive.

The next chapter is a little more esoteric. In it, we discuss the dynamic features of Ruby
and a number of techniques involving Ruby-specific object-oriented programming (OOP).

Chapter 4. External Data Manipulation Page 43 Return to Table of Contents

Chapter 4. External Data Manipulation
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	External Data Manipulation
	Working with Files and Directories
	Performing Higher-Level Data Access
	Connecting to External Databases
	Summary

