
Table of Contents

From Python to Ruby... 1
A Different World View... 1
A Different Program Model... 1
Some Syntax Differences.. 2
Keywords... 2
Variable Prefixes... 3
Objects... 3
Methods... 4
Methods and Dot Notation... 4
Method Calls and Parentheses.. 5
Method Naming Conflicts... 5
Parameters and Default Arguments... 6
procs and iterator Blocks.. 6
Statements and Expressions... 8
Basic I/O.. 8
Numbers.. 9
Strings.. 9
True and False Values.. 11
Arrays... 11
Dictionaries Are Hashes.. 12
Classes.. 12
Modules... 13
Threading Model... 15
Exception Handling... 15
Garbage Collection.. 16
Extensions.. 16
Some More Equivalencies... 17
Other Notes.. 18
Conclusion... 18

Appendix B. From Python to Ruby

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix B. From Python to Ruby

Are you trying to somehow deal with the SNAKE?

—Adventure (Colossal Cave)

This appendix is for "classic" Python programmers who have already decided to try Ruby.
Python is way too big for this section to be able to cover every aspect in a few pages, so the
focus will be on assisting you in making a perspective shift and help you avoid
misconceptions. Additionally, various tidbits will be pointed out along the way.

A good way to practice is by using irb to try things, which is one of Ruby's best interactive
command line evaluators. This is similar to Python's built-in command line interpreter,
but is a separate program.

A Different World View
Ruby can seem very similar to Python. For example, variables are untyped names holding
references to typed objects. Exception handling is built-in. Scripting is encouraged for
prototypes while programming extensions in C is used for speeding up bottlenecks.

But in fact, there is a different paradigm at work. Guido has said that he took a lot from
Modula 3, which would explain why Python is explicitly modular and object-based,
whereas Ruby is more integrated and class-based—but not in the manner of Java, for Ruby
is even more dynamic than either Java or Python. It is also more complex, and Ruby has
no mission to simplify readability by limiting expressibility. But you may find it easier and
more pleasing to work with.

Some terminology may appear the same at first, but is understood differently in the Ruby
community. For example, module, namespace, object, method, and iterator have different
connotations in Ruby. Try to adjust your mindset from Python's modular object/statement
approach to Ruby's integrated class/method approach.

A Different Program Model
A source file in Ruby is different from one in Python in a few ways. First, in Ruby, it is not
considered a module. A module in Ruby is somewhat different. Second, Ruby interprets
your source file from top to bottom and compiles it into a syntax tree instead of
bytecode. There is no equivalent to .pyc files. Third, all code is evaluated as part of the
top-level program in the default private context of a special class, called Object. For
example, when you define a function at this level, you are really defining a private method
in the Object class. Finally, if you load or require external source files or extensions, they

Appendix B. From Python to Ruby Page 1 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

are evaluated at the point of insertion, as in Python. But no separately associated
namespace is created for the loaded files/extensions themselves—they are integrated into
your code, within the current class binding.

You can reload source files simply by calling load again on the filename. You would use
require for one-time loads and/or to load extensions. Refer to a Ruby reference
(documenting the $: and $" variables) for related information.

Ruby does not have the notion of packages or __init__.py like Python, and there is not
(yet) anything like Python's site or user modules. Distributing extensions and libraries can
be done with Ruby's extconf.rb, or simply by placing a Ruby file at a known location.

Some Syntax Differences
Ruby syntax does not require indentation. The keyword end is used for demarcation of
code blocks starting with begin, case, class, def, do, if, for, and others. Notice the
absence of colons.

if x == 5
 puts "Five Golden Rings"
 end

You can use semicolons to separate statements on a single line, and lines can continue onto
the next line.

a=[2,4,
 3]; for i in a; puts "%d
 " % i; end

If the breaking point is too ambiguous for Ruby, you can make it explicit by using the \
continuation character.

Ruby supports shell-type comments using #, and also special =begin and =end tags for
making documentary or temporary multi-line comments. There is no built-in equivalent
to Python's doc strings.

Keywords
Both Ruby and Python have these keywords: and, break, class, def, else, for, if,
in, not, or, return, and while. The keyword def is used only for method definitions,
and in is used only with for loops, not conditionals (use include? for that purpose).

Appendix B. From Python to Ruby Page 2 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby has additional keywords not listed here. It does not have: assert, continue,
del, elif, except, exec, finally, from, global, import, is, lambda, pass,
print, raise, or try as keywords. You can use next in place of continue, and begin/
rescue/ensure in place of try/except/finally. You will see exec, lambda,
print, and raise as built-in methods in Ruby.

Variable Prefixes
Ruby variables are allowed to have special prefixes such as $, @, and @@ to indicate the
scope of the variable. Regardless of the scoping prefix, variables may reference any object,
just as in Python.

A global variable is prefixed with $ and is truly global, crossing all boundaries, whether
inside a class, method, module, or loaded source file. There are some exceptions for built-
in globals ($_ and $~). The use of $ for global variables eliminates the need for declarators
such as Python's global.

An instance variable is prefixed with a single @. Using @myattribute replaces using
self.myattribute in Python. (Actually, the self notation can be used in Ruby as well.)
By its very nature, the instance variable can only be created and used from within the
instance itself. You must use an accessor method in order to get or set the value from
outside the instance—refer to any Ruby reference for a discussion of attr_accessor.
Using @ for instance variables facilitates hiding, fast lookups, and exclusion from dot
notation.

The class variable is prefixed with @@, and is shared only among all the instances of a class
and its subclasses. An identifier starting with an uppercase letter (without a prefix) is called
a constant, and is attached to a class or module namespace and the :: scope operator.

Finally, a non-capitalized variable with no prefix is a local variable. The point of assignment
marks the beginning of its scope. It cannot be seen outside of a module, class, or method
—and sometimes not outside of a closure (iterator block), either. This last case is a block-
local variable, which only occurs if the local variable's scope started inside the closure.

Objects
In Python, everything is an object, but not necessarily an instance of a class. In Ruby,
objects are always instances by default, and there is essentially no difference between an
object's type and its class.

Each object has a unique ID. There is no is keyword in Ruby. You can use
Object#equal? to compare object identities. See also Object#id. (Note: The hash

Appendix B. From Python to Ruby Page 3 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

symbol used like this in documentation is simply notation denoting an arbitrary instance
of the named class as the receiver. In real code, you would use the variable for the actual
object, followed by a dot and then the method. Using a dot in place of the hash with the
named class would indicate a class method instead.)

Methods
Methods are not objects in Ruby. This is despite the fact that things such as classes,
numbers, bindings, and threads are objects.

Ruby methods are not functions. Any time you see def in Ruby code, you are seeing a
method definition. It has no namespace or attributes of its own. It cannot typically be
nested. And again, it is not an object.

It follows that method names are not variable names. Method names should begin with a
lowercase letter or underscore; they may have ! or ? suffixes. They do not use a prefix to
denote scope, but you can make them private, protected, or public. (We should note
that it is possible to capitalize a method name, but it is unconventional and could lead to
minor difficulties.)

Many operators are implemented as methods, and can be directly overridden without the
use of magic attributes such as __add__, __gt__, __setattr__, or __getitem__.

def +(arg)
 # ...
 end
def >(arg)
 # ...
 end
etc.

Combinations such as += are syntax sugar, not operators, so redefining + will affect +=
also.

There are specially hooked methods in Ruby: each, coerce, <=>, to_str, and
to_ary, among others. See the Enumerable and Comparable modules.

Methods and Dot Notation
Dot notation in Ruby is used strictly for method dispatch. The left side is the object or
variable, and the right side is the method name. The result is always an object, so you can
chain method calls as in Python.

Appendix B. From Python to Ruby Page 4 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The :: scope operator is needed to access nested modules, classes, and their constants. It
can also optionally be used to access a class method.

Methods can also be called without dot notation, in which case Ruby will implicitly use
self as the receiver. However, the parser will influence operators implemented as
methods and used without dot notation.

print 3 + 4 * 5 # 23
print 3.+(4).*(5) # 35

Method Calls and Parentheses
Ruby does not always require the use of parentheses to evaluate methods, unless it's
necessary to avoid ambiguities.

def f(x)
 print x**2
end
f 3 # 9

However, if parentheses are used near a method, then Ruby will associate them with the
method and expect an argument list inside. An expression is a valid argument.

f (2+3)*4 # 100
f((2+3)*4) # 576

Method Naming Conflicts
Method names can coincide with keywords or local/constant variable names. This is
usually not a problem because the dot notation makes things clear.

class MyClass
 def end # keyword as method name
 puts "The End"
 end
end
obj = MyClass.new
obj.end # The End

Local variables may be confused with a private method of the same name, since private
methods can be called without dot notation or parentheses, so be careful.

def var # method belongs to Object class by default
 "not 5"

Appendix B. From Python to Ruby Page 5 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

end
puts var # not 5
var = 5 # local variable
puts var # 5
puts var() # not 5

Knowing what Ruby will do is going to take practice—Ruby is more complex than Python.

Parameters and Default Arguments
Although varying-sized parameters lists are available with *, Ruby does not have Python's
** for keyword arguments. Currently, keyword arguments are only available in a limited
sense by passing a hash in as a single parameter. In such a case, the enclosing braces may
be omitted.

Ruby allows for a special block parameter, indicated by the & prefix.

def doit(*args, &code)
 code.call(*args)
end
doit(1,2,3){ |*x| puts "You sent me #{ x.size} values." }
Output: You sent me 3 values.

Ruby does not cache method definitions as Python does. Even default arguments are
evaluated for each call.

class Foo
 def val(); 2; end
 def show(v=val())
 puts v
 end
end

a=Foo.new()
a.show() # 2

class Foo
 def val()
 3
 end
end

a.show() # 3

procs and iterator Blocks
The closest thing to a Python function object in Ruby is the proc object, which is an
encapsulated block of code.

Appendix B. From Python to Ruby Page 6 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

b = proc{ |x,y| x**2 + y } # same as Proc.new
p b.call(3,1) # 10
p b[3,1] # 10

The second form is a shortcut for the call, just as parentheses are for Python functions.

A block is used as an iterator in the CLU sense. An iterator in Ruby is not merely a
function that iterates through a list of objects. It is a block of code that may be called from
within the associated method zero or more times, and is an inherent part of Ruby's design
and syntax.

3.times{ |i| puts "#{ i} . Iterator blocks are closures" }
["A","B","C"].collect{ |t| t.downcase! }

There are many methods that make use of Ruby iterator blocks, and it is a powerful
feature of Ruby. You can make your own methods that may or may not require a block.

def do_after(t,&b) # block is required
 sleep t
 b.call
end

 do_after(5){ puts "Are we there yet?" }
def mymeth(x) # block not required
 myblock = proc{ |n| n**2 }
 if block_given? # check for block
 print "Your block produces: ", yield(x)
 else
 print "My block produces: ", myblock.call(x)
 end
end

mymeth(3) # My block produces: 9
mymeth(3){ |x| x**3 } # Your block produces: 27

Be forewarned that the iterator block has a hybrid scope. It is not separate from the
surrounding namespace, although it encapsulates it. This means that the enclosing
namespace becomes part of the block's binding as well. However, local variables defined
for the first time inside a block stay local to that block.

def f(x); x**2; end
v = 32; b = 2
g = proc{ |n| puts f(n) + b } # b is used
g[3] # 11
p v # 3 (v was changed)
p n # undefined

Appendix B. From Python to Ruby Page 7 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that the parameter list is merely a placeholder for parallel assignment. This means
that if you put an existing variable into that list, it will be changed. Default arguments are
not supported. There is an intricate balance in this matter, because blocks are also used
for iterators, which remember the previously assigned value.

Statements and Expressions
There is little distinction between a statement and an expression; both return values. A
statement can be made into an expression by enclosing it in parentheses, which will allow
it to be used as an argument.

arr = [1,2, 3 if limit>2] # parse error
arr = [1,2, (3 if limit>2)] # OK
f(limit or 1) # parse error
f((limit or 1)) # OK

In this case, the parentheses for the method are required to distinguish it from the
parentheses that make the statement into an expression acceptable as an argument.

Ruby has || and &&, in addition to or and and. These are similar in meaning, but form
an expression instead of a statement because they bind more tightly.

Another effect of statements having a value is that using return is optional in method
definitions. The value of the last statement in the definition will be used as the return value
in such a case.

In Ruby, you will use eval for evaluating both expressions and statements. Use an optional
binding or proc where you would otherwise have used an optional global or local dict in
Python as a namespace. There is no equivalent to Python's exec function. The exec
method in Ruby is used to execute a shell command. Ruby's backtick operator is another
form of expressing such shell commands.

Basic I/O
The puts method is closest to Python's print statement, since it adds a new line. Ruby's
print adds the default record separator, which is usually nil. The puts method uses the
result of inspect, whereas the other two use to_s. The inspect method is like Python's
repr() function, and to_s is like str(). As we mentioned, backticks in Ruby are used
as a shortcut for exec to run shell commands.

For input, use gets. Here is an imitation of raw_input:

def raw_input(prompt="")

Appendix B. From Python to Ruby Page 8 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 print prompt
 gets
end

x = raw_input("Please enter a number: ")

File handling is very similar to Python's approach. Open files are closed during garbage
collection (GC) if they are no longer referenced. But if you use the block form of
File.open, then Ruby will close the file for you at the end of the block without waiting
for GC to occur.

File.open("somefile") do |f|
 f.puts "#{ Time.now} : line added to file"
end
 # File object f is now closed

This do/end is actually another syntax form of the iterator block.

Numbers
Ruby automatically detects and converts between small and large integers—there is no
need to use a trailing L at any time. There is no j literal for imaginary numbers. Use the
Complex class from complex.rb to work with complex numbers. Use to_i and to_f
to convert values.

Number objects are instances of a class like the others, and you can define methods for
them.

class Fixnum
 def winner?
 self == 37
 end
end

puts "Pick a number."
if gets.to_i.winner?
 puts "Right!"
else
 puts "Sorry."
end

This is an example of extending a built-in class with Ruby.

Strings
String objects are instances of the String class, and have their own methods.

Appendix B. From Python to Ruby Page 9 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

"abc123".length # 6

They are not immutable by default, but you can make them immutable via the freeze
method. Strings are not lists of characters, and accessing a single element returns the ASCII
value for the byte, not the character.

str = 'ABC'
puts str[0] # 65
puts ?A # 65
puts str[0,1] # "A"
puts str[0].chr # "A"

The numeric approach facilitates languages having multi-byte characters, such as
Japanese.

Iterating over a string will by default deliver one line at a time. You can also iterate over
one byte at a time, but remember that you might need to convert bytes to characters.

"abc".each_byte do |b| # convert to character before
 print b.chr.upcase # using string method
 end # "ABC"

There is no equivalent to Python's r"" raw string or the u"" Unicode string. Using double
quotes has a different effect from using single quotes because they allow interpolation.
Backticks are also different in Ruby, treating their contents as a shell command and
evaluating them on the spot. Regular expressions likewise have special default quoting
(forward slashes):

'a do-nothing string' # escape single quotes and backslashes
"This is\ntwo lines." # Notice - not like single quotes
`ls -l` # Notice - not repr()
/^(.*?)=(.*?)$/ # regex literal

Ruby has special quoting constructs so you can specify other delimiters for these; refer to
documentation of %q, %Q, %x, and %r.

Ruby allows for string interpolation in addition to the familiar % formatting.

x = 5
puts "I have %s apples" % (x-2)
puts "I have #{ x-2} apples."

Appendix B. From Python to Ruby Page 10 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Ruby's string interpolator, #{}, can be used inside double quote constructs, regexes, and
shell strings. You can use "here-docs" in place of Python's triple quotes.

heredoc = <<MARKER
Now I can type "freely"
Date: #{ Time.now}
MARKER

Here-docs also come in other forms supporting single- and shell-quoted strings, as well
as indented here-docs.

def whois(domain=nil)
 print <<-`SHELL`
 whois #{ domain||gets} @networksolutions.com
 SHELL
end

True and False Values
The object nil is logically equivalent to false. Any other object is true, including the
number zero (0), the empty string (""), and the empty array ([]). Ruby's nil is like
Python's None. For historical reasons, NIL, FALSE, and TRUE are mapped to the lowercase
equivalents.

Arrays
Arrays are like Python's List type. There is no tuple type in Ruby, but you can freeze an
array for the same effect.

mylist = [1,2,3,4,5]
mytuple = mylist.freeze
myslice = mylist[0...3] # [1,2,3]

As you can see, specifying a slice in Ruby using a Range with ... is like using : in Python.
You must include both the beginning and the end. It is actually more common to use .. and
specify the list inclusively. There is no direct equivalent to Python's ellipsis or list
comprehension syntax.

Use <code>include?</code> where you would have used a conditional <code>in</
code> in Python.

if mylist.include? 4
 puts "Found."
end

Appendix B. From Python to Ruby Page 11 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Use the +, <<, or push methods from the Array class to accomplish list.append
functionality.

Dictionaries Are Hashes
Use => instead of : to indicate pairings in a hash. Hash keys can be mutable objects (see
rehash). Inverting a hash does not automatically group duplicates into an array; you will
lose entries if there were duplicate values.

hsh = { }
hsh['key'] = 7
hsh2 = { "A"=>65, "B"=>66 }

Ruby supports default values for hashes.

Classes
Defining a new class creates a new context nested in the enclosing class (class Object by
default). Use the :: scope operator to access nested classes/modules and their constants
or class methods.

class MyClass # name must be capitalized
 C = "constant in MyClass"
 class Inner
 C = "in MyClass::Inner"
 end
end
p MyClass::C # constant in MyClass
p MyClass::Inner::C # in MyClass::Inner

Existing classes, both built-in and newly defined, may be reopened and altered or extended
at any time (even from within a C extension). Any existing instances will be updated with
the new class definitions.

class String # existing built-in class
 def my_method
 puts "length: #{ length} " # implicit self
 end
end
"abc123".my_method # length: 6

Any class may be subclassed; use the < symbol instead of parentheses. Ruby classes support
single inheritance only. Modules are used to add shared functionality among classes (and
objects) in place of using multiple inheritance.

Appendix B. From Python to Ruby Page 12 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Use initialize instead of __init__ for the "constructor." You do not need to pass in
self for method definitions, since Ruby automatically binds it for you. Remember dot
notation is for method calls only, so prepend instance variables with the @ symbol instead
of self.

Note

Prepending a method name with self within a class definition is optional, since
it will be called from within the context of the actual instance by default.

Use super to call the same-named method from the superclass (or an ancestor thereof).

class MyString < String
 def initialize(str)
 @str = str # instance variable
 super # call String#initialize(str)
 end
end

Instantiate an object via the Class#new method. It will call any defined initialize
method after allocating the object.

mystr = MyString.new("text here")

There is no equivalent to Python's __del__ hook, since Ruby does not use reference
counting (see the section "Garbage Collection"). This may require you to organize your
code differently.

Ruby has both class variables and class methods.

class MyClass
 @@class_variable = "Accessible to this class and subclasses"
 MyConstant = "Globally accessible via MyClass::MyConstant"
 def MyClass.class_method # dot notation used in definition
 puts "Available as method of the class object itself"
 end
end

Ruby has no internal-use, class-private, or magic-attribute naming like Python's _*,
__*, and __*__ forms. Ruby uses the __*__ form sometimes, but only to accommodate
certain naming conflicts. For example, Object#__send__ is an alias for send.

Appendix B. From Python to Ruby Page 13 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Modules
A module in Ruby is not file-based as it is in Python. It is an object with methods and
attributes defined within a module/end block of code, like a class, but without the ability
to be instantiated.

module MyModule # Module names are constants (capitalized)
 MyConst = "Module Constant MyModule::MyConst"
 $my_global = "Unrelated to module namespace (global is global)"
 my_local = "Inaccessible from without"
 module NestedModule
 # Access via MyModule::NestedModule
 end
 class InnerClass
 end
 def module_method
 # Can be accessed as MyModule.module_method
 end
 module_function :module_method
end

module AnotherModule
 # In same file...
end

You can define more than one module in the same source file, and even nest them inside
each other to organize your namespace. Loading an external file with module definitions
is the same as defining them in the source file, and there is no requirement to give these
external files the same name as your module(s).

Once defined in the source file, a module is immediately available. You can access nested
modules or constants via the :: scope operator, and module functions (shared public
methods) via dot notation. You may also as a whole include the module into a class
namespace, or extend any object with its methods. There is no provision for selectively
including constants or methods of a module as Python's import allows, because it is
considered to be a single unit.

When you use this mixin approach to incorporate such shared code from multiple sources,
the included modules become part of the single inheritance tree, similar to a subclass. Yes,
order does matter.

class MyString < String
end

 p MyString.ancestors # [MyString, String, ...]

module AlterString
end

Appendix B. From Python to Ruby Page 14 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 class MyString
 include AlterString
end

 p MyString.ancestors # [MyString, AlterString, String, ...]

The mixin module is not copied but referenced, as in Python.

Threading Model
Ruby threading is built-in by default; no compiler flag is needed. All threads run within a
single interpreter instance, time-sliced within its process (similar to microthreads in
Stackless Python). Such threading is generally not compatible with system-level threading,
and it does not take advantage of multiprocessor systems.

Calling blocking I/O functions from within one thread will cause all threads to be blocked.
There is no global interpreter lock available to help avoid this. Such situations require you
to fork/exec, but note that forking from inside a thread currently causes all threads to
be duplicated. In general, avoid mixing system forking with Ruby threading.

Nevertheless, threads are simple to use in Ruby. Just instantiate a thread object from the
Thread class with an associated block of code.

begin
 i=0
 t1=Thread.new{ sleep 5; raise ThreadError }
 t2=Thread.new{ loop{ i+=1; puts i; sleep rand() } }
 t1.join; t2.join rescue ThreadError puts "Time's up!"
end

Notice that there is no need to subclass. Don't forget to join the thread instances to the
main thread.

If you have Python code that uses daemon-based threads, you will not be able to convert
it directly to Ruby's threads.

Ruby also has continuation objects, which are like a special form of thread. As such, they
are interpreter-based and subject to some limitations.

Exception Handling
You may be used to using exceptions as a control structure in Python, but in Ruby they are
meant to be for errors. Use catch/throw for a similar effect as a control structure.

Appendix B. From Python to Ruby Page 15 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

In Ruby, raise is a method, not a statement. And while Python does not allow you to mix
the try statement's except/else and finally forms, in Ruby you can combine the
equivalents, rescue/else and ensure, in the begin/end block form.

begin
 f = File.new("somefile","r")
 # do stuff...
rescue Exception => details
 puts "Could not open file! #{ details} "
rescue
 puts "Unforeseen error: #$!"
else
 puts "Finished task"
ensure
 f.close if f
end

The rescue clause is similar to Python's except, but there is a different exception
hierarchy, which is always used. If you give a string as the first parameter, Ruby uses that
as the message and uses RuntimeError as the default exception class.

Ruby does not necessarily raise the same-named exceptions as Python. For example, Ruby
does not raise IOError above, which Python would have done. Consult a reference for
Ruby's exception class hierarchy.

Ruby stores a reference to the resulting Exception object in the global variable $!, and
you can use the => notation in the rescue clause to have it stored in another variable also.
Ruby nests exceptions and does not forget them.

Ruby allows you to try to recover from an exception via either redo or retry, which are
different. Care should be taken to avoid endless loops.

Garbage Collection
The garbage collector does not require reference counts. Ruby currently uses conservative
"mark and sweep" for automatic garbage collection (GC), and will soon be using
generational GC. There is no need to keep track of reference counts in your C extensions.
Simply provide functions for the GC to use for marking objects and freeing memory.

One consequence to this approach is that you also have less control over the destruction
of an object. Of course, you can use GC.start to force cleanup early, and you can also
temporarily disable it to prevent code blocks from being interrupted. You can use finalizers
to run a procedure after the object is destroyed, but this is not really a destructor.

Appendix B. From Python to Ruby Page 16 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Extensions
Ruby's C API is well-integrated to the point that just about anything you can do on the
Ruby side can be done on the C side, including defining classes and methods at runtime.

It is easy to check types, raise errors, raise exceptions without explicit propagation and
result testing, pass arguments cleanly, and associate objects and methods with classes.
There is no need for reference counts, type objects, or method tables.

Some More Equivalencies
Table B.1 is a listing of a few more functions, operators, and other items. The Python entity
is in the left column; in the right column you will find the rough Ruby equivalent and/or
some pertinent comments.

Table B.1. Functions, Operators, and Other Items

Python Ruby

__bases__ ancestors

__getattr__ method_missing

__getitem__, __getslice__ []

__import__ load, require (redefinable)

__setitem__ []=

__class__ class, type

__methods__, __members__, __dict__ (various methods)

apply(f,args) Functions are not objects; refer to proc objects: proc.call(args) or
obj.send(:method,args)

callable respond_to?

cmp() <=>

complex() require "complex" (etc.)

filter() find_all

isinstance kind_of?

issubclass ancestors.include?

len() size, length

list() to_a

__init__ initialize

__lt__, etc. <, etc.

Appendix B. From Python to Ruby Page 17 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Python Ruby

__hash__ Object#hash

__add__, etc. +, etc.

sys.modules $"

sys.path $LOAD_PATH, $:

sys.argv ARGV, $*

sys.stdin $stdin

os.environ ENV

if name == '__main__' if $0 == __FILE__

if x in y: if y.include? x

if:/elif:/else: if/elsif/else/end

for i in x: for i in x/end

break/continue break/next/redo

Other Notes
There is no UserString, etc., in Ruby. Use the actual classes themselves, since they can
be opened and changed at any time. Use the Regexp class instead of importing the re
module.

There is no cStringIO or codec module, but they seem like good candidates for porting.

See also: GC and ObjectSpace for garbage collection, WeakRef class (weakref.rb),
Config module (rbconfig.rb), and the DBM class (dbm.rb).

Always remember that Ruby does not use dictionaries of objects as namespaces. When you
use the Ruby equivalents of __methods__ and __members__, you will get arrays of
strings representing the names of the methods or members.

There are intricate differences between Ruby's Marshal and Python's pickle/
marshal modules (such as bytecode), but Ruby has load and dump, along with
_load and _dump, which if defined will override the former.

Conclusion
In this brief introduction, we've tried to give you a perspective of how Ruby is different
from Python. It should now be easier to make the transition as you work with a library
reference or development guide.

Appendix B. From Python to Ruby Page 18 Return to Table of Contents

Appendix B. From Python to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	From Python to Ruby
	A Different World View
	A Different Program Model
	Some Syntax Differences
	Keywords
	Variable Prefixes
	Objects
	Methods
	Methods and Dot Notation
	Method Calls and Parentheses
	Method Naming Conflicts
	Parameters and Default Arguments
	procs and iterator Blocks
	Statements and Expressions
	Basic I/O
	Numbers
	Strings
	True and False Values
	Arrays
	Dictionaries Are Hashes
	Classes
	Modules
	Threading Model
	Exception Handling
	Garbage Collection
	Extensions
	Some More Equivalencies
	Other Notes
	Conclusion

