Appendix A. From Perl to Ruby

Table of Contents

From Perl to Ruby.
Ruby One-Liners.....
Another Code Example...
More Examples
Modules, Etc....
Miscellaneous

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Page: Return to Table of Contents

Appendix A. From Perl to Ruby
That pearl is from a mine unknown to thee,
That ruby bears a stamp thou canst not see...
—The Rubaiyat, Omar Khayyam (trans. Whinfield)

There are other references and books you can read to help you understand Ruby, so this
section is going to focus on differences between Ruby and Perl. We provide some tips and
warnings for the Perl programmer along the way.

Ruby will lead you to change your focus. You will notice a change in the syntax and
organization of your programs. You will use objects to organize your methods. The object
model has a cleaner approach, fewer surprises, and a dynamic flexibility you will not find
in Perl. Yet there are enough similarities that you should be able to do a number of things
in Ruby that look similar to how you do them in Perl.

Ruby One-Liners
First, use the command line to get a feel for Ruby. Most of the same options from Perl are

available. Here's an example:

ruby -e '$x="hi"; print $x,"\n"; print 5+2;'

This should look no different from what Perl allows. Our next little example does the same
thing in a somewhat contrived way, to demonstrate a little of Ruby's syntax:

ruby -e 'x=%qglhil|; print "#{ x} \n"; print x+"\n"; print 5.+(2)"'

Perl obviously won't like this, yet Ruby is perfectly fine with it. We'll explain.

Scope

The variable x is missing a prefix. In fact, Ruby does not require a prefix, and the prefixes
it does allow are used for indicating scope and not data type. They are simply references
to a strongly typed object, as defined by a particular class.

The $ prefix indicates global scope, not a scalar. However, nonprefixed variables starting
with a lowercase letter are local in scope, and you can't refer to them until you put them
in scope via assignment. There is no scope declaration via my or 1ocal, and there is no
nesting or overriding of variables.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby page 2 Return to Table of Contents

Note

Local variable names are similar to method identifiers; when both are defined, you
need to use parentheses with the method. Because using parentheses with methods
is optional, there is a possibility of a mix-up.

Nonprefixed variables starting with an uppercase letter are constants and have class-wide
scope. This is the only type of variable that may be accessed globally via the familiar : :
scope operator, which is used to gain access inside of classes and modules. Method names
do not count as variables.

The @ and @@ prefixes used inside object methods and classes denote variables belonging
to a particular object or a whole class. They have nothing to do with arrays.

Variables

A variable, regardless of scoping, simply holds a reference to an object of a particular type
(class). You cannot know this type by looking at the variable. It is like a Perl scalar holding
a reference to a strongly typed object—with automatic referencing and dereferencing.
There is no backslash (\) operator. Assignment has the connotation of simply making a
reference. There is no equivalent to "typeglobs," nor is there a central symbol table, but
there are methods for accessing environment bindings and the various variables and
constants they contain.

Note

Multiple variables can hold a reference to the same object and may be used to alter
the object referenced by another variable, leading to potentially surprising side
effects.

Parallel assignment is controlled via the special * syntax (and the same rules also apply to
parameter passing with blocks and methods). Here's an example:

a, *p = [1, 2], HaH, "pn # a=[1,2], bz["a","b"]
a, b, ¢ =Db, *a # a=["a","b"], b=1l, c=2
Appendix A. From Perl to Ruby
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de

Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Ppages Return to Table of Contents

Data Types

Ruby has built-in classes for ni1 (which tests as false), true, false, integers (including
big integers), floats, strings, ranges (which are not stored in array form), arrays, hashes,
regexes, files, and more.

You will have to stop using 0, "", and " 0" to test for false. Instead, you will be checking
against falseornil.

Use string[0,1] .downcase for lcfirst,and string[0] for ord. Note the
unfamiliar meaning of subscripts:

"ABC" [0,1] .downcase # "aBC"
"A"[0] # 65

Unlike Perl, Ruby does not automatically convert other object types when performing tasks
such as concatenation. You can use the to_s method, which is usually defined for other
objects, to convert them before working with them. Here's an example:

"abc" + 123.to_s # "a b cl23"

Ruby does not support ++ or —, although there is succ, which works with both numbers
and strings by default.

Arrays and hashes use different literals but the same accessor method. There is no $#
feature for arrays; use -1 as the index to the last item of an array. A hash key need not be
a string: The => syntax does not "stringify" the left-hand side, and "barewords" are not
used in Ruby:

arr = ["some", 123]; hsh = { "b"=>"hi", 99=>arr}

arr[2] = "stuff"

hsh["key"] = "value"

meth { } # Method with associated block!
Note

nil can be used as both a key and value in a hash as well as a value in an array.

Ruby doesn't support "autovivification" for arrays, hashes, or any other indexed objects
(although some people have written code to support this). Ordinarily you must assign a

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Page4 Return to Table of Contents

relevant object to a variable before accessing values. You can use the | | = syntax to assign
conditionally.

File handles are taken care of by the File class.

File test operators have been implemented with the test method. Note that this method
is missing Perl's -B, -t, and - T tests, and it adds 2G, ?-, ?=, 2<, and ?> . Also, ?s returns
nil, not zero (if the file size is zero), and ?M returns the modification time, not the file age.

Quoting

Double-quoted strings allow for escape characters, just as in Perl. Ruby does not support
\1, \u, \L, \U, \E, or \Q. It does have some extras, such as "\s" (space), "\v" (vertical
tab), "\C-" (same as "\c["), "\M-" (meta-x or alt-x), and "\M-\C-".

Note

The \s in "\ s" means a single space " ", but in the regexes' /\s/ and / [\s]/
it refers to the regular expression character class for whitespace.

Ruby uses %, %q, $w, %r, and $x in place of Perl's g, qg, qw, gr, and gx. Unlike Perl, Ruby
still allows a space to be used as the delimiter for these.

You may also notice that string interpolation is done with the # { } syntax, but this is not
just for variables—it is a general form that evaluates any expression. Perl has both $ { } and
@ {} for more complex interpolation, but Ruby's approach to this actually allows for more
concise scripts.

Ruby also has here-docs, just as Perl has. Indented here-docs are built in as a feature:

print <<-‘eos’
whois #{ gets.chomp}
eos

In the preceding example, you also see one of the handy uses of # { }.

String Operators

Next you should notice that the plus sign (+) is used in place of the dot (.) for string
concatenation. As a matter of fact, the eq, ne, gt, 1t, ge, 1e, cmp, and x operators are not
used in Ruby either. Instead, use ==, !=, >, <, >=, <=, <=>, and * (no list context
equivalents).

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Ppages Return to Table of Contents

In fact, you can use these same operators (and others) for any object that defines them as
a method.

Dot Syntax

Now let's look at a little code fragment: 5. + (2) . This reveals two things in Ruby: + is just
a method call, and . (dot) is the syntax for dispatching a method.

Numbers are also objects (instances of a class). As such, you can send method calls to them.
Ruby will look in the object's class for an implementation of the method sent to it. Compare
this to Perl's —> operator (not used in Ruby).

You normally have to include the dot when dispatching methods, but Ruby makes it
optional for operators that are implemented as methods. However, by using the dot with
numeric operators, you override the precedence rules. Here are some examples:

5+ 2 * 3+ 1* 4 # 15
5.+ 2.% 3.+ 1.*% 4 # 19
5.4(2).%(3).+(1) .*(4) # 112

About Command-Line Options

Most of the Perl command-line options work the same way for Ruby. There are a few things
to note, however. For example, autosplit results are assigned to $F instead of Perl's @F,
and there are no -D, -P, —-u, -U, and -V flags. Note that -T optionally takes a value to set
the safe level, -I uses SLOAD PATH ($:) instead of RINC, and -S uses either RUBYPATH
or PATH. Also, there are some additional options: -C and -X are used to change directories
before executing the script, -r is used to "require" named libraries, and -K specifies a
language code set.

Tip

There is a debug feature as well as an enhanced interactive mode called irb.

Another Code Example

Here is another example to serve as an introduction to discussing some more differences:

perl -e 'while(<>){ last if /”x/; print } ; print "done\n";'
ruby -e 'while gets; break if /"x/; print; end; puts "done"'

Again, these code fragments behave essentially the same.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby pages Return to Table of Contents

Loop Constructs, Conditionals, and Modifiers

It should be no surprise that Ruby has looping constructs such as while, until, and
for. However, there are no braces, because braces are used in Ruby for iterator blocks
that introduce a new scope. Instead, the body is delimited by the end keyword.

Loop control in Ruby is similar to Perl, except break is used in place of 1ast. There is no
continue and no goto, but you can simulate goto with continuations or catch/
throw. A new keyword, retry, is useful both for making your own iterators and for
recovering from an exception when used in the rescue portion of a begin/end block.

Tip

Exception information is stored in the $! variable. The $@ variable holds the stack
backtrace for it.

The foreach loop from Perl is translated this way:

foreach $item (@arr){ some code } # Perl
for item in arr; some code; end # Ruby

Ruby alsohas if/elsif/else/end, unless/else/end, and case/when/else/
end. These also do not use braces.

Note

These statements evaluate the "truth value" of a given condition. Remember that
nr om0, and 0 will all be true because only false and nil are false in Ruby.

Modifiers work the same way as in Perl, except there is no foreach modifier.

Blocks

Ruby has more than one kind of block. The begin/end block is most often used with
rescue and ensure to handle exceptions. It lets you group statements for control, and
it may also be nested. Aside from the lack of scope, it seems to be the closest thing to Perl's

brace-delimited blocks because it may stand by itself, and it supports flow control, such
as next.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby page7 Return to Table of Contents

The do/end or {} block, on the other hand, must be associated with a method (otherwise,
it is treated as a hash literal). This block is both a closure and an iterator. Its parameter
list is used for parallel assignment of passed arguments and is required if you plan to use
them—there is no equivalent to Perl's @ variable. Here's an example:

obj.iterator method { |x,y| statements in here }
associated iterator closure

Note

Anything assignable may be put in the parameter list, including an existing
variable. If it is a local variable that does not yet exist, it will be created and kept
local to the block. Otherwise, it is not local to the block.

There are also built-in iterator methods such as each, 1oop, upto, step, and times.

Note

The Ruby do keyword is very different from Perl's do.

Regexes

Both \b and \ s are interpolated differently in double quotes and in % r or / / regex literals.
There is no equivalent to (2<=, (<!, (2{},0r (2 ().

Ruby does not have the /s modifier, and the /m modifier works like Perl's /sm
combination.

Tip

You can simulate Perl's /s with Ruby's \ 2 and \ 7, and you can simulate Perl's /
m by using /m with [~\n] in place of the dot in Ruby.

There is no /g modifier. Use String#gsubfors///gand String#scanform//g. Also,
use String#index for Perl's pos (). By the way, the pound (#) notation as used here is
not part of the Ruby language but is rather a bit of slang to denote an instance method as
opposed to a class method. You can use \G with the scan, gsub, and i ndex methods.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby pages Return to Table of Contents

Use string#subfors///,use // form//,and use String#tr for tr///. Use
String#tr sfortr///s,useString#delete forsomethingclosetotr///d,anduse
~ at the start of the character list for tr///c.

There is no study equivalent. Use Regexp#quote for quotemeta. There areno /c, /e,
and /ee modifiers. The following translation can be used for /e:

Stext="lower to upper"; Stext =~ s/ (\w+)/uc(Sl)/ge; # Perl
text="lower to upper"; text.gsub! (/(\w+)/){ $1l.upcase} # Ruby

The =~ operator is a method defined for both the Regexp and String classes, and it
returns the position of the first match.

For example, the following will not assign $1 and $2 to x and y:

X,y = (var =~ /(.) (.)/)

Instead, use String#scan, which returns an array of all matches. Use a subscript to
access the nth group of matches, like so:

x,y = var.scan(/(.) (.)/) [0]

Back references are available, although you are warned to be careful about quoting them
properly.

The Regexp#match method produces another type of object, of class MatchData,
containing more detailed results.

Output

The print method uses $ as a default argument. See puts and p, new output methods
that don't utilize $.

Printing to a file handle is different:

f = File.new("myfile.txt","w")
f.print "My text here.\n"
f.close

Unlike Perl, chomp and chop do not return what was removed but rather what remains.
The argument to chomp indicates what should be removed, defaulting to the current record
separator.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Pageo Return to Table of Contents

Also, note that sp1it also behaves slightly differently.

Special Variables

Ruby has special built-in variables inspired by Perl, but some have differing meanings. For
example, $" is used for $INC, $: is used for @INC, and $* and ARGV are used for
@ARGV. What's more, $@, $=, $~, $<, $>,and $; are also used differently in Ruby. You can
stilluse $1!, $&,$+,87,$',$1..59,%/,5\,5,,%.,50,$$,$?,and $_ pretty much the same.
ENV is used for $ENV, and $0 would be used for SARGV. There is nothing for $ ~-type built-
ins, except you can use RUBY PLATFORM for $”0, and you can use $-w for $~w. Also,
RUBY VERSION can be used for $]. No features in Ruby correspond to Perl's $ |, $SIG,
@ ,S-,S#, $=,5$~,5$%,$:,5$;,and $[. Use the m modifier for $* and use Ruby's $, for
$". As with Perl, Ruby has English equivalents available for these. Information on
processes accessed via Perl's $ (, $), $<, and $> can be obtained from the built-in
Process module's gid, egid, uid, and euid methods.

Note

Some built-in variables, such as $ and $~, do not actually behave as globals. Also,
$_doesn't always behave as Perl's equivalent does.

More Examples

Here's another pair of examples for comparison:

#!/usr/bin/perl

@list = "1s -1 *.htm?";

open (FH,">1list.txt") or die "Error opening file: $!\n";
foreach (Q@list){ print FH; }

close FH;

#!/usr/local/bin/ruby

list = "1s -1 *.htm?"

File.open ("list.txt","w") { |fh]|
list.each { |line| fh.print line }

}

The results of the shell command are put into a single string in Ruby, including the
newlines. Later, the each iterator retrieves each line from that string.

There is no close statement used here because the File.open method automatically

closes it upon completion of the associated block. It also automatically raises an exception
in case of an error.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Page 10 Return to Table of Contents

Modules, Etc.

There are no do, no, package, and use keywords for modules. Also, modules in Ruby do
not need to be in a separate specially named file. However, a separate file may contain one
or more modules and can be loaded with require or 1oad. You can then optionally
"include" a named module into your namespace, but you can't selectively import
individual methods or constants. Ruby modules are not aggregations of functions but
rather sets of methods and constants inseparable from each other. There is no exact
equivalent to the Perl AutoLoader module. There is autoload, which lets you register
a file to be required when a Ruby module is first accessed.

You cannot access just any variable via the : : scope operator but only constants and
methods.

Ruby still has Perl's BEGIN{ } and END{ }, but because modules and classes do not need
to be allotted one per file and because there's no equivalent to Perl's Exporter, they are
not really used the same way.

Classes, Objects, and Methods

There are no bless, ref, tie, tied, and untie keywords relating to classes. Also,

existing classes, including the built-in ones, are easily extended at any time. Here's an
example:

class String # pre-existing built-in class
def char_ at (pos) # new method being added
self[pos,1]
end
end
"abcdef".char at(3) #"man
123.char_at(1) # error

A method added to the built-in St ring class only applies for string objects.

Methods added to the Object class apply to all objects (compare this to Perl's
UNIVERSAL class). If you make a method without specifying the class, it will belong to the
Object class as a private method.

Note

Ruby has built-in handling of private, protected, and public methods.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Page 11 Return to Table of Contents

Creating your own class is also easy—there is no need to make separate files.

You will often define your own class to represent custom objects. Ruby allows for
something resembling a constructor; any method named initialize will be called by
the class method new when the object is created:

class Foo
def initialize
Code...
end
end

obj = Foo.new # Internally calls the initialize method

Also, you can nest classes for namespace control:

class Foo
class Bar
end

end

baz = Foo::Bar.new

Notice how this differs from Perl's file-based class organization, where Foo : : Bar implies
Foo/Bar.pmn.

Using include from within a class causes the module methods to be available to all the
objects of the class. This is a mi xin in Ruby. Use this approach in place of multiple
inheritance.

You can still define your classes in separate files and load them into your script with
require or 1load. There is no use or do equivalent, but you can use include to import
module constants and methods into your class. However, you cannot use it to individually
import methods.

Thereisno PACKAGE or DATA fileliteral, butyoucanstilluse END forthe
main file. See more on the DATA object (an instance of class 10). Also, there isno INIT.

Ruby uses a conservative mark/sweep garbage-collection (GC) algorithm and does not
have an equivalent to DESTROY. See finalizers. Note that the GC algorithm is going to
change soon, but this should be transparent to the programmer (other than a performance
gain).

Ruby's inheritance model is smoother:

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby page 12 Return to Table of Contents

Perl
package SomeClass
use AnotherClass

@QISA = ("AnotherClass")

...

Ruby

class SomeClass < AnotherClass
#

Also, overriding methods in Ruby is clearer:

Perl
Sself->SUPER: : somemethod () # Does lookup in @ISA

Ruby
def somemethod

super # Looks in superclass(es)
end

To obtain behavior similar to Perl's AUTOLOAD, seemethod missing. Also, Ruby's built-
in Struct class is analogous to Perl's class generator Class: :Struct.

Defining Methods and procs

A procis an object made from a block, which also maintains its original binding. A method
is different in that it has a scope tied to the object and its class, and it has access to its class
and instance variables and methods. Here's an example:

Tip

You can define methods endingina 2 or !.

def methodname (argl, arg2="Default",
*moreargs, &attachedblock)
...
moreargs is now an array of parameters passed in if they exist
attachedblock is now a Proc if a block was provided
end

Note that the block is treated as a special case; ordinarily a "starred" parameter such as
*moreargs would consume all the remaining parameters passed into the method.

There is no direct equivalent to Perl's sub, but an anonymous subroutine in Perl is similar
to a proc object in Ruby.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby page 13 Return to Table of Contents

Redefining Operator Methods

By this point, you should understand that + is defined differently for number and string
objects. This method takes an argument, and it is up to the implementation of the method
to do the right thing with the argument. In fact, the string class method for + raises an
exception if the argument is not a string. Here's an example:

x = "a" + 1
TypeError: failed to convert Fixnum into String

It is an easy thing to modify this method in Ruby:

class String
def +(arg)
concat arg.to_s
end
end

Many operators in Ruby are redefinable methods, allowing you to override the built-in
equivalents. These include **, !, ~, +, -, *, /, %, <<, >> &, *, |, <=,==,===,=~, [], and
[1=.

Precedence

Precedence is slightly different from what we find in Perl. For example, =~ has a lower
precedence, the bitwise &, ~, and | have a higher precedence, and the keyword operators
have a lower precedence. Also note that the logical operators s & and | | are not
interchangeable with and and or regarding precedence.

Thereisno 11 st operator. Parentheses are used for grouping either expressions or method
arguments, but not both at the same time.

Miscellaneous

Here are a few more miscellaneous notes:

- Seethe 10, Dir, and File classes as well as the Kernel module for using the various
input and output methods. There is no warn, and Ruby's format is not the same as
Perl's format. The dbm-related functionality is in the DBM module. There is no
equivalent to the vec function.

- See the Process module for methods regarding processes and process groups. There
is no alarm method.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Appendix A. From Perl to Ruby Page 14 Return to Table of Contents

« See the socket module for low-level socket methods. See the Etc module for
methods regarding user and group info. Use the Time class for time-related functions.

- InRuby, avariablesettonil isstill considered defined. Perl's unde f isused in various
ways, but Ruby's undef is only useful for undefining methods and requires a
parameter representing an already-defined method. See remove method and
undef method as well. The closest equivalent to Perl assigning undef to a variable
is Ruby assigning ni 1. Ruby's defined? is also different from Perl's defined
because it checks for existence, not a nil value.

« Ruby's dump method (see Marshal#dump) has nothing to do with Perl's dump
function, which has no equivalent.

- Ruby does not support form output. There are no formline, reset, scalar, and
wantarray methods.

« Ruby's eval is not used for exception handling as it is in Perl. It supports a second
argument as the binding in which to evaluate the method. Ruby also supports
class eval and instance eval.

- Useraise (or fail)in place of die. Use begin/rescue/endin place of eval for
catching exceptions. Use catch/throw for simple cases. There is no equivalent to
the Carp module.

- Ruby does not yet have a container equivalent to Perl's $S1G. Signal handlers are
established via the t rap method, but you are limited in accessing them later.

- Commenting is done using the # symbol. Ruby also has a POD-like format called
RD. It utilizes =begin/=end instead of =head/=cut.

« You can use rdtool to extract and convert to HTML or man pages. However, there
is no utility fully equivalent to perldoc.

Appendix A. From Perl to Ruby

Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	From Perl to Ruby
	Ruby One-Liners
	Another Code Example
	More Examples
	Modules, Etc.
	Miscellaneous

