
Table of Contents

Manipulating Structured Data... 1
Working with Arrays... 1
Working with Hashes.. 26
Working with Stacks and Queues... 37
Working with Trees... 49
Working with Graphs.. 57
Summary... 64

Chapter 3. Manipulating Structured Data

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 3. Manipulating Structured Data
IN THIS CHAPTER

• Working with Arrays
• Working with Hashes
• Working with Stacks and Queues
• Working with Trees
• Working with Graphs
• Summary

All parts should go together without forcing. You must remember that the parts
you are reassembling were disassembled by you. Therefore, if you can't get them
together again, there must be a reason. By all means, do not use a hammer.

—IBM maintenance manual (1925)

Simple variables are not adequate for real-life programming. Every modern language
supports more complex forms of structured data and also provides mechanisms for
creating new abstract data types.

Historically, arrays are the earliest known and most widespread of the complex data
structures. Long ago, in FORTRAN, they were called subscripted variables. Today they
have changed somewhat, but the basic idea is the same in all languages.

More recently, the hash has become an extremely popular programming tool. Like an
array, a hash is an indexed collection of data items; unlike an array, it may be indexed by
any arbitrary object. (In Ruby, as in most languages, array elements are accessed by a
numerical index.)

Finally, in this chapter we will look at more advanced data structures. Some of these are
just special "views" of an array or hash; for example, stacks and queues can be implemented
easily using arrays. Other structures such as trees and graphs may be implemented in
different ways according to the situation and the programmer's preference.

But let's not get ahead of ourselves. We will begin with arrays.

Working with Arrays
Arrays in Ruby are indexed by integers and are zero based, just like C arrays. The
resemblance ends there, however.

Chapter 3. Manipulating Structured Data Page 1 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

A Ruby array is dynamic. It is possible (but not necessary) to specify its size when you
create it. After creation, it can grow as needed without any intervention by the programmer.

A Ruby array is heterogeneous in the sense that it can store multiple data types rather than
just one type. Actually, it stores object references rather than the objects themselves, except
in the case of immediate values such as Fixnum values.

An array keeps up with its own length so that we don't have to waste our time with
calculating it or keeping an external variable in sync with the array. Also, iterators are
defined so that, in practice, we rarely need to know the array length anyway.

Finally, the Array class in Ruby provides arrays with many useful functions for accessing,
searching, concatenating, and otherwise manipulating arrays. We'll spend the remainder
of this section exploring the built-in functionality and expanding on it.

Creating and Initializing an Array
The special class method [] is used to create an array; the data items listed within the
brackets are used to populate the array. The three ways of calling this method are shown
here (note that arrays a, b, and c will all be populated identically):

a = Array.[](1,2,3,4)
b = Array[1,2,3,4]
c = [1,2,3,4]

Also, the class method new can take zero, one, or two parameters. The first parameter is
the initial size of the array (number of elements). The second parameter is the initial value
of each of the elements. Here's an example:

d = Array.new # Create an empty array
e = Array.new(3) # [nil, nil, nil]
f = Array.new(3, "blah") # ["blah", "blah", "blah"]

Accessing and Assigning Array Elements
Element reference and assignment are done using the class methods [] and []=,
respectively. Each can take an integer parameter, a pair of integers (start and length), or
a range. A negative index counts backward from the end of the array, starting at -1.

Also, the special instance method at works like a simple case of element reference. Because
it can take only a single integer parameter, it is slightly faster. Here's an example:

a = [1, 2, 3, 4, 5, 6]
b = a[0] # 1

Chapter 3. Manipulating Structured Data Page 2 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

c = a.at(0) # 1
d = a[-2] # 5
e = a.at(-2) # 5
f = a[9] # nil
g = a.at(9) # nil
h = a[3,3] # [4, 5, 6]
i = a[2..4] # [3, 4, 5]
j = a[2...4] # [3, 4]

a[1] = 8 # [1, 8, 3, 4, 5, 6]
a[1,3] = [10, 20, 30] # [1, 10, 20, 30, 5, 6]
a[0..3] = [2, 4, 6, 8] # [2, 4, 6, 8, 5, 6]
a[-1] = 12 # [2, 4, 6, 8, 5, 12]

Note in the following example how a reference beyond the end of the array causes the array
to grow (note also that a subarray can be replaced with more elements than were originally
there, also causing the array to grow):

k = [2, 4, 6, 8, 10]
k[1..2] = [3, 3, 3] # [2, 3, 3, 3, 8, 10]
k[7] = 99 # [2, 3, 3, 3, 8, 10, nil, 99]

Finally, we should mention that an array assigned to a single element will actually insert
that element as a nested array (unlike an assignment to a range), as shown here:

m = [1, 3, 5, 7, 9]
m[2] = [20, 30] # [1, 3, [20, 30], 7, 9]

On the other hand...
m = [1, 3, 5, 7, 9]
m[2..2] = [20, 30] # [1, 3, 20, 30, 7, 9]

The method slice is simply an alias for the [] method:

x = [0, 2, 4, 6, 8, 10, 12]
a = x.slice(2) # 4
b = x.slice(2,4) # [4, 6, 8, 10]
c = x.slice(2..4) # [4, 6, 8]

The special methods first and last will return the first and last elements of an array,
respectively. They will return nil if the array is empty. Here's an example:

x = %w[alpha beta gamma delta epsilon]
a = x.first # "alpha"
b = x.last # "epsilon"

Chapter 3. Manipulating Structured Data Page 3 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We have seen that some of the element-referencing techniques actually can return an
entire subarray. There are other ways to access multiple elements, which we'll look at now.

The method indices will take a list of indices (or indexes, if you prefer) and return an
array consisting of only those elements. It can be used where a range cannot (when the
elements are not all contiguous). The alias is called indexes. Here's an example:

x = [10, 20, 30, 40, 50, 60]
y = x.indices(0, 1, 4) # [10, 20, 50]
z = x.indexes(2, 10, 5, 4) # [30, nil, 60, 50]

Finding an Array's Size
The method length (or its alias size) will give the number of elements in an array. Note
that this is one less than the index of the last item:

x = ["a", "b", "c", "d"]
a = x.length # 4
b = x.size # 4

The method nitems is the same except that it does not count nil elements:

y = [1, 2, nil, nil, 3, 4]
c = y.size # 6
d = y.length # 6
e = y.nitems # 4

Comparing Arrays
Comparing arrays is slightly tricky. If you do it at all, you should do it with caution.

The instance method <=> is used to compare arrays. It works the same as the other contexts
in which it is used, returning either -1 (meaning "less than"), 0 (meaning "equal"), or 1
(meaning "greater than"). The methods == and != depend on this method.

Arrays are compared in an "elementwise" manner; the first two elements that are not equal
will determine the inequality for the whole comparison. (Therefore, preference is given to
the leftmost elements, just as if we were comparing two long integers "by eye," looking at
one digit at a time.) Here's an example:

a = [1, 2, 3, 9, 9]
b = [1, 2, 4, 1, 1]
c = a <=> b # -1 (meaning a < b)

Chapter 3. Manipulating Structured Data Page 4 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

If all elements are equal, the arrays are equal. If one array is longer than another, and they
are equal up to the length of the shorter array, the longer array is considered to be greater:

d = [1, 2, 3]
e = [1, 2, 3, 4]
f = [1, 2, 3]
if d == f
 puts "d equals f" # Prints "d equals f"
end

Because the Array class does not mix in the Comparable module, the usual operators,
<, >, <=, and >=, are not defined for arrays. However, we can easily define them ourselves
if we choose:

class Array

 def <=> other)
 (self <=> other)== -1
 end

 def <=(other)
 (self < other) or (self == other)
 end

 def >(other)
 (self <=> other) == 1
 end

 def >=(other)
 (self > other) or (self == other)
 end

 end

Having defined them, we can use them as you would expect:

if a < b
 print "a < b" # Prints "a < b"
else
 print "a >= b"
end
if d < e
 puts "d < e" # Prints "d < e"
end

It is conceivable that comparing arrays will result in the comparison of two elements for
which <=> is undefined or meaningless. This will result in a runtime error (a
TypeError) because the comparison 3 <=> "x" is problematic:

g = [1, 2, 3]

Chapter 3. Manipulating Structured Data Page 5 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

h = [1, 2, "x"]
if g < h # Error!
 puts "g < h" # No output
end

However, in case you are still not confused, equal and not-equal will still work in this case.
This is because two objects of different types are naturally considered to be unequal, even
though we can't say which is greater or less than the other:

if g != h # No problem here.
 puts "g != h" # Prints "g != h"
end

Finally, it is conceivable that two arrays containing mismatched data types will still
compare with the < and > operators. In the case shown here, we get a result before we
stumble across the incomparable elements:

i = [1, 2, 3]
j = [1, 2, 3, "x"]
if i < j # No problem here.
 puts "i < j" # Prints "i < j"
end

Sorting an Array
The easiest way to sort an array is to use the built-in sort method, as shown here:

words = %w(the quick brown fox)
list = words.sort # ["brown", "fox", "quick", "the"]
Or sort in place:
words.sort! # ["brown", "fox", "quick", "the"]

This method assumes that all the elements in the array are comparable with each other. A
mixed array, such as [1, 2, "three", 4], will normally give a type error.

In a case like this one, you can use the block form of the same method call. The example
here assumes that there is at least a to_s method for each element (to convert it to a
string):

a = [1, 2, "three", "four", 5, 6]
b = a.sort { |x,y| x.to_s <=> y.to_s}
b is now [1, 2, 5, 6, "four", "three"]

Chapter 3. Manipulating Structured Data Page 6 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Of course, such an ordering (in this case, depending on ASCII) may not be meaningful. If
you have such a heterogeneous array, you may want to ask yourself why you are sorting it
in the first place or why you are storing different types of objects.

This technique works because the block returns an integer (-1, 0, or 1) on each invocation.
When a -1 is returned, meaning that x is less than y, the two elements are swapped.
Therefore, to sort in descending order, we could simply swap the order of the comparison,
like this:

x = [1, 4, 3, 5, 2]
y = x.sort { |a,b| b <=> a} # [5, 4, 3, 2, 1]

The block style can also be used for more complex sorting. Let's suppose we want to sort
a list of book and movie titles in a certain way: We ignore case, we ignore spaces entirely,
and we want to ignore any certain kinds of embedded punctuation. Listing 3.1 presents a
simple example. (Both English teachers and computer programmers will be equally
confused by this kind of alphabetizing.)

Listing 3.1. Specialized Sorting

titles = ["Starship Troopers",
 "A Star is Born",
 "Star Wars",
 "Star 69",
 "The Starr Report"]
sorted = titles.sort do |x,y|
 # Delete leading articles
 a = x.sub(/^(a |an |the)/i, "")
 b = y.sub(/^(a |an |the)/i, "")
 # Delete spaces and punctuation
 a.delete!(" .,-?!")
 b.delete!(" .,-?!")
 # Convert to uppercase
 a.upcase!
 b.upcase!
 # Compare a and b
 a <=> b
 end

 # sorted is now:
 # ["Star 69", "A Star is Born", "The Starr Report"
 # "Starship Troopers", "Star Wars"]

This example is not overly useful, and it could certainly be written more compactly. The
point is that any arbitrarily complex set of operations can be performed on two operands
in order to compare them in a specialized way. (Note, however, that we left the original
operands untouched by manipulating copies of them.) This general technique can be useful
in many situations—for example, sorting on multiple keys or sorting on keys that are
computed at runtime.

Chapter 3. Manipulating Structured Data Page 7 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Selecting from an Array by Criteria
Sometimes we want to locate an item or items in an array much as though we were querying
a table in a database. There are several ways to do this; the ones we outline here are all
mixed in from the Enumerable module.

The detect method will find at most a single element. It takes a block (into which the
elements are passed sequentially) and returns the first element for which the block
evaluates to a value that is not false. Here's an example:

x = [5, 8, 12, 9, 4, 30]
Find the first multiple of 6
x.detect { |e| e % 6 == 0 } # 12
Find the first multiple of 7
x.detect { |e| e % 7 == 0 } # nil

Of course, the objects in the array can be of arbitrary complexity, as can the test in the
block.

The find method is a synonym for detect; the method find_all is a variant that will
return multiple elements as opposed to a single element. Finally, the method select is a
synonym for find_all. Here's an example:

Continuing the above example...
x.find { |e| e % 2 == 0} # 8
x.find_all { |e| e % 2 == 0} # [8, 12, 4, 30]
x.select { |e| e % 2 == 0} # [8, 12, 4, 30]

The grep method will invoke the relationship operator to match each element against the
pattern specified. In its simplest form, it will simply return an array containing the matched
elements. Because the relationship operator (===) is used, the so-called pattern need not
be a regular expression. (The name grep, of course, comes from the Unix tool of the same
name, historically meaning something like general regular expression pattern-
matcher.) Here's an example:

a = %w[January February March April May]
a.grep(/ary/) # ["January, "February"]
b = [1, 20, 5, 7, 13, 33, 15, 28]
b.grep(12..24) # [20, 13, 15]

There is a block form that will effectively transform each result before storing it in the
array; the resulting array contains the return values of the block rather than the values
passed into the block:

Chapter 3. Manipulating Structured Data Page 8 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Continuing above example...
Let's store the string lengths
a.grep(/ary/) { |m| m.length} # [7, 8]
Let's square each value
b.grep(12..24) { |n| n*n} # { 400, 169, 225}

The reject method is complementary to select. It excludes each element for which the
block evaluates to true. The in-place mutator reject! is also defined:

c = [5, 8, 12, 9, 4, 30]
d = c.reject { |e| e % 2 == 0} # [5, 9]
c.reject! { |e| e % 3 == 0}
c is now [5, 8, 4]

The min and max methods may be used to find the minimum and maximum values in an
array. There are two forms of each of these. The first form uses the "default" comparison,
whatever that may be in the current situation (as defined by the <=> method). The second
form uses a block to do a customized comparison. Here's an example:

a = %w[Elrond Galadriel Aragorn Saruman Legolas]
b = a.min # "Aragorn"
c = a.max # "Saruman"
d = a.min { |x,y| x.reverse <=> y.reverse} # "Elrond"
e = a.max { |x,y| x.reverse <=> y.reverse} # "Legolas"

Suppose we want to find the index of the minimum or maximum element (assuming it is
unique). We could use the index method for tasks such as this, as shown here:

Continuing above example...
i = a.index a.min # 2
j = a.index a.max # 3

This same technique can be used in other similar situations. However, if the element is not
unique, the first one in the array will naturally be the one found.

Using Specialized Indexing Functions
The internals of a language handle the mapping of array indexes to array elements through
what is called an indexing function. Because the methods that access array elements can
be overridden, we can in effect index an array in any way we wish.

For example, in Listing 3.2, we implement an array that is "one-based" rather than "zero-
based."

Chapter 3. Manipulating Structured Data Page 9 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.2. Implementing a One-Based Array

class Array2 < Array

 def [](index)
 if index>0
 super(index-1)
 else
 raise IndexError
 end
 end

 def []=(index,obj)
 if index>0
 super(index-1,obj)
 else
 raise IndexError
 end
 end

end

x = Array2.new

x[1]=5
x[2]=3
x[0]=1 # Error
x[-1]=1 # Error

Note that the negative indexing (from the end of an array) is disallowed here. Also, be
aware that if this were a real-life solution, there would be other changes to make, such as
the slice method and others. However, this gives the general idea.

A similar approach can be used to implement multidimensional arrays (as you'll see later
in the section "Using Multidimensional Arrays").

It is also possible to implement something like a triangular matrix (see Listing 3.3). This
is like a special case of a two-dimensional array in which element x,y is always the same
as element y,x (so that only one needs to be stored). This is sometimes useful, for example,
in storing an undirected graph (as you'll see toward the end of this chapter).

Chapter 3. Manipulating Structured Data Page 10 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.3. Triangular Matrix

class TriMatrix

 def initialize
 @store = []
 end

 def [](x,y)
 if x > y
 index = (x*x+x)/2 + y
 @store[index]
 else
 raise IndexError
 end
 end

 def []=(x,y,v)
 if x > y
 index = (x*x+x)/2 + y
 @store[index] = v
 else
 raise IndexError
 end
 end

end

t = TriMatrix.new

t[3,2] = 1
puts t[3,2] # 1

puts t[2,3] # IndexError

Here, we have chosen to implement the matrix so that the row number must be greater
than or equal to the column number; we also could have coded it so that the same pair of
indexes simply mapped to the same element. These design decisions will depend on your
use of the matrix.

It would have been possible to inherit from Array, but we thought this solution was easier
to understand. The indexing formula is a little complex, but 10 minutes with pencil and
paper should convince anyone it is correct. Some enhancements could probably be made
to this class to make it truly useful, but we will leave that to you, the reader.

Also, it is possible to implement a triangular matrix as an array containing arrays that
increase in size as the row number gets higher. This is somewhat similar to what we have
done in the section "Using Multidimensional Arrays." The only tricky part would be to
make sure that a row does not accidentally grow past its proper size.

Implementing a Sparse Matrix
Sometimes we need an array that has very few of its elements defined; the rest of its
elements can be undefined (or more often zero). This so-called "sparse matrix" has

Chapter 3. Manipulating Structured Data Page 11 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

historically been a waster of memory that has led people to seek indirect ways of
implementing it.

Of course, in most cases, a Ruby array will suffice, because modern architectures typically
have large amounts of memory. An unassigned element will have the value nil, which
takes only a few bytes to store.

On the other hand, assigning an array element beyond the previous bounds of the array
also creates all the nil elements in between. For example, if elements 0 through 9 are
defined, and we suddenly assign to element 1000, we have in effect caused elements 10
through 999 to spring into being as nil values. If this is unacceptable, you might consider
an alternative.

The alternative we have to suggest, however, does not involve arrays at all. If you really
need a sparse matrix, a hash might be the best solution. See the section "Using a Hash As
a Sparse Matrix" for more information.

Using Arrays As Mathematical Sets
Most languages do not directly implement sets (Pascal being one exception). However,
Ruby arrays have some features that make them usable as sets. We'll present these here
and add a few of our own.

First of all, an array can have duplicate entries. If you specifically want to treat the array
as a set, you can remove these entries (using uniq or uniq!).

The two most basic operations performed on sets are union and intersection. These are
accomplished by the | (or) and & (and) operators, respectively. In accordance with the
idea that a set does not contain duplicates, any duplicates will be removed. (This may be
contrary to your expectations if you are used to array union and intersection operations
in some other language.) Here's an example:

a = [1, 2, 3, 4, 5]
b = [3, 4, 5, 6, 7]
c = a | b # [1, 2, 3, 4, 5, 6, 7]
d = a & b # [3, 4, 5]
Duplicates are removed...
e = [1, 2, 2, 3, 4]
f = [2, 2, 3, 4, 5]
g = e & f # [2, 3, 4]

The concatenation operator + can be used for set union, but it does not remove duplicates.

Chapter 3. Manipulating Structured Data Page 12 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The - method is a "set difference" operator that will produce a set with all the members of
the first set except the ones appearing in the second set. (See the section "Finding Elements
in One Array but Not Another" for more information.) Here's an example:

a = [1, 2, 3, 4, 5]
b = [4, 5, 6, 7]
c = a - b # [1, 2, 3]
Note that the extra items 6 and 7 are irrelevant.

To "accumulate" sets, you can use the |= operator; as expected, a |= b simply means a
= a | b. Likewise &= can progressively "narrow down" the elements of a set.

There is no exclusive-or defined for arrays, but we can make our own very easily. In set
terms, this corresponds to elements that are in the union of two sets but not in the
intersection. Here's an example:

class Array

 def ^(other)
 (self | other) - (self & other)
 end

end

x = [1, 2, 3, 4, 5]
y = [3, 4, 5, 6, 7]
z = x ^ y # [1, 2, 6, 7]

To check for the presence of an element in a set, we can use the method include? or
member? (essentially an alias mixed in from Comparable), like so:

x = [1, 2, 3]
if x.include? 2
 puts "yes" # Prints "yes"
else
 puts "no"
end

Of course, this is a little backward from what we are used to in mathematics, where the
operator resembling a Greek epsilon denotes set membership. It is backward in the sense
that the set is on the left rather than on the right; we are not asking "Is this element in this
set?" but rather "Does this set contain this element?"

Many people will not be bothered by this at all. However, if you are used to Pascal or Python
(or you have ingrained mathematical inclinations), you may want to use a different way.
We present two options here:

Chapter 3. Manipulating Structured Data Page 13 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Object

 def in(other)
 other.include? self
 end

end

x = [1, 2, 3]
if 2.in x
 puts "yes" # Prints "yes"
else
 puts "no"
end

This is still a trifle ugly, but at least the ordering is more familiar. As for making it look
"more like an operator," Ruby's amazingly flexible parser allows you to write the expression
2.in x instead as 2 .in x or even 2. in x, should you wish to go that far.

For those who can't stand the presence of that period, it is conceivable that we could
overload an operator such as <= for that purpose. However, something like this should be
done with caution.

There has been talk of a Python-like (or Pascal-like) in operator for Ruby. However, it is
no more than talk at this time.

How do we tell whether a set is a subset or a superset of another? There are no built-in
methods, but we can do it as demonstrated in Listing 3.4.

Chapter 3. Manipulating Structured Data Page 14 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.4. Subset and Superset

class Array

 def subset?(other)
 self.each do |x|
 if !(other.include? x)
 return false
 end
 end
 true
 end

 def superset?(other)
 other.subset?(self)
 end

end

a = [1, 2, 3, 4]
b = [2, 3]
c = [2, 3, 4, 5]

flag1 = c.subset? a # false
flag2 = b.subset? a # true
flag3 = c.superset? b # true

Note that we've chosen the "natural" ordering—that is, x.subset? y means "Is x a subset
of y?" rather than vice versa.

To detect the null set (or empty set), we simply detect the empty array. The empty? method
will do this.

The concept of set negation (or complement) depends on the concept of a universal set.
Because in practical terms this will vary from one application or situation to another, the
best way is the simplest—define the universe and then do a set difference, as shown here:

universe = [1, 2, 3, 4, 5, 6]
a = [2, 3]
b = universe - a # complement of a = [1, 4, 5, 6]

Of course, if you really feel the need, you could define a unary operator (such as - or ~) to
do this.

You can iterate through a set just by iterating through the array. The only difference is that
the elements will come out in order, which you may not want. To see how to iterate
randomly, refer to the section "Iterating over an Array."

Finally, we may sometimes want to compute the powerset of a set. This is simply the set
of all possible subsets (including the null set and the original set itself). Those familiar with

Chapter 3. Manipulating Structured Data Page 15 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

discrete math, especially combinatorics, will see that there must be 2n of these subsets.
We can generate the powerset as demonstrated in Listing 3.5.

Listing 3.5. Powerset of a Set

class Array

 def powerset
 num = 2**size
 ps = Array.new(num, [])
 self.each_index do |i|
 a = 2**i
 b = 2**(i+1) - 1
 j = 0
 while j < num-1
 for j in j+a..j+b
 ps[j] += [self[i]]
 end
 j += 1
 end
 end
 ps
 end

end

x = [1, 2, 3]
y = x.powerset
y is now:
[[], [1], [2], [1,2], [3], [1,3], [2,3], [1,2,3]]

Randomizing an Array
Sometimes we want to scramble an array into a random order. The first example that might
come to mind is a card game, but there are other circumstances, such as presenting a list
of questions to a user in a random order, in which we might use this.

To accomplish this task, we can use rand in the Kernel module. Here's one way to do
this:

class Array

 def randomize
 arr=self.dup
 arr.collect { arr.slice!(rand arr.length) }
 end

 def randomize!
 arr=self.dup
 result = arr.collect { arr.slice!(rand arr.length) }
 self.replace result
 end

 end

Chapter 3. Manipulating Structured Data Page 16 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 x = [1, 2, 3, 4, 5]
 y = x.randomize # [3, 2, 4, 1 ,5]
 x.randomize! # x is now [3, 5, 4, 1, 2]

The key to understanding this solution is knowing that the slice! method will return the
value of an array element and, at the same time, delete that element from the array (so
that it cannot be used again).

There are other ways to perform this operation. If you find a better one, let us know.

If we wanted simply to pick an array element at random (without disallowing duplicates),
we could do that as follows.

class Array

 def pick_random
 self[rand(self.length)]
 end

end

Finally, remember that any time you are using rand, you can generate a predictable
sequence (for example, for testing) simply by seeding with a known seed using srand.

Using Multidimensional Arrays
If you want to use multidimensional arrays for numerical purposes, an excellent library in
the Ruby Application Archive called NArray (by Masahiro Tanaka) is available. If you
want to use matrixes, you can use the matrix.rb standard library, as mentioned in
Chapter 2, "Simple Data Tasks."

In Listing 3.6, we present a way of handling multidimensional arrays by overloading the
[] and []= methods to map elements onto a nested array. The class Array3 presented
here will handle three-dimensional arrays in a rudimentary fashion, but it is far from
complete.

Chapter 3. Manipulating Structured Data Page 17 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch02#ch02

Listing 3.6. Three-dimensional Array

class Array3

 def initialize
 @store = [[[]]]
 end

 def [](a,b,c)
 if @store[a]==nil ||
 @store[a][b]==nil ||
 @store[a][b][c]==nil
 return nil
 else
 return @store[a][b][c]
 end
 end

 def []=(a,b,c,x)
 @store[a] = [[]] if @store[a]==nil
 @store[a][b] = [] if @store[a][b]==nil
 @store[a][b][c] = x
 end

end

x = Array3.new
x[0,0,0] = 5
x[0,0,1] = 6
x[1,2,3] = 99

puts x[1,2,3]

Note that all we really gain here is the convenience of a "comma" notation [x,y,z] instead
of the more C-like [x][y][z]. If the C-style notation is acceptable to you, you can just
use nested arrays in Ruby. Another minor benefit is the prevention of the situation in which
nil is the receiver for the bracket method.

Finding Elements in One Array but Not Another
Finding elements in one array but not another is simpler in Ruby than in many languages.
It is a simple "set difference" problem:

text = %w[the magic words are squeamish ossifrage]
dictionary = %w[an are magic the them these words]
Find potential misspellings
unknown = text - dictionary # ["squeamish", "ossifrage"]

Transforming or Mapping Arrays
The collect method (part of Enumerable) is a useful little tool that proves to be a time
and labor saver in many circumstances. If you are a Smalltalk programmer, this may be
more intuitive than if you come from a C background.

Chapter 3. Manipulating Structured Data Page 18 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This method simply operates on each element of an array in some arbitrary way to produce
a new array. In other words, it "maps" an array onto another array (hence the synonym
map). Here's an example:

x = %w[alpha bravo charlie delta echo foxtrot]
Get the initial letters
a = x.collect { |w| w[0..0]} # %w[a b c d e f]
Get the string lengths
b = x.collect { |w| w.length} # [5, 5, 7, 5, 4, 7]
map is just an alias
c = x.map { |w| w.length} # [5, 5, 7, 5, 4, 7]

The in-place variant collect! (or map!) is also defined:

x.collect! { |w| w.upcase}
x is now %w[ALPHA BRAVO CHARLIE DELTA ECHO FOXTROT]
x.map! { |w| w.reverse}
x is now %w[AHPLA OVARB EILRAHC ATLED OHCE TORTXOF]

Removing nil Values from an Array
The compact method (or its in-place version compact!) will remove nil values from an
array, leaving the rest untouched:

a = [1, 2, nil, 3, nil, 4, 5]
b = a.compact # [1, 2, 3, 4, 5]
a.compact! # a is now [1, 2, 3, 4, 5]

Removing Specific Array Elements
It is easy to delete elements from a Ruby array, and there are many ways to do it. If you
want to delete one specific element by index, delete_at is a good way:

a = [10, 12, 14, 16, 18]
a.delete_at(3) # Returns 16
a is now [10, 12, 14, 18]
a.delete_at(9) # Returns nil (out of range)

If you want to delete all instances of a certain piece of data, delete will do the job. It will
return the value of the objects deleted or nil if the value was not found. Here's an example:

b = %w(spam spam bacon spam eggs ham spam)
b.delete("spam") # Returns "spam"
b is now ["bacon", "eggs", "ham"]
b.delete("caviar") # Returns nil

Chapter 3. Manipulating Structured Data Page 19 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The delete method will also accept a block. This may be a little counterintuitive, though.
All that happens is that the block is evaluated (potentially performing a wide range of
operations) if the object is not found and the value of the block is returned, as shown here:

c = ["alpha", "beta", "gamma", "delta"]
c.delete("delta") { "Nonexistent" }
Returns "delta" (block is never evaluated)
c.delete("omega") { "Nonexistent" }
Returns "Nonexistent"

The delete_if method will pass every element into the supplied block and delete the
elements for which the block evaluates to true. It behaves similarly to reject!, except
that the latter can return nil when the array remains unchanged. Here's an example:

email = ["job offers", "greetings", "spam", "news items"]
Delete four-letter words
email.delete_if { |x| x.length==4 }
email is now ["job offers", "greetings", "news items"]

The slice! method accesses the same elements as slice but deletes them from the array
as it returns their values:

x = [0, 2, 4, 6, 8, 10, 12, 14, 16]
a = x.slice!(2) # 4
x is now [0, 2, 6, 8, 10, 12, 14, 16]
b = x.slice!(2,3) # [6, 8, 10]
x is now [0, 2, 12, 14, 16]
c = x.slice!(2..3) # [12, 14]
x is now [0, 2, 16]

The shift and pop methods can be used for deleting array elements (for more about their
intended uses, see the discussion of stacks and queues elsewhere in this chapter):

x = [1, 2, 3, 4, 5]
x.pop # Delete the last element
x is now [1, 2, 3, 4]
x.shift # Delete the first element
x is now [2, 3, 4]

Finally, the clear method will delete all the elements in an array. It is equivalent to
assigning an empty array to the variable, but it's marginally more efficient. Here's an
example:

x = [1, 2, 3]
x.clear
x is now []

Chapter 3. Manipulating Structured Data Page 20 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Concatenating and Appending onto Arrays
Very frequently we want to take an array and append an element or another array. There
are many ways to do this with a Ruby array.

The "append" operator << will append an object onto an array; the return value is the array
itself so that these operations can be "chained":

x = [1, 5, 9]
x << 13 # x is now [1, 5, 9, 13]
x << 17 << 21 # x is now [1, 5, 9, 13, 17, 21]

Similar to the append are the unshift and push methods, which add to the beginning
and end of an array, respectively. See the section "Using an Array As a Stack or Queue" for
more information.

Arrays may be concatenated with the concat method or by using the + and += operators:

x = [1,2]
y = [3,4]
z = [5,6]
b = y + z # [3,4,5,6]
b += x # [3,4,5,6,1,2]
z.concat y # z is now [5,6,3,4]

Using an Array As a Stack or Queue
The basic stack operations are push and pop, which add and remove items, respectively,
at the end of an array. The basic queue operations are shift (which removes an item from
the beginning of an array) and unshift (which adds an element to the beginning). The
append operator, can also be used to add an item to the end of an array (basically a synonym
for push).

Don't get confused. The shift and unshift methods work on the beginning of an array;
the push, pop, and << methods work on the end.

For a better discussion of this topic, see the section "Working with Stacks and Queues."

Iterating over an Array
The Array class has the standard iterator each, as is to be expected. However, it also has
other useful iterators.

Chapter 3. Manipulating Structured Data Page 21 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The reverse_each method will iterate in reverse order. It is equivalent to using
reverse and then each, but it is faster. Here's an example:

words = %w(Son I am able she said)
str = ""
words.reverse_each { |w| str += "#{ w} "}
str is now "said she able am I Son "

If we only want to iterate over the indexes, we can use each_index. Saying
x.each_index is equivalent to saying (0..(x.size-1)).each (that is, iterating over
the range of indexes).

The iterator each_with_index (mixed in from Comparable) will pass both the element
and the index into the block, as shown here:

x = ["alpha", "beta", "gamma"]
x.each_with_index do |x,i|
 puts "Element #{ i} is #{ x} "
end
Produces three lines of output

Suppose you wanted to iterate over an array in random order? The following example uses
the iterator random_each (which simply invokes the randomize method from section
"Randomizing an Array"):

class Array

Assumes we have defined randomize

 def random_each
 temp = self.randomize
 temp.each { |x| yield x}
 end

end

dwarves = %w(Sleepy Dopey Happy Sneezy Grumpy Bashful Doc)
list = ""
dwarves.random_each { |x| list += "#{ x} "}
list is now:
"Bashful Dopey Sleepy Happy Grumpy Doc Sneezy "
(Your mileage may vary.)

Interposing Delimiters to Form a String
Frequently we will want to insert delimiters in between array elements in a "fencepost"
fashion; that is, we want to put delimiters between the elements, but not before the first
one or after the last one. The method join will do this, as will the * operator:

Chapter 3. Manipulating Structured Data Page 22 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

been_there = ["Veni", "vidi", "vici."]
journal = been_there.join(", ") # "Veni, vidi, vici."

Default delimiter is space
letters = ["Phi","Mu","Alpha"]
musicians = letters.join # "Phi Mu Alpha"

people = ["Bob","Carol","Ted","Alice"]
movie = people * " and "
movie is now "Bob and Carol and Ted and Alice"

Note that if we really need to treat the last element differently, perhaps by inserting the
word and, we can do it manually, like so:

list = %w[A B C D E F]
with_commas = list[0..-2]*", " + ", and " + list[-1]
with_commas is now "A, B, C, D, E, and F"

Reversing an Array
To reverse the order of an array, use the reverse or reverse! method:

inputs = ["red", "green", "blue"]
outputs = inputs.reverse # ["green","blue","red"]
priorities = %w(eat sleep code)
priorities.reverse! # ["code","sleep","eat"]

Removing Duplicate Elements from an Array
If you want to remove duplicate elements from an array, the uniq method (or its in-place
mutator uniq!) will do the job:

breakfast = %w[spam spam eggs ham eggs spam]
lunch = breakfast.uniq # ["spam","eggs","ham"]
breakfast.uniq! # breakfast has changed now

Interleaving Arrays
Suppose you want to take two arrays and "interleave" them so that the new array contains
alternating elements from each of the two original ones. There must be a hundred ways to
do this. Here is one way:

a = [1, 2, 3, 4]
b = ["a", "b", "c", "d"]
c = []
a.each_with_index { |x,i| c << x << b[i]}
c is now [1, "a", 2, "b", 3, "c", 4, "d"]

Chapter 3. Manipulating Structured Data Page 23 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Counting Frequency of Values in an Array
There is no count method for arrays as there is for strings (to count the occurrences of
each data item). Therefore, we've created one here:

class Array

 def count
 k=Hash.new(0)
 self.each{ |x| k[x]+=1 }
 k
 end

end

meal = %w[spam spam eggs ham eggs spam]
items = meal.count
items is { "ham" => 1, "spam" => 3, "eggs" => 2}
spams = items["spam"] # 3

Note that a hash is returned. No pun intended.

Inverting an Array to Form a Hash
An array is used to associate an integer index with a piece of data. However, what if you
want to invert that association (that is, associate the data with the index, thus producing
a hash)? The following method will do just that:

class Array

 def invert
 h={ }
 self.each_with_index{ |x,i| h[x]=i}
 h
 end

end

a = ["red","yellow","orange"]
h = a.invert # { "orange"=>2, "yellow"=>1, "red"=>0}

Synchronized Sorting of Multiple Arrays
Suppose you want to sort an array, but you have other arrays that corresponded with this
one on an element-for-element basis. In other words, you don't want to get them out of
sync. How would you do this?

Chapter 3. Manipulating Structured Data Page 24 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The solution we present in Listing 3.7 will sort an array and gather the resulting set of
indexes. The list of indexes (itself an array) can be applied to any other array to put its
elements in the same order.

Listing 3.7. Synchronized Array Sorting

class Array

 def sort_index
 d=[]
 self.each_with_index{ |x,i| d[i]=[x,i]}
 if block_given?
 d.sort { |x,y| yield x[0],y[0]} .collect{ |x| x[1]}
 else
 d.sort.collect{ |x| x[1]}
 end
 end

 def sort_by(ord=[])
 return nil if self.length!=ord.length
 self.indexes(*ord)
 end

end

a = [21, 33, 11, 34, 36, 24, 14]
p a
p b=a.sort_index
p a.sort_by b
p c=a.sort_index { |x,y| x%2 <=> y%2}
p a.sort_by c

Establishing a Default Value for New Array Elements
When an array grows and new (unassigned) elements are created, these elements default
to nil values:

a = Array.new
a[0]="x"
a[3]="y"
a is now ["x", nil, nil, "y"]

What if we want to set those new elements to some other value? As a specific instance of
a general principle, we offer the ZArray class in Listing 3.8, which will default new
unassigned elements to 0.

Chapter 3. Manipulating Structured Data Page 25 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.8. Specifying a Default for Array Elements

class ZArray < Array

 def [](x)
 if x > size
 for i in size+1..x
 self[i]=0
 end
 end
 v = super(x)
 end

 def []=(x,v)
 max = size
 super(x,v)
 if size - max > 1
 (max..size-2).each do |i|
 self[i] = 0
 end
 end
 end

end

num = ZArray.new
num[1] = 1
num[2] = 4
num[5] = 25
num is now [0, 1, 4, 0, 0, 25]

Working with Hashes
Hashes are known in some circles as associative arrays, dictionaries, and by various other
names. Perl and Java programmers in particular will be familiar with this data structure.

Think of an array as an entity that creates an association between index x and data item
y. A hash creates a similar association, with at least two exceptions. First, for an array, x
is always an integer; for a hash, it need not be. Second, an array is an ordered data structure;
a hash typically has no ordering.

A hash key can be of any arbitrary type. As a side effect, this makes a hash a nonsequential
data structure. In an array, we know that element 4 follows element 3; but in a hash, the
key may be of a type that does not define a real predecessor or successor. For this reason
(and others), there is no notion in Ruby of the pairs in a hash being in any particular order.

You may think of a hash as an array with a specialized index, or as a database "synonym
table" with two fields, stored in memory. Regardless of how you perceive it, it is a powerful
and useful programming construct.

Chapter 3. Manipulating Structured Data Page 26 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Creating a New Hash
As with Array, the special class method [] is used to create a hash. The data items listed
in the brackets are used to form the mapping of the hash.

Six ways of calling this method are shown here (note that hashes a1 through c2 will all be
populated identically):

a1 = Hash.[]("flat",3,"curved",2)
a2 = Hash.[]("flat"=>3,"curved"=>2)
b1 = Hash["flat",3,"curved",2]
b2 = Hash["flat"=>3,"curved"=>2]
c1 = { "flat",3,"curved",2}
c2 = { "flat"=>3,"curved"=>2}
For a1, b1, and c1: There must be
an even number of elements.

Also, the class method new can take a parameter specifying a default value. Note that this
default value is not actually part of the hash; it is simply a value returned in place of nil.
Here's an example:

d = Hash.new # Create an empty hash
e = Hash.new(99) # Create an empty hash
f = Hash.new("a"=>3) # Create an empty hash
e["angled"] # 99
e.inspect # { }
f["b"] # { "a"=>3} (default value is
 # actually a hash itself)
f.inspect # { }

Specifying a Default Value for a Hash
The default value of a hash is an object that is referenced in place of nil in the case of a
missing key. This is useful if you plan to use methods with the hash value that are not
defined for nil. It can be assigned upon creation of the hash or at a later time using the
default= method.

All missing keys point to the same default value object, so changing the default value has
a side effect:

a = Hash.new("missing") # default value object is "missing"
a["hello"] # "missing"
a.default="nothing"
a["hello"] # "nothing"
a["good"] << "bye" # "nothingbye"
a.default # "nothingbye"

Chapter 3. Manipulating Structured Data Page 27 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The special instance method fetch raises an IndexError exception if the key does not
exist in the Hash object. It takes a second parameter that serves as a default value. Also,
fetch optionally accepts a block to produce a default value in case the key is not found.
This is in contrast to default, because the block allows each missing key to have its own
default. Here's an example:

a = { "flat",3,"curved",2,"angled",5}
a.fetch("pointed") # IndexError
a.fetch("curved","na") # 2
a.fetch("x","na") # "na"
a.fetch("flat") { |x| x.upcase} # 3
a.fetch("pointed") { |x| x.upcase} # "POINTED"

Accessing and Adding Key/Value Pairs
Hash has class methods [] and []=, just as Array has; they are used much the same way,
except that they accept only one parameter. The parameter can be any object, not just a
string (although string objects are commonly used). Here's an example:

a = { }
a["flat"] = 3 # { "flat"=>3}
a.[]=("curved",2) # { "flat"=>3,"curved"=>2}
a.store("angled",5) # { "flat"=>3,"curved"=>2,"angled"=>5}

The method store is simply an alias for the []= method, both of which take two
arguments, as shown in the example.

The method fetch is similar to the [] method, except that it raises an IndexError for
missing keys. It also has an optional second argument (or alternatively a code block) for
dealing with default values (see the section "Specifying a Default Value for a Hash"). Here's
an example:

a["flat"] # 3
a.[]("flat") # 3
a.fetch("flat") # 3
a["bent"] # nil

Suppose you are not sure whether the Hash object exists, and you would like to avoid
clearing an existing hash. The obvious way is to check whether the hash is defined, as shown
here:

unless defined? a
 a={ }
end
a["flat"] = 3

Chapter 3. Manipulating Structured Data Page 28 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Another way to do this is as follows:

a ||= { }
a["flat"] = 3

The same problem can be applied to individual keys, where you only want to assign a value
if the key does not exist:

a=Hash.new(99)
a[2] # 99
a # { }
a[2] ||= 5 # 99
a # { }
b=Hash.new
b # { }
b[2] # nil
b[2] ||= 5 # 5
b # { 2=>5}

Note that nil may be used as either a key or an associated value:

b={ }
b[2] # nil
b[3]=nil
b # { 3=>nil}
b[2].nil? # true
b[3].nil? # true
b[nil]=5
b # { 3=>nil,nil=>5}
b[nil] # 5
b[b[3]] # 5

Deleting Key/Value Pairs
Key/value pairs of a Hash object can be deleted using clear, delete, delete_if,
reject, reject!, and shift.

Use clear to remove all key/value pairs. This is essentially the same as assigning a new
empty hash, but it's marginally faster.

Use shift to remove an unspecified key/value pair. This method returns the pair as a
two-element array (or nil if no keys are left):

a = { 1=>2, 3=>4}
b = a.shift # [1,2]
a is now { 3=>4}

Chapter 3. Manipulating Structured Data Page 29 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Use delete to remove a specific key/value pair. It accepts a key and returns the value
associated with the key removed (if found). If the key is not found, the default value is
returned. It also accepts a block to produce a unique default value rather than just a reused
object reference. Here's an example:

a = { 1=>1, 2=>4, 3=>9, 4=>16}
a.delete(3) # 9
a is now { 1=>1, 2=>4, 4=>16}
a.delete(5) # nil in this case
a.delete(6) { "not found" } # "not found"

Use delete_if, reject, or reject! in conjunction with the required block to delete
all keys for which the block evaluates to true. The method reject uses a copy of the
hash, and reject! returns nil if no changes were made.

Iterating over a Hash
The Hash class has the standard iterator each, as is to be expected. It also has
each_key, each_pair, and each_value (each_pair is an alias for each). Here's an
example:

{ "a"=>3,"b"=>2} .each do |key, val|
 print val, " from ", key, "; " # 3 from a; 2 from b;
end

The other two provide only one or the other (the key or the value) to the block:

{ "a"=>3,"b"=>2} .each_key do |key|
 print "key = #{ key} ;" # Prints: key = a; key = b;
end

{ "a"=>3,"b"=>2} .each_value do |value|
 print "val = #{ value} ;" # Prints: val = 3; val = 2;
end

Inverting a Hash
Inverting a hash in Ruby is trivial with the invert method:

a = { "fred"=>"555-1122","jane"=>"555-7779"}
b = a.invert
b["555-7779"] # "jane"

Chapter 3. Manipulating Structured Data Page 30 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because hashes have unique keys, there is potential for data loss when doing this—
duplicate associated values will be converted to a unique key using only one of the
associated keys as its value. There is no predictable way to tell which one will be used.

Detecting Keys and Values in a Hash
Determining whether a key has been assigned can be done with has_key? or any one of
its aliases: include?, key?, or member?. Here's an example:

a = { "a"=>1,"b"=>2}
a.has_key? "c" # false
a.include? "a" # true
a.key? 2 # false
a.member? "b" # true

You can also use empty? to see whether there are any keys at all left in the hash;
length or its alias size can be used to determine how many there are, as shown here:

a.empty? # false
a.length # 2

Alternatively, you can test for the existence of an associated value using has_value? or
value?:

a.has_value? 2 # true
a.value? 99 # false

Extracting Hashes into Arrays
To convert the entire hash into an array, use the to_a method. In the resulting array, keys
will be even-numbered elements (starting with 0) and values will be odd-numbered
elements of the array:

h = { "a"=>1,"b"=>2}
h.to_a # ["a",1,"b",2]

It is also possible to convert only the keys or only the values of the hash into an array:

h.keys # ["a","b"]
h.values # [1,2]

Chapter 3. Manipulating Structured Data Page 31 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Finally, you can extract an array of values selectively based on a list of keys, using the
indices method. This works for hashes much as the method of the same name works for
arrays (the alias is indexes):

h = { 1=>"one",2=>"two",3=>"three",4=>"four","cinco"=>"five"}
h.indices(3,"cinco",4) # ["three","five","four"]
h.indexes(1,3) # ["one","three"]

Selecting Key/Value Pairs by Criteria
The Hash class mixes in the Enumerable module, so you can use detect (find),
select (find_all), grep, min, max, and reject as with arrays.

The detect method (whose alias is find) finds a single key/value pair. It takes a block
(into which the pairs are passed one at a time) and returns the first pair for which the block
evaluates to true. Here's an example:

names = { "fred"=>"jones","jane"=>"tucker",
 "joe"=>"tucker","mary"=>"SMITH"}
Find a tucker
names.detect { |k,v| v=="tucker" } # ["joe","tucker"]
Find a capitalized surname
names.find { |k,v| v==v.upcase } # ["mary", "SMITH"]

Of course, the objects in the hash can be of arbitrary complexity, as can the test in the block,
but comparisons between differing types can cause problems.

The select method (whose alias is find_all) will return multiple matches, as opposed
to a single match:

names.select { |k,v| v=="tucker" }
[["joe", "tucker"], ["jane", "tucker"]]
names.find_all { |k,v| k.count("r")>0}
[["mary", "SMITH"], ["fred", "jones"]]

Sorting a Hash
Hashes are by their nature not ordered according to the value of their keys or associated
values. In performing a sort on a hash, Ruby converts the hash to an array and then sorts
that array. The result is naturally an array:

names = { "Jack"=>"Ruby","Monty"=>"Python",
 "Blaise"=>"Pascal", "Minnie"=>"Perl"}
list = names.sort
list is now:

Chapter 3. Manipulating Structured Data Page 32 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

[["Blaise","Pascal"], ["Jack","Ruby"],
["Minnie","Perl"], ["Monty","Python"]]

Merging Two Hashes
Merging hashes may be useful sometimes. Ruby's update method will put the entries of
one hash into the target hash, overwriting any previous duplicates:

dict = { "base"=>"foundation", "pedestal"=>"base"}
added = { "base"=>"non-acid", "salt"=>"NaCl"}
dict.update(added)
{ "base"=>"non-acid", "pedestal"=>"base", "salt"=>"NaCl"}

Creating a Hash from an Array
The easiest way to create a hash from an array is to remember the bracket notation for
creating hashes. This works if the array has an even number of elements. Here's an
example:

array = [2, 3, 4, 5, 6, 7]
hash = Hash[*array]
hash is now: { 2=>3, 4=>5, 6=>7}

Finding Difference or Intersection of Hash Keys
Because the keys of a hash can be extracted as a separate array, the extracted arrays of
different hashes can be manipulated using the Array class methods & and - to produce
the intersection and difference of the keys. The matching values can be generated with the
each method performed on a third hash representing the merge of the two hashes (to
ensure all keys can be found in one place):

a = { "a"=>1,"b"=>2,"z"=>3}
b = { "x"=>99,"y"=>88,"z"=>77}
intersection = a.keys & b.keys
difference = a.keys - b.keys
c = a.dup.update(b)
inter = { }
intersection.each { |k| inter[k]=c[k] }
inter is { "z"=>77}
diff={ }
difference.each { |k| diff[k]=c[k] }
diff is { "a"=>1, "b"=>2}

Chapter 3. Manipulating Structured Data Page 33 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using a Hash As a Sparse Matrix
Often we want to make use of an array or matrix that is nearly empty. We could store it in
the conventional way, but this is often wasteful of memory. A hash provides a way to store
only the values that actually exist.

Here is an example in which we are assuming that the nonexistent values should default
to zero:

values = Hash.new(0)
values[1001] = 5
values[2010] = 7
values[9237] = 9
x = values[9237] # 9
y = values[5005] # 0

Obviously in this example, an array would have created over 9,000 unused elements. This
may not be acceptable.

What if we want to implement a sparse matrix of two or more dimensions? All we need do
is use arrays as the hash keys, like so:

cube = Hash.new(0)
cube[[2000,2000,2000]] = 2
z = cube[[36,24,36]] # 0

In this case, we see that literally billions of array elements would need to be created if this
three-dimensional array were to be complete.

Implementing a Hash with Duplicate Keys
Purists would likely say that if a hash has duplicate keys, it isn't really a hash. We don't
want to argue. Call it what you will, there might be occasions when you want a data
structure that offers the flexibility and convenience of a hash but allows duplicate key
values.

We offer a partial solution here (see Listing 3.9). It is partial for two reasons. First, we have
not bothered to implement all the functionality that could be desired, but only a good
representative subset. Second, the inner workings of Ruby are such that a hash literal is
always an instance of the Hash class, and even though we were to inherit from Hash, a
literal would not be allowed to contain duplicates. (We're thinking about this one further.)

But as long as you stay away from the hash-literal notation, this problem is doable. Here
we implement a class that has a "store" (@store) that is a simple hash; each value in the
hash is an array. We control access to the hash in such a way that when we find ourselves

Chapter 3. Manipulating Structured Data Page 34 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

adding a key that already exists, we add the value to the existing array of items associated
with that key.

What should size return? Obviously, the "real" number of key/value pairs including
duplicates. Likewise, the keys method returns a value potentially containing duplicates.
The iterators behave as expected; as with a normal hash, there is no predicting the order
in which the pairs will be visited.

Besides the usual delete, we have implemented a delete_pair method. The former
will delete all values associated with a key; the latter will delete only the specified key/
value pair. (Note that it would have been difficult to make a single method such as delete
(k,v=nil) because nil is a valid value for any hash.)

For brevity, we have not implemented the entire class; frankly, some of the methods, such
as invert, would require some design decisions as to what their behavior should be. If
you're interested, you can flesh out the rest as needed.

Chapter 3. Manipulating Structured Data Page 35 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.9. Hash with Duplicate Keys

class HashDup

 def initialize(*all)
 raise IndexError if all.size % 2 != 0
 @store = { }
 if all[0] # not nil
 keyval = all.dup
 while !keyval.empty?
 key = keyval.shift
 if @store.has_key?(key)
 @store[key] += [keyval.shift]
 else
 @store[key] = [keyval.shift]
 end
 end
 end
 end

 def store(k,v)
 if @store.has_key?(k)
 @store[k] += [v]
 else
 @store[k] = [v]
 end
 end

 def [](key)
 @store[key]
 end

 def []=(key,value)
 self.store(key,value)
 end

 def to_s
 @store.to_s
 end

 def to_a
 @store.to_a
 end

 def inspect
 @store.inspect
 end

 def keys
 result=[]
 @store.each do |k,v|
 result += ([k]*v.size)
 end
 result
 end

 def values
 @store.values.flatten
 end

 def each
 @store.each { |k,v| v.each { |y| yield k,y} }
 end

 alias each_pair each

 def each_key
 self.keys.each { |k| yield k}

Chapter 3. Manipulating Structured Data Page 36 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end

 def each_value
 self.values.each { |v| yield v}
 end

 def has_key? k
 self.keys.include? k
 end

 def has_value? v
 self.values.include? v
 end
 def length
 self.values.size
 end

 alias size length

 def delete k
 val = @store[k]
 @store.delete k
 val
 end

 def delete k,v
 @store[k] -= [v] if @store[k]
 v
 end

 # Other methods omitted here...
end

This won't work... dup key will ignore
first occurrence.
h = { 1=>1, 2=>4, 3=>9, 4=>16, 2=>0}

This will work...
h = HashDup.new(1,1, 2,4, 3,9, 4,16, 2,0)

k = h.keys # [4, 1, 2, 2, 3]
v = h.values # [16, 1, 4, 0, 9]

n = h.size # 5

h.each { |k,v| puts "#{ k} => #{ v} "}
Prints:
4 => 16
1 => 1
2 => 4
2 => 0
3 => 9

Working with Stacks and Queues
Stacks and queues are the first entities we have discussed that are not strictly built in to
Ruby. By this we mean that Ruby does not have Stack and Queue classes as it has
Array and Hash classes.

Chapter 3. Manipulating Structured Data Page 37 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

And yet, in a way, they are built in to Ruby after all. In fact, the Array class implements
all the functionality we need to treat an array as a stack or a queue. You'll see this in detail
shortly.

A stack is a last-in first-out (LIFO) data structure. The traditional everyday example is a
stack of cafeteria trays on its spring-loaded platform; trays are added at the top and also
taken away from the top.

There is a limited set of operations that can be performed on a stack. These include push
and pop (to add and remove items) at the very least; usually there is a way to test for an
empty stack, and there may be a way to examine the top element without removing it. A
stack implementation never provides a way to examine an item in the middle of the stack.

You might ask how an array can implement a stack given that array elements may be
accessed randomly and stack elements may not. The answer is simple: A stack sits at a
higher level of abstraction than an array; it is a stack only so long as you treat it as one.
The moment you access an element illegally, it ceases to be a stack.

Of course, you can easily define a Stack class so that elements can only be accessed legally.
We will show how this is done.

It is worth noting that many algorithms that use a stack also have elegant recursive
solutions. The reason for this becomes clear with a moment's reflection. Function or
method calls result in data being pushed onto the system stack, and this data is popped
upon return. Therefore, a recursive algorithm simply trades an explicit user-defined stack
for the implicit system-level stack. Which is better? That depends on how you value
readability, efficiency, and other considerations.

A queue is a first-in first-out (FIFO) data structure. It is analogous to a group of people
standing in line at, for example, a movie theater. Newcomers go to the end of the line,
whereas those who have waited longest are the next served. In most areas of programming,
these are probably used less often than stacks.

Queues are useful in more real-time environments where entities are processed as they
are presented to the system. They are useful in producer/consumer situations (especially
where threads or multitasking is involved). A printer queue is a good example; print jobs
are added to one end of the queue, and they "stand in line" until they are removed at the
other end.

The two basic queue operations are usually called enqueue and dequeue in the literature.
The corresponding instance methods in the Array class are called shift and unshift,
respectively.

Chapter 3. Manipulating Structured Data Page 38 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that unshift could serve as a companion for shift in implementing a stack, not a
queue, because unshift adds to the same end from which shift removes. There are
various combinations of these methods that could implement stacks and queues, but we
will not concern ourselves with all the variations.

That ends our introductory discussion of stacks and queues. Now let's look at some
examples.

Implementing a Stricter Stack
We promised earlier to show how a stack could be made "idiot-proof" against illegal access.
We may as well do that now (see Listing 3.10). We present here a simple class that has an
internal array and manages access to that array. (There are other ways of doing this—by
delegating, for example—but what we show here is simple and works fine.)

Listing 3.10. Stack

class Stack

 def initialize
 @store = []
 end

 def push(x)
 @store.push x
 end

 def pop
 @store.pop
 end

 def peek
 @store.last
 end

 def empty?
 @store.empty?
 end

end

We have added one more operation that is not defined for arrays; peek will simply examine
the top of the stack and return a result without disturbing the stack.

Some of the rest of our examples will assume this class definition.

Converting Infix to Postfix
In writing algebraic expressions, we commonly use infix notation, with the operator in
between the operands. Often it is more convenient to store an expression in postfix form,

Chapter 3. Manipulating Structured Data Page 39 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a parenthesis-free form in which the operator follows both the operands. (This is
sometimes called Reverse Polish Notation.)

In Listing 3.11, we present a simple routine for converting infix to postfix notation using
a stack. We make the simplifying assumptions that all operands are lowercase letters and
the only operators are *, /, +, and -.

Chapter 3. Manipulating Structured Data Page 40 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.11. Infix to Postfix

Define level of precedence

def level(opr)
 case opr
 when "*", "/"
 2
 when "+", "-"
 1
 when "("
 0
 end
end

"Main"

infix = "(a+b)*(c-d)/(e-(f-g))"
postfix = ""

stack = Stack.new

infix.each_byte do |sym|
 sym = "" << sym # Convert to string
 case sym
 when "("
 stack.push sym

when /[a-z]/
 postfix += sym

when "*", "/", "+", "-"
 finished = false
 until finished or stack.empty?
 if level(sym) > level(stack.peek)
 finished = true
 else
 postfix += stack.pop
 end
 end
 stack.push sym

 when ")"
 while stack.peek != "("
 postfix += stack.pop
 end
 stack.pop # Get rid of paren on stack
 end
end

while !stack.empty?
 postfix += stack.pop
end

puts postfix # Prints "ab+cd-*efg--/"

Detecting Unbalanced Punctuation in Expressions
Because of the nature of grouped expressions, such as parentheses and brackets, their
validity can be checked using a stack (see Listing 3.12). For every level of nesting in the
expression, the stack will grow one level higher; when we find closing symbols, we can pop

Chapter 3. Manipulating Structured Data Page 41 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

the corresponding symbol off the stack. If the symbol does not correspond as expected, or
if there are symbols left on the stack at the end, we know the expression is not well formed.

Listing 3.12. Detecting Unbalanced Punctuation

def paren_match str
 stack = Stack.new
 lsym = "{ [(<"
 rsym = "}])>"
 str.each_byte do |byte|
 sym = byte.chr
 if lsym.include? sym
 stack.push(sym)
 elsif rsym.include? sym
 top = stack.peek
 if lsym.index(top) != rsym.index(sym)
 return false
 else
 stack.pop
 end
 # Ignore non-grouped characters...
 end
 end
 # Ensure stack is empty...
 return stack.empty?
end

str1 = "Hello (yes, [um] you) there!"
str2 = "(((a+b))*((c-d)-(e*f))"
str3 = "[[(a-(b-c))], [[x,y]]]"

paren_match str1 # true
paren_match str2 # false
paren_match str3 # true

Detecting Unbalanced Tags in HTML and XML
The example shown in Listing 3.13 is essentially the same as Listing 3.12. We include it
only to give a hint that this task is possible (that is, that a stack is useful for validating
HTML and XML).

In the old days, a string was considered, at best, a special case of an array. Your opinion
may vary depending on your language background. In Ruby, strings are not arrays;
however, it is a tribute to the orthogonality of the language when we see how similar these
two examples turned out. This is because, after all, there is a certain isomorphism between
strings and arrays. They are both ordered sequences of elements, where in the case of a
string, the element is a character.

Because we are talking about stacks and not HTML/XML, we have made a huge truckload
of simplifying assumptions here. (If you're interested in real-life HTML and XML
examples, refer to later chapters.) First of all, we assume that the text has already been
parsed and stuck into an array. Second, we only care about a limited subset of the many

Chapter 3. Manipulating Structured Data Page 42 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

tags possible. Third, we ignore the possibility of attributes and values associated with the
tags.

In short, this is not a real-life example at all; however, like the previous example, it shows
the underlying principle.

Listing 3.13. Detecting Unbalanced Tags

def balanced_tags list
 stack = Stack.new
 opening = %w[<html> <body> <i> <u> <sub> <sup>]
 closing = %w[</html> </body> </i> </u> </sub> </sup>]
 list.each do |word|
 if opening.include? word
 stack.push(word)
 elsif closing.include? word
 top = stack.peek
 if closing.index(top) != opening.index(word)
 return false
 else
 stack.pop
 end
 # Ignore other words
 end
 end
 # Ensure stack is empty...
 return stack.empty?
end

text1 = %w[<html> <body> This is only
 a test. </body> </html>]

text2 = %w[<html> <body> Don't take it <i> too </i>
 seriously... </html>]

balanced_tags(text1) # true
balanced_tags(text2) # false

Understanding Stacks and Recursion
As an example of the isomorphism between stack-oriented algorithms and recursive
algorithms, we will take a look at the classic "Tower of Hanoi" problem.

According to legend, there is a Buddhist temple somewhere in the Far East, where monks
have the sole task of moving disks from one pole to another while obeying certain rules
about the moves they can make. There were originally 64 disks on the first pole; when they
finish the task, the world will come to an end.

As an aside, we like to dispel myths when we can. It seems that in reality, this puzzle
originated with the French mathematician Edouard Lucas in 1883 and has no actual basis
in eastern culture. What's more, Lucas himself named the puzzle the "Tower of Hanoi" (in
the singular).

Chapter 3. Manipulating Structured Data Page 43 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

So if you were worried about the world ending, don't worry on that account. Anyway, 64
disks would take 264-1 moves. A few minutes with a calculator will reveal that those monks
would be busy for millions of years.

But on to the rules of the game. (We'll explain this even though every first-year computer
science student in the world has already seen the puzzle.) We have a pole with a certain
number of varying-sized disks stacked on it; call this the source pole. We want to move all
these disks to the destination pole, using a third pole (called the auxiliary pole) as an
intermediate resting place. The catch is that you can only move one disk at a time, and you
cannot ever place a larger disk onto a smaller one.

The following example uses a stack to solve the problem. We use only three disks here
because 64 would occupy a computer for centuries:

def towers2(list)
 while !list.empty?
 n, src, dst, aux = list.pop
 if n == 1
 puts "Move disk from #{ src} to #{ dst} "
 else
 list.push [n-1, aux, dst, src]
 list.push [1, src, dst, aux]
 list.push [n-1, src, aux, dst]
 end
 end
end

list = []
list.push([3, "a", "c", "b"])

towers2(list)

Here's the output that's produced:

Move disk from a to c
Move disk from a to b
Move disk from c to b
Move disk from a to c
Move disk from b to a
Move disk from b to c
Move disk from a to c

Of course, the classic solution to this problem is recursive. As we already pointed out, the
close relationship between the two algorithms is no surprise because recursion implies the
use of an invisible system-level stack. Here's an example:

def towers(n, src, dst, aux)
 if n==1
 puts "Move disk from #{ src} to #{ dst} "

Chapter 3. Manipulating Structured Data Page 44 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 else
 towers(n-1, src, aux, dst)
 towers(1, src, dst, aux)
 towers(n-1, aux, dst, src)
 end
end

towers(3, "a", "c", "b")

The output produced here is the same. And it may interest you to know that we tried
commenting out the output statements and comparing the runtimes of these two methods.
Don't tell anyone, but the recursive version is twice as fast.

Implementing a Stricter Queue
We define a queue here in much the same way we defined a stack earlier. If you want to
protect yourself from accessing such a data structure in an illegal way, we recommend this
practice (see Listing 3.14).

Listing 3.14. A Stricter Queue

class Queue

 def initialize
 @store = []
 end

 def enqueue(x)
 @store << x
 end

 def dequeue
 @store.shift
 end

 def peek
 @store.first
 end
 def length
 @store.length
 end

 def empty?
 @store.empty?
 end

end

We should mention that there is a Queue class in the thread library that works very well
in threaded code.

Chapter 3. Manipulating Structured Data Page 45 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A Token Queue Example: Traffic Light Simulation
We offer here a fairly contrived example of using a queue. This code will simulate the arrival
of cars at a traffic light and store the arrival times in four queues. At the end, it prints some
(presumably meaningful) statistics about the queue lengths and wait times.

A number of simplifying assumptions have been made. Time is granularized at the level
of one second. There are no threads involved; all car movements are serialized in a
reasonable way. Cars turn neither left nor right, they never go through a yellow or red light,
and so on. The code is shown in Listing 3.15.

Chapter 3. Manipulating Structured Data Page 46 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.15. Traffic Light Simulation with a Queue

#
Program: Traffic light simulation
(Queue example)
#
The traffic light has this behavior:
Green north/south for 40 seconds
Pause 2 seconds
Green east/west for 45 seconds
Pause 2 seconds
Repeat
#
The traffic behaves this way:
A northbound car arrives at the traffic light
every 3 seconds;
Southbound, every 5 seconds;
Eastbound, every 4 seconds;
Westbound, every 6 seconds.
All times are approximate (random).
Assume no cars turn at the light.
#
Cars pass through the light at a rate of
one per second.
#
Let's run for 8900 seconds (100 full cycles or
more than two hours) and answer these questions:
How long on the average is each line of cars
when the light turns green? What is the average
wait time in seconds? What is the longest wait
time?
#

Direction constants

NORTH, SOUTH, EAST, WEST = 0, 1, 2, 3
dirs = %w[North South East West]

Probabilities for car arriving
from each direction:

p = Array.new(4)
p[NORTH] = 1.0/3.0
p[SOUTH] = 1.0/5.0
p[EAST] = 1.0/4.0
p[WEST] = 1.0/6.0

Queues:

waiting = Array.new(4)
waiting[NORTH] = Queue.new
waiting[SOUTH] = Queue.new
waiting[EAST] = Queue.new
waiting[WEST] = Queue.new

lengths = [0, 0, 0, 0] # How long is queue
 # when light turns green?
greens = [0, 0, 0, 0] # How many times did
 # light turn green?
times = [0, 0, 0, 0] # How long did cars wait?
ncars = [0, 0, 0, 0] # Count cars through light.
maxtime = [0, 0, 0, 0] # Max wait time?

Looping...
time=0
while time < 8900

Chapter 3. Manipulating Structured Data Page 47 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 change = true # Light changed
 for time in time..time+40 # North/south green
 # Enqueue all arrivals
 for dir in NORTH..WEST
 waiting[dir].enqueue(time) if rand < p[dir]
 end

 # Record queue lengths, counts
 if change
 for dir in NORTH..SOUTH
 lengths[dir] += waiting[dir].length
 greens[dir] += 1
 end
 change = false
 end

 # N/S can leave, one per second...
 for dir in NORTH..SOUTH
 if !waiting[dir].empty?
 car = waiting[dir].dequeue
 wait = time - car
 ncars[dir] += 1
 times[dir] += wait
 maxtime[dir] = [maxtime[dir],wait].max
 end
 end
 end

 for time in time..time+2 # Yellow/red
 # Nothing happens...
 end

 change = true # Light changed
 for time in time..time+45 # East/west green
 # Enqueue all arrivals
 for dir in NORTH..WEST
 waiting[dir].enqueue(time) if rand < p[dir]
 end

 # Record queue lengths, counts
 if change
 for dir in EAST..WEST
 lengths[dir] += waiting[dir].length
 greens[dir] += 1
 end
 change = false
 end

 # N/S can leave, one per second...
 for dir in EAST..WEST
 if !waiting[dir].empty?
 car = waiting[dir].dequeue
 wait = time - car
 ncars[dir] += 1
 times[dir] += wait
 maxtime[dir] = [maxtime[dir],wait].max
 end
 end
 end

 for time in time..time+2 # Yellow/red
 # Nothing happens...
 end

end

Display results...

puts "Average queue lengths:"
for dir in NORTH..WEST

Chapter 3. Manipulating Structured Data Page 48 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 printf " %-5s %6.1f\n", dirs[dir],
 lengths[dir]/greens[dir].to_f
end

puts "Max wait times:"
for dir in NORTH..WEST
 printf " %-5s %4d\n", dirs[dir],
 maxtime[dir]
end

puts "Average wait times:"
for dir in NORTH..WEST
 printf " %-5s %6.1f\n", dirs[dir],
 times[dir]/ncars[dir].to_f
end

Here is the output this example produces (which will vary because of the use of the
pseudorandom number generator rand):

Average queue lengths:
 North 15.6
 South 9.5
 East 10.8
 West 7.3
Max wait times:
 North 51
 South 47
 East 42
 West 42
Average wait times:
 North 19.5
 South 16.2
 East 13.7
 West 12.9

You may at once see a dozen ways in which this program could be improved. However, it
serves its purpose, which is to illustrate a simple queue.

Working with Trees

I think that I shall never see

A poem as lovely as a tree….

—[Alfred] Joyce Kilmer, "Trees"

A tree in computer science is a relatively intuitive concept (except that it is usually drawn
with the "root" at the top and the "leaves" at the bottom). This is because we are familiar
with so many kinds of hierarchical data in everyday life—from the family tree, to the
corporate org chart, to the directory structures on our hard drives.

Chapter 3. Manipulating Structured Data Page 49 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The terminology of trees is rich but easy to understand. Any item in a tree is a node; the
first or topmost node is the root. A node may have descendants that are below it, and the
immediate descendants are called children. Conversely, a node may also have a parent
(only one) and ancestors. A node with no child nodes is called a leaf. A subtree consists of
a node and all its descendants. To travel through a tree (for example, to print it out) is
called traversing the tree.

We will look mostly at binary trees, although in practice a node can have any number of
children. You will see how to create a tree, populate it, and traverse it. Also, we will look
at a few real-life tasks that use trees.

We should mention here that in many languages, such as C and Pascal, trees are
implemented using true address pointers. However, in Ruby (as in Java, for instance), we
don't use pointers; object references work just as well or even better.

Implementing a Binary Tree
There is more than one way to implement a binary tree in Ruby. For example, we could
use an array to store the values. Here, we use a more traditional approach, coding much
as we would in C, except that pointers are replaced with object references.

What is required in order to describe a binary tree? Well, each node needs an attribute of
some kind for storing a piece of data. Each node also needs a pair of attributes for referring
to the left and right subtrees under that node.

We also need a way to insert into the tree and a way of getting information out of the tree.
A pair of methods will serve these purposes.

The first tree we'll look at will implement these methods in a slightly unorthodox way. We
will expand on the Tree class in later examples.

A tree is, in a sense, defined by its insertion algorithm and by how it is traversed. In this
first example, shown in Listing 3.16, we define an insert method that inserts in a breadth-
first fashion (that is, top to bottom and left to right). This guarantees that the tree grows
in depth relatively slowly and is always balanced. Corresponding to the insert method,
the traverse iterator will iterate over the tree in the same breadth-first order.

Chapter 3. Manipulating Structured Data Page 50 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.16. Breadth-First Insertion and Traversal in a Tree

class Tree

attr_accessor :left
attr_accessor :right
attr_accessor :data

def initialize(x=nil)
 @left = nil
 @right = nil
 @data = x
end

def insert(x)
 list = []
 if @data == nil
 @data = x
 elsif @left == nil
 @left = Tree.new(x)
 elsif @right == nil
 @right = Tree.new(x)
 else
 list << @left
 list << @right
 loop do
 node = list.shift
 if node.left == nil
 node.insert(x)
 break
 else
 list << node.left
 end
 if node.right == nil
 node.insert(x)
 break
 else
 list << node.right
 end
 end
 end
end

def traverse()
 list = []
 yield @data
 list << @left if @left != nil
 list << @right if @right != nil
 loop do
 break if list.empty?
 node = list.shift
 yield node.data
 list << node.left if node.left != nil
 list << node.right if node.right != nil
 end
end

end

items = [1, 2, 3, 4, 5, 6, 7]

tree = Tree.new
items.each { |x| tree.insert(x)}

tree.traverse { |x| print "#{ x} "}
print "\n"

Chapter 3. Manipulating Structured Data Page 51 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Prints "1 2 3 4 5 6 7 "

This kind of tree, as defined by its insertion and traversal algorithms, is not especially
interesting. However, it does serve as an introduction and something on which we can
build.

Sorting Using a Binary Tree
For random data, using a binary tree is a good way to sort. (Although in the case of already-
sorted data, it degenerates into a simple linked list.) The reason, of course, is that with
each comparison, we are eliminating half the remaining alternatives as to where we should
place a new node.

Although it might be fairly rare to sort using a binary tree nowadays, it can't hurt to know
how. The code in Listing 3.17 builds on the previous example.

Chapter 3. Manipulating Structured Data Page 52 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.17. Sorting with a Binary Tree

class Tree

 # Assumes definitions from
 # previous example...

 def insert(x)
 if @data == nil
 @data = x
 elsif x <= @data
 if @left == nil
 @left = Tree.new x
 else
 @left.insert x
 end
 else
 if @right == nil
 @right = Tree.new x
 else
 @right.insert x
 end
 end
 end
 def inorder()
 @left.inorder { |y| yield y} if @left != nil
 yield @data
 @right.inorder { |y| yield y} if @right != nil
 end

 def preorder()
 yield @data
 @left.preorder { |y| yield y} if @left != nil
 @right.preorder { |y| yield y} if @right != nil
 end

 def postorder()
 @left.postorder { |y| yield y} if @left != nil
 @right.postorder { |y| yield y} if @right != nil
 yield @data
 end

end

items = [50, 20, 80, 10, 30, 70, 90, 5, 14,
 28, 41, 66, 75, 88, 96]

tree = Tree.new

items.each { |x| tree.insert(x)}

tree.inorder { |x| print x, " "}
print "\n"
tree.preorder { |x| print x, " "}
print "\n"
tree.postorder { |x| print x, " "}
print "\n"

Using a Binary Tree As a Lookup Table
Suppose we have a tree already sorted. Traditionally, this has made for a good lookup table;
for example, a balanced tree of a million items would take no more than 20 comparisons
(the depth of the tree or log base 2 of the number of nodes) to find a specific node. For this

Chapter 3. Manipulating Structured Data Page 53 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to be useful, we assume that the data for each node is not just a single value but has a key
value and other information associated with it.

In most if not all situations, a hash or even an external database table will be preferable.
However, we present this code to you anyhow (see Listing 3.18).

Listing 3.18. Searching a Binary Tree

class Tree

 # Assumes definitions
 # from previous example...

 def search(x)
 if self.data == x
 return self
 else
 ltree = left != nil ? left.search(x) : nil
 return ltree if ltree != nil
 rtree = right != nil ? right.search(x) : nil
 return rtree if rtree != nil
 end
 nil
 end

end

keys = [50, 20, 80, 10, 30, 70, 90, 5, 14,
 28, 41, 66, 75, 88, 96]

tree = Tree.new

keys.each { |x| tree.insert(x)}

s1 = tree.search(75) # Returns a reference to the node
 # containing 75...

s2 = tree.search(100) # Returns nil (not found)

Converting a Tree to a String or Array
The same old tricks that allow us to traverse a tree will allow us to convert it to a string or
array if we wish, as shown in Listing 3.19. Here, we assume an inorder traversal, although
any other kind could be used.

Chapter 3. Manipulating Structured Data Page 54 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.19. Converting a Tree to a String or Array

class Tree

 # Assumes definitions from
 # previous example...

 def to_s
 "[" +
 if left then left.to_s + "," else "" end +
 data.inspect +
 if right then "," + right.to_s else "" end + "]"
 end

 def to_a
 temp = []
 temp += left.to_a if left
 temp << data
 temp += right.to_a if right
 temp
 end

end

items = %w[bongo grimace monoid jewel plover nexus synergy]

tree = Tree.new
items.each { |x| tree.insert x}

str = tree.to_s * ","
str is now "bongo,grimace,jewel,monoid,nexus,plover,synergy"
arr = tree.to_a
arr is now:
["bongo",["grimace",[["jewel"],"monoid",[["nexus"],"plover",
["synergy"]]]]]

Note that the resulting array is as deeply nested as the depth of the tree from which it came.
You can, of course, use flatten to produce a non-nested array.

Storing an Infix Expression in a Tree
Here is another little contrived problem illustrating how a binary tree might be used (see
Listing 3.20). We are given a prefix arithmetic expression and want to store it in standard
infix form in a tree. (This is not completely unrealistic because the Ruby interpreter itself
stores expressions in a tree structure, although it is a couple of orders of magnitude greater
in complexity.)

We define a "standalone" method called addnode that will add a node to a tree in the
proper place. The result will be a tree in which every leaf is an operand and every non-leaf
node is an operator. We also define a new Tree method called infix, which will traverse
the tree in order and act as an iterator. One twist is that it adds in parentheses as it goes,
because prefix form is "parenthesis free" but infix form is not. The output would look more
elegant if only necessary parentheses were added, but we added them indiscriminately to
simplify the code.

Chapter 3. Manipulating Structured Data Page 55 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.20. Storing an Infix Expression in a Tree

class Tree

 # Assumes definitions from
 # previous example...

 def infix()
 if @left != nil
 flag = %w[* / + -].include? @left.data
 yield "(" if flag
 @left.infix { |y| yield y}
 yield ")" if flag
 end
 yield @data
 if @right != nil
 flag = %w[* / + -].include? @right.data
 yield "(" if flag
 @right.infix { |y| yield y} if @right != nil
 yield ")" if flag
 end
 end

end

def addnode(nodes)
 node = nodes.shift
 tree = Tree.new node
 if %w[* / + -].include? node
 tree.left = addnode nodes
 tree.right = addnode nodes
 end
 tree
end

prefix = %w[* + 32 * 21 45 - 72 + 23 11]
tree = addnode prefix

str = ""
tree.infix { |x| str += x}
str is now "(32+(21*45))*(72-(23+11))"

Additional Notes on Trees
We'll mention a few more notes on trees here. First of all, a tree is a special case of a graph
(as you will see shortly); in fact, it is a directed acyclic graph (DAG). Therefore, you can
learn more about trees by researching graph algorithms in general.

There is no reason that a tree should necessarily be binary; this is a convenient
simplification that frequently makes sense. However, it is conceivable to define a multiway
tree in which each node is not limited to two children but may have an arbitrary number.
In such a case, you would likely want to represent the child node pointers as an array of
object references.

Chapter 3. Manipulating Structured Data Page 56 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A B-tree is a specialized form of multiway tree. It is an improvement over a binary tree in
that it is always balanced (that is, its depth is minimal), whereas a binary tree in a
degenerate case can have a depth that is equal to the number of nodes it has. There is plenty
of information on the Web and in textbooks if you need to learn about B-trees. Also, the
principles we've applied to ordinary binary trees can be extended to B-trees as well.

A red-black tree is a specialized form of binary tree in which each node has a color (red or
black) associated with it. In addition, each node has a pointer back to its parent (meaning
that it is arguably not a tree at all because it isn't truly acyclic). A red-black tree maintains
its balance through rotations of its nodes; that is, if one part of the tree starts to get too
deep, the nodes can be rearranged so that depth is minimized (and in-order traversal
ordering is preserved). The extra information in each node aids in performing these
rotations.

Another tree that maintains its balance in spite of additions and deletions is the AVL
tree. This structure is named for its discoverers, the two Russian researchers Adel'son-
Vel'skii and Landis. An AVL tree is a binary tree that uses slightly more sophisticated
insertion and deletion algorithms to keep the tree balanced. It performs rotation of
subtrees similar to that done for red-black trees.

All these and more are potentially useful tree structures. If you need more information,
search the Web or consult any book on advanced algorithms.

Working with Graphs
A graph is a collection of nodes that interconnect with each other arbitrarily. (A tree is a
special case of a graph.) We will not get deeply into graphs because the theory and
terminology can have a steep learning curve. Before long, we would find ourselves
wandering out of the field of computer science entirely and into the province of
mathematicians.

Yet, graphs do have many practical applications. Consider any ordinary highway map, with
highways connecting cities, or consider a circuit diagram. These are both best represented
as graphs. A computer network can be thought of in terms of graph theory, whether it is a
LAN of a dozen systems or the Internet itself with its countless millions of nodes.

When we say "graph," we usually mean an undirected graph. In simplistic terms, this is a
graph in which the connecting lines don't have arrows; two nodes are either connected or
they are not. By contrast, a directed graph or digraph can have "one-way streets;" just
because node x is connected to node y doesn't mean that the reverse is true. (A node is also
commonly called a vertex.) Finally, a weighted graph has connections (or edges) that have
weights associated with them; these weights may express, for instance, the "distance"
between two nodes. We won't go beyond these basic kinds of graphs; if you're interested

Chapter 3. Manipulating Structured Data Page 57 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

in learning more, you can refer to the numerous references in computer science and
mathematics.

In Ruby, as in most languages, a graph can be represented in multiple ways—for example,
as a true network of interconnected objects or as a matrix storing the set of edges in the
graph. We will look at both of these as we show a few practical examples of manipulating
graphs.

Implementing a Graph As an Adjacency Matrix
The example here builds on two previous examples. In Listing 3.21, we implement an
undirected graph as an adjacency matrix, using the ZArray class to make sure new
elements are zero and inheriting from TriMatrix to get a lower triangular matrix form.

Note that in the kind of graph we are implementing here, a node cannot be connected to
itself, and two nodes can be connected by only one edge.

We provide a way to specify edges initially by passing pairs into the constructor. We also
provide a way to add and remove edges and detect the presence of edges. The vmax method
will return the highest-numbered vertex in the graph. The degree method will find the
degree of the specified vertex (that is, the number of edges that connect to it).

Finally, we provide two iterators, each_vertex and each_edge. These will iterate over
vertices and edges, respectively.

Chapter 3. Manipulating Structured Data Page 58 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.21. Adjacency Matrix

class LowerMatrix < TriMatrix

 def initialize
 @store = ZArray.new
 end

end

class Graph

 def initialize(*edges)
 @store = LowerMatrix.new
 @max = 0
 for e in edges
 e[0], e[1] = e[1], e[0] if e[1] > e[0]
 @store[e[0],e[1]] = 1
 @max = [@max, e[0], e[1]].max
 end
 end

def [](x,y)
 if x > y
 @store[x,y]
 elsif x < y
 @store[y,x]
 else
 0
 end
end

def []=(x,y,v)
 if x > y
 @store[x,y]=v
 elsif x < y
 @store[y,x]=v
 else
 0
 end
end

def edge? x,y
 x,y = y,x if x < y
 @store[x,y]==1
end
def add x,y
 @store[x,y] = 1
end

def remove x,y
 x,y = y,x if x < y
 @store[x,y] = 0
 if (degree @max) == 0
 @max -= 1
 end
end

 def vmax
 @max
 end

 def degree x
 sum = 0
 0.upto @max do |i|
 sum += self[x,i]
 end

Chapter 3. Manipulating Structured Data Page 59 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 sum
 end

 def each_vertex
 (0..@max).each { |v| yield v}
 end

 def each_edge
 for v0 in 0..@max
 for v1 in 0..v0-1
 yield v0,v1 if self[v0,v1]==1
 end
 end
 end

end

mygraph = Graph.new([1,0],[0,3],[2,1],[3,1],[3,2])

Print the degrees of all the vertices: 2 3 3 2
mygraph.each_vertex { |v| puts mygraph.degree(v)}
Print the list of edges
mygraph.each_edge do |a,b|
 puts "(#{ a} ,#{ b})"
end

Remove a single edge
mygraph.remove 1,3

Print the degrees of all the vertices: 2 2 2 2
mygraph.each_vertex { |v| p mygraph.degree v}

Determining Whether a Graph Is Fully Connected
Not all graphs are fully connected. That is, sometimes "you can't get there from here" (there
may be vertices that are unreachable from other vertices no matter what path you try).
Connectivity is an important property of a graph to be able to assess, telling whether the
graph is "of one piece." If it is, every node is ultimately reachable from every other node.

We won't explain the algorithm; you can refer to any discrete math book. However, we
offer the Ruby method in Listing 3.22.

Chapter 3. Manipulating Structured Data Page 60 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 3.22. Determining Whether a Graph Is Fully Connected

class Graph

 def connected?
 x = vmax
 k = [x]
 l = [x]
 for i in 0..@max
 l << i if self[x,i]==1
 end
 while !k.empty?
 y = k.shift
 # Now find all edges (y,z)
 self.each_edge do |a,b|
 if a==y || b==y
 z = a==y ? b : a
 if !l.include? z
 l << z
 k << z
 end
 end
 end
 end
 if l.size < @max
 false
 else
 true
 end
 end

end

mygraph = Graph.new([0,1], [1,2], [2,3], [3,0], [1,3])

puts mygraph.connected? # true

puts mygraph.euler_path? # true

mygraph.remove 1,2
mygraph.remove 0,3
mygraph.remove 1,3

puts mygraph.connected? # false

puts mygraph.euler_path? # false

A refinement of this algorithm could be used to determine the set of all connected
components (or cliques) in a graph that is not overall fully connected. We won't do this
here.

Determining Whether a Graph Has an Euler Circuit

There is no branch of mathematics, however abstract, which may not some day
be applied to phenomena of the real world.

—Nikolai Lobachevsky

Chapter 3. Manipulating Structured Data Page 61 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Sometimes we want to know whether a graph has an Euler circuit. This term comes from
the mathematician Leonhard Euler who essentially founded the field of topology by dealing
with a particular instance of this question. (A graph of this nature is sometimes called a
unicursive graph because it can be drawn without lifting the pen from the paper or
retracing.)

In the German town of Königsberg is an island in the middle of a river (near where the
river splits into two parts). Seven bridges crisscross at various places between opposite
shores and the island. The townspeople wondered whether it was possible to make a
walking tour of the city in such a way that you would cross each bridge exactly once and
return to your starting place. In 1735, Euler proved that this was impossible. This, then, is
not just a classic problem, but the original graph theory problem.

And, as with many things in life, once you know the answer, it is easy. It turns out that for
a graph to have an Euler circuit, it must possess only vertices with even degree. Here, we
add a little method to check that property:

class Graph

 def euler_circuit?
 return false if !connected?
 for i in 0..@max
 return false if degree(i) % 2 != 0
 end
 true
 end
end

mygraph = Graph.new([1,0],[0,3],[2,1],[3,1],[3,2])

flag1 = mygraph.euler_circuit? # false

mygraph.remove 1,3

flag2 = mygraph.euler_circuit? # true

Determining Whether a Graph Has an Euler Path
An Euler path is not quite the same as an Euler circuit. The word circuit implies that you
must return to your starting point; with a path, we are really only concerned with visiting
each edge exactly once. The following code fragment illustrates the difference:

class Graph

 def euler_path?
 return false if !connected?
 odd=0
 each_vertex do |x|
 if degree(x) % 2 == 1
 odd += 1

Chapter 3. Manipulating Structured Data Page 62 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
 end
 odd <= 2
 end

end

mygraph = Graph.new([0,1],[1,2],[1,3],[2,3],[3,0])

flag1 = mygraph.euler_circuit? # false
flag2 = mygraph.euler_path? # true

Hints for More Complex Graphs
It would be possible to write an entire book about graph algorithms. There are many good
ones out there already, and we are certainly not going to range that far outside our realm
of expertise.

However, we will offer a few hints for dealing with more sophisticated graphs. These hints
should get you started if you need to tackle a more advanced problem.

Suppose you want a directed graph rather than an undirected one. Just because vertex x
points to vertex y doesn't mean the converse is true. You should no longer use a lower
triangular matrix form but rather a full-fledged two-dimensional array (see the section
"Using Multidimensional Arrays"). You may still find ZArray useful (see the section
"Establishing a Default Value for New Array Elements"). You will likely want to implement
not just a degree method but rather a pair of them; in a directed graph, a vertex has an
in-degree and an out-degree.

Suppose you have a directed graph in which a node or vertex is allowed to point to itself.
Now you have potential nonzero numbers in the diagonal of your matrix rather than just
zeroes. Be sure your code doesn't disallow access to the diagonal.

Suppose you want a weighted graph, where each edge has a weight associated with it. Now
you would store the weight itself in the array rather than just a 1 or 0 (present or absent).

What about a multigraph, in which there can be multiple connections (edges) between the
same pair of vertices? If it is undirected, a lower triangular matrix will suffice, and you can
store the number of edges in each element (rather than just a 1 or 0). If it is directed, you
will need a two-dimensional array, and you can still store the number of edges in each
respective element.

What about bizarre combinations of these? For example, it is certainly conceivable to have
a weighted, directed multigraph (and if you have a valid everyday need for one, let us know

Chapter 3. Manipulating Structured Data Page 63 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

about your application). In this case, you would need a more complex data structure. One
possibility would be to store a small array in each element of the matrix.

For example, suppose vertex 3 has five edges connecting it with vertex 4; then element
3,4 of the adjacency matrix might store an array containing the associated weights.

The possibilities are endless and are beyond the scope of this book.

Summary
In this chapter, we've taken a good look at arrays, hashes, and more complex data
structures. You've seen some similarities between arrays and hashes (many of which are
due to the fact that both mix in Enumerable) as well as some differences. We've looked
at converting between arrays and hashes, and you've learned some interesting ways of
extending their standard behavior.

Where more advanced data structures are concerned, you've seen examples of inheriting
from an existing class and examples of limited delegation by encapsulating an instance of
another class. You've seen ways to store data creatively, ways to make use of various data
structures, and how to create iterators for these classes.

In the next chapter, we are again covering the topic of manipulation of data. However,
where we have so far been concerned with objects stored in memory, we will now be looking
at secondary storage—working with files (and I/O in general), databases, and persistent
objects.

Chapter 3. Manipulating Structured Data Page 64 Return to Table of Contents

Chapter 3. Manipulating Structured Data
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Manipulating Structured Data
	Working with Arrays
	Working with Hashes
	Working with Stacks and Queues
	Working with Trees
	Working with Graphs
	Summary

