
Table of Contents

Network and Web Programming... 1
Network Servers.. 3
Network Clients... 13
Ruby and the Web Server... 29
Ruby and CGI Programming.. 34
Distributed Ruby... 54
XML Parsing in Ruby.. 61
Summary... 68

Chapter 9. Network and Web Programming

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 9. Network and Web Programming
IN THIS CHAPTER

• Network Servers
• Network Clients
• Ruby and the Web Server
• Ruby and CGI Programming
• Distributed Ruby
• XML Parsing in Ruby
• Summary

Never underestimate the bandwidth of a station wagon full of tapes hurtling
down the highway.

—Andrew S. Tanenbaum

This book strives for compactness. As such, we've put networking and Web development
in the same chapter (and even squeezed in some XML examples). In a broad sense, these
topics belong together. Without the lower-level networking in place, it would be impossible
for a browser to communicate with a Web server sending and receiving information. Of
course, separate chapters could be devoted to these areas; in fact, separate books could be
devoted to them. But we've decided to do what we could in a limited space.

When a marketing type says networking, he probably means that he wants to give you his
business card. But when a programmer says it, he's talking about electronic
communication between physically separated machines—whether across the room, across
the city, or across the world.

In the authors' world, networking usually implies TCP/IP, the native tongue in which
millions of machines whisper back and forth across the Internet. We'll say a few words
about this before diving into some concrete examples.

Network communication is conceptualized at different levels (or layers) of abstraction.
The lowest level is the data link layer, or actual hardware-level communication, which we
need not discuss here. Immediately above this is the network layer, which is concerned
with the actual moving around of packets; this is the realm of IP (Internet Protocol). At a
still higher level of abstraction is the transport layer, where we find TCP (Transmission
Control Protocol) and UDP (User Datagram Protocol). At the level above this, we find the
application layer; at this point we finally enter the world of telnet, FTP, e-mail protocols,
and much more.

Chapter 9. Network and Web Programming Page 1 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

It's possible to communicate directly in IP, but normally you wouldn't do such a thing.
Most of the time, we are concerned with TCP or UDP.

TCP provides reliable communication between two hosts; it is concerned with the blocking
and deblocking of packet data, acknowledgement of receipt, handling timeouts,
reassembling the packets in the proper order, and so on. Because it is a reliable protocol,
the application using it need not worry about a packet in the middle of a message not
arriving; packets are re-sent as needed.

UDP is much simpler, merely sending packets (datagrams) to the remote host, like binary
postcards. There is no guarantee that these will be received, nor that the ones received will
be in order, so the protocol is unreliable (and thus the application has some extra details
to worry about.) It's logical to use UDP when you have a simple, short message that will
fit in a single packet, and it is convenient to handle a timeout manually. In such a case,
TCP might be overkill.

Ruby supports low-level networking (chiefly in TCP and UDP), as well as coding at higher
levels. These higher levels include applications for remote login, file transfer, e-mail, and
others (for example, telnet, FTP, and SMTP).

Figure 9.1 is a class hierarchy showing the highlights of Ruby's networking support. We
include HTTP and certain other high-level items here; some others are omitted for clarity.

Figure 9.1. Partial Inheritance hierarchy for networking support in Ruby.

Chapter 9. Network and Web Programming Page 2 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note that the bulk of these classes derive from the IO class. This means that we can use
the methods of IO that are so familiar to us.

We'd like to document all the features of all these classes. Unfortunately, that task would
exceed our space requirements. We only present a task-oriented approach to all this and
offer a little explanation. For a comprehensive list of available methods, consult a
reference.

A few significant areas are not covered here at all, so we'll mention these up front. The
Net::Telnet class is covered only in connection with NTP servers in the section
"Contacting an Official Timeserver" this class is not just for implementing your own telnet
client, but is potentially useful for automating anything that has a telnet interface.

The Net::FTP library is also not covered here. In general, FTP is very easy to automate
in its everyday form, so there is less motivation to use this class than there might be for
some others.

The Net::Protocol class is the parent of HTTP, POP3, and SMTP. It would probably
prove useful in the development of other customized networking protocols, but time and
space prevent us from delving into something of that nature.

That ends our broad overview. Let's look at some code.

Network Servers
A server spends its lifetime waiting for messages and answering them. It might have to do
some serious processing in order to construct those answers, such as accessing a database,
but from a networking point of view, it simply receives requests and sends responses.

Having said that, there is still more than one way to accomplish this. A server might
respond to only one request at a time, or it might thread its responses. The former is easier
to code, but the latter is better if there are many clients trying to connect simultaneously.

It's also conceivable that a server might be used to facilitate communication in some way
between the clients. The classic examples are chat servers, game servers, and peer-to-peer
file sharing.

A Simple Serialized Server: Time of Day
Let's look at the simplest server we can think of, which might require a little suspension
of disbelief. Let's suppose that we have a server whose clock is so accurate that we use it
as a standard. There are such servers, of course, but they don't communicate with the
simple protocol we show here.

Chapter 9. Network and Web Programming Page 3 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We use the term port frequently in this chapter. A port is simply an "address" on a client
or server used to identify the process with which we are communicating. The combination
of IP address and port are enough to uniquely specify one end of a connection. Often port
numbers are arbitrary, even randomly generated; but there are certain well-known ports
that are universally agreed upon (such as port 80 for HTTP).

In our example, a single-threaded server handles requests in line. When the client makes
a request of us, we return a string with the time of day. Here's the server code.

require "socket"

PORT = 12321
HOST = ARGV[0] || 'localhost'

server = UDPSocket.open # Using UDP here...
server.bind(nil, PORT)

loop do
 text, sender = server.recvfrom(1)
 server.send(Time.new.to_s + "\n", 0, sender[3], sender[1])
end

And here is the client code:

require "socket"
require "timeout"

PORT = 12321

HOST = ARGV[0] || 'localhost'

socket = UDPSocket.new
socket.connect(HOST, PORT)

socket.send("", 0)
timeout(10) do
 time = socket.gets
 puts time
end

Note that the client makes its request simply by sending a null packet. The server has no
knowledge of the client until the client makes contact, after which the server knows the
client's identity (IP address). Because UDP is unreliable, we time out after a reasonable
length of time.

Here is a similar server implemented with TCP. It listens on port 12321 and can actually
be used by telnetting into that port (or by using the client code we show afterward).

require "socket"

Chapter 9. Network and Web Programming Page 4 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

PORT = 12321

server = TCPServer.new(PORT)

while (session = server.accept)
 session.puts Time.new
 session.close
end

Note the straightforward use of the TCPServer class. Here is the TCP version of the client
code:

require "socket"

PORT = 12321
HOST = ARGV[0] || "localhost"
session = TCPSocket.new(HOST, PORT)
time = session.gets
session.close
puts time

Implementing a Threaded Server
Some servers get heavy traffic. It can be efficient to handle each request in a separate
thread.

Here is a re-implementation of the time-of-day server in the previous example. It uses TCP
and threads all the client requests.

require "socket"

PORT = 12321

server = TCPServer.new(PORT)

while (session = server.accept)
 Thread.new(session) do |my_session|
 my_session.puts Time.new
 my_session.close
 end
end

Because it uses threads and spawns a new one with every client request, greater parallelism
is achieved. No join is done because the loop is essentially infinite, running until the
server is interrupted manually.

Chapter 9. Network and Web Programming Page 5 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note how the session variable is passed into the thread, which then refers to it by the
name my_session instead. For more information on this or other aspects of threading,
refer to Chapter 7, "Ruby Threads."

The client code is, of course, unchanged. From the point of view of the client, the server's
behavior is unchanged (except that it might appear more reliable).

Case Study: A Peer-to-Peer Chess Server

But helpless Pieces of the Game He plays

Upon this Chequer-board of Nights and Days;

Hither and thither moves, and checks, and slays,

And one by one back in the Closet lays.

—The Rubaiyat, Omar Khayyam (trans. Fitzgerald)

It isn't always the server that we're ultimately concerned about communicating with.
Sometimes the server is more of a directory service to put clients in touch with each other.
An example is a peer-to-peer file sharing service such as Napster; other examples are
various game servers or chat programs (including some sophisticated ones such as
NetMeeting).

Let's create a skeletal implementation of a chess server. Here we don't mean a server that
will play chess with a client, but simply one that will point clients to each other so that they
can then play without the server's involvement.

We'll warn you that for the sake of simplicity, the code really knows nothing about chess.
All the game logic is simulated (stubbed out) so that we can focus on the networking issues.

First of all, let's use TCP for the initial communication between each client and the server.
We could use UDP, but it isn't reliable; we would have to use timeouts as we saw in an
earlier example.

We'll let each client provide two pieces of information—his own name (like a username),
and the name of the desired opponent. We'll introduce a notation user:hostname to
fully identify the opponent; we'll use a colon instead of the more intuitive @ so that it won't
resemble an e-mail address, which it isn't.

When a client contacts the server, the server stores the client's information in a list. When
both clients have contacted the server, then a message is sent back to each of them; each
client is given enough information to contact his opponent.

Chapter 9. Network and Web Programming Page 6 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch07#ch07

Then there's the small issue of white and black. Somehow the roles have to be assigned in
such a way that both players agree on what color they are playing. For simplicity, we're
letting the server assign it. The first client contacting the server will get to play white (and
thus move first); the other player will play the black pieces.

Don't get confused here. Once the server has introduced them, the clients talk to each other,
so that effectively one of them is really a server by this point. This is a semantic distinction
that we won't bother with.

Because the clients will be talking to each other in alternation, and there is more than just
a single brief exchange, we'll use TCP for their communication. This means that the client
which is "really" a server will instantiate a TCPServer and the other will instantiate a
TCPSocket at the other end. We're assuming a mutually agreed-on port for peer-to-peer
communication as we did with the initial client-server handshaking. (The two ports are
different, of course.)

What we're really describing here is a simple application-level protocol. It could be made
more sophisticated, of course.

Let's look first at the server (see Listing 9.1). For the convenience of running it at a
command line, we start a thread that terminates the server when a carriage return is
pressed. The main server logic is threaded; we can handle multiple clients connecting at
once. For safety's sake, we use a mutex to protect access to the user data. In theory there
could be multiple threads trying to add users to the list at one time.

Chapter 9. Network and Web Programming Page 7 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.1. The Chess Server

require "thread"
 require "socket"

 ChessServer = "127.0.0.1" # Replace this IP address!
 ChessServerPort = 12000

 # Exit if user presses Enter at server end
 waiter = Thread.new do
 puts "Press Enter to exit the server."
 gets
 exit
 end

 $mutex = Mutex.new
 $list = { }

 Player = Struct.new("Player", :opponent, :address,
 :port, :ipname, :session,
 :short, :long, :id)

 def match?(p1, p2)
 $list[p1] and $list[p2] and
 $list[p1][0] == p2 and $list[p2][0] == p1
 end

 def handle_client(sess, msg, addr, port, ipname)
 $mutex.synchronize do
 cmd, p1short, p2long = msg.split
 if cmd != "login"
 puts "Protocol error: client msg was #{ msg} "
 return
 end

 p1long = p1short.dup + ":#{ addr} "
 p2short, host2 = p2long.split(":")
 host2 = ipname if host2 == nil
 p2long = p2short + ":" + IPSocket.getaddress(host2)
 p1 = Struct::Player.new(p2long, addr, port, ipname,
 sess, p1short, p1long)
 p2 = Struct::Player.new

 # Note: We get user:hostname on the command line,
 # but we store it in the form user:address

 $list[p1long] = p1

 if match?(p1long, p2long)
 # Note these names are "backwards" now: player 2
 # logged in first, if we got here.
 p1, p2 = $list[p1long], $list[p2long]
 # Player ID = name:ipname:color
 # Color: 0=white, 1=black
 p1.id = "#{ p1short} :#{ p1.ipname} :1"
 p2.id = "#{ p2short} :#{ p2.ipname} :0"
 sess1, sess2 = [p1.session, p2.session]
 sess1.puts "#{ p2.id} "
 sess1.close
 sess2.puts "#{ p1.id} "
 sess2.close
 end
 end
 end

 text = nil

 $server = TCPServer.new(ChessServer, ChessServerPort)

Chapter 9. Network and Web Programming Page 8 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 while session = $server.accept do
 Thread.new(session) do |sess|
 text = sess.gets
 puts "Received: #{ text} " # So we know server gets it
 domain, port, ipname, ipaddr = sess.peeraddr
 handle_client sess, text, ipaddr, port, ipname
 sleep 1
 end
 end

 waiter.join # Exit if user presses Enter (this is only
 # for convenience in running this example)

The handle_client method stores information for the client. If the corresponding client
is already stored, each client is sent a message with the whereabouts of the other client. As
we've defined this simple problem, the server's responsibility ends at this point.

The client code (see Listing 9.2) is naturally written so that there is only a single program;
the first invocation will become the TCP server, and the second will become the TCP client.
To be fair, we should point out that our choice to make the server white and the client black
is arbitrary. There's no particular reason we couldn't implement the application so that
the color issue was independent of such considerations.

Chapter 9. Network and Web Programming Page 9 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.2. The Chess Client

require "socket"
require "timeout"

ChessServer = '127.0.0.1' # Replace this IP address
ChessServerPort = 12000
PeerPort = 12001

WHITE, BLACK = 0, 1
Colors = %w[White Black]

def drawBoard(board)
 puts <<-EOF
+ — — — — — — — — — — — — — — — — — +
| Stub! Drawing the board here... |
+ — — — — — — — — — — — — — — — — — +
 EOF
end

def analyzeMove(who, move, num, board)
 # Stub - black always wins on 4th move
 if who == BLACK and num == 4
 move << " Checkmate!"
 end
 true # Stub again - always say it's legal.
end

def ended?(myColor, whoseMove,
 whiteName, blackName, move)
 opponent = (myColor==WHITE ? blackName : whiteName)
 case move
 when /resign/i # Player explicitly resigns
 if myColor == whoseMove
 puts "You've resigned. #{ opponent} wins."
 else
 puts "#{ opponent} resigns. You win!"
 end
 return true
 when /Checkmate/ # analyzeMove detects mate
 if myColor == whoseMove
 puts "You have checkmated #{ opponent} ."
 else
 puts "#{ opponent} has checkmated you."
 end
 return true
 end
 return false
end

def myMove(who, lastmove, num, board, sock)
 # lastmove not actually used in dummy example
 ok = false
 until ok do
 print "\nYour move: "
 move = STDIN.gets.chomp
 ok = analyzeMove(who, move, num, board)
 puts "Illegal move" if not ok
 end
 sock.puts move
 drawBoard(board)
 move
end

def otherMove(who, lastmove, num, board, sock)
 # lastmove not actually used in dummy example
 move = sock.gets.chomp
 puts "\nOpponent: #{ move} "

Chapter 9. Network and Web Programming Page 10 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 drawBoard(board)
 move
end

def setupWhite(opponent)
 puts "\nWaiting for a connection..."
 server = TCPServer.new(PeerPort)
 session = server.accept
 str = nil
 begin
 timeout(30) do
 str = session.gets.chomp
 if str != "ready"
 raise "Protocol error: ready-message was #{ str} "
 end
 end
 rescue TimeoutError
 raise "Did not get ready-message from opponent."
 end
 puts "Playing #{ opponent} ... you are white.\n"
 session # Return connection
end

def setupBlack(opponent, ipname)
 # Asymmetrical because we assume black is the client
 puts "\nConnecting..."
 socket = TCPSocket.new(ipname, PeerPort)
 socket.puts "ready"
 puts "Playing #{ opponent} ... you are black.\n"
 socket # Return connection
end

"Main"...

if ARGV.size != 2
 puts "Parameters required: myname opponent[:hostname]"
 exit
end

myself, opponentID = ARGV
opponent = opponentID.split(":")[0] # Remove hostname

Contact the chess server

print "Connecting to the chess server... "
STDOUT.flush

socket = TCPSocket.new(ChessServer, ChessServerPort)

socket.puts "login #{ myself} #{ opponentID} "
response = socket.gets.chomp

puts "got response.\n"

name, ipname, oppColor = response.split ":"
oppColor = oppColor.to_i
myColor = if oppColor == WHITE then BLACK else WHITE end

move = nil
board = nil # Not really used in this dummy example
num = 0
if myColor == WHITE # We're white
 who, opp = WHITE, BLACK
 session = setupWhite(opponent)
 drawBoard(board)
 loop do
 num += 1
 move = myMove(who, move, num, board, session)
 break if ended?(who, who, myself, opponent, move)
 move = otherMove(who, move, num, board, session)

Chapter 9. Network and Web Programming Page 11 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 break if ended?(who, opp, myself, opponent, move)
 end
else # We're black
 who, opp = BLACK, WHITE
 socket = setupBlack(opponent, ipname)
 drawBoard(board)
 loop do
 num += 1
 move = otherMove(who, move, num, board, socket)
 break if ended?(who, opp, opponent, myself, move)
 move = myMove(who, move, num, board, socket)
 break if ended?(who, who, opponent, myself, move)
 end
 socket.close
end

We've defined our little protocol so that the black client sends a "ready" message to the
white client to let it know it's prepared to begin the game. The white player then moves
first. The move is sent to the black client so that it can draw its own board in sync with the
other player's board.

As we said, there's no real knowledge of chess built into this application. There's a stub in
place to check the validity of each player's move; this check is done on the local side in each
case. But this is only a stub that always says that the move is legal. At the same time, it
does a bit of hocus-pocus; we want this simulated game to end after only a few moves, so
we fix the game so that black always wins on the fourth move. This win is indicated by
appending the string "Checkmate!" to the move; this prints on the opponent's screen
and also serves to terminate the loop.

A move, by the way, is simply a string. Two notations are in common use, but our code is
stubbed so heavily that it doesn't even know which one we're using.

The drawing of the board is also a stub. Those wanting to do so can easily design some bad
ASCII art to output here.

The myMove method always refers to the local side; likewise, otherMove refers to the
remote side.

We show some sample output in Listing 9.3. The client executions are displayed side by
side in this listing.

Chapter 9. Network and Web Programming Page 12 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.3. Sample Chess Client Execution

% ruby chess.rb Hal Capablanca: % ruby chess.rb Capablanca
deepthought.org Hal:deepdoodoo.org

Connecting... Connecting...
Playing Capablanca... you are white. Playing Hal... you are black.
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Your move: N-QB3 Opponent: N-QB3
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Opponent: P-K4 Your move: P-K4
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Your move: P-K4 Opponent: P-K4
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Opponent: B-QB4 Your move: B-QB4
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Your move: B-QB4 Opponent: B-QB4
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Opponent: Q-KR5 Your move: Q-KR5
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
Your move: N-KB3 Opponent: N-KB3
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Opponent: QxP Checkmate! Your move: QxP
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +
| Stub! Drawing the board here... | | Stub! Drawing the board here... |
+- - - - - - - - - - - - - - - - - + +- - - - - - - - - - - - - - - - - +

Capablanca has checkmated you. You have checkmated Hal!

This little example could serve as the beginning of a genuine application. We'd have to add
knowledge of chess, add security, improve reliability, add a graphical interface, and so on.
The possibilities are endless. If you do anything with this idea, let us know about it.

Network Clients
Sometimes the server is a well-known entity or is using a well-established protocol. In this
case, we need simply to design a client that will talk to this server in the way it expects.

Chapter 9. Network and Web Programming Page 13 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

This can be done with TCP or UDP, as you saw previously. However, it's common to use
other higher-level protocols such as HTTP or SNMP. We'll give just a few examples here.

Retrieving Truly Random Numbers from the Web

Anyone who attempts to generate random numbers by deterministic means is,
of course, living in a state of sin.

—John von Neumann

There is a rand function in Kernel to return a random number; but there is a fundamental
problem with it. It isn't really random. If you are a mathematician, cryptographer, or other
nitpicker, you will refer to this as a pseudorandom number generator, because it uses
algebraic methods to generate numbers in a deterministic fashion. These numbers "look"
random to the casual observer, and may even have the correct statistical properties; but
the sequences do repeat eventually, and we can even repeat a sequence purposely (or
accidentally) by using the same seed.

But processes in nature are considered to be truly random. That is why in state lotteries,
winners of millions of dollars are picked based on the chaotic motions of little white balls.
Other sources of randomness are radioactive emissions or atmospheric noise.

There are sources of random numbers on the Web. One of these is www.random.org, which
we use in this example.

The sample code in Listing 9.4 simulates the throwing of five ordinary (six-sided) dice. Of
course, gaming fans could extend it to ten-sided or twenty-sided, but the ASCII art would
get tedious.

Chapter 9. Network and Web Programming Page 14 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://www.random.org

Listing 9.4. Casting Dice at Random

HOST = "www.random.org"
RAND_URL = "/cgi-bin/randnum?col=5&"

def get_random_numbers(count=1, min=0, max=99)
 path = RAND_URL + "num=#{ count} &min=#{ min} &max=#{ max} "
 connection = Net::HTTP.new(HOST)
 response, data = connection.get(path)
 if response.code == "200"
 data.split.collect { |num| num.to_i }
 else
 []
 end
end

DICE_LINES = [
 "+— — -+ +— — -+ +— — -+ +— — -+ +— — -+ +— — -+ ",
 "| | | * | | * | | * * | | * * | | * * | ",
 "| * | | | | * | | | | * | | * * | ",
 "| | | * | | * | | * * | | * * | | * * | ",
 "+— — -+ +— — -+ +— — -+ +— — -+ +— — -+ +— — -+ "
]

DIE_WIDTH = DICE_LINES[0].length/6

def draw_dice(values)
 DICE_LINES.each do |line|
 for v in values
 print line[(v-1)*DIE_WIDTH, DIE_WIDTH]
 print " "
 end
 puts
 end
end

draw_dice(get_random_numbers(5, 1, 6))

Here we're using the Net::HTTP class to communicate directly with a Web server. Think
of it as a highly specialized, all-purpose Web browser. We form the URL and try to connect;
when we make a connection, we get a response and a piece of data. If the response indicates
that all is well, we can parse the data that we received. Exceptions are assumed to be
handled by the caller.

Here's a variation on the same basic idea. What if we really wanted to use these random
numbers in an application? Because the CGI at the server end asks us to specify how many
numbers we want returned, it's logical to buffer them. It's a fact of life that there is usually
a delay involved when accessing a remote site. We want to fill a buffer so that we are not
making frequent Web accesses and incurring delays.

We've decided to go ahead and get a little fancy here (see Listing 9.5). The buffer is filled
by a separate thread, and it is shared among all the instances of the class. The buffer size
and the "low water mark" (@slack) are both tunable; appropriate real-world values for
them would be dependent on the reachability (ping-time) of the server and on how often
the application requested a random number from the buffer.

Chapter 9. Network and Web Programming Page 15 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Though we haven't shown it here, it would probably be logical to make this a singleton (in
the sense of the singleton design pattern). That way, all the code could share a single pool
of random numbers and a single interface to the Web page. Refer to the singleton.rb
library.

Listing 9.5. A Buffered Random Number Generator

class TrueRandom

 require "net/http"
 require "thread"

 def initialize(min=0,max=1,buff=1000,slack=300)
 @site = "www.random.org"
 @min, @max = min, max
 @bufsize, @slack = buff, slack
 @buffer = Queue.new
 @url = "/cgi-bin/randnum?num=nnn&min=#@min&max=#@max&col=1"
 @thread = Thread.new { fillbuffer }
 end

 def fillbuffer
 h = Net::HTTP.new(@site, 80)
 true_url = @url.sub(/nnn/,"#{ @bufsize-@slack} ")
 resp, data = h.get(true_url, nil)
 data.split.each { |x| @buffer.enq x }
 end
 def rand
 if @buffer.size < @slack
 if ! @thread.alive?
 @thread = Thread.new { fillbuffer }
 end
 end
 num = nil
 num = @buffer.deq until num!=nil
 num.to_i
 end

 end

 t = TrueRandom.new(1,6,1000,300)

 count = { 1=>0, 2=>0, 3=>0, 4=>0, 5=>0, 6=>0}

 10000.times do |n|
 x = t.rand
 count[x] += 1
 end

 p count

 # In one run:
 # { 4=>1692, 5=>1677, 1=>1678, 6=>1635, 2=>1626, 3=>1692}

Contacting an Official Timeserver
As we promised, here's a bit of code to contact an NTP (Network Time Protocol) server on
the Net. We do this by means of a telnet client. This example is adapted from the one in
Programming Ruby (Dave Thomas and Andy Hunt, Addison-Wesley, 2000).

Chapter 9. Network and Web Programming Page 16 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

require "net/telnet"
timeserver = "www.fakedomain.org"

tn = Net::Telnet.new("Host" => timeserver,
 "Port" => "time",
 "Timeout" => 60,
 "Telnetmode" => false)
local = Time.now.strftime("%H:%M:%S")
msg = tn.recv(4).unpack('N')[0]
Convert to epoch
remote = Time.at(msg - 2208988800).strftime("%H:%M:%S")

puts "Local : #{ local} "
puts "Remote: #{ remote} "

When we call Telnet.new, we pass in a set of options as a hash. Note that the port is
given here as a string; most or all of the well-known ports can be specified by name rather
than number in this way (not just in the context of Telnet, but in other classes as well).
Note also that we set the Telnetmode flag to false because we are using a telnet client to
talk with a non-telnet server.

We establish a connection and grab four bytes. These represent a 32-bit quantity in
network byte order (big endian); we convert this number to something we can digest and
then convert from the epoch to a Time object.

Note that we didn't use a real timeserver name. This is because the usefulness of such a
server frequently is dependent on your geographic location. Furthermore, many of these
have access restrictions, and may require permission, or at least notification, before they
are used. A Web search should turn up an open-access NTP server less than a thousand
miles from you.

Interacting with a POP Server
The Post Office Protocol (POP) is very commonly used by mail servers. Ruby's POP3 class
enables you to examine the headers and bodies of all messages waiting on a server and
process them as you see fit. After processing, you can easily delete one or all of them.

The Net::POP3 class must be instantiated with the name or IP address of the server; the
port number defaults to 110. No connection is established until the method start is
invoked (with the appropriate user name and password).

Invoking the method mails on this object will return an array of objects of class
POPMail. (There is also an iterator each that will run through these one at a time.)

Chapter 9. Network and Web Programming Page 17 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

A POPMail object corresponds to a single e-mail message. The header method will
retrieve the message's headers; the method all will retrieve the header and the body.
(There are also other usages of all as we'll see shortly.)

A code fragment is worth a thousand words. Here's a little example that will log on to the
server and print the subject line for each e-mail.

require "net/pop"
pop = Net::POP3.new("pop.fakedomain.org")
pop.start("gandalf", "mellon") # user, password
pop.mails.each do |msg|
 puts msg.header.grep /^Subject: /
end

The delete method will delete a message from the server. (Some servers require that
finish be called, to close the POP connection, before such an operation becomes final.)
Here is the world's most trivial spam filter.

require "net/pop"

pop = Net::POP3.new("pop.fakedomain.org")
pop.start("gandalf", "mellon") # user, password
pop.mails.each do |msg|
 if msg.all =~ /make money fast/i
 msg.delete
 end
end
pop.finish

We'll mention that start can be called with a block. By analogy with File.open, it opens
the connection, executes the block, and closes the connection.

The all method can also be called with a block. This will simply iterate over the lines in
the e-mail message; it is equivalent to calling each on the string resulting from all.

Print each line backwards... how useful!
msg.all { |line| print line.reverse }
Same thing...
msg.all.each { |line| print line.reverse }

We can also pass an object into the all method. In this case, it will call the append operator
(<<) repeatedly for each line in the string. Because this operator is defined differently for
different objects, the behavior may be radically different, as shown here:

arr = [] # Empty array
str = "Mail: " # String

Chapter 9. Network and Web Programming Page 18 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

out = $stdout # IO object

msg.all(arr) # Build an array of lines
msg.all(str) # Concatenate onto str
msg.all(out) # Write to standard output

Finally, we'll give you a way to return only the body of the message, ignoring all headers.

module Net

 class POPMail

 def body
 # Skip header bytes
 self.all[self.header.size..-1]
 end

 end

end

This method doesn't have all the properties that all has; for example, it does not take a
block. It can easily be extended, however.

The IMAP protocol is somewhat less common than POP3. But for those who need it, there
is an imap.rb library for that purpose.

Sending Mail with SMTP

A child of five could understand this. Fetch me a child of five.

—Groucho Marx

The Simple Mail Transfer Protocol (SMTP) might seem like a misnomer. If it is "simple,"
it is only by comparison with more complex protocols.

Of course, the smtp.rb library shields the programmer from most of the details of the
protocol. However, we have found that the design of this library is not entirely intuitive
and perhaps overly complex (and we hope it will change in the future). In this section, we'll
present a few examples to you in easy-to-digested pieces.

The Net::SMTP class has two class methods, new and start. The new method takes two
parameters—the name of the server (defaulting to localhost) and the port number
(defaulting to the well-known port 25).

The start method takes these parameters:

Chapter 9. Network and Web Programming Page 19 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

• server is the IP name of the SMTP server (defaulting to "localhost").
• port is the port number, defaulting to 25.
• domain is the domain of the mail sender (defaulting to ENV["HOSTNAME"]).
• account is the username (default is nil).
• password is the user password, defaulting to nil.
• authtype is the authorization type, defaulting to :cram_md5.

Many or most of these parameters can be omitted under normal circumstances.

If start is called normally (without a block), it returns an object of class SMTP. If it is
called with a block, that object is passed into the block as a convenience.

An SMTP object has an instance method called sendmail that will typically be used to do
the work of mailing a message. It takes three parameters:

• source is a string or array (or anything with an each iterator returning one string at
a time).

• sender is a string that will appear in the From field of the e-mail.
• recipients is a string or an array of strings representing the addressee(s).

Here is an example of using the class methods to send an e-mail:

require 'net/smtp'

msg = <<EOF
Subject: Many things
"The time has come," the Walrus said,
"To talk of many things —
Of shoes, and ships, and sealing wax,
Of cabbages and kings;
And why the sea is boiling hot,
And whether pigs have wings."
EOF

Net::SMTP.start("smtp-server.fake.com") do |smtp|
 smtp.sendmail(msg, 'walrus@fake1.com', 'alice@fake2.com')
end

Because the string Subject: was specified at the beginning of the string, Many things will
appear as the subject line when the message is received.

There is also an instance method named start that behaves much the same as the class
method. Because new specifies the server, start doesn't have to specify it. This parameter
is omitted, and the other parameters are the same as for the class method. This gives us a
similar example using an SMTP object:

Chapter 9. Network and Web Programming Page 20 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

require 'net/smtp'
msg = <<EOF
Subject: Logic
"Contrariwise," continued Tweedledee,
"if it was so, it might be, and if it
were so, it would be; but as it isn't,
it ain't. That's logic."
EOF

smtp = Net::SMTP.new("smtp-server.fake.com")
smtp.start
smtp.sendmail(msg, 'tweedledee@fake1.com', 'alice@fake2.com')

In case you are not confused yet, the instance method can also take a block:

require 'net/smtp'

msg = <<EOF
Subject: Moby-Dick
Call me Ishmael.
EOF

addressees = ['reader1@fake2.com', 'reader2@fake3.com']

smtp = Net::SMTP.new("smtp-server.fake.com")
smtp.start do |obj|
 obj.sendmail msg, 'narrator@fake1.com', addressees
end

As the example shows, the object passed into the block (obj) certainly need not be named
the same as the receiver (smtp). We also take this opportunity to emphasize that the
recipient can be an array of strings.

There is also an oddly-named instance method called ready. This is much the same as
sendmail, with some crucial differences. Only the sender and recipients are specified;
the body of the message is constructed using an adapter—an object of class
Net::NetPrivate::WriteAdapter that has a write method as well as an append
method. This adapter is passed into the block and can be written to in an arbitrary way:

require "net/smtp"

smtp = Net::SMTP.new("smtp-server.fake1.com")

smtp.start
smtp.ready("t.s.eliot@fake1.com", "reader@fake2.com") do |obj|
 obj.write "Let us go then, you and I,\r\n"
 obj.write "When the evening is spread out against the sky\r\n"
 obj.write "Like a patient etherised upon a table...\r\n"
end

Chapter 9. Network and Web Programming Page 21 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Note here that the carriage-return linefeed pairs are necessary (if we actually want line
breaks in the message). Those who are familiar with the actual details of the protocol
should note that the message is "finalized" (with "dot" and "QUIT") without any action on
our part.

We can append instead of calling write if we prefer:

smtp.ready("t.s.eliot@fake1.com", "reader@fake2.com") do |obj|
 obj << "In the room the women come and go\r\n"
 obj << "Talking of Michelangelo.\r\n"
end

Finally, we offer a minor improvement by adding a puts method that will tack on the
newline for us:

module Net
 module NetPrivate
 class WriteAdapter
 def puts(args)
 self.write(*(args+["\r\n"]))
 end
 end
 end
end

This new method enables us to write this way:

smtp.ready("t.s.eliot@fake1.com", "reader@fake2.com") do |obj|
 obj.puts "We have lingered in the chambers of the sea"
 obj.puts "By sea-girls wreathed with seaweed red and brown"
 obj.puts "Till human voices wake us, and we drown."
end

If your needs are more specific than what we've detailed here, we suggest you do your own
experimentation; different environments may differ in their handling of authentication
and such things. And if you decide to write a new interface for SMTP, feel free to do so.

Retrieving a Web Page from a Specified URL
Here's a simple code fragment. Let's suppose that, for whatever reason, we want to retrieve
an HTML document from where it lives on the Web. Maybe our intent is to do a checksum
and find out whether it has changed so that our software can inform us of this
automatically. Maybe our intent is to write our own Web browser; this would be the
proverbial first step on a journey of a thousand miles.

require "net/http"

Chapter 9. Network and Web Programming Page 22 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

begin
 h = Net::HTTP.new("www.ruby-lang.org", 80)
 resp, data = h.get("/en/index.html", nil)
rescue => err
 puts "Error: #{ err} "
 exit
end

puts "Retrieved #{ data.split.size} lines, #{ data.size} bytes"
Process as desired...

We begin by instantiating an HTTP object with the appropriate domain name and port.
(The port, of course, is usually 80.) We then do a get operation, which returns an HTTP
response and a string full of data. Here we don't actually test the response, but if there is
any kind of error, we'll catch it and exit.

If we skip the rescue clause as we normally would, we can expect to have an entire Web
page stored in the data string. We can then process it however we want.

What could go wrong here—what kind of errors do we catch? Actually, there are several.
The domain name could be nonexistent or unreachable; there could be a redirect to another
page (which we don't handle here); or we might get the dreaded 404 error (meaning that
the document was not found). We'll leave this kind of error handling to you.

Case Study: A Mail-News Gateway
Online communities keep in touch with each other in many ways. Two of the most
traditional ways are mailing lists and newsgroups.

Not everyone wants to be on a mailing list that might generate dozens of messages per day;
some would rather read a newsgroup and pick through the information at random
intervals. On the other hand, some people are impatient with Usenet and want to get the
messages before the electrons have time to cool off.

So we get situations in which a fairly small, fairly private mailing list deals with the same
subject matter as an unmoderated newsgroup open to the whole world. Eventually
someone gets the idea for a mirror—a gateway between the two.

Such a gateway isn't appropriate in every situation, but in the case of the Ruby mailing list,
it was and is. The newsgroup messages needed to be copied to the list, and the list e-mails
needed to be posted on the newsgroup.

This need was addressed by Dave Thomas (in Ruby, of course), and we present the code
here with his kind permission.

Chapter 9. Network and Web Programming Page 23 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

But let's look at a little background first. We've taken a quick look at how e-mail is sent
and received; but how do we deal with Usenet? As it turns out, we can access the
newsgroups via a protocol called NNTP (Network News Transfer Protocol). This,
incidentally, was the work of Larry Wall, who later on gave us Perl.

Ruby doesn't have a "standard" library to handle NNTP. However, a Japanese developer
(known to us only as greentea) has written a very nice library for this purpose.

The nntp.rb library defines a module NNTP containing a class called NNTPIO; it has the
instance methods connect, get_head, get_body, and post (among others). To
retrieve messages, you connect to the server and call get_head and get_body repeatedly.
(We're over-simplifying this.) Likewise, to post a message, you basically construct the
headers, connect to the server, and call the post method.

These programs use the smtp library that we've looked at previously. The original code
also does some logging in order to track progress and record errors; we've removed this
logging for greater simplicity.

The file params.rb is used by both programs. This file contains the parameters that drive
the whole mirroring process—the names of the servers, account names, and so on. Here
is a sample file that you will need to reconfigure for your own purposes. (The following
domain names, which all contain the word fake, are obviously intended to be fictitious.)

These are various parameters used by the mail-news gateway

module Params
 NEWS_SERVER = "usenet.fake1.org" # name of the news server
 NEWSGROUP = "comp.lang.ruby" # mirrored newsgroup
 LOOP_FLAG = "X-rubymirror: yes" # line added to avoid loops
 LAST_NEWS_FILE = "/tmp/m2n/last_news" # Records last msg num read
 SMTP_SERVER = "localhost" # host for outgoing mail

 MAIL_SENDER = "myself@fake2.org" # Name used to send mail
 # (On a subscription-based list, this
 # name must be a list member.)

 MAILING_LIST = "list@fake3.org" # Mailing list address
end

The module Params merely contains constants that are accessed by the two programs.
Most are self-explanatory; we'll only point out a couple of items here. First, the
LAST_NEWS_FILE constant identifies a file where the most recent newsgroup message ID
is stored; this is "state information" so that work is not duplicated or lost.

Perhaps even more important, the LOOP_FLAG constant defines a string that marks a
message as having already passed through the gateway. This avoids an infinite regress and

Chapter 9. Network and Web Programming Page 24 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

prevents the programmer from being mobbed by hordes of angry netizens who have
received thousands of copies of the same message.

You might be wondering: How do we actually get the mail into the mail2news program?
After all, it appears to read standard input. The author recommends a setup like this: The
sendmail program's .forward file first forwards all incoming mail to procmail.
The .procmail file is set up to scan for messages from the mailing list and pipe them into
the mail2news program. For the exact details of this, see the documentation associated
with RubyMirror (found in the Ruby Application Archive). Of course, if you are on a non-
Unix system, you will likely have to come up with your own scheme for handling this
situation.

With this overview, the rest of the code is easy to understand. Refer to Listings 9.6 and
9.7.

Chapter 9. Network and Web Programming Page 25 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.6. Mail-to-News

mail2news: Take a mail message and post it
as a news article

require "nntp"
include NNTP

require "params"

Read in the message, splitting it into a
heading and a body. Only allow certain
headers through in the heading

HEADERS = %w{ From Subject References Message-ID
 Content-Type Content-Transfer-Encoding Date}

allowed_headers = Regexp.new(%{ ^(#{ HEADERS.join("|")}):} ,
 Regexp::IGNORECASE)

Read in the header. Only allow certain
ones. Add a newsgroups line and an
X-rubymirror line.
head = "Newsgroups: #{ Params::NEWSGROUP} \n"
subject = "unknown"

valid_header = false
msg_id = "unknown"

while line = gets
 exit if line =~ /^#{ Params::LOOP_FLAG} /o # shouldn't happen
 break if line =~ /^\s*$/

 # allow continuation lines only after valid headers
 if line =~ /^\s/
 head << line if valid_header
 next
 end

 msg_id = $1 if line =~ /Message-Id:\s+(.*)/i

 valid_header = (line =~ allowed_headers)
 next unless valid_header

 if line =~ /^Subject:\s*(.*)/
 # The following strips off the special ruby-talk number
 # from the front of mailing list messages before
 # forwarding them on to the news server.

 line.sub!(/\[ruby-talk:(\d+)\]\s*/, '')
 head << "X-ruby-talk: #$1\n"
 end
 head << line
end

head << "X-ruby-talk: #{ msg_id} \n"

head << "#{ Params::LOOP_FLAG} \n"

body = ""
while line = gets
 body << line
end

msg = head + "\n" + body
msg.gsub!(/\r?\n/, "\r\n")
nntp = NNTPIO.new(Params::NEWS_SERVER)

Chapter 9. Network and Web Programming Page 26 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

raise "Failed to connect" unless nntp.connect
nntp.post(msg)

Chapter 9. Network and Web Programming Page 27 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.7. News-to-Mail

##
Simple script to help mirror the comp.lang.ruby
traffic on to the ruby-talk mailing list.
#
We are called periodically (say once every 20 minutes).
We look on the news server for any articles that have a
higher message ID than the last message we'd sent
previously. If we find any, we read those articles,
send them on to the mailing list, and record the
new hightest message id.

require 'nntp'
require 'net/smtp'
require 'params'

include NNTP

##
Send mail to the mailing-list. The mail must be
from a list participant, although the From: line
can contain any valid address
#

def send_mail(head, body)
 smtp = Net::SMTP.new
 smtp.start(Params::SMTP_SERVER)
 smtp.ready(Params::MAIL_SENDER, Params::MAILING_LIST) do |a|
 a.write head
 a.write "#{ Params::LOOP_FLAG} \r\n"
 a.write "\r\n"
 a.write body
 end
end

##
We store the mssage ID of the last news we received.
begin
 last_news = File.open(Params::LAST_NEWS_FILE) { |f| f.read} .to_i
rescue
 last_news = nil
end

##
Connect to the news server, and get the current
message numbers for the comp.lang.ruby group
#
nntp = NNTPIO.new(Params::NEWS_SERVER)
raise "Failed to connect" unless nntp.connect
count, first, last = nntp.set_group(Params::NEWSGROUP)

##
If we didn't previously have a number for the highest
message number, we do now

if not last_news
 last_news = last
end

##
Go to the last one read last time, and then try to get more.
This may raise an exception if the number is for a
nonexistent article, but we don't care.

begin
 nntp.set_stat(last_news)
rescue

Chapter 9. Network and Web Programming Page 28 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

end

##
Finally read articles until there aren't any more,
sending each to the mailing list.

new_last = last_news

begin
 loop do
 nntp.set_next
 head = ""
 body = ""
 new_last, = nntp.get_head do |line|
 head << line
 end

 # Don't sent on articles that the mail2news program has
 # previously forwarded to the newsgroup (or we'd loop)
 next if head =~ %r{ ^X-rubymirror:}

 nntp.get_body do |line|
 body << line
 end

 send_mail(head, body)
 end
rescue
end

##
And record the new high water mark

File.open(Params::LAST_NEWS_FILE, "w") do |f|
 f.puts new_last
end unless new_last == last_news

Ruby and the Web Server

Oh, what a tangled web we weave…!

—Sir Walter Scott

Various tools and libraries are available for the Ruby Web developer; standalone Web
servers, tools that process and/or generate HTML and XML, and server add-ons and CGI
libraries. Most of these are written in pure Ruby, although some have been written as
extensions, usually for the sake of speed.

We can't cover everything here. However, we will present a good overview of Ruby and
Web development.

Self-Contained Web Servers
Some developers in the Ruby community have implemented Web servers in Ruby. Of
course, a fair question would be: Why would we be concerned with writing a new Web
server? Aren't there plenty of good ones in existence, such as Apache?

Chapter 9. Network and Web Programming Page 29 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are several situations in which you might actually want your own proprietary Web
server. The first is to handle Web pages in a specialized way, such as sacrificing
functionality for speed.

Second, you might also want to experiment with the behavior of the server and its
interaction with external code such as CGIs. You might want to play with your own ideas
for creating an application server or a server-side development environment. We all know
that Ruby is a fun language for software experimentation.

Third, you might want to embed a Web server inside another application. This possibility
is sometimes exploited by developers who want to expose the functionality of a software
system to the outside world; the HTTP protocol is well-defined and simple, and Web
browsers that serve as clients are everywhere. This trick can even be used as a remote
debugging tool, assuming that the system updates its internal state frequently and makes
it available to the embedded server.

With these ideas in mind, let's look at what is available in the Ruby arena as far as Web
servers are concerned. The Ruby Application Archive has at least four such entries.

The first is httpd by Michel van de Ven. This is a basic server that supports CGI; it is a
good introduction to the functionality of a Web server. It is also an illustration of the power
of Ruby because the entire piece of code is barely 250 lines. The license is GPL, so you can
not only learn from the code, but you can actually re-use it, subject to certain restrictions.

Another server is Michael Neumann's httpserv. This is a multi-threaded server that can
handle CGI and is known to work under both Unix and Windows. This server also
integrates with the IOWA package (see the RAA), and includes a slightly modified
iowa.cgi file.

Another interesting piece of code is wwwd, by Kengo Nakajima. This is billed by the author
as "the fastest Web server in the world." It takes an interesting approach to achieve this
speed. First, all the files are stored in memory, making disk accesses unnecessary. Second,
because the overhead of threading and forking would become significant, it doesn't do any
forking or use threads. A downside is that it doesn't support CGI (although you can get a
similar effect by using Ruby scripts). Overall, it is designed for Web sites that are very small
but heavily accessed.

There is also wwwsrv by Yoshinori Toki. This is a new package at the time of this writing,
and has no English documentation. But it does already have usable CGI and SSI features,
and it looks promising in general.

Chapter 9. Network and Web Programming Page 30 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using Embedded Ruby
First of all, let's dispel any confusion over terminology. We're not talking about embedding
a Ruby interpreter in an electronic device like a TV or a toaster. We're talking about
embedding Ruby code inside text.

Second of all, we'll note that there is more than one scheme for embedding Ruby code in
text files. Here we only discuss the most common tool, which is eruby (created by Shugo
Maeda).

Why do we mention such a tool in connection with the Web? Obviously, it's because the
most common form of text in which we'll embed Ruby code is HTML (or XML).

Having said that, it's conceivable that there might be other uses for eruby. Perhaps it could
be used in an old-fashioned text-based adventure game; or in some kind of mail-merge
utility; or as part of a cron job to create a customized message-of-the-day file (/etc/
motd) every night at midnight. Don't let your creativity be constrained by our lack of
imagination. Feel free to dig up new and interesting uses for eruby, and share them with
the rest of us. Most of the examples we give here are very generic (and thus are very
contrived); they don't have much to do with HTML specifically.

The eruby utility is simply a filter or preprocessor. A special notation is used to delimit
Ruby code, expressions, and comments; all other text is simply passed through "as is."

The symbols are used to mark the pieces of text that will be treated specially. There are
three forms of this notation, varying in the first character inside the "tag."

If it is an equal sign (=), the tag is treated as a Ruby expression that is evaluated; the
resulting value is inserted at the current location in the text file. Here is a sample text file:

This is <%= "ylno".reverse %> a test.
Do <%= "NOT".downcase %> be alarmed.

Assuming that the file for this example is called myfile.txt, we can filter it in this way:

eruby myfile.txt

The output, by default written to standard output, will look like this:

This is only a test.
Do not be alarmed.

Chapter 9. Network and Web Programming Page 31 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We can also use the character # to indicate a comment:

Life <%# so we've heard %> is but a dream.

As you'd expect, the comment is ignored. The preceding line will produce this line of
output:

Life is but a dream.

Any other character following the percent sign will be taken as the first character of a piece
of Ruby code, and its output (not its evaluated value) will be placed into the text stream.
For readability, we recommend using a blank space here, though eruby does not demand
it.

In this example, the tag in the first line of text does not insert any text (because it doesn't
produce any output). The second line works as expected.

The answer is <% "42" %>.
Or rather, the answer is <% puts "42" %>.

So the output would be:

The answer is .
Or rather, the answer is 42.

The effect of the Ruby code is cumulative. For example, a variable defined in one tag can
be used in a subsequent tag.

<% x=3; y=4; z=5 %>
Given a triangle of sides <%=x%>, <%=y%>, and <%=z%>,
we know it is a right triangle because
<%= x*x %> + <%= y*y %> = <%= z*z %>.

The spaces we used inside the tags in the last line are not necessary, but they do increase
readability. The output will be

Given a triangle of sides 3, 4, and 5,
we know it is a right triangle because
9 + 16 = 25.

Chapter 9. Network and Web Programming Page 32 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Try putting a syntax error inside a tag. You'll find that eruby has very verbose reporting;
it actually prints out the generated Ruby code and tells us as precisely as it can where the
error is.

What if we want to include one of the "magic" strings as a literal part of our text? You might
be tempted to try a backslash to escape the characters, but this won't work. We recommend
a technique like the following:

There is a less-than-percent <%="<%"%> on this line
and a percent-greater-than <%="%"+">"%> on this one.
Here we see <%="<%="%> and <%="<%#"%> as well.

The output then will be

There is a less-than-percent <% on this line
and a percent-greater-than %> on this one.
Here we see <%= and <%# as well.

Note that it's a little easier to embed an opening symbol than a closing one. This is because
they can't be nested, and eruby is not smart enough to ignore a closing symbol inside a
string.

Of course, eruby does have certain features that are tailored to HTML. The flag -M can
be used to specify a mode of operation; the valid modes are f, c, and n, respectively.

The f mode (filter) is the default, which is why all our previous examples worked without
the -Mf on the command line. The -Mc option means CGI mode; it prints all errors as
HTML. The -Mn option means NPH-CGI mode ("no-parse-headers"); it outputs extra
HTML headers automatically. Both CGI and NPH-CGI modes set $SAFE to be 1 for
security reasons (assuming that the application is a CGI and thus may be invoked by a
hostile user). The -n flag (or the equivalent —noheader) will suppress CGI header output.

It's possible to set up the Apache Web server to recognize embedded Ruby pages. You do
this by associating the type application/x-httpd-eruby with some extension
(.rhtml being a logical choice) and defining an action that associates this type with the
eruby executable. For more information, consult the Apache documentation.

Using mod_ruby
Typically when a CGI script is written in an interpreted language, an instance of the
interpreter is launched with every invocation of the CGI. This can be expensive in terms
of server utilization and execution time.

Chapter 9. Network and Web Programming Page 33 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The Apache server solves this problem by allowing loadable modules that in effect attach
themselves to the server and become part of it. Such a module is loaded dynamically as
needed, and is shared by all the scripts that depend on it.

The mod_ruby package (available from the Ruby Application Archive) is such a module.
Support for Apache 2.0 is not yet available, but it is in the works.

The mod_ruby package implements several Apache directives. At the present time, these
are as follows:

• RubyRequire— Specifies one or more libraries needed.
• RubyHandler— Specifies a handler for ruby-object.
• RubyPassEnv— Specifies names of environment variables to pass to scripts.
• RubySetEnv— Sets environment variables.
• RubyTimeOut— Specifies a timeout value for Ruby scripts.
• RubySafeLevel— Sets the $SAFE level.
• RubyKanjiCode— Sets the Ruby character encoding.

The software also provides Ruby classes and modules for interacting with Apache. The
Apache module (using module here in the Ruby sense) has a few module functions as
server_version and unescape_url; it also contains the Request and Table classes.

Apache::Request is a wrapper for the request_rec data type, defining methods such
as request_method, content_type, readlines, and more. The Apache::Table
class is a wrapper for the table data type, defining methods such as get, add, and
each.

Extensive instructions are available for compiling and installing the mod_ruby package.
Refer to its accompanying documentation (or the equivalent information on the Web).

We'll also mention that there is an alternative, FastCGI, that is not tied so closely to the
Web server. Refer to the section "Using FastCGI" for a discussion of the pros and cons.

Ruby and CGI Programming
Anyone familiar with Web programming has at least heard of CGI (Common Gateway
Interface). CGI was created in the early days of the Web to enable programmatically
implemented sites and to allow for more interaction between the end user and the Web
server. Although countless replacement technologies have been introduced since its
inception, CGI is still alive and well in the world of Web programming. Much of CGI's
success and longevity can be attributed to its simplicity. Because of this simplicity, it is
quite easy to implement CGI programs in any language. The CGI standard specifies how

Chapter 9. Network and Web Programming Page 34 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

a Web server process will pass data between itself and its children. Most of this interaction
occurs through standard environment variables and streams in the implementation
operating system.

CGI programming, and HTTP for that matter, are based around a "stateless" request and
response mechanism. Generally, a single TCP connection is made, and the client (usually
a Web browser) initiates conversation with a single HTTP command. The two most
commonly used commands in the protocol are GET and POST. (We'll get to the meaning
of these shortly.) After issuing the command, the Web server responds and closes its output
stream.

The following code sample, only slightly more advanced than the standard "Hello world,"
shows how to do input and output via CGI.

def parse_query_string
 inputs = Hash.new
 raw = ENV['QUERY_STRING']
 raw.split("&").each do |pair|
 name,value = pair.split("=")
 inputs[name] = value
 end
 inputs
end

inputs = parse_query_string
print "Content-type: text/html\r\n\r\n"
print "<HTML><BODY>"
print "<I>Hello</I>, #{ inputs['name']} !"
print "</BODY></HTML>"

Accessing the URL (for example) http://mywebserver/cgi-bin/hello.cgi?name=Dali
would produce the output "Hello, Dali!" in your Web browser.

As we previously mentioned, there are two main ways to access a URL: the HTTP GET and
POST methods. For the sake of brevity, we offer extremely simple explanations of these
methods, rather than rigorous definitions. The GET method is usually called when clicking
a link or directly referencing a URL (as in the preceding example). Any parameters are
passed via the URL query string, which is made accessible to CGI programs via the
QUERY_STRING environment variable. The POST method is usually used in HTML form
processing. The parameters sent in a POST are included in the message body, and are not
visible via the URL. They are delivered to CGI programs via the standard input stream.

Though the previous example was very simple, anything less trivial could quickly become
messy. Programs needing to deal with multiple HTTP methods, file uploads, cookies,
"stateful" sessions, and other complexities are best suited by a general purpose library for

Chapter 9. Network and Web Programming Page 35 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://mywebserver/cgi-bin/hello.cgi?name=dali

working with the CGI environment. Thankfully, Ruby provides a full-featured set of classes
that automate much of the mundane work one would otherwise have to do manually.

We should mention that recently there has been much discussion of a "next generation"
CGI library for Ruby—one with enhanced capabilities, a better interface, and separation
of real CGI issues from mere HTML generation. We hope that great things come from this;
but as we go to press, it is sheer vaporware. We can only document what already exists;
and though it might be imperfect, it certainly is stable and usable.

Overview: Using the CGI Library
The CGI library is in the file cgi.rb in the standard Ruby distribution. Most of its
functionality is implemented around a central class, aptly named CGI. One of the first
things you'll want to do when using the library, then, is to create an instance of CGI.

require "cgi"
cgi = CGI.new("html4")

The initializer for the CGI class takes a single parameter, which specifies the level of HTML
that should be supported by the HTML generation methods in the CGI package. These
methods keep the programmer from having to embed a truckload of escaped HTML into
otherwise pristine Ruby code:

cgi.out do
 cgi.html do
 cgi.body do
 cgi.h1 { "Hello Again, " } +
 cgi.b { cgi['name']}
 end
 end
end

Here, we've used the CGI libraries to almost exactly reproduce the functionality of the
previous program. As you can see, the CGI class takes care of parsing any input, and stores
the resulting values internally as a hash-like structure. So if you specified the URL as
some_program.cgi?age=4, the value could be accessed via cgi['age'].

Note in the previous code fragment that it's really only the return value of a block that is
used; the HTML is built up gradually and stored, rather than being output immediately.
This means that the string concatenation we see here is absolutely necessary; without it,
only the last string evaluated would appear.

The CGI class also provides some convenience mechanisms for dealing with URL-encoded
strings and escaped HTML or XML. URL encoding is the process of translating strings

Chapter 9. Network and Web Programming Page 36 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

with unsafe characters to a format that is representable in a URL string. The result is all
those weird-looking % strings you see in some URLs while you browse the Web. These
strings are actually the numeric ASCII codes represented in hexadecimal with %
prepended.

require "cgi"
s = "This| is^(aT$test"
s2 = CGI.escape(s) # "This%7C+is%5E%28aT%24test"
puts CGI.unescape(s2) # Prints "This| is^(aT$test"

Similarly, the CGI class can be used to escape HTML or XML text that should be displayed
verbatim in a browser. For example, the string <some_stuff> would not display properly
in a browser. If there is a need to display HTML or XML literally in a browser—in an HTML
tutorial, for example—the CGI class offers support for translating special characters to
their appropriate entities:

require "cgi"
some_text = "This is how you make text bold"
translated = CGI.escapeHTML(some_text)
"This is how you make text bold"
puts CGI.unescapeHTML(translated)
Prints "This is how you make text bold"

Displaying and Processing Forms
The most common way of interacting with CGI programs is through HTML forms. HTML
forms are created by using specific tags that will be translated to input widgets in a browser.
A full discussion or reference is beyond the scope of this text, but there are numerous
references available, both in books and on the Web.

The CGI class offers generation methods for all the HTML form elements. The following
example shows how to both display and process an HTML form:

require "cgi"

def reverse_ramblings(ramblings)
 if ramblings[0] == nil then return "" end
 chunks = ramblings[0].split(/\s+/)
 chunks.reverse.join(" ")
end

cgi = CGI.new("html4")
cgi.out do
 cgi.html do
 cgi.body do
 cgi.h1 { "sdrawkcaB txeT" } +
 cgi.b { reverse_ramblings(cgi['ramblings'])} +
 cgi.form("action" => "/cgi-bin/rb/form.cgi") do

Chapter 9. Network and Web Programming Page 37 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 cgi.textarea("ramblings") { cgi['ramblings'] } + cgi.submit
 end
 end
 end
end

This example displays a text area, the contents of which will be tokenized into words and
reversed. For example, typing This is a test into the text area would yield test a
is This after processing. The form method of the CGI class can accept a method
parameter, which will set the HTTP method (GET, POST, and so on) to be used on form
submittal. The default, used in this example, is POST.

This example contains only a small sample of the form elements available in an HTML
page. For a complete list, go to any HTML reference.

Working with Cookies
HTTP is, as mentioned previously, a stateless protocol. This means that after a browser
finishes a request to a Web site, the Web server has no way to distinguish its next request
from any other arbitrary browser on the Web. This is where HTTP cookies come into the
picture. Cookies offer a way, albeit somewhat crude, to maintain state between requests
from the same browser.

The cookie mechanism works by way of the Web server issuing a command to the browser,
via an HTTP response header, asking the browser to store a name/value pair. The data can
be stored either in memory or on disk. For every successive request to the cookie's specified
domain, the browser will send the cookie data in an HTTP request header.

Of course, you could read and write all these cookies manually, but you've probably already
guessed that you're not going to need to. Ruby's CGI libraries provide a Cookie class that
conveniently handles these chores.

require "cgi"
lastacc = CGI::Cookie.new("kabhi",
 "lastaccess=#{ Time.now.to_s} ")
cgi = CGI.new("html3")
if cgi.cookies.size < 1
 cgi.out("cookie" => lastacc) do
 "Hit refresh for a lovely cookie"
 end
else
 cgi.out("cookie" => lastacc) do
 cgi.html do
 "Hi, you were last here at: " +
 "#{ cgi.cookies['kabhi'].join.split('=')[1]} "
 end
 end
end

Chapter 9. Network and Web Programming Page 38 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here, a cookie called kabhi is created, with the key lastaccess set to the current time.
Then, if the browser has a previous value stored for this cookie, it is displayed. The cookies
are represented as an instance variable on the CGI class and stored as a Hash. Each cookie
can store multiple key/value pairs, so when you access a cookie by name, you will receive
an array.

Working with User Sessions
Cookies are fine if you want to store simple data, and you don't mind the browser being
responsible for persistence. But, in many cases, data persistence needs are a bit more
complex. What if you've got a lot of data you want to maintain persistently, and you don't
want to have to send it back and forth from the client and server with each request? What
if there is sensitive data you need associated with a session, and you don't trust the browser
with it?

For more advanced persistence in Web applications, use the CGI::Session class.
Working with this class is similar to working with the CGI::Cookie class, in that values
are stored and retrieved via a hash-like structure.

require "cgi"
require "cgi/session"

cgi = CGI.new("html4")

sess = CGI::Session.new(cgi, "session_key" => "a_test",
 "prefix" => "rubysess.")
lastaccess = sess["lastaccess"].to_s
sess["lastaccess"] = Time.now
if cgi['bgcolor'][0] =~ /[a-z]/
 sess["bgcolor"] = cgi['bgcolor']
end

cgi.out do
 cgi.html do
 cgi.body ("bgcolor" => sess["bgcolor"]) do
 "The background of this page" +
 "changes based on the 'bgcolor'" +
 "each user has in session." +
 "Last access time: #{ lastaccess} "
 end
 end
end

Accessing /thatscript.cgi?bgcolor=red would turn the page red for a single user
for each successive hit until a new bgcolor was specified via the URL. CGI::Session
is instantiated with a CGI object and a set of options in a Hash. The optional
session_key parameter specifies the key that will be used by the browser to identify
itself on each request. Session data is stored in a temporary file for each session, and the

Chapter 9. Network and Web Programming Page 39 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

prefix parameter assigns a string to be prepended to the filename, making your sessions
easy to identify on the filesystem of the server.

There are still many features that CGI::Session is lacking, such as the ability to store
objects other than Strings, session storage across multiple servers, and other "nice-to-
have" capabilities. Fortunately, a pluggable database_manager mechanism is already
in place, and would make some of these features quite easy to add. If you do anything
exciting with CGI::Session, be sure to let us know.

Using FastCGI
The most criticized shortcoming of CGI is that it requires a new process to be created for
every invocation. The effect on performance is significant. The lack of a capability to leave
objects in memory between requests can also have a negative impact on design. The
combination of these difficulties has led to the creation of something called FastCGI.

FastCGI is basically nothing more than a protocol definition, a design, and a set of software
implementing that protocol. Usually implemented as a Web server plug-in, such as an
Apache module, it enables an in-process helper to intercept HTTP requests and route them
via socket to a long running backend process. This has a very positive effect on speed
compared to the traditional forking approach. It also gives the programmer the freedom
to put things in memory and still find them there on the next request.

A fair question would be: How do mod_ruby and FastCGI compare? There are definite
tradeoffs involved.

Because Apache is a forking Web server, resources are allocated and freed without the full
knowledge of the application, making it problematic to store session information. In
FastCGI, all requests are handled by a single process, making it easy to cache data, keep
database connections open, and store session data in memory (where arguably it should
be).

FastCGI offers no access to Apache's internals. If you really need that kind of access,
mod_ruby is a better choice.

FastCGI also works with other Web servers such as Zeus and Netscape. Potentially any
server can be supported by using the CGI-to-FastCGI adapter, which is a tiny CGI script
that handles CGI connections for you. It is not as efficient as a plug-in like mod_fastcgi,
but does still eliminate the overhead of (for example) reconnecting to a database and
reloading config files every time a CGI executes.

Chapter 9. Network and Web Programming Page 40 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Conveniently, servers for FastCGI have been implemented in a number of languages,
including Ruby. Eli Green created a module (available via the RAA) entirely in Ruby, which
implements the FastCGI protocol and eases the development of FastCGI programs.

We present a sample application in Listing 9.8. As you can see, this code fragment mirrors
the functionality of the earlier example.

Listing 9.8. A FastCGI Example

require "fastcgi"
require "cgi"
last_time = ""

def get_ramblings(instream)
 # Unbeautifully retrieve the value of the first name/value pair
 # CGI would have done this for us.
 data = ""
 if instream != nil
 data = instream.split("&")[0].split("=")[1] || ""
 end
 return CGI.unescape(data)
end

def reverse_ramblings(ramblings)
 if ramblings == nil then return "" end
 chunks = ramblings.split(/\s+/)
 chunks.reverse.join(" ")
end

server = FastCGI::TCP.new('localhost', 9000)
begin
 server.each_request do |request|
 stuff = request.in.read
 out = request.out
 out << "Content-type: text/html\r\n\r\n"
 out << "<html>"
 out << "<head><title>Text Backwardizer</title></head>"
 out << "<h1>sdrawkcaB txeT</h1>"
 out << "<i>You previously said: #{ last_time} </i>
"
 out << "#{ reverse_ramblings(get_ramblings(stuff))} "
 out << "<form method=\"POST\" action=\"/fast/serv.rb\">"
 out << "<textarea name=\"ramblings\">"
 out << "</textarea>"
 out << "<input type=\"submit\" name=\"submit\""
 out << "</form>"
 out << "</body></html>"
 last_time = get_ramblings(stuff)
 request.finish
 end
ensure
 server.close
end

The first thing that strikes you about this code (if you've read the previous section) is the
couple of things that you have to do manually in FastCGI that you wouldn't have had to
do with the CGI library. One is the messy hard-coding of escaped HTML. The other is the
get_ramblings method, which manually parses the input and returns only the relevant

Chapter 9. Network and Web Programming Page 41 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

value. This code, by the way, only works with the HTTP POST method—another
convenience lost when not using the CGI library.

That being said, FastCGI is by no means without its advantages. We didn't run any
benchmarks on this example, but—it's in the name—FastCGI is faster than normal CGI.
The overhead of starting up a new process is avoided in favor of making a local network
connection to port 9000 (FastCGI::TCP.new('localhost', 9000)). Also, the
last_time variable in this example is used to maintain a piece of state in memory in
between requests—something impossible with traditional CGI. Of course, the actual speed
increase will depend on a number of complex factors, such as the choice of OS and Web
server, the nature of the CGI, the amount of Web traffic, and so on.

We'll also point out that it's possible to a limited extent to mix and match these libraries.
The helper functions from cgi.rb can be used on their own (without actually using this
library to drive the application). For example, CGI.escapeHTML can be used in isolation
from the rest of the library. This would make the previous example a little more readable.

Case Study: A Message Board
One of the most exciting things about the Web today is its ability to create a sense of virtual
community. With the Internet, you have the potential to communicate in real-time with
people from around the world. People who have never actually met in person can share
common interests and even strike up friendships.

There are many ways by which this type of communication can happen via the Internet.
The oldest and most firmly established way is the bulletin board metaphor. Since the
advent of Usenet or the good old days of BBSs (Bulletin Board Systems), online
communities have prospered around this asynchronous form of communication. The new
breed of this age-old species is the Web-based message board application. From cheesy
online matchmaking services to geek sites like userfriendly.org, the bulletin board
metaphor is alive and well on the Web.

If you've ever wondered how to write your own bulletin board, we're here to help you. What
follows is a treatise on our own lean, not-so-mean bulletin board system RuBoard.

Although RuBoard works, it certainly isn't good for much more than a starting point in the
ways of the bulletin board. It is not the most robust or secure application ever written for
the Web, but it should illustrate some concepts that will put you well on your way to making
something deployable. During the discussion, we will point out some areas of potential
improvement and leave them as the proverbial exercise for the reader.

Chapter 9. Network and Web Programming Page 42 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://userfriendly.org

This is the most lengthy example in the book, consisting of several files. For the sake of
completeness, we've included them all in print. The following is a list of the files and their
purposes:

• board.cgi— The main piece of code or "driver" for the entire CGI, through which
all requests must pass.

• mainlist.rb— The main or default screen that displays the entire list of messages
previously posted (see Figure 9.2).

Figure 9.2. RuBoard MainList page.

• message.rb— The Message and MessageStore classes that handle the loading
and storing of messages.

• savepost.rb— The code for the save-post page (saving a post or reply).
• viewmessage.rb— The code for the view-message page, displaying a single message

with all the relevant fields.
• post.rb— The code for the post-page, enabling the creation of a new post (message).
• reply.rb— The code for the reply-page, displayed when replying to a previous post.
• authenticate.rb— The code for authenticating a user (rudimentary in this

example). Redirects to whatever page the user was originally trying to reference.

One thing will probably stand out after you've read some of the previous examples. Despite
its relative complexity, RuBoard has only one actual CGI program. It consists of several
screens (or pages), but there's only one CGI program controlling them all. In past examples,
with simplicity in mind, we have always demonstrated CGI programs that served only one
distinct page. In this case study, you'll see a central program board.cgi acting as a
controller for all the bulletin board's logic and presentation-related activities. Refer to
Listing 9.9 for the board.cgi source.

Chapter 9. Network and Web Programming Page 43 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.9. Message Board CGI (board.cgi)

#!/usr/local/bin/ruby
require "cgi"
require "cgi/session"
$session = nil

def header(cgi)
 "Welcome, #{ get_session(cgi)['user']} ! - " +
 "<i>" +
 "post a message</i> - <i>" +
 "home." +

<HR>"
end
def do_oops_page(cgi, err)
 cgi.out do
 cgi.html do
 cgi.body do
 "It appears that you have invoked the" +
 " message board incorrectly. Oops.
|#{ err} |"
 end
 end
 end
end

def do_login_page(cgi)
 cgi.out do
 cgi.html do
 cgi.body do
 cgi.h1 { "Welcome to Ruby Board" } +
 cgi.b { "Please Login:" } +
 cgi.form("METHOD" => "get",
 "action" => "/cgi-bin/rb/board.cgi") do
 cgi.text_field({ "name" => "user" }) +
 cgi.submit("Login") +
 cgi.input({ "name" => "cmd",
 "value" => "authenticate",
 "type" => "hidden"}) +
 cgi.input({ "name" => "page",
 "value" => "#{ cgi['cmd'][0]} ",
 "type" => "hidden"})
 end
 end
 end
 end
end

def run_command(cgi)
 command = cgi['cmd'][0]
 if command == "" || command == nil
 command = "mainlist"
 end
 if command_safe?(command)
 methname = "do_#{ command} _page"
 else
 do_oops_page(cgi, "Command \"#{ command} \"" +
 " inappropriately formatted.")
 end
 begin
 eval "#{ methname} (cgi)"
 rescue NameError
 begin
 require "#{ command} .rb"
 rescue LoadError
 do_oops_page(cgi, "Error loading #{ command} ")
 end
 end
 eval "#{ methname} (cgi)"

Chapter 9. Network and Web Programming Page 44 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 exit

end

def command_safe?(command)
 if command =~ (/^[a-zA-Z0-9]+$/) then
 return true
 end
 false
end

def get_session(cgi)
 if $session == nil then
 $session = CGI::Session.new(cgi, "session_key" => "a_test",
 "prefix" => "rubysess.")

 end
 return $session
end

def validate_session(cgi)
 session = get_session(cgi)
 if cgi["user"][0] =~ /[a-zA-Z0-9]/
 return
 end
 if session["user"] !~ /[a-zA-Z0-9]/
 do_login_page(cgi)
 end
end

if __FILE__ == $0 then
 cgi = CGI.new("html4")
 validate_session(cgi)
 err = run_command(cgi)
end

This is a vague hint of the Model View Controller (MVC) design pattern, referenced in
Design Patterns, published by Addison-Wesley and authored by the so-called "Gang of
Four" (Gamma, Helm, Johnson, and Vlissides). The main advantage of our trimmed down,
almost-MVC architecture is that application-wide changes can be implemented in a single
place. For example, if we wanted to add a central logging facility, we could easily add it to
board.cgi, and every page request would invoke the new utility.

The first thing a user must do when attempting to use the bulletin board is log in. As a
function of our centralized CGI design, authentication is handled in one place. (Refer to
the validate_session method in board.cgi.) This code won't enable
unauthenticated requests through to any page other than the login page.

As you can see, the authentication scheme used ("we'll believe that you are whoever you
say you are") isn't all that secure. But it suffices as a more-than-stub example of how you
might force authentication in your own application. The basic flow is that a user comes to
the application requesting a page, and validate_session first checks to make sure that
the user is either already logged in or trying to log in. If the user hasn't logged in and isn't
passing in a userid with which to attempt to authenticate himself, the login page will be
displayed to prompt for a username. Because the central board.cgi handles all

Chapter 9. Network and Web Programming Page 45 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

authentication in the application, it would be trivial to replace validate_session with
a more robust security implementation.

You might have noticed the get_session call in board.cgi, which gets a handle to the
current user's session; this is an implementation of the singleton design pattern (not a
rigorous implementation). Here we've used a global variable; this is OK because CGI
programs are forked as separate processes, giving each invocation its own memory space.
If we were making, for example, a FastCGI program, we would need to devise a different
strategy to keep users' sessions from clobbering each other. For this reason, we've hidden
the session retrieval logic behind a method, as opposed to directly referencing the global
variable from any code that needs access to the session. Again, we could change this method
alone if we needed to move our program to an environment that was less friendly to global
variables.

The next important piece of RuBoard's design emerges in the calls to the
do_login_page and run_command methods. Each page in our humble framework can
be referenced internally by a call to do_PAGENAME_page. So, for example, the login page
is called via the do_login_page method. The run_command, also in board.cgi, is
responsible for determining which page the user is trying to reach and dynamically
invoking the necessary code to fulfill the request.

This code is both a little tricky and a little dangerous. It determines which method to run
by looking at the value of the cmd key, passed in as a QUERY_STRING parameter from the
Web browser. So, for example, invoking /board.cgi?cmd=hello would attempt to run
a method called do_hello_page. If the method is not defined, a NameError will be
raised, and the program will attempt to require a separate library containing the
requested page. There are two red flags here, both involving the use of the cmd key. With
the call to eval, we are executing arbitrary code, passed in from an anonymous Internet
user, and with the call to require, we are reading arbitrary files from the server's hard
disk. The command_safe? method's job is to allay these fears. Of course, this specific
implementation leaves much to be desired. The code provided here is a simple starting
point for a more robust set of checks.

After having successfully logged in, run_command defaults to an invocation of
do_mainlist_page (see Listing 9.10), which creates the page called mainlist. This page
gets the current list of messages on the bulletin board, and displays them to the user in a
list. The user can then choose to read one of the messages, or to post a new message.

Chapter 9. Network and Web Programming Page 46 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.10. Message Board CGI (mainlist.rb)

require "message"

def do_mainlist_page(cgi)
 messages = get_messages
 user = get_session(cgi)['user']
 template = get_template
 messagerows = get_message_rows(template, messages)
 template.gsub!(/%%LISTROW%%/, messagerows)
 template.gsub!(/%%USER%%/, user)
 template.gsub!(/%%HEADER%%/, header(cgi))
 cgi.out{ template }
end

def get_message_rows(template, messages)
 rows = ""
 messages.each do |message|
 rows << "<TR><TD><a href=\"/cgi-bin/rb/board.cgi?" +
 "cmd=viewmessage&id=#{ message.id} \">" +
 "#{ message.id} </TD><TD>#{ message.title} " +
 "</TD><TD>#{ message.sender} </TD><TD>" +
 "#{ message.date} </TD></TR>"
 end
 rows
end

def get_template
 "<HTML><HEAD>
 <TITLE>RuBoard!</TITLE>
 </HEAD>
 <BODY>
 %%HEADER%%
 Message List

 <TABLE border=1>
 <TR>
 <TD>ID</TD>
 <TD>Title</TD>
 <TD>Sender</TD>
 <TD>Time</TD>
 </TR>
 %%LISTROW%%
 </TABLE>
 </BODY></HTML>"
end

For a screenshot of a simple mainlist page, refer to Figure 9.2. This figure shows a list with
only two messages in it.

The most interesting thing about this listing is the generation of the HTML. We have
created our own scaled-down templating system. For a feature-filled, robust templating
solution, see eruby or ERb in the Ruby Application Archive. (Also see the section "Using
Embedded Ruby.") To keep our examples simple, we're sticking to a basic text replacement
here. The advantage of these sorts of templating methods is that they enable the
programmer to deal with HTML in a very familiar way—as simple HTML source code. This
can sometimes be easier to visualize than the built-in "elements-as-methods" approach of
the Ruby CGI library.

Chapter 9. Network and Web Programming Page 47 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

When this page is called, run_command will either find cmd=mainlist in the input
parameters for the CGI program, or it will default to the mainlist page. It will then load
mainlist.rb and execute the do_mainlist_page method. This method uses the
Message and MessageStore classes (described later in this section) to retrieve the list
of all messages currently on the bulletin board. It then makes a call to get_template and
replaces the specially labeled keys, arbitrarily marked with surrounding double percent
markers (%%), with dynamically generated text. After we've created a String with the
desired presentation, we simply spit it into the cgi object's output stream and the program
then exits.

So, where do these messages come from? How are they stored? Let's have a look at Listing
9.11.

Chapter 9. Network and Web Programming Page 48 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.11. Message Board CGI (message.rb)

$filepath = "/tmp/messagestore.dat"

class Message
 attr_accessor :id, :title, :sender, :replies, :date, :body
 def initialize(title, sender)
 @title = title
 @sender = sender
 @date = Time.now
 @replies = Array.new
 end
 def add_reply(message)
 @replies.push message
 end
end

class MessageStore
 attr_accessor :messages, :filepath, :id, :message_table

 def MessageStore.load(filepath)
 if !FileTest.exist?(filepath)
 welcomemsg = Message.new("Welcome to RuBoard", "chad")
 welcomemsg.body = "Please enjoy your stay!"
 mstore = MessageStore.new
 mstore.add_message(welcomemsg)
 f = File.new(filepath, "w")
 Marshal.dump(mstore, f)
 f.close
 end
 file = File.open(filepath, "r")
 Marshal.load(file)
 end

 def save(filepath)
 File.delete(filepath)
 Marshal.dump(self, File.new(filepath, "w"))
 end

 def initialize
 @message_table = Hash.new
 @id = 0
 @messages = Array.new
 end

 def add_message(message)
 message.id = next_id
 @message_table[message.id] = message
 @messages.push message
 end

 def get_message(num)
 @message_table[num]
 end

 private
 def next_id
 @id += 1
 end

end

Auxiliary methods...

def get_message_view(message)
 template = "<i>Message %%NUM%%</i>

 <i>From: %%SENDER%%</i>

Chapter 9. Network and Web Programming Page 49 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 <i>Date: %%DATE%%</i>

 <i>Title: %%TITLE%%</i>

 <HR>
 %%BODY%%
 <HR>"
 template.gsub!(/%%NUM%%/, message.id.to_s)
 template.gsub!(/%%SENDER%%/, message.sender)
 template.gsub!(/%%DATE%%/, message.date.to_s)
 template.gsub!(/%%TITLE%%/, message.title)
 template.gsub!(/%%BODY%%/, message.body)
 template
end
def get_messages
 mstore = get_message_store
 mstore.messages
end

def get_message_store
MessageStore.load($filepath)
end

The two most important items here are the Message class, providing a simple object-
oriented view of a message, and the MessageStore class, which handles the storage and
retrieval of messages. MessageStore is where most of the message-related work actually
takes place. This also happens to be one of those areas of potential improvement that we
alluded to earlier.

Looking at MessageStore.load and MessageStore.save, you'll notice that the entire
set of bulletin board messages is stored in a single file of marshalled Ruby objects on the
server system. Although this design is simple, there are some problems with it. The worst
of the problems is that the system can't handle concurrent users correctly. If two users
were to attempt to update the message board at the same time, the result would certainly
include failure and data loss. A better approach would be to use an RDBMS, such as MySQL
or PostgreSQL, as the storage mechanism for bulletin board items. The internals of
MessageStore could easily be replaced with database access or some other more suitable
solution, because its interface doesn't fully expose the underlying storage strategy. Refer
to Chapter 4, "External Data Manipulation," for more ideas about data storage in Ruby,
including examples of how to interface with MySQL, a very popular database for Web
application programming.

The four methods at the end of message.rb are convenience methods to avoid duplication
in the various pages of the message board that require access to this data. Because each
Web page is a separate, viewable entity, CGI applications can quickly degrade into an
unmaintainable mound of copies and pastes. For this reason, it's important to be especially
careful to look for chances to generalize and remove duplication when making CGI
programs.

Chapter 9. Network and Web Programming Page 50 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch04#ch04

Five other files help comprise RuBoard. We've added these others to a single listing (Listing
9.12) because they are fairly short. These files get required by the run_command method
as they are needed; they are kept separate for maintainability.

Chapter 9. Network and Web Programming Page 51 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.12. Message Board CGI (Other Files)

#
File: authenticate.rb
#

require "message"

def do_authenticate_page(cgi)
 session = get_session(cgi)
 session['user'] = cgi['user'][0]
 page = cgi['page'][0]
 if page == nil || page == ""
 cgi.out do
 '<HTML><HEAD><META HTTP-EQUIV="REFRESH"' +
 ' CONTENT="1;URL=/cgi-bin/rb/board.cgi?cmd=mainlist">' +
 '</HEAD><BODY></BODY></HTML>'
 end
 else
 cgi['cmd'][0] = page
 run_command(cgi)
 end
end

#
File: post.rb
#

require "message"

def do_post_page(cgi)
 mstore = get_message_store
 user = get_session(cgi)['user']
 num = cgi['id'][0]
 message = mstore.get_message(num.to_i)

 template = get_template
 template.gsub!(/%%HEADER%%/, header(cgi))
 template.gsub!(/%%USER%%/, user)
 cgi.out{ template }
end

def get_template
 "<HTML><BODY>
 %%HEADER%%
 <FORM ACTION=\"/cgi-bin/rb/board.cgi\" METHOD=\"GET\">
 <INPUT TYPE=HIDDEN NAME=cmd VALUE=savepost>
 <INPUT TYPE=HIDDEN NAME=SENDER VALUE=%%USER%%>
 <TABLE BORDER=0>
 <TR>
 <TD>Title:</TD><TD><INPUT TYPE=TEXT NAME=TITLE></TD>
 </TR>
 <TR>
 <TD>Message Body:</TD>
 <TD> <TEXTAREA rows=25 cols=80 NAME=BODY> </TEXTAREA></TD>
 <TR><TD><INPUT TYPE=SUBMIT NAME=SUBMIT></TD><TD></TD></TR>
 </TR>
 </TABLE>
 </FORM>
 </BODY></HTML>"
end

#
File: reply.rb
#

require "message"

def do_reply_page(cgi)
 mstore = get_message_store

Chapter 9. Network and Web Programming Page 52 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 user = get_session(cgi)['user']
 num = cgi['id'][0]
 message = mstore.get_message(num.to_i)

 template = get_template(message)
 template.gsub!(/%%HEADER%%/, header(cgi))
 template.gsub!(/%%USER%%/, user)
 template.gsub!(/%%NUM%%/, num)
 cgi.out{ template }
end

def get_template(message)
"<HTML><BODY>
%%HEADER%%
#{ get_message_view(message)}
<FORM ACTION=\"/cgi-bin/rb/board.cgi\" METHOD=\"GET\">
<INPUT TYPE=HIDDEN NAME=SENDER VALUE=%%USER%%>
<INPUT TYPE=HIDDEN NAME=cmd VALUE=savepost>
<INPUT TYPE=HIDDEN NAME=id VALUE=%%NUM%%>
<TABLE BORDER=0>
<TR>
<TD>Title:</TD><TD><INPUT TYPE=TEXT NAME=TITLE></TD>
</TR>
<TR>
<TD>Message Body:</TD>
<TD> <TEXTAREA rows=25 cols=80 NAME=BODY> </TEXTAREA></TD>
</TR>
<TR><TD><INPUT TYPE=SUBMIT NAME=SUBMIT></TD><TD></TD></TR>
</TABLE>
</FORM>
</BODY></HTML>"
end

#
File: savepost.rb
#

require "message"
require "viewmessage"

def do_savepost_page(cgi)
 user = get_session(cgi)['user']
 mstore = get_message_store
 newmsg = Message.new(cgi['TITLE'][0], user)
 newmsg.body = cgi['BODY'][0]
 mstore.add_message(newmsg)
 viewid = do_reply(mstore, newmsg, cgi)
 if !viewid
 viewid = newmsg.id
 end
 mstore.save($filepath)
 cgi.out { "<HTML><HEAD><META HTTP-EQUIV=\"REFRESH\"" +
 " CONTENT=\"1;URL=/cgi-bin/rb/board.cgi?" +
 "cmd=viewmessage&id=#{ viewid} \"></HEAD>" +
 "<BODY></BODY></HTML>" }
end

def do_reply(mstore, newmsg, cgi)
 id = cgi['id'][0]
 if id != nil && id != ""
 orig = mstore.get_message(cgi['id'][0].to_i)
 orig.add_reply(newmsg)
 return id
 end
end

#
File: viewmessage.rb
#

require "message"

Chapter 9. Network and Web Programming Page 53 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

def do_viewmessage_page(cgi)
 mstore = get_message_store
 user = get_session(cgi)['user']
 num = cgi['id'][0]
 message = mstore.get_message(num.to_i)

 template = get_template(message)
 template.gsub!(/%%USER%%/, user)
 template.gsub!(/%%HEADER%%/, header(cgi))
 template.gsub!(/%%NUM%%/,num)
 template.gsub!(/%%RESPONSES%%/,
 get_message_rows(message.replies))
 cgi.out{ template }
end

def get_message_rows(messages)
 if messages.size < 1
 return ""
 end
 rows = String.new("<TABLE border=1>")
 messages.each do |message|
 rows << "<TR><TD><a href=\"/cgi-bin/rb/board.cgi?" +
 "cmd=viewmessage&id=#{ message.id} \">" +
 "#{ message.id} </TD><TD>#{ message.title} " +
 "</TD><TD>#{ message.sender} </TD><TD>" +
 "#{ message.date} </TD></TR>"
 end
 rows << "</TABLE>"
 rows
end

def get_template(message)
 "<HTML><BODY>
 %%HEADER%%
 #{ get_message_view(message)}
 reply
 to this message.
 <HR>
 Previous Reponses:

 %%RESPONSES%%
 </BODY></HTML>"
end

We hope this case study has given you a good feeling for what it's like to program a real
CGI-based Web application. As with all the examples of significant size, an online copy of
the full source code is available at the Web site for this book, which is referenced in
Appendix D, "Resources on the Web (and Elsewhere)."

Distributed Ruby

Less is more.

—Robert Browning, "Andrea del Sarto"

There are a plethora of technologies today that enable distributed computing. These
include various flavors of RPC, as well as such things as COM, CORBA, DCE, and Java's
RMI.

Chapter 9. Network and Web Programming Page 54 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/app04#app04

These all vary in complexity, but they all do essentially the same thing. They provide
relatively transparent communication between objects in a networking context so that
remote objects can be used as though they were local.

Why should we want to do something like this in the first place? There might be many
reasons. One excellent reason is to share the burden of a computing problem between
many processors at once. An example would be the SETI@home program, which uses your
PC to process small data sets in the search for extraterrestrial intelligence. (SETI@home
is not a project of the SETI Institute, by the way.) Another example would be the grassroots
effort to decode the RSA129 encryption challenge (which succeeded a few years ago). There
are countless other areas where it is possible to split a problem into individual parts for a
distributed solution.

It's also conceivable that you might want to expose an interface to a service without making
the code itself available. This is frequently done via a Web application, but the inherently
stateless nature of the Web makes this a little unwieldy (in addition to other
disadvantages). A distributed programming mechanism makes this kind of thing possible
in a more direct way.

Ruby's answer to this challenge is drb, or distributed Ruby by Masatoshi Seki. (The name
is also written DRb.) It doesn't have such advanced facilities as CORBA's naming service,
but it is a simple and usable library with all the most basic functionality you would need.

An Overview: Using drb
A drb application has two basic components—a server and a client. A rough breakdown
of their responsibilities is given here.

The server:

• Starts a TCPServer and listens on a port.
• Binds an object to the drb server instance.
• Accepts connections from clients and responds to their messages.
• May optionally provide access control (security).

The client:

• Establishes a connection to the server process.
• Binds a local object to the remote server object.
• Sends messages to the server object and gets responses.

The class method start_service takes care of starting a TCP server that listens on a
specified port; it takes two parameters. The first is a URI (Universal Resource Identifier)
specifying a port. (If it is nil, a port will be chosen dynamically.) The second is an object

Chapter 9. Network and Web Programming Page 55 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

to which we want to bind. This object will be remotely accessible by the client, invoking its
methods as though it were local.

require "drb"

myobj = MyServer.new
DRb.start_service("druby://:1234", myobj) # Port 1234

...

If the port is chosen dynamically, the class method uri can be used to retrieve the full
URI, including the port number.

DRb.start_service(nil, myobj)
myURI = DRb.uri # "druby://hal9000:2001"

Because drb is threaded, any server application will need to do a join on the server thread
(to prevent the application from exiting prematurely and killing the thread).

Prevent premature exit
DRb.thread.join

On the client side, we can invoke start_service with no parameters, and use
DRbObject to create a local object that corresponds to the remote one. We typically use
nil as the first parameter in creating a new DRbObject.

require "drb"

DRb.start_service
obj = DRbObject.new(nil, "druby://hal9000:2001")

Messages passed to obj will get forwarded to the
remote object on the server side...

We should point out that on the server side, when we bind to an object, we really are binding
to a single object which will answer all requests that it receives. If there is more than one
client, we will have to make our code thread-safe to avoid that object somehow getting
into an inconsistent state. (For really simple or specialized applications, this might not be
necessary.)

We can't go into great detail here. Just be aware that if a client both reads and writes the
internal state of the remote object, two or more clients have the potential to interfere with
each other. To avoid this, we recommend a straightforward solution using some kind of

Chapter 9. Network and Web Programming Page 56 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

synchronization mechanism like a Mutex. (Refer to Chapter 7 for more on threads and
synchronization issues.)

We will say at least a few words about security. After all, you may not want just any old
client to connect to your server. You can't prevent them from trying, but you can prevent
their succeeding.

Distributed Ruby has the concept of an access control list, or ACL (often pronounced to
rhyme with "crackle"). These are simply lists of clients (or categories of clients) that are
specifically allowed (or not allowed) to connect.

Here is a little example. We use the ACL class to create a new ACL, passing in one or two
parameters.

The second (optional) parameter to ACL.new answers the question, "Do we deny all clients
except certain ones, or allow all clients except certain ones?" The default is
DENY_ALLOW, represented by a 0; ALLOW_DENY is represented by a 1.

The first parameter for ACL.new is simply an array of strings; these strings are taken in
pairs, where the first in the pair is deny or allow, and the second represents a client or
category of clients (by name or address). Here is an example:

acl = ACL.new(%w[deny all
 allow 192.168.0.*
 allow 210.251.121.214
 allow localhost])

The first entry deny all is somewhat redundant, but it does make the meaning more
explicit.

Now how do we use an ACL? The install_acl method will put an ACL into effect for
us. Note that this has to be done before the call to the start_service method, or it will
have no effect.

Continuing the above example...

DRb.install_acl(acl)

DRb.start_service(nil, some_object)

...

When the service then starts, any unauthorized client connection will result in a
RuntimeError being thrown on the server side (with the message "Forbidden").

Chapter 9. Network and Web Programming Page 57 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch07#ch07

There is somewhat more to drb than we cover here. But this is enough for an overview.

We'll also mention that drb comes with a module (rinda.rb) that does much the same
as Sun's Javaspaces, the basis of Jini. (The name is a pun based on Linda, the technology
underlying Javaspaces.)

For those who are more interested in CORBA, there are efforts by another Japanese
developer to produce a complete Ruby-CORBA mapping. At present, there is already an
interface definition, an IDL compiler called Ridl, and Ruby-ORBit, which provides a
wrapper for ORBit. We are far out of our depth here; but if this appeals to you, you can
refer to the Rinn project in the Ruby Application Archive.

Case Study: A Stock Ticker Simulation
This example is taken from the Pragmatic Programmers' Ruby course (used by
permission). Here we're assuming that we have a server application that is making stock
prices available to the network. Any client wanting to check the value of his thousand shares
of Gizmonic Institute can contact this server.

There is a small twist to this, however. We don't just want to watch every little fluctuation
in the stock price. We've implemented an Observer module that will let us subscribe to
the stock feed; the client then watches the feed and warns us only when the price goes
above or below a certain value.

First let's look at the DrbObservable module. This is a straightforward implementation
of the Observer pattern, another design pattern from the "Gang of Four's" Design
Patterns. This is also known as the Publish-Subscribe pattern.

This module is actually an adaptation of the standard observer.rb library. It has been
changed so that it does not abort on an error.

Listing 9.13 defines an observer as an object that responds to the update method call.
Observers are added (by the server) at their own request, and are sent information via the
notify_observers call.

Chapter 9. Network and Web Programming Page 58 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.13. The drb Observer Module

module DRbObservable

 def add_observer(observer)
 @observer_peers ||= []
 unless observer.respond_to? :update
 raise NameError, "observer needs to respond to `update'"
 end
 @observer_peers.push observer
 end

 def delete_observer(observer)
 @observer_peers.delete observer if defined? @observer_peers
 end

 def notify_observers(*arg)
 return unless defined? @observer_peers
 for i in @observer_peers.dup
 begin
 i.update(*arg)
 rescue
 delete_observer(i)
 end
 end
 end

end

The server (or feed) in Listing 9.14 simulates the stock price by a sequence of
pseudorandom numbers. (This is as good a simulation of the market as we have ever seen,
if you will pardon the irony.) The stock symbol identifying the company is only used for
cosmetics in the simulation, and has no actual purpose in the code. Every time the price
changes, the observers are all notified.

Chapter 9. Network and Web Programming Page 59 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.14. The drb Stock Price Feed (Server)

require "drb"
require "drb_observer"

Generate random prices
class MockPrice

 MIN = 75
 RANGE = 50

 def initialize(symbol)
 @price = RANGE / 2
 end

 def price
 @price += (rand() - 0.5)*RANGE
 if @price < 0
 @price = -@price
 elsif @price >= RANGE
 @price = 2*RANGE - @price
 end
 MIN + @price
 end
end

class Ticker # Periodically fetch a stock price
 include DRbObservable

 def initialize(price_feed)
 @feed = price_feed
 Thread.new { run }
 end

 def run
 lastPrice = nil
 loop do
 price = @feed.price
 print "Current price: #{ price} \n"
 if price != lastPrice
 lastPrice = price
 notify_observers(Time.now, price)
 end
 sleep 1
 end
 end
end

ticker = Ticker.new(MockPrice.new("MSFT"))

DRb.start_service('druby://localhost:9001', ticker)
puts 'Press [return] to exit.'
gets

Not surprisingly, the client (in Listing 9.15) begins by contacting the server. It gets a
reference to the stock ticker object and sets its own desired values for the high and low
marks. Then the client will print a message for the user every time the stock price goes
above the high end or below the low end.

Chapter 9. Network and Web Programming Page 60 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

We should mention the concept behind the DrbUndumped module. Very little code is
actually associated with this module; basically it defines a _dump method that raises an
exception when it is called. In other words, it prevents an object from being dumped.

Any object obj of a class that includes this module will thus return true for an expression
like obj.kind_of? DRbUndumped. Refer to Chapter 1, "Ruby in Review," (or Chapter
5, "OOP and Dynamicity in Ruby") if this is unclear. For those familiar with Java, this is
like the opposite of the Serializable interface.

In short, drb by default passes objects by value (that is, via marshalling). But by including
DRbUndumped, we can pass objects by reference—when we want to expose an interface to
an object we are managing (or when an object simply cannot be marshalled for whatever
reason).

Listing 9.15. The drb Stock Price Watcher (Client)

require "drb"

class Warner
 include DRbUndumped

 def initialize(ticker, limit)
 @limit = limit
 ticker.add_observer(self) # all warners are observers
 end
end
class WarnLow < Warner
 def update(time, price) # callback for observer
 if price < @limit
 print "—- #{ time.to_s} : Price below #@limit: #{ price} \n"
 end
 end
end

class WarnHigh < Warner
 def update(time, price) # callback for observer
 if price > @limit
 print "+++ #{ time.to_s} : Price above #@limit: #{ price} \n"
 end
 end
end

DRb.start_service
ticker = DRbObject.new(nil, "druby://localhost:9001")

WarnLow.new(ticker, 90)
WarnHigh.new(ticker, 110)

puts "Press [return] to exit."
gets

There are other ways to approach this problem. But we feel that this is a good solution that
well demonstrates the simplicity and elegance of distributed Ruby.

Chapter 9. Network and Web Programming Page 61 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch01#ch01
http://safari.oreilly.com/0672320835/ch05#ch05
http://safari.oreilly.com/0672320835/ch05#ch05

XML Parsing in Ruby
Since the late 1990s, one of the biggest buzzword technologies in Internet programming
has been XML. XML (Extensible Markup Language) is a text-based document
specification language. It enables developers and users to easily create their own, parseable
document formats. XML is both machine-parseable and easily readable by humans,
making it a good choice for processes that require both manual and automated tasks. Its
readability also makes it easy to debug.

As is the case with most modern programming languages, there are Ruby libraries that
greatly simplify the tasks of parsing and creating XML documents. There are two prevalent
ways to approach XML parsing: DOM (Document Object Model), a specification developed
by the World Wide Web Consortium, providing a tree-like representation of a structured
document, and event-based parsers including SAX (Simple API for XML), which view
occurrences of elements in an XML document as events that can be handled by callbacks.

Two pervasive Ruby XML packages are available. The first and most widely used is
XMLParser by Yoshida Masato. XMLParser is an interface to James Clark's popular expat
library for C. It will be used in the majority of our examples because of its stability and
broader acceptance. Fairly new on the scene is Jim Menard's NQXML (Not Quite XML).
The advantage of NQXML that has many Ruby programmers excited is that it is written
in pure Ruby, which makes it very easy to modify and to install or include in software
distributions. An example of NQXML will be included at the end of this section.

A short sample XML document is presented in Listing 9.16.

Chapter 9. Network and Web Programming Page 62 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.16. Sample XML Document

<?xml version="1.0" encoding="ISO-8859-1"?>
<addressbook>
 <person relationship="business">
 <name>Matt Hooker</name>
 <address>
 <street>111 Central Ave.</street>
 <city>Memphis</city>
 <state>TN</state>
 <company>J+H Productions</company>
 <zipcode>38111</zipcode>
 </address>
 <phone>901-555-5255</phone>
 </person>
 <person relationship="friend">
 <name>Michael Nilnarf</name>
 <address>
 <street>10 Kiehl Ave.</street>
 <city>Sherwood</city>
 <state>AR</state>
 <zipcode>72120</zipcode>
 </address>
 <phone>501-555-6343</phone>
 </person>
</addressbook>

A detailed explanation of how XML itself works is beyond the scope of this text, but there
are a few items worth noting. First, you can see that XML is made up of tags, which are
pieces of text surrounded by < and >. Generally, these tags have a beginning, <mytag>,
and an end, </mytag>; and they can contain either plain text or other tags. If a tag doesn't
have a closing tag, it should contain a trailing slash, as in <mytag/>. Tags, also called
elements, can optionally have attributes, as in <person relationship="friend">,
which are name/value pairs placed in the tag itself. For a more detailed introduction to
XML, consult a reference.

Using XMLParser (Tree-Based Processing)
The first step in using XMLParser's DOM parsing library is to perform some parser
initialization and setup. The XML::DOM::Builder object is a parser whose specialty is
building—not surprisingly—DOM trees. In the setup portion of the code, we perform tasks
such as setting default encoding for tag names and data, and setting the base URI for
locating externally referenced XML objects. Next, a call to Builder.parse creates a new
Document object, which is the highest level object in the DOM tree hierarchy. Finally, any
successive blocks of text in the DOM tree are merged with a call to
Document.normalize and the tree is returned. Refer to Listing 9.17.

Chapter 9. Network and Web Programming Page 63 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.17. Setting Up a DOM Object

def setup_dom(xml)
 builder = XML::DOM::Builder.new(0)
 builder.setBase("./")

 begin
 xmltree = builder.parse(xml, true)
 rescue XMLParserError
 line = builder.line
 print "#{ $0} : #{ $!} (in line #{ line})\n"
 exit 1
 end

 # Unify sequential Text nodes
 xmltree.documentElement.normalize

 return xmltree
end

What has been created so far is a first-class Ruby object that provides a structured
representation of our original XML document, including the data within. All that remains
is to actually do something with this structure. This is the easy part. Refer to Listing
9.18.

Listing 9.18. Parsing a DOM Object

xml = $<.read
xmltree = setup_dom(xml)

xmltree.getElementsByTagName("person").each do |person|
 printPerson(person)
end

def printPerson(person)
 rel = person.getAttribute("relationship")
 puts "Found person of type #{ rel} ."
 name = person.getElementsByTagName("name")[0].firstChild.data
 puts "\tName is: #{ name} "
end

With a call to our previously created setup_dom method, we get a handle to the DOM tree
representing our XML document. The DOM tree is made up of a hierarchy of Nodes. A
Node can optionally have children, which would be a collection of Nodes. In an object-
oriented sense, extending from Node are higher level classes such as Element,
Document, Attr, and others, modeling higher level behavior appropriately.

In our simple example, we use getElementsByTagName to iterate through all elements
of type person. With each person, the printPerson method prints the recorded
relationship and name of the person in the XML file. Of interest are the two different

Chapter 9. Network and Web Programming Page 64 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

methods of storing and accessing data that are represented here. The relationship is
stored as an attribute of the person element. For that reason, we get a handle to an object
of type Attr with a call to the Element's getAttribute method, and then use to_s to
convert it to a String. In the case of the person's name, we are storing it as character data
within an Element. Character data is represented as a separate Node of type
CharacterData. In this case, it appears as a child of the Node that represents the
name element. To access it, we make a call to firstChild and then to the
CharacterData's data method. For a more detailed treatment of XMLParser's DOM
capabilities, refer to the samples and embedded documentation provided with the
XMLParser distribution.

Using XMLParser (Event-Based Processing)
As mentioned earlier, a common alternative to DOM-based XML parsing is to view the
parsing process as a series of events for which handlers can be written. This is SAX-like,
or event-based parsing. In Listing 9.19, we'll reproduce the functionality of our DOM
example using the event-based parsing method that XMLParser provides.

Chapter 9. Network and Web Programming Page 65 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.19. Event-Based Parsing

require 'xmlparser'

class XMLRetry<Exception; end

class SampleParser<XMLParser

 private

 def startElement(name, attr)
 if name == "person"
 attr.each do |key, value|
 print "Found person of type #{ value} .\n"
 end
 end
 if name == "name"
 $print_cdata = true
 self.defaultCurrent
 else
 $print_cdata = false

 end
 end

 def endElement(name)
 if name == "name"
 $print_cdata = false
 end
 end

 def character(data)
 if $print_cdata
 puts ("\tName is: #{ data} ")
 end
 end

end

xml = $<.read

parser = SampleParser.new
def parser.unknownEncoding(e)
 raise XMLRetry, e
end
begin
 parser.parse(xml)
rescue XMLRetry
 newencoding = nil
 e = $!.to_s
 parser = SampleParser.new(newencoding)
 retry
rescue XMLParserError
 line = parser.line
 print "Parse error(#{ line}): #{ $!} \n"
end

To use XMLParser's event-based parsing API, you must define a class that extends from
XMLParser. This class has a method, parse, which is responsible for the main logic of
tokenizing an XML document and iterating over its pieces. Your job when writing an
extension to XMLParser is to define methods that will be called by parse when certain
events take place. This example defines three such methods: startElement,

Chapter 9. Network and Web Programming Page 66 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

endElement, and character. Not surprisingly, startElement is called when an
opening XML tag is encountered, endElement is called after finding a closing tag, and
character is called for a block of character data. The XMLParser API defines 23 events
like these, which can be defined if needed. Undefined events (events for which no method
has been explicitly overridden by the end developer) are ignored. For a complete list of
events, see the README file in the XMLParser distribution.

Admittedly, this example does not lend itself well to event-based parsing. The
$print_cdata global variable is a hack to maintain state across events. Without
$print_cdata, the character method would have no way of knowing if it had
encountered character data inside a person tag or any other arbitrary spot in a document.
This illustrates an interesting constraint in the event-based parsing model: It's up to you,
the developer, to maintain the context in which these events are fired. Whereas DOM
provides a neatly organized tree, event-based parsing triggers events that are totally
unaware of each other.

Now that we've presented two different approaches to parsing XML, you might be asking
yourself how to choose between them. For most people, DOM is the more intuitive solution.
Its tree-based approach is easy to comprehend and easy to manage. It is ideal when viewing
XML as a document in the truest sense of the word. The primary disadvantage of DOM is
that it parses and loads the entire document into memory before any operations can be
performed. This can have ramifications on the performance and scalability of an
application. If speed is an issue, event-based parsing enables a program to react to each
element as it is read. For example, if a program had to read XML data from a slow data
source (an international network link, for example), it might be advantageous to start
operating on the data as it streams in, rather than loading the entire document and parsing
it after the fact. From a scalability perspective, event-based parsing can also be more
efficient. If you wanted to parse an extremely large file, it might be better to parse while
scanning through it, rather than allocating memory to store the entire file before parsing
and operating on its data.

Using NQXML
For those with a need or desire to work with a pure Ruby solution to XML parsing, Jim
Menard's NQXML is currently the only thing going. Presented in Listing 9.20 is an example
of its (Not Quite) DOM-parsing capabilities.

Chapter 9. Network and Web Programming Page 67 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 9.20. Pure Ruby XML Parsing

require 'nqxml/treeparser'
 xml = $<.read

 begin
 doc = NQXML::TreeParser.new(xml).document

 root = doc.rootNode
 root.children.each do |node|
 if node.entity.class == NQXML::Tag
 if node.entity.name == "person"
 rel = node.entity.attrs['relationship']
 puts "Found a person of type #{ rel} ."
 end
 node.children.each do |subnode|
 if subnode.entity.class == NQXML::Tag &&
 subnode.entity.name == "name"
 puts "\tName is: #{ subnode.children[0].entity} "
 end
 end
 else
 puts node.entity.class
 end
 end

 rescue NQXML::ParserError
 # Do something meaningful
 end

Structurally, the program is very similar to the XMLParser DOM example previously
presented. NQXML closely—but loosely—follows the DOM way of doing things, so
developers familiar with DOM should have little difficulty adjusting to the sometimes
different class and method names of NQXML. NQXML also offers a SAX-like streaming
parser that relies more heavily on Ruby's iterators than the callback methods of
XMLParser.

Summary
In this chapter, you've seen networking at a pretty low level, and at the level of well-known
application interfaces like telnet and SMTP. You've seen how distributed Ruby works, and
you've been through a simple example of a drb application. You've seen ways to use Ruby
for Web development, both server-side and CGI, and you've even taken a look at XML
parsing in Ruby (tangentially related to Web development).

This might be one of the primary areas in which Ruby is used. Although it's not a
networking or Web language as such, we feel that more applications in the future will be
Web-based, Net-capable, or otherwise based on distributed computing.

Whether your primary use of Ruby is Net-related or not, we are confident that you have
already found it to be a powerful and useful language. We also hope that this book has

Chapter 9. Network and Web Programming Page 68 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

added to your knowledge and your programming pleasure, and we hope it has been a
worthwhile contribution to the Ruby community as a whole.

Chapter 9. Network and Web Programming Page 69 Return to Table of Contents

Chapter 9. Network and Web Programming
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Network and Web Programming
	Network Servers
	Network Clients
	Ruby and the Web Server
	Ruby and CGI Programming
	Distributed Ruby
	XML Parsing in Ruby
	Summary

