
Table of Contents

OOP and Dynamicity in Ruby... 1
Everyday OOP Tasks... 2
More Advanced Techniques.. 27
Working in Advanced Programming Disciplines... 41
Summary... 57

Chapter 5. OOP and Dynamicity in Ruby

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 5. OOP and Dynamicity in Ruby
IN THIS CHAPTER

• Everyday OOP Tasks
• More Advanced Techniques
• Working in Advanced Programming Disciplines
• Summary

Just as the introduction of the irrational numbers… is a convenient myth [which]
simplifies the laws of arithmetic… so physical objects are postulated entities
which round out and simplify our account of the flux of existence…. The
conceptional scheme of physical objects is [likewise] a convenient myth, simpler
than the literal truth and yet containing that literal truth as a scattered part.

—Willard Van Orman Quine

This is an unusual chapter. Whereas most of the chapters in this book deal with a specific
problem domain, this one doesn't. If the problem space is viewed as stretching out on one
axis of a graph, this chapter extends out on the other axis, encompassing a slice of each of
the problem domains. This is because object-oriented programming and dynamicity aren't
problem domains themselves, but are paradigms that can be applied to any problem
whether it be system administration, low-level networking, or Web development.

For this reason, much of this chapter's information should already be familiar to a
programmer who knows Ruby. In fact, the rest of the book wouldn't make sense without
some of the fundamental knowledge here. Any Ruby programmer knows how to create a
subclass, for instance.

This raises the question of what to include and what to exclude. Does every Ruby
programmer know about the extend method? What about the instance_eval method?
What is obvious to one person might be big news to another.

We have decided to err on the side of completeness. We include in this chapter some of
the more esoteric tasks you might want to do with dynamic OOP in Ruby, but we also
include the more routine tasks in case anyone is unfamiliar with them. We go right down
to the simplest level because people don't agree on where the middle level ends. And we
have tried to offer a little extra information even on the most basic of topics to justify their
inclusion here. On the other hand, topics that are fully covered elsewhere in the book are
omitted here.

Chapter 5. OOP and Dynamicity in Ruby Page 1 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

We'll also make two other comments. First of all, there is nothing magical about dynamic
OOP. Ruby's object orientation and its dynamic nature do interact with each other, but
they aren't inherently interrelated; we put them in a single chapter largely for convenience.
Second, some language features might be mentioned here that aren't strictly related to
either topic. Consider this to be cheating, if you will. We wanted to put them somewhere.

Everyday OOP Tasks

Of his quick objects hath the mind no part,

Nor his own vision holds what it doth catch….

—William Shakespeare, Sonnet 113

If you don't already understand OOP, you won't learn it here. And if you don't already
understand OOP in Ruby, you probably won't learn it here, either. If you're rusty on those
concepts, you can scan Chapter 1, "Ruby in Review," where we cover it rapidly (or you can
look at another book).

On the other hand, much of this material is tutorial oriented and fairly elementary. So it
will be of some value to the beginner and perhaps less value to the intermediate Ruby
programmer. We maintain that a book is a random-access storage device so that you can
easily skip the parts that don't interest you.

Using Multiple Constructors
There is no real constructor in Ruby as there is in C++ or Java. The concept is certainly
there because objects have to be instantiated and initialized; but the behavior is somewhat
different.

In Ruby, a class has a class method new, which is used to instantiate new objects. The
new method calls the user-defined special method initialize, which then initializes
the attributes of the object appropriately, and new returns a reference to the new object.

But what if we want to have multiple constructors for an object? How should we handle
that?

Nothing prevents us from creating additional class methods that return new objects.
Listing 5.1 shows a contrived example in which a rectangle can have two side lengths and
three color values. We create additional class methods that assume certain defaults for
some of the parameters. (For example, a square is a rectangle with all sides the same
length.)

Chapter 5. OOP and Dynamicity in Ruby Page 2 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch01#ch01

Listing 5.1. Multiple Constructors

class ColoredRectangle

 def initialize(r, g, b, s1, s2)
 @r, @g, @b, @s1, @s2 = r, g, b, s1, s2
 end

 def ColoredRectangle.whiteRect(s1, s2)
 new(0xff, 0xff, 0xff, s1, s2)
 end

 def ColoredRectangle.grayRect(s1, s2)
 new(0x88, 0x88, 0x88, s1, s2)
 end

 def ColoredRectangle.coloredSquare(r, g, b, s)
 new(r, g, b, s, s)
 end
 def ColoredRectangle.redSquare(s)
 new(0xff, 0, 0, s, s)
 end

 def inspect
 "#@r #@g #@b #@s1 #@s2"
 end
 end

 a = ColoredRectangle.new(0x88, 0xaa, 0xff, 20, 30)
 b = ColoredRectangle.whiteRect(15,25)
 c = ColoredRectangle.redSquare(40)

So we can define any number of methods we want that create objects according to various
specifications. Whether the term constructor is appropriate here is a question that we will
leave to the language lawyers.

Creating Instance Attributes
An instance attribute in Ruby is always prefixed by an @ sign. It is like an ordinary variable
in that it springs into existence when it is first assigned.

In OO languages, we frequently create methods that access attributes to avoid issues of
data hiding. We want to have control over how the internals of an object are accessed from
the outside. Typically we use setter and getter methods for this purpose (although in Ruby
we don't typically use these terms). These are simply methods used to assign (set) a value
or retrieve (get) a value, respectively.

Of course, it is possible to create these functions by hand, as shown here.

class Person

 def name
 @name
 end

Chapter 5. OOP and Dynamicity in Ruby Page 3 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def name=(x)
 @name = x
 end
 def age
 @age
 end

 # ...

end

However, Ruby gives us a shorthand for creating these methods. The attr method takes
a symbol as a parameter and creates the associated attribute. It also creates a getter of the
same name. If the optional second parameter is true, it will create a setter as well.

class Person
 attr :name, true # Create @name, name, name=
 attr :age # Create @age, age
end

The related methods attr_reader, attr_writer, and attr_accessor take any
number of symbols as parameters. The first will only create read methods (to get the value
of an attribute); the second will create only write methods (to set values); and the third
will create both. For example,

class SomeClass
 attr_reader :a1, :a2 # Creates @a1, a1, @a2, a2
 attr_writer :b1, :b2 # Creates @b1, a1=, @b2, b2=
 attr_reader :c1, :c2 # Creates @c1, c1, c1=, @c2, c2, c2=
 # ...
end

Recall that an assignment to a writer of this form can only be done with a receiver. So
within a method, the receiver self must be used.

More Elaborate Constructors
As objects grow more complex, they accumulate more attributes that must be initialized
when an object is created. The corresponding constructor can be long and cumbersome,
forcing us to count parameters and wrap the line past the margin.

One good way to deal with this complexity is to pass in a block to the initialize method
(see Listing 5.2). We can then evaluate the block in order to initialize the object. The trick
is to use instance_eval instead of eval in order to evaluate the block in the context of
the object rather than that of the caller.

Chapter 5. OOP and Dynamicity in Ruby Page 4 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.2. A Fancy Constructor

class PersonalComputer

 attr_accessor :manufacturer,
 :model, :processor, :clock,
 :ram, :disk, :monitor,
 :colors, :vres, :hres, :net

 def initialize(&block)
 instance_eval █
 end

 # Other methods...

end

desktop = PersonalComputer.new do
 self.manufacturer = "Acme"
 self.model = "THX-1138"
 self.processor = "986"
 self.clock = 2.4 # GHz
 self.ram = 1024 # Mb
 self.disk = 800 # Gb
 self.monitor = 25 # inches
 self.colors = 16777216
 self.vres = 1280
 self.hres = 1600
 self.net = "T3"
end

p desktop

Several things should be noted here. First of all, we're using accessors for our attributes
so that we can assign values to them in an intuitive way. Second, the reference to self is
necessary because a setter method always takes an explicit receiver to distinguish the
method call from an ordinary assignment to a local variable. Of course, rather than define
accessors, we could use setter functions.

Obviously, we could perform any arbitrary logic we want inside the body of this block. For
example, we could derive certain fields from others by computation.

Also, what if you didn't really want an object to have accessors for each of the attributes?
If you prefer, you can use undef (at the bottom of the constructor block) to get rid of any
or all of these. At the very least, this could prevent accidental assignment of an attribute
from outside the object.

Creating Class-level Attributes and Methods
A method or attribute isn't always associated with a specific instance of a class; it can be
associated with the class itself. The typical example of a class method is the new method;
it is always invoked in this way because it is called in order to create a new instance (and
thus can't belong to any particular instance).

Chapter 5. OOP and Dynamicity in Ruby Page 5 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We can define class methods of our own if we want. We have already seen this in "Using
Multiple Constructors." But their functionality certainly isn't limited to constructors; they
can be used for any general-purpose task that makes sense at the class level.

In this next highly incomplete fragment, we assume that we are creating a class to play
sound files. The play method can reasonably be implemented as an instance method;
we can instantiate many objects referring to many different sound files. But the
detectHardware method has a larger context; depending on our implementation, it
might not even make sense to create new objects if this method fails. Its context is that of
the whole sound-playing environment rather than any particular sound file.

class SoundPlayer

 MAX_SAMPLE = 192

 def SoundPlayer.detectHardware
 # ...
 end

 def play
 # ...
 end

end

Let's note that there is another way to declare this class method. The following fragment
is essentially the same:

class SoundPlayer

 MAX_SAMPLE = 192

 def play
 # ...
 end

end

def SoundPlayer.detectHardware
 # ...
end

The only difference relates to constants declared in the class. When the class method is
declared outside of its class declaration, these constants aren't in scope. For example,
detectHardware in the first fragment can refer directly to MAX_SAMPLE if it needs to;
in the second fragment, the notation SoundPlayer::MAX_SAMPLE would have to be used
instead.

Chapter 5. OOP and Dynamicity in Ruby Page 6 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Not surprisingly, there are class variables as well as class methods. These begin with a
double @ sign, and their scope is the class rather than any instance of the class.

The traditional example of using class variables is counting instances of the class as they
are created. But they can actually be used for any purpose in which the information is
meaningful in the context of the class rather than the object. For a different example, see
Listing 5.3.

Listing 5.3. Class Variables and Methods

class Metal

 @@current_temp = 70

 attr_accessor :atomic_number

 def Metal.current_temp=(x)
 @@current_temp = x
 end

 def Metal.current_temp
 @@current_temp
 end

 def liquid?
 @@current_temp >= @melting
 end

 def initialize(atnum, melt)
 @atomic_number = atnum
 @melting = melt
 end

end

aluminum = Metal.new(13, 1236)
copper = Metal.new(29, 1982)
gold = Metal.new(79, 1948)
Metal.current_temp = 1600

puts aluminum.liquid? # true
puts copper.liquid? # false
puts gold.liquid? # false

Metal.current_temp = 2100

puts aluminum.liquid? # true
puts copper.liquid? # true
puts gold.liquid? # true

Note here that the class variable is initialized at the class level before it is used in a class
method. Note also that we can access a class variable from an instance method, but we
can't access an instance variable from a class method. After a moment of thought, this
makes sense.

Chapter 5. OOP and Dynamicity in Ruby Page 7 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But what happens if you try? What if we try to print the attribute @atomic_number from
within the Metal.current_temp method? We find that it seems to exist—it doesn't
cause an error—but it has the value nil. What is happening here?

The answer is that we're not actually accessing the instance variable of class Metal at all.
We're accessing an instance variable of class Class instead. (Remember that in Ruby,
Class is a class!)

Such a beast is called a class instance variable. We would love to give you a creative example
of how to use one, but we can't think of any use for it offhand. We summarize the situation
in Listing 5.4.

Listing 5.4. Class and Instance Data

class MyClass

 SOME_CONST = "alpha" # A class-level constant

 @@var = "beta" # A class variable
 @var = "gamma" # A class instance variable

 def initialize
 @var = "delta" # An instance variable
 end

 def mymethod
 puts SOME_CONST # (the class constant)
 puts @@var # (the class variable)
 puts @var # (the instance variable)
 end

 def MyClass.classmeth1
 puts SOME_CONST # (the class constant)
 puts @@var # (the class variable)
 puts @var # (the class instance variable)
 end

 end

 def MyClass.classmeth2
 puts MyClass::SOME_CONST # (the class constant)
 puts @@var # (the class variable)
 puts @var # (the class instance variable)
 end

 myobj = MyClass.new
 MyClass.classmeth1 # alpha, beta, gamma
 MyClass.classmeth2 # alpha, beta, gamma
 myobj.mymethod # alpha, beta, delta

We should mention that a class method can be made private with the method
private_class_method. This works the same way private works at the instance level.

Chapter 5. OOP and Dynamicity in Ruby Page 8 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For additional information refer to "Automatically Defining Class-level Readers and
Writers."

Inheriting from a Superclass
We can inherit from a class by using the < symbol:

class Boojum < Snark
 # ...
end

Given this declaration, we can say that the class Boojum is a subclass of the class Snark,
or in the same way, Snark is a superclass of Boojum. As we all know, every Boojum is a
Snark, but not every Snark is a Boojum.

The purpose of inheritance, of course, is to add or enhance functionality. We are going
from the more general to the more specific.

As an aside, many languages such as C++ implement multiple inheritance. Ruby (like Java
and some others) doesn't allow MI, but the mixin facility can compensate for this; see the
section "Working with Modules."

Let's look at a (slightly) more realistic example. Suppose that we have a Person class and
want to create a Student class that derives from it. We'll define Person this way:

class Person

 attr_accessor :name, :age, :sex

 def initialize(name, age, sex)
 @name, @age, @sex = name, age, sex
 end

 # ...

end

And we'll then define Student in this way:

class Student < Person

 attr_accessor :idnum, :hours

 def initialize(name, age, sex, idnum, hours)
 super(name, age, sex)
 @idnum = idnum
 @hours = hours
 end

Chapter 5. OOP and Dynamicity in Ruby Page 9 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # ...

end

Create two objects
a = Person.new("Dave Bowman", 37, "m")
b = Student.new("Franklin Poole", 36, "m", "000-13-5031", 24)

Now let's look at what we've done here. What is this super that we see called from
Student's initialize method? It is simply a call to the corresponding method in the
parent class. As such, we give it three parameters, whereas our own initialize method
takes five.

It's not always necessary to use super in such a way, but it is often convenient. After all,
the attributes of a class form a subset of the attributes of the parent class; so why not use
the parent's constructor to initialize them?

Concerning what inheritance really means, it definitely represents the "is-a" relationship.
A Student is-a Person, just as we expect. We'll make three other observations.

First, every attribute (and method) of the parent is reflected in the child. If Person had a
height attribute, Student would inherit it; and if the parent had a method named
say_hello, the child would inherit that, too.

Second, the child can have additional attributes and methods, as you have already seen.
That is why the creation of a subclass is often referred to as extending a superclass.

Third, the child can override or redefine any of the attributes and methods of its parent.
This brings up the question of how a method call is resolved. How do I know whether I'm
calling the method of this particular class or its superclass?

The short answer is: You don't know, and you don't care. If we invoke a method on a
Student object, the method for that class will be called if it exists. If it doesn't, the method
in the superclass will be called, and so on. We say "and so on" because every class (except
Object) has a superclass.

What if we specifically want to call a superclass method, but we don't happen to be in the
corresponding method? We can always create an alias in the subclass before we do
anything with it.

class Student

 # Assuming Person has a say_hello method...

Chapter 5. OOP and Dynamicity in Ruby Page 10 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 alias :say_hi :say_hello

 def say_hello
 puts "Hi, there."
 end

 def formal_greeting
 # Say hello the way my superclass would.
 say_hi
 end

end

There are various subtleties relating to inheritance that we don't discuss here, but this is
essentially how it works. Be sure to refer to the next section.

Testing Types or Classes of Objects
Frequently we will want to know: What kind of object is this, or how does it relate to this
class? There are many ways of making a determination like this.

First of all, the class method (that is to say, the instance method named class) will
always return the class of an object. A synonym is the type method.

s = "Hello"
n = 237
sc = s.class # String
st = s.type # String
nc = n.class # Fixnum

Don't be misled into thinking that the thing returned by class or type is a string
representing the class. It is an actual instance of the class Class. Thus if we wanted, we
could call a class method of the target type as though it were an instance method of
Class (which it is).

s2 = "some string"
var = s2.class # String
my_str = var.new("Hi...") # A new string

We could compare such a variable with a constant class name to see if they were equal; we
could even use a variable as the superclass from which to define a subclass. Confused? Just
remember that in Ruby, Class is an object and Object is a class.

Sometimes we want to compare an object with a class to see whether the object belongs to
that class. The method instance_of? accomplishes this.

puts (5.instance_of? Fixnum) # true

Chapter 5. OOP and Dynamicity in Ruby Page 11 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

puts ("XYZZY".instance_of? Fixnum) # false
puts ("PLUGH".instance_of? String) # true

But what if we want to take inheritance relationships into account? The kind_of? method
(similar to instance_of?) takes this issue into account. A synonym is is_a? naturally
enough because we are describing the classic "is-a" relationship.

n = 9876543210
flag1 = n.instance_of? Bignum # true
flag2 = n.kind_of? Bignum # true
flag3 = n.is_a? Bignum # true
flag3 = n.is_a? Integer # true
flag4 = n.is_a? Numeric # true
flag5 = n.is_a? Object # true
flag6 = n.is_a? String # false
flag7 = n.is_a? Array # false

Obviously, kind_of or is_a? is more generalized than the instance_of? relationship.
For an example from everyday life, every dog is a mammal, but not every mammal is a dog.

There is one surprise here for the Ruby neophyte. Any module that is mixed in by a class
will maintain the "is-a" relationship with the instances. For example, the Array class
mixes in Enumerable; this means that any array is a kind of enumerable entity.

x = [1, 2, 3]
flag8 = x.kind_of? Enumerable # true
flag9 = x.is_a? Enumerable # true

We can also use the numeric relational operators in a fairly intuitive way to compare one
class to another. We say intuitive because the less-than operator is used to denote
inheritance from a superclass.

flag1 = Integer < Numeric # true
flag2 = Integer < Object # true
flag3 = Object == Array # false
flag4 = IO >= File # true
flag5 = Float < Integer # false

Every class typically has a relationship operator === defined. The expression class ===
instance will be true if the instance belongs to the class. The relationship operator is also
known as the case equality operator because it is used implicitly in a case statement. This
is therefore a way to act on the type or class of an expression.

For additional information see the section "Testing Equality of Objects."

Chapter 5. OOP and Dynamicity in Ruby Page 12 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We should also mention the respond_to? method. This is used when we don't really care
what the class is, but just want to know whether it implements a certain method. This, of
course, is a rudimentary kind of type information. (In fact, we might say that this is the
most important type information of all.) The method is passed a symbol and an optional
flag (indicating whether to include private methods in the search).

Search public methods
if wumpus.respond_to?(:bite)
 puts "It's got teeth!"
else
 puts "Go ahead and taunt it."
end

Optional second parameter will search
private methods also.

if woozle.respond_to?(:bite,true)
 puts "Woozles bite!"
else
 puts "Ah, the non-biting woozle."
end

Sometimes we want to know what class is the immediate parent of an object or class. The
instance method superclass of class Class can be used for this.

array_parent = Array.superclass # Object
fn_parent = 237.class.superclass # Integer
obj_parent = Object.superclass # nil

Every class except Object will have a superclass.

Testing Equality of Objects

All animals are equal, but some are more equal than others.

—George Orwell, Animal Farm

When you write classes, it's convenient if the semantics for common operations are the
same as for Ruby's built-in classes. For example, if your classes implement objects that
can be ranked, it makes sense to implement the method <=> and mix in the
Comparable module. Doing so means that all the normal comparison operators work
with objects of your class.

However, the picture is less clear when it comes to dealing with object equality. Ruby
objects implement five different methods that test for equality. Your classes might end up
implementing some of these, so let's look at each in turn.

Chapter 5. OOP and Dynamicity in Ruby Page 13 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The most basic comparison is the equal? method (that comes from Object), which
returns true if its receiver and parameter have the same object ID. This is a fundamental
part of the semantics of objects, and shouldn't be overridden in your classes.

The most common test for equality uses our old friend ==, which tests the values of its
receiver with its argument. This is probably the most intuitive test for equality.

Next on the scale of abstraction is the method eql?, which is part of Object. (Actually,
eql? is implemented in the Kernel module, which is mixed in to Object.) Like ==,
eql? compares its receiver and its argument, but is slightly stricter. For example, different
numeric objects will be coerced into a common type when compared using ==, but numbers
of different types will never test equal using eql?.

flag1 = (1 == 1.0) # true
flag2 = (1.eql?(1.0)) # false

The eql? method exists for one reason: It is used to compare the values of hash keys. If
you want to override Ruby's default behavior when using your objects as hash keys, you'll
need to override the methods eql? and hash for those objects.

Two more equality tests are implemented by every object. The === method is used to
compare the target in a case statement against each of the selectors, using
selector===target. Although apparently complex, this rule allows Ruby case statements
to be very intuitive in practice. For example, you can switch based on the class of an object:

case an_object
 when String
 puts "It's a String."
 when Number
 puts "It's a Number."
 else
 puts "It's something else entirely."
end

This works because class Module implements === to test whether its parameter is an
instance of its receiver or the receiver's parents. So, if an_object is the string "cat", the
expression String === an_object would be true, and the first clause in the case
statement would fire.

Finally, Ruby implements the match operator =~. Conventionally, this is used by strings
and regular expressions to implement pattern matching. However, if you find a use for it
in some unrelated classes, you're free to overload it.

Chapter 5. OOP and Dynamicity in Ruby Page 14 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The equality tests == and =~ also have negated forms, != and !~, respectively. These are
implemented internally by reversing the sense of the non-negated form. This means that
if you implement (say) the method ==, you also get the method != for free.

Controlling Access to Methods
In Ruby, an object is pretty much defined by the interface it provides: the methods it makes
available to others. However, when writing a class, you often need to write other, helper
methods, used within your class but dangerous if available externally. That is where the
private method of class Module comes in handy.

You can use private in two different ways. If you call private with no parameters in
the body of a class or method definition, subsequent methods will be made private to that
class or module. Alternatively, you can pass a list of method names (as symbols) to
private, and these named methods will be made private. Listing 5.5 shows both forms.

Listing 5.5. Private Methods

class Bank
 def openSafe
 # ...
 end
 def closeSafe
 # ...
 end

 private :openSafe, :closeSafe
 def makeWithdrawl(amount)
 if accessAllowed
 openSafe
 getCash(amount)
 closeSafe
 end
 end

 # make the rest private
 private

 def getCash
 # ...
 end
 def accessAllowed
 # ...
 end
end

Because the attr family of statements effectively just defines methods, attributes are
affected by the access control statements such as private.

The implementation of private might seem strange, but is actually quite clever. Private
methods cannot be called with an explicit receiver: They are always called with an implicit
receiver of self. This means that you can never invoke a private method in another

Chapter 5. OOP and Dynamicity in Ruby Page 15 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

object: There is no way to specify that other object as the receiver of the method call. It
also means that private methods are available to subclasses of the class that defines
them, but again only in the same object.

The protected access modifier is less restrictive. Protected methods can only be accessed
by instances of the defining class and its subclasses. You can specify a receiver with
protected methods, so you can invoke those in different objects (as long as they are objects
of the same class as the sender). A common use for protected methods is defining accessors
to allow two objects of the same type to cooperate with each other. In the following example,
objects of class Person can be compared based on the person's age, but that age isn't
accessible outside the Person class.

class Person

 def initialize(name, age)
 @name, @age = name, age
 end
 def <=>(other)
 age <=> other.age
 end

 attr_reader :name, :age

 protected :age

end

p1 = Person.new("fred", 31)
p2 = Person.new("agnes", 43)
compare = (p1 <=> p2) # -1
x = p1.age # Error!

To complete the picture, the access modifier public is used to make methods public. This
shouldn't be a surprise.

As a final twist, normal methods defined outside a class or module definition (that is, the
methods defined at the top level) are made private by default. Because they are defined
in class Object, they are globally available, but they cannot be called with a receiver.

Copying an Object
The Ruby built-in methods Object#clone and #dup produce copies of their receiver.
They differ in the amount of context they copy. The dup method copies just the object's
content, whereas clone also preserves things such as singleton classes associated with
the object.

s1 = "cat"

Chapter 5. OOP and Dynamicity in Ruby Page 16 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def s1.upcase
 "CaT"
end

s1_dup = s1.dup
s1_clone = s1.clone
s1 #=> "cat"
s1_dup.upcase #=> "CAT" (singleton method not copied)
s1_clone.upcase #=> "CaT" (uses singleton method)

Both dup and clone are shallow copies: They copy the immediate contents of their
receiver only. If the receiver contains references to other objects, those objects aren't in
turn copied; the duplicate simply holds references to them. The following example
illustrates this. The object arr2 is a copy of arr1, so changing entire elements, such as
arr2[2] has no effect on arr1. However, both the original array and the duplicate contain
a reference to the same String object, so changing its contents via arr2 also affects the
value referenced by arr1.

arr1 = [1, "flipper", 3]
arr2 = arr1.dup

arr2[2] = 99
arr2[1][2] = 'a'

arr1 # [1, "flapper", 3]
arr2 # [1, "flapper", 99]

Sometimes, you want a deep copy, where the entire object tree rooted in one object is
copied to create the second object. This way, there is guaranteed to be no interaction
between the two. Ruby provides no built-in method to perform a deep copy, but there are
a couple of techniques you can use to implement one.

The pure way to do it is to have your classes implement a deep_copy method. As part of
its processing, this method calls deep_copy recursively on all the objects referenced by
the receiver. You then add a deep_copy method to all the Ruby built-in classes that you
use.

Fortunately, there's a quicker hack using the Marshal module. If you use marshaling to
dump an object into a string and then load it back into a new object, that new object will
be a deep copy of the original.

arr1 = [1, "flipper", 3]
arr2 = Marshal.load(Marshal.dump(arr1))

arr2[2] = 99
arr2[1][2] = 'a'

Chapter 5. OOP and Dynamicity in Ruby Page 17 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

arr1 # [1, "flipper", 3]
arr2 # [1, "flapper", 99]

In this case, notice how changing the string via arr2 doesn't affect the string referenced
by arr1.

Working with Modules
There are two basic reasons to use modules in Ruby. The first is simply namespace
management; we'll have fewer name collisions if we store constants and methods in
modules. A method stored in this way (a module method) is called with the module name;
that is, without a real receiver. This is analogous to the way a class method is called. If we
see calls such as File.ctime and FileTest.exist?, we can't tell just from context that
File is a class and FileTest is a module.

The second reason is more interesting: We can use a module as a mixin. A mixin is similar
to a specialized implementation of multiple inheritance in which only the interface portion
is inherited. We've talked about module methods, but what about instance methods? A
module isn't a class, so it can't have instances; and an instance method can't be called
without a receiver.

As it turns out, a module can have instance methods. These become part of whatever class
does the include of the module.

module MyMod

 def meth1
 puts "This is method 1"
 end

end

class MyClass

 include MyMod

 # ...
end

x = MyClass.new
a.meth1 # This is method 1

Here MyMod is mixed into MyClass, and the instance method meth1 is inherited. You
have also seen an include done at the top level; in that case, the module is mixed into
Object as you might expect.

Chapter 5. OOP and Dynamicity in Ruby Page 18 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But what happens to our module methods, if there are any? You might think they would
be included as class methods, but for whatever reason, Ruby doesn't behave that way. The
module methods aren't mixed in.

But we have a trick we can use if we want that behavior. There is a hook called
append_features that we can override. It is called with a parameter that is the
destination class or module (into which this module is being included). For an example of
its use, see Listing 5.6.

Listing 5.6. Including a Module with append_features

module MyMod

 def MyMod.append_features(someClass)
 def someClass.modmeth
 puts "Module (class) method"
 end
 super # This call is necessary!
 end

 def meth1
 puts "Method 1"
 end

 end

 class MyClass

 include MyMod

 def MyClass.classmeth
 puts "Class method"
 end

 def meth2
 puts "Method 2"
 end

 end

 x = MyClass.new

 # Output:
 MyClass.classmeth # Class method
 x.meth1 # Method 1
 MyClass.modmeth # Module (class) method
 x.meth2 # Method 2

This example is worth examining in detail. First of all, you should understand that
append_features isn't just a hook that is called when an include happens; it actually
does the work of the include operation. That's why the call to super is needed; without
it, the rest of the module (in this case, meth1) wouldn't be included at all.

Chapter 5. OOP and Dynamicity in Ruby Page 19 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Also note that within the append_features call, there is a method definition. This looks
unusual, but it works because the inner method definition is a singleton method (class-
level or module-level). An attempt to define an instance method in the same way would
result in a Nested method error.

Conceivably a module might want to determine the initiator of a mixin. The
append_features method can also be used for this because the class is passed in as a
parameter.

It is also possible to mix in the instance methods of a module as class methods. An example
is shown in Listing 5.7.

Listing 5.7. Module Instance Methods Becoming Class Methods

class MyMod

 def meth3
 puts "Module instance method meth3"
 puts "can become a class method."
 end

end

class MyClass

 class << self # Here, self is MyClass
 include MyMod
 end

end

MyClass.meth3

Output:
Module instance method meth3
can become a class method.

We've been talking about methods. What about instance variables? Although it is certainly
possible for modules to have their own instance data, it usually isn't done. However, if you
find a need for this capability, nothing is stopping you from using it.

It is possible to mix a module into an object rather than a class (for example, with the
extend method). See the section "Specializing an Individual Object."

It's important to understand one more fact about modules. It is possible to define methods
in your class that will be called by the mixin. This is a very powerful technique that will
seem familiar to those who have used Java interfaces.

Chapter 5. OOP and Dynamicity in Ruby Page 20 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The classic example (which we've seen elsewhere) is mixing in the Comparable module
and defining a <=> method. Because the mixed-in methods can call the comparison
method, we now have such operators as <, >, <=, and so on.

Another example is mixing in the Enumerable module and defining <=> and an iterator
each. This will give us numerous useful methods such as collect, sort, min, max, and
select.

You can also define modules of your own to be used in the same way. The principal
limitation is the programmer's imagination.

Transforming or Converting Objects
Sometimes an object comes in exactly the right form at the right time, but sometimes we
need to convert it to something else or pretend it's something it isn't. A good example is
the well-known to_s method.

Every object can be converted to a string representation in some fashion. But not every
object can successfully masquerade as a string. That in essence is the difference between
the to_s and to_str methods. Let's elaborate on that.

Methods such as puts and contexts such as #{...} interpolation in strings expect to
receive a String as a parameter. If they don't, they ask the object they did receive to
convert itself to a String by sending it a to_s message. This is where you can specify how
your object will appear when displayed; simply implement a to_s method in your class
that returns an appropriate String.

class Pet

 def initialize(name)
 @name = name
 end

 # ...

 def to_s
 "Pet: #@name"
 end

end

Other methods (such as the String concatenation operator +) are more picky; they expect
you to pass in something that is really pretty close to a String. In this case, Matz decided
not to have the interpreter call to_s to convert nonstring arguments because he felt this
would lead to too many errors. Instead, the interpreter invokes a stricter method,

Chapter 5. OOP and Dynamicity in Ruby Page 21 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to_str. Of the built-in classes, only String and Exception implement to_str, and
only String, Regexp, and Marshal call it. Typically when you see the runtime error
TypeError: Failed to convert xyz into String, you know that the interpreter
tried to invoke to_str and failed.

You can implement to_str yourself. For example, you might want to allow numbers to
be concatenated to strings:

class Numeric

 def to_str
 to_s
 end

end

label = "Number " + 9 # "Number 9"

An analogous situation holds for arrays. The method to_a is called to convert an object
to an array representation, and to_ary is called when an array is expected.

An example of when to_ary is called is with a multiple assignment. Suppose that we have
a statement of this form:

a, b, c = x

Assuming that x were an array of three elements, this would behave in the expected way.
But if it isn't an array, the interpreter will try to call to_ary to convert it to one. For what
it's worth, the method we define can be a singleton (belonging to a specific object). The
conversion can be completely arbitrary; here we show an (unrealistic) example in which a
string is converted to an array of strings:

class String

 def to_ary
 return self.split("")
 end

end

str = "UFO"
a, b, c = str # ["U", "F", "O"]

The inspect method implements another convention. Debuggers, utilities such as irb,
and the debug print method p use the inspect method to convert an object to a printable

Chapter 5. OOP and Dynamicity in Ruby Page 22 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

representation. If you want classes to reveal internal details when being debugged, you
should override inspect.

There is another situation in which we'd like to be able to do conversions of this sort under
the hood. As a language user, you'd expect to be able to add a Fixnum to a Float, or divide
a Complex number by a rational number. However, this is a problem for a language
designer. If the Fixnum method + receives a Float as an argument, what can it do? It
only knows how to add Fixnum values. Ruby implements the coerce mechanism to deal
with this.

When (for example) + is passed an argument it doesn't understand, it tries to coerce the
receiver and the argument to compatible types and then do the addition based on those
types. The pattern for using coerce in a class you write is straightforward:

class MyNumberSystem

 def +(other)
 if other.kind_of?(MyNumberSystem)
 result = some_calculation_between_self_and_other
 MyNumberSystem.new(result)
 else
 n1, n2 = other.coerce(self)
 n1 + n2
 end
 end

end

The value returned by coerce is a two-element array containing its argument and its
receiver converted to compatible types.

In this example, we're relying on the type of our argument to perform some kind of coercion
for us. If we want to be good citizens, we also need to implement coercion in our class,
allowing other types of numbers to work with us. To do this, we need to know the specific
types that we can work with directly, and convert ourselves to those types when
appropriate. When we can't do that, we fall back on asking our parent.

def coerce(other)
 if other.kind_of?(Float)
 return other, self.to_f
 elsif other.kind_of?(Integer)
 return other, self.to_i
 else
 super
 end
end

Chapter 5. OOP and Dynamicity in Ruby Page 23 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Of course, for this to work, our object must implement to_i and to_f.

You can use coerce as part of the solution for implementing a Perl-like auto-conversion
of strings to numbers:

class String

 def coerce(n)
 if self['.']
 [n, Float(self)]
 else
 [n, Integer(self)]
 end
 end

end

x = 1 + "23" # 24
y = 23 * "1.23" # 29.29

We don't necessarily recommend this. But we do recommend that you implement a
coerce method whenever you are creating some kind of numeric class.

Creating Data-only Classes (Structs)
Sometimes you need to group together a bunch of related data with no other associated
processing. You could do this by defining a class:

class Address

 attr_accessor :street, :city, :state

 def initialize(street1, city, state)
 @street, @city, @state = street, city, state
 end

end

books = Address.new("411 Elm St", "Dallas", "TX")

This works, but it's tedious, with a fair amount of repetition. That's why the built-in class
Struct comes in handy. In the same way that convenience methods such as
attr_accessor define methods to access attributes, the class Struct defines classes
that contain just attributes. These classes are structure templates.

Address = Struct.new("Address", :street, :city, :state)
books = Address.new("411 Elm St", "Dallas", "TX")

Chapter 5. OOP and Dynamicity in Ruby Page 24 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

So, why do we pass the name of the structure to be created in as the first parameter of the
constructor, and also assign the result to a constant (Address, in this case)?

When we create a new structure template by calling Struct.new, a new class is created
within class Struct itself. This class is given the name passed in as the first parameter,
and the attributes given as the rest of the parameters. This means that if we wanted, we
could access this newly created class within the namespace of class Struct.

Struct.new("Address", :street, :city, :state)
books = Struct::Address.new("411 Elm St", "Dallas", "TX")

After you've created a structure template, you call its new method to create new instances
of that particular structure. You don't have to assign values to all the attributes in the
constructor: Those that you omit will be initialized to nil. Once created, you can access
the structure's attributes using normal syntax or by indexing the structure object as if it
were a Hash. For more information, look up class Struct in any reference.

By the way, we advise against the creation of a Struct named Tms because there is already
a predefined Struct::Tms class.

Freezing Objects
Sometimes we want to prevent an object from being changed. The freeze method (in
Object) will allow us to do this, effectively turning an object into a constant.

After we freeze an object, an attempt to modify it results in a TypeError. Listing 5.8 shows
a pair of examples.

Chapter 5. OOP and Dynamicity in Ruby Page 25 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.8. Freezing an Object

str = "This is a test. "
str.freeze

begin
 str << " Don't be alarmed." # Attempting to modify
rescue => err
 puts "#{ err.class} #{ err} "
end

 arr = [1, 2, 3]
 arr.freeze

 begin
 arr << 4 # Attempting to modify
 rescue => err
 puts "#{ err.class} #{ err} "
 end
Output:
TypeError: can't modify frozen string
TypeError: can't modify frozen array

However, bear in mind that freeze operates on an object reference, not on a variable!
This means that any operation resulting in a new object will work. Sometimes this isn't
intuitive.

str = "counter-"
str.freeze
str += "intuitive" # "counter-intuitive"

arr = [8, 6, 7]
arr.freeze
arr += [5, 3, 0, 9] # [8, 6, 7, 5, 3, 0, 9]

Why does this happen? A statement a += x is semantically equivalent to a = a + x.
The expression a + x is evaluated to a new object, which is then assigned to a. The object
isn't changed, but the variable now refers to a new object. All the reflexive assignment
operators will exhibit this behavior, as will some other methods. Always ask yourself
whether you are creating a new object or modifying an existing one; then freeze won't
surprise you.

There is a method frozen?, which will tell you whether an object is frozen.

hash = { 1 => 1, 2 => 4, 3 => 9 }
hash.freeze
arr = hash.to_a
puts hash.frozen? # true
puts arr.frozen? # false
hash2 = hash
puts hash2.frozen? # true

Chapter 5. OOP and Dynamicity in Ruby Page 26 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As we see here (with hash2), it is the object, not the variable, that is frozen.

More Advanced Techniques
Not everything in Ruby OOP is straightforward. Some techniques are more complex than
others, and some are rarely used. The dividing line will be different for each programmer.
We've tried to put items in this part of the chapter that were slightly more involved or
slightly more rare in terms of usage.

From time to time, you might ask yourself whether it's possible to do some task or other
in Ruby. The short answer is that Ruby is a rich dynamic OOP language with a good set of
reasonably orthogonal features; and if you want to do something that you're used to in
another language, you can probably do it in Ruby.

As a matter of fact, all Turing-complete languages are pretty much the same from a
theoretical standpoint. The whole field of language design is the search for a meaningful,
convenient notation. Those of you who doubt the importance of a convenient notation
should try writing a LISP interpreter in COBOL or doing long division with Roman
numerals.

Of course, we won't say that every language task is elegant or natural in Ruby. Someone
would quickly prove us wrong if we made that assertion.

This section also touches on the use of Ruby in various advanced programming styles such
as functional programming and aspect-oriented programming. We don't claim expertise
in these areas; we are only reporting what other people are saying. Take it all with a grain
of salt.

Sending an Explicit Message to an Object
In a static language, you take it for granted that when you call a function, that function
name is hard-coded into the program; it is part of the program source. In a dynamic
language, we have more flexibility than that.

Every time you invoke a method, you're sending a message to an object. Most of the time,
these messages are hard-coded as in a static language, but they need not always be. We
can write code that determines at runtime which method to call. The send method will
allow us to use a Symbol to represent a method name.

For an example, suppose that we had an array of objects we wanted to sort, and we wanted
to be able to use different fields as sort keys. That's not a problem; we can easily write
customized sort blocks. But suppose that we wanted to be a little more elegant and write
only a single routine that could sort based on whatever key we specified. Listing 5.9 shows
an example.

Chapter 5. OOP and Dynamicity in Ruby Page 27 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.9. Sorting by Any Key

class Person

 attr_reader :name,
 :age,
 :height

 def initialize(name, age, height)
 @name, @age, @height = name, age, height
 end

 def inspect
 "#@name #@age #@height"
 end
end

class Array

 def sort_by(sym)
 self.sort { |x,y| x.send(sym) <=> y.send(sym) }
 end

end

people = []
people << Person.new("Hansel", 35, 69)
people << Person.new("Gretel", 32, 64)
people << Person.new("Ted", 36, 68)
people << Person.new("Alice", 33, 63)

p1 = people.sort_by(:name)
p2 = people.sort_by(:age)
p3 = people.sort_by(:height)

p p1 # [Alice 33 63, Gretel 32 64, Hansel 35 69, Ted 36 68]
p p2 # [Gretel 32 64, Alice 33 63, Hansel 35 69, Ted 36 68]
p p3 # [Alice 33 63, Gretel 32 64, Ted 36 68, Hansel 35 69]

Of course, if you really want efficient sorting, this example is incomplete. But it illustrates
the example of calling a method whose identity isn't known before runtime.

We'll also mention the alias __send__, which does exactly the same thing. It is given this
peculiar name, of course, because send is a name that might be used (purposely or
accidentally) as a user-defined method name.

Specializing an Individual Object

I'm a Solipsist, and I must say I'm surprised there aren't more of us.

—Letter received by Bertrand Russell

Chapter 5. OOP and Dynamicity in Ruby Page 28 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In most object-oriented languages, all objects of a particular class share the same behavior.
The class acts as a template, producing an object with the same interface each time the
constructor is called.

Although Ruby acts the same way, that isn't the end of the story. When you have a Ruby
object, you can change its behavior on-the-fly. Effectively, you're giving that object a
private, anonymous subclass: All the methods of the original class are available, but you've
added additional behavior for just that object. Because this behavior is private to the
associated object, it can only occur once. A thing occurring only once is called a
singleton, as in singleton methods and singleton classes.

The word singleton can be confusing because it is also used in a different sense as the name
of a well-known design pattern for a class that can only be instantiated once. For this usage,
refer to the singleton.rb library.

Here we see a pair of objects, both of which are strings. For the second one, we will add a
method upcase that will override the existing method of that name.

a = "hello"
b = "goodbye"

def b.upcase # create single method
 gsub(/(.)(.)/) { $1.upcase + $2 }
end

puts a.upcase # HELLO
puts b.upcase # GoOdBye

Adding a singleton method to an object creates a singleton class for that object if one
doesn't already exist. This singleton class's parent will be the object's original class. (This
could be considered an anonymous subclass of the original class.) If you want to add
multiple methods to an object, you can create the singleton class directly.

b = "goodbye"

class << b

 def upcase # create single method
 gsub(/(.)(.)/) { $1.upcase + $2 }
 end

 def upcase!
 gsub!(/(.)(.)/) { $1.upcase + $2 }
 end

end

puts b.upcase # GoOdBye
puts b # goodbye

Chapter 5. OOP and Dynamicity in Ruby Page 29 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

b.upcase!
puts b # GoOdBye

As an aside, we'll note that the more primitive objects (such as a Fixnum) cannot have
singleton methods added. This is because an object of this nature is stored as an immediate
value rather than as an object reference. However, we expect this functionality to be added
in a future revision of Ruby.

If you read some of the library code, you're bound to come across an idiomatic use of
singleton classes. Within class definitions, you might see something like this:

class SomeClass

 # Stuff...

 class << self
 # more stuff...
 end

 # ... and so on.

end

Within the body of a class definition, self is the class you're defining, so creating a
singleton based on it modifies the class's class. At the simplest level, this means that
instance methods in the singleton class are class methods externally.

class TheClass
 class << self
 def hello
 puts "hi"
 end
 end
end

invoke a class method
TheClass.hello # hi

Another common use of this technique is to define class-level helper functions, which we
can then access in the rest of the class definition. As an example, we want to define several
accessor functions that always convert their results to a string. We could do this by coding
each individually. A neater way might be to define a class-level function
accessor_string that generates these functions for us (as shown in Listing 5.10).

Chapter 5. OOP and Dynamicity in Ruby Page 30 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.10. A Class-level Method accessor_string

class MyClass

 class << self
 def accessor_string(*names)
 names.each do |name|
 class_eval <<-EOD
 def #{ name}
 @#{ name} .to_s
 end
 EOD
 end
 end

 end

 def initialize
 @a = [1, 2, 3]
 @b = Time.now
 end

 accessor_string :a, :b

 end

 o = MyClass.new
 puts o.a # 123
 puts o.b # Mon Apr 30 23:12:15 CDT 2001

More imaginative examples are left up to you.

The extend method will mix a module into an object. The instance methods from the
module become instance methods for the object. Let's look at Listing 5.11.

Chapter 5. OOP and Dynamicity in Ruby Page 31 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.11. Using extend

module Quantifier

def any?
 self.each { |x| return true if yield x }
 false
end

def all?
 self.each { |x| return false if not yield x }
 true
end
end

list = [1, 2, 3, 4, 5]

list.extend(Quantifier)

flag1 = list.any? { |x| x > 5 } # false
flag2 = list.any? { |x| x >= 5 } # true
flag3 = list.all? { |x| x <= 10 } # true
flag4 = list.all? { |x| x % 2 == 0 } # false

In this example, the any? and all? methods are mixed into the list array.

Nesting Classes and Modules
We'll point out that it's possible to nest classes and modules arbitrarily. The programmer
new to Ruby might not know this.

Mostly this is for namespace management. Note that the File class has a Stat class
embedded inside it. This helps to encapsulate the Stat class inside a class of related
functionality, and also allows for a future class named Stat, which won't conflict with that
one (perhaps a statistics class, for instance).

The Struct::Tms class is a similar example. Any new Struct is placed in this namespace
so as not to pollute the one above it, and Tms is really just another Struct.

It's also conceivable that you might want to create a nested class simply because the outside
world doesn't need that class or shouldn't access it. In other words, you can create classes
that are subject to the principle of data hiding just as the instance variables and methods
are subject to the same principle at a lower level.

class BugTrackingSystem

 class Bug
 #...
 end

Chapter 5. OOP and Dynamicity in Ruby Page 32 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 #...

end

Nothing out here knows about Bug.

You can nest a class within a module, a module within a class, and so on. If you find
interesting and creative uses for this technique, let us all know about it.

Creating Parametric Classes

Learn the rules; then break them.

—Basho

Suppose that we wanted to create multiple classes that differed only in the initial values
of the class-level variables. Recall that a class variable is typically initialized as a part of
the class definition.

class Terran

 @@home_planet = "Earth"

 def Terran.home_planet
 @@home_planet
 end

 def Terran.home_planet=(x)
 @@home_planet = x
 end

 #...

end

That is all fine, but suppose that we had a number of similar classes to define? The novice
will think, "Ah, I'll just define a superclass." (See Listing 5.12.)

Chapter 5. OOP and Dynamicity in Ruby Page 33 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.12. Parametric Classes #1

class IntelligentLife # Wrong way to do this!

 @@home_planet = nil

 def IntelligentLife.home_planet
 @@home_planet
 end

 def IntelligentLife.home_planet=(x)
 @@home_planet = x
 end
#...

 end

 class Terran < IntelligentLife
 @@home_planet = "Earth"
 #...
 end

 class Martian < IntelligentLife
 @@home_planet = "Mars"
 #...
 end

But this won't work. If we call Terran.home_planet, we expect a result of "Earth"—
but we get "Mars"!

Why would this happen? The answer is that class variables aren't truly class variables; they
belong not to the class, but to the entire inheritance hierarchy. The class variables aren't
copied from the parent class, but are shared with the parent (and thus with the sibling
classes).

We could eliminate the definition of the class variable in the base class; but then the class
methods we define would no longer work!

We could fix this by moving these definitions to the child classes, but now we've defeated
our whole purpose. We're declaring separate classes without any parameterization.

We'll offer a different solution. We'll defer the evaluation of the class variable until runtime
by using the class_eval method. Listing 5.13 shows a complete solution.

Chapter 5. OOP and Dynamicity in Ruby Page 34 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.13. Parametric Classes #2

class IntelligentLife

 def IntelligentLife.home_planet
 class_eval("@@home_planet")
 end

 def IntelligentLife.home_planet=(x)
 class_eval("@@home_planet = #{ x} ")
 end

 #...
end

class Terran < IntelligentLife
 @@home_planet = "Earth"
 #...
end

class Martian < IntelligentLife
 @@home_planet = "Mars"
 #...
end

puts Terran.home_planet # Earth
puts Martian.home_planet # Mars

It goes without saying that inheritance still operates normally here. Any instance methods
or instance variables defined within IntelligentLife will be inherited by Terran and
Martian just as you would expect.

As a minor variation on this theme, we present a slightly different way of doing the same
thing (see Listing 5.14). Here we have overridden the Class.new method to create a
parametric class for us; we inherit from the specified base class and then do a
class_eval of the block passed in.

Chapter 5. OOP and Dynamicity in Ruby Page 35 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.14. Parametric Classes #3

class Class

 def initialize(klass, &block)
 block = Proc.new
 class_eval(&block)
 end

end

class IntelligentLife

 def IntelligentLife.home_planet
 class_eval("@@home_planet")
 end

 def IntelligentLife.home_planet=(x)
 class_eval("@@home_planet = #{ x} ")
 end

 #...

end

Terran = Class.new(IntelligentLife) do
 @@home_planet = "Earth"
end

Martian = Class.new(IntelligentLife) do
 @@home_planet = "Mars"
end

This technique resembles the fancy constructor of the section "More Elaborate
Constructors." The principle is the same, but we are working at the class level rather than
the instance level. (Of course, Class is an object, so we can still regard it as the instance
level if we want.)

We should mention that there are other ways of doing this. Use your creativity.

Using Continuations to Implement a Generator
One of the more abstruse features of Ruby is the continuation. This is a structured way of
handling a nonlocal jump and return; a continuation object stores a return address and
an execution context. It is somewhat analogous to the setjmp/longjmp feature in C, but
it stores more context.

The Kernel method callcc takes a block and returns an object of the Continuation
class. The object returned is also passed into the block as a parameter, just to keep things
confusing.

Chapter 5. OOP and Dynamicity in Ruby Page 36 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The only method of Continuation is call, which causes a nonlocal return to the end of
the callcc block. The callcc can be terminated either by falling through the block or
by calling the call method.

There is a known shortage of examples of how to use continuations. The best one we have
seen comes from Jim Weirich, who implemented a generator as a result of his discussion
with another Ruby programmer, Hugh Sasse.

A generator is made possible by suspend in Icon (also found in Prolog), which allows a
function to resume execution just after the last place it returned a value. Hugh describes
it as similar to an inside-out yield.

Listing 5.15, then, is Jim's implementation of a generator that generates Fibonacci
numbers one after another. Continuations are used to preserve the call state from one
invocation to the next.

Chapter 5. OOP and Dynamicity in Ruby Page 37 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.15. Fibonacci Generator

class Generator

 def initialize
 do_generation
 end

 def next
 callcc { |here|
 @main_context = here;
 @generator_context.call
 }
 end

 private

 def do_generation
 callcc { |context|
 @generator_context = context;
 return
 }
 generating_loop
 end

 def generate(value)
 callcc { |context|
 @generator_context = context;
 @main_context.call(value)
 }
 end
end

Subclass this and define a generating_loop

class FibGenerator < Generator
 def generating_loop
 generate(1)
 a, b = 1, 1
 loop do
 generate(b)
 a, b = b, a+b
 end
 end
end
 # Now instantiate the class...

 fib = FibGenerator.new

puts fib.next # 1
puts fib.next # 1
puts fib.next # 2
puts fib.next # 3
puts fib.next # 5
puts fib.next # 8
puts fib.next # 13

And so on...

We can't help but feel that there are practical applications for this idea. If you think of
some, share them with us all.

Chapter 5. OOP and Dynamicity in Ruby Page 38 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Storing Code as Objects
Not surprisingly, Ruby gives you several alternatives when it comes to storing a chunk of
code in the form of an object. In this section, we'll take a look at Proc objects, Method
objects, and UnboundMethod objects.

The built-in class Proc is used to wrap Ruby blocks in an object. Proc objects, like blocks,
are closures, and therefore carry around the context in which they were defined.

p = Proc.new { |a| puts "Param is #{ a} " }

p.call(99) # Param is 99

Proc objects are also created automatically by Ruby when a method defined with a trailing
& parameter is called with a block.

def take_block(a, &block)
 puts block.type
 a.times { |i| block[i, i*i] }
end

take_block(3) { |n,s| puts "#{ n} squared is #{ s} " }

This example also shows the use of braces ({}) as an alias for the call method. The output
is shown here:

Proc
0 squared is 0
1 squared is 1
2 squared is 4

If you have a Proc object, you can pass it to a method that's expecting a block, preceding
its name with an &, as shown here:

p = proc { |n| print n, "... " }
(1..3).each(&p) # 1... 2... 3...

Ruby also lets you turn a method into an object. Historically, this is done using
Object#method, which creates a Method object as a closure in a particular object.

str = "cat"
meth = str.method(:length)

a = meth.call # 3 (length of "cat")

Chapter 5. OOP and Dynamicity in Ruby Page 39 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

str << "erpillar"

b = meth.call # 11 (length of "caterpillar")

str = "dog"

Note the next call! The variable str refers to a new object
("dog") now, but meth is still bound to the old object.

c = meth.call # 11 (length of "caterpillar")

As of Ruby 1.6.2, you can also use Module#instance_method to create
UnboundMethod objects. These represent a method that is associated with a class, rather
than one particular object. Before calling an UnboundMethod object, you must first bind
it to a particular object. This act of binding produces a Method object, which you call
normally.

umeth = String.instance_method(:length)

m1 = umeth.bind("cat")
m1.call # 3

m2 = umeth.bind("caterpillar")
m2.call # 11

This explicit binding makes the UnboundMethod object a little more intuitive than
Method.

Automatically Defining Class-level Readers and Writers
You have seen the methods attr_reader, attr_writer, and attr_accessor, which
make it a little easier to define readers and writers (getters and setters) for instance
attributes. But what about class-level attributes?

Ruby has no similar facility for creating these automatically. But we can make our own
facility by adding to the class Class. In Listing 5.16 we name them similarly, only prefixing
the names with a c for class.

Chapter 5. OOP and Dynamicity in Ruby Page 40 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 5.16. A Shorthand for Creating Class Attributes

class Class

 def cattr_reader(*syms)
 syms.each do |sym|
 class_eval <<-EOS
 if ! defined? @@#{ sym.id2name}
 @@#{ sym.id2name} = nil
 end
 def self.#{ sym.id2name}
 @@#{ sym}
 end
 EOS
 end
 end

 def cattr_writer(*syms)
 syms.each do |sym|
 class_eval <<-EOS
 if ! defined? @@#{ sym.id2name}
 @@#{ sym.id2name} = nil
 end
 def self.#{ sym.id2name} =(obj)
 @@#{ sym.id2name} = obj
 end
 EOS
 end
 end

 def cattr_accessor(*syms)
 cattr_reader(*syms)
 cattr_writer(*syms)
 end

end
class MyClass

 @@alpha = 123 # Initialize @@alpha

 cattr_reader :alpha # MyClass.alpha()
 cattr_writer :beta # MyClass.beta=()
 cattr_accessor :gamma # MyClass.gamma() and
 # MyClass.gamma=()

 def MyClass.look
 puts "#@@alpha, #@@beta, #@@gamma"
 end

 #...

end

puts MyClass.alpha # 123
MyClass.beta = 456
MyClass.gamma = 789
puts MyClass.gamma # 789

MyClass.look # 123, 456, 789

Most classes are no good without instance level data. We've only omitted it from Listing
5.16 for clarity.

Chapter 5. OOP and Dynamicity in Ruby Page 41 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Working in Advanced Programming Disciplines

Brother, can you paradigm?

—Graffiti seen at IBM Austin, 1989

Many philosophies of programming are popular in various circles. These are often difficult
to characterize in relation to object-oriented or dynamic techniques; and some of these
styles can be actually independent of whether a language is dynamic or object-oriented.

Because we are far from experts in these matters, we are relying mostly on hearsay. So take
these next paragraphs with a grain of sodium chloride.

Some programmers prefer a flavor of OOP known as prototype-based OOP (or classless
OOP). In this world, an object isn't described as a member of a class. It is built from the
ground up, and other objects are created based on the prototype. Ruby has at least
rudimentary support for this programming style because it allows singleton methods for
individual objects, and the clone method will clone these singletons. Interested readers
should also look at the simple Ostruct class for building Python-like objects; and you
should also be aware of how method_missing works.

One or two limitations in Ruby hamper classless OOP. Certain objects such as Fixnums
are stored not as references, but as immediate values so that they can't have singleton
methods. This is supposed to change in the future; but at the time of this writing, it's
impossible to project when it will happen.

In functional programming (FP), emphasis is placed on the evaluation of expressions
rather than the execution of commands. An FP language is one that encourages and
supports functional programming, and as such, there is a natural gray area. Nearly all
would agree that Haskell is a pure functional language, whereas Ruby certainly is not.

But Ruby has at least some minimal support for FP; it has a fairly rich set of methods for
operating on arrays (lists), and it has Proc objects so that code can be encapsulated and
called over and over. Ruby allows the method chaining that is so common in FP; although
it is easy to be bitten by the phenomenon of a bang method (such as sort! or gsub!) that
returns nil when the receiver doesn't actually change.

There have been some initial efforts at a library that would serve as a kind of FP
compatibility layer, borrowing certain ideas from Haskell. At the time of this writing, these
efforts aren't complete.

The concept of aspect-oriented programming (AOP) is an interesting one. In AOP, we try
to deal with programming issues that crosscut the modular structure of the program. In

Chapter 5. OOP and Dynamicity in Ruby Page 42 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

other words, some activities or features of a system will be scattered across the system in
code fragments here and there, rather than being gathered into one tidy location. We are
attempting to modularize things that in traditional OOP or procedural techniques are
difficult to modularize. We are working at right angles to our usual way of thinking.

Ruby certainly wasn't created specifically with AOP in mind. But it was designed to be a
very flexible and dynamic language, and it is conceivable that these techniques can be
facilitated by a library. In fact, there is a library called AspectR, which is an early effort
at implementing AOP; see the Ruby Application Archive for the most recent version.

The concept of Design by Contract (DBC) is well-known to Eiffel devotees, although it is
certainly known outside those circles as well. The general idea is that a method or class
implements a contract; certain pre-conditions must be true if it is going to do its job, and
it guarantees that certain post-conditions are true afterward. The robustness of a system
can be greatly enhanced by the ability to specify this contract explicitly and have it
automatically checked at runtime. The usefulness of the technique is expanded by the
inheritance of contract information as classes are extended.

The Eiffel language has DBC explicitly built in; Ruby doesn't. There are at least two usable
implementations of DBC libraries, however, and we recommend that you choose one and
learn it.

Design patterns have inspired much discussion over the last few years. These, of course,
are highly language-independent and can be implemented well in many languages. But
again, Ruby's unusual flexibility makes them perhaps more practical than in some other
environments. Well-known examples of these are given elsewhere; the Visitor pattern is
essentially implemented in Ruby's default iterator each, and other patterns are part of
Ruby's standard distribution (see delegator.rb and singleton.rb).

The Extreme Programming (XP) discipline is gaining devotees daily. This methodology
encourages (among other things) early testing and refactoring on-the-fly.

XP isn't language specific, although it might be easier in some languages than others.
Certainly we maintain that Ruby makes refactoring easier than many languages would,
although that is a highly subjective claim. But the existence of the RubyUnit library is
what makes for a real blending of Ruby and XP. This library facilitates unit testing; it is
powerful, easy to use, and it has proven useful in developing other Ruby software in current
use. We highly recommend the XP practice of testing early and often, and we recommend
RubyUnit for those who want to do this in Ruby.

We should also mention Lapidary, another unit-testing framework created by XP fan
Nathaniel Talbott (coming from a Smalltalk perspective). It can be found in the Ruby
Application Archive.

Chapter 5. OOP and Dynamicity in Ruby Page 43 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

By the time you read this, many of the issues we talk about in this section will have been
fleshed out more. As always, your two best resources for the latest information are the
comp.lang.ruby newsgroup and the Ruby Application Archive.

Working with Dynamic Features

Skynet became self-aware at 2:14 a.m. EDT August 29, 1997.

—Terminator 2: Judgment Day

Many of you will come from the background of a very static language such as C. To those
readers, we will address this rhetorical question: Can you imagine writing a C function that
will take a string, treat it as a variable name, and return the value of the variable?

No? Then can you imagine removing or replacing the definition of a function? Can you
imagine trapping calls to nonexistent functions? Or determining the name of the calling
function? Or automatically obtaining a list of user-defined program elements (such as a
list of all your functions)?

Ruby makes this sort of thing possible. This runtime flexibility, the ability to examine and
change program elements at runtime, makes many problems easier. A runtime tracing
utility, a debugger, and a profiling utility are all easy to write for Ruby and in Ruby. The
well-known programs irb and xmp both use dynamic features of Ruby in order to perform
their magic.

These abilities take getting used to, and they are easy to abuse. But the concepts have been
around for many years (they are at least as old as LISP) and are regarded as tried and true
in the Scheme and Smalltalk communities as well. Even Java, which owes so much to C
and C++, has some dynamic features; so we expect this way of thinking to increase in
popularity as time goes by.

Evaluating Code Dynamically
The global function eval compiles and executes a string that contains a fragment of Ruby
code. This is a powerful (if slightly dangerous) mechanism because it allows you to build
up code to be executed at runtime. For example, the following code reads in lines of the
form name = expression; it then evaluates each expression and stores the result in a hash
indexed by the corresponding variable name.

parameters = { }

ARGF.each do |line|
 name, expr = line.split(/\s*=\s*/, 2)
 parameters[name] = eval expr
end

Chapter 5. OOP and Dynamicity in Ruby Page 44 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Suppose that the input contained these lines.

a = 1
b = 2 + 3
c = `date`

Then the hash parameters would end up with the value { "a"=>1, "b"=>5,
"c"=>"Mon Apr 30 21:17:47 CDT 2001\n"}. This example also illustrates the
danger of evaling strings when you don't control their contents; a malicious user could
put d=`rm *` in the input and ruin your day.

Ruby has three other methods that evaluate code on-the-fly: class_eval,
module_eval, and instance_eval. The first two are synonyms, and all three do
effectively the same thing; they evaluate a string or a block, but while doing so, they change
the value of self to their own receiver. Perhaps the most common use of class_eval
allows you to add methods to a class when all you have is a reference to that class. We used
this in the hook_method code in the Trace example in the section "Tracking Changes to
a Class or Object Definition." You'll find other examples in the more dynamic library
modules, such as delegate.rb.

The eval method also makes it possible to evaluate local variables in a context outside
their scope. We don't advise doing this lightly, but it's nice to have the capability.

Ruby associates local variables with blocks, with high level definition constructs (class,
module, and method definitions), and with the top-level of your program (the code outside
any definition constructs). Associated with each of these scopes is the binding of variables,
along with other housekeeping details. Probably the ultimate user of bindings is irb, the
interactive Ruby shell, which uses bindings to keep the variables in the program that you
type separate from its own.

You can encapsulate the current binding in an object using the method
Kernel#binding. Having done that, you can pass the binding as the second parameter
to eval, setting the execution context for the code being evaluated.

def aMethod
 a = "local variable"
 return binding
end

the_binding = aMethod
eval "a", the_binding # "local variable"

Chapter 5. OOP and Dynamicity in Ruby Page 45 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Interestingly, the presence of a block associated with a method is stored as part of the
binding, enabling tricks such as this:

def aMethod
 return binding
end

the_binding = aMethod { puts "hello" }
eval "yield", the_binding # hello

Removing Definitions
The dynamic nature of Ruby means that pretty much anything that can be defined can also
be undefined. One conceivable reason to do this is to decouple pieces of code that are in
the same scope by getting rid of variables once they have been used; another reason might
be to specifically disallow certain dangerous method calls. Whatever your reason for
removing a definition, it should naturally be done with caution because it can conceivably
lead to debugging problems.

The radical way to undefine something is with the undef keyword (not surprisingly, the
opposite of def). You can undef methods, local variables, and constants at the top level.
Although a classname is a constant, you cannot remove a class definition this way.

def asbestos
 puts "Now fireproof"
end

tax = 0.08

PI = 3

asbestos
puts "PI=#{ PI} , tax=#{ tax} "

undef asbestos
undef tax
undef PI

Any reference to the above three
would now give an error.

Within a class definition, a method or constant can be undefined in the same context in
which it was defined. You can't undef within a method definition or undef an instance
variable.

We also have the remove_method and undef_method methods available to us (defined
in Module). The difference is slightly subtle: remove_method will remove the current (or
nearest) definition of the method, whereas undef_method will literally cause the method

Chapter 5. OOP and Dynamicity in Ruby Page 46 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to be undefined (removing it from superclasses as well). Listing 5.17 is an illustration of
this.

Listing 5.17. Removing and Undefining Methods

class Parent

 def alpha
 puts "parent alpha"
 end

 def beta
 puts "parent beta"
 end

end

class Child < Parent
 def alpha
 puts "child alpha"
 end

 def beta
 puts "child beta"
 end

 remove_method :alpha # Remove "this" alpha
 undef_method :beta # Remove every beta

end

x = Child.new

x.alpha # parent alpha
x.beta # Error!

The remove_const method will remove a constant.

module Math

 remove_const :PI

end

No PI anymore!

Note that it is possible to remove a class definition in this way (because a class identifier
is simply a constant).

class BriefCandle
 #...
end

out_out = BriefCandle.new

Chapter 5. OOP and Dynamicity in Ruby Page 47 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

class Object
 remove_const :BriefCandle
end

Can't instantiate BriefCandle again!
(Though out_out still exists...)

Note that methods such remove_const and remove_method are (naturally enough)
private methods. That is why we show them being called from inside a class or module
definition rather than outside.

Obtaining Lists of Defined Entities
The reflection API of Ruby enables us to examine the classes and objects in our
environment at runtime. We'll look at methods defined in Module, Class, and Object.

The Module module has a method named constants that returns an array of all the
constants in the system (including class and module names). The nesting method
returns an array of all the modules nested at the current location in the code.

The instance method Module#ancestors will return an array of all the ancestors of the
specified class or module.

list = Array.ancestors
[Array, Enumerable, Object, Kernel]

The constants method will list all the constants accessible in the specified module. Any
ancestor modules are included.

list = Math.constants # ["E", "PI"]

The class_variables method will return a list of all class variables in the given class
and its superclasses. The included_modules method will list the modules included in
a class.

class Parent
 @@var1 = nil
end

class Child < Parent
 @@var2 = nil
end

list1 = Parent.class_variables # ["@@var1"]
list2 = Array.included_modules # [Enumerable, Kernel]

Chapter 5. OOP and Dynamicity in Ruby Page 48 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Class methods instance_methods and public_instance_methods are
synonyms; they return a list of the public instance methods for a class. The methods
private_instance_methods and protected_instance_methods behave as
expected. Any of these can take a Boolean parameter, which defaults to false; if it is set
to true, superclasses will be searched as well, resulting in a larger list.

n1 = Array.instance_methods.size # 66
n2 = Array.public_instance_methods.size # 66
n3 = Array.private_instance_methods.size # 1
n4 = Array.protected_instance_methods.size # 0
n5 = Array.public_instance_methods(true).size # 106

The Object class has a number of similar methods that operate on instances (see Listing
5.18). methods and public_methods are synonyms that return a list of publicly
accessible methods. The methods private_methods, protected_methods, and
singleton_methods all behave as expected.

Listing 5.18. Reflection and Instance Variables

class SomeClass

 def initialize
 @a = 1
 @b = 2
 end

 def mymeth
 #...
 end

 protected :mymeth

 end

 x = SomeClass.new

 def x.newmeth
 # ...
 end

 iv = x.instance_variables # ["@b", "@a"]

 meth = x.methods.size # 37
 pub = x.public_methods.size # 37
 pri = x.private_methods.size # 66
 pro = x.protected_methods.size # 1
 sm = x.singleton_methods.size # 1

Note that none of the preceding ever takes a parameter.

Chapter 5. OOP and Dynamicity in Ruby Page 49 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Examining the Call Stack

And you may ask yourself:

Well, how did I get here?

—Talking Heads, "Once in a Lifetime"

Sometimes we want to know who our caller was. This could be useful information if, for
example, we had a fatal exception. The caller method, defined in Kernel, makes this
possible. It returns an array of strings in which the first element represents the caller, the
next element represents the caller's caller, and so on.

def func1
 puts caller[0]
end

def func2
 func1
end

func2 # Prints: somefile.rb:6:in `func2'

The string is in the form file;line or file:line: in method, as shown previously.

Monitoring Execution of a Program
A Ruby program can introspect or examine its own execution. There are many applications
for such an ability; the interested reader can refer to the sources debug.rb,
profile.rb, and tracer.rb. It is even conceivable to use this facility in creating a
design-by-contract (DBC) library—although the most popular one at the time of this
writing doesn't use this technique.

The interesting thing is that this trick is implemented purely in Ruby. We use the Ruby
method set_trace_func, which allows you to invoke a block whenever significant
events happen in the execution of a program. A good reference will show the calling
sequence for set_trace_func, so we'll just show a simple example here.

def meth(n)
 sum = 0
 for i in 1..n
 sum += i
 end
 sum
end

set_trace_func proc do |event, file, line,

Chapter 5. OOP and Dynamicity in Ruby Page 50 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 id, binding, klass, *rest|
 printf "%8s %s:%d %s/%s\n", event, file, line,
 klass, id
end

meth(2)

This produces the output:

 line prog.rb:13 false/
 call prog.rb:1 Object/meth
 line prog.rb:2 Object/meth
 line prog.rb:3 Object/meth
 c-call prog.rb:3 Range/each
 line prog.rb:4 Object/meth
 c-call prog.rb:4 Fixnum/+
c-return prog.rb:4 Fixnum/+
 line prog.rb:4 Object/meth
 c-call prog.rb:4 Fixnum/+
c-return prog.rb:4 Fixnum/+
c-return prog.rb:4 Range/each
 line prog.rb:6 Object/meth
 return prog.rb:6 Object/meth

Another related method is Kernel#trace_var, which invokes a block whenever a global
variable is assigned a value.

Suppose that you want to trace the execution of a program from outside, strictly as an aid
in debugging. The simplest way to see what a program is doing is to use the tracer library
that we mentioned previously. Given a program prog.rb:

def meth(n)
 (1..n).each { |i| puts i}
end

meth(3)

You can simply load tracer from the command line:

% ruby -r tracer prog.rb
#0:prog.rb:1::-: def meth(n)
#0:prog.rb:1:Module:>: def meth(n)
#0:prog.rb:1:Module:: def meth(n)
#0:prog.rb:2:Object:-: sum = 0
#0:prog.rb:3:Object:-: for i in 1..n
#0:prog.rb:3:Range:>: for i in 1..n
#0:prog.rb:4:Object:-: sum += i
#0:prog.rb:4:Fixnum:>: sum += i
#0:prog.rb:4:Fixnum:: sum += i
#0:prog.rb:4:Fixnum:

Chapter 5. OOP and Dynamicity in Ruby Page 51 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The lines output by tracer show the thread number, the filename and line number, the
class being used, the event type, and the line from the source file being executed. The event
types include '-' when a source line is executed, '>' for a call, '<' for a return, 'C' for
a class, and 'E' for an end.

Traversing the Object Space
The Ruby runtime system needs to keep track of all known objects (if for no other reason
than to be able to garbage-collect those no longer referenced). This information is made
accessible via the ObjectSpace.each_object method.

ObjectSpace.each_object do |obj|
 printf "%20s: %s\n", obj.class, obj.inspect
end

If you specify a class or module as a parameter to each_object, only objects of that type
will be returned.

The ObjectSpace module is also useful in defining object finalizers (see the section
"Defining Finalizers for Objects").

Handling Calls to Nonexistent Methods
Sometimes it's useful to be able to write classes that respond to arbitrary method calls. For
example, you might want to wrap calls to external programs in a class, providing access to
each program as a method call. You can't know ahead of time the names of all these
programs, so you can't create the methods as you write the class. Here comes
Object#method_missing to the rescue. Whenever a Ruby object receives a message for
a method that isn't implemented in the receiver, it invokes the method_missing method
instead. You can use that to catch what would otherwise be an error, treating it as a normal
method call. Let's implement the operating system CommandWrapper class:

class CommandWrapper

 def method_missing(method, *args)
 system(method.to_s, *args)
 end

end

cw = CommandWrapper.new
cw.date # Sat Apr 28 22:50:11 CDT 2001
cw.du '-s', '/tmp' # 166749 /tmp

Chapter 5. OOP and Dynamicity in Ruby Page 52 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The first parameter to method_missing is the name of the method that was called (and
that couldn't be found). Whatever was passed in that method call is then given as the
remaining parameters.

If your method_missing handler decides that it doesn't want to handle a particular call,
it should call super, rather than raising an exception. That allows method_missing
handlers in superclasses to have a shot at dealing with the situation. Eventually, the
method_missing method defined in class Object will be invoked, and that ends up
raising an exception.

Tracking Changes to a Class or Object Definition
Perhaps we should start this by asking: Who cares? Why are we interested in tracking
changes to classes?

One possible reason is that we're trying to keep track of the state of the Ruby program
being run. Perhaps we're implementing some kind of GUI-based debugger, and we need
to refresh a list of methods if our user adds one on-the-fly.

Another reason might be that we're doing clever things to other classes. For example, say
that we wanted to write a module that could be included in any class definition. From then
on, any call to a method in that class will be traced. We might use it something like this:

class MyClass

 def one
 end

 include Trace

 def two(x, y)
 end

end

m = MyClass.new
m.one # one called. Params =
m.two(1, 'cat') # two called. Params = 1, cat

It will also work for any subclasses of the class we're tracing:

class Fred < MyClass

 def meth(*a)
 end
end

Fred.new.meth(2,3,4,5) # meth called. Params = 2, 3, 4, 5

Chapter 5. OOP and Dynamicity in Ruby Page 53 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We could implement this module as shown in Listing 5.19.

Listing 5.19. Trace Module

module Trace

 def Trace.append_features(into)
 into.instance_methods.each { |m| Trace.hook_method(into, m) }
 def into.method_added(method)
 unless @adding
 @adding = true
 Trace.hook_method(self, method)
 @adding = false
 end
 end
 super
 end

 def Trace.hook_method(klass, method)
 klass.class_eval <<-EOD
 alias :old_#{ method} :#{ method}
 def #{ method} (*args)
 puts "#{ method} called. Params = #{ args.join(', ')} "
 old_#{ method} (*args)
 end
 EOD
 end

end

This code has two main methods. The first, append_features, is a callback invoked
whenever a module is inserted into a class. Our version does two things. It calls
hook_method for every method that's already been defined in the target class, and it
inserts a definition for method_added into that class. This means that any subsequently
added method will also be detected and hooked.

The hook itself is pretty straightforward: When a method is added, it is immediately aliased
to the name old_name. The original method is then replaced by out tracing code, which
dumps out the method name and parameters before invoking the original method.

To detect the addition of a new class method to a class or module, we can define a class
method singleton_method_added within that class. (Recall that a singleton method
in this sense is what we usually refer to as a class method because Class is an object.) This
method comes from Kernel and by default does nothing, but we can make it behave as
we prefer.

class MyClass

 def MyClass.singleton_method_added(sym)
 puts "Added method #{ sym.id2name} to class MyClass."
 end

Chapter 5. OOP and Dynamicity in Ruby Page 54 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 def MyClass.meth1
 puts "I'm meth1."
 end

end

def MyClass.meth2
 puts "And I'm meth2."
end

The output we get from this is as follows:

Added method singleton_method_added to class MyClass.
Added method meth1 to class MyClass.
Added method meth2 to class MyClass.

Note that there are actually three methods added here. Perhaps contrary to expectation,
singleton_method_added is able to track its own addition to the class.

The inherited method (from Class) is used in much the same way. It is called whenever
a class is subclassed by another.

class MyClass

 def MyClass.inherited(subclass)
 puts "#{ subclass} inherits from MyClass."
 end

 # ...

end

class OtherClass < MyClass

 # ...

end

Output: OtherClass inherits from MyClass.

We can also track the addition of a module's instance methods to an object (done via the
extend method). The method extend_object is called whenever an extend is done.

module MyMod

 def MyMod.extend_object(obj)
 puts "Extending object id #{ obj.id} , type #{ obj.type} "
 super
 end

Chapter 5. OOP and Dynamicity in Ruby Page 55 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 # ...

end

x = [1, 2, 3]
x.extend(MyMod)

Output:
Extending object id 36491192, type Array

Note that the call to super is needed in order for the real extend_object method to do
its work. This is analogous to the behavior of append_features (see the section
"Working with Modules"). This method can also be used to track the usage of modules.

Defining Finalizers for Objects
Ruby classes have constructors (the methods new and initialize) but don't have
destructors (methods that delete objects). That's because Ruby uses mark-and-sweep
garbage collection to remove unreferenced objects; a destructor would make no sense.

However, people coming to Ruby from languages such as C++ seem to miss the facility,
and often ask how they can write code to handle the finalization of objects. The simple
answer is that there is no real way to do it reliably. But you can arrange to have code called
when an object is garbage-collected.

a = "hello"
puts "The string 'hello' has an object id #{ a.id} "
ObjectSpace.define_finalizer(a) { |id| puts "Destroying #{ id} " }
puts "Nothing to tidy"
GC.start
a = nil
puts "The original string is now a candidate for collection"
GC.start

This produces the following output:

The string 'hello' has an object id 537684890
Nothing to tidy
The original string is now a candidate for collection
Destroying 537684890

Note that by the time the finalizer is called, the object has basically been destroyed already.
An attempt to convert the ID you receive back into an object reference using
ObjectSpace._id2ref will raise a RangeError, complaining that you are attempting
to use a recycled object.

Chapter 5. OOP and Dynamicity in Ruby Page 56 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

However, all this might be moot. There's a style of programming in Ruby that uses blocks
to encapsulate the use of a resource. At the end of the block, the resource is deleted and
life carries on merrily, all without the use of finalizers. For example, consider the block
form of File.open:

File.open("myfile.txt") do |aFile|
 l1 = aFile.read
 # ...
end

Here the File object is passed into the block. When the block exits, the file is closed, all
under control of the open method. If you wanted to write a subset of File.open in Ruby
(for efficiency, it's currently written in C as part of the runtime system), it might look
something like this:

def File.open(name, mode = "r")
 f = os_file_open(name, mode)
 if block_given?
 begin
 yield f
 ensure
 f.close
 end
 return nil
 else
 return f
 end
end

The routine tests for the presence of a block. If found, it invokes that block, passing in the
open file. It does this in the context of a begin-end block, ensuring that it will close the
file after the block terminates, even if an exception is thrown.

Dynamically Instantiating a Class by Name
We have seen this question more than once. Given a string containing the name of a class,
how can we create an instance of that class?

The answer is annoyingly simple. Use eval for the purpose.

classname = "Array"

classvar = eval(classname)
x = classvar.new(4, 1) # [1, 1, 1, 1]

As always, make sure that the string you're evaluating is a safe one.

Chapter 5. OOP and Dynamicity in Ruby Page 57 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Summary
You've seen here a few of the more esoteric or advanced techniques in OOP, as well as some
of the more everyday usages. We've also looked at Ruby's reflection API, some interesting
consequences of Ruby's dynamic nature, and various neat tricks that can be done in a
dynamic language.

It's time now to rejoin the real world. After all, OOP is not an end in itself, but a means to
an end; the end is to write applications that are effective, bug free, and maintainable.

In modern computing, these applications frequently need a graphical interface. In Chapter
6, "Graphical Interfaces for Ruby," we discuss creating graphical interfaces in Ruby.

Chapter 5. OOP and Dynamicity in Ruby Page 58 Return to Table of Contents

Chapter 5. OOP and Dynamicity in Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch06#ch06
http://safari.oreilly.com/0672320835/ch06#ch06

	OOP and Dynamicity in Ruby
	Everyday OOP Tasks
	More Advanced Techniques
	Working in Advanced Programming Disciplines
	Summary

