
Table of Contents

Ruby Threads.. 1
Creating and Manipulating Threads... 2
Synchronizing Threads.. 12
Summary... 28

Chapter 7. Ruby Threads

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Chapter 7. Ruby Threads
IN THIS CHAPTER

• Creating and Manipulating Threads
• Synchronizing Threads
• Summary

He draweth out the thread of his verbosity finer than the staple of his argument.

—William Shakespeare, Love's Labours Lost, act 5, scene 1

Threads are sometimes called lightweight processes. They are nothing more than a way
to achieve concurrency without all the overhead of switching tasks at the operating system
level. (Of course, the computing community isn't in perfect agreement about the definition
of threads; but we won't go into that.)

Ruby threads are user-level threads and are operating system independent. They will work
on DOS as well as on Unix. There will definitely be a performance hit, however, which will
also vary by operating system.

Threads are useful in circumstances where, for instance, there are separate pieces of code
that naturally function independently of each other. They are also used when an
application spends much of its time waiting for an event. Often, while a thread is waiting,
another one can be doing useful processing.

On the other hand, there are some potential disadvantages in the use of threads. The
decrease in speed has to be weighed against the benefits. Also, there are cases in which
access to a resource is inherently serialized, so threading doesn't help. Finally, there are
times when the overhead of synchronizing access to global resources exceeds the saving
due to multithreading.

For these and other reasons, some authorities claim that threaded programming is to be
avoided. Indeed, concurrent code can be complex, error-prone, and difficult to debug. But
we will leave it to you when it is appropriate to use these techniques.

The difficulties associated with unsynchronized threads are well-known. Global data can
be corrupted by threads attempting simultaneous access to those data. Race conditions
can occur wherein one thread makes some assumption about what another has done
already; these commonly result in "non-deterministic" code that might run differently with
each execution. Finally, there is the danger of deadlock, wherein no thread can continue

Chapter 7. Ruby Threads Page 1 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Copyright Safari Books Online #628024

because it is waiting for a resource held by some other thread that is also blocked. Code
written to avoid these problems is referred to as thread-safe code.

Not all of Ruby is thread-safe, but synchronization methods are available that will enable
you to control access to variables and resources, protect critical sections of code, and avoid
deadlock. We will deal with these techniques in this chapter and give code fragments to
illustrate them.

Creating and Manipulating Threads
The most basic operations on threads include creating a thread, passing information in
and out, stopping a thread, and so on. We can also obtain lists of threads, check the state
of a thread, and check various other information. We present an overview of these basic
operations here.

Creating Threads
Creating a thread is easy. We call the new method and attach a block that will be the body
of the thread.

thread = Thread.new do
 # Statements comprising
 # the thread...
end

The value returned is obviously an object of type Thread, which is used by the main thread
to control the thread it has created.

What if we want to pass parameters into a thread? We can do this by passing parameters
into Thread.new, which in turn will pass them into the block.

a = 4
b = 5
c = 6
thread2 = Thread.new(a,b,c) do |a, x, y|
 # Manipulate a, x, and y as needed.
end

Note that if a is changed in the new thread, it will
change suddenly and without warning in the main
thread.

Similar to any other block parameters, any of these that correspond to existing variables
will be effectively identical to those variables. The variable a in the previous fragment is a
"dangerous" variable in this sense, as the comment points out.

Chapter 7. Ruby Threads Page 2 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Threads might also access variables from the scope in which they were created. Obviously,
without synchronization, this can be problematic. The main thread and one or more other
threads might modify the variable independently of each other, and the results can be
unpredictable.

x = 1
y = 2
thread3 = Thread.new do
 # This thread can manipulate x and y from the outer scope,
 # but this is not always safe.
 sleep(rand(0)) # Sleep a random fraction of a second.
 x = 3
end

sleep(rand(0))
puts x
Running this code repeatedly, x may be 1 or 3 when it
is printed here!

The method fork is an alias for new; this name is derived from the well-known Unix
system call of the same name.

Accessing Thread-local Variables
We know that it can be dangerous for a thread to use variables from outside its scope; we
know also that a thread can have local data of its own. But what if a thread wants to "make
public" some of the data that it owns?

A special mechanism exists for this purpose. If a thread object is treated as a hash, thread-
local data can be accessed from anywhere within the scope of that thread object. We don't
mean that actual local variables can be accessed in this way, but only that we have access
to named data on a per-thread basis.

There is also a method called key? that will tell us whether a given name is in use for this
thread.

Within the thread, we must refer to the data in the same hash-like way. Using
Thread.current will make this a little less unwieldy.

thread = Thread.new do
 t = Thread.current
 t[:var1] = "This is a string"
 t[:var2] = 365
end

Access the thread-local data from outside...

x = thread[:var1] # "This is a string"
y = thread[:var2] # 365

Chapter 7. Ruby Threads Page 3 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

has_var2 = thread.key?("var2") # true
has_var3 = thread.key?("var3") # false

Note that these data are accessible from other threads even after the thread that owned
them is dead (as in this case).

Besides a symbol (as you just saw), we can also use a string to identify the thread-local
variable.

thread = Thread.new do
 t = Thread.current
 t["var3"] = 25
 t[:var4] = "foobar"
end

a = thread[:var3] = 25
b = thread["var4"] = "foobar"

Don't confuse these special names with actual local variables.

thread = Thread.new do
 t = Thread.current
 t["var3"] = 25
 t[:var4] = "foobar"
 var3 = 99 # True local variables (not
 var4 = "zorch" # accessible from outside)
end

a = thread[:var3] # 25
b = thread["var4"] # "foobar"

Finally, note that an object reference to a true local variable can be used as a sort of
shorthand within the thread. This is true as long as you carefully preserve the same object
reference rather than creating a new one.

thread = Thread.new do
 t = Thread.current
 x = "nXxeQPdMdxiBAxh"
 t[:my_message] = x
 x.reverse!
 x.delete! "x"
 x.gsub!(/[A-Z]/,"")
 # On the other hand, assignment would create a new
 # object and make this shorthand useless...
end

a = thread[:my_message] # "hidden"

Chapter 7. Ruby Threads Page 4 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Also, this shortcut obviously won't work when you are dealing with values such as
Fixnums, which are stored as immediate values rather than object references.

Querying and Changing Thread Status
The Thread class has several class methods that serve various purposes. The list method
returns an array of all living threads, the main method returns a reference to the main
thread that spawns the others, and the current method that allows a thread to find its
own identity.

t1 = Thread.new { sleep 100 }
t2 = Thread.new do
 if Thread.current == Thread.main
 puts "This is the main thread." # Does NOT print
 end
 1.upto(1000)
 sleep 0.1
 end
end

count = Thread.list.size # 3
if Thread.list.include?(Thread.main)
 puts "Main thread is alive." # Always prints!
end
if Thread.current == Thread.main
 puts "I'm the main thread." # Prints here...
end

The exit, pass, start, stop, and kill methods are used to control the execution of
threads (often from inside or outside).

In the main thread...
Thread.kill(t1) # Kill this thread now
Thread.pass(t2) # Pass execution to t2 now
t3 = Thread.new do
 sleep 20
 Thread.exit # Exit the thread
 puts "Can't happen!" # Never reached
end
Thread.kill(t2) # Now kill t2
Now exit the main thread (killing any others)
Thread.exit

Note that there is no instance method stop, so a thread can stop itself but not another
thread.

Various methods exist for checking the state of a thread. The instance method alive? will
tell whether the thread is still "living" (not exited), and stop? will tell whether the thread
is in a stopped state.

Chapter 7. Ruby Threads Page 5 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

count = 0
t1 = Thread.new { loop { count += 1 } }
t2 = Thread.new { Thread.stop }
sleep 1
flags = [t1.alive?, # true
 t1.stop?, # false
 t2.alive?, # true
 t2.stop?] # true

The status of a thread can be determined using the status method. The value returned
will be "run" if the thread is currently running; sleep if it is stopped, sleeping, or waiting
on I/O; false if it terminated normally, and nil if it terminated with an exception.

t1 = Thread.new { loop {} }
t2 = Thread.new { sleep 5 }
t3 = Thread.new { Thread.stop }
t4 = Thread.new { Thread.exit }
t5 = Thread.new { raise "exception" }
s1 = t1.status # "run"
s2 = t2.status # "sleep"
s3 = t3.status # "sleep"
s4 = t4.status # false
s5 = t5.status # nil

The global variable $SAFE can be set differently in different threads. In this sense, it isn't
truly a global variable at all; but we shouldn't complain because this allows us to have
threads run with different levels of safety. The safe_level method will tell us at what
level a thread is running.

t1 = Thread.new { $SAFE = 1; sleep 5 }
t2 = Thread.new { $SAFE = 3; sleep 5 }
sleep 1
lev0 = Thread.main.safe_level # 0
lev1 = t1.safe_level # 1
lev2 = t2.safe_level # 3

The priority of a thread can be examined and changed using the priority accessor.

t1 = Thread.new { loop { sleep 1 } }
t2 = Thread.new { loop { sleep 1 } }
t2.priority = 3 # Set t2 at priority 3
p1 = t1.priority # 0
p2 = t2.priority # 3

A thread with higher (numerically greater) priority will be scheduled more often.

Chapter 7. Ruby Threads Page 6 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The special method pass is used when a thread wants to yield control to the scheduler.
The thread merely yields its current timeslice; it doesn't actually stop or go to sleep.

t1 = Thread.new do
 puts "alpha"
 Thread.pass
 puts "beta"
end
t2 = Thread.new do
 puts "gamma"
 puts "delta"
end

t1.join
t2.join

In this contrived example, we get output in the order alpha gamma delta beta when
Thread.pass is called as shown. Without it, we get alpha beta gamma delta as the
order. Of course, this feature shouldn't be used for synchronization, but only for the
"thrifty" allocation of timeslices.

A thread that is stopped can be awakened by using the run or wakeup methods:

t1 = Thread.new do
 Thread.stop
 puts "There is an emerald here."
end
t2 = Thread.new do
 Thread.stop
 puts "You're at Y2."
end

sleep 1
t1.wakeup
t2.run

The difference in these is somewhat subtle. The wakeup call changes the state of the thread
so that it is runnable, but won't schedule it to be run; on the other hand, run wakes up the
thread and schedules it for immediate running.

In this particular case, the result is that t1 wakes up before t2, but t2 gets scheduled first,
producing the following output:

You're at Y2.
There is an emerald here.

Of course, it would be unwise to attempt true synchronization by depending on this
subtlety.

Chapter 7. Ruby Threads Page 7 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The raise instance method raises an exception in the thread specified as the receiver.
(The call doesn't have to originate within the thread.)

factorial1000 = Thread.new do
 begin
 prod = 1
 1.upto(1000) { |n| prod *= n }
 puts "1000! = #{ prod} "
 rescue
 # Do nothing...
 end
end

sleep 0.01 # Your mileage may vary.
if factorial1000.alive?
 factorial1000.raise("Stop!")
 puts "Calculation was interrupted!"
else
 puts "Calculation was successful."
end

The thread spawned previously tries to calculate the factorial of 1000; if it doesn't succeed
within a hundredth of a second, the main thread will kill it. Thus, on a relatively slow
machine, this code fragment will print the message Calculation was
interrupted!. Concerning the rescue clause inside the thread, obviously we could
have put any code there that we wanted, as with any other such clause.

Achieving a Rendezvous (and Capturing a Return Value)
Sometimes the main thread wants to wait for another thread to finish. The instance method
join will accomplish this.

t1 = Thread.new { do_something_long() }

do_something_brief()
t1.join # Wait for t1

Note that a join is necessary if the main thread is to wait on another thread. Otherwise,
when the main thread exits, a thread is killed. For example, this code fragment would never
give us its final answer without the join at the end:

meaning_of_life = Thread.new do
 puts "The answer is..."
 sleep 10
 puts 42
end

sleep 9
meaning_of_life.join

Chapter 7. Ruby Threads Page 8 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here is a useful little idiom. It will call join on every living thread except the main one.
(It is an error for any thread, even the main thread, to call join on itself.)

Thread.list.each { |t| t.join if t != Thread.main }

It is, of course, possible for one thread to do a join on another when neither is the main
thread. If the main thread and another attempt to join each other, a deadlock results; the
interpreter will detect this case and exit the program.

thr = Thread.new { sleep 1; Thread.main.join }

thr.join # Deadlock results!

A thread has an associated block, and a block can have a return value. This implies that a
thread can return a value. The value method will implicitly do a join operation and wait
for the thread to complete; then it will return the value of the last evaluated expression in
the thread.

max = 10000
thr = Thread.new do
 sum = 0
 1.upto(max) { |i| sum += i }
 sum
end

guess = (max*(max+1))/2
print "Formula is "
if guess == thr.value
 puts "right."
else
 puts "right."
end

Dealing with Exceptions
What happens if an exception occurs within a thread? As it turns out, the behavior is
configurable.

A flag called abort_on_exception operates both at the class and instance levels. This
is implemented as an accessor at both levels (that is, it is readable and writable).

In short, if abort_on_exception is true for a thread, an exception in that thread will
terminate all the other threads also.

Thread.abort_on_exception = true

Chapter 7. Ruby Threads Page 9 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

t1 = Thread.new do
 puts "Hello"
 sleep 2
 raise "some exception"
 puts "Goodbye"
end

t2 = Thread.new { sleep 100 }

sleep 2
puts "The End"

In the preceding code, the systemwide abort_on_exception is set to true (overriding
the default). Thus, when t1 gets an exception, t1 and the main thread are also killed. The
word Hello is the only output generated.

In this next example, the effect is the same:

t1 = Thread.new do
 puts "Hello"
 sleep 2
 raise "some exception"
 puts "Goodbye"
end

t1.abort_on_exception = true

t2 = Thread.new { sleep 100 }

sleep 2
puts "The End"

In the final example, the default of false is assumed, and we finally get to see the output
The End from the main thread. (We never see Goodbye because t1 is always terminated
when the exception is raised.)

t1 = Thread.new do
 puts "Hello"
 sleep 2
 raise "some exception"
 puts "Goodbye"
end

t2 = Thread.new { sleep 100 }

sleep 2
puts "The End"

Output:

Chapter 7. Ruby Threads Page 10 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Hello
The End

Using a Thread Group
A thread group is a way of managing threads that are logically related to each other.
Normally, all threads belong to the Default thread group (which is a class constant). But
if a new thread group is created, new threads can be added to it.

A thread can only be in one thread group at a time. When a thread is added to a thread
group, it is automatically removed from whatever group it was in previously.

The ThreadGroup.new class method creates a new thread group, and the add instance
method adds a thread to the group:

f1thread = Thread.new("file1") { |file| waitfor(file) }
f2thread = Thread.new("file2") { |file| waitfor(file) }

file_threads = ThreadGroup.new
file_threads.add f1
file_threads.add f2

The instance method list returns an array of all the threads in the thread group:

Count living threads in this_group
count = 0
this_group.list.each { |x| count += 1 if x.alive? }
if count < this_group.list.size
 puts "Some threads in this_group are not living."
else
 puts "All threads in this_group are alive."
end

There is plenty of room for useful methods to be added to ThreadGroup. Here we show
methods to wake up every thread in a group, to wait for all threads to catch up (via
join), and to kill all threads in a group:

class ThreadGroup

 def wakeup
 list.each { |t| t.wakeup }
 end

 def join
 list.each { |t| t.join if t != Thread.current }
 end

 def kill

Chapter 7. Ruby Threads Page 11 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 list.each { |t| t.kill }
 end

end

Synchronizing Threads
Why is synchronization necessary? It is because the "interleaving" of operations causes
variables and other entities to be accessed in ways that aren't obvious from reading the
code of the individual threads. Two or more threads accessing the same variable might
interact with each other in ways that are unforeseen and difficult to debug.

Let's take this simple piece of code as an example:

x = 0
t1 = Thread.new do
 1.upto(1000) do
 x = x + 1
 end
end

t2 = Thread.new do
 1.upto(1000) do
 x = x + 1
 end
end

t1.join
t2.join
puts x

The variable x starts at 0. Each thread increments it a thousand times. Logic tells us that
x must be 2000 when it is printed out.

But what have we here? On one particular system, it prints 1044 as the result. What has
gone wrong?

Our code assumes that the incrementing of an integer is an atomic (or indivisible)
operation. But it isn't. Consider the following logic flow. We put thread t1 on the left side
and t2 on the right. Each separate timeslice is on a separate line, and we assume that when
we enter this piece of logic, x has the value 123.

t1 t2
__________________________ __________________________

Retrieve value of x (123)
 Retrieve value of x (123)
Add one to value (124)
 Add one to value (124)

Chapter 7. Ruby Threads Page 12 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Store result back in x
 Store result back in x

It's obvious that each thread is doing a simple increment from its own point of view. In
this case, also obvious is that x is only 124 after having been incremented by both threads.

This is only the simplest of synchronization problems. The worst ones become truly
difficult to manage and also become genuine objects of study by computer scientists and
mathematicians.

Performing Simple Synchronization with Critical Sections
The simplest form of synchronization is to use a critical section. When a thread enters a
critical section of code, this technique guarantees that no other thread will run until the
first thread has left its critical section.

The Thread.critical accessor, when set to true, will prevent other threads from being
scheduled. Here we look at the example we just mentioned and use this technique to fix
it.

x = 0
t1 = Thread.new do
 1.upto(1000) do
 Thread.critical = true
 x = x + 1
 Thread.critical = false
 end
end

t2 = Thread.new do
 1.upto(1000) do
 Thread.critical = true
 x = x + 1
 Thread.critical = false
 end
end

t1.join
t2.join
puts x

Now the logic flow is forced to resemble the following. (Of course, outside of the
incrementing part, the threads are free to interleave operations more or less randomly.)

t1 t2
__________________________ __________________________

Retrieve value of x (123)
Add one to value (124)
Store result back in x

Chapter 7. Ruby Threads Page 13 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 Retrieve value of x (124)
 Add one to value (125)
 Store result back in x

It is possible to perform combinations of thread manipulation operations that cause a
thread to be scheduled even if another thread is in a critical section. In the simplest case,
a thread that is newly created will be run immediately regardless of whether another
thread is in a critical section. For this reason, this technique should be used only in the
simplest of circumstances.

Synchronizing Access to Resources (mutex.rb)
Let's take a Web indexing application as an example. We retrieve words from multiple
sources over the Net and store them in a hash. The word itself will be the key and the value
will be a string that identifies the document and the line number within the document.

This is a very crude example. But we will make it even more crude with these simplifying
assumptions:

• We will represent the remote documents as simple strings.
• We will limit it to three such strings (simple hard-coded data).
• We will simulate the variability of Net access with random sleeps.

So let's look at Listing 7.1. It doesn't even print out the data it collects, but only a (non-
unique) count of the number of words found. Note that every time the hash is examined
or changed, we call the hesitate method to sleep for a random interval. This will cause
the program to run in a less deterministic and more realistic way.

Chapter 7. Ruby Threads Page 14 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.1. Flawed Indexing Example (with a Race Condition)

$list = []
$list[0]="shoes ships\nsealing-wax"
$list[1]="cabbages kings"
$list[2]="quarks\nships\ncabbages"

def hesitate
 sleep rand(0)
end

$hash = {}

def process_list(listnum)
 lnum = 0
 $list[listnum].each do |line|
 words = line.chomp.split
 words.each do |w|
 hesitate
 if $hash[w]
 hesitate
 $hash[w] += ["#{ listnum} :#{ lnum} "]
 else
 hesitate
 $hash[w] = ["#{ listnum{ :#{ lnum} "]
 end
 end
 lnum += 1
 end
end

t1 = Thread.new(0) { |list| process_list(list) }
t2 = Thread.new(1) { |list| process_list(list) }
t3 = Thread.new(2) { |list| process_list(list) }

t1.join
t2.join
t3.join

count = 0
$hash.values.each do |v|
 count += v.size
end

puts "Total: #{ count} words" # May print 7 or 8!

But there is a problem. If your system behaves as ours has, there are two possible numbers
this program can output! In our tests, it prints the answers 7 and 8 with approximately
equal likelihood. In a situation with more words and more lists, there would be even more
variation.

Let's try to fix this with a mutex that controls access to a shared resource. (The term is
derived, of course, from the words mutual exclusion.) The Mutex library will allow us to
create and manipulate a mutex. We can lock it when we are about to access the hash and
unlock it when we have finished with it (see Listing 7.2).

Chapter 7. Ruby Threads Page 15 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.2. Mutex Protected Indexing Example

require "thread.rb"

$list = []
$list[0]="shoes ships\nsealing-wax"
$list[1]="cabbages kings"
$list[2]="quarks\nships\ncabbages"
def hesitate
 sleep rand(0)
end

$hash = {}

$mutex = Mutex.new

def process_list(listnum)
 lnum = 0
 $list[listnum].each do |line|
 words = line.chomp.split
 words.each do |w|
 hesitate
 $mutex.lock
 if $hash[w]
 hesitate
 $hash[w] += ["#{ listnum} :#{ lnum} "]
 else
 hesitate
 $hash[w] = ["#{ listnum{ :#{ lnum} "]
 end
 $mutex.unlock
 end
 lnum += 1
 end
end

t1 = Thread.new(0) { |list| process_list(list) }
t2 = Thread.new(1) { |list| process_list(list) }
t3 = Thread.new(2) { |list| process_list(list) }

t1.join
t2.join
t3.join

count = 0
$hash.values.each do |v|
 count += v.size
end

puts "Total: #{ count} words" # Always prints 8!

We should mention that in addition to lock, the Mutex class also has a try_lock method.
It behaves the same as lock except that if another thread already has the lock, it will return
false immediately rather than waiting.

$mutex = Mutex.new
t1 = Thread.new { $mutex.lock; sleep 30 }

sleep 1

t2 = Thread.new do
 if $mutex.try_lock

Chapter 7. Ruby Threads Page 16 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

 puts "Locked it"
 else
 puts "Could not lock" # Prints immediately
 end
end

sleep 2

This feature is useful any time a thread doesn't want to be blocked.

Using the Predefined Synchronized Queue Classes
The thread library thread.rb has a couple of classes that will be useful from time to time.
The class Queue is a thread-aware queue that synchronizes access to the ends of the queue;
that is, different threads can use the same queue without fear of problems. The class
SizedQueue is essentially the same, except that it allows a limit to be placed on the size
of the queue (the number of elements it can contain).

These have much the same set of methods available because SizedQueue actually inherits
from Queue. The descendant also has the accessor max—used to get or set the maximum
size of the queue.

buff = SizedQueue.new(25)
upper1 = buff.max # 25
Now raise it...
buff.max = 50
upper2 = buff.max # 50

Listing 7.3 shows a simple producer-consumer illustration. The consumer is delayed
slightly longer on the average (through a longer sleep) so that the items will pile up a little.

Chapter 7. Ruby Threads Page 17 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.3. The Producer-Consumer Problem

require "thread"

buffer = SizedQueue.new(2)
producer = Thread.new do
 item = 0
 loop do
 sleep rand 0
 puts "Producer makes #{ item} "
 buffer.enq item
 item += 1
 end
end

consumer = Thread.new do
 loop do
 sleep (rand 0)+0.9
 item = buffer.deq
 puts "Consumer retrieves #{ item} "
 puts " waiting = #{ buffer.num_waiting} "
 end
end

sleep 60 # Run a minute, then die and kill threads

The methods enq and deq are the recommended way to get items into and out of the queue.
We can also use push to add to the queue and pop or shift to remove items, but these
names have somewhat less mnemonic value when we are explicitly using a queue.

The method empty? tests for an empty queue, and clear causes a queue to be empty.
The method size (or its alias length) returns the actual number of items in the queue.

 # Assume no other threads interfering...

 buff = Queue.new
 buff.enq "one"
 buff.enq "two"
 buff.enq "three"
 n1 = buff.size # 3
 flag1 = buff.empty? # false
 buff.clear
 n2 = buff.size # 0
 flag2 = buff.empty? # true

The num_waiting method is the number of threads waiting to access the queue. In the
non-sized queue, this is the number of threads waiting to remove elements; in the sized
queue, this is also the threads waiting to add elements to the queue.

An optional parameter non_block defaults to false for the deq method in the Queue
class. If it is true, an empty queue will give a ThreadError rather than blocking the
thread.

Chapter 7. Ruby Threads Page 18 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Using Condition Variables

And he called for his fiddlers three.

—"Old King Cole" (traditional folk tune)

A condition variable is really just a queue of threads. It is used in conjunction with a mutex
to provide a higher level of control when synchronizing threads.

A condition variable is always associated with a specific mutex; it is used to relinquish
control of the mutex until a certain condition has been met. Imagine a situation in which
a thread has a mutex locked but cannot continue because the circumstances aren't right.
It can sleep on the condition variable and wait to be awakened when the condition is met.

It is important to understand that while a thread is waiting on a condition variable, the
mutex is released so that other threads can gain access. It is also important to realize that
when another thread does a signal operation (to awaken the waiting thread), the waiting
thread reacquires the lock on the mutex.

Here, we present a very contrived example in the tradition of the dining philosophers.
Imagine a table in which three violinists are seated, all of whom want to take turns playing.
However, there are only two violins and only one bow. Obviously, a violinist can play only
if she has one of the violins and the lone bow at the same time.

We keep a count of the violins and bows available. When a player wants a violin or a bow,
she must wait for it. In our code, we protect the test with a mutex and do separate waits
for the violin and the bow—both associated with that mutex. If a violin or a bow isn't
available, the thread sleeps. It loses the mutex until it is awakened by another thread
signaling that the resource is available, whereupon the original thread wakes up and once
again owns the lock on the mutex.

Let's take a look at Listing 7.4.

Chapter 7. Ruby Threads Page 19 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.4. The Three Violinists

require "thread"

$music = Mutex.new
$violin = ConditionVariable.new
$bow = ConditionVariable.new

$violinsFree = 2
$bowsFree = 1
def musician(n)
 loop do
 sleep rand 0
 $music.synchronize do
 $violin.wait($music) while $violinsFree == 0
 $violinsFree -= 1
 puts "#{ n} has a violin"
 puts "violins #$violinsFree, bows #$bowsFree"

 $bow.wait($music) while $bowsFree == 0
 $bowsFree -= 1
 puts "#{ n} has a bow"
 puts "violins #$violinsFree, bows #$bowsFree"
 end

 sleep rand 0
 puts "#{ n} : (...playing...)"
 sleep rand 0
 puts "#{ n} : Now I've finished."

 $music.synchronize do
 $violinsFree += 1
 $violin.signal if $violinsFree == 1
 $bowsFree += 1
 $bow.signal if $bowsFree == 1
 end
 end
end

threads = []
3.times do |i|
 threads << Thread.new { musician(i) }
end

threads.each { |t| t.join }

We believe that this solution will never deadlock, although we've found it difficult to prove.
But it is interesting to note that this algorithm isn't a fair one. In our tests, the first player
always got to play more often than the other two, and the second more often than the third.
The cause and cure for this behavior are left as an interesting exercise.

Using Other Synchronization Techniques
Yet another synchronization mechanism is the monitor, implemented in Ruby in the form
of the monitor.rb library. This technique is somewhat more advanced than the mutex;
notably, a mutex lock cannot be nested, but a monitor lock can.

The trivial case of this would never occur. That is, no one would ever write the following:

Chapter 7. Ruby Threads Page 20 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

$mutex = Mutex.new

$mutex.synchronize do
 $mutex.synchronize do
 #...
 end
end

But it might happen this way (or through a recursive method call). The result is a deadlock
in any of these situations. Avoiding deadlock in this circumstance is one of the advantages
of the Monitor mixin.

$mutex = Mutex.new

def some_method
 $mutex.synchronize do
 #...
 some_other_method # Deadlock!
 end
end

def some_other_method
 $mutex.synchronize do
 #...
 end
end

The Monitor mixin is typically used to extend any object. The new_cond method can
then be used to instantiate a condition variable.

The class ConditionVariable in monitor.rb is enhanced from the definition in the
thread library. It has methods wait_until and wait_while, which block a thread based
on a condition. It also allows a timeout while waiting because the wait method has a
timeout parameter that is a number of seconds (defaulting to nil).

Because we are rapidly running out of thread examples, we present to you a rewrite of the
Queue and SizedQueue classes using the monitor technique in Listing 7.5. The code is
by Shugo Maeda, used with permission.

Chapter 7. Ruby Threads Page 21 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.5. Implementing a Queue with a Monitor

Author: Shugo Maeda

require "monitor"

class Queue
 def initialize
 @que = []
 @monitor = Monitor.new
 @empty_cond = @monitor.new_cond
 end

 def enq(obj)
 @monitor.synchronize do
 @que.push(obj)
 @empty_cond.signal
 end
 end

 def deq
 @monitor.synchronize do
 while @que.empty?
 @empty_cond.wait
 end
 return @que.shift
 end
 end
end

class SizedQueue < Queue
 attr :max

 def initialize(max)
 super()
 @max = max
 @full_cond = @monitor.new_cond
 end

 def enq(obj)
 @monitor.synchronize do
 while @que.length >= @max
 @full_cond.wait
 end
 super(obj)
 end
 end
 def deq
 @monitor.synchronize do
 obj = super
 if @que.length < @max
 @full_cond.signal
 end
 return obj
 end
 end

 def max=(max)
 @monitor.synchronize do
 @max = max
 @full_cond.broadcast
 end
 end
end

Chapter 7. Ruby Threads Page 22 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

The sync.rb library is one more way of performing thread synchronization. For those
who know and care about such things, it implements a two-phase lock with a counter. At
the time of this writing, the only documentation is inside the library itself.

Allowing Timeout of an Operation
There are many situations in which we want to allow a maximum length of time for an
action to be performed. This avoids infinite loops and allows an additional level of control
over processing. A feature such as this is useful in the environment of the Net, where we
might or might not get a response from a distant server, and in other circumstances.

The timeout.rb library is a thread-based solution to this problem. The timeout method
executes the block associated with the method call; when the specified number of seconds
has elapsed, it throws a TimeoutError that can be caught with a rescue clause (see
Listing 7.6).

Listing 7.6. A Timeout Example

require "timeout.rb"

flag = false
answer = nil

begin
 timeout(5) do
 puts "I want a cookie!"
 answer = gets.chomp
 flag = true
 end
rescue TimeoutError
 flag = false
end

if flag
 if answer == "cookie"
 puts "Thank you! Chomp, chomp, ..."
 else
 puts "That's not a cookie!"
 exit
 end
else
 puts "Hey, too slow!"
 exit
end

puts "Bye now..."

Waiting for an Event
There are many situations in which we might want to have one or more threads monitoring
the outside world while other threads are doing other things. The examples here are all
rather contrived, but they illustrate the general principle.

Chapter 7. Ruby Threads Page 23 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Here, we see three threads doing the work of an application. Another thread simply wakes
up every five seconds, checks the global variable $flag, and wakes up three other threads
when it sees the flag set. This saves the three worker threads from interacting directly with
the two other threads and possibly making multiple attempts to awaken them.

$job = false
work1 = Thread.new { job1() }
work2 = Thread.new { job2() }
work3 = Thread.new { job3() }

thread5 = Thread.new { Thread.stop; job4() }
thread6 = Thread.new { Thread.stop; job5() }

watcher = Thread.new do
 loop do
 sleep 5
 if $flag
 thread5.wakeup
 thread6.wakeup
 Thread.exit
 end
 end
end

If at any point during the execution of the job methods the variable $flag becomes
true, thread5 and thread6 are guaranteed to start within five seconds. After that, the
watcher thread terminates.

In this next example, we are waiting for a file to be created. We check every 30 seconds for
it, and start another thread if we see it; meanwhile, other threads can be doing anything
at all. Actually, we are watching for three separate files here.

def waitfor(filename)
 loop do
 if File.exist? filename
 file_processor = Thread.new do
 process_file(filename)
 end
 Thread.exit
 else
 sleep 30
 end
 end
end

waiter1 = Thread.new { waitfor("Godot") }
sleep 10
waiter2 = Thread.new { waitfor("Guffman") }
sleep 10
headwaiter = Thread.new { waitfor("head") }

Main thread goes off to do other things...

Chapter 7. Ruby Threads Page 24 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

There are many other situations in which a thread might wait for an outside event, such
as a networked application where the server at the other end of a socket is slow or
unreliable.

Continuing Processing During I/O
Frequently, an application might have one or more I/O operations that are lengthy or time-
consuming. This is especially true in the case of user input because a user typing at a
keyboard is slower even than any disk operation. We can make use of this time by using
threads.

Consider the case of a chess program that must wait for the human player to make her
move. Of course, we present here only the barest outline of this concept.

We assume that the iterator predictMove will repeatedly generate likely moves that the
person might make (and then determine the program's own responses to those moves).
Then when the person moves, it is possible that the move has already been anticipated.

scenario = { } # move-response hash
humans_turn = true
thinking_ahead = Thread.new(board) do
 predictMove do |m|
 scenario[m] = myResponse(board,m)
 Thread.exit if humans_turn == false
 end
end

human_move = getHumanMove(board)
humans_turn = false # Stop the thread gracefully

Now we can access scenario which may contain the
move the person just made...

We have to make the disclaimer that real chess programs don't usually work this way. The
concern is usually to search quickly and thoroughly to a certain depth; in real life, a better
solution would be to store partial state information obtained during the thinking thread,
and then continue in the same vein until the program finds a good response or time runs
out for its turn.

Implementing Parallel Iterators
Imagine that you wanted to iterate in parallel over more than one object. That is, for each
of n objects, you want the first item of each of them, the second item of each, the third, and
so on.

To make this a little more concrete, look at the following example. Here we assume that
compose is the name of the magic method that provides a composition of iterators. We

Chapter 7. Ruby Threads Page 25 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

also assume that every object specified has a default iterator each that will be used, and
that each object contributes one item at a time.

arr1 = [1, 2, 3, 4]
arr2 = [5, 10, 15, 20]
compose(arr1, arr2) do |a,b|
 puts "#{ a} and #{ b} "
end

Should output:
1 and 5
2 and 10
3 and 15
4 and 20

We could take the most simple-minded approach and iterate over the objects to
completion, one after another, storing the results. But if we want a more elegant solution,
one that doesn't actually store all the items, threads are the only easy solution. Our solution
is shown in Listing 7.7.

Chapter 7. Ruby Threads Page 26 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

Listing 7.7. Iterating in Parallel

def compose(*objects)

 threads = []
 for obj in objects do
 threads << Thread.new(obj) do |myobj|
 me = Thread.current
 me[:queue] = []
 myobj.each do |element|
 me[:queue].push element
 end
 end
 end

 list = [0] # Dummy non-nil value
 while list.nitems > 0 do # Still some non-nils
 list = []
 for thr in threads
 list << thr[:queue].shift # Remove one from each
 end
 yield list if list.nitems > 0 # Don't yield all nils
 end

end

x = [1, 2, 3, 4, 5, 6, 7, 8]
y = " first\n second\n third\n fourth\n fifth\n"
z = %w[a b c d e f]

compose(x, y, z) do |a,b,c|
 p [a, b, c]
end

Output:
#
[1, " first\n", "a"]
[2, " second\n", "b"]
[3, " third\n", "c"]
[4, " fourth\n", "d"]
[5, " fifth\n", "e"]
[6, nil, "f"]
[7, nil, nil]
[8, nil, nil]

Notice that we do not assume that the objects all have the same number of items over which
to iterate. If an iterator "runs out" before the others, it will generate nil values until the
longest-running iterator has exhausted itself.

Of course, it is possible to write a more general method that will grab more than one value
from each iteration. (After all, not all iterators return just one value at a time.) We could
let the first parameter specify the number of values per iterator.

It would also be possible to use arbitrary iterators (rather than the default each). We might
pass in their names as strings and use send to invoke them. Doubtless there are other
tricks that could be performed.

Chapter 7. Ruby Threads Page 27 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

However, we think that the example given here is adequate for most circumstances. We
will leave the other variations as an exercise for you.

Recursive Deletion in Parallel
Just for fun, let's take an example from Chapter 4, "External Data Manipulation," and
"parallelize" it. (No, we don't mean parallel in the sense of using multiple processors.) The
recursive deletion routine appears here in a threaded form. When we find that a directory
entry is itself a directory, we start a new thread to traverse that directory and delete its
contents.

As we go along, we keep track of the threads we've created in an array called threads;
because this is a local variable, each thread will have its own copy of the array. It can be
accessed by only one thread at a time, and there is no need to synchronize access to it.

Note also that we pass fullname into the thread block so that we don't have to worry
about the thread accessing a changing value. The thread uses fn as a local copy of the same
variable.

When we have traversed an entire directory, we want to wait on the threads we have created
before deleting the directory we've just finished working on.

def delete_all(dir)
 threads = []
 Dir.foreach(dir) do |e|
 # Don't bother with . and ..
 next if [".",".."].include? e
 fullname = dir + File::Separator + e
 if FileTest::directory?(fullname)
 threads << Thread.new(fullname) do |fn|
 delete_all(fn)
 end
 else
 File.delete(fullname)
 end
 end
 threads.each { |t| t.join }
 Dir.delete(dir)
end

delete_all("/tmp/stuff")

Is this actually faster than the non-threaded version? We've found that the answer isn't
consistent. It probably depends on your operating system as well as on the actual directory
structure being deleted, that is, its depth, size of files, and so on.

Chapter 7. Ruby Threads Page 28 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

http://safari.oreilly.com/0672320835/ch04#ch04

Summary
Threads can be a useful technique in many circumstances, but they can be somewhat
problematic to code and debug. This is particularly true when we use sophisticated
synchronization methods to achieve correct results.

In the next chapter, we move away from a discussion of the programming technique back
to a task-oriented topic. We'll discuss the use of Ruby for everyday scripting and system
administration tasks.

Chapter 7. Ruby Threads Page 29 Return to Table of Contents

Chapter 7. Ruby Threads
Ruby Way, The By Hal Fulton ISBN: 0-672-32083-5 Publisher: Sams Prepared for Ronald Fischer, Safari ID: ronald.fischer@fusshuhn.de
Print Publication Date: 2001/12/17 User number: 628024 Copyright 2007, Safari Books Online, LLC.
This PDF is exclusively for your use in accordance with the Safari Terms of Service. No part of it may be reproduced or transmitted in any form by any means without the prior
written permission for reprints and excerpts from the publisher. Redistribution or other use that violates the fair use priviledge under U.S. copyright laws (see 17 USC107) or that
otherwise violates the Safari Terms of Service is strictly prohibited.

	Ruby Threads
	Creating and Manipulating Threads
	Synchronizing Threads
	Summary

