
Table of Contents

Graphical Interfaces for Ruby... 1
Ruby/Tk... 2
Ruby/GTK.. 17
FX/Ruby (FOX).. 30
Other GUIs... 51
Summary... 53

Chapter 6. Graphical Interfaces for Ruby

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 6. Graphical Interfaces for Ruby
IN THIS CHAPTER

• Ruby/Tk
• Ruby/GTK
• FX/Ruby (FOX)
• Other GUIs
• Summary

Graphical excellence is often found in simplicity of design and complexity of
data.

—Edward R. Tufte, The Visual Display of Quantitative Information

There is no denying that we are in the age of the GUI. For as far into the future as we can
see, there is going to be some form of graphical interface as the preferred way to interact
with a computer.

We don't see the command line going away in the next decade or so; it definitely has its
place in the world. But even the old-time hackers (who would rather use cp -R than a
drag-and-drop interface) still enjoy a GUI when it is appropriate.

However, there are significant difficulties with programming graphically. The first
problem, of course, is designing a meaningful, usable "front end" for a program; in
interface design, a picture is not always worth a thousand words. We can't address these
issues here; we are not experts in ergonomics, aesthetics, or psychology.

The second obvious problem is that graphical programming is more complex. We have to
worry about the sizes, shapes, locations, and behaviors of all the controls that can be
displayed on the screen and manipulated with mouse and/or keyboard.

The third difficulty is that various computing subcultures have differing ideas of what a
windowing system is and how it should be implemented. The disparity between these
systems has to be experienced to be fully appreciated; many a programmer has attempted
to produce a "cross-platform" tool only to find that the impedance mismatch between the
GUIs was the hardest part to deal with.

We really can't help much with these problems. The most we can do is give a gentle
introduction to a few popular GUI systems (as they relate to Ruby) and offer a few hints
and observations.

Chapter 6. Graphical Interfaces for Ruby Page 1 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

The bulk of this chapter is devoted to Tk, GTK+, and FOX. Whatever your background is,
there is a good chance you are asking, "Why wasn't (insert name of favorite GUI) included
here?"

There could be several reasons for this. For one thing, we have limited space because this
book is not primarily about graphical interfaces. For another, it's possible that your favorite
system doesn't have a mature set of Ruby bindings as yet—in which case we encourage you
to create them. Finally, not all GUI systems are created equal. We've tried to cover the ones
that are most important and most mature; the rest we give at most a passing mention.

The Tk package is part of the standard Ruby installation. The other GUI packages
mentioned here can be found in the Ruby Application Archive, which can be found on the
official Ruby home page (www.ruby-lang.org).

Ruby/Tk
The roots of Tk go back as far as 1988, if you count prerelease versions. It has long been
thought of as a companion of Tcl, but in recent years it has been used with several other
languages, including Perl.

If Ruby had a "native" GUI, Tk would probably be it. It is the most mature of the GUI
bindings at the time of this writing, and Ruby download versions are available that include
Tk in a more or less turnkey fashion.

The preceding reference to Perl is not entirely gratuitous. The Tk bindings for Ruby and
Perl are somewhat similar, enough so that any reference material for Perl/Tk should be
mostly applicable to Ruby/Tk. One such reference is Learning Perl/Tk, by Nancy Walsh.

Overview
At the time of this writing, Tk is probably the most common GUI in use with Ruby. It was
the first one made available, and it is part of the standard Ruby installation.

Some say that Tk is showing its age; for those who like clean, object-oriented interfaces, it
may be something of a disappointment. However, it has the advantages of being well
known, very portable, and very stable (at least insofar as the interface to Ruby is stable).

Any Ruby/Tk application must use require to load the tk extension. Following that, the
application's interface is built up piecemeal starting with some kind of container and the
controls that populate it. Finally, a call to Tk.mainloop is made; this method captures
all the events, such as mouse movements and button presses, and acts on them accordingly:

require "tk"

Chapter 6. Graphical Interfaces for Ruby Page 2 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-lang.org

Setting up the app...
Tk.mainloop

As with most or all windowing systems, Tk graphical controls are called widgets; these
widgets are typically grouped together in containers. The top-level container is called the
root; it is not always necessary to specify an explicit root, but it is a good idea.

Every widget class is named according to its name in the Tk world (by appending Tk to the
front). Therefore, the Frame widget corresponds to the TkFrame class.

Widgets are naturally instantiated using the new method. The first parameter specifies the
container into which the widget is placed; if it is omitted, the root is assumed.

The options used to instantiate a widget may be specified in two ways. The first (Perl-like)
way is to pass in a hash of attributes and values (recall that it is a quirk of Ruby syntax that
a hash passed in as the last or only parameter may have its braces omitted):

my_widget = TkSomewidget.new("borderwidth" => 2, "height" => 40 ,
 "justify" => "center")

The other way is to pass a block to the constructor that will be evaluated with
instance_eval. Within this block, we can call methods to set the attributes of the widget
(using methods that are named the same as the attributes). Bear in mind that the code
block is evaluated in the context of the object, not the caller. This means, for instance, that
the caller's instance variables cannot be referenced inside this block:

my_widget = TkSomewidget.new do
 borderwidth 2
 height 40
 justify "center"
 end

Three geometry managers are available with Tk; they all serve the purpose of controlling
the relative size and placement of the widgets as they appear onscreen. The first (and most
commonly used) is pack; the other two are grid and place. The grid manager is
sophisticated but somewhat prone to bugs; the place manager is the most simpleminded
of all because it requires absolute values for the positioning of widgets. We will only use
pack in our examples.

A Trivial Windowed Application
In this section we'll demonstrate the simplest possible application—a calendar app that
displays the current date.

Chapter 6. Graphical Interfaces for Ruby Page 3 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because it's good form, we'll begin by explicitly creating a root and placing a Label widget
inside it:

require "tk"

root = TkRoot.new() { title "Today's Date" }
str = Time.now.strftime("Today is \n%B %d, %Y")
lab = TkLabel.new(root) do
 text str
 pack("padx" => 15, "pady" => 10,
 "side" => "top")
 end
Tk.mainloop

Here, we create the root, set the date string, and create a label. In creating the label, we set
the text to be the value of str, and we call pack to arrange everything neatly. We tell
pack to use a padding of 15 pixels horizontally and 10 pixels vertically, and we ask that
the text be centered on the label. Figure 6.1 shows what this looks like.

Figure 6.1. A trivial Tk application.

As mentioned, the creation of the label could also be done in this way:

lab = TkLabel.new(root) do
 text str
 pack("padx" => 15, "pady" => 10,
 "side" => "top")
 end

The units for screen measurement (as used in this example for padx and pady) are in
pixels by default. We can also work in another unit by appending a suffix onto the number;
the value now becomes a string, of course, but because Ruby/Tk doesn't care about that,
we don't care, either). The available units are centimeters (c), millimeters (m), inches (i),
and points (p). All of these are valid padx calls:

pack("padx" => "80m")
pack("padx" => "8c")
pack("padx" => "3i")
pack("padx" => "12p")

Chapter 6. Graphical Interfaces for Ruby Page 4 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The side attribute doesn't actually contribute anything in this case because we have set
it to its default. If you resize the application window, you will notice that the text "sticks"
to the top part of the area in which it lives. Other possible values are right, left, and
bottom, as you might expect.

The pack method has other options that govern the placement of widgets onscreen. We'll
look at just a few.

The fill option specifies whether a widget fills its allocation rectangle (in the horizontal
and/or vertical directions). Possible values are x, y, both, and none (the default being
none).

The anchor option anchors the widget inside its allocation rectangle using a "compass
point" notation; the default is center, and the other possible values are n, s, e, w, ne,
nw, se, and sw.

The in option will pack the widget with respect to some container other than its parent.
The default, of course, is the parent.

The before and after options can be used to change the packing order of the widgets
in any way desired. This is useful because widgets may not be created in any particular
order as compared to their locations onscreen.

All in all, Tk is fairly flexible about placing widgets onscreen. Search the documentation
and try things out.

Working with Buttons
One of the most common widgets in any GUI is the pushbutton (or simply button). As you
would expect, the TkButton class enables the use of buttons in Ruby/Tk applications.

In any nontrivial application, we usually create frames in order to contain the various
widgets we'll be placing onscreen. Button widgets can be placed in these containers.

A button will ordinarily have at least three attributes set:

• The text of the button
• The command associated with the button (to be executed when it is clicked)
• The packing of the button within its container

Here is a little example of a button:

btnOK = TkButton.new do
 text "OK"

Chapter 6. Graphical Interfaces for Ruby Page 5 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 command proc { puts "The user says OK." }
 pack("side" => "left")
end

Here, we create a new button and assign the new object to the btnOK variable; we pass in
a block to the constructor, although we could use a hash instead. In this case, we use the
"multiline" form (which we prefer), although in practice you can cram as much code onto
a single line as you want. Recall, by the way, that the block is executed using
instance_eval so that it is evaluated in the context of the object (in this case, the new
TkButton object).

The text specified as a parameter to the text method will simply be placed on the button.
It can be multiple words or even multiple lines.

The pack method you have already seen. It is nothing interesting, although it is essential
if the widget is going to be visible at all.

The interesting part here is the command method, which takes a Proc object and associates
it with the button. Frequently, as we do here, we will use the Kernel method proc, which
will convert a block to a Proc object.

The action we're performing here is rather silly. When the user clicks the button, a
(nongraphical) puts will be done; the output will go to the command-line window from
which the program was started or perhaps an auxiliary console window.

We now offer a better example. This is a fake thermostat application that will increment
and decrement the displayed temperature (giving us at least the illusion that we are
controlling the heating or cooling and making ourselves more comfortable). The code for
this application is shown in Listing 6.1, and an explanation follows.

Chapter 6. Graphical Interfaces for Ruby Page 6 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.1. A Thermostat Simulation in Tk

require "tk"

Common packing options...
$top = { 'side' => 'top', 'padx'=>5, 'pady'=>5 }
$left = { 'side' => 'left', 'padx'=>5, 'pady'=>5 }
$bottom = { 'side' => 'bottom', 'padx'=>5, 'pady'=>5 }

$temp = 74 # Starting temperature...

root = TkRoot.new { title "Thermostat" }

top = TkFrame.new(root) { background "#606060" }
bottom = TkFrame.new(root)

$tlab = TkLabel.new(top) do
 text $temp.to_s
 font "{Arial} 54 {bold} "
 foreground "green"
 background "#606060"
 pack $left
end

TkLabel.new(top) do # the "degree" symbol
 text "o"
 font "{Arial} 14 {bold} "
 foreground "green"
 background "#606060"
 # Add anchor-north to the hash (make a superscript)
 pack $left.update({ 'anchor' => 'n' })
end

TkButton.new(bottom) do
 text " Up "
 command proc { $tlab.configure("text"=>($temp+=1).to_s) }
 pack $left
end

TkButton.new(bottom) do
 text "Down"
 command proc { $tlab.configure("text"=>($temp-=1).to_s) }
 pack $left
end

top.pack $top
bottom.pack $bottom

Tk.mainloop

We create two frames here. The upper one holds only a display. We display the temperature
in Fahrenheit in a large font for realism. We use a small, strategically placed letter "o" for
a degree mark.

Notice that we are using some new attributes for the TkLabel object. The font method
specifies the typeface and size of the text in the label. The string value is platform
dependent; the one shown here is valid on a Windows system. On a Unix system, it would
typically be a full X-style font name, long and ugly, something like -Adobe-Helvetica-
Bold-R-Normal—*-120-*-*-*-*-*-*.

Chapter 6. Graphical Interfaces for Ruby Page 7 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The foreground method sets the color of the text itself. Here, we pass in the string
"green" (which has a predefined meaning in the internals of Tk). If you're wondering
whether a color is predefined in Tk, an easy way to find out is simply to try it.

Likewise, the background method sets the color of the background against which the text
appears. In this case, we pass it a different kind of string as a parameter, a color in typical
red-green-blue hex format as you would see in HTML or in various other situations. (The
string "#606060" represents a nice gray color.)

You'll notice we haven't added any kind of "exit" button here (to avoid cluttering a nice,
simple design). As always, you can close the app by clicking the close icon at the upper-
right corner of the window frame.

You might wonder why we've used these ugly global variables in this program. Chiefly,
we've done it to simplify the example. For instance, the variables $tlab and $temp have
to be used inside the blocks passed to various constructors; this implies they can't be local
variables.

Also note that the configure method is used in the commands for the buttons; this
changes the text of the top label as it increments or decrements the current temperature.
As mentioned earlier, basically any attribute can be changed at runtime in this way, and
the change will be reflected onscreen immediately.

We'll mention two other little tricks that you can do with text buttons. The justify
method will accept a parameter ("left", "right", or "center") to specify how the text
will be placed on the button ("center is the default). We already mentioned that multiple
lines could be displayed; the wraplength method will specify the column at which word
wrapping should occur.

The button's style may be changed with the relief method, giving it a slight three-
dimensional appearance. The parameter to this method must be one of these strings:
"flat", "groove", "raised", "ridge" (the default), "sunken", or "solid". The
width and height methods will control the size of the button explicitly, and other
methods, such as borderwidth, are also available. For other options (which are
numerous), consult a reference.

Figure 6.2 provides an additional example of a button with an image on it.

Chapter 6. Graphical Interfaces for Ruby Page 8 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.2. Tk thermostat simulation (with graphical buttons).

We created a pair of GIF images of an upward-pointing arrow and a downward-pointing
one. We can use the TkPhotoImage class to get references to each of these. Then we can
use these references when we instantiate the buttons, as shown here:

upImg = TkPhotoImage.new("file"=>"up.gif")
downImg = TkPhotoImage.new("file"=>"down.gif")

TkButton.new(bottom) do
 image upImg
 command proc { $tlab.configure("text"=>($temp+=1).to_s) }
 pack $left
end

TkButton.new(bottom) do
 image downImg
 command proc { $tlab.configure("text"=>($temp-=1).to_s) }
 pack $left
end

This button code simply replaces the corresponding lines in our first thermostat example.
Except for the appearance of the buttons, the behavior is the same.

Working with Text Fields
A text entry field can be displayed and manipulated using the TkEntry widget. As you
would expect, there are numerous options governing the size, color, and behavior of this
widget; we will offer one sizeable example that illustrates a few of these.

An entry field is only useful if there is some way to retrieve the value typed into it. Typically,
the field will be bound to a variable (actually a TkVariable as you'll see), although the
get method can also be used.

For our code fragment, let's assume that we're writing a Telnet client that accepts four
pieces of information: the host machine, the port number (defaulting to 23), the user ID,

Chapter 6. Graphical Interfaces for Ruby Page 9 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

and the password. We'll add a couple of buttons, just for looks, for the "sign on" and
"cancel" operations. Figure 6.3 shows what this client looks like.

Figure 6.3. The simulated Telnet client.

As we've written it, this code fragment also does some little tricks with frames to make
things line up and look better. It's not written in a truly portable way, and a real Tk guru
would disdain this approach. However, just for your information, we've documented this
"quick and dirty" approach to screen layout. The code for this client is provided in Listing
6.2.

Chapter 6. Graphical Interfaces for Ruby Page 10 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.2. Tk Telnet

require "tk"

def packing(padx, pady, side, anchor=nil)
 side = :left if not side
 anchor = :n if anchor == nil
 { "padx" => padx, "pady" => pady,
"side" => side.to_s, "anchor" => anchor.to_s }
end

root = TkRoot.new() { title "Telnet session" }
top = TkFrame.new(root)
fr1 = TkFrame.new(top)
fr1a = TkFrame.new(fr1)
fr1b = TkFrame.new(fr1)
fr2 = TkFrame.new(top)
fr3 = TkFrame.new(top)
fr4 = TkFrame.new(top)

$labelPack = packing(5, 5, :top, :w)
$entryPack = packing(5, 2, :top)
$buttonPack = packing(15, 5, :left, :center)
framePack = packing(2, 2, :top)
frame1Pack = packing(2, 2, :left)

$varHost = TkVariable.new
$varPort = TkVariable.new
$varUser = TkVariable.new
$varPass = TkVariable.new

labHost = TkLabel.new(fr1a) do
 text "Host name"
 pack $labelPack
end
entHost = TkEntry.new(fr1a) do
 textvariable $varHost
 font "{ Arial} 10"
 pack $entryPack
end

labPort = TkLabel.new(fr1b) do
 text "Port"
 pack $labelPack
end
entPort = TkEntry.new(fr1b) do
width 4
 textvariable $varPort
 font "{ Arial} 10"
 pack $entryPack
end

labUser = TkLabel.new(fr2) do
 text "User name"
 pack $labelPack
end
entUser = TkEntry.new(fr2) do
 width 21
 font "{ Arial} 12"
 textvariable $varUser
 pack $entryPack
end

labPass = TkLabel.new(fr3) do
 text "Password"
 pack $labelPack
end
entPass = TkEntry.new(fr3) do

Chapter 6. Graphical Interfaces for Ruby Page 11 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 width 21
 show "*"
 textvariable $varPass
 font "{ Arial} 12"
 pack $entryPack
end

btnSignon = TkButton.new(fr4) do
 text "Sign on"
 command proc { } # Does nothing!
 pack $buttonPack
end
btnCancel = TkButton.new(fr4) do
 text "Cancel"
 command proc { exit } # Just exits
 pack $buttonPack
end

top.pack framePack
fr1.pack framePack
fr2.pack framePack
fr3.pack framePack
fr4.pack framePack
fr1a.pack frame1Pack
fr1b.pack frame1Pack

$varHost.value = "samspublishing.com"
$varUser.value = "william"
$varPort.value = 23

entPass.focus

foo = entUser.font

Tk.mainloop

Let's get the layout issues out of the way. First of all, note that we begin by creating some
frames that will stack vertically from top to bottom. The topmost frame will have two
smaller ones inside it, placed onscreen from left to right.

We have also created a method called packing that exists only to make the code a tiny bit
cleaner. It returns a hash with the specified values set for the padx, pady, side, and
anchor options.

We use the TkVariable objects just to associate the entry fields with variables. A
TkVariable has a value accessor that will allow these values to be set and retrieved.

When we create a TkEntry such as entHost, we use the textvariable option to
associate it with its corresponding TkVariable object. In some cases, we use width to
set the horizontal width of the field; if it is omitted, a reasonable default will be picked,
usually based on the width of the current value stored in the field. We confess to picking
these widths by trial and error.

Fonts work for entry fields as they do for labels (as do colors, which we don't play with in
this example). If a font is proportional, then two fields that are given the same width may
not appear equal-sized onscreen.

Chapter 6. Graphical Interfaces for Ruby Page 12 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As always, pack must be called. We've simplified these calls a little with our global
variables.

The password field has a call to the show method because it is the one field whose value
is kept secret from people reading over our shoulders. The character specified as a
parameter to show (in this case, an asterisk) will be displayed in place of each of the user's
keystrokes.

As we said, the buttons are used mainly for show. The "sign on" button does nothing at all;
the "cancel" button does exit the program, however.

Other options exist for manipulating entry fields. For example, we can change the value
under program control rather than having the user change it, specify the font and the
foreground/background colors, change the characteristics of the insertion cursor and
move it where we wish, and much more. For all the details, consult a reference.

Because the topic is entering text, it's appropriate to mention the related Text widget. It
is related to the entry widget in the way the space shuttle is related to a two-seater plane.
It is specifically designed to handle large pieces of multiline text and, in effect, forms the
basis for a full-fledged editor.

We won't cover it here because of its complexity. However, you can again consult a
reference to find out about the numerous features of this widget.

Working with Other Widgets
Many other widgets are available for Tk. We'll mention a few here.

A checkbox is commonly used for a toggled value—a simple true/false or on/off field. The
Tk terminology is checkbutton, and TkCheckButton is the class name for the widget.

Listing 6.3 shows a little example. This is a completely bare-bones code fragment because
it does not even have any buttons. It displays checkboxes for three areas in which you might
take coursework (computer science, music, and literature). It prints a message to the
console when you select (or deselect) one of them.

Chapter 6. Graphical Interfaces for Ruby Page 13 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.3. Tk Checkboxes

require "tk"

root = TkRoot.new() { title "Checkbutton demo" }
top = TkFrame.new(root)

$packopts = { "side" => "top", "anchor" => "w" }

$cb1var = TkVariable.new
$cb2var = TkVariable.new
$cb3var = TkVariable.new

cb1 = TkCheckButton.new(top) do
 variable $cb1var
 text "Computer science"
 command { puts "Button 1 = #{ $cb1var.value} " }
 pack $packopts
end
cb2 = TkCheckButton.new(top) do
 variable $cb2var
 text "Music"
 command { puts "Button 2 = #{ $cb2var.value} " }
 pack $packopts
end

cb3 = TkCheckButton.new(top) do
 variable $cb3var
 text "Literature"
 command { puts "Button 3 = #{ $cb3var.value} " }
 pack $packopts
end

top.pack $packopts

Tk.mainloop

Note that the variable associated with a checkbox receives the value 1 when the box is
selected and 0 when it is deselected. These default values can be changed with the
onvalue and offvalue methods. Furthermore, the variable can be set prior to the
creation of the checkbox to establish its initial on/off status.

If for some reason we want a checkbox to be "grayed out," we can use the state method
to set its state to disabled. The other states are active and normal; the latter is the
default.

Let's alter this little example. Suppose we are representing not just areas of potential study
but actual university majors. Ignore double majors for now; it's not appropriate for more
than one option to be selected at a time. In this case, of course, we need radio buttons
(implemented by the TkRadioButton class).

The example we show in Listing 6.4 is nearly the same as the previous one. Obviously, the
class name is different. Another critical difference is that the radio buttons all share the
same variable. In fact, this is how Tk knows that these buttons all belong to the same group.

Chapter 6. Graphical Interfaces for Ruby Page 14 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

It is possible to have more than one group of radio buttons, but each group must share one
variable among its buttons.

Listing 6.4. Tk Radio Buttons

require "tk"

root = TkRoot.new() { title "Radiobutton demo" }
top = TkFrame.new(root)
$packopts = { "side" => "top", "anchor" => "w" }

$major = TkVariable.new

b1 = TkRadioButton.new(top) do
 variable $major
 text "Computer science"
 value 1
 command { puts "Major = #{ $major.value} " }
 pack $packopts
end

b2 = TkRadioButton.new(top) do
 variable $major
 text "Music"
 value 2
 command { puts "Major = #{ $major.value} " }
 pack $packopts
end

b3 = TkRadioButton.new(top) do
 variable $major
 text "Literature"
 value 3
 command { puts "Major = #{ $major.value} " }
 pack $packopts
end

top.pack $packopts

Tk.mainloop

The value method is used here to associate a specific value with each of the buttons. It's
important to realize that any value can be used here (strings, for example). We didn't use
strings simply because we wanted to emphasize that there is no direct relationship between
the text of the widget and the value that is returned.

Numerous options are available to customize the appearance and behavior of both
checkboxes and radio button groups. The image method, for example, allows you to
display an image rather than a text string. Most of the "usual" options for formatting and
displaying widgets also apply here; consult a reference for complete details.

If this book (or even this chapter) were fully devoted to Tk, we would have more to say,
but it's not possible to cover it all. The remaining widgets are not discussed here in detail;
we mention them only to make you aware of their existence.

Chapter 6. Graphical Interfaces for Ruby Page 15 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The list box (TkListBox) widget allows you to specify a list of values in a "pull-down"
format so that the user can select from them. The selection mode (governed by the
selectmode method) makes it possible to select these values in single, extended, or
browse mode. The first two modes simply determine whether the user can select only one
or more than one item at a time. Browse mode is like single mode except that the selection
can be moved around as the mouse button is held down. List boxes can be made fully
scrollable and can hold an arbitrary number of items.

Tk has advanced menuing capabilities, including pull-down menus, tear-off menus,
cascading submenus, keyboard shortcut facilities, radio button menu items, and much
more. For more information, investigate the classes TkMenu, TkMenubar, and
TkMenuButton.

Perhaps the "sexiest" of the widgets is TkCanvas, which enables the programmer to
manipulate images more or less at the pixel level. It has facilities for drawing lines and
shapes, manipulating colors, and loading images in various graphics formats. If your
application involves advanced graphics or user-controlled drawing, this widget will be of
interest to you.

The scrollbar widget handles customized scrolling, both horizontal and vertical (for
example, synchronized scrolling of two separate windows). The scale widget is basically a
slider that represents a numeric value; it can be placed horizontally or vertically and can
be used as input or output. For any others, consult advanced documentation.

Other Notes
The future of Tk is uncertain (as is true of any software system), but it is not going away
in the foreseeable future. Ruby/Tk is based on Tk 8.3 at the time of this writing, although
it is probably not complete and definitely has a few bugs. We're unable to predict when
updates might happen.

We should also say a few words about operating systems. In theory, Tk is platform
independent, and the practice is close to the theory. Some users, however, have reported
that the Windows version is not as stable as the Unix version. Although this is a bit of a
generalization, it is probably correct. For the record, all the examples here have been tested
on Windows platforms and are known to work as expected.

Before we close, we should at least mention SpecRuby, the one existing Tk-based
application builder for Ruby. This is based on the original SpecTcl (presumably
pronounced spectacle, a pun that was lost as soon as it was ported from Tcl to other
languages such as Perl, Java, and Ruby). While not necessarily a true RAD (rapid
application development) tool, it is still useful and convenient, especially if you are

Chapter 6. Graphical Interfaces for Ruby Page 16 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

developing a large or complex GUI application. SpecRuby can be found in the Ruby
Application Archive.

Ruby/GTK
The GTK+ library is a byproduct of the GIMP (the GNU Image Manipulation Program);
the name actually means the GIMP Toolkit. Like BSD and LSD, GTK+ comes to us from
the University of California at Berkeley.

For those familiar with X/Motif, GTK+ has a similar look and feel but is more lightweight.
GTK+ originates in the Unix world and forms the underlying basis for GNOME
(increasingly familiar to Linux users), but it is relatively cross-platform. There is an
ongoing port to the Windows family of operating systems, although at the time of this
writing it is not completely stable.

Because GTK+ is relatively new technology, it is arguably easier to use than some older,
less object-oriented systems. It also offers a reasonably intuitive paradigm for
programming and a comfortable rich set of widgets. However, these assessments are highly
subjective, and we'll leave the final judgment to you, the reader.

Overview
Ruby/GTK is a library that allows Ruby applications to use the GTK+ library. GTK+ is open
source and is released under the GNU LGPL license, so it may be used freely in commercial
applications.

Like most GUI toolkits, GTK+ has such concepts as frames, windows, dialog boxes, and
layout managers. It has a rich set of widgets and includes all the most basic ones, such as
labels, buttons, and text edit boxes, as well as advanced widgets, such as tree controls and
multicolumn lists.

Although GTK+ was written in C, it was designed with a strong object-oriented flavor.
Ruby/GTK thus presents a very clean, object-oriented API, while also staying very close
to the underlying C language. This enables Ruby/GTK developers to take advantage of the
large number of "native C" GTK+ tutorials and reference documents available.

GTK+ is actually built on top of a library named GDK. In Ruby/GTK, this means that some
of the lower-level graphical objects are in the Gdk module, rather than the Gtk module.
The native GTK+ documentation makes it clear which objects are in each library. Native
GTK+ also includes a library named GLIB, which contains an assortment of nongraphical
classes that handle items such as strings and lists. Because Ruby already has nice string
and list classes, Ruby/GTK programs do not have to deal with GLIB concepts much.

Chapter 6. Graphical Interfaces for Ruby Page 17 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

At the time of this writing, Ruby/GTK is at version 0.25 and is compatible with the current
stable versions of Ruby and GTK+ (1.2). However, Ruby/GTK is not yet at version 1 and is
described by the author as "usable, but not completed." Furthermore, the MS Windows
port of GTK+ is "not really targeted at end-users yet." So although simple Ruby/GTK
applications seem to work fine under MS Windows, it's probably not the best choice for
projects that require Windows compatibility.

GTK+ is very object oriented and has a logical widget hierarchy. The concepts of Bin and
Container are powerful, and the combination of Box and Table layout managers is
simple yet flexible. The Ruby/GTK mechanism for setting up signal handlers is extremely
convenient.

Some of the GTK+ widgets include menus, toolbars, tooltips, trees, progress bars, sliders,
and calendars. However, one current weakness of GTK+ is that it does not yet provide a
good selection of standard dialog boxes, and it is difficult to set them up modally. In
addition, the standard multiline text editor widget has some weaknesses.

A Trivial Windowed Application
Any program using Ruby/GTK must do a require of the GTK library. Ruby/GTK provides
its functionality through the Gtk and Gdk modules, meaning that GTK+ classes are
typically prefixed with Gtk:: (or Gdk::).

Normally we create a top-level window and a handler for the destroy signal (which results
when a window is closed by the user). A call to show_all makes the window (and its
children) visible, and a call to Gtk.Main initiates the event loop.

We'll expand on this a little after looking at an example. Here is a code fragment similar
to the one for Tk that displays the current date:

require "gtk"

mainWindow = Gtk::Window.new
mainWindow.signal_connect("destroy") { Gtk::main_quit }
str = Time.now.strftime("Today is \n%B %d, %Y")
mainWindow.add(Gtk::Label.new(str))
mainWindow.set_default_size(200, 100)
mainWindow.show_all
Gtk::main

The main window (of type Gtk::Window) is created as a "top-level" window. Top-level
windows have a standard title bar and generally behave as you would expect the main
window of an application to behave.

Chapter 6. Graphical Interfaces for Ruby Page 18 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Next, a handler is created for the destroy signal, which is generated after the main
window is closed. This handler (here, a single block) simply exits the main event loop. The
GTK+ documentation lists all the signals that each widget might receive. (Be sure to look
at superclasses, too). These are typically triggered by mouse or keyboard input, timers,
changes in window state, and so on.

The next line of code adds a text label widget directly to the main window. The default size
of the label will be calculated automatically based on the size of the text.

By default, GTK+ parent widgets are automatically sized according to the sizes of their
children. In this case, the size of the string in the default font will determine the size of the
label widget, and the main window would become just large enough to hold the label. That's
pretty small, so set_default_size is used to indicate that the initial size of the main
window is 200 pixels wide and 100 pixels tall.

After that, show_all is used to make the main window and all its children visible. By
default, the main window is hidden, so it is necessary to invoke this method for the main
window of most applications.

The call to Gtk::main starts the GTK+ event loop. This method will not return until GTK
+ is terminated. In this application, the destroy event handler will cause Gtk::main to
exit, at which point the app will terminate.

Working with Buttons
To create a pushbutton in Ruby/GTK, we define it using the Button class. In the simple
case, we set up a handler for the clicked event that is generated when a user clicks the
button.

This code fragment shown in Listing 6.5 will accept a simple line of text in a text-entry
field and (when the button is clicked) will convert the string to uppercase. Figure 6.4 shows
a screenshot of this example.

Figure 6.4. A simple GTK pushbutton example.

Chapter 6. Graphical Interfaces for Ruby Page 19 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.5. GTK Buttons

require "gtk"

 class SampleWindow < Gtk::Window

 def initialize
 super
 set_title("Ruby/GTK Sample")
 signal_connect("destroy") { Gtk::main_quit }

 entry = Gtk::Entry.new
 button = Gtk::Button.new("All Caps!")
 button.signal_connect("clicked") { cmdAllCaps(entry) }

 box = Gtk::HBox.new
 box.add(Gtk::Label.new("Text:"))
 box.add(entry)
 box.add(button)

 add(box)
 show_all
 end

 def cmdAllCaps(textField)
 textField.set_text(textField.get_text.upcase)
 end
 end

 SampleWindow.new
 Gtk::main

In this example, a SampleWindow class is defined; this is a cleaner approach because it
allows the class to control its own look and behavior (rather than requiring the caller to
configure the window). This main window is derived from Gtk::Window.

The call to set_title configures the text that will appear in the title bar of the application.
As with the first example, a signal handler for destroy exits the GTK+ event loop when
the main window is closed.

This class creates a single-line text-entry field using the Entry class, and it creates a button
with the text label All Caps!. The signal handler for the button's clicked event calls
the cmdUpperCase method, which is defined afterward. (The clicked event is generated
after the user presses and releases the button.)

The Gtk::Window class is a Bin, so it can only contain a single child widget. In order to
put our two child widgets in the window, we place those widgets in a box and add the box
to the main window. As widgets are added to an HBox, they are positioned at the right edge
of the box (by default). There is a corresponding Gtk::VBox widget that can stack multiple
widgets vertically.

Chapter 6. Graphical Interfaces for Ruby Page 20 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

As with the earlier example, show_all is necessary to make the main window (and all its
children) visible.

The cmdAllCaps method is invoked by the button's signal handler whenever the button
is clicked. It gets the current text out of the entry field, converts it to uppercase, and sets
it back into the entry field.

The actual application code is below the SampleWindow class definition. It simply creates
the main window and runs the GTK+ event loop.

Working with Text Fields
GTK+ provides the Entry class for single-line input, as shown in the previous example.
It also has the Text class, which is a multiline editor that we will describe here. Both
Entry and Text are derived from the base class Editable, so they have several text-
manipulation methods in common.

The code fragment shown in Listing 6.6 creates a multiline edit box and inserts some text
into it. As the contents change, the current length of the text is reflected in a label at the
bottom of the window.

Chapter 6. Graphical Interfaces for Ruby Page 21 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.6. GTK Text Editor

require "gtk"

class TextWindow < Gtk::Window

 def initialize
 super
 set_title("Ruby/GTK Text Sample")
 signal_connect("destroy") { Gtk::main_quit }

 @text = Gtk::Text.new
 @text.signal_connect("changed") { onChanged }
 @text.set_word_wrap(true)
 @text.set_editable(true)

 font = Gdk::Font::font_load("times")
 style = @text.get_style
 style.set_font(font)
 @status = Gtk::Label.new("")

 scroller = Gtk::ScrolledWindow.new
 scroller.set_policy(Gtk::POLICY_NEVER,
 Gtk::POLICY_AUTOMATIC)
 scroller.add(@text)

 box = Gtk::VBox.new
 box.add(scroller)
 box.add(@status)
 add(box)

 @text.insert_text("This is an editor", 0)
 @text.insert_text("really ", 5)

 show_all
 end

 def onChanged
 text = "Length: " + @text.get_length.to_s
 @status.set_text(text)
 end

end

TextWindow.new
Gtk::main

The code in Listing 6.6 gives us a simple text editor. Figure 6.5 shows a screenshot of this
application.

Chapter 6. Graphical Interfaces for Ruby Page 22 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.5. A small GTK text editor.

The basic structure of the code is very similar to the buttons example: A window class is
defined, with an event handler to terminate the app cleanly. At the end of initialize,
show_all is used to make the window visible. The last two lines actually create the window
and run the GTK+ event loop.

We create an editor widget named @text and set up a signal handler for the changed
event. Any time text is inserted, deleted, or modified, this signal will fire, and we will
execute the onChanged method. Word wrapping is enabled (the default is to wrap lines
regardless of word breaks), and set_editable allows the user to change the contents
(by default it is read-only).

Next, we want to configure the @text widget to display its text in a different font.
Unfortunately, this is difficult to do in a way that works on all platforms.

GTK+ actually discourages programmers from configuring specific fonts and colors in
most cases. Instead, it is often better to allow the users to customize their own system using
themes. If you do wish to override the defaults, however, you must do so through the
Style class.

In this case, we attempt to load a font from the "Times" family, which on a Windows
platform is likely to bring up some variant of Times Roman. On a Linux/Unix platform,
the parameter would be a standard X Window System font string. The system will return
whatever font is the closest match available.

Each widget has a Style object, which you can access using the get_style method. In
this case, we update the font for that style using set_font. You could also configure the
text color of this style.

The @status label is initially empty. We will change its text later.

Chapter 6. Graphical Interfaces for Ruby Page 23 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

GTK+ provides two ways to add scrollbars to an application. You can directly create
ScrollBar objects and use signals to synchronize them with the content widget(s).
However, in most cases, it is simpler to use the ScrolledWindow widget instead.

The ScrolledWindow widget is a Bin, meaning it can only contain a single child widget.
Of course, that child widget could be a Box or other container that allows multiple children.
Several GTK+ widgets, including Text, automatically interact with a ScrolledWindow
widget, requiring almost no additional code.

In this example, we create a ScrolledWindow widget named scroller and configure
it using set_policy. We choose never to display a horizontal scrollbar and to
automatically display a vertical scrollbar only when the editor has more lines than can be
seen at once. We add the text editor directly to scroller.

We now set up a Vbox that will stack our widgets vertically. The scrolling window that
contains the text field is added first, so it will appear at the top of the main window. The
@status text will appear at the bottom. The box is then added to our main window.

The next two lines insert text into the text editor. The first line inserts a string at offset 0
(at the beginning of the text). Because there was no text, 0 is the only reasonable place to
insert. We then insert some additional text at offset 5. The result is a text editor containing
the string This really is an editor.

Because we already configured the handler for the changed event, it will be triggered by
our calls to insert_text. This means the status will already display correctly, even before
the user makes any changes to the text.

The onChanged method handles the changed event. It uses get_length to determine
the length of the text currently in the text editor and creates a message string. That message
is displayed by calling @status.set_text(text).

Working with Other Widgets
Even a relatively simple GUI may need more than text fields and buttons. Often we find a
need for radio buttons, checkboxes, and similar widgets. This next example illustrates a
few of these.

Here, we assume the user is making an airline reservation. The Gtk::CList class
(representing a multicolumn list) is used for the destination city. A checkbox (actually
called a checkbutton) determines whether the ticket is roundtrip, and a set of radio buttons
(class RadioButton) is used for the seating. A Purchase button completes the interface.

Chapter 6. Graphical Interfaces for Ruby Page 24 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The code is shown in Listing 6.7. A screenshot of the application can be seen in Figure
6.6.

Figure 6.6. A sample app illustrating various GTK widgets.

Chapter 6. Graphical Interfaces for Ruby Page 25 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.7. GTK Buttons

require "gtk"

 class TicketWindow < Gtk::Window

 def initialize
 super
 set_title("Purchase Ticket")
 signal_connect("destroy") { Gtk::main_quit }

 @destination = Gtk::CList.new(["Destination", "Country"])
 @destination.append(["Cairo", "Egypt"]);
 @destination.append(["New York", "USA"]);
 @destination.append(["Tokyo", "Japan"]);
 @destination.signal_connect("select_row") do
 |list,row,col,event|
 @city = @destination.get_text(row, 0)
 end
 @destination.select_row(0, 0)
 @roundTrip = Gtk::CheckButton.new("Round Trip")

 purchase = Gtk::Button.new("Purchase")
 purchase.signal_connect("clicked") { cmdPurchase }

 @result = Gtk::Label.new("")

 @coach = Gtk::RadioButton.new(nil, "Coach class")
 @business = Gtk::RadioButton.new(@coach, "Business class")
 @first = Gtk::RadioButton.new(@business, "First class")

 flightBox = Gtk::VBox.new
 flightBox.add(@destination)
 flightBox.add(@roundTrip)

 seatBox = Gtk::VBox.new
 seatBox.add(@coach)
 seatBox.add(@business)
 seatBox.add(@first)

 topBox = Gtk::HBox.new
 topBox.add(flightBox)
 topBox.add(seatBox)

 mainBox = Gtk::VBox.new
 mainBox.add(topBox)
 mainBox.add(purchase)
 mainBox.add(@result)

 add(mainBox)
 show_all
 end

 def cmdPurchase
 text = @city
 if(@first.active?)
 text += ": first class"
 elsif(@business.active?)
 text += ": business class"
 elsif(@coach.active?)
 text += ": coach"
 end
 if(@roundTrip.active?) then text += ", round trip " end
 @result.set_text(text)
 end

 end

Chapter 6. Graphical Interfaces for Ruby Page 26 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 TicketWindow.new
 Gtk::main

This application creates a main window with a signal handler, as before. Next, a
multicolumn list box (Gtk::CList) widget is created with two columns. Three rows of
data are added to the list, and a signal handler is created for the "select_row" event.
This will be invoked whenever the user selects a different row. The handler will update the
@city member variable to contain the text from the first column (column number 0) of
the newly selected row.

A simple checkbox (Gtk::CheckButton) and pushbutton (Gtk::Button) are created.
The signal handler for the pushbutton will execute the cmdPurchase method whenever
the button is clicked. The label named @result is initially blank, but later will be set to a
string indicating what type of ticket was purchased.

Three radio buttons are created as a group, meaning that only one of them can be selected
at a time. When the user clicks any of these radio buttons, any previously selected button
will automatically be deselected. The first parameter to the radio button constructor is the
previous radio button within the same group. Therefore, the first radio button in a group
passes nil, and the rest of the buttons pass the earlier button.

The widgets need to be arranged in a way that will make sense to the user, so a combination
of HBox and VBox widgets is used. The list box will appear above the checkbox. The three
radio buttons will appear in a vertical stack to the right of the list box. Finally, the Purchase
pushbutton will appear below all the other widgets.

The cmdPurchase method is straightforward: It builds a string that reflects all the current
widget states when the Purchase button is clicked. Radio buttons and checkboxes have a
method named active? that returns true if the button is selected. The text is then placed
in the @result label so it will appear on the screen.

Most applications use menus as a key part of their user interface. This next example
demonstrates how to set up menus using Ruby/GTK. It also shows how easy it is to add
tooltips—a nice touch for any program.

The code in Listing 6.8 creates a main window that has a File menu, along with two other
dummy items on the menu bar. The File menu contains an Exit item that exits the
application. Both the File and Exit items have tooltips. Figure 6.7 shows a screenshot of
this example.

Chapter 6. Graphical Interfaces for Ruby Page 27 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Figure 6.7. A GTK menu with tooltips.

Listing 6.8. GTK Menu

require "gtk"

class MenuWindow < Gtk::Window

 def initialize
 super
 set_title("Ruby/GTK Menu Sample")
 signal_connect("destroy") { Gtk::main_quit }

 fileExitItem = Gtk::MenuItem.new("Exit")
 fileExitItem.signal_connect("activate") { Gtk::main_quit }

 fileMenu = Gtk::Menu.new
 fileMenu.add(fileExitItem)

 fileMenuItem = Gtk::MenuItem.new("File")
 fileMenuItem.set_submenu(fileMenu)

 menuBar = Gtk::MenuBar.new
 menuBar.append(fileMenuItem)
 menuBar.append(Gtk::MenuItem.new("Nothing"))
 menuBar.append(Gtk::MenuItem.new("Useless"))

 tooltips = Gtk::Tooltips.new
 tooltips.set_tip(fileMenuItem, "File Menu", "")
 tooltips.set_tip(fileExitItem, "Exit the app", "")

 box = Gtk::VBox.new
 box.pack_start(menuBar, false, false, 0)
 box.add(Gtk::Label.new("Try the menu and tooltips!"))
 add(box)
 set_default_size(300, 100)
 show_all
 end

end

MenuWindow.new
Gtk::main

Chapter 6. Graphical Interfaces for Ruby Page 28 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Again, the basic structure is like the other examples. In this case, we create a MenuItem
widget named Exit and a signal handler so it will actually exit the program. The signal is
activate, and it will be generated when a user actually invokes this item on the menu.

The File menu is created, and the Exit item is added to it. This is all that is required to
create a pop-up menu. Next, the File menu item is created—this is what will actually appear
on the menu bar. We call set_submenu to connect the File menu item with the File menu
itself.

We create the menu bar and add its three items: File, Nothing, and Useless. Only the first
item is actually functional—the other two are just for show.

A single Tooltips object manages all the actual tooltips. To create a tooltip for any widget,
such as a menu item, call set_tip, passing the widget, the tooltip text, and another string
that contains additional "private" text. This private text is not shown as part of the tooltip;
it could be used by a help system, for example.

A Vbox is used to place the menu bar at the top of the main window, above any other
widgets. In this case, instead of using add to place the menu bar in the box, we use
pack_start to gain more control over the exact look and placement of the widget.

The first parameter to pack_start is the widget we are placing. The second parameter
is a Boolean indicating whether this widget should take up all the available space. Note
that it won't make the widget actually grow; instead, it will typically center the widget. In
this case, we want the menu bar at the very top of the screen, so we pass false.

The third parameter is a Boolean for whether this widget should grow to fill all the available
space. Because we just want a small menu bar, we pass false for this as well. The last
parameter to pack_start is for padding. This would be used to create additional space
all around the widget. We don't want any, so we pass zero.

A text label will take up most of the main window. Finally, we force the initial size of the
window to be 300 pixels wide by 100 pixels tall.

Other Notes
We should mention GNOME at least briefly. This is a higher-level package that depends
on GTK+, and some GNOME-Ruby bindings are available. However, it is not part of the
core GTK+ functionality and is not available for MS Windows.

At the time of this writing, we are anticipating the next major release of GTK+, which will
be version 2.0. A preview release (known as "unstable version 1.3") shipped in September

Chapter 6. Graphical Interfaces for Ruby Page 29 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

2000, and the official release is expected soon. We should note that existing GTK+ 1.2
applications will likely not be compatible with the newer version.

Among the improvements expected in GTK+ 2.0 are the following:

• Stronger support for internationalization
• Better font support (via a new library named Pango)
• New and improved widgets and dialog boxes
• Built-in portability to the MS Windows, BeOS, and Mac platforms
• A simplified API with unneeded methods removed

The official Ruby/GTK home page is at http://www.ruby-lang.org/gtk/en/, and the official
GTK+ home page, including a comprehensive API reference, is at www.gtk.org.

FX/Ruby (FOX)
The FOX system is also relatively new technology; its emphasis is on speed and consistency
among platforms. Its extreme consistency is achieved in part by its self-reliance; it is not
a wrapper for a native GUI, as some other systems are implemented.

At its heart, it is based on C++, although bindings can be created for essentially any
language (as they have been for Ruby). Because its internals are object oriented from the
start, it interfaces well with Ruby and is fairly naturally extensible.

Although it is not extremely widespread at this time, FOX is growing in popularity. We
believe it has a future, and we want to present it to you for that reason.

Overview
FX/Ruby is a Ruby binding to the FOX C++ library; it has a large number of classes for
developing full-featured GUI applications. Although FOX stands for Free Objects for X, it
has been ported to a variety of platforms, including MS Windows. Lyle Johnson created
the Ruby binding to FOX as well as much of the Windows port of the FOX C++ toolkit
itself. FOX was created by Jeroen van der Zijp with the support of CFD Research
Corporation.

FOX widgets provide a modern look and feel. The widget choices rival native GUI
interfaces, including MS Windows, and the toolkit also has features beyond many other
widget libraries.

The FOX class library is clean and powerful, and it can be learned easily by programmers
familiar with most other GUI toolkits. Platform dependencies are not apparent in the API.
Because FOX itself is implemented in C++, some aspects of the FXRuby API are still

Chapter 6. Graphical Interfaces for Ruby Page 30 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.ruby-lang.org/gtk/en/
http://www.gtk.org

influenced by the static nature and programming conventions of C++—for example,
enumerations and bit operations as well as message maps based on enumerations.

A central simplifying mechanism in FOX is the message/target paradigm. A FOX object is
an instance of FXObject or one of its subclasses. User-defined FOX objects must inherit
from one of these classes. Every instance of FXObject is able to send and receive
messages; a message is associated with a specific target at runtime, when the message is
sent. A message in FOX is an integer unique to a class and its super classes. Many of the
FOX classes use a common set of message definitions to allow widgets to interoperate.

An application-specific instance of an FXRuby class should initialize a message map from
FOX messages (integers) to message handlers (Ruby methods). A message handler should
return 1 to indicate that the message has been handled or 0 to indicate it has not. FOX
does not implicitly forward unhandled messages to other widgets. The return value is used
by FOX to determine whether the GUI requires updating. An FXRuby application could
use the return value to forward unhandled messages itself and thus implement the Chain
of Responsibility pattern (refer to the book Design Patterns by the "Gang of Four").

Another simplifying mechanism in FOX is the automatic update paradigm. The implicit
FOX event loop includes an update phase where instances of FOX objects can handle
update messages. An update handler is typically used to change the look and feel of a widget
based on the new state of some application data. An example of this later in this chapter
is a button that updates its active/inactive status based on an application variable.

A Trivial Windowed Application
Here is a minimal FXRuby application, the equivalent of the others you saw for Tk and
GTK+ earlier:

require "fox"

include Fox

application = FXApp.new("Today", "Sample programs")
application.init(ARGV)
main = FXMainWindow.new(application, "Hello")
str = Time.now.strftime("&Today is %B %d, %Y")
FXButton.new(main, str, nil, application,
 FXApp::ID_QUIT)
application.create
main.show(PLACEMENT_SCREEN)
application.run

This application is enough to illustrate two fundamental classes of FXRuby: FXApp and
FXMainWindow. Each application must have one instance of FXApp created and initialized
before anything is done with the other FOX classes. FXMainWindow is a subclass of

Chapter 6. Graphical Interfaces for Ruby Page 31 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

FXTopWindow; every widget in FOX is a kind of "window." FXTopWindow is a window
that appears directly on the screen. A more complex FXRuby application will create a
subclass of FXMainWindow and create its widgets during initialization.

The FXApp constructor is given an application name and a vendor key as arguments. The
vendor key is a unique string for your applications using the FOX registry mechanism,
which we describe later.

The FXMainWindow constructor requires an instance of FXApp as its first argument. The
second argument is the window title. An instance of FXMainWindow will be placed in the
center of the screen with all the window decorations of FXTopWindow. Therefore, it will
be resizable, show its title bar, and include minimize, maximize, and close buttons in the
title bar.

The decoration argument in the constructor can explicitly name each decoration to be
included. For example, it is possible to prevent a window from being resized:

main = FXMainWindow.new(application, "Hello", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

The two nil arguments in this example are placeholders for icons to be used on the desktop
by the window manager. The decoration options are bitwise ORed together in true C++
fashion. The result is a window that has a title and just a close button in the title bar.

This simple application has one widget in its main window—an instance of FXButton
displaying the text Hello, world!:

FXButton.new(main, "&Hello, world!", nil,
 application, FXApp::ID_QUIT)

The first argument is the parent window that contains the widget. In this example, it is the
main window. The second argument is the button's text. The ampersand defines a hot
key equated with a button click. The nil argument is a placeholder for a button icon.

The final two arguments in the button constructor illustrate the message/target paradigm
of FOX. The application argument can be any instance of FXObject. It is the target of the
message FXApp::ID_QUIT that the button will send when clicked. In this example, the
instance of FXApp will respond by stopping event processing and closing the instance of
FXMainWindow.

The remaining lines of the application illustrate the common "mating ritual" of FXApp and
FXMainWindow instances:

Chapter 6. Graphical Interfaces for Ruby Page 32 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

application.create()
main.show(PLACEMENT_SCREEN)
application.run()

All FXRuby applications should include lines like these to create the application, show the
FXMainWindow object, and run the FXApp event loop for processing GUI events. The
PLACEMENT_SCREEN argument to the show procedure determines where the main
window will appear on the screen. Interesting alternative arguments are
PLACEMENT_CURSOR (to place it under the cursor location), PLACEMENT_OWNER (to place
it centered on its owner), and PLACEMENT_MAXIMIZED (to place it maximized to the
screen size).

These simple examples illustrate the use of messages and targets rather than callbacks in
FXRuby. In that example, the target is an object implemented in the FOX library. The
application shown in Listing 6.9 illustrates how to implement a simple message handler
in a Ruby code. The application will appear similar to the previous ones except that when
the button is clicked, Ruby code will print text to the console.

Chapter 6. Graphical Interfaces for Ruby Page 33 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.9. FOX Messages and Targets

require "fox"
require "responder"

include Fox
class SimpleMessageHandlerWindow < FXMainWindow

 include Responder

 # Message identifiers for this class
 ID_HELLO_WORLD = FXMainWindow::ID_LAST

 def initialize(app)
 # Invoke base class initialize first
 super(app, "Simple Message Handler", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

 # Define the message map for the class
 FXMAPFUNC(SEL_COMMAND, ID_HELLO_WORLD,
 "onCmdHelloWorld")

 # The button
 FXButton.new(self, "&Hello, World", nil, self,
 ID_HELLO_WORLD)
 end

 def onCmdHelloWorld(sender, sel, ptr)
 puts "Hello, World"
 end

end

def run
 application = FXApp.new("SimpleButton",
 "Sample programs")
 application.init(ARGV)
 main = SimpleMessageHandlerWindow.new(application)
 application.create
 main.show(PLACEMENT_SCREEN)
 application.run
end

run

This application creates a subclass of FXMainWindow. The purpose of this subclass is to
define an application-specific message handler. Again, any FXObject instance can handle
messages, so the use of FXMainWindow as the superclass is simply a useful convention.

Responder is a module that is in the examples directory of the FXRuby distribution. It
is included to provide convenience methods for creating the message map that associates
an ID with a handler method. This example defines one association—from
ID_HELLO_WORLD to the handler method onCmdHelloWorld.

Evidence of FOX's native C++ code betrays itself again in the use of integer IDs. An ID
value has to be unique within an FXObject and its superclasses. The convention is to
define ID_LAST as the last ID in a superclass. This ID also serves as the first ID in each

Chapter 6. Graphical Interfaces for Ruby Page 34 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

subclass. The class in this example will not be used as a superclass, so it does not define
its own ID_LAST.

The FXMAPFUNC method is a convenience method in the Responder module. The flavor
used in this example adds to the sample window's message map the association from
ID_HELLO_WORLD to onCmdHelloWorld. Every message has a message type and a
message ID. SEL_COMMAND is the type, and ID_HELLO_WORLD the ID in this example.
Buttons can send two types of messages: SEL_COMMAND and SEL_UPDATE. An example
of an update message is provided later.

Working with Buttons
You have already seen simple button handling in FXRuby. Now let's look a little deeper.

A button can display more than a short text string. The following example illustrates the
use of an image and multiple lines of text in a button:

text = "&Hello, World\nDo you see the image?\n" +
 "Do you see multiple lines of text?"
gif = File.open("icons/ruby_button.gif", "rb").read())
image = FXGIFIcon.new(app, gif)
FXButton.new(self, text, image, self, ID_HELLO_WORLD)

The example shown in Listing 6.10 illustrates the mechanism the FOX toolkit provides for
updating the GUI state.

Chapter 6. Graphical Interfaces for Ruby Page 35 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.10. FOX State-Update Example

require "fox"
require "responder"

include Fox

class TwoButtonUpdateWindow < FXMainWindow

 include Responder

 # Message identifiers for this class
 ID_TOGGLE_BUTTON = FXMainWindow::ID_LAST
 def initialize(app)
 # Invoke base class initialize first
 super(app, "Update Example", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

 # Define the message map for the class
 FXMAPFUNC(SEL_COMMAND, ID_TOGGLE_BUTTON,
 "onCommand")
 FXMAPFUNC(SEL_UPDATE, ID_TOGGLE_BUTTON,
 "onUpdate")

 # First button
 @button_one = FXButton.new(self, "Enable Button 2",
 nil, self,
 ID_TOGGLE_BUTTON)
 @button_one_enabled = true

 # Second button
 @button_two = FXButton.new(self, "Enable Button 1",
 nil, self,
 ID_TOGGLE_BUTTON)
 @button_two.disable
 @button_two_enabled = false
 end

 def onCommand(sender, sel, ptr)
 # Update the application state
 @button_one_enabled = !@button_one_enabled
 @button_two_enabled = !@button_two_enabled
 end

 def onUpdate(sender, sel, ptr)
 # Update the buttons based on the application state
 @button_one_enabled ?
 @button_one.enable : @button_one.disable
 @button_two_enabled ?
 @button_two.enable : @button_two.disable
 end

end

def run
 application = FXApp.new("UpdateExample",
 "Sample programs")
 application.init(ARGV)
 main = TwoButtonUpdateWindow.new(application)
 application.create
 main.show(PLACEMENT_SCREEN)
 application.run
end

run

Chapter 6. Graphical Interfaces for Ruby Page 36 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This example creates a message map with two associations. The same ID is used
(ID_TOGGLE_BUTTON), and two message types are used (SEL_COMMAND and
SEL_UPDATE).

Two buttons are added to the main window. The same message ID
(ID_TOGGLE_BUTTON) is sent from each button. Two types of messages are sent from
each button. The SEL_COMMAND type is sent when a button is clicked. The SEL_UPDATE
type is sent when a button is updated. Updates occur when there are no higher-priority
events being processed by the GUI toolkit. An application's update methods should be
"short and sweet" to maintain an interactive feel for the user.

The use of the SEL_UPDATE message type allows for the independence of GUI widgets
from each other and the application code. This example illustrates that the two buttons
are unaware of each other. One updates the state of the other by sending messages to
handlers that maintain their state.

The class FXButton is a subclass of FXLabel. A window can display static text and/or an
image very simply using a label. The next example illustrates how to change the font as
well.

Working with Text Fields
FOX has some useful features for text entry. The following example illustrates the use of
FXTextField for editing single lines of text. The options are used to constrain the format
of the text. TEXTFIELD_PASSWD is used for disguising the text when it is a password,
TEXTFIELD_REAL constrains the text to the syntax for numbers in scientific notation,
and TEXTFIELD_INTEGER constrains the text to the syntax for integers:

simple = FXTextField.new(main, 20, nil, 0,
 JUSTIFY_RIGHT|FRAME_SUNKEN|
 FRAME_THICK|LAYOUT_SIDE_TOP)
simple.setText("Simple Text Field")
passwd = FXTextField.new(main, 20, nil, 0,
 JUSTIFY_RIGHT|TEXTFIELD_PASSWD|
 FRAME_SUNKEN|FRAME_THICK|
 LAYOUT_SIDE_TOP)
passwd.setText("Password")
real = FXTextField.new(main, 20, nil, 0,
 TEXTFIELD_REAL|FRAME_SUNKEN|
 FRAME_THICK|LAYOUT_SIDE_TOP|
 LAYOUT_FIX_HEIGHT, 0, 0, 0, 30)
real.setText("1.0E+3")
int = FXTextField.new(main, 20, nil, 0, TEXTFIELD_INTEGER|
 FRAME_SUNKEN|FRAME_THICK|
 LAYOUT_SIDE_TOP|LAYOUT_FIX_HEIGHT,
 0, 0, 0, 30)
int.setText("1000")

Chapter 6. Graphical Interfaces for Ruby Page 37 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The following example illustrates a simple way to enter text using a dialog box. Again, the
text can be constrained to an integer or scientific number, based on the method used:

puts FXInputDialog.getString("initial text",
 self, "Text Entry Dialog",
 "Enter some text:", nil)
puts FXInputDialog.getInteger(1200, self,
 "Integer Entry Dialog",
 "Enter an integer:", nil)
puts FXInputDialog.getReal(1.03e7, self,
 "Scientific Entry Dialog",
 "Enter a real number:", nil)

To save space, we don't show the full application here. But, of course, the FOX toolkit
requires initialization before displaying a dialog window.

Working with Other Widgets
The next example illustrates the use of menus and menu bars in FXRuby applications.
Instances of FXMenuCommand follow the FOX message/target paradigm. In this example,
the message once again is FXApp::ID_QUIT and the target is the FXApp itself, so there
is no need to implement a new message handler method:

require "fox"

include Fox

application = FXApp.new("SimpleMenu", "Sample programs")
application.init(ARGV)
main = FXMainWindow.new(application, "Simple Menu")
menubar = FXMenubar.new(main, LAYOUT_SIDE_TOP |
 LAYOUT_FILL_X)
filemenu = FXMenuPane.new(main)
FXMenuCommand.new(filemenu, "&Quit\tCtl-Q", nil,
 application, FXApp::ID_QUIT)
FXMenuTitle.new(menubar, "&File", nil, filemenu)
application.create
main.show(PLACEMENT_SCREEN)
application.run

Both FXMenubar and FXMenuPane appear directly on the FXMainWindow object in this
example. The options LAYOUT_SIDE_TOP and LAYOUT_FILL_X place the menu bar at
the top of the parent window and stretch it across the width of the window. The text of the
menu command, "&Quit\tCtl-Q", defines the Alt+Q keystroke as a keyboard hotkey
equivalent and Ctrl+Q as a keyboard shortcut. Typing Alt+F then Alt+Q is equivalent to
clicking the File menu and then the Quit menu command. Typing Ctrl+Q is a shortcut
equivalent for the entire sequence.

Chapter 6. Graphical Interfaces for Ruby Page 38 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Another message, this one understood by FXTopWindow, can be sent from an
FXMenuCommand object to iconify the main window. The following line adds that
command to the File menu:

FXMenuCommand.new(filemenu, "&Icon\tCtl-I", nil,
 main, FXTopWindow::ID_ICONIFY)

Note also that menu items can be cascaded through the use of the class
FXMenuCascade.

The example shown in Listing 6.11 illustrates the use of radio buttons. The example also
uses the FOX toolkit's message-passing mechanism explicitly. The radio buttons
determine the target and the message dynamically.

Chapter 6. Graphical Interfaces for Ruby Page 39 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.11. FOX Radio Buttons

require "fox"
require "responder"

include Fox

class RadioButtonHandlerWindow < FXMainWindow

 include Responder

 # Message identifiers for this class
 ID_EXECUTE_CHOICE,
 ID_CHOOSE_QUIT,
 ID_CHOOSE_ICON = enum(FXMainWindow::ID_LAST, 3)

 def initialize(app)
 # Invoke base class initialize first
 super(app, "Radio Button Handler", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

 # Define the message map for the class
 FXMAPFUNC(SEL_COMMAND, ID_EXECUTE_CHOICE,
 "onCmdExecuteChoice")
 FXMAPFUNC(SEL_COMMAND, ID_CHOOSE_QUIT,
 "onCmdChooseQuit")
 FXMAPFUNC(SEL_COMMAND, ID_CHOOSE_ICON,
 "onCmdChooseIcon")

 group = FXGroupBox.new(self, "Radio Test Group",
 LAYOUT_SIDE_TOP |
 FRAME_GROOVE |
 LAYOUT_FILL_X)
 FXRadioButton.new(group, "&Quit the application",
 self, ID_CHOOSE_QUIT,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
 FXRadioButton.new(group, "&Iconify the window",
 self, ID_CHOOSE_ICON,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
 FXButton.new(self, "&Do it now!", nil, self,
 ID_EXECUTE_CHOICE)

 @target = app
 @choice = FXApp::ID_QUIT
 end

 def onCmdChooseQuit(sender, sel, ptr)
 @target = getApp()
 @choice = FXApp::ID_QUIT
 end

 def onCmdChooseIcon(sender, sel, ptr)
 @target = self
 @choice = FXTopWindow::ID_ICONIFY
 end

 def onCmdExecuteChoice(sender, sel, ptr)
 @target.handle(self, MKUINT(@choice, SEL_COMMAND),
 nil)
 end
end

def run
 application = FXApp.new("RadioButton", "Sample programs")
 application.init(ARGV)
 main = RadioButtonHandlerWindow.new(application)

Chapter 6. Graphical Interfaces for Ruby Page 40 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 application.create
 main.show(PLACEMENT_SCREEN)
 application.run
end

run

Several application-specific messages are used in this example. The responder.rb
module has a convenience method for defining multiple FOX identifiers. The enum method
returns an array of sequential integers. The first argument is the first integer of the array.
The second argument is the length of the array. This example returns an array of three
integers, from FXMainWindow::ID_LAST through FXMainWindow::ID_LAST + 3.
The Ruby assignment operator converts the integers into three "rvalues" and assigns those
values to the three "lvalues":

ID_EXECUTE_CHOICE,
ID_CHOOSE_QUIT,
ID_CHOOSE_ICON = enum(FXMainWindow::ID_LAST, 3)

Instances of FXRadioButton work together as a group of buttons when they are added
to the same parent. This example adds an instance of FXGroupBox to the main window
and then adds the radio buttons to the group box:

group = FXGroupBox.new(self, "Radio Test Group",
 LAYOUT_SIDE_TOP | FRAME_GROOVE |
 LAYOUT_FILL_X)
FXRadioButton.new(group, "&Quit the application", self,
 ID_CHOOSE_QUIT, ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
FXRadioButton.new(group, "&Iconify the window", self,
 ID_CHOOSE_ICON, ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)

The radio buttons are mapped to methods in the application's
RadioButtonHandlerWindow class. The pushbutton is mapped to a method that send
the message in @choice to the target in @target. The MKUINT method is used to create
the message to be sent. A message is a combination of an identifier such as
FXApp::ID_QUIT and a message type such as SEL_COMMAND. In this way, the same
identifier can be used for multiple types of messages:

def onCmdChooseQuit(sender, sel, ptr)
 @target = getApp()
 @choice = FXApp::ID_QUIT
end
def onCmdChooseIcon(sender, sel, ptr)
 @target = self
 @choice = FXTopWindow::ID_ICONIFY

Chapter 6. Graphical Interfaces for Ruby Page 41 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

end

def onCmdExecuteChoice(sender, sel, ptr)
 @target.handle(self, MKUINT(@choice, SEL_COMMAND),
 nil)
end

The FXCheckButton class, as well as the FXRadioButton class, has getCheck and
setCheck methods for programmatically inspecting and modifying the widgets. A
checkbutton can be added in just a couple of lines to the previous example. This new button,
when checked, will cause the pushbutton command to be ignored (see Figure 6.8):

@ignore = FXCheckButton.new(self, "Ig&nore", nil, 0,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)

Figure 6.8. Radio buttons and checkboxes in FOX.

The constructor for the checkbutton initializes the target to nil and the message ID to
0. In this example, the checkbutton will not have to send a message to have an effect on
the application. The redefinition of the onCmdExecuteChoice method inspects the state
of the check button to decide what to do:

def onCmdExecuteChoice(sender, sel, ptr)
 unless @ignore.getCheck then
 @target.handle(self, MKUINT(@choice, SEL_COMMAND),
 nil)
 end
end

The complete example is shown in Listing 6.12. Figure 6.8 shows a screenshot of this
example.

Chapter 6. Graphical Interfaces for Ruby Page 42 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.12. Radio Buttons and Checkboxes in FOX

require "fox"
require "responder"

include Fox

class RadioButtonHandlerWindow < FXMainWindow

 include Responder

 # Message identifiers for this class
 ID_EXECUTE_CHOICE,
 ID_CHOOSE_QUIT,
 ID_CHOOSE_ICON = enum(FXMainWindow::ID_LAST, 3)

 def initialize(app)
 # Invoke base class initialize first
 super(app, "Radio Button Handler", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

 # Define the message map for the class
 FXMAPFUNC(SEL_COMMAND, ID_EXECUTE_CHOICE,
 "onCmdExecuteChoice")
 FXMAPFUNC(SEL_COMMAND, ID_CHOOSE_QUIT,
 "onCmdChooseQuit")
 FXMAPFUNC(SEL_COMMAND, ID_CHOOSE_ICON,
 "onCmdChooseIcon")

 group = FXGroupBox.new(self, "Radio Test Group",
 LAYOUT_SIDE_TOP |
 FRAME_GROOVE |
 LAYOUT_FILL_X)
 FXRadioButton.new(group, "&Quit the application",
 self, ID_CHOOSE_QUIT,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
 FXRadioButton.new(group, "&Iconify the window",
 self, ID_CHOOSE_ICON,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
 FXButton.new(self, "&Do it now!", nil, self,
 ID_EXECUTE_CHOICE)

 @ignore = FXCheckButton.new(self, "Ig&nore", nil, 0,
 ICON_BEFORE_TEXT |
 LAYOUT_SIDE_TOP)
 @target = app
 @choice = FXApp::ID_QUIT
 end

 def onCmdChooseQuit(sender, sel, ptr)
 @target = getApp()
 @choice = FXApp::ID_QUIT
 end

 def onCmdChooseIcon(sender, sel, ptr)
 @target = self
 @choice = FXTopWindow::ID_ICONIFY
 end

 def onCmdExecuteChoice(sender, sel, ptr)
 unless @ignore.getCheck then
 @target.handle(self, MKUINT(@choice, SEL_COMMAND),
 nil)
 end
 end
end

Chapter 6. Graphical Interfaces for Ruby Page 43 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def run
 application = FXApp.new("RadioButton",
 "Sample programs")
 application.init(ARGV)
 main = RadioButtonHandlerWindow.new(application)
 application.create
 main.show(PLACEMENT_SCREEN)
 application.run
end

run

A list widget, FXList, can also be added to a window and populated in just a few lines.
The LIST_BROWSESELECT option enforces one item being selected at all times. The first
item is selected initially. Replacing this option with LIST_SINGLESELECT allows zero or
one item to be selected. With this option, zero items are initially selected:

@list = FXList.new(self, 5, self, ID_SELECT,
 LIST_BROWSESELECT |
 LAYOUT_FILL_X)
@names = ["Chuck", "Sally", "Franklin", "Schroeder",
 "Woodstock", "Matz", "Lucy"]
@names.each { |each| @list.appendItem(each) }

The entire example is shown in Listing 6.13. The message is handled in the main window
by displaying the item that was clicked. If the LIST_SINGLESELECT option were used as
discussed previously, it would be important to distinguish a click that selects an item from
a click that deselects an item.

Chapter 6. Graphical Interfaces for Ruby Page 44 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.13. FOX List

require "fox"
require "responder"

include Fox

class ListHandlerWindow < FXMainWindow

 include Responder

 # Message identifiers for this class
 ID_SELECT = FXMainWindow::ID_LAST

 def initialize(app)
 # Invoke base class initialize first
 super(app, "List Handler", nil, nil,
 DECOR_TITLE | DECOR_CLOSE)

 # Define the message map for the class
 FXMAPFUNC(SEL_COMMAND, ID_SELECT,
 "onCmdSelect")

 @list = FXList.new(self, 5, self, ID_SELECT,
 LIST_BROWSESELECT |
 LAYOUT_FILL_X)
 @names = ["Chuck", "Sally", "Franklin",
 "Schroeder", "Woodstock",
 "Matz", "Lucy"]
 @names.each { |each| @list.appendItem(each) }
 end

 def onCmdSelect(sender, sel, i)
 puts i.to_s + " => " + @names[i]
 end
end

def run
 application = FXApp.new("List",
 "Sample programs")
 application.init(ARGV)
 main = ListHandlerWindow.new(application)
 application.create
 main.show(PLACEMENT_SCREEN)
 application.run
end

run

Changing the LIST_BROWSESELECT option to LIST_EXTENDEDSELECT allows the list
to have more than one item selected at once:

@list = FXList.new(self, 5, self, ID_SELECT,
 LIST_EXTENDEDSELECT | LAYOUT_FILL_X)

The message handler can be redefined to display all the selected items. All items in the list
have to be enumerated to find those that are selected:

def onCmdSelect(sender, sel, pos)

Chapter 6. Graphical Interfaces for Ruby Page 45 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "Clicked on " + pos.to_s + " => " +
 @names[pos]
 puts "Currently selected:"
 for i in 0 .. @names.size-1
 if @list.isItemSelected(i)
 puts " " + @names[i]
 end
 end
end

The second argument of the FXList constructor controls how many items are visible in
the widget. Another widget, FXListBox, can be used to display just the current selection.
The FXListBox interface is similar to FXList, with a few exceptions. The arguments to
the constructor are the same, as shown here (note that FXListBox can only be used to
select a single item, so options such as LIST_EXTENDEDSELECT are ignored):

@list = FXListBox.new(self, 5, self, ID_SELECT,
 LIST_BROWSESELECT |
 LAYOUT_FILL_X)
@names = ["Chuck", "Sally", "Franklin", "Schroeder",
 "Woodstock", "Matz", "Lucy"]
@names.each { |each| @list.appendItem(each) }

The message handler has to change for FXListBox. The third argument is no longer the
position of the selected item in the list. The selected item must be inspected directly from
the list box:

def onCmdSelect(sender, sel, ptr)
 puts @list.getCurrentItem
end

A dialog box can be defined once as a subclass of FXDialogBox. That class can then be
used to create modal or nonmodal dialog boxes. However, modal dialog boxes interact
with their owners differently from their nonmodal counterparts.

By modal, we mean that a window or dialog box prevents access to other parts of the
application until it is serviced; that is, the software is in a "mode" that requires this dialog
to be given attention. A nonmodal entity, on the other hand, will allow focus to change
from itself to other entities.

The following example defines a modal and a nonmodal dialog class. The modal class uses
the predefined messages ID_CANCEL and ID_ACCEPT. The nonmodal class uses the
predefined message ID_HIDE.

Chapter 6. Graphical Interfaces for Ruby Page 46 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The nonmodal dialog box is displayed using the familiar FXTopWindow.show method.
The modal dialog box is displayed in its own event loop, which preempts the application's
event loop. This is accomplished with the FXDialogBox.execute method. The method
returns 1 if the ID_ACCEPT message is sent to close the dialog box or 0 if the
ID_CANCEL message is sent. Here's the example:

def onCmdModalDialog(sender, sel, ptr)
 dialog = ModalDialogBox.new(self)
 if dialog.execute(PLACEMENT_OWNER) == 1
 puts dialog.getText
 end
 return 1
end

The nonmodal dialog box runs continuously alongside the other windows of an application.
The application should query the dialog box for interesting values as they are needed. One
mechanism to announce the availability of new values would be an "Apply" button on the
dialog box sending an application-specific message to the main window. The following
example uses another interesting feature of FXRuby: a timer. When the timer goes off, a
message is sent to the main window. The handler for that message, listed here, queries the
dialog box for a new value and then reestablishes the timer for another second:

def onCmdTimer(sender, sel, ptr)
 text = @non_modal_dialog.getText
 unless text == @previous
 @previous = text
 puts @previous
 end
 @timer = getApp().addTimeout(1000, self, ID_TIMER);
end

The complete example for the modal and nonmodal dialog boxes is shown in Listing
6.14.

Chapter 6. Graphical Interfaces for Ruby Page 47 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 6.14. FOX Dialog Boxes

require "fox"
require "responder"

include Fox

class NonModalDialogBox < FXDialogBox

 def initialize(owner)
 # Invoke base class initialize function first
 super(owner, "Test of Dialog Box",
 DECOR_TITLE|DECOR_BORDER)

 text_options = JUSTIFY_RIGHT | FRAME_SUNKEN |
 FRAME_THICK | LAYOUT_SIDE_TOP
 @text_field = FXTextField.new(self, 20, nil, 0,
 text_options)
 @text_field.setText("")

 layout_options = LAYOUT_SIDE_TOP | FRAME_NONE |
 LAYOUT_FILL_X | LAYOUT_FILL_Y |
 PACK_UNIFORM_WIDTH
 layout = FXHorizontalFrame.new(self, layout_options)

 options = FRAME_RAISED | FRAME_THICK |
 LAYOUT_RIGHT | LAYOUT_CENTER_Y
 FXButton.new(layout, "&Hide", nil, self, ID_HIDE,
 options)
 end

 def onCmdCancel
 @text_field.setText("")
 super
 end

 def getText
 @text_field.getText
 end
end

class ModalDialogBox < FXDialogBox
 def initialize(owner)
 # Invoke base class initialize function first
 super(owner, "Test of Dialog Box",
 DECOR_TITLE|DECOR_BORDER)

 text_options = JUSTIFY_RIGHT | FRAME_SUNKEN |
 FRAME_THICK | LAYOUT_SIDE_TOP
 @text_field = FXTextField.new(self, 20, nil, 0,
 text_options)
 @text_field.setText("")

 layout_options = LAYOUT_SIDE_TOP | FRAME_NONE |
 LAYOUT_FILL_X | LAYOUT_FILL_Y |
 PACK_UNIFORM_WIDTH
 layout = FXHorizontalFrame.new(self, layout_options)

 options = FRAME_RAISED | FRAME_THICK |
 LAYOUT_RIGHT | LAYOUT_CENTER_Y
 FXButton.new(layout, "&Cancel", nil, self,
 ID_CANCEL, options)
 FXButton.new(layout, "&Accept", nil, self,
 ID_ACCEPT, options)
 end

 def onCmdCancel
 @text_field.setText("")

Chapter 6. Graphical Interfaces for Ruby Page 48 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 super
 end

 def getText
 @text_field.getText
 end
end

class DialogTestWindow < FXMainWindow

 include Responder

 # Message identifiers
 ID_NON_MODAL,
 ID_MODAL,
 ID_TIMER = enum(FXMainWindow::ID_LAST, 3)

 def initialize(app)
 # Invoke base class initialize first
 super(app, "Dialog Test", nil, nil,
 DECOR_ALL, 0, 0, 400, 200)

 # Set up the message map for this window
 FXMAPFUNC(SEL_COMMAND, ID_NON_MODAL,
 "onCmdNonModelDialog")
 FXMAPFUNC(SEL_COMMAND, ID_MODAL,
 "onCmdModalDialog")
 FXMAPFUNC(SEL_TIMEOUT, ID_TIMER,
 "onCmdTimer")

 layout_options = LAYOUT_SIDE_TOP | FRAME_NONE |
 LAYOUT_FILL_X | LAYOUT_FILL_Y |
 PACK_UNIFORM_WIDTH
 layout = FXHorizontalFrame.new(self, layout_options)

 button_options = FRAME_RAISED | FRAME_THICK |
 LAYOUT_CENTER_X | LAYOUT_CENTER_Y
 FXButton.new(layout, "&Non-Modal Dialog...", nil,
 self, ID_NON_MODAL, button_options)
 FXButton.new(layout, "&Modal Dialog...", nil,
 self, ID_MODAL, button_options)

 @timer = getApp().addTimeout(1000, self, ID_TIMER);
 @non_modal_dialog = NonModalDialogBox.new(self)
 end

 def onCmdNonModelDialog(sender, sel, ptr)
 @non_modal_dialog.show(PLACEMENT_OWNER)
 end

 def onCmdModalDialog(sender, sel, ptr)
 dialog = ModalDialogBox.new(self)
 if dialog.execute(PLACEMENT_OWNER) == 1
 puts dialog.getText
 end
 return 1
 end

 def onCmdTimer(sender, sel, ptr)
 text = @non_modal_dialog.getText
 unless text == @previous
 @previous = text
 puts @previous
 end
 @timer = getApp().addTimeout(1000, self,
 ID_TIMER);
 end

def create
 super
 show(PLACEMENT_SCREEN)

Chapter 6. Graphical Interfaces for Ruby Page 49 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 end
end

def run
 application = FXApp.new("DialogTest",
 "Sample programs")
 application.init(ARGV)
 DialogTestWindow.new(application)
 application.create
 application.run
end

run

Long computations in FXRuby should change the current cursor to a wait cursor and then
restore the original cursor afterward. The FXApp application class has two convenient
methods for making the change without having to remember the original cursor. These
methods are beginWaitCursor and endWaitCursor. Ruby's begin/ensure form
and yield statement make cursor management even more convenient:

def busy
 begin
 getApp().beginWaitCursor
 yield
 ensure
 getApp().endWaitCursor
 end
end

The busy example method shown here can be used to change to a wait cursor for the
duration of any block of code passed to it.

Other Notes
Many other widgets and features are available using the FOX toolkit. Examples include
tree widgets, dockable toolbars, tooltips, status lines, and tabbed pages. More advanced
GUI features include drag-and-drop operations between applications and data targets for
ease of connecting application data to widgets. FOX also includes non-graphical features
that support cross-platform programming (for example, FXFile and FXRegistry).

Messages can be used to connect an application with its environment using signal and
input-based messages. Operating system signals, as well as input and output, will cause
messages to be sent to FOX objects.

The FOX toolkit has widgets that support most common image formats as well as the
OpenGL 3D API. This appears not to be just lip service to 3D capability. The FOX C++
toolkit has been used in many engineering applications. FXRuby has been used with
OpenGL as well but was not ready for general release at the time of this writing.

Chapter 6. Graphical Interfaces for Ruby Page 50 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Because the FOX toolkit is written in C++, there are methods that rely on the C++
overloading syntax. This syntax is incompatible with Ruby, a dynamically typed language.
The current documentation is lacking in explanation of what mappings to FOX are still
missing. Other language features overlap successfully; for example, both C++ and Ruby
have optional arguments, and the FOX toolkit and the FXRuby binding take advantage of
this feature.

The FOX toolkit was started in 1997. The FXRuby binding dates from early 2001. FXRuby
is stable for its age and is more than usable; some core architectural issues are currently
being worked out by its creator. The most recent release appears to cooperate with the
Ruby garbage collector. Future work is planned for tackling interaction with Ruby threads
as well as other Ruby extensions.

Other GUIs
As already mentioned, your favorite GUI may not be covered in this chapter. However,
we'll use the remaining space in this chapter just to mention some other alternatives.

Many of these alternatives are not fully mature, and one (wxWindows) is completely
unavailable to Ruby programmers at this time. However, we expect this list to grow and
the supported bindings to become more stable as time goes on.

The (Nongraphical) Curses Environment
In a chapter on graphical interfaces, the venerable curses library might seem to have no
place at all. However, there is still a place for curses even today (especially where Telnet
is used). It can give you some of the convenience of a graphical interface even in a purely
text-based environment—a convenience at least comparable to that of a smart terminal of
the late 1970s.

We don't discuss the usage of the curses extension here, but we do want you to be aware
of it. It is a part of the standard Ruby distribution for Unix and should run fine on any Unix
variant. Microsoft Windows is another matter. There are probably curses and ncurses
sources available for MS Windows also, in the event anyone wants to run a curses app on
such a platform. However, at this time, this would be a more-or-less "roll your own"
solution.

Ruby and X
The X Window System is colloquially (although not correctly) referred to as X Windows.
It is perhaps not the grandfather of all GUI systems, but it is certainly the ancestor of many
of them.

Chapter 6. Graphical Interfaces for Ruby Page 51 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Unix users of all breeds have long been familiar with X (as users, even if not as developers).
Frequently the Motif window manager is run on top of X.

The advantages of X are that it is widely known, very portable, and has a rich feature set.
The disadvantages are that it is rather complex and difficult to use.

Not surprisingly, libraries are available for using X with Ruby. We don't document them
here because of complexity and lack of space.

We refer you instead to the Ruby Application Archive, where you can find Xlib by Kazuhiro
Yoshida (also known as moriq) and Ruby/X11 by Mathieu Bouchard (also known as
matju). Either can be used to create X client applications.

Ruby and Qt
The Qt system is well known to many C++ programmers (as well as others). It is a modern
graphical system—full featured and stable. However, in the Windows world, it is currently
a commercial product, which has affected its acceptance as a cross-platform solution.

A Ruby/Qt package is available (as of midsummer 2001) in the Ruby Application Archive;
it is the work of Nobuyuki Horie. At the present time, it is not yet mature.

Ruby and wxWindows
The wxWindows system is also full featured and stable; it is widely used in the Python
world, and there has been some talk of making it the standard or "native" GUI for that
language.

As is so often the case, it is more mature on the Unix platforms than in its Windows version.
This is expected to change.

At this time, there is no library for writing wxWindows applications in Ruby. There has
been talk of creating one (probably with the help of SWIG), but it is sheer vaporware
currently. We mention it only for some measure of completeness.

Apollo (Ruby and Delphi)
The true hacker knows that standard Pascal is all but useless. However, there have been
many attempts over the years to improve it so that it is a language worth the effort of using.
One of the most successful of these is Borland's Object Pascal, used in its RAD tool called
Delphi.

The popularity of Delphi is not due to the Pascal language extensions, although these are
a contributing factor, but to the development environment itself and the richness of the

Chapter 6. Graphical Interfaces for Ruby Page 52 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

graphical interface. Delphi has a rich set of widgets for creating stable, attractive GUI
applications on MS Windows.

The Apollo library is a marriage of Ruby and Delphi; it is the brainchild of Kazuhiro
Yoshida, although others are also working on it. The advantage of Apollo, of course, is that
it makes a giant set of stable, usable widgets available; the biggest disadvantage is that it
currently requires a slightly "tweaked" version of Ruby. See the Ruby Application Archive
for details.

We'll mention one other thing here. Borland (Inprise) has recently released the Kylix
development environment for Linux, which is essentially a Linux-based version of Delphi.
The plans for Apollo are to interoperate as fully as possible so that applications using it
will have basically the same "look and feel" on Linux as on the Microsoft platforms.

Ruby and the Windows API
In Chapter 8, "Scripting and System Administration," we describe a sort of "poor man's
GUI" in which we use the WIN32OLE library to get access to the features of Internet
Explorer and other such things. Refer to those examples for more details. If you need
something quick and dirty, this might be acceptable.

If you are a real glutton for punishment, you could access the Windows API directly. The
WIN32API library (also discussed in Chapter 8) makes this kind of coding possible. We
don't necessarily recommend the practice, but we want you to be aware of this capability.

Summary
That ends our overview of graphical programming in Ruby. We now turn to an area more
concerned with program internals than with human interface. The next chapter deals with
Ruby threads.

Chapter 6. Graphical Interfaces for Ruby Page 53 Return to Table of Contents

Chapter 6. Graphical Interfaces for Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch08#ch08
http://safari.oreilly.com/0672320835/ch08#ch08

	Graphical Interfaces for Ruby
	Ruby/Tk
	Ruby/GTK
	FX/Ruby (FOX)
	Other GUIs
	Summary

