
Table of Contents

Scripting and System Administration.. 1
Running External Programs... 2
Command-Line Options and Arguments... 7
The Shell Library.. 11
Accessing Environment Variables... 14
Scripting in Microsoft Windows... 16
Working with Files, Directories, and Trees.. 22
Miscellaneous Scripting Tasks.. 26
Summary... 30

Chapter 8. Scripting and System Administration

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 8. Scripting and System
Administration

IN THIS CHAPTER

• Running External Programs
• Command-Line Options and Arguments
• The Shell Library
• Accessing Environment Variables
• Scripting in Microsoft Windows
• Working with Files, Directories, and Trees
• Miscellaneous Scripting Tasks
• Summary

Thus spake the master programmer: "Though a program be but three lines long,
someday it will have to be maintained."

—Geoffrey James, The Tao of Programming

As programmers, we often need to glue programs together with little scripts that are able
to talk to the operating system at a fairly high level and run external programs. This is
especially true in the UNIX world, where shell scripts are relied on daily for countless tasks.

Ruby isn't always a convenient glue language because it is more general-purpose than that.
But in the long run, anything that can be done in ksh, bash, or the others can also be done
in Ruby.

In many cases, you might just as well use one of the more traditional languages for this
purpose. The advantage that Ruby has, of course, is that it really is a general-purpose
language, full-featured and truly object-oriented. On the theory that people might want to
use Ruby to talk to the OS at this level, we present here a few tricks that might prove useful.

We've found this chapter a little hard to organize because much of the functionality could
logically be grouped in different ways. If you don't find what you are looking for in the
expected place, scan the rest of the chapter also.

In addition, much of what could be covered here is actually dealt with in other chapters
entirely. Refer in particular to Chapter 4, "External Data Manipulation," which covers file

Chapter 8. Scripting and System Administration Page 1 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

http://safari.oreilly.com/0672320835/ch04#ch04

I/O and attributes of files. These features are frequently used in the kind of scripts we will
discuss in this chapter.

Running External Programs
A language can't be a glue language unless it can run external programs. Ruby offers more
than one way to do this.

We can't resist mentioning here that if you are going to run an external program, you should
be certain you know what that program is doing. We're thinking about viruses and other
potentially destructive programs here. Don't just run any old command string, especially
if it came from a source outside the program. This is true regardless of whether the
application is Web-based.

Using system and exec
The system method (in Kernel) is equivalent to the C call of the same name. It will
execute the given command in a subshell.

system("/usr/games/fortune")
Output goes to stdout as usual...

Note that the second parameter, if present, will be used as list of arguments; in most cases,
the arguments can also be specified as part of the command string with the same effect.
The only difference is that filename expansion is done on the first string but not on the
others.

system("rm", "/tmp/file1")
system("rm /tmp/file2")
Both the above work fine.

However, below, there's a difference...
system("echo *") # Print list of all files
system("echo","*") # Print an asterisk (no filename
 # expansion done)

More complex command lines also work.
system("ls -l | head -n 1")

Let's look at how this works on the Windows family of operating systems. For a simple
executable, the behavior should be the same. Depending on your exact variant of Ruby,
invoking a shell builtin might require a reference to cmd.exe, the Windows command
processor (which might be command.com on some versions). Both cases, executable and
builtin, are shown here:

Chapter 8. Scripting and System Administration Page 2 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

system("notepad.exe ","myfile.txt") # No problem...
system("cmd /c dir","somefile") # 'dir' is a builtin!

Another solution to this is to use the Win32API library and define your own version of the
system method.

require "Win32API"

def system(cmd)
 sys = Win32API.new("crtdll", "system", ['P'], 'L')
 sys.Call(cmd)
end

system("dir") # cmd /c not needed!

So the behavior of system can be made relatively OS-independent. But, getting back to
the big picture, if you want to capture the output (for example, in a variable), system of
course isn't the right way (see the next section).

We'll also mention exec here. The exec method behaves much the same as system,
except that the new process actually overlays or replaces the current one. Thus any code
following the exec won't be executed.

puts "Here's a directory listing:"
exec("ls", "-l")

puts "This line is never reached!"

Command Output Substitution
The simplest way to capture command output is to use the backtick (also called
backquote or grave accent) to delimit the command. Here are a couple of examples:

listing = `ls -l` # Multiple lines in one string
now = `date` # "Mon Mar 12 16:50:11 CST 2001"

The generalized delimiter %x calls the backquote operator (which is really a Kernel
method). It works essentially the same way:

listing = %x(ls -l)
now = %x(date)

Chapter 8. Scripting and System Administration Page 3 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The %x form is often useful when the string to be executed contains characters such as
single and double quotes.

Because the backquote method really is a method (in some sense), it is possible to override
it. Here we change the functionality so that we return an array of lines rather than a single
string. Of course, we have to save an alias to the old method so that we can call it.

alias old_execute `

def `(cmd)
 out = old_execute(cmd) # Call the old backtick method
 out.split("\n") # Return an array of strings!
end

entries = `ls -l /tmp`
num = entries.size # 95

first3lines = %x(ls -l | head -n 3)
how_many = first3lines.size # 3

Note that, as we show here, the functionality of %x is affected when we perform this
redefinition.

Here is another example. Here we append a "shellism" to the end of the command to ensure
that standard error is mixed with standard output:

alias old_execute `

def `(cmd)
 old_execute(cmd + " 2>&1")
end

entries = `ls -l /tmp/foobar`
"/tmp/foobar: No such file or directory\n"

There are many other ways we could change the default behavior of the backquote.

Manipulating Processes
We mention process manipulation in this section even though a new process might or
might not involve calling an external program. The principal way to create a new process
is with the fork method. This takes its name from Unix tradition, from the idea of a fork
in the path of execution, like a fork in the road.

The fork method in Kernel (also found in the Process module) shouldn't be confused
with the Thread instance method of the same name.

Chapter 8. Scripting and System Administration Page 4 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are two ways of invoking the fork method. The first is the more Unix-like way; we
simply call it and test its return value. If that value is nil, we are in the child process;
otherwise we execute the parent code. The value returned to the parent is actually the
process ID (or pid) of the child.

pid = fork
if (pid == nil)
 puts "Ah, I must be the child."
 puts "I guess I'll speak as a child."
else
 puts "I'm the parent."
 puts "Time to put away childish things."
end

In this unrealistic example, the output might be interleaved or the parent's output might
appear first. For purposes of this example, it's irrelevant.

We should also note that the child process might outlive the parent. We've seen that this
isn't the case with Ruby threads, but system-level processes are entirely different.

The second form of fork takes a block. The code in the block comprises the child process.
Our previous example could thus be rewritten in this simpler way:

fork do
 puts "Ah, I must be the child."
 puts "I guess I'll speak as a child."
end

puts "I'm the parent."
puts "Time to put away childish things."

The pid is still returned, of course. We just don't show it here.

When we want to wait for a process to finish, we can call the wait method in the
Process module. It waits for any child to exit and returns the process ID of that child.
The wait2 method will behave similarly except that it returns a two-value array consisting
of the pid and a left-shifted exit status.

pid1 = fork { sleep 5; exit 3 }
pid2 = fork { sleep 2; exit 3 }

Process.wait # Returns pid2
Process.wait2 # Returns [pid1,768]

To wait for a specific child, use waitpid and waitpid2, respectively.

Chapter 8. Scripting and System Administration Page 5 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

pid3 = fork { sleep 5; exit 3 }
pid4 = fork { sleep 2; exit 3 }

Process.waitpid(pid4,Process::WNOHANG) # Returns pid4
Process.waitpid2(pid3,Process:WNOHANG) # Returns [pid3,768]

If the second parameter is unspecified, the call might block (if no such child exists). It
might be ORed logically with Process::WUNTRACED to catch child processes that have
been stopped. This second parameter is rather OS sensitive; experiment before relying on
its behavior.

The exit! method will exit immediately from a process (bypassing any exit handlers).
The integer value, if specified, will be returned as a return code; -1 (not 0) is the default.

pid1 = fork { exit! } # Return -1 exit code
pid2 = fork { exit! 0 } # Return 0 exit code

The pid and ppid methods will return the process ID of the current process and the parent
process, respectively.

proc1 = Process.pid
fork do
 if Process.ppid == proc1
 puts "proc1 is my parent" # Prints this message
 else
 puts "What's going on?"
 end
end

The kill method can be used to send a Unix-style signal to a process. The first parameter
can be an integer, a POSIX signal name including the SIG prefix, or a non-prefixed signal
name. The second parameter represents a pid; if it is zero, it refers to the current process.

Process.kill(1,pid1) # Send signal 1 to process pid1
Process.kill("HUP",pid2) # Send SIGHUP to pid2
Process.kill("SIGHUP",pid2) # Send SIGHUP to pid3
Process.kill("SIGHUP",0) # Send SIGHUP to self

The Kernel.trap method can be used to handle such signals. It typically takes a signal
number or name and a block to be executed.

trap(1) { puts "Caught signal 1" }
sleep 2
Process.kill(1,0) # Send to self

Chapter 8. Scripting and System Administration Page 6 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

For advanced uses of trap, consult Ruby and Unix references.

The Process module also has methods for examining and setting such attributes as user
ID, effective user ID, priority, and others. Consult any Ruby reference for details.

Manipulating Standard Input/Output
We've shown how IO.popen and IO.pipe work in Chapter 4. But there is a library we
haven't mentioned that can prove handy at times.

The Open3.rb library contains a method popen3, which will return an array of three
IO objects. These objects correspond to the standard input, standard output, and standard
error for the process kicked off by the popen3 call. Here's an example:

require "open3"

filenames = %w[file1 file2 this that another one_more]

inp, out, err = Open3.popen3("xargs", "ls", "-l")

filenames.each { |f| inp.puts f } # Write to the process's stdin
inp.close # Close is necessary!

output = out.readlines # Read from its stdout
errout = err.readlines # Also read from its stderr

puts "Sent #{ filenames.size} lines of input."
puts "Got back #{ output.size} lines from stdout"
puts "and #{ errout.size} lines from stderr."

This contrived little example does an ls -l on each of the specified filenames and captures
the standard output and standard error separately. Note that the close is needed so that
the subprocess will be aware that end of file has been reached.

For additional information refer to the section "The Shell Library."

Command-Line Options and Arguments
Rumors of the death of the command line are greatly exaggerated. Although we live in the
age of the GUI, every day thousands of us retreat to the older text-based interfaces for one
reason or another.

Ruby has many of its roots in Unix, as we've said. Yet even in the Windows world, there is
such a thing as a command line; and frankly, we don't see it going away any time soon.

Chapter 8. Scripting and System Administration Page 7 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch04#ch04

When operating at this level, parameters and switches are used to communicate with the
program at the time of its invocation. We show here how to deal with these parameters (or
arguments) and switches (or options).

Parsing Command-Line Options
The getoptlong library is probably the most commonly used command-line parser. (The
getopts.rb library is considered obsolete because it has more limited functionality.) It
can accept both single-letter and longer option names, and it recognizes the double hyphen
(—) as meaning the end of all the options. Its behavior is essentially the same as its GNU
counterpart, for those who are familiar with that code.

The GetoptLong class must be instantiated, giving a parser object. This object can then
be set up with the allowed command-line options and used to retrieve them one at a time.

The parser object has a set_options method that takes a list of arrays. Each array
contains one or more options (as strings) and one argument flag, which tells whether an
argument is allowed for that option. The options in each array are considered synonyms;
the first one mentioned is the canonical name of the option, as returned by a get operation.

As an example, suppose that we have a tool with these options: -h or —help will print help
information, -f or —file will specify a filename argument, and -l or —lines will
truncate the output after the specified number of lines (defaulting to 100).

We could begin in this way:

require "getoptlong"

parser = GetoptLong.new
parser.set_options(
 ["-h", "—help", GetoptLong::NO_ARGUMENT],
 ["-f", "—file", GetoptLong::REQUIRED_ARGUMENT],
 ["-l", "—lines", GetoptLong::OPTIONAL_ARGUMENT])

Now we can use a loop to call get repeatedly (see Listing 8.1); we can fake a post-test loop
because we are using begin and end anyway. A synonym for get is get_option; there
are also iterators named each and each_option, which are identical.

Chapter 8. Scripting and System Administration Page 8 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 8.1. Getting Command-Line Options

filename = nil
lines = 0 # Default means no truncating

loop do
 begin
 opt, arg = parser.get
 break if not opt
 # Only for debugging purposes...
 puts (opt + " => " + arg)

 case opt
 when "-h"
 puts "Usage: ..."
 break # Stop processing if -h
 when "-f"
 filename = arg # Save the file argument
 when "-l"
 if arg != ""
 lines = arg # Save lines arg (if given)
 else
 lines = 100 # Default for truncating
 end
 end

 rescue => err
 puts err
 break
 end
end

puts "filename = #{ filename} "
puts "lines = #{ lines} "

Note that get returns nil for a nonexistent option but a null string for a nonexistent
argument. This could be a bug.

Note also that we are catching errors here. Four possible exceptions that could be raised
are summarized here:

AmbiguousOption A long option name seems to have been abbreviated,
 but it isn't unique.

InvalidOption The option is unknown.

MissingArgument The option is missing its argument.
NeedlessArgument The option has an argument when it isn't expected to
 take an argument.

Errors are normally reported to stderr when they occur, but the quiet= accessor can
be set to true to override this.

There are other features of getoptlong, which we haven't discussed here. See the
documentation for further details.

Chapter 8. Scripting and System Administration Page 9 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are also other possibilities out there, such as OptionParser, which offer somewhat
different functionality and usage. Refer to the Ruby Application Archive for more
information.

Working with ARGF
The special global constant ARGF represents the pseudo-file resulting from a concatenation
of every file named on the command line. It behaves similar to an IO object in most ways.

When you have a bare input method (without a receiver), you are typically using a method
mixed in from the Kernel module. (Examples are gets and readlines.) The actual
source of input will default to STDIN if no files are on the command line. If there are files,
however, input will be taken from them. End of file will be reached only at the end of the
last file.

If you prefer, you can access ARGF explicitly.

Copy all files to stdout
puts ARGF.readlines

Perhaps contrary to most people's expectations, end of file is set after each file. The
previous code fragment will output all the files. This one will output only the first:

until ARGF.eof?
 puts ARGF.gets
end

Whether this is a bug or a feature, we will leave it up to you to decide. Of course, there are
other unexpected surprises that might actually be pleasant. The input isn't simply a stream
of bytes flowing through our program; we can actually perform operations such as seek
and rewind on ARGF as though it were a real file.

There is a file method associated with ARGF; it returns an IO object corresponding to
the file that is currently being processed. As such, the value it returns will change as the
files on the command line are processed in sequence.

What if we don't want command-line arguments to be interpreted as files? The solution is
to not use the bare (receiverless) call of the input methods. If you want to read standard
input, you can use STDIN as the receiver, and all will work as expected.

Chapter 8. Scripting and System Administration Page 10 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Working with ARGV
The global constant ARGV represents the list of arguments passed to the Ruby program via
the command line. This is essentially an array.

n = ARGV.size
argstr = '"' + ARGV*"," + '"'
puts "I was given #{ n} arguments..."
puts "They are: #{ argstr} "
puts "Note that ARGV[0] = #{ ARGV[0]} "

Assume that we invoke this little program with the arguments red green blue on the
command line. It then produces this output:

I was given 3 arguments.
They are: "red,green,blue"
Note that ARGV[0] = red

Obviously there is no need for an argument count as in the old days; that information is
part of the array.

Another thing that might trip up old-timers is the assignment of the zeroth argument to
an actual argument (rather than, for example, the script name). The arguments themselves
are zero-based rather than one-based, as in C and the various shell languages.

The Shell Library
Ruby isn't necessarily convenient to use as a scripting language in every situation. For
example, a Kornshell script can execute external programs simply by naming them, with
no extraneous syntax.

The power and flexibility of Ruby has given it a more complex syntax than the average shell
language. Additionally its functionality is segmented into different classes, modules, and
libraries.

This situation motivated the creation of the Shell library. This library makes it easier to
do things, such as connecting commands with pipes and redirecting output to files. It also
consolidates functionality from several different sources so that they are transparently
accessible from a Shell object.

Chapter 8. Scripting and System Administration Page 11 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using Shell for I/O Redirection
The Shell class has two methods, new and cd, for instantiating a new object. The former
creates a shell object associated with the current directory; the latter creates a shell object
whose working directory will be the one specified.

require "shell"

sh1 = Shell.new # Work in the current directory
sh2 = Shell.cd("/tmp/hal") # Work in /tmp/hal

The Shell library defines a few built-in commands as methods, such as echo, cat, and
tee. These always return objects of class Filter (as do the user-defined commands that
we'll look at shortly).

The nice thing about a Filter is that it understands I/O redirection. The methods (or
operators) <, >, and | are defined so that they behave more or less as we expect from long
experience with shell scripts.

If a redirection method has a string as a parameter, that string is taken to be the name of
a file. If it has an IO object as a parameter, that object is used for the input or output
operation. Here are some small examples:

sh = Shell.new

Print the motd file to stdout
sh.cat("/etc/motd") > STDOUT

Print it again
 (sh.cat < "/etc/motd") > STDOUT
 (sh.echo "This is a test") > "myfile.txt"

Append a line to /etc/motd
sh.echo("Hello, world!") >> "/etc/motd"

Cat two files to stdout, tee-ing to a third
(sh.cat "file1" "file2") | (tee "file3") > STDOUT

Note that the > binds tightly. The parentheses that you see in the preceding code are
necessary in most cases. Here are two correct usages and one incorrect one:

Ruby parser understands this...
sh.cat("myfile.txt") > STDOUT

...and this also.
 (sh.cat "myfile.txt") > STDOUT

Chapter 8. Scripting and System Administration Page 12 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

TypeError! (a precedence problem)
sh.cat "myfile.txt" > STDOUT

Note that it's also possible to install system commands of your own choosing. The method
def_system_command will accomplish this. For example, here we define two methods
ls and ll, which will list files in the current directory (short and long listings,
respectively).

Method name is identical to command...
only one parameter necessary
Shell.def_system_command "ls"

Two parameters needed here
Shell.def_system_command "ll", "ls -l"

sh = Shell.new
sh.ls > STDOUT # Short listing
sh.ll > STDOUT # Long listing

You will notice that in many cases we explicitly send output to STDOUT. This is because
output from a Shell command doesn't automatically go anywhere. It's simply associated
with the Filter object until that object is connected to a file or an IO object.

Other Notes on shell.rb
The transact method will execute a block using the receiver for its context. Thus we can
use this shorthand:

sh = Shell.new
sh.transact do
 echo("A line of data") > "somefile.txt"
 cat("somefile.txt","otherfile.txt") > "thirdfile"
 cat("thirdfile") | tee("file4") > STDOUT
end

There is an iterator foreach that will take either a file or a directory as a parameter. If it
is a file, it will iterate over the lines of that file; if it is a directory, it will iterate over the
filenames in that directory.

sh = Shell.new

List all lines in /tmp/foo
sh.foreach("/tmp/foo") { |l| puts l }

List all files in /tmp
sh.foreach("/tmp") { |f| puts f }

Chapter 8. Scripting and System Administration Page 13 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are pushdir and popdir methods that will save and restore the current directory,
respectively. Aliases are pushd and popd. The method pwd will determine the current
working directory; aliases are getwd, cwd, and dir.

sh = Shell.cd "/home"

puts sh.pwd # /home
sh.pushd "/tmp"
puts sh.pwd # /tmp

sh.popd
puts sh.pwd # /home

For convenience, numerous methods are imported into Shell from various sources,
including the File class, the FileTest module, and the ftools.rb library. This saves
the trouble of doing requires and includes, creating objects, qualifying method calls, and
so on.

sh = Shell.new
flag1 = sh.exist? "myfile" # Test file existence
sh.delete "somefile" # Delete a file
sh.move "/tmp/foo", "/tmp/bar" # Move a file

There are other features of the Shell library we don't cover here. See the associated
documentation for more details.

Accessing Environment Variables
Occasionally we need to access environment variables as a link between our program and
the outer world. An environment variable is essentially a label referring to a piece of text
(typically a small piece); they can be used to store configuration information such as paths,
usernames, and so on.

The notion of an environment variable is very common in the Unix world. The Windows
world has borrowed it from Unix (by way of MS-DOS), so the code we show here should
run on variants of both Windows and Unix.

Getting and Setting Environment Variables
The global constant ENV can be used as a hash both for purposes of retrieving and assigning
values. Here we retrieve the value of an environment variable:

mypath = ENV["PATH"]
Let's get an array now...
dirs = mypath.split(":")

Chapter 8. Scripting and System Administration Page 14 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here's an example of setting a variable. We take the trouble to fork another process to
illustrate two facts. First of all, a child process inherits the environment variables that its
parent knows. Second, an environment variable set by a child is not propagated back up
to the parent.

ENV["alpha"] = "123"
ENV["beta"] = "456"
puts "Parent: alpha = #{ ENV['alpha']} "
puts "Parent: beta = #{ ENV['beta']} "
fork do # Child code...
 x = ENV["alpha"]
 ENV["beta"] = "789"
 y = ENV["beta"]
 puts " Child: alpha = #{ x} "
 puts " Child: beta = #{ y} "
end
Process.wait
a = ENV["alpha"]
b = ENV["beta"]
puts "Parent: alpha = #{ a} "
puts "Parent: beta = #{ b} "

The output here would be the following:

Parent: alpha = 123
Parent: beta = 456
 Child: alpha = 123
 Child: beta = 789
Parent: alpha = 123
Parent: beta = 456

There is a consequence of the fact that parent processes don't know about their children's
variables. Because a Ruby program is typically run in a subshell, any variables changed
during execution will not be reflected in the current shell after execution has terminated.

Storing Environment Variables as an Array or Hash
It's important to realize that ENV isn't really a hash; it just looks like one. For example, we
can't call the invert method on it; it gives us a NameError because there is no such
method. The reason for this implementation is the close tie between the ENV object and
the underlying operating system; setting a value has an actual impact on the OS, a behavior
that a mere hash can't mimic.

However, we can call the to_hash method to give us a real live hash:

envhash = ENV.to_hash
val2var = envhash.invert

Chapter 8. Scripting and System Administration Page 15 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Of course, once we have a hash, we can convert it to any other form we prefer (for example,
an array):

envarr = ENV.to_hash.to_a

It's not possible to directly reassign a hash to ENV; but we can fake it easily if we need to:

envhash = ENV.to_hash
Manipulate as needed... then assign back.
envhash.each { |k,v| ENV[k] = v }

Importing Environment Variables as Globals
A small library called importenv.rb will run through all the environment variables and
import them into the program as global variables. It is used in this way:

require "importenv"

Now our environment variables are all globals...
E.g., $PWD and $LOGNAME

where = $PWD
who = $LOGNAME
puts "In directory #{ where} , logged in as #{ who} "

Note that because the importenv uses trace_var, the reflection is actually two-way:
We can set one of these global variables in our program and the real environment variable
will be set in the same way.

require "importenv"

puts "My path is #$PATH"
Prints: /usr/local/bin:/usr/bin:/usr/ucb:/etc:.
$PATH = "/ruby-1.8.0:" + $PATH

puts "My actual $PATH variable is now #{ ENV['PATH']} "
Prints: /ruby-1.8.0:/usr/local/bin:/usr/bin:/usr/ucb:/etc:.

Again, we point out that a change in an environment variable within a Ruby program
doesn't affect the environment external to the program.

Scripting in Microsoft Windows

Like the ski resort full of girls hunting for husbands and husbands hunting for
girls, the situation is not as symmetrical as it might seem.

Chapter 8. Scripting and System Administration Page 16 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

—Alan Lindsay Mackay

It has been said that Ruby has a Unix bias. In a sense, this is true; it was conceived in a
Unix environment and works best there. Yet there are other ports out there at the time of
this writing, including DOS and Amiga; and there are others ports in progress, such as
Macintosh and Palm OS. But if Unix is the primary platform for Ruby, the secondary
platform is Windows.

Windows users certainly aren't left out in the cold. Windows-based tools and libraries are
in existence, and more are being created. Much of Ruby is platform-independent anyhow,
even the threading capabilities; most of the platform difficulties occur in the areas of I/O,
process management, and other similar low-level operations.

One problem for Windows users is that different variants of Ruby exist for the Windows
platforms. These have little to do with differing versions of Ruby or differing versions of
Windows; rather they have to do with how the interpreter was built. It might have been
built with gcc or Visual C; it might or might not depend on the Cygwin DLL, and so on.

The environment is changing too rapidly to document at this point. But we will mention
a few of the high points in Windows scripting and automation. These techniques and
utilities should work for anyone, and if there are problems, the online support community
is very helpful with such things.

Using Win32API
The Win32API is exceptionally powerful if you want to code at a fairly low level. Essentially
it allows access to any Windows API function in any DLL, making it callable from Ruby
code.

The specified function is instantiated as an object, with relevant parameters precisely
describing the function being passed into the new method. The first parameter, a string,
identifies the DLL containing the function (such as crtdll). The second parameter is the
name of the function itself. The third parameter is an array of strings identifying the types
of the function parameters (the import array); and the fourth is a string specifying the
function's return type.

The import array can contain these (not case sensitive) values:

I Integer
L Number
N Number
P Pointer to a string

Chapter 8. Scripting and System Administration Page 17 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The export string can also contain any one of these. Additionally it can take the value V,
meaning void.

After we have created this object, we can invoke its call method to call the Windows
function. Note that Call is an alias.

Here we call the Windows function GetCursorPos, which returns a pointer to a POINT
structure. This structure consists of two long fields; we can use unpack to examine these
fields and retrieve their values.

result = "0"*8 # Eight bytes (enough for two longs)
getCursorXY = Win32API.new("user32","GetCursorPos",["P"],"V")
getCursorXY.call(result)
x, y = result.unpack("LL") # Two longs

Sometimes we need to pass in complex binary data, whereas in this case it was passed back
to us. In that case, we could obviously use pack to pack the data into a string.

There are obviously many possible applications for this technique. Two other code
fragments can be seen in the section "Grabbing a Character from the Keyboard," from
Chapter 4 and the section "Using system and exec" in this chapter.

Using Win32OLE
The Win32OLE extension library (actually spelled in lowercase, win32ole) provides an
interface to Windows OLE automation. Your Ruby code can act as a client for any OLE
automation server such as Microsoft Word, Outlook, Internet Explorer, and many third-
party software products.

To interact with an external application, we first create a new object of the WIN32OLE class.
This object is used to access all the exposed properties and methods of the specified
application.

In this example, we associate an object with the Microsoft Word application. We set the
visible attribute to true, and eventually we quit, exiting the application.

require "win32ole"

word = WIN32OLE.new "Word.Application"

word.visible = true

...

word.quit

Chapter 8. Scripting and System Administration Page 18 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch04lev1sec1#ch04lev2sec17
http://safari.oreilly.com/0672320835/ch04#ch04

Every property of the automation server is reflected as an attribute of the object. These
can be set or examined at will.

An alternate notation uses a hash-like construct to access these properties.

player["FileName"] = "file.wav"
name = player["FileName"]
Equivalent to these statements:
player.FileName = "file.wav"
name = player.FileName

One advantage of this is that it can easily handle the more programmatic situations as
shown in this contrived example:

puts "Enter the property name"
prop = gets
puts "Enter the new value"
val = gets
old = obj[prop]
obj[prop] = val
puts "#{ prop} was #{ old} ... now is #{ obj[prop]} "

But let's look at some more concrete examples. Here is a code fragment that takes a
filename from the command line, passes it into Microsoft Word, and prints the file:

require "win32ole"

print "Enter the filename to print: "
docfile = gets

word = WIN32OLE.new "Word.Application"
word.visible = true
word.documents.open docfile
word.options.printBackground = false

We could also set printBackground to true, but we
would have to sleep until the file all got sent to
the printer buffer before we quit...

word.activeDocument.printOut
word.quit

Here is an example of playing a WAV file. It has the disadvantage of an arbitrary sleep at
the end rather than waiting for the output to finish. Fixing this is left as an exercise.

require "win32ole"

sound = WIN32OLE.new("MCI.MMcontrol")

wav = "c:\\windows\\media\\ The Microsoft Sound.wav"

Chapter 8. Scripting and System Administration Page 19 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

sound.fileName = wav

sound.autoEnable = true

sound.command = "Open"
sound.command = "Play"

sleep 7

In Listing 8.2, we use Internet Explorer to generate a text input box for us.

Listing 8.2. Browser Text Input Box

require "win32ole"

def ieInputBox(msg, default)
 ie = WIN32OLE.new("InternetExplorer.Application");
 ie.visible = false
 sleep 0.01 while (ie.busy)

 script = ie.Document.Script;
 result = script.prompt(msg,default);
 ie.quit

 result
end

Main...

result = ieInputBox("Please enter your name",
 "Dave Bowman")

if result
 puts result
else
 puts "User pressed Cancel"
end

In Listing 8.3, we open a small IE window and write HTML to it.

Chapter 8. Scripting and System Administration Page 20 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 8.3. Writing to a Browser Window

require "win32ole"

html = <<EOF
<html>
<body>
<h3>And now for something</h3>
<h2>completely</h2>
<h1>different...</h1>
</body>
 </html>
 EOF

ie = WIN32OLE.new("InternetExplorer.Application");
ie.left = 150
ie.top = 150
ie.height = 200
ie.width = 300
ie.menubar = 0
ie.toolbar = 0
ie.navigate "about:blank"
ie.visible=TRUE;

ie.document.open
ie.document.write html
ie.document.close
sleep 5
ie.quit

Here we open a file dialog box and allow the user to select a file from a list:

require "win32ole"

cd = WIN32OLE.new("MSComDlg.CommonDialog")

Set file filter
cd.filter = "All Files(*.*)|*.*" +
 "|Ruby Files(*.rb)|*.rb"
cd.filterIndex = 2

cd.maxFileSize = 128 # Set MaxFileSize

cd.showOpen()

file = cd.fileName # Retrieve file, path

if not file or file==""
 puts "No filename entered."
else
 puts "The user selected: #{ file} \n"
end

And finally, here is a little fragment that will discover the IP address of the local machine:

require "win32ole"

Chapter 8. Scripting and System Administration Page 21 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

ws = WIN32OLE.new "MSWinsock.Winsock"

Retrieve LocalIP property
ipAddress = ws.localIP

puts "The local IP is : #{ ipAddress} "

As you can see, the possibilities are limitless. Have fun, and don't forget to share your code
with others.

Using ActiveScriptRuby
You have probably used Internet Explorer at some point to view a Web page that contained
embedded JavaScript or VBScript code. (We'll ignore the differences between JScript and
JavaScript here.)

You can do the same thing with ActiveScriptRuby, which is like a bridge between COM and
Ruby. For example, we can embed Ruby in an HTML page (as seen in Listing 8.4).

Listing 8.4. Ruby Embedded in HTML

<html>

<script language="RubyScript">
 # This is Ruby code...
 def helloMethod
 @window.alert "Running Ruby Inside!"
 end
</script>

<body>

Here is an input button...
<input id=Hello type=button onclick="helloMethod"
 language="RubyScript">

</body>
</html>

Using this technique of embedding Ruby, we can call Ruby code from any native Windows
application that supports the IActiveScript interface, such as Internet Explorer or
WScript (the WSH executable).

Working with Files, Directories, and Trees
A broad area of everyday scripting is to work with files and directories, including entire
subtrees of files. Much of the relevant material has already been covered in Chapter 4, but
we will hit a few high points here.

Chapter 8. Scripting and System Administration Page 22 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch04#ch04

Because I/O is a fairly system-dependent thing, many tricks will vary from one operating
system to another. If you are in doubt, you should either consult a reference or resort to
experimentation.

A Few Words on Text Filters
Many tools that we use every day (both vendor-supplied and home-grown) are simply text
filters; that is, they accept textual input, process or transform it in some way, and output
it again. Classic examples of text filters in the Unix world are sed and tr, among others.

Sometimes a file is small enough to be read into memory. This allows processing that might
otherwise be difficult.

file = File.open(filename)
lines = file.readlines
Manipulate as needed...
lines.each { |x| puts x }

Sometimes we'll need to process it a line at a time.

IO.foreach(filename) do |line|
 # Manipulate as needed...
 puts line
end

Finally, don't forget that any filenames on the command line are automatically gathered
into ARGF, representing a concatenation of all input. (See the section "Working with
ARGF.") In this case, we can use calls such as ARGF.readlines just as if ARGF were an
IO object. All output would go to standard output as usual.

Copying a Directory Tree (with Symlinks)
Suppose that you wanted to copy an entire directory structure to a new location. There are
various ways of doing this operation. But what if the tree has internal symbolic links? This
becomes a little more difficult.

Listing 8.5 shows a recursive solution with a little user-friendliness added in. It is smart
enough to check the most basic error conditions and also print a usage message.

Chapter 8. Scripting and System Administration Page 23 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 8.5. Copy Tree

require "ftools"

def recurse(src, dst)
 Dir.mkdir(dst)
 Dir.foreach(src) do |e|
 # Don't bother with . and ..
 next if [".",".."].include? e
 fullname = src + "/" + e
 newname = fullname.sub(Regexp.new(Regexp.escape(src)),dst)
 if FileTest::directory?(fullname)
 recurse(fullname,newname)
 elsif FileTest::symlink?(fullname)
 linkname = `ls -l #{ fullname} `.sub(/.* -> /,"").chomp
 newlink = linkname.dup
 n = newlink.index($oldname)
 next if n == nil
 n2 = n + $oldname.length - 1
 newlink[n..n2] = $newname
 newlink.sub!(/\/\//,"/")
 # newlink = linkname.sub(Regexp.new(Regexp.escape(src)),dst)
 File.symlink(newlink, newname)
 elsif FileTest::file?(fullname)
 File.copy(fullname, newname)
 else
 puts "??? : #{ fullname} "
 end
 end
end

"Main"

if ARGV.size != 2
 puts "Usage: copytree oldname newname"
 exit
end

oldname = ARGV[0]
newname = ARGV[1]

if ! FileTest::directory?(oldname)
 puts "Error: First parameter must be an existing directory."
 exit
end

if FileTest::exist?(newname)
 puts "Error: #{ newname} already exists."
 exit
end
oldname = File.expand_path(oldname)
newname = File.expand_path(newname)

$oldname=oldname
$newname=newname

recurse(oldname, newname)

Probably there are Unix variants in which there is a cp -R option that will preserve
symlinks—but not any that we're using. Listing 8.5 was actually written to address that
need in a real-life situation.

Chapter 8. Scripting and System Administration Page 24 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Deleting Files by Age or Other Criteria
Imagine that you want to scan through a directory and delete the oldest files. This directory
might be some kind of repository for temporary files, log files, browser cache files, or
similar data.

Here we present a little code fragment that will remove all the files older than a certain
timestamp (passed in as a Time object):

def delete_older(dir, time)
 save = Dir.getwd
 Dir.chdir(dir)
 Dir.foreach(".") do |entry|
 # We're not handling directories here
 next if File.stat(entry).directory?
 # Use the modification time
 if File.mtime(entry) < time
 File.unlink(entry)
 end
 end
 Dir.chdir(save)
end

delete_older("/tmp",Time.local(2001,3,29,18,38,0))

This is nice, but let's generalize it. Let's make a similar method called delete_if that
takes a block which will evaluate to true or false. Let's then delete the file only if it fits
the given criteria.

def delete_if(dir)
 save = Dir.getwd
 Dir.chdir(dir)
 Dir.foreach(".") do |entry|
 # We're not handling directories here
 next if File.stat(entry).directory?
 if yield entry
 File.unlink(entry)
 end
 end
 Dir.chdir(save)
end

Delete all files over 3000 bytes
delete_if("/tmp") { |f| File.size(f) > 3000 }

Delete all LOG and BAK files
delete_if("/tmp") { |f| f =~ /(log|bak)$/i }

Chapter 8. Scripting and System Administration Page 25 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Determining Free Space on a Disk
Suppose that you want to know how many bytes are free on a certain device. We present
here a very crude way of doing this, by running a system utility:

def freespace(device=".")
 lines = %x(df -k #{ device}).split("\n")
 n = lines.last.split[1].to_i * 1024
end

puts freespace("/tmp") # 16772204544

Better ways of doing this might exist. Sometimes the better they are, the more system-
dependent they are.

So that Windows users won't feel left out, we offer an equally ugly solution for them.

def freespace(device=".")
 lines = %x(cmd /c dir #{ device}).split("\n")
 n = lines.last.split[2].delete(",").to_i
end

puts freespace "C:" # 5340389376

This code fragment assumes that the free space reported by dir is given in bytes (which
isn't true for all variants of Windows).

Miscellaneous Scripting Tasks
We have a few tidbits left over. We have decided to classify these as miscellaneous.

Piping into the Ruby Interpreter
Because the Ruby interpreter is a single-pass translator, it is possible to pipe code into it
and have it executed. One conceivable purpose for this is to use Ruby for more complex
tasks when you are required by circumstance to work in a traditional scripting language
like Kornshell.

In Listing 8.6, for example, is a Kornshell script that uses Ruby (via a here document) to
calculate the elapsed time in seconds between two dates. The Ruby program prints a single
value to standard output, which is then captured by the ksh script.

Chapter 8. Scripting and System Administration Page 26 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 8.6. Kornshell Script Invoking Ruby

#!/usr/bin/ksh

Let ksh find the difference in seconds
between two dates using Ruby...

export time1="2001-04-02 15:56:12"
export time2="2001-12-08 12:03:19"

cat <<EOF | ruby | read elapsed
require "parsedate"

time1 = ENV["time1"]
time2 = ENV["time2"]

args1 = ParseDate.parsedate(time1)
args2 = ParseDate.parsedate(time2)

args1 = args1[0..5]
args2 = args2[0..5]

t1 = Time.local(*args1)
t2 = Time.local(*args2)

diff = t2 - t1
puts diff
EOF

echo "Elapsed seconds = " $elapsed

Note that the two input values in this case are passed as environment variables (which
must be exported). The two lines that retrieve these values could also be coded in this way:

time1="$time1" # Embed the ksh variable directly
time2="$time2" # into a string...

However, the difficulties are obvious. It could get very confusing whether a certain string
represents a ksh variable or a Ruby global variable, and there could be a host of problems
with quoting and escaping.

It's also possible to use a Ruby one-liner with the -e option. Here's a little ksh script that
reverses a string using Ruby:

#!/usr/bin/ksh

string="Francis Bacon"

ruby -e "puts '$string'.reverse" | read reversed

$reversed now has value "nocaB sicnarF"

Unix geeks will note that awk has been used in a similar way since time immemorial.

Chapter 8. Scripting and System Administration Page 27 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Getting and Setting Exit Codes
The exit method will raise a SystemExit exception and ultimately return the specified
exit code to the operating system (or to the calling entity). This is a Kernel method. There
is also a method exit! that differs in two ways: It doesn't run the exit handlers before
quitting, and the default return value is -1.

...
if (allOK)
 exit # Normally (0)
else
 exit! # In a hurry (-1)
end

When a Ruby return code is retrieved by the operating system (for example, by doing echo
$?), it is seen as the same integer specified in the code. When a subprocess exits and we
use wait2 (or waitpid2) to examine the return code, we will find it left-shifted by eight
bits. This is a POSIX quirk that Ruby has inherited.

child = fork { sleep 1; exit 3 }

pid, code = Process.wait2 # [12554,768]
status = code << 8 # 3

Testing Whether a Program Is Running Interactively
A good way to determine whether a program is interactive is to test its standard input. The
method isatty? (which historically means "is a teletype") will tell us whether the device
is an interactive one as opposed to a disk file or socket.

if STDIN.isatty?
 puts "Hi! I see you're typing at"
 puts "the keyboard..."
end

Determining the Current Platform or Operating System
If a program wants to know what operating system it's running on, it can access the global
constant RUBY_PLATFORM. This will return a cryptic string (usually something similar to
i386-cygwin or sparc-solaris2.7), telling the platform on which the Ruby
interpreter was built.

Because we primarily use Unix variants (Solaris, AIX, Linux) and Windows variants (98,
NT, 2000), we've found the following crude piece of code to be useful. It will distinguish

Chapter 8. Scripting and System Administration Page 28 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

between the Unix family and the Windows family of operating systems (unceremoniously
lumping all others into other).

def os_family
 case RUBY_PLATFORM
 when /ix/i, /ux/i, /gnu/i,
 /sysv/i, /solaris/i,
 /sunos/i, /bsd/i
 "unix"
 when /win/i, /ming/i
 "windows"
 else
 "other"
 end
end

This little set of regular expressions will correctly classify the vast majority of platforms.
Of course, this is only a very clumsy way of determining how to handle OS dependencies.
Even if you correctly determine the OS family, that might not always imply the availability
(or absence) of any specific feature.

Using the Etc Module
The Etc module retrieves useful information from the /etc/passwd and /etc/group
files. Obviously, this is only useful in a Unix environment.

The getlogin method will return the login name of the user. If it fails, getpwuid might
work (taking an optional parameter, which is the uid).

myself = getlogin # hal9000
myname = getpwuid(2001).name # hal9000

Without a parameter, getpwuid calls
getuid internally...
me2 = getpwuid.name # hal9000

The getpwnam method returns a passwd struct, which contains relevant entries such as
name, dir (home directory), shell (login shell), and others.

rootshell = getpwnam("root").shell # /sbin/sh

At the group level, getgrgid or getgrnam behave similarly. They will return a group
struct consisting of group name, group passwd, and so on.

The iterator passwd will iterate over all entries in the /etc/passwd file. Each entry
passed into the block is a passwd struct.

Chapter 8. Scripting and System Administration Page 29 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

all_users = []
passwd { |entry| all_users << entry.name }

There is an analogous iterator group for group entries.

Libraries and Utilities You Should Know About
Several other items are worth a brief mention. As always, see the Ruby Application Archive
for the latest and greatest tools.

For Tcl fans, the standard Ruby distribution has a library called expect.rb, which acts
similar to Tcl's expect extension. See the README for limited documentation.

For those needing to do error logging from Ruby, there is a syslog extension. It is a
wrapper for the Unix function of the same name.

Minero Aoki has created several tools, notably setup.rb (which aids in installing Ruby
scripts and libraries) and TMail, which aids in handling mail messages (including some
MIME support). Another mail library is Michael Neumann's mbox, which reads and writes
the Unix mailbox format.

Summary
That ends our discussion of Ruby scripting for everyday automation tasks. Because much
of this material is operating system dependent, we urge you to experiment on your own.
There are differences between Windows and Unix, and there are even differences in
behavior within those families. In particular, we can't predict the behavior of all these
scripts on Windows XP, which isn't even released as of this writing.

In a sense, a network is a great equalizer; over a remote connection, it is frequently
irrelevant what operating system is at the other end. It's appropriate that we move from
the narrow viewpoint of this chapter into the wider world of Chapter 9, "Network and Web
Programming," where we discuss network clients and servers, distributed Ruby, and Web
development.

Chapter 8. Scripting and System Administration Page 30 Return to Table of Contents

Chapter 8. Scripting and System Administration
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch09#ch09

	Scripting and System Administration
	Running External Programs
	Command-Line Options and Arguments
	The Shell Library
	Accessing Environment Variables
	Scripting in Microsoft Windows
	Working with Files, Directories, and Trees
	Miscellaneous Scripting Tasks
	Summary

